747 research outputs found

    Multicriteria Evaluation for Top-k and Sequence-based Recommender Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Preference Learning

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14101 “Preference Learning”. Preferences have recently received considerable attention in disciplines such as machine learning, knowledge discovery, information retrieval, statistics, social choice theory, multiple criteria decision making, decision under risk and uncertainty, operations research, and others. The motivation for this seminar was to showcase recent progress in these different areas with the goal of working towards a common basis of understanding, which should help to facilitate future synergies

    An Effective Tool for the Experts' Recommendation Based on PROMETHEE II and Negotiation: Application to the Industrial Maintenance

    Get PDF
    In this article, we propose an expert recommendation tool that relies on the skills of experts and their interventions in collaboration. This tool provides us with a list of the most appropriate (effective) experts to solve business problems in the field of industrial maintenance. The proposed system recommends experts using an unsupervised classification algorithm that takes into account the competences of the experts, their preferences and the stored information in previous collaborative sessions. We have tested the performance of the system with K-means and C-means algorithms. To fix the inconsistencies detected in business rules, the PROMETHEE II multi-criteria decision support method is integrated into the extended CNP negotiation protocol in order to classify the experts from best to worst. The study is supported by the well known petroleum company in Algeria namely SONATRACH where the experimentations are operated on maintenance domain. Experiments results show the effectiveness of our approach, obtaining a recall of 86%, precision of 92% and F-measure of 89%. Also, the proposed approach offers very high results and improvement, in terms of response time (154.28 ms), space memory (9843912 bytes) and negotiation rounds

    Prediction, Recommendation and Group Analytics Models in the domain of Mashup Services and Cyber-Argumentation Platform

    Get PDF
    Mashup application development is becoming a widespread software development practice due to its appeal for a shorter application development period. Application developers usually use web APIs from different sources to create a new streamlined service and provide various features to end-users. This kind of practice saves time, ensures reliability, accuracy, and security in the developed applications. Mashup application developers integrate these available APIs into their applications. Still, they have to go through thousands of available web APIs and chose only a few appropriate ones for their application. Recommending relevant web APIs might help application developers in this situation. However, very low API invocation from mashup applications creates a sparse mashup-web API dataset for the recommendation models to learn about the mashups and their web API invocation pattern. One research aims to analyze these mashup-specific critical issues, look for supplemental information in the mashup domain, and develop web API recommendation models for mashup applications. The developed recommendation model generates useful and accurate web APIs to reduce the impact of low API invocations in mashup application development. Cyber-Argumentation platform also faces a similarly challenging issue. In large-scale cyber argumentation platforms, participants express their opinions, engage with one another, and respond to feedback and criticism from others in discussing important issues online. Argumentation analysis tools capture the collective intelligence of the participants and reveal hidden insights from the underlying discussions. However, such analysis requires that the issues have been thoroughly discussed and participant’s opinions are clearly expressed and understood. Participants typically focus only on a few ideas and leave others unacknowledged and underdiscussed. This generates a limited dataset to work with, resulting in an incomplete analysis of issues in the discussion. One solution to this problem would be to develop an opinion prediction model for cyber-argumentation. This model would predict participant’s opinions on different ideas that they have not explicitly engaged. In cyber-argumentation, individuals interact with each other without any group coordination. However, the implicit group interaction can impact the participating user\u27s opinion, attitude, and discussion outcome. One of the objectives of this research work is to analyze different group analytics in the cyber-argumentation environment. The objective is to design an experiment to inspect whether the critical concepts of the Social Identity Model of Deindividuation Effects (SIDE) are valid in our argumentation platform. This experiment can help us understand whether anonymity and group sense impact user\u27s behavior in our platform. Another section is about developing group interaction models to help us understand different aspects of group interactions in the cyber-argumentation platform. These research works can help develop web API recommendation models tailored for mashup-specific domains and opinion prediction models for the cyber-argumentation specific area. Primarily these models utilize domain-specific knowledge and integrate them with traditional prediction and recommendation approaches. Our work on group analytic can be seen as the initial steps to understand these group interactions

    Multi-criteria optimization in regression

    Get PDF
    In this paper, we consider standard as well as instrumental variables regression. Specification problems related to autocorrelation, heteroskedasticity, neglected non-linearity, unsatisfactory out-of-small performance and endogeneity can be addressed in the context of multi-criteria optimization. The new technique performs well, it minimizes all these problems simultaneously, and eliminates them for the most part. Markov Chain Monte Carlo techniques are used to perform the computations. An empirical application to NASDAQ returns is provided

    Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics.

    Get PDF
    The annotation of small molecules remains a major challenge in untargeted mass spectrometry-based metabolomics. We here critically discuss structured elucidation approaches and software that are designed to help during the annotation of unknown compounds. Only by elucidating unknown metabolites first is it possible to biologically interpret complex systems, to map compounds to pathways and to create reliable predictive metabolic models for translational and clinical research. These strategies include the construction and quality of tandem mass spectral databases such as the coalition of MassBank repositories and investigations of MS/MS matching confidence. We present in silico fragmentation tools such as MS-FINDER, CFM-ID, MetFrag, ChemDistiller and CSI:FingerID that can annotate compounds from existing structure databases and that have been used in the CASMI (critical assessment of small molecule identification) contests. Furthermore, the use of retention time models from liquid chromatography and the utility of collision cross-section modelling from ion mobility experiments are covered. Workflows and published examples of successfully annotated unknown compounds are included

    Multi-Criteria Recommender Systems based on Multi-Attribute Decision Making

    Full text link
    • …
    corecore