1CO D
@9?.-- oa-n..{.?o
AN

« PO

PRTTTIT T,
. .

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multicriteria Evaluation for Top-k and Sequence-based Recommender Systems

Original
Multicriteria Evaluation for Top-k and Sequence-based Recommender Systems / Monti, Diego Michele. - (2020 May 07),
pp. 1-195.

Availability:
This version is available at: 11583/2841172 since: 2020-07-22T19:48:37Z

Publisher:
Politecnico di Torino

Published
DOI:

Terms of use:
Altro tipo di accesso

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 August 2020

Scuola di Dottorato « Doctoral School
WHAT YOU ARE, TAKES YOU FAR

Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (32" cycle)

Multicriteria Evaluation for
Top-k and Sequence-based
Recommender Systems

Diego Michele Monti

X ok ok ok okok

Supervisors:
Prof. Maurizio Morisio, Supervisor
Dr. Giuseppe Rizzo, Co-supervisor

Doctoral Examination Committee:

Prof. Luis Martinez-Lopez, Referee, Universidad de Jaén

Prof. Olga C. Santos, Referee, Universidad Nacional de Educacion a Distancia
Prof. Andrea Bottino, Politecnico di Torino

Prof. Marco Torchiano, Politecnico di Torino

Dr. Iacopo Vagliano, Amsterdam UMC

Politecnico di Torino
May 7", 2020

This dissertation is licensed under a Creative Commons Attribution — NonCommer-
cial — NoDerivatives 4.0 International License. Visit http://creativecommons.
org/licenses/by-nc-nd/4.0/ to view a copy of this license.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

Diego Michele Monti
Turin, May 7", 2020

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Summary

Context The need of effectively identifying relevant items from a potentially over-
whelming catalog has led to the creation of automatic approaches for supporting
users of online platforms in such a time-consuming task. Recommender systems
are software tools and algorithms designed to suggest items to users according to
their preferences. The traditional goal of the recommendation problem is to cre-
ate a ranked list of suggestions for each user. However, a more novel paradigm
is represented by algorithms capable of exploiting the temporal dimension of the
available ratings, known as sequence-based recommender systems. Differently from
the field of information retrieval, performing an offline experiment for comparing
multiple recommendation approaches is a challenging task, as the ground truth is
represented by the subjective preferences of the users collected before the introduc-
tion of the system under evaluation. Nevertheless, it represents a powerful tool for
selecting the most promising approaches to be further tested in subsequent trails.

Goal In this dissertation, we study how to perform the offline evaluation of a
generic recommender system by exploiting a multicriteria approach that relies on
a set of heterogeneous metrics. We provide an answer to the following research
questions: what is the current state-of-the-art regarding multicriteria recommender
systems and how their are evaluated in literature; how can a multicriteria evalu-
ation approach be exploited for comparing different sequence-based recommender
systems; what is the most suitable protocol for performing an offline evaluation of
a top-k recommender system; and to what extent the structure of a rating dataset
can influence the results of an offline evaluation.

Method To answer the first question, we investigate the topic of multicriteria
recommender systems with a systematic literature review. Regarding the second
question, we propose an evaluation framework called Sequeval designed to com-
pare in a replicable way different sequence-based recommenders considering eight
dimensions. With respect to the third question, we introduce RecLab, an evalua-
tion toolkit designed following a distributed approach to overcome some limitations
of the currently available evaluation solutions. Finally, for addressing the fourth
question, we describe a method based on data visualization to explore the structure

IIT

of a rating dataset and we report on an algorithm capable of generating alternative
versions of an existing collection of ratings.

Results From the systematic literature review, we observed that is not possible to
directly compare the results obtained with different multicriteria recommendation
approaches due to the extreme variability in the reported experimental protocols.
We exploited Sequeval and RecLab to successfully conduct some experimental cam-
paigns involving different recommenders and datasets. The availability of multicri-
teria metrics enables the experimenter to obtain a more comprehensive picture of
the systems under consideration. We validated our visualization method and gener-
ative approach by qualitatively and quantitatively comparing the results obtained
with different rating datasets. Finally, we considered two novel recommendation
approaches as possible use cases of multicriteria evaluation methods.

Conclusion In summary, this dissertation deals with the problem of conducting
an offline comparison of recommender systems considering both traditional and
sequential scenarios. We designed the proposed frameworks for addressing the most
critical problems that emerged from literature, namely the non-reproducibility of
the results, the comparability of different studies, and the bias of relying on a few
metrics only. The software code of our frameworks is freely available on the Web
in an attempt to foster further reuse and extension.

v

Acknowledgements

This dissertation represents the end of a journey that lasted about three years
and a half and it would not have been possible without the help and the continuous
support of different people with whom I had the privilege to collaborate.

First of all, I would like to thank my supervisor, prof. Maurizio Morisio, for
encouraging me to pursue a doctorate title and for always helping to face the
difficulties that such a choice necessarily implies, and my co-supervisor, Giuseppe
Rizzo, for always trying, and hopefully succeeding, in making me a more mature
researcher. Indeed, I would like to thank prof. Marco Torchiano, for recruiting me
as a teaching assistant since my first year and for introducing me to the topic of
data visualization, and Luca Ardito, for the always precious advice and suggestions.

A very special thank goes to lacopo Vagliano, for helping to orientate myself in
the complex world of recommender systems during my early days, and to Enrico
Palumbo, for the countless hours spent together debating mathematical equations
and configuration parameters of our experiments.

Of course, I would like to mention all the colleagues and friends who con-
tributed to the positive and vibrant atmosphere of Lab 1, strictly in alphabeti-
cal order: Alysson Dos Santos, Amirhosein Toosi, Edoardo Battegazzorre, Erion
Cano, Francesco Strada, Isabeau Oliveri, Mariachiara Mecati, Riccardo Coppola,
Rifat Rashid, and Simone Leonardi.

Several experimental activities that I conducted would not have been possible
without the computational resources kindly provided by the HPCQPOLITO project
(http://hpc.polito.it), to which I am grateful.

Last but not least, I would like to thank my parents for their unconditional love
and fundamental support during this journey.

http://hpc.polito.it

Contents

List of Tables

List of Figures

Glossary

1 Introduction

2 Background
2.1 Recommender Systemso

2.2

2.1.1
2.1.2
2.1.3
214
Offline
2.2.1
2.2.2
2.2.3
224

Top-k Recommender Systems
Sequential Recommender Systems
Review-based Recommender Systems
Linked Data-based Recommender Systems
Evaluation oo
Experimental Reproducibility
Beyond Accuracyo
Visualization Approaches
Synthetic Datasets

3 Multicriteria Recommender Systems
3.1 Methodology

3.2

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
Results
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Research Questions and Search String.
Selection Process L.
Quality Assessment
Data Extraction,
Synthesis o
Included Studies L.
Research Problems
Recommendation Approaches
Multicriteria Techniques
Application Domains

XII

XIII

10
11
13
14
14
15
17
17
18

3.2.6 Evaluation Protocols 36
3.2.7 Ewvaluation Metrics L. 37
3.2.8 Evaluation Datasets 39
3.2.9 Future Works 40
3.3 Discussion e e 43
3.3.1 Included Studies 43
3.3.2 Research Problems 43
3.3.3 Recommendation Approaches 44
3.3.4 Multicriteria Techniques 44
3.3.5 Application Domains 47
3.3.6 Evaluation Protocols 48
3.3.7 Ewvaluation Metrics L. 48
3.3.8 Ewvaluation Datasets 49
3.3.9 Future Works 49
3.3.10 Threats to Validity 50
3.4 Conclusion 51
Evaluation of Sequence-based Recommender Systems 53
4.1 Sequence-based Recommender Systems 55
4.2 Sequeval Evaluation Framework 58
4.2.1 Evaluation Protocol 59
4.2.2 Evaluation Metrics 60
4.2.3 Implementation 0L 65
4.3 Experimental Analysis oo 67
4.3.1 Experimental Setup L. 68
4.3.2 Datasets 69
433 Results. 71
4.3.4 Discussion 73
4.4 Conclusion 75
Evaluation of Top-k Recommender Systems T
5.1 RecLab Evaluation Framework 78
5.2 Interaction Protocol 80
5.3 Evaluation Metrics 82
53.1 Coverage 82
5.3.2 Precision 83
53.3 Recall 83
534 nDCG 83
5.3.5 Novelty 83
5.3.6 Diversity 84
5.3.7 Serendipity 84
5.4 Experimental Results L. 84

2.5

Conclusion

Qualitative Analysis with Rating Datasets Visualization

6.1

6.2

6.3

Visualization Approach
6.1.1 Scatter Plot Construction
6.1.2 Software Implementation
Evaluation Campaign
6.2.1 Experimental Setup
6.2.2 Discussion
Conclusion

Generation and Evaluation of Synthetic Datasets

7.1

7.2
7.3

7.4

Dataset Generation
7.1.1 User Clustering and Distribution Learning
7.1.2 Rating Sampling
Experimental Setup
Results
7.3.1 Number of User Communities
7.3.2 Synthetic and Reference Datasets
Conclusion,

First Use Case: Semantic Review Recommender

8.1

8.2
8.3

8.4
8.5

Approach
8.1.1 Semantic Annotation and Discovery
8.1.2 Recommendation
8.1.3 Ranking Functions
Evaluation Procedure
Evaluation Results
8.3.1 Optimizing the SemRevRec Parameters . .
8.3.2 Comparison with Baselines
Discussion L.
Conclusion,

Second Use Case: Music Recommender System

9.1
9.2

9.3
9.4

Ensemble 0.
Recurrent Neural Networks
9.2.1 Input Vectors
9.2.2 Learning Model
9.2.3 Generating Predictions
Title2Reco
Optimization
9.4.1 RNN Optimization

VIII

89
90
90
91
93
93
94
96

99
100
101
101
102
104
104
104
106

109
110
111
114
115
116
118
118
123
124
126

9.4.2 Title2Rec Optimization 136

9.4.3 Ensemble Optimization 137

9.5 Experimental Results 138
9.6 Conclusion 139
10 Conclusion and Future Work 141
10.1 Limitations 143
10.2 Future work 144

A Systematic Literature Review 147
B Publication List 161
Bibliography 165

IX

List of Tables

2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
6.1
7.1
7.2
7.3
7.4
7.5
8.1
8.2
8.3
8.4
8.5

Comparison of recommendation techniques 10
Example of rating matrix L. 11
Digital libraries considered, 21
Inclusion and exclusion criteria L. 22
Studies per selection step 23
Quality questions 23
Data extraction form L 24
Studies per recommendation approach 32
Studies per recommendation technique 35
Studies per evaluation protocol 37
Studies per evaluation metric 0L 39
Studies per category of future worko 42
Benefits and issues of the techniques 46
Statistics about the sequences 69
Experimental results with Yes.com 72
Experimental results with Foursquare 72
Time to evaluate the algorithms 73
Interpretation of the metrics, 74
Evaluation with MovieLens 1M and random splitting 85
Evaluation with MovieLens 1M and timestamp splitting. 85
Evaluation with LastFM and random splitting 86
Experimental comparison with LastFEM 95
Statistics about the synthetic datasets 103
Precision obtained by varying the clusters 104
Experimental results with the synthetic MovieLLens 100K 105
Experimental results with the synthetic MovieLens 1M 106
Experimental results with the synthetic LastFM 107
Properties of the discovery phase 113
Statistics about datasets and reviewso L 116
Configuration parameters of SemRevRec 119
Experimental results with MovieLens and DBpedia 119
Experimental results with LibraryThing and DBpedia 120

8.6
8.7
8.8
8.9
8.10
9.1
9.2
9.3

Experimental results with LastFM and DBpedia 120

Experimental results with Wikidata 123
Comparison using the MovieLens dataset 124
Comparison using the LibraryThing dataset 124
Comparison using the LastFM dataset 125
Results of the RNN models 136
Results of different approaches 139
Results of the ensemble, 139

XI

List of Figures

1.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
4.1
4.2
4.3
5.1
6.1
6.2
6.3
6.4
8.1
8.2
8.3
8.4
9.1
9.2
9.3
9.4
9.5

Overview of the dissertation structure 6
Systematic literature review protocol 20
Studies per year of publication 26
Quality scores per publication type 26
Quality score per quality question 27
Studies per research problem, 30
Studies per application domaino 36
Studies per evaluation dataset 41
Ideal multicriteria recommender 47
Sequeval evaluation procedure, 60
UML class diagram of sequeval 66
Number of ratings peritem 70
RecLab interaction protocol 81
Scatter plot of MovieLens 100K 92
Scatter plot of MovieLens 1M 93
Configuration of RS-viz 94
Scatter plots of LastFM L 97
SemRevRec architecture L 112
Entities extracted from the reviews 117
nDCG with MovieLens and Wikidata 121
Comparison between DBpedia and Wikidata 122
Ensemble architecture for playlist completion. 128
RNN architecture for playlist completion 129
Pipeline for the title embedding model 131
Strategies for generating track predictions 134
Title2Rec algorithm 135

XII

Glossary

collaborative filtering (CF): a recommendation approach based on the rating be-
haviour of similar users on similar items.

content-based recommender system: arecommendation approach based on the pref-
erences of the users and the characteristics of the items.

evaluation framework: an evaluation protocol, a set of evaluation metrics, and, if
available, a software implementation of them.

evaluation protocol: the procedure that needs to be followed by a researcher to
perform an experiment.

hybrid recommender system: a recommendation approach that combines different
techniques to select the suggested items.

knowledge-based recommender system: a recommendation approach based on ex-
ternally encoded domain knowledge.

multicriteria evaluation: an experimental approach based on a comprehensive set
of different evaluation metrics.

multicriteria recommender system: a recommender system that exploits multiple
ratings per item expressed over different criteria.

offline evaluation: an experimental approach based on user preferences collected
before the introduction of the system under evaluation.

online evaluation: an experimental approach that consists in making a novel rec-
ommender system available to a potentially large community of users.

rating dataset: a dataset containing the preferences expressed by a set of users over
a catalog of items at a certain timestamp.

recommender system (RS): a software tool and an algorithm designed to suggest
items to users according to their preferences.

XIII

sequence-based recommender system: a recommender system capable of suggesting
personalized sequences of items.

sequential recommender system: a recommender system designed to consider the
timestamp associated with user ratings.

synthetic dataset: a rating dataset created in an artificial way.

top-k recommender system: a recommender system capable of suggesting a list of
the k£ most relevant items per user.

user study: an experimental approach that consists in making a recommender sys-
tem available to a limited set of subjects in a controlled environment.

X1V

Chapter 1

Introduction

Due to the large variety of products and digital content available on the Web, an
increasing number of people are interested in obtaining personalized suggestions, in
order to reduce the effort of inspecting all the items in a catalog for selecting the best
one according to their preferences. An automated tool capable of recommending
items to users in a personalized way is defined as a recommender system [112].

Recommender systems (RS) were initially conceived at the beginning of the
1990s [51] and, nowadays, they are considered part of a research field that is in-
dependent from information retrieval [61]. In fact, while search engines are based
on queries and, therefore, they react to user stimuli, recommender systems try to
automatically identify items that could be of interest for a certain user [11].

A popular recommendation technique, called collaborative filtering (CF), con-
sists of learning users’ preferences by only relying on their interactions with the
items available in a catalog. For example, using a nearest-neighbor search or a ma-
chine learning model, it is possible to select the most relevant items for each user
who has interacted enough with the system [122]. An alternative approach to this
problem is represented by content-based recommenders, which can generate sug-
gestions by matching users’ profiles with the features of the items [11, 12]. Another
family of recommendation methods proposed in the literature is represented by hy-
brid algorithms that are capable of combining both collaborative and content-based
filtering for mitigating the individual weaknesses of the previous techniques [120].

In a collaborative filtering setting, users are typically required to rate items
that are already familiar with, relying on a numerical scale, for example a 5-star
scale. This value should objectively represent the utility that the user gained from
the consumption of that item. Given a sufficient number of users and ratings, a
recommender system is capable of predicting the utility score that a user would
assign to unrated items [4]. The items with the highest predicted rating are finally
suggested to the user, in a top-k ranked list.

A well-established line of research is related to the minimization of the error in
predicting these values. However, such a task has limited practical applications,

1

1 — Introduction

because several techniques capable of predicting ratings with a high accuracy are
already available [102]. Furthermore, accurate suggestions may sometimes not be
the most useful ones for users [61]. For example, predicting high ratings for a
popular item is probably accurate, but not meaningful, as users are likely to be
already aware of that item.

In recent years, this traditional approach has been put aside in favor of others
closer to the needs of the users. For example, many recommender systems now
rely on binary or implicit signals in order to create a personalized experience [55].
Those signals are more intuitive to be understood and easier to be generated. An-
other important factor that has started to be considered as a possible input of the
recommender is the temporal dimension of the preferences [108].

In general, the offline evaluation of recommender systems is a challenging task,
because, differently from the field of information retrieval, the ground truth is
always uncertain, as it is based on the subjective preferences of the users collected
before the introduction of the system under evaluation [62]. In fact, it is widely
known that novel recommendation approaches should be evaluated in the context of
online experiments involving human subjects in order to obtain reasonably robust
results about their performance.

Nevertheless, most of the studies available in literature support their conclusions
with offline trails relying on the preferences of users collected without considering
the algorithms under investigation [55]. Despite the possible weaknesses of this ap-
proach [116], offline experiments are extremely popular among researchers because
of their limited costs and the theoretical reproducibility of their results. In indus-
try, they are usually considered a powerful tool for pruning the number of possible
recommender systems that need to be tested with real users, thus mitigating the
economical impact of eventual failures.

This dissertation discusses how to perform the offline evaluation of a generic
recommender system by exploiting a multicriteria approach that relies on a com-
prehensive set of different metrics. By adopting the proposed protocols, it is pos-
sible to obtain a more general picture of the systems under evaluation, avoiding
frequent problems like the popularity bias and the non reproducibility of the re-
sults. We experiment with multiple offline evaluation techniques in the context of
both traditional and sequential recommenders.

Furthermore, we investigate the main characteristics of different rating datasets
and how they can influence the performance of the systems that rely on them. Fi-
nally, we also consider the topic of multicriteria from a different angle, by analyzing
existing methods for exploiting a multifaceted knowledge of users’ preferences.

More formally, we answer to the following top-level research questions.

RQ1 What is the current state-of-the-art regarding multicriteria recommender sys-
tems and how their are evaluated in literature?

1 — Introduction

RQ2 How can a multicriteria evaluation approach be exploited for comparing dif-
ferent sequence-based recommender systems?

RQ3 What is the most suitable protocol for performing an offline evaluation of a
top-k recommender system?

RQ4 To what extent the structure of a rating dataset can influence the results of
an offline evaluation?

As regards RQ1, we conduct a systematic literature review to investigate in
dept the field of multicriteria recommender systems, considering the exploited rec-
ommendation approaches and how the proposed algorithms were evaluated.

We analyze the different machine learning and data mining techniques typically
exploited in literature and we classify them according to the recommendation phase.
Furthermore, we review how the proposed algorithms have been evaluated with
respect to the experimental settings, the metrics, and the datasets. In Chapter 3,
we provide detailed answers to the following research questions.

RQ1.1 What are the most relevant studies addressing multicriteria RSs?
RQ1.2 What are the most challenging problems faced by researchers?
RQ1.3 What are the approaches used by multicriteria recommenders?
RQ1.4 Which techniques and methods have been proposed?

RQ1.5 In which domains multicriteria recommender systems are applied?
RQ1.6 Which protocols and frameworks are used for their evaluation?
RQ1.7 Which metrics are considered during their evaluation?

RQ1.8 Which datasets are used for testing the algorithms?

RQ1.9 What are the most promising directions for future works?

With respect to RQ2, we research and prototype an offline evaluation frame-
work called Sequeval that is designed to evaluate recommender systems capable
of suggesting sequences of items, instead of lists of items. In Chapter 4, we pro-
vide a set of mathematical definitions to characterize in a precise way what is a
recommender system capable of suggesting sequences. In detail, we expand the
traditional concept of rating by adding to it the notion of temporal dimension.

Then, we propose to consider a sequence as a temporally ordered list of ratings
and a sequence-based recommender as a function that is able to return a sequence
given its required length and a seed rating. These definitions are conceived as an

3

1 — Introduction

extension of the seminal works on recommenders capable of suggesting sequences
available in literature [108].

Starting from this formalization, we propose an evaluation protocol that can
be applied to any sequence-based recommender system. First, an initial dataset
is transformed into a set of sequences. Then, the available sequences are split
between training and test sets. At this point, one or more external recommenders
are plugged into the framework: they are exposed to the training sequences and
they are asked to create suggested sequences starting from the same seeds of the
test ones. Finally, considering the recommendations available, the framework can
compute eight different evaluation metrics.

We report the lessons learned using this framework for assessing the performance
of four baselines and two recommender systems based on conditional random fields
and recurrent neural networks, considering two rating datasets. Sequeval is publicly
available and it can be exploited by researchers and practitioners when experiment-
ing with sequence-based recommender systems, providing comparable and objective
evaluation results. In Chapter 4, we consider the following research questions.

RQ2.1 What is the formal definition of a sequence-based recommender system?

RQ2.2 How already established metrics can be extended and adapted for evaluat-
ing a sequence-based recommender system?

RQ2.3 Against which baseline approaches a sequence-based recommender system
can be compared?

For addressing RQ3, we introduce RecLab, an evaluation toolkit discussed in
Chapter 5 and based on RESTful APIs that can be used to overcome the problem
of evaluating traditional recommenders in heterogeneous settings. In fact, because
the recommenders are deployed on different servers, the evaluator does not need to
know their implementation details.

The researcher can specify the experimental parameters in a Web-based inter-
face for starting a new evaluation campaign. RecLab will then contact all the
recommenders selected as part of the comparison and it will display the results
computed considering a comprehensive set of seven different metrics.

We propose a Web-based interaction protocol in order to standardize the pro-
cedure for evaluating the recommenders. The evaluator first requests the training
of a new model, then it provides the training set created according to the settings
of the experiment. When the model is ready, the evaluator asks the recommender
to create a list of k suggestions for each user of the test set. The results of all
experiments are permanently stored and publicly available in order to support ac-
countability and comparative analyses. In Chapter 5, we provide an answer to the
following research questions.

1 — Introduction

RQ3.1 How can different top-k recommender systems be fairly compared in het-
erogeneous settings without necessary exposing their algorithms?

RQ3.2 To what extent it is possible to support the reproducibility of the experi-
ments and the accountability of the results?

RQ3.3 How can the availability of different metrics support the experimenter in
the interpretation of the obtained results?

Regarding RQ4, we explore a method for visualizing the structure of a rat-
ing dataset in Chapter 6 and we discuss how to generate a synthetic dataset for
evaluation purposes in Chapter 7.

We introduce a qualitative approach based on data visualization for creating
a graphical summary of any collection of user preferences. This method is useful
for visually identifying similarities and differences among various rating datasets.
In fact, if two datasets result in similar visualizations, the behavior of different
recommender systems relying on them will be consistent. Furthermore, we develop
a Web-based tool, named RS-viz, for easily constructing the proposed visualization
and comparing rating datasets in an intuitive way. In Chapter 6, we consider the
following research questions.

RQ4.1 How can data visualization techniques be exploited to create a graphical
summary of the main characteristics of a rating dataset?

RQ4.2 To what extent the graphical representation of different rating datasets can
be useful to easily identify their similarities and diversities?

Another relevant problem that we try to address in this dissertation is related
to the shortage of publicly available rating datasets. In fact, it is necessary to
rely on a collection of user preferences obtained in a particular domain to perform
an offline experiment, but the availability of such datasets is often limited. Some
researchers have started to rely on synthetic ratings. However, the results obtained
from these experiments may be questionable, as the generated datasets are usually
not capable of capturing the characteristics of a particular domain of interest.

For this reason, we propose an approach for automatically generating synthetic
datasets with a configurable number of users leveraging on a reference dataset that
is used as the seed of the process and that encodes the peculiarities of a domain of
interest. Such a method could also be exploited for anonymizing existing datasets
before their public release in the context of privacy-aware suggestions. In Chapter 7,
we analyze the following research questions.

RQ4.3 What is the impact of using a synthetic dataset instead of a real one on
the results of an offline experiment in the context of recommender systems?

5

1 — Introduction

RQ4.4 Can a generative approach be exploited to create a synthetic dataset that
exhibits properties similar enough to the ones of a real dataset?

RQ4.5 To what extent this method can be consistently applied to datasets from
different domains and of different sizes?

State of the Art

- ~
Y - Chapter 2 Chapter 3 ~ N
(Multicriteria) RQ1
\ Background Recommender Systems J

N —
N~ — —
Evaluation Framework

/ — | — — — — — — — — — _— — \

Y - Chapter 4 Chapter 5 ~ N
RQ2 (Sequence-based Top-k Recommender) RQ3
\ Recommender: Sequeval Systems: ReclLab J
A ~
N~ — e o e —
Rating Dataset Structure
/ — S — — — — — — — — — _— — \

Y - Chapter 6 Chapter 7 ~ N
RQ4 (_Rati_ng Datasets Generation of Synthetic) RQ4

Visualization: RS-viz Datasets
\ /
~ ~
N~ — e o e —_
Use Cases
/ — S — — — — — — — — — _— — \
, - Chapter 8 Chapter 9 ~ N
emantic Review usic Recommender
S ic Revi Music R d
\ Recommender System /
N ~
N~ — e o e —_
Conclusion
PR - - - - - - - = — - S
Chapter 10
/ et \
(-)
Conclusion and Future Work
N\ /
~ -

Figure 1.1: An overview of the dissertation structure illustrating its division in
chapters, the top-level research questions and the main outcomes of the related
research activity. The software tools developed are underlined.

1 — Introduction

In summary, as depicted in Figure 1.1, this dissertation deals with the problem
of conducting an offline comparison of recommender systems from different per-
spectives. We analyze existing approaches for exploiting multicriteria ratings, with
a special emphasis on the methods currently employed for validating the quality of
the suggestions. Then, we discuss multicriteria evaluation techniques, considering
both sequence-based recommenders as well as more traditional approaches. Fur-
thermore, we explore the problem of selecting the right dataset according to the
evaluation context by visualizing its structure and generating alternative versions
of it. Finally, we apply our knowledge of multicriteria evaluation techniques to dif-
ferent use cases. We propose and evaluate with an ensemble of metrics a semantic
review recommender capable of annotating product reviews to extract useful infor-
mation from them and a music recommender system designed to create playlists
starting from a few songs that represent the seeds of the process.

The remainder of this dissertation is organized as follows. In Chapter 2, we
review existing recommendation and evaluation approaches available in literature
and the associated challenges. In Chapter 3, we report the results of a systematic
literature review dealing with the topic of multicriteria recommender systems. In
Chapter 4, we introduce Sequeval, our framework for evaluating sequence-based
recommender systems, while, in Chapter 5, we discuss RecLab, a Web-based eval-
uation toolkit for top-k recommenders. In Chapter 6, we describe a qualitative
method for visualizing the ratings available in any collection of users’ preferences.
In Chapter 7, we present our approach for generating a synthetic dataset that ex-
hibits the same properties of a real one. In Chapter 8, we report on the creation
and evaluation of a semantic review recommender, while, in Chapter 9, we describe
our approach for automatically generating music playlists. Finally, in Chapter 10,
we formulate our conclusions and we discuss open issues and possible future works.

Chapter 2

Background

Nowadays, the amount of information available on the Web is overwhelming.
For this reason, the availability of tools capable of selecting from a huge catalog
a short list of items that are of potential interest for a particular user is a critical
success factor for almost any online platform. Therefore, recommender systems
represent one of the technical solutions commonly employed in industry to address
the issue of effectively exploring a vast horizon of possible choices.

A related and equally popular approach is represented by search engines. De-
spite the common roots of these solutions, the task of evaluating with an offline
experiment a recommender system is usually more challenging, as the ground truth
is represented by subjective, and sometimes even emotional, preferences.

In this chapter, we first review some of the recommendation approaches available
in literature (Section 2.1), then we discuss the main challenges associated with their
offline evaluation (Section 2.2).

2.1 Recommender Systems

According to Ricci et al. [112], recommender systems are software tools and
algorithms designed to suggest items to users according to their preferences.

In general, recommender systems can be classified in different categories based
on the recommendation approach. The most widespread categories of recommender
systems are content-based, collaborative filtering, knowledge-based, and hybrid [4],
as summarized in Table 2.1. Content-based recommenders only rely on the past
preferences of the current user in order to construct her profile and select sug-
gested items. In contrast, collaborative filtering approaches analyze the behaviour
of similar users for identifying candidate items. A knowledge-based recommender
embeds domain-specific knowledge that is used for matching user requirements
with items of potential interest. Finally, hybrid approaches combine in many dif-
ferent ways the previous methods. Other less common categories of recommender

2 — Background

systems include community-based and demographic techniques [19]. A community-
based recommender also considers the relationships of trust among its users, while
a demographic recommender mainly relies on demographic profiles.

Method

Advantages

Disadvantages

Content-based
Collaborative filtering

Knowledge-based

Hybrid

Transparency, limited
privacy issues
Scalability, only based
on ratings

No interaction history
required

Combines multiple ap-

Requires a description
of the items

Data sparsity and cold
start problems
Difficult to the create
the model

Limited performance

proaches together

Table 2.1: Comparison of the advantages and disadvantages of the recommendation
techniques mentioned in [4].

A detailed analysis of the recommendation approaches available in literature is
beyond the scope of this dissertation. Many authors already conducted different
studies dealing with the topic of recommender systems. Park et al. [102] reviewed
hundreds of journal articles for analyzing the main application fields and data
mining techniques exploited by different recommenders. Hong et al. [66] discussed
the literature about context-aware recommenders, while Figueroa et al. [44] and
Cano et al. [21] conducted systematic literature reviews about Linked Data and
hybrid recommender systems respectively.

More recently, Quadrana et al. [108] classified different approaches according
to their capability of managing sequences of items. Portugal et al. [105] reviewed
commonly exploited machine learning techniques, while Zhang et al. [139] discussed
the most promising deep learning methods for generating personalized items.

In the following, we briefly introduce a formal definition of the recommenda-
tion problem. Then, we review the recommendation approaches considered in this
dissertation, that is top-k, sequential, review-based, and Linked Data-based ones.
Please note that sequence-based recommender systems are a generalization of se-
quential recommenders and they will be defined later in Section 4.1.

2.1.1 Top-k Recommender Systems

Traditionally, recommender systems try to identify for each user an item that
maximises the utility that she should gain from the consumption of that item [18].
In other words, recommender systems estimate a utility function R(v,¢) that, given
a user v € U and an item ¢ € Z, predicts if ¢ should be recommended to v. In
principle, the utility function could be an arbitrary function, including a profit

10

2.1 — Recommender Systems

function. The formal definition of this problem, as provided by Adomavicius &
Tuzhilin [2], is reported in Equation 2.1.

Yoel, = arg max R(v, 1) (2.1)

In practice, users are commonly asked to quantify their preferences with nu-
merical values, called ratings. For example, ratings could be the number of stars
assigned to a product or the indication if they liked or not a movie. Therefore, the
utility function R is used by the system to calculate the ratings that users would
probably assign to unknown items. Such a value measures the appropriateness of
recommending an item to a certain user.

The ratings already available can be represented as a matrix, similar to the one
illustrated in Table 2.2. In real systems, this matrix should be sparse, because the
number of unknown cells is usually extremely elevated [112]. In fact, users can
provide ratings on a limited set of items, especially if the catalog is very large.

Item_1 TItem 2 TItem_ 3 Item 4 Item b5

User_1 5 3 4 4 ?
User_2 ? 1 ? 3 3
User_ 3 4 3 ? ? 5
User_4 3 7 1 ? ?
User_5 ? 5 5 2 1

Table 2.2: An example of rating matrix. Unknown ratings are denoted with an
interrogative mark.

Different approaches can be exploited to compute unknown ratings. For exam-
ple, in a collaborative filtering setting, popular techniques include user-based or
item-based k-NN and matrix factorization methods [69].

Even if the recommendation problem is traditionally formalized as the task
of predicting unknown ratings, many commercial systems provide to each user a
ranked list of suggestions [81]. Therefore, a recommender system capable of select-
ing k items per user can be defined as a top-k recommender. It is straightforward
to obtain a top-k list starting from the predicted ratings, as it is sufficient to sort
them and select only the items with the highest computed values [2].

2.1.2 Sequential Recommender Systems

A recommender system designed to consider the timestamp associated to user
ratings can be defined as a sequential recommender [108]. In the following, we
review some examples of sequential recommenders available in literature.

11

2 — Background

Zhou et al. [140] proposed a web recommender system based on a sequential
pattern mining algorithm. The recommender is trained with the access logs of a
website and its goal is to predict the pages that are likely to be visited by a certain
user, given her previously visited pages. The authors proposed to store the model
in a tree-like structure, relying on a technique originally designed for matching
substrings over a finite alphabet of characters. A recommendation is then created
by matching the sequence of pages already visited by the target user with the
sequences previously analyzed by the algorithm.

In the context of market basket analysis, it is also possible to exploit the se-
quence of previous transactions to predict what a customer is going to buy next [5].
Rendle et al. [110] proposed a method based on personalized transition graphs
over Markov chains, while Wang et al. [134] designed a recommender capable of
modeling both the sequential information from previous purchases and the overall
preferences by a hybrid representation.

Bellogin and Sanchez [15] proposed a similarity metric designed to compare
users in the context of CF recommender systems. This metric takes into account
the temporal sequence of users’ ratings to identify common behaviors. The au-
thors argue that it is possible to consider a sequence of items as a string, where
each character represents an item, and compare them using the longest common
subsequence algorithm [63].

More recently, He et al. [59] introduced the concept of translation-based rec-
ommendation. While a traditional recommender only considers the pairwise inter-
actions between items and users, their idea is to model a third-order relationship
among a user, the items she interacted with in the past, and the item she is going
to visit next. Each user can be represented as a vector in a transition space: given
the current item, it is possible to compute where the next one will be located. At
recommendation time, it is possible to generate a list of suggested items by relying
on a nearest-neighbor search.

On the other hand, the task of generating recommendations of sequences was
already discussed and presented in a seminal work by Herlocker et al. [62]. The
authors suggested that it would be intriguing to be able to suggest, in the music
domain, not only the songs that will be probably liked by a certain user, but also
a playlist of songs that is globally pleasing. Moreover, they also proposed to apply
this recommendation methodology in the context of scientific literature, where it is
necessary to read a sequence of articles to become familiar with a certain topic.

The problem of recommending music songs was later addressed by Chen et
al. [28], who designed and implemented a recommender system capable of generat-
ing personalized playlists by modeling them as Markov chains. Their algorithm is
capable of learning, from a set of training playlists, how to represent each song as
a point in a latent space. Then, starting from a seed song, it is possible to create a
playlist of an arbitrary length by repeatedly sampling the transition probabilities

12

2.1 — Recommender Systems

between adjacent songs. The resulting playlist is personalized because of the cho-
sen seed. Furthermore, each user can influence the generation process by specifying
some parameters: for example, a user might be more interested in popular songs,
while another one in songs that are strictly related to the given seed.

Another typical application for a sequence-based recommender is the nezt point-
of-interest (POI) prediction problem [108]. Given some training sequences of pre-
viously liked geographical locations, this task consists of predicting a sequence of
venues that is pleasing for a given user. Feng et al. [43] proposed an algorithm
capable of creating sequences of POls that have not been already visited. The au-
thors developed a Metric Embedding algorithm that captures both the sequential
information and individual preference. Such metric is then exploited to create a
Markov chain model capable of representing the transition probabilities between
a given POI and the next one. The key features that are implicitly considered in
the embedding creation phase are the conceptual similarity and the geographical
distance of the analyzed venues.

A different line of research is represented by recommenders capable of analyz-
ing sequences of multimedia objects. For example, Albanese et al. [7] proposed a
hybrid recommender system for retrieving multimedia content based on the the-
ory of social choice and capable of exploiting, among other signals, the implicit
browsing preferences of its users. Later, the authors of [8] introduced a multimedia
recommendation algorithm capable of combining semantic descriptors and usage
patterns. The proposed approach can manage different media types and it enables
users to explore several multimedia channels at the same time. Possible applications
of such technologies are represented by browsing tools for virtual museums [10] and
recommenders of cultural heritage sites [123].

2.1.3 Review-based Recommender Systems

The exploitation of user reviews in recommender systems is a well-known re-
search topic, as reported by Cheng et al. [27]. Some techniques try to tackle the
problem of building the profile of users by analyzing their reviews, while others
focus on the identification of the main features of the items to recommend.

Different strategies have been proposed in the literature to address the latter
problem. Some researchers have suggested methods able to identify the sentiment
associated with the features of an item exploiting a domain-specific ontology [1] or
its technical description [136]. A common aspect of these techniques is that the
possible features are already available before performing the analysis. However, in
literature there are also approaches for unsupervised extraction of product features
and sentiment from reviews [107, 119].

Another possibility is to identify the main characteristics of an item with the
help of natural language processing methods, without any previous knowledge of
the context. For example, a popular technique considers bigrams that frequently

13

2 — Background

occur in reviews and that are associated with a word expressing an emotion [41].
In this case, the goal of the recommender system is suggesting items with the same
features of the ones liked by the target user, but with a better global sentiment.
In the best of our knowledge, there is only one attempt to exploit user reviews
for recommendation tasks using semantic annotation. Dzikowski et al. [42] applied
semantic annotation to reviews while users are editing them. Their goal was to
produce annotated reviews of restaurants through Linked Data in order to generate
tags to be associated with the reviewed items.

2.1.4 Linked Data-based Recommender Systems

In the past, some studies reviewed different Linked Data-based recommender
systems that were proposed in literature [37, 44]. Typically, these recommender
systems consider the relationships among resources by taking into account the ex-
isting links in the Web of Data and use them to measure a semantic similarity.
Such relationships can be direct links or paths between the items to recommend.
In the following, we summarize the main works in this field.

Damljanovic et al. [36] suggested domain experts in an open innovation sce-
nario. Their approach generates recommendations by discovering related resources
through hierarchical or transversal relationships in DBpedia. Passant [104] pre-
sented dbrec, a music recommender system, which mainly relies on a measure named
Linked Data Semantic Distance (LDSD). This measure is based on the number of
direct and indirect links between two resources. Heitmann and Hayes [60] also pro-
posed a recommender system which exploited Linked Data to mitigate the new-user,
new-item and sparsity problems of collaborative recommender systems.

More recently, Musto et al. [95] studied the impact of the knowledge available
in the Web of Data on the overall performance of a graph-based recommendation
algorithm. Vagliano et al. [131] presented a recommendation algorithm based on
Linked Data which exploits existing relationships between resources by dynamically
analyzing both their categories and their explicit references to other resources.
Di Noia et al. [38] described a model-based approach to provide content-based
recommendations with Linked Data. Ostuni et al. [98] defined a neighborhood-
based graph kernel for matching graph-based item representations. Di Noia et
al. [39] introduced SPrank, a hybrid algorithm which extracts semantic path-based
features from DBpedia and computes recommendations using Learning to Rank.

2.2 Offline Evaluation

To the best of our knowledge, the first survey that deals with the problem of
evaluating a recommender system was conducted by Herlocker et al. [62]. In their
work, the authors discuss when it is appropriate to perform an offline evaluation

14

2.2 — Offline Evaluation

and when it is necessary to carry on an online, or in vivo, experiment. The former
is particularly useful to select a small set of potentially good candidates that will
be further compared in a real scenario. However, to be complete and trustworthy;,
such an evaluation needs to rely on a set of well-defined metrics, that should be
able to capture all characteristics of the recommended items.

An offline analysis is an experimental approach based on user preferences col-
lected before the introduction of the system under evaluation. Therefore, it is a
simple and effective method to conduct large scale evaluations, usually considering
different algorithms and datasets. Its major requirement is the availability of a
collection of user preferences in the domain of interest. If the dataset at disposal
also includes timestamps, it is possible to exploit it considering ratings and sugges-
tions according to their temporal order. However, offline evaluations are based on
datasets that are usually sparse: for this reason, it is not possible to reliably eval-
uate recommendations that involve items with no ratings available from the target
user. Furthermore, offline experiments based on existing rating datasets cannot
consider other important factors such as the usability of the user interface. An
alternative approach is represented by live experiments. They can be classified as
user studies when they are conducted in a controlled environment with a limited
set of subjects or as online analyses when a recommender system is made available
to a potentially large community of users.

In the following, we introduce the problem of experimental reproducibility, then
we explain why it is necessary to consider a multicriteria set of metrics for conduct-
ing a reliable evaluation. Finally, we review existing visualization and generative
approaches in the context of rating datasets.

2.2.1 Experimental Reproducibility

Different authors analyzed the experimental reproducibility of offline evalua-
tions in the context of recommender systems. For example, Jannach et al. [70]
compared several recommendation algorithms in an offline experiment, analyzing
their performance by relying on a comprehensive evaluation framework. The au-
thors considered different splitting protocols and metrics, designed to characterize
both the accuracy, in terms of rating and ranking, and the coverage of the suggested
items. The results of the experimental trails suggest that some common algorithms,
despite their high accuracy, tend to only recommend popular items that are proba-
bly not very interesting for the users of a real system. This problem is related to the
popularity biases introduced by the offline evaluation protocol: for this reason, it is
not advisable to compare different algorithms by relying only on measures related
to their accuracy. In addition, different splitting protocols produce significantly
different and non-comparable outcomes.

Gunawardana and Shani [55] proposed a set of general guidelines for designing

15

2 — Background

experiments with the purpose of evaluating recommender systems. Such experi-
ments can be classified as offline trails, user studies, or online analysis that involve
a live system. Several properties of a recommender system can be evaluated: for
example, the most common ones are user preference, prediction accuracy, coverage,
and utility. The authors argue that the possibility of measuring these properties is
strongly influenced by the kind of study and, in the most extreme scenario, some
of them cannot be obtained. For example, it is very difficult to measure users’
preference in an offline setting.

For each property, different commonly exploited metrics are presented and dis-
cussed. Even if the main metrics proposed for evaluating the most popular prop-
erties are widely known and understood, usually there is little agreement about
the most appropriate metrics for characterizing the least common properties. For
example, several definitions, and several metrics, related to the property of utility
are available in the literature. The authors also point out that a key decision of
offline experiment design is the splitting protocol because this choice will greatly
influence the final outcome of the measures.

Bellogin et al. [14] proposed an evaluation framework designed following the
methodologies of the information retrieval field. They suggest that the evaluation
procedures available in information retrieval are widespread: for this reason, they
could be successfully exploited by the recommender systems community to create
a shared evaluation protocol based on ranking, as this setting is more similar to
the one of a live system. Unfortunately, three different design decisions need to be
taken to achieve this goal.

The items considered for the evaluation could be all items available in the
dataset, or only the items available in the test set. The non-relevant items for
a certain user could be represented by all items in the test set not rated by that
user, or by a subset of it with a fixed size. Finally, the global metric could be
computed by averaging its value on all users, or on all ratings available in the test
set. Different design choices will result in different evaluation protocols and results.
The authors also identify two sources of biases in offline evaluations protocols: the
sparsity bias and the popularity bias.

Several software tools are available with the purpose of simplifying the process of
comparing the performance of recommendation algorithms. They typically include
some evaluation protocols and a reference implementation of well-known techniques.
Said and Bellogin [116] compared several of these tools to check if their results are
consistent. They discovered that the values obtained with the same dataset and
algorithm may vary significantly among different frameworks. For this reason, it is
not feasible to directly compare the scores reported by these tools, because they are
obtained relying on several protocols. The discrepancies reported by the authors
are mainly caused by the data splitting protocol, the strategy used to generate the
candidate items, and the implementation choices related to the evaluation metrics.

16

2.2 — Offline Evaluation

2.2.2 Beyond Accuracy

In their survey dealing with the problem of evaluating a recommender system,
Herlocker et al. [62] review several accuracy metrics usually exploited by different
authors and they classify them into three categories: predictive accuracy metrics,
classification accuracy metrics, and rank accuracy metrics. These groups are strictly
related to the purpose of the recommender system: predicting a rating for each
user-item pair, identifying an item as appropriate or not for a user, and creating an
ordered list of recommended items for a user. After discussing the accuracy-based
metrics, they argue that, in order to draw a reliable conclusion, it is necessary
to also consider other properties of the recommended items. In their opinion, a
recommender system should be capable of providing suggestions that are not only
accurate but also useful. For example, an extremely popular item may be an
accurate but not an interesting suggestion. For this reason, they also discuss other
metrics that could be considered beyond the traditional concept of accuracy, such
as coverage, learning rate, novelty, serendipity, and confidence.

The idea of relying not only on accuracy-based metrics is also supported by
Ge et al. [47]. In their work, the authors state that the purpose of an evaluation
protocol is to assess the quality of the recommended items and not their accuracy.
However, metrics like precision and recall alone are not capable of verifying that
the recommendations are actually useful. In fact, only the users of the system
can judge their quality in the context of an online experiment. Therefore, their
suggestion is to consider a multicriteria set of metrics and not only accuracy when
it is necessary to perform an offline study.

2.2.3 Visualization Approaches

Different authors have proposed to create interactive visualizations for quali-
tative evaluating the goodness of the recommended items or helping the users to
identify the most relevant suggestions. For example, Kunkel et al. [77] created a
3D map-based visualization that represents the preferences of a user on the entire
space of items. The user can inspect the profile created by the recommender and
also manually modify it, if necessary.

Coba et al. [31] extended the rrecsys library by adding to it graphical capabilities
for performing an offline visual evaluation of different recommendation approaches
with respect to the popularity of the suggested items. Gil et al. [50] introduced
VisualRS, a tool capable of creating tree graph structures for exploring the most
important relationships between items or users. The graph-based visualization is
useful for comparing the results of different recommendation approaches and se-
lecting the most appropriate one for a given task. In contrast, Cardoso et al. [23]
proposed to combine the output of different recommender systems with human-
generated data to allow users to explore the suggested items in an effective way.

17

2 — Background

This method could also be exploited to compare the results of different recom-
mender systems in a qualitative way.

2.2.4 Synthetic Datasets

Synthetic datasets are commonly used in literature to assess the performance
of database systems or to study the behavior of data mining algorithms. For ex-
ample, Agrawal et al. [6] created a generator of retail transactions intended for
the evaluation of association rule algorithms, while Houkjeer et al. [67] introduced
a software capable of creating relational data for benchmarking purposes. Such
tools can generate realistic data in terms of their statistical distributions, which
can be empirically learned for existing datasets or provided by a researcher using
domain-specific languages.

Similar approaches have been also explored in the field of recommender systems,
usually because of the lack of public datasets with the required characteristics. Tso
et al. [127] created a synthetic data generator for evaluating context-aware recom-
menders based on Dirichlet and Chi-square distributions. The metric of informa-
tion entropy is then exploited to control the randomness of the synthetic data. A
similar method has been discussed by Pasinato et al. [103]: their intuition is to
represent the heterogeneous rating behaviors of the users with different statistical
distributions.

Manouselis et al. [84] presented a tool, named CollaFis, capable of creating
synthetic ratings for the evaluation of either single-criteria or multi-criteria rec-
ommender systems. The users of CollaFis need to specify the characteristics of
the generated data, like the number of users, items, and criteria. A common as-
pect of all the previously mentioned methods is that researchers are required to
choose and configure the statistical distributions that are exploited to generate the
artificial datasets. However, the main problem of such an approach is that it is im-
possible to predict the real behavior of many different users with a few statistical
distributions [88].

Another possible line of research is related to the imitation of a real collection
of preferences. For example, Rodriguez-Herndndez et al. [25] developed a software,
DataGenCARS, for creating artificial ratings using a set of parameters provided
by the user or inferred from a reference dataset. However, in Chapter 7, we argue
that statistics computed at a global level are not informative enough to create a
synthetic dataset, as they are not able to capture the different behaviors of the
various groups of users.

18

Chapter 3

Multicriteria Recommender
Systems

The traditional approach to the recommendation problem discussed in Sec-
tion 2.1 could be considered somewhat limited, as users typically tends to judge
items according to different criteria [2]. For example, we can easily imagine to as-
sign different ratings to a movie, expressing how much we liked the story, the acting,
the direction, and the visual effects. Such multiple ratings could be exploited by
a recommender system in order to identify more effectively which items should be
suggested. For this reason, different authors started to propose multicriteria recom-
mender systems, namely methods capable of suggesting items by relying on ratings
provided over different criteria instead of a single one [4, 83].

In this chapter, we investigate the state of the art in the field of multicriteria rec-
ommender systems. We follow the systematic literature review protocol proposed
by Kitchenham & Charters [76], in order to enable other researchers to easily ver-
ify and reproduce our work. We consider nine different research questions that
encompass various aspects of the reviewed studies.

In particular, we analyze the most important problems that multicriteria rec-
ommenders aim to address, as well as the exploited recommendation approaches,
according to the taxonomy created by Burke [19]. We also describe the different
machine learning and data mining techniques typically included in a multicriteria
recommender and we identify which methods are frequently utilized in each recom-
mendation phase, thus we try to describe the structure of an ideal multicriteria RS.
We quantitatively measure the domains that are the most appropriate ones for such
systems and we review how the proposed algorithms have been evaluated with re-
spect to the experimental settings, the metrics, and the exploited datasets. Finally,
we describe the most promising directions for future works that are mentioned in
the reviewed studies.

We considered a total number of 93 studies, published from 2003 to 2018, to
perform this systematic literature review. To the best of our knowledge, this is

19

3 — Multicriteria Recommender Systems

the first review conducted in the field of multicriteria recommender systems that
follows a standardized and repeatable protocol. We aim that our study could be
useful to other researchers working in this area, especially for better identifying
possible approaches and future trends.

The remainder of this chapter is structured as follows. In Section 3.1, we detail
the protocol that we followed for conducting the review. Then, we present the
quantitative results in Section 3.2 and we provide a possible interpretation of the
outcomes of the review in Section 3.3. Finally, we conclude this chapter with
Section 3.4, while, in Appendix A, we report the list of selected studies.

3.1 Methodology

We decided to perform this review according to the guidelines designed by
Kitchenham & Charters for Systematic Literature Reviews (SLR) in the field of
Software Engineering [76]. This method guarantees that the outcome of the review
is verifiable and repeatable by other researches. The protocol, which is graphically
illustrated in Figure 3.1, was developed by the author of this dissertation.

Definition of research questions

!

Construction of search string

]

Selection of sources

]

Search and selection of studies

!

Quality assessment

!

Data extraction

1
Synthesis

Figure 3.1: The systematic literature review protocol designed following the guide-
lines by Kitchenham & Charters [76].

3.1.1 Research Questions and Search String

The purpose of this systematic literature review is to identify the studies describ-
ing multicriteria recommender systems and to understand the motivations behind

20

3.1 — Methodology

their usage, the techniques employed, the experimental protocols used to validate
them, and the related research challenges. For these reasons, we defined the fol-
lowing research questions.

RQ1.1 What are the most relevant studies addressing multicriteria RSs?
RQ1.2 What are the most challenging problems faced by researchers?
RQ1.3 What are the approaches used by multicriteria recommenders?
RQ1.4 Which techniques and methods have been proposed?

RQ1.5 In which domains multicriteria recommender systems are applied?
RQ1.6 Which protocols and frameworks are used for their evaluation?
RQ1.7 Which metrics are considered during their evaluation?

RQ1.8 Which datasets are used for testing the algorithms?

RQ1.9 What are the most promising directions for future works?

In order to retrieve the studies related to multicriteria recommender systems,
we defined the following preliminary set of keywords: {Multicriteria, Recommender
System}. This initial set was expanded to include alternative spellings and we
defined the search string used to query the digital sources as follows.

(multicriteria OR "multi criteria" OR "multi-criteria")
AND ("recommender system" OR "recommendation system")

We selected six scientific digital libraries that contain primary studies related to
the field of computer science, as detailed in Table 3.1. Other more general sources,
like Google Scholar, were not included because they usually index studies already
available in the primary sources.

Source URL

ACM Digital Library — https://dl.acm.org

IEEE Xplore http://ieeexplore.ieee.org
IST Web of Knowledge http://www.webofknowledge.com
ScienceDirect https://www.sciencedirect.com
Scopus https://www.scopus.com
Springer Link https://link.springer.com

Table 3.1: The digital libraries considered during the search process.

21

https://dl.acm.org
http://ieeexplore.ieee.org
http://www.webofknowledge.com
https://www.sciencedirect.com
https://www.scopus.com
https://link.springer.com

3 — Multicriteria Recommender Systems

3.1.2 Selection Process

The selection process was performed during January 2019. We inserted the
search query in the search field of the digital libraries selected as sources for the
review and we retrieved all the studies identified by the respective search engines.
Because of the high number of false positive results, we decided to limit our search
to the title, abstract, and keywords with IEEE Xplore, ISI Web of Knowledge, and
Scopus. The preliminary set initially contained 1256 studies. We checked their
titles and authors in order to discover possible duplicates: after having removed
duplicated results, the preliminary set was reduced to 950 studies.

Furthermore, for objectively identifying the studies to include in the review, we
defined a set of inclusion and exclusion criteria, which are summarized in Table 3.2.
We first applied the criteria in a coarse selection phase by only considering their ab-
stracts and we obtained a list of 301 papers. Then, we analyzed again the available
studies in a detailed selection phase by reading relevant portions of their content.
We finally selected 93 studies as part of this literature review, as summarized in
Table 3.3. The full list, sorted by source, year of publication and author, is available
in Appendix A.

Code Inclusion criteria

IC1 Papers describing multicriteria recommender systems
IC2 Papers published in conferences and journals
IC3 Papers written in English language

Code Exclusion criteria

EC1 Papers not addressing recommender systems

EC2 Papers addressing RSs without multicriteria ratings
EC3 Papers that report only abstracts or posters

EC4 Papers that describe a planned research!

EC5 Grey literature and book chapters

Table 3.2: The inclusion and exclusion criteria.

3.1.3 Quality Assessment

For objectively assessing the quality of the studies selected as part of this review,
we defined eight quality questions, as listed in Table 3.4. It is possible to assign
to each question the scores of 0, 0.5, and 1, that correspond, respectively, to the

'We defined a planned research as a study that only contains a high level description of the
proposed methodology, without the details necessary to implement it.

22

3.1 — Methodology

Source Search Coarse Detailed
ACM Digital Library 27 24 11
IEEE Xplore 38 36 15

IST Web of Knowledge 31 25 6
ScienceDirect 344 81 19
Scopus 118 62 24
Springer Link 392 73 18

Total 950 301 93

Table 3.3: The number of studies after each selection step.

answers Yes, Partly, and No. During the quality assessment phase, we provided an
answer to each question for all studies included in the review.

Code Quality question

QQ1 Did the study clearly describe the problems that it is addressing?
QQ2 Did the study review the related work for the problem?

QQ3 Did the study compare its approach with possible alternatives?
QQ4 Did the study describe the components of the proposed RS?
QQ5 Did the study provide an empirical evaluation of the solution?
QQ6 Did the study present a clear statement of the findings?

QQ7 Did the study analyze the application scenarios of the RS?

QQ8 Did the study recommend any further research activity?

Table 3.4: The quality questions.

3.1.4 Data Extraction

We carefully read multiple times the primary studies that are selected as part of
this review. During this phase, we identified the data available in the works useful
for providing an answer to the research questions introduced in Section 3.1.1. More
in details, we looked for the information listed in Table 3.5. This process was
supported by the data analysis software tool NVivo.?2 We relied on this tool to
minimize the manual effort required for applying the methodology described in
Section 3.1.5.

2https://www.qsrinternational.com/nvivo

23

https://www.qsrinternational.com/nvivo

3 — Multicriteria Recommender Systems

Field Description RQ
Code An internal identifier of the study -

Title - RQ1.1
Authors - -
Publication year - RQ1.1
Publication name - -
Source The digital library that contains the study -
Type Conference or journal -

DOI - -
Research problem The problem that the study tries to address RQ1.2
Contribution The description of the proposed method RQ1.3
Implementation How the method was implemented RQ1.4
Domain The domain of the recommended items RQ1.5
Evaluation protocol The protocol used to evaluate the method RQ1.6
Evaluation metric The metric used to compare the RS RQ1.7
Dataset The dataset used to execute the evaluation RQ1.8
Limitation The limitations of the proposed method RQ1.9
Future work The suggestions for future works RQ1.9

Quality score - -

Table 3.5: The data extraction form.

3.1.5 Synthesis

We synthesized the results of our review following the Cruzes & Dyba method-
ology [34] for combining and comparing the results of the primary studies that we
considered. While reading the selected studies, we associated relevant portions of
their text with codes. A code is a label applied to text segments that discuss the
same theoretical or descriptive idea and that is used to aggregate in an organic way
the data that we are analyzing. We initially defined some general codes associated
with the research questions. Then, we created more specialized sub-codes related
to the content of the studies, thus following an integrated approach that combines
both inductive and deductive methods and that is considered the most appropriate
one for a systematic review [34]. We subsequently aggregated the codes in themes,
and we mapped these themes back to the original research questions. The outcomes
of this last phase are reported in Section 3.2, grouped by research question.

3.2 Results

In this section, we highlight the findings of our systematic literature review
regarding multicriteria recommender systems, according to the research questions

24

3.2 — Results

introduced in Section 3.1.1. These results will be further discussed in Section 3.3.

3.2.1 Included Studies

The main purpose of RQ1.1 is to identify the studies related to the topic of
multicriteria recommender systems to be included in this review. Following the
protocol detailed in Section 3.1, we identified a total number of 93 studies. These
works have been presented during conferences or they have been published in sci-
entific journals in a period of time from 2003 to 2018. In Figure 3.2, we detail the
number of studies per year and per venue. It is possible to observe an increasing
amount of studies published in the last years.?

We exploited the questions listed in Table 3.4 to assess the quality of the works
included in this review. In Figure 3.3, we report the quality scores according to the
publication venue. As expected, journal papers obtained, in general, higher scores
with respect to conference papers. Furthermore, Figure 3.4 contains the average
quality scores for each quality question. It is possible to observe that the highest
scores are associated with QQ1 (Did the study clearly describe the problems that
it is addressing?), while the lowest ones with QQ8 (Did the study recommend any
further research activity?).

3.2.2 Research Problems

In this section, we describe the main problems and challenges that multicriteria
recommender systems aim to address and, thus, we provide an answer to RQ1.2.
In total, we identified 10 different categories of problems that are mentioned in
the reviewed studies. The number of studies for each category is summarized in
Figure 3.5. It is important to observe that a single study may analyze different
problems at the same time.

Data Sparsity

Data sparsity is the most frequent problem in this field and it is caused by the
fact that users provide ratings for a limited number of items or criteria. While this
is a well documented common issue of recommender systems, multicriteria user-
item matrices may be even sparser, as they require more effort and time from the
users of the system. In order to address this problem, several solutions are proposed
in the reviewed studies. For example, the authors of [P3] suggest to combine the
multicriteria ratings using two different regression functions, one for the items and

3Please note that the results for the year 2019 are not available, as the selection was performed
in January 2019.

25

3 — Multicriteria Recommender Systems

18
16

.
3
3
d E
4 s o E
S 6
2 d B B E

2003 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Number of studies
= =
(@)} (0] (@) N

~

Figure 3.2: This stacked barplot represents the number of included studies per
year of publication. Blue studies have been presented in a conference, while orange
studies have been published in a journal.

1,00

0,95

0,90
0,85

(]
5 0,80
@
20,75

3
3070

0,65
0,60
0,55

0,50

Conference Journal

Figure 3.3: This boxplot represents the distribution of quality scores per publication
type. Studies published in journals have higher quality scores.

26

3.2 — Results

QQz

QQ3

QQs5

QQ7

o
o
o
JEEN
o
N
o
w

0,4

o
n

0,6
Quality score

o
~
o
o
o
(o]
[ERY
o

Figure 3.4: This barplot represents the average quality score per quality question.
The lowest quality score is associated with the description of future works.

one for the users. The ratings estimated by the regression functions are then com-
bined in order to minimize the prediction error. In [P18], a Bayesian latent model
for multicriteria recommenders is exploited along with a support vector regression
learner in order to mitigate the data sparsity problem. Another possible solution,
as suggested in [P63], is represented by dimensionality reduction techniques, which
can be used to obtain a more compact representation of each user. Finally, it is
possible to integrate the available ratings with an external ontology [P14] or with
a trust-based model [P72]. The data sparsity problem was identified in a total
number of 22 studies.

Criteria Weights

In order to provide accurate suggestions, it is of paramount importance being
able to discover the relationships among the different criteria and to identify the
most relevant ones for the target user. A wide range of possible solutions is avail-
able in the analyzed studies. For instance, the authors of [P8] identify the most
important criteria for a user exploiting a statistical technique based on the average
ratings of each item. Other studies analyze several machine learning methods. In
[P9], the author proposes to consider chains of criteria instead of exploiting all
criteria together: the rating on each criterion is estimated considering the previous
predictions as context information. In [P5], the optimal weights are learned using
particle swarm optimization, while in [P93] an artificial neural network is exploited

27

3 — Multicriteria Recommender Systems

for this purpose. Another popular solution is represented by decision making meth-
ods. As an example, in [P51] users are asked to perform pair-wise comparisons of
the available criteria. The problem of selecting proper criteria weights was explicitly
mentioned in 17 studies.

Personalization

Any recommender system should be capable of suggesting items that match
the preferences of the target user. The possibility of exploiting multiple ratings
for each item is often considered an effective way of increasing the accuracy of the
recommendations, for example this fact is mentioned in [P15] and [P32]. It is also
important being able to understand what are the most relevant criteria for each
user, as suggested by the authors of [P8]. On the other hand, it is essential to avoid
including criteria that are redundant, as this may negatively affect the performance
of the system [P29]. In [P48], a multicriteria recommender system is combined
with a content-based approach in order to generate better suggestions, while the
authors of [P10] propose to increase the accuracy of the recommendations using a
deep learning technique called Stacked Autoencoders. In general, this problem was
explicitly considered by 15 studies.

Data Noise

The presence of noise in data is typically related to the fact that users may
provide ratings that are biased or even dishonest. For example, users may not
understand the meaning of each criterion and may find difficult to express their
preferences on a numerical scale, or may be bored by the request of assigning many
ratings to a single item. In [P89], fuzzy logic techniques are exploited in order
to address the uncertainty of user preferences, while in [P72] such techniques are
combined with a trust-based model. The authors of [P3] propose to mitigate this
problem by performing feature selection in a pre-processing step, where the most
relevant criteria of a certain dataset are identified. Another possible solution to this
problem is represented by the idea of considering the numerical differences between
ratings instead of their absolute values in the recommendation process [P32]. Data
noise was addressed by 14 studies.

Cold-start

The cold-start problem is a well-known issue in the field of recommender systems
based on collaborative filtering approaches. It can be defined as the impossibility
of creating reliable suggestions due to the lack of data regarding a new user or
a new item. The authors of [P60] aim to solve it by providing non-personalized
recommendations to new users and exploiting content-based features when a new
item is added to the system. A different approach is represented by the elicitation

28

3.2 — Results

of user preferences using decision making techniques and multicriteria ratings [P66].
In [P47], a multicriteria implicit feedback method based on user behavior analysis
is discussed, while the authors of [P15] propose to tackle this issue with a trust-
based model. As a last example, a knowledge-based method that is immune to
the cold-start problem is illustrated in [P12]. Cold-start was considered a research
issue in 14 studies.

Scalability

Scalability is a general problem of collaborative filtering recommender systems,
especially for the ones developed in an academic context as proof-of-concept. Be-
cause many multicriteria recommenders require multiple runs of such algorithms,
it is reasonable to suppose that scalability issues are even more widespread. For
example, this issue is discussed by the authors of [P24], who describe a multicriteria
recommender that exploits a distributed architecture based on Apache Spark. In
[P32], a clustering algorithm is applied for creating groups of similar users that
can be used to compute predictions in a scalable way. A popular dimensionality
reduction technique discussed by [P19] and [P84] is the higher order single value
decomposition. In total, 12 studies considered the scalability problem.

User’s Effort

As multicriteria recommenders usually require many ratings for each user and
item pair, explicit elicitation methods are intrusive and may waste the user’s effort
and time. For this reason, the authors of [P30] and of [P50] propose a multicri-
teria recommender based only on implicit feedback. Another possible solution is
described in [P63], where their authors develop a hybrid profiling framework for
reusing traditional ratings with multicriteria recommenders. A similar approach to
this problem is presented in [P48], where multicriteria ratings are computed start-
ing from single ratings and content-based information. This problem was discussed
by 11 studies.

Other Research Problems

Other research problems are mentioned in a more limited number of studies. In
particular, 4 studies analyzed the issues related to the selection of a proper simi-
larity metric in the context of multidimensional neighborhood-based collaborative
filtering, while 3 studies reported the challenges related to the execution of a reli-
able evaluation protocol. Finally, 3 more recent studies mentioned the problem of
fairness in the selection of the recommended items, both with respect to the unique
peculiarities of the users and to the characteristics of the catalog.

29

3 — Multicriteria Recommender Systems

Sparsity

Criteria

Personalization

Cold-start
Scalability
User's effort

Other

Number of studies

Figure 3.5: This barplot represents the number of studies per research problem.

3.2.3 Recommendation Approaches

In order to provide an answer to RQ1.3, we analyzed the studies included in
this systematic literature review and we classified them according to the taxonomy
provided by Burke [19]. This taxonomy has become a widespread way of character-
izing different recommendation approaches. However, we decided not to consider
hybrid recommender systems, as almost all multicriteria recommenders would fall
in this category. For this reason, if a study combines multiple approaches, it will
be included in all the categories of the different methods that are mentioned in the
study. We summarize the number of available studies for each recommendation
approach in Table 3.6.

Collaborative Filtering

Collaborative filtering is the most popular recommendation technique described
in the reviewed literature. In a traditional recommender system, the users whose
rating behaviour is similar to the one of the target user are exploited for selecting
the items to be suggested. In a multicriteria recommender, a popular approach
consists in applying collaborative filtering algorithms on the available criteria and
then combining the results in a global estimated rating, like in [P13] and [P28]. An
alternative to the user-based approach is represented by the item-based collabora-
tive filtering, where the similarity is computed among the items, as discussed, for
example, in [P65]. The authors of [P3] and [P45] describe how to combine user-
based and item-based models in a comprehensive approach. Collaborative filtering

30

3.2 — Results

may also be implemented with a model-based approach, for instance matrix factor-
ization (e.g., in [P21] and [P75]). In general, this technique may be combined with
other methods, like content-based approaches [P16], clustering [P32], and fuzzy
logic [P60]. In total, collaborative filtering was exploited by 82 studies.

Content-based

A content-based recommender system considers the previous preferences of a
user in order to build a profile and to select items with similar characteristics. For
example, the authors of [P79] describe a recommender system of research papers
that relies on content-based and multicriteria collaborative filtering algorithms.
In [P43], user profiles are created from multicriteria ratings and, then, they are
exploited for building clusters of similar users. The authors of [P30] suggest to
identify the user’s category-wise preferences for each criterion with a content-based
approach. A possible source of structured information regarding items are external
ontologies, as they are discussed in [P16]. In [P6] and [P20], user’s reviews are mined
to identify the most important features of each item. Content-based approaches
were mentioned by 16 studies.

Knowledge-based

A knowledge-based recommender system relies on an externally encoded domain
knowledge in order to match the user profiles with certain item features. For
example, in [P69] a mobile recommender suggests restaurants considering their
geographical location and cuisine. The author of [P46]| describes a method for
asking users to express their preferences regarding the features of a smartphone.
In a similar vein, the recommender system presented in [P76] exploits user profiles
and fuzzy set theory in order to suggest cities to be visited. In [P47], the authors
of the study propose a set of rules for building a personalized list of recommended
movies. Knowledge-based techniques were identified in 12 studies.

Community-based

If a recommender system also considers the relations of friendship and trust
among its users, it is defined as community-based. For example, the authors of
[P72] propose a multicriteria collaborative filtering recommender that is enhanced
by considering trust as an additional weight during the hybrid prediction phase. A
similar approach is followed by [P61] and [P91], where the trust score for each user
is computed only considering rating data and it is combined with the results of a
collaborative filtering algorithm. Community-based recommenders were discussed
by 5 studies.

31

3 — Multicriteria Recommender Systems

Demographic

A demographic recommender considers the demographic profile of the user for
suggesting items. For example, the authors of [P31] describe a multicriteria recom-
mender for groups where users are clustered also according to their demographic
profile. The other studies that mention demographic information are [P45], [P43],
and [P11]. Demographic recommenders were considered by 4 studies.

Approach Studies
Collaborative filtering 82
Content-based 16
Knowledge-based 12
Community-based D
Demographic 4

Table 3.6: The number of studies per recommendation approach.

3.2.4 Multicriteria Techniques

In the following, we analyze the main techniques and methods related to multi-
criteria recommender systems that we identified in the reviewed studies and, there-
fore, we provide an answer to RQ1.4. In most studies, the recommenders combine
different techniques, for example k-NN may be exploited to estimate unknown rat-
ings, while decision analysis to merge the different ratings in a global prediction.
We summarize the most frequent ones in Table 3.7.

k-NN

k-NN is a classification method used in data mining applications that relies on
the similarity of the instances to be classified with the training examples. In the
context of collaborative filtering, k-NN is exploited to find similar users or items
considering their neighborhood. For example, in [P13], a &-NN collaborative filter-
ing method is applied to each criterion separately, like in traditional recommenders.
In contrast, a different approach to this problem is considering all the criteria to-
gether when applying the £-NN algorithm. To this end, it is necessary to rely on a
multidimensional distance, like the Manhattan, Euclidean, or Chebyshev distance,
as described in [P53]. k-NN is the most popular data mining technique applied to
multicriteria recommender systems, as it was identified in 35 studies.

32

3.2 — Results

Decision Analysis

In order to rank items with contrasting criteria, it is possible to exploit the
tools provided by multiple-criteria decision analysis, which is a sub-field of opera-
tions research. In general, different methods are available in order to support users
in making complex decisions, and some of these methods have also been applied to
multicriteria recommender systems. For example, in [P38], an analysis hierarchy
process (AHP) is used in order to help users to evaluate the relative importance
of each criterion. In [P59], the UTA* algorithm is exploited for constructing user
profiles that are subsequently grouped according to their preferences. Other deci-
sion analysis methods mentioned in the reviewed studies are, for instance, ELEC-
TRE [P37], SMART [P35], TOPSIS [P31], and UTADIS [P78]. In total, decision
analysis techniques were identified in 26 studies.

Fuzzy Logic

Fuzzy logic is a mathematical model that can be used to represent the concept of
partial truth. This model is exploited to formalize the vagueness and uncertainty
that are usually associated with user ratings. For example, in [P17], [P60], and
[P25], ratings are expressed using linguistic terms in a qualitative way, considering
that each term may have a different meaning according to the user. Furthermore,
the authors of [P69] use the AHP decision analysis method in the fuzzy domain
using fuzzy numbers instead of real numbers. In [P84], fuzzy rules that express
how to build global ratings are identified for each cluster of users. Fuzzy logic was
exploited as a recommendation technique in 16 studies.

Regression Analysis

Regression analysis is a set of statistical techniques for predicting the value of
a dependent variable given one or more independent variables. In the reviewed
studies, such techniques are typically used to estimate the global rating of an item
considering the predicted ratings for each criterion. For example, the authors of
[P75] find the weights of the aggregation function with a linear regression model
that is learned for each user. In [P88], a non-personalized linear regression model is
first used to aggregate the similarities among users, and then to estimate the final
ratings. A different approach is represented by Support Vector Regression (SVR):
for instance, in [P82], a SVR model is trained for each user in order to synthesize
the overall rating. We found regression analysis techniques in 15 studies.

33

3 — Multicriteria Recommender Systems

Clustering

Clustering is an exploratory data mining approach that consists in grouping
objects in cohesive sets. A typical application of such techniques to multicrite-
ria recommender systems is represented by the identification of users with similar
profiles. For instance, in [P32], [P59], and [P52], the global K-means clustering
algorithm is exploited in order to create groups of users with similar preferences.
In [P82], clusters of users are created according to the importance given to each
criterion. On the other hand, the authors of [P56] propose to cluster the items and,
then, to learn an aggregation function for each user and item cluster. A cluster-
ing technique is also exploited to identify malicious users in the context of robust
recommenders [P27]. In total, clustering algorithms were mentioned in 15 studies.

Matrix Manipulation

In the reviewed studies, we identified different techniques used to compute pre-
dicted ratings with mathematical operations on matrices. For example, in [P90],
the Singular Value Decomposition (SVD) method is exploited to compute unknown
ratings for each criterion. In contrast, the authors of [P19] propose to reduce the di-
mensionality of the user, item, and criterion tensor with the Higher-Order Singular
Value Decomposition (HOSVD) method and then to apply a collaborative filtering
algorithm to the resulting matrix. In [P64], a matrix factorization technique is
applied to a utility matrix estimated from the multicriteria ratings using a neural
network model trained considering each user. A different approach is followed by
the authors of [P92], which proposes a factorization machine model for representing
all multicriteria ratings together. Matrix manipulation techniques were discussed
in 12 studies.

Neural Networks

Neural networks are usually applied to multicriteria recommender systems in
order to aggregate the predicted ratings for each criterion in a global score. For
example, in [P24], a single layer PERCEPTRON algorithm is selected for this task,
while the authors of [P73] propose a neural network trained with the simulated
annealing algorithm. In [P84], an Adaptive Neuro-Fuzzy Inference System (ANFIS)
is exploited for extracting fuzzy rules for each cluster of users; such rules are later
applied to predict the overall rating. A different approach is described in [P93],
where a neural factorization machine is used to model the interactions among users,
items, and criteria, and in [P37], where a single layer PERCEPTRON is exploited
to estimate the similarity among users. We identified neural network approaches
in 12 studies.

34

3.2 — Results

Genetic Algorithms

Genetic algorithms can be considered a family of optimization techniques and,
in the reviewed studies, they are typically used to determine the weights of each
criterion. For example, in [P55] and [P87], a genetic algorithm is run for each user
in order to construct a personalized aggregation function. In contrast, the authors
of [P3] propose to use it for performing a feature selection of the available criteria
in order to identify an optimal set of dimensions. In total, genetic algorithms were
exploited by 7 studies.

Other Techniques

Other less frequent techniques described in the reviewed studies include sta-
tistical modeling [P18], particle swarm optimization [P5], and natural language
processing [P36]. Such techniques were found in 7 studies.

Technique Studies
k-NN 35
Decision analysis 26
Fuzzy logic 16
Regression analysis 15
Clustering 15
Matrix manipulation 12
Neural networks 12
Genetic algorithms 7
Other 7

Table 3.7: The number of studies per recommendation technique.

3.2.5 Application Domains

We analyzed the application domains of the multicriteria recommender sys-
tems described in the reviewed studies in order to provide an answer to RQ1.5. A
graphical summary listing the categories of recommended items, considering pos-
sible examples and the experimental evaluation, is available in Figure 3.6. We
observe that the majority of studies propose to apply multicriteria recommenders
to domains related to tourism and travel. For example, 13 studies describe rec-
ommenders for hotels, 9 related to restaurants, and 4 dealing with tourist places.
Another popular domain is related to movies, mentioned in 8 studies. Other do-
mains include consumer electronics products and education, described in 7 and 5
studies respectively. Research papers were discussed in 3 studies, while medical

35

3 — Multicriteria Recommender Systems

treatments and music in 2 studies each. Less popular domains, identified only in 1
study and grouped in a miscellaneous category, are business and romantic partners,
investment solutions, electronic books, and job opportunities.

Different categories of criteria are selected by researchers according to the do-
main. For example, popular criteria for hotels are rooms, location, cleanliness,
service; for restaurants food quality, service, presentation, taste; for tourist places
architectural style, ease of access and welcome quality; for movies story, acting, di-
rection and visuals; for consumer electronics products type, brand, weight, size; for
learning resources subject relevance and educational value.

Hotel
Restaurant
Movie
Product
Education
Place
Research
Medical

Music

Other

0 2 -

6 8
Number of studies

=
(@]
[ERN
N

14

Figure 3.6: This barplot represents the number of studies per application domain.

3.2.6 Evaluation Protocols

In this section, we describe the evaluation protocols followed by the reviewed
studies, in line with RQ1.6. We grouped the possible evaluation strategies in four
main categories, which are summarized in Table 3.8.

Offline Comparison

We discovered that 74 studies compare the proposed solution with other ap-
proaches using an offline evaluation. Multicriteria recommender systems are usu-
ally compared against traditional baselines such as single-criteria recommender or
weighted average multicriteria approaches. Different studies consider the most sim-
ilar methods already available in literature, while few studies only compare the

36

3.2 — Results

described technique with itself, analyzing several configuration parameters.

User Study

A different approach is represented by the execution of user studies, which
were carried out in 12 works. For example, the authors of [P47] created a movie
recommender system that was tested by 567 users. The researchers computed
different metrics considering their behaviour while utilizing the recommender. In
contrast, in [P86] 158 users were asked to fill out a questionnaire in order to compare
different recommendation models. User studies are also exploited to evaluate the
usability of the system, as done, for instance, in [P58].

Case Study

We also identified 4 studies that evaluated the proposed approach by describing
a case study. For example, in [P4], a possible application of a multicriteria recom-
mender to the movie domain is discussed, while the authors of [P54] empirically
compare the suggested restaurants considering different user profiles.

No Evaluation

Finally, 3 studies performed no evaluation of the multicriteria recommender
presented in the paper. For example, in [P15], the evaluation of the proposed
model is left as a future work.

Evaluation protocol Studies

Offline comparison 74

User study 12
Case study 4
No evaluation 3

Table 3.8: The number of studies for each evaluation protocol.

3.2.7 Evaluation Metrics

In the following, we discuss the metrics exploited in the reviewed studies for
conducting the experimental evaluation of the proposed solutions in order to answer
to RQ1.7. We decided to classify them according to the dimensions related to
the recommender system proprieties described by Gunawardana et al. [55]. The
identified category for each evaluation metric and the associated number of studies
are reported in Table 3.9.

37

3 — Multicriteria Recommender Systems

Rating Accuracy

This category includes metrics designed to evaluate the capability of the system
to correctly estimate user ratings. In particular, 51 studies report the Mean Ab-
solute Error (MAE), 20 the Root Mean Squared Error (RMSE), and 3 the Mean
Squared Error (MSE). Other metrics exploited by 1 study each are the coefficient
of determination (R?) and the Mean Absolute Percentage Error (MAPE). In total,
rating accuracy metrics are mentioned in 59 studies.

Usage Accuracy

If the goal of a recommender is to predict a list of items, it is possible to
evaluate the usage accuracy of the available suggestions. Precision is considered in
36 studies, recall in 28, F1 in 23 studies, and Area Under the Curve (AUC) in 4
studies. Usage accuracy is the second most popular category, as it was identified
in 43 studies.

Coverage

The metric of coverage was computed in 11 studies. Even if this metric can
be evaluated both at the level of users and at the level of items, all the studies
included in this review considered the coverage of the item space, also known as
catalog coverage [62].

Ranking Accuracy

The correctness of the ranking in the recommended lists of items was analyzed
by 10 studies. In details, 8 studies exploit the Normalized Discounted Cumulative
Gain (nDCG) metric, while 4 studies the Fraction of Concordant Pairs (FCP). A
less popular metric, described by 1 study, is the Kendall’s 7.

Scalability

The authors of 8 studies evaluated the scalability of the proposed approach. A
typical metric used to this purpose is the time required to compute the predictions,
which is reported by 6 studies. In contrast, 2 studies exploit the speed of the
recommendations.

Other Metrics

Additional metrics identified in the reviewed studies include the utility of the
suggested items and the system satisfaction, evaluated with a user study, and the
robustness of the recommendations. Finally, the authors of [P68]| defined a com-
bined metric.

38

3.2 — Results

Evaluation metric Studies

Rating accuracy 29

Usage accuracy 43
Coverage 11
Ranking accuracy 10
Scalability 8
Other 5

Table 3.9: The number of studies for each evaluation metric.

3.2.8 Evaluation Datasets

In line with RQ1.8, we analyzed the datasets exploited for conducting the ex-
perimental evaluation of the techniques described in the reviewed studies. In total,
74 studies mentioned at least one dataset: this result is consistent with the number
of studies that performed an offline comparison, as reported in Section 3.2.6. We
summarize the studies for each dataset in Figure 3.7.

Yahoo! Movies

Yahoo! Movies was a website, part of the Yahoo! network, that provided
information and reviews about movies. Among other features, users were able
to rate each movie considering five criteria: story, acting, direction, visuals, and
overall. Yahoo! Research provides a public Yahoo! Movies dataset, but it does not
include multicriteria ratings.* To address this issue, the authors of [P3] created a
multicriteria version of the same dataset by crawling the Yahoo! Movies website.
In total, 36 studies exploit the Yahoo! Movies dataset, either the version obtained
by Jannach et al. [P3] or other versions crawled by different researchers, such as
[P18], [P29], and [P53].

TripAdvisor

TripAdvisor is a website that contains restaurant and hotel reviews. Similarly
to Yahoo! Movies, there is no official multicriteria rating dataset, as different
researchers crawled the website and created their own version, typically exploiting
hotel ratings and reviews. For example, this approach was followed by the authors
of [P14] and [P83]. The TripAdvisor dataset collected by the authors of [P1] is
publicly available.® Also the TripAdvisor dataset created by Wang et al. [133] and

“https://webscope.sandbox.yahoo.com

Shttps://www.cs.cmu.edu/~jiweil/html/hotel-review.html

39

https://webscope.sandbox.yahoo.com
https://www.cs.cmu.edu/~jiweil/html/hotel-review.html

3 — Multicriteria Recommender Systems

used in [P91] is available online.® In total, the TripAdvisor dataset was mentioned
by 19 studies.

In-house

We identified 9 studies that created a multicriteria dataset in-house for con-
ducting an offline comparison. For example, the authors of [P60] collected 9,628
ratings about songs that were later used to evaluate a music recommender system.
In [P19], different students were invited to provide ratings about universities.

MovieLens

Even if the MovieLens datasets only contain single criteria ratings, they were
also exploited for evaluating multicriteria recommender systems. For instance, in
[P2] and in [P61], MovieLens 100K was transformed in a four criteria dataset.
A similar approach was followed in [P48| with MovieLens 10M, where a method
capable of extracting multicriteria preferences from traditional ratings using exter-
nal aggregate ratings and descriptive data is discussed. In total, the MovieLens
datasets were mentioned by 5 studies.

Synthetic

Because of the lack of public multicriteria datasets, some researchers created
synthetic ratings in order to evaluate their approach. For example, the authors of
[P78] simulated a dataset about equity fund recommendations. In [P77], a testing
tool named CollaFiS, capable of building multicriteria datasets, is discussed. This
approach was followed by 4 studies.

Other Datasets

Less common datasets, exploited by 1 or 2 studies each, include, for example,
Ben Restaurantes [P39], HRS.com [P91], and RateBeer [P93]. Such various datasets
were considered by 18 studies.

3.2.9 Future Works

In the following, we analyze the suggestions for future works mentioned in the
reviewed studies in order to provide an answer to RQ1.9. A summary of our findings
is available in Table 3.10.

Shttp://www.cs.virginia.edu/~hw5x/Data/LARA/TripAdvisor

40

http://www.cs.virginia.edu/~hw5x/Data/LARA/TripAdvisor

3.2 — Results

Yahoo!
Movies

TripAdvisor

In-house

Movielens

Synthetic

Other

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of studies

Figure 3.7: This barplot represents the number of studies per evaluation dataset.

Extend the Solution

Different authors propose to extend or modify the described recommender sys-
tem for increasing its accuracy. This future work is related to the problem of
personalization, discussed in Section 3.2.2. Common suggestions include adding
additional components like clustering algorithms or further recommendation mod-
els and exploiting soft-computing techniques. In total, we identified this future
work in 33 studies.

Include More Data or Additional Criteria

Another possibility is to improve the proposed approach by including more data
or by increasing the number of criteria exploited by the recommendation algorithm.
For example, it is possible to rely on external ontologies, contextual and content
information, trust-related scores, and also consider additional criteria extracted
from user reviews. This category of future works was mentioned in 24 studies.

Improve the Evaluation

Some studies mention the fact that the evaluation performed by their authors
was not enough complete or detailed because of different kinds of constrains. For
this reason, it would be advisable to increase its trustfulness by executing it again
considering more datasets, techniques, and evaluation metrics. In total, this prob-
lem was reported by 14 studies.

3 — Multicriteria Recommender Systems

Identify Significant Criteria

A common issue associated with multicriteria recommenders is the noise intro-
duced by redundant criteria, as discussed in Section 3.2.2. For this reason, some
authors considered the identification of the most significant criteria as a future
work. This suggestion was discussed in 13 studies.

Increase the Scalability

A typical issue of multicriteria recommender systems is their limited scalability.
This problem was highlighted by different studies in Section 3.2.2. Some researchers
suggested to study how to increase it, for example by means of parallel computa-
tional paradigms. We identified this future work in 10 studies.

Consider Different Domains

Finally, 7 studies mentioned the necessity of validating the proposed approach in
different domains, like it is usually done with traditional recommenders. However,
this objective is difficult to achieve because of the limited availability of multicriteria
rating datasets.

Other Future Works

Further categories of future works, mentioned in less than 5 studies each, in-
clude designing solutions for addressing the cold-start problem, as described in
Section 3.2.2, performing experiments with adaptive recommenders, solving the
issues related to preference elicitation, creating algorithms for explaining the rec-
ommendations, and performing an analysis of the related ethical problems.

Future work Studies
Extend the solution 33
Include more data or criteria 24
Improve the evaluation 14
Identify significant criteria 13
Increase the scalability 10
Consider different domains 7
Other 9

Table 3.10: The number of studies per category of future work.

42

3.3 — Discussion

3.3 Discussion

In the following, we discuss the outcome of our systematic literature review,
considering the answers provided in Section 3.2 to the research questions originally
introduced in Section 3.1.1, and highlighting possible threats to validity.

3.3.1 Included Studies

As reported in Figure 3.2, the earliest study included in this review, which is
[P76], dates back to the year 2003. However, the field of multicriteria recommender
systems started to be relatively widespread only from the year 2007, when influential
studies like [P53] were published. We can also observe an increasing amount of
publications, suggesting that this research topic is still popular, as recommender
systems in general. In particular, the last few years were characterized by a higher
number of studies related to specialized applications of multicriteria approaches,
for example in tourism, health and care, and distance learning.

Regarding the quality of the included studies, summarized in Figure 3.3, we can
highlight the fact that higher scores were assigned to works published in journals
with respect to conferences. This result is consistent with the conclusions of other
systematic literature reviews conducted in related fields, like hybrid and linked
data-based recommender systems [21, 44].

3.3.2 Research Problems

By looking at the problems listed in Section 3.2.2, it is possible to observe that
the most frequent one faced by researchers is data sparsity. This is a general issue
of collaborative filtering recommender systems that causes a lower recommendation
quality due to an insufficient amount of input data. However, it is reasonable to sup-
pose that data sparsity is more severe in the context of multicriteria recommenders,
because of the higher amount of expected ratings. Possible solutions include the
use of external information or the construction of latent models. In contrast, it is
not clear what is the effect of using different rating elicitation methods.

Another typical research problem is discovering what are the optimal weights for
each criterion. They may be computed globally or for each user with the objective
of maximizing the recommendation accuracy. A second approach is to obtain the
weights directly from the user, for example with decision making techniques.

A different but related issue is represented by data noise, caused by redundant
criteria or dishonest ratings. Of course, in order to minimize the user’s effort and
the probability of obtaining inaccurate ratings, it is necessary to limit the number
of criteria. However, identifying the most appropriate ones for a given domain
is a difficult task even for an expert. In our opinion, this issue should be better
investigated by future studies.

43

3 — Multicriteria Recommender Systems

Accuracy is a characteristic required for any machine learning technique and, in
the context of recommender systems, it is related to user satisfaction. Multicriteria
recommenders can increase the personalization of the suggestions if they are capable
of correctly identifying what are the most important criteria for each user. However,
when a user is new to the system, the cold-start problem arises. This is a general
issue of collaborative filtering recommenders and it is typically solved by creating
hybrid solutions that consider content-based information.

Finally, the usage of multiple criterion results in algorithms that are less scal-
able. This problem can be addressed with clustering and dimensionality reduction
techniques, as well as by exploiting distributed architectures.

3.3.3 Recommendation Approaches

The vast majority of multicriteria recommender systems can be classified as col-
laborative filtering approaches, as reported in Table 3.6. For example, in heuristic-
based methods, the ratings provided for each dimension are exploited together using
a multidimensional distance metric, extending the traditional neighborhood-based
recommendation technique. More complex heuristics rely on the aggregation of dif-
ferent similarities computed per criterion, possibly using weights specific for each
user. Also in the context of model-based collaborative filtering, methods like matrix
factorization are applied to each dimension and, then, their results are aggregated
in a global predicted rating.

For this reason, almost all recommender systems included in this review can be
considered hybrid, as they combine multiple collaborative filtering models, one for
each criterion. Furthermore, such techniques are sometimes exploited together with
content-based, knowledge-based, community-based, and demographic approaches,
resulting in other forms of hybrid recommenders [19].

However, a limited number of studies included in this review deals with rec-
ommender systems that can be classified only as knowledge-based. Such systems
exploit domain specific knowledge to match the available items with the user pref-
erences. They were selected because we identified them as a form of multicriteria
recommendation, even if the distinction between knowledge-based recommenders
and traditional information retrieval methods is not always clear.

3.3.4 Multicriteria Techniques

In Section 3.2.4, we reported that the most common technique exploited by
multicriteria recommenders is the k-NN algorithm. This result is consistent with
the recommendation approaches identified in the reviewed studies, as neighborhood-
based methods represent a popular approach of collaborative filtering. A-NN may
be enough to build a multicriteria recommender: the similarities among users or
items can be directly computed with a multidimensional distance metric and they

44

3.3 — Discussion

can be aggregated using a trivial approach, like the averaging function, or estimated
by means of more complex techniques.

In contrast, multicriteria matrix manipulation methods represent a less common
approach to collaborative filtering and they are often exploited to estimate unknown
ratings for each criterion or to reduce the dimensionality of the problem. Again,
matrix manipulation methods are usually combined with other methods designed
to estimate importance weights for each criterion.

Different families of such techniques have been identified in the reviewed studies
namely, regression analysis, neural networks, and genetic algorithms. It is possible
to produce an overall rating using regression analysis if the other methods are not
capable of dealing with multiple ratings on their own. A more recent alternative
to regression analysis is represented by neural networks, that are exploited for
learning the relative importance of criteria. Finally, genetic algorithms may be
used to discover the weights of each criterion, but also to estimate good parameters
for the recommendation model.

For reducing the complexity of the problem, some studies considered cluster-
ing algorithms in order to create cohesive groups of similar users or items. Such
algorithms are usually applied as a first step, before other techniques capable of
creating suggestions suitable for each cluster. In contrast, fuzzy logic may be ex-
ploited together with all the aforementioned methods for formally encoding the fact
that ratings usually represent uncertain values.

The second most popular recommendation method after k-NN consists in de-
cision analysis techniques. They are typically used to generate an ordered list
of suggested items considering potential conflicts in user requirements. Decision
analysis algorithms are often combined with £-NN, matrix manipulation, and clus-
tering methods. However, some studies do not mention a specific recommendation
technique to be exploited jointly with a decision analysis method because the pro-
posed approach is presented as a general framework and, thus, any recommendation
method is suitable.

In Table 3.11, we report the main benefits and issues of the reviewed multi-
criteria methods. They could be considered as different compromises between the
correctness of the suggestions and the complexity of the approach. Thus, it is of
paramount importance being able to decide if, for a given task, it is more appro-
priate to foster the scalability of the system or the accuracy of the results.

Finally, in Figure 3.8, we summarize how such techniques could be exploited
for constructing an ideal multicriteria recommender. In the preprocessing phase,
common approaches designed to reduce the dimension of the input ratings are
clustering and genetic algorithms. Also fuzzy logic may be applied at this point
to transform the ratings in fuzzy numbers. During the rating prediction phase,
it is possible to rely on k-NN, matrix manipulation methods, neural networks,
and statistical models. These algorithms may already include a dimensionality
reduction step and a way of obtaining an ordered list of suggestions. Finally, in

45

3 — Multicriteria Recommender Systems

Technique

Benefit

Issue

k-NN

Decision analysis
Fuzzy logic
Regression analysis

Clustering

Matrix manipulation
Neural network

Generic algorithm

It can compute directly the predictions using
a multidimensional metric.

It can analyze the importance that each user
gives to the available criteria.

It supposes that rating values may have a dif-
ferent meaning depending on the user.

It is the most popular approach for discovering
the individual weight of each criteria.

It can create groups of users with similar rat-
ing behaviours and reduce the dimension of
the problem inputs.

It can compute unknown ratings for each cri-
teria in an efficient and effective way.

Recent approaches can directly predict the fi-
nal ratings with an interesting accuracy.

It can automatically determine the optimal
weight for each criteria and user.

If it is combined with other methods its scal-
ability is reduced.

It may require additional data from the users
apart their multicriteria ratings.

It must be combined with additional tech-
niques to actually recommend items.

It must be combined with £-NN or matrix ma-
nipulation.

It must be exploited together with additional
techniques.

It usually require a final step to calculate an
overall predicted rating.

It is often exploited to compute the weights of
each criteria, adding more complexity.

It must be combined with additional tech-
niques to predict the final ratings.

Table 3.11: The main benefits and issues of the reviewed techniques.

46

3.3 — Discussion

the ranking phase, popular approaches are decision analysis, regression analysis,
neural networks, and genetic algorithms. Please note that the first and third phase
are, in general, optional and they add several layers of complexity to the developed
system. Furthermore, some techniques may already perform these tasks during the
rating prediction phase.

1
1
Multicriteria Su_ggested
ratings items
: k-NN Decision analysis
Clustering . : .
Genetic alg 5 Matrix manip. | Regression
Fuzzv logic Neural network Neural network
ylo9 Statistical model Genetic alg.
\ J C J 4 J
Y ' 2 'e
Preprocessing Rating prediction Item ranking

Figure 3.8: This diagram represents the possible techniques exploited by an ideal
multicriteria recommender, subdivided according to the recommendation phase.
Content-based features and other less common approaches are not considered.

3.3.5 Application Domains

As already observed in Section 3.2.5, multicriteria recommenders are frequently
exploited in the tourism and travel domain. This result is expected, as many travel
websites, like TripAdvisor” and Ben Restaurantes,® rely on multicriteria ratings for
suggesting items to their users. Even for someone that is not a domain expert, it is
possible to identify some useful criteria that should be considered when evaluating
a hotel or a restaurant.

For this reason, we can suppose that items belonging to complex domains can
be more easily analyzed considering different dimensions and, therefore, they are

"https://www.tripadvisor.com

8https://www.bcnrestaurantes.com

47

https://www.tripadvisor.com
https://www.bcnrestaurantes.com

3 — Multicriteria Recommender Systems

better suited for multicriteria recommender systems. Another popular example is
represented by consumer products, which can be evaluated considering different
criteria based on their features, price, and quality.

On the other hand, domains like music or books are usually not exploited for
creating a multicriteria recommender, probably because assigning detailed evalua-
tions of such items is too difficult for someone that is not a domain expert.

Another factor that must be considered before performing further analysis is
the availability of a certain multicriteria rating dataset in a particular domain.
For example, many researchers used to collected ratings from the Yahoo! Movies
website, but nowadays such service is no longer available.

The majority of the recommender systems presented in the reviewed studies
are domain-independent, as they are only based on multicriteria ratings. However,
some solutions designed for specific domains, like medical treatments and research
papers, cannot be easily adapted to other scenarios.

3.3.6 Evaluation Protocols

In general, performing the evaluation of a recommender system is a complex
task, because the slightest change in the experimental protocol may produce radi-
cally different results [116]. It is not possible to directly compare the outcomes of
different works because of the great variety of datasets, evaluation protocols, and
metrics mentioned in the reviewed studies.

The multicriteria recommender systems were often evaluated using offline com-
parisons, as summarized in Table 3.8. This result is expected, as such an approach
is less expensive than performing a user study, but it can be used to obtain useful
information. However, in order to report more conclusive results, some authors
decided to perform a user study. We noticed that it is difficult to involve a sig-
nificant number of experimental subjects. In fact, only in 3 studies the number of
participants was higher than a hundred people.

3.3.7 Evaluation Metrics

The majority of the reviewed studies validated their approach using rating ac-
curacy metrics, as reported in Table 3.9. This result is probably related to the fact
that recommender systems were initially considered as tools designed to predict un-
known ratings as accurately as possible. This evaluation approach produces results
that are interesting from an academic point of view, but they may have a limited
practical meaning.

In fact, as suggested in [61], it is not possible to display in an application all
the items that are associated with the highest predicted ratings. Therefore, it is
necessary to be capable of correctly creating lists of ranked items that will be shown

48

3.3 — Discussion

to users. This aspect is considered by different studies, in which usage and ranking
accuracy metrics are reported.

Other categories of metrics identified during the review include coverage and
scalability, which were evaluated in a relatively low number of studies. It is in-
teresting to notice that more recent evaluation dimensions, like diversity, novelty
and serendipity, have not been considered, suggesting that their adoption in the
recommender system community is still limited.

Finally, we also observed that the differences in the evaluation protocols followed
by the reviewed studies do not allow a direct comparison of the results, even when
widespread metrics, like MAE or precision, are exploited. For example, we identified
a wide variability in the rating dataset, the splitting method between training and
test set, and the definition of non-relevant items. This conclusion is consistent with
the findings reported in [116].

3.3.8 Evaluation Datasets

From the results presented in Section 3.2.8, we observe that different evaluation
datasets have been created using data available in online portals that contain multi-
criteria ratings. Such collections of ratings are usually not directly provided by the
platforms, like the MovieLens datasets, but they are downloaded by researchers us-
ing web crawling methods. These approaches result in different versions of the same
dataset that sometimes are not publicly available and they can only be obtained
by contacting the original creators.

Consider, for example, Yahoo! Movies: this dataset was realized by adding mul-
ticriteria ratings to a collection of movie preferences initially provided by Yahoo!
Research, quickly becoming one of the most widespread multicriteria gold stan-
dards. However, the Yahoo! Movies platform does not provide multicriteria ratings
anymore, making impossible to recreate it. Similar observations are also valid for
other datasets, as platforms may change over the years and original datasets may
become unavailable. Anyway, we were able to locate two TripAdvisor dataset ver-
sions that are still publicly available on the Web.

It is interesting to notice that the authors of different studies decided to create
new datasets, relying on real users and simulation tools, or to add additional criteria
to existing datasets. This fact suggests that there is the need of realizing and
publishing further multicriteria datasets.

3.3.9 Future Works

We described the main future work directions reported by the authors of the
reviewed studies in Section 3.2.9, in order to identify how it is possible to advance
the multicriteria recommender field. The most common suggestion is to add to
the proposed technique an additional component for improving its personalization.

49

3 — Multicriteria Recommender Systems

The authors of such recommenders usually observe that their methods could benefit
from further preprocessing phases or additional components to be combined in a
hybrid approach. Another possibility is to consider soft-computing techniques for
expressing the uncertainty and vagueness of user ratings.

It is interesting to notice that some studies propose to improve multicriteria
recommenders by considering further data, while other authors are more interested
in reducing the number of available criteria. These suggestions are not in contrast,
as they may be related to the exploited dataset. Therefore, correctly defining the
rating criteria and better studying how such ratings are collected are of paramount
importance for obtaining high quality recommendations.

Different works propose to also consider friendship relations among users, ex-
ternal knowledge bases and ontologies, and more contextual information. So-
cial Recommender Systems (SRS) [56], Semantics-Aware Recommender Systems
(SARS) [49], and Context-Aware Recommender Systems (CARS) [3] are relatively
new recommendation approaches that could be exploited jointly with multicriteria
techniques in order to create a more personalized experience. However, such addi-
tional data need to be managed in a proper way: for this reason, some researchers
propose to also study the scalability of the available solutions.

As already discussed, recommender system evaluation is not an easy task.
Therefore, different authors declare that they plan to conduct a more extensive
experimentation of the proposed approach in future works. This frequent situation
may be caused by the difficulties in obtaining multicriteria datasets or by the ele-
vated costs necessary for involving real users in the evaluation process. A related
future work is to evaluate the same approach in different domains, as also this
suggestion requires further datasets and experiments.

3.3.10 Threats to Validity

In this section, we point out the main problems that we addressed while conduct-
ing this systematic literature review. We noticed that there is no strong agreement
on a shared definition of multicriteria recommender systems, as there are some sub-
tle differences but also some similarities with multiattribute content-filtering tech-
niques [2]. For this reason, we only considered as multicriteria the recommenders
based on multicriteria ratings. We also included in our selection few studies de-
scribing methods that cannot be considered collaborative filtering approaches, but
that exploit multicriteria ratings in a non-conventional way. Furthermore, a lim-
ited number of studies were initially selected by analyzing their title and abstract.
However, we were later forced to exclude them even if they were potentially rele-
vant because we were not able to retrieve their full-text version. We also noticed
that some studies were described in different research papers, and, therefore, we
analyzed these situations with attention. Sometimes we selected multiple works
because we discovered that these contributions were only partially overlapped.

50

3.4 — Conclusion

3.4 Conclusion

In the context of this systematic literature review, we analyzed a total number of
93 studies related to the topic of multicriteria recommender systems. We provided
an answer to nine different research questions, in order to identify which are the
main problems that multicriteria recommenders aim to resolve, what recommen-
dation approaches they usually exploit, and what are the most common machine
learning and data mining techniques considered for realizing them. Furthermore,
we investigated in which domains multicriteria recommenders can be applied, how
they are evaluated in terms of experimental protocols, metrics, and rating datasets.
Finally, we reported the most common suggestions available in selected studies for
conducting future research works.

We identified data sparsity as the most frequent problem that researchers try to
address. This issue could be caused by the fact that users are less willing to provide
multicriteria ratings because they find this task difficult and time consuming, as
they need to consider different aspects of the same item separately. A related re-
search problem is understating what are the most appropriate criteria that should
be considered in a particular domain. An excessive number of criteria will most
likely result in a partial overlap of their meanings, thus causing a reduction of
the prediction accuracy because of the additional noise in the input data. Fur-
ther studies should better quantify what is the impact of this problem and how
recommendation algorithms could reduce it.

We observed that almost all multicriteria recommenders rely on collaborative
filtering techniques. This approach is, in fact, also popular in the context of single-
criteria recommenders. A large portion of the reviewed studies propose hybrid rec-
ommendation methodologies, as they usually combine multiple runs of collaborative
filtering algorithms, one for each criterion. However, we also observed a more recent
trend of also relying on additional techniques, like content-based, knowledge-based,
and community-based approaches. The motivating idea of such recommender sys-
tems is to increase the accuracy of the suggested items by exploiting further data
behind pure multicriteria ratings.

Furthermore, we classified the machine learning and data mining techniques
mentioned in the reviewed studies according to the recommendation phase in which
they are considered. We observed that during the preprocessing phase different au-
thors choose to reduce the dimension of the problem inputs by means of clustering
and genetic algorithms. In the rating prediction phase, various collaborative fil-
tering methods are considered, like £-NN, matrix manipulation techniques, neural
networks, and statistical models. Finally, during the ranking phase, it is possible
to rely on decision analysis, regression analysis, neural networks, and genetic al-
gorithms. Such methods are combined in various ways, and sometimes integrated
with the results of additional recommendation approaches.

We also investigated the domains that are usually considered for implementing a

o1

3 — Multicriteria Recommender Systems

multicriteria recommender system. In the reviewed studies we frequently observed
items related to the tourism and travel domain, for example hotels and restaurants.
Another popular domain is represented by movies, probably due to the past avail-
ability of the Yahoo! Movies datasets. In contrast, domains that are often exploited
in single-criteria recommenders, like music or books, are almost never considered
for multicriteria approaches. Possible explanations of this finding could be the lack
of proper evaluation datasets or the difficulties in defining meaningful criteria and
obtaining the associated ratings.

From the analyzed experiments we observed that it is not possible to directly
compare the results obtained with different recommendation approaches due to
the extreme variability in the experimental protocols followed by their authors.
Another critical point that emerged from this work is the lack of publicly available
multicriteria rating datasets. Even if this problem could be partially mitigated with
synthetic and crawled datasets, additional efforts should be done in order to create
proper benchmarks in different domains and, thus, enabling a better reproducibility
of the experimental results.

Finally, our findings indicate that future works in this field should better explore
how to increase the utility of multicriteria recommenders by integrating community-
based, knowledge-based, and context-aware approaches, according to the peculiar
characteristics of the recommended items. For example, a restaurant recommender
system would greatly benefit from context-aware information, a movie recommender
could also leverage on semantic data, while a consumer product recommender may
assign more importance to the opinions of trusted users. Another interesting point
that should be better addressed in future works is defining what are the most appro-
priate criteria for each domain and how the ratings associated to that criteria should
be collected in order to minimize user efforts, also considering soft-computing and
linguistic techniques. Furthermore, it would be useful to explore novel algorithms
for dynamically understanding the importance that each user implicitly assigns to
a criterion, for reducing the fatigue associated with the preference elicitation phase.

52

Chapter 4

Evaluation of Sequence-based
Recommender Systems

From the outcome of our systematic literature review on multicriteria recom-
mender systems discussed in Chapter 3, it emerged that traditional approaches
usually guarantee interesting results in well-known domains, such as movie recom-
mendation, but they are not capable of capturing the temporal evolution of users’
preferences [20]. However, different authors [40, 110, 59] argue that movies watched
recently provide more useful information about a certain user than those she con-
sumed in a distant past. It is, in fact, reasonable to assume that a recent item may
have a high influence on the choice of the next one.

A recommender system that exploits sequential data for predicting the sole
next item that will be consumed by a user can be defined as sequential recom-
mender [134]. Several works related to sequential recommenders are available in
literature, as discussed in Section 2.1.2. For example, Zhou et al. [140] exploited a
sequential pattern mining algorithm for recommending which page to visit next in
a website, while Rendle et al. [110] relied on Markov chains for suggesting products
considering previous purchases. Recently, He et al. [59] designed a recommender
system capable of modeling how users’ interests evolve over time.

While all these methods usually consider user preferences observed during the
training phase as sequences, no temporal ordering is available at recommendation
time, as only one item, or a list of items ranked by relevance, is suggested to users.
Because of the popularity of CF techniques, most of sequential recommenders are
based on such approaches [108], but in principle it is also possible to design systems
capable of analyzing sequences according to content-based methods.

In general, even if the problem of creating a sequence of words starting from
an initial one is a well-known task inside the natural language processing commu-
nity [73], the idea of creating personalized sequences of items is less widespread in
the context of recommender systems [62]. For this reason, it would be interesting
to be able to exploit the temporal ordering not only during the training phase but

53

4 — Evaluation of Sequence-based Recommender Systems

also for generating sequences of recommended items, such as in the task of lan-
guage modeling. Some solutions to this problem have already been proposed in
industry, and also few researchers have discussed how to automatically construct
music playlists [28] or suggest sequences of points-of-interest to tourists [43] starting
from seed items. However, early studies conducted in this field lack of a common
definition of the problem that they are trying to address. For example, session-
based recommenders only consider the last session of the current user [82], while
sequence-aware ones also exploit the history of past sessions [108] and they can be
considered equivalent to sequential recommenders. Furthermore, it is not clear if
item repetitions are allowed in the suggestions or not.

In this chapter, we argue that it is possible to consider recommender systems
capable of creating personalized sequences of an arbitrary length as a generalization
of a sequential recommender because the latter is only able of creating sequences of
length one. In contrast to traditional approaches that usually create lists of items
ranked by relevance, in the following we will define a recommender that exploits a
temporal dimension both in the training and in the generation phase as a sequence-
based recommender, as it observes and suggests sequences of items meant to be
consumed in a particular order.

As discussed in Section 2.2, several evaluation protocols and metrics for an-
alyzing novel recommenders via offline experiments are available, to capture the
different aspects of the recommendation algorithm [55]. However, the lack of a
standardized way of performing such in vitro experiments leads to results that are
often incomparable [70]. To the best of our knowledge, no evaluation framework for
sequence-based recommender systems has already been proposed. Our motivating
hypothesis is that, in the context of sequence-based approaches, traditional eval-
uation metrics need to be computed at the level of sequences instead of the level
of users. Therefore, we shift our focus from the multicriteria nature of the input
ratings to multicriteria evaluation approaches, that rely on the set of metrics to
perform an offline comparison among different recommendation methods.

In our view, an evaluation framework consists of a methodology for performing
an experimental comparison, a set of metrics, and a software tool that implements
them. The main aim of this chapter is to address the following research questions
and to introduce an offline evaluation framework for sequence-based recommender
systems that we called Sequeval.

RQ2.1 What is the formal definition of a sequence-based recommender system?

RQ2.2 How already established metrics can be extended and adapted for evaluat-
ing a sequence-based recommender system?

RQ2.3 Against which baseline approaches a sequence-based recommender system
can be compared?

54

4.1 — Sequence-based Recommender Systems

Because our evaluation approach is agnostic with respect to the implementation
details of the algorithms under analysis, it can be successfully exploited to also as-
sess the performance of systems based on alternative recommendation methods [32]
or dealing with unconventional categories of items, for example 3D movies [106] or
cultural digital contents [9], especially if they are supposed to be consumed by
users in a sequential order. Besides, by openly releasing a Python implementation
of Sequeval, we aim to encourage the use of the proposed framework as an attempt
to standardize the evaluation of sequence-based recommender systems, mitigating
the comparability problem in recommendation research.

The remainder of this chapter is organized as follows: in Section 4.1 we present
the mathematical definition of a sequence-based recommender system; in Sec-
tion 4.2 we introduce Sequeval by describing its evaluation protocol, metrics, and
implementation details; in Section 4.3 we perform an empirical analysis of the
framework with two datasets. Finally, in Section 4.4, we formulate our conclusions.

4.1 Sequence-based Recommender Systems

Before analyzing the evaluation framework, we introduce the problem of rec-
ommending sequences and we provide an answer to RQ2.1. In a traditional rec-
ommender system, users express positive or negative preferences about a certain
item. An item may be, for example, a product, a song, or a place. In contrast,
we assume that when a user consumes or interacts with an item, she expresses an
implicit rating about it. This assumption in the literature goes under the name of
implicit feedback [62]. Because we are also considering the temporal dimension to
build the sequences, each rating is associated with a timestamp that represents the
point in time when it was recorded.

Definition 1. Given the space of items I, the space of users U, the space of times-
tamps T, a rating r € R is a tuple r = (1,v,7), where v € T 1is the item for which
the user v € U expressed a positive preference at the timestamp 7 € T.

By relying on the set of ratings R available in the system, it is possible to
construct the sequences that will be used to train and to evaluate the recommender.
Each sequence only includes the ratings expressed by a single user. On the other
hand, each user may produce several sequences.

The concept of sequence is similar to the concept of session in a traditional web
interaction: if two ratings are distant in time more than an interval 67, then they
belong to different sequences. Some ratings may be isolated and, for this reason, not
part of any sequence. The most appropriate value for 67 depends on the domain:
for example, in the POI recommendation scenario, it could be considered of a few
hours as reported in [43].

59

4 — Evaluation of Sequence-based Recommender Systems

Definition 2. A sequence s € S is a temporally ordered list of ratings (rq,rs, ...,
r,) created by a particular user v € U, i.e., for each i, v; = (1;,v,7;) and 7; < Tiy1.

In Algorithm 4.1, we list the procedure for creating the set S, given the set
of users U, the set of ratings R, and a time interval 7. Please note that we do
not allow the creation of sequences of length one because they do not encode a
meaningful temporal order.

Algorithm 4.1 Generation of the set S, given U, R, and d7.
Require: U # {0} AR # {0} NoT =7, — 75

1: S+ {@}

2: for all v € U/ do

3: S J

4: forallr,e R,: 71 <71 ANi>1do
5: if 7, < 7,_1+ 07 then
6: if sis @ then

7 S < (r;_1)

8: end if

9: S <4 S+ (I‘Z>

10: else

11: if |Rs| > 1 then
12: S+ Su{s}

13: S+ I

14: end if

15: end if

16: end for

17: end for

18: return S

A sequence-based recommender is a recommender system capable of suggesting
a personalized sequence that is built starting from a seed rating ry, considering the
example sequences already available in the system and the specific behavior of a
certain user. The seed rating is characterized by a seed item ¢, a target user v,
and an initial timestamp 7y. The seed item can be represented by any item that
belongs to the catalog, but, more in general, it is a point in the space of items Z.
For example, in the music domain, it could identify not only a particular song, but
also an artist, a genre, or a mood. The target user is the user to whom the sequence
is recommended, while the initial timestamp represents the point in time in which
the recommendation is created. The generated sequence is of a fixed length and
it contains exactly k ratings. Please note that if & = 1, we are dealing with a
sequential recommender as defined in [134].

Definition 3. Given a seed rating ro € R : rg = (t9,v,70), and a length k €

56

4.1 — Sequence-based Recommender Systems

N, a sequence-based recommender is the function sequence : R x N — §, i.e.,
sequence(rg, k) = (ry,re, ..., rg) i r; = (4,0, 7).

Most sequence-based recommenders are based on probability models, and there-
fore they can be interpreted as a sampling function o applied to the conditional
probability P({ry,ra,...,rx)|ro):

sequence(rg, k) = o(P((ry,re,...,rg)|ro)) (4.1)

Using the chain rule, the sequence probability P((ry,rs,...,rg)|rg) can be writ-
ten as:

P((ry,ro,...,rg)|rg) =P(rg|(ro,. .., rr_1))

P(ry_1|{ro,...,rg_2)) - P(r1|(ro)) (4.2)

For example, in the case of a Markov chain, each rating depends on the previous
one, i.e., P(rg|[(ro,...,rp_1)) = P(ri|rp_1):

P((ri,re,...,rp)|ro) = P(rg|rp—1)P(ri_1|rr—2) - - - P(r1|ro) (4.3)

Thus, a sequence-based recommender system typically works by learning from
a set of sequences Sirqining the conditional probability of the next rating ry to the
sequence of previous ones (rg,rq,...,ry 1), i.e., the factors of the right-hand side
of Equation 4.2. Sampling sequences directly from Equation 4.2 would require
computing the probabilities of all the |I|* possible sequences, where |I| is the size
of the vocabulary of items and k is the length of the sequences. Since this becomes
easily computationally unfeasible, we opt for a greedy approach, in which at each
step we sample the next most likely item. A sampling function p is defined to select
a particular next rating from the previous ones at each step:

£ = p(P(rg|(ro,r1,...,T%_1))) (4.4)

A trivial example of p is the argmaz function, which simply selects the most
probable next rating. In the following, we will assume that p is implemented by a
weighted random sampling function.

Algorithm 4.2 formalizes the procedure for generating a personalized sequence,
given a seed rating ry, and a length £, i.e., it describes the sampling function o.
For k times, the next rating of the recommended sequence is generated using the
function predict. The function predict : S — R implements the sampling function
p and it returns the most probable next rating for the current input sequence. In
practice, the sequence-based recommender system can estimate the probability that
the next rating of the current sequence will include a particular item at a certain
timestamp.

57

4 — Evaluation of Sequence-based Recommender Systems

Please note that the greedy procedure described in Algorithm 4.2 is not the only
way to create samples of sequences, and thus, the user of the evaluation framework
or the designer of the recommendation method are free to define other ways and
strategies for that end.

Algorithm 4.2 Recommendation of a sequence of length k.

Require: r € RALk >0
s < (ro)
: fori=1to k do
r; < predict(s)
s s+ (r;)
end for
return s — (rg)

AN > e

To compute some metrics that are part of the evaluation framework, it is neces-
sary to know the number of items that are associated with a certain sequence. For
this reason, we define the set Zg as the set of items that are part of the sequence
s, and the set Ry as the set of ratings that are part of the sequence s. Therefore,
|Zs| is the number of distinct items available in s, while |Rg| represents the length
of s, i.e., the number of ratings available in s.

For instance, we can suppose that the set of ratings R is equal to {(¢1,v1,7),
(t2,v1,T2), (L3, V2, T3), (L1, V1, Ta), (L2, V2, T5), (3, V1, T6) }. Then, if we assume that the
only pair of timestamps that violates the 7 constraint is (74, 74), we can create two
sequences: s; = ((¢1,v1,71), (L2, V1, T2), (L1, 01, T4)), and s = ((t3, U2, T3), (L2, U2, T5)).
The rating (v3,v1,76) is not part of any sequence because it was created at some
point in time later than 7,+d7 and we do not have any subsequent rating expressed
by v;. We also observe that |Zs,| = 2 and |Rs,| = 3. We would like to recommend
a sequence s of length two to user v; starting from item ¢3 at timestamp 759. In
fact, it is not required that the item (3 already appeared in the sequences related to
user v;. A possible solution to this problem is to define rgo = (t3,v1,7sp) and then
to recommend s = sequence(rs g, 2) = ((t2, V1, Ts1), (1,01, Ts2)), where 751 and g2
may be used to suggest when consuming the items.

4.2 Sequeval Evaluation Framework

Comparing the performance of several recommenders with an experiment that
involves a live system is not always feasible or appropriate. For this reason, it is
necessary to first perform a preliminary evaluation in an offline scenario [55]. In
such a setting, we can assess the performance of the algorithms by comparing with
baselines, understanding the strengths and weaknesses of those, and thus avoiding
affecting real users negatively in their experience with the system. The results of an

58

4.2 — Sequeval Evaluation Framework

offline experiment will be less trustworthy than the ones obtained from an online
study because there was no real interaction with the system [128], but they are
usually exploited as the first stage in the preparation of the in vivo experimentation.

Even if an offline study is only the first step in the process of evaluating a
recommender, it is necessary to rely on a solid evaluation protocol and a set of
well-defined metrics that are able to capture all the characteristics of the analyzed
algorithm [47]. In the following, we will introduce an offline evaluation framework
for sequence-based recommender systems that we called Sequeval.

Our framework is based on the concept of sequence as formalized in Section 4.1.
First, an initial dataset is transformed into a set of sequences following Algo-
rithm 4.1. Then, the sequences are split between training and test sets. At this
point, one or more external recommenders are plugged into the framework: they are
exposed to the training sequences and they are asked to create suggested sequences
starting from the same seeds of the test ones. A possible strategy for suggesting
additional sequences is described in Algorithm 4.2, but the user can define other
approaches. Finally, considering the recommendations available, the framework can
compute different evaluation metrics.

In details, Sequeval is made of an evaluation protocol, presented in Section 4.2.1,
a set of evaluation metrics, described in Section 4.2.2, and a software implementa-
tion that is introduced in Section 4.2.3.

4.2.1 Evaluation Protocol

One of the first problems that an evaluation framework should consider is how
to split the dataset between the training set and the test set. This task is not
trivial, as it will deeply influence the outcome of the experimentation [116]. Since
we are dealing with sequences, we need to split the set of sequences S in a training
and test set such that S = Syqining U Stest-

Several solutions to this problem are possible: a simple but effective one is to
perform the splitting by randomly assigning sequences to these sets according to a
certain ratio, typically the 80% for training and the 20% for testing. If the num-
ber of sequences available is limited, it is necessary to perform a cross-validation.
Another possibility is to identify an appropriate point in time and to consider all
the sequences created before it as part of the training set, and after it as part of
the test set. This protocol simulates the behavior of a recommender introduced at
that point in time and it avoids too optimistic results caused by the knowledge of
future events [101]. The latter solution can be considered the most reliable one,
but if we do not have any temporal information because the sequences have already
been created, it is necessary to adopt a random protocol.

More in general, it is impossible to identify a splitting method that is appropriate
for every experiment, as it depends on the domain and on the dataset available.
For this reason, Sequeval does not impose the adoption of a particular splitting

59

4 — Evaluation of Sequence-based Recommender Systems

protocol, but the experimenter can choose the most appropriate one.

To compute the metrics that are part of the evaluation framework, the sequence-
based recommender is trained with all the sequences s € S;yqining. Then, for each
test sequence s € Sy 1S = (r1, T, ..., T,), we predict a recommended sequence § of
length k using ry = (11, v, 71) as seed rating, i.e., § = sequence(ry, k). Therefore, § is
a sequence suggested by the recommender, for the same user and starting from the
same item of s. We also define s" as the reference sequence, i.e., s’ = (ro,r3,...,1,)
or ' =s — (r;). The reference sequence is equal to the original sequence, but the
first rating is omitted, as it was already exploited for creating the recommended
sequence. This procedure is graphically illustrated in Figure 4.1.

(I
L]

Sequences <

Train Test

Eln
Recommender

|
a Evaluator
H ‘

Figure 4.1: An illustration of the evaluation procedure. First, the set of sequences
is split between training and test set. Then, the recommender is trained with
the sequences available in the training set. Finally, the recommender is asked to

generate a sequence for each seed from the test set; such sequences are compared
with the corresponding reference sequences.

4.2.2 Evaluation Metrics

The second component of Sequeval is a set of eight metrics that we present in
the following. In order to address RQ2.2, we include in such set not only classic
metrics such as coverage and precision but also less widespread ones such as novelty,
diversity, and serendipity. Furthermore, we introduce the metric of perplexity, as it

60

4.2 — Sequeval Evaluation Framework

is explicitly designed for characterizing sequences [16]. In contrast, we decided to
avoid measuring recall because it is clear that the number of recommended items
is often likely to be much lower than the total number of relevant items.

Coverage

In general, the coverage of a recommender is a measure that captures the number
of items in the catalog over which the system can make suggestions [55]. For
example, in an online store scenario, it could represent the percentage of products
that are recommended to users in a certain period of time. An algorithm with a
higher coverage is generally considered more useful because it better helps users to
explore the catalog.

We generate a set of recommended sequences considering as seed the first rating
of all sequences in the test set S;.; for a recommender that suggests sequences of
length k. Afterward, we compute the distinct number of items available in the
sequences created and we divide the result by the cardinality of the set Z.

Coverage(k) _ | USEStest Isequence(rl,k)| (45)
|Z]

This metric expresses the percentage of items that the sequence-based recom-
mender can suggest when generating sequences similar to the ones available in the
test set and it is strictly related to its cardinality. This approach is similar to the
metric of prediction coverage described by Herlocker et al. [62].

Precision

Precision is a widespread metric in the context of information retrieval evalua-
tion [113] and it represents the fraction of retrieved documents that are relevant. For
a traditional recommender system, precision measures the fraction of recommended
items that are relevant for a certain user [117]. If we consider a sequence-based rec-
ommender, it is necessary to compute this metric for each sequence s € S, instead
of each user.

1 hit(s',)

precision(k) = (Spont| min(|Ry|, k)

(4.6)
SEStest

The function hit : S x & — N returns the number of items in § that are also
available in s’. If the same item is present in S multiple times, it is considered a
hit only if it is repeated also in s’. This is an extension to the traditional definition
of precision that also considers the fact that an item may appear multiple times
inside a sequence.

The number of relevant items is divided by the minimum number between the
length of the reference sequence |Ry| and the length of the recommended sequence

61

4 — Evaluation of Sequence-based Recommender Systems

k. We decided to adopt this solution to avoid penalizing an algorithm that is
evaluated considering reference sequences shorter than the recommended sequences.

nDPM

The Normalized Distance-based Performance Metric (nDPM) was originally
proposed by Yao in the context of information retrieval [135]. The intuition of
the author is that in order to compare a system ranking with a reference user rank-
ing, it is necessary to consider all the possible pairs of items available in the system
ranking: they can be agreeing, contradictory, or compatible with respect to the user
ranking. We decided to adopt such a metric instead of the Normalized Discounted
Cumulative Gain (nDCG) [71] because, in a sequence of recommendations, it is not
necessarily true that the first items are more important than the last ones.

1 2 pairs™ (s/, 8) + pairs*(s’, §)

nDPM(k) = ok

(4.7)

er 2 pairs(s)

The function pairs™ : § x & — N returns the number of pairs in the sequence
s that are in the opposite order with respect to the reference sequence s’. The
function pairs® : § x § — N returns the number of pairs in the sequence § for
which the ordering is irrelevant, i.e., when at least one of the items is not available
in 8’ or when at least one of the items is available multiple times in s’. Finally, the
function pairs : & — N returns the number of all possible pairs available in the
recommended sequence §. The pairs are created without considering the ordering
of the items inside a pair: for example, if we have the sequence (a, b, ¢), the possible
pairs are (a,b), (a,c), (b, c).

The value of this metric will result close to 1 when the sequences generated by
the recommender are contradictory, to 0 when they have the same ranking, and
to 0.5 when the ordering is irrelevant because they contain different items. A low
precision will imply a nDPM very close to 0.5.

Diversity

The metric of sequence diversity included in this framework is inspired by the
metric of Intra-List Similarity proposed by Ziegler et al. [141]. The recommended
sequences are considered to be lists of items and the obtained value is not related to
their internal ordering. The purpose of this metric is understanding if the sequences
contain items that are sufficiently diverse. A higher diversity may be beneficial for
the users, as they are encouraged to better explore the catalog [97].

k A
1 D vivjo<ici 1 — sim (7, 7;)

di ity(k) = —— -
iversity (k) S bx (= 1)

(4.8)

SEStest

62

4.2 — Sequeval Evaluation Framework

The function sim : Z x Z — [—1,1] is a generic similarity measure between
two items. This measure may be taxonomy-driven or content-based: for example,
a possible content-based similarity measure is the cosine similarity. The resulting
value is a number in the interval [0, 2]: higher values represent a higher diversity.

Novelty

Vargas et al. [132] suggested that it would be useful to be able to characterize the
novelty of the recommendations. They proposed a metric that rewards algorithms
capable of identifying items that have a low probability of being already known by
a specific user because they belong to the long-tail of the catalog. We have included
such metric in our framework to assess whether the items available in the suggested
sequences are not too obvious.

k
novelty (k) = SRS >) log, freq(z;) (4.9)
The function freq : Z — [0,1] returns the normalized frequency of a certain
item + € Z, i.e., the probability of observing that item in a given sequence s €
Straining- We can define the probability of observing the item ¢ as the number of
ratings related to ¢ in the training sequences divided by the total number of ratings
available. We also assume that log,(0) = 0 by definition, to avoid considering as
novel items for which we do not have any information, i.e., the items that do not
appear in the training sequences.

Serendipity

Serendipity can be defined as the capability of identifying items that are both
attractive and unexpected [48]. Ge et al. proposed to measure the serendipity
of a recommender by relying on the precision of the generated lists after having
discarded the items that are too obvious [47].

To create a list of obvious items, it is possible to exploit a primitive recom-
mender that is a recommender only capable of making obvious suggestions. For
example, a primitive recommender could be implemented using the Most Popular
(MP) baseline, which is defined in Section 4.2.3. It is reasonable to assume that
popular items do not contribute to the serendipity of the recommendations because
they are already well known by many users.

By modifying the metric of precision described in Section 4.2.2, it is possible
to introduce the concept of serendipity in the evaluation of a sequence-based rec-
ommender. In this case, the primitive recommender will always create a sequence
of length k£ that contains the items that are have been observed with the highest
frequency in the training set.

63

4 — Evaluation of Sequence-based Recommender Systems

1 hit(s',5 — §)

serendipity (k) = [Sest| min(|Ry|, k)

(4.10)
SEStest

We define § as the sequence generated by the primitive recommender from the
same seed of 8, i.e., § = primitive(ry, k). Moreover, the sequence § — § contains all
the ratings related to the items available in S that are not present in §. The resulting
value will be a number in the interval [0, 1], lower than or equal to precision. The
difference between precision and serendipity represents the percentage of obvious
items that are correctly suggested.

Confidence

The metric of confidence reflects how much the system trusts its own suggestions
and it is useful for understanding how robust the learned model is [61]. It is
usually computed as the average probability that the suggested items are correct.
This metric expresses the point of view of the recommender, as the probability is
reported by the model. Therefore, the metric is always equal to 1 with the MP
recommender, as it is certain of the predictions.

A sequence-based recommender generates the next item of the sequence by
considering all the previous items. For this reason, we can interpret the conditional
probability of obtaining a certain item, given the sequence of previous ones, as the
confidence that the system has in that suggestion.

1 k
confidence(k) = ro———+ > > P(G|tim1,Li—2, .-) (4.11)
|Sf68t‘ x k SE€Stest i=1
We also define 7y = ¢1, i.e., the zero-th item of the recommended sequence is its
seed item. Therefore, this metric is computed by also considering the probability
of obtaining the first item 7;, given the seed item of s.

Perplexity

Perplexity is a widespread metric in the context of neural language modeling
evaluation [16], typically used to measure the quality of the generated phrases.
Because there is a strong similarity between creating a sequence of natural language
words and sequence of recommended items given an initial seed, perplexity can be
also successfully exploited in this context.

This metric can be defined as the exponential in base 2 of the average negative
log-likelihood of the model, i.e., the cross-entropy of the model. For models based
on the cross-entropy loss function such as neural networks, the perplexity can also
be seen as a measure of convergence of the learning algorithm. Differently from the
metric of confidence, the conditional probability P(t;41|,ti—1,...) is computed

64

4.2 — Sequeval Evaluation Framework

considering the items of the test sequence s, and not of the recommended sequence
S. For this reason, it does not express the point of view of the recommender.

1 Rs|—1) .
IRs|—1 .ngstest Zi:o logy P(titatitiz1,mr)

perplexity = 2 2iacStent (4.12)

Intuitively, the obtained value represents the number of items from which an
equivalent random recommender should choose to obtain a similar sequence. The
lower is the perplexity, the better is the system under evaluation. Therefore, the
perplexity of a random recommender is equal to |Z|. If the performance of the
recommender is worse than a random one, the perplexity will be higher than |Z|: for
example, if only one conditional probability is equal to zero, then perplexity = +o0.

4.2.3 Implementation

The third component of Sequeval is sequeval [93], a Python implementation of
the evaluation framework that is publicly available on GitHub.! This implementa-
tion is based on the protocol presented in Section 4.2.1 and it includes the metrics
described in Section 4.2.2.

In details, sequeval is a Python package designed following a modular struc-
ture, which is graphically represented in Figure 4.2. For each component, we de-
fined an abstract class and then we realized one or more possible implementations
to enable software extensibility.

The loader module is in charge of reading an input file containing user ratings.
We have implemented a concrete loader capable of processing a textual file in
a MovieLens-like format (UIRT), but the support to other formats can be easily
added. It is optionally possible to ignore users or items that do not have a minimum
number of ratings, in order to avoid data sparsity issues. The builder module creates
the sequences of items from the initial ratings: ratings from the same user that are
distant in time less then a threshold are grouped inside the same sequence. Ratings
that do not belong to any sequence are discarded.

The profiler module computes some statistics about the generated sequences, for
example their average length. The splitter module assigns the sequences created
by the builder to the training and the test sets, according to a random or to a
more realistic timestamp-based strategy. It is up to the experimenter deciding the
percentage of sequences in the test set.

The recommender module includes an abstract class that needs to be imple-
mented by any recommender that relies on this framework, based on the sequence
generation logic formalized in Algorithm 4.2. The purpose of the abstract class in
the similarity module is to compute a content-based similarity metric between two

https://github.com/D2KLab/sequeval

65

https://github.com/D2KLab/sequeval

4 — Evaluation of Sequence-based Recommender Systems

Loader Builder Profiler
. . _> . o
load(file): ratings build(ratings): sequences users
items
ratings
ﬁk * sequences
Splitter sparsity
UIRTLoader sequence_length
+— split(sequences): training, test
Recommender 4
Evaluator
recommend(seed, k) I I
' TimestampSplitter RandomSplitter coverage
reset() -
precision
| ndpm
MostPopular Similarity diversity
Uni novelty
nigram . . . || serendipity
similarity(i, j) confidence
Random perplexity
Bigram 4

CosineSimilarity

Figure 4.2: A simplified UML class diagram of sequeval.

items; we have chosen to implement it as a generic cosine-based similarity. Finally,
the evaluator module computes the measures detailed in Section 4.2.2.

To exploit the proposed framework, it is necessary to realize an implementation
of the abstract recommender that must be capable, given the user and the current
item of the sequence, of predicting the probabilities for the possible items of being
the next one inside the recommended sequence. If the weighted random sampling
generation logic is not appropriate, it is possible to override the relative method
and to define an alternative recommendation approach.

For obtaining the experimental results, it is necessary to write an evaluation
script that relies on this library. We provide a simple evaluation script which can
be used to perform different experiments. This script can be easily modified to
accommodate novel recommendation techniques.

We also created an extensive test suite achieving the 98% of code coverage for
validating the robustness of our implementation and for better supporting future
improvements and developments.

For demonstrative purposes, we have implemented four baseline recommenders,
which are illustrated in the following and represent our answer to RQ2.3. These
baselines can be interpreted as an adaptation of classic non-personalized recom-
mendation techniques to our sequence-based scenario.

66

4.3 — Experimental Analysis

Most Popular The MP recommender analyzes the sequences available in the
training set to compute the popularity of each item, i.e., the number of times
an item appears in the training sequences. Then, at recommendation time,
it ignores the seed rating, and it always creates a sequence that contains the
MP item as the first rating, the second MP item as the second rating, and
so on. More formally, the probability that the item ¢; will appear in the i-th
rating of the sequence is P(i;) = 1, where i also represents the position of the
item in the ranking of the MP ones.

Random The random recommender simply creates sequences composed of ratings
that contain an item randomly sampled from a uniform probability distribu-
tion. The seed rating is discarded and the probability of observing the item
t; is P(1;) = 1/|Z|, where |Z| represents the number of items available.

Unigram The unigram recommender can generate sequences that contain ratings
with items sampled with a probability proportional to the number of times
they were observed in the training sequences. In particular, the probability of
observing the item ¢; is equal to the number of ratings containing ¢; divided
by the total number of ratings available in the training sequences. As with
the previous baselines, the seed rating is ignored during the recommendation.

Bigram The bigram recommender estimates the 1-st order transition probabilities
among all possible pair of items available in the training sequences. The add-
one smoothing technique is exploited to avoid the attribution of a strict zero
probability to the pairs that were not observed during the training phase [29].
At recommendation time, the seed rating is exploited for selecting the first
item, and then each item will influence the choice of the next one. The
probability of sampling item ¢; after item ¢;,_; is equal to the number of times
this transition occurred in the training sequences plus one divided by the total
number of transitions available.

4.3 Experimental Analysis

In this section, we perform an experimental analysis of Sequeval by relying on
its implementation described in Section 4.2.3 for comparing the behavior of the
four baselines with a recommender system based on Conditional Random Fields
(CRF) [125] and another one that exploits Recurrent Neural Networks (RNN) [52].
The purpose of this comparison is to assess the validity of the framework by con-
ducting an offline evaluation in a realistic scenario. Furthermore, we aim to in-
vestigate the efficiency of the proposed approach by analyzing the amount of time
required to compute the numerical scores per each recommender system, consider-
ing datasets of different sizes.

67

4 — Evaluation of Sequence-based Recommender Systems

4.3.1 Experimental Setup

The main parameters that need to be specified according to our evaluation
framework are the 07 value used to generate the sequences, the splitting protocol,
and the length of the recommended sequences k. The 67 value and the splitting
protocol depend on the dataset and they are reported in Section 4.3.2. For per-
forming this empirical analysis, we have decided to exploit the 80% of the dataset
for training the recommenders and the remaining 20% for testing purposes. The
length of the recommended sequences depends on the specifications of the target
application: for this evaluation, we have chosen to set k = 5.

To compute the metric of diversity, we have selected the cosine similarity among
the training sequences as the proximity measure between two items. In fact, we
assume that two items are similar if they appear the same number of times inside
the same training sequences. Furthermore, we have assumed that if an item is
unknown, its similarity with another one is zero by definition.

In the following, we provide the rationale for the usage and the implementation
details of the two recommenders based on CRF and RNN.

CRF We have implemented a CRF-based recommender system using the CRFsuite
software package.” Since we are interested in predicting an item given the
previous one, we have considered to be feature vectors the training sequences
without their last rating and as corresponding output vectors the same se-
quences without their first rating. We have used the gradient descent al-
gorithm with the L-BFGS method [96] as the training technique. We have
chosen to generate both the state and the transition features that do not oc-
cur in the dataset and we have set the maximum number of iterations allowed
for the optimization algorithm to 100.

RNN We have also experimented with a sequence recommender, originally de-
signed for the tourism domain, based on RNN [100] that are specifically meant
to deal with sequential data. The hyper-parameters of the network have been
optimized through a manual search on the validation set in [100], obtaining:
n_layers = 3, dropout = 0.2, learning rate = 0.0001, n_ hidden = 64, and
n_epochs = 10. The main difference of RNNs with respect to standard feed-
forward neural networks is the presence of a hidden state variable h;, whose
value depends both on the input data presented at time x; and on the pre-
viously hidden state h;_; [52] using loop connections. A typical application
of RNNs in neural language modeling is the generation of text by recursively
applying a “next word prediction” [124]. In the same spirit, we address the
problem of next item prediction. The probability of the next rating given the

2http://www.chokkan.org/software/crfsuite

68

http://www.chokkan.org/software/crfsuite

4.3 — Experimental Analysis

previous ones P(ry|(ro,r1,...,rx_1)) is learned during the training process
of the neural network without the need for specifying a particular memory
window as in Markov models.

For conducting this experimental campaign, we relied on a machine equipped
with two 12-cores Intel Xeon processors (E5-2680 v3 at 2.50 GHz) and 128 GB of
RAM. However, note that sequeval is a single-threaded application and its memory
requirements are actually much lower, around 2.5 GB with the most demanding
dataset at our disposal.

4.3.2 Datasets

We have performed the experimental analysis considering two different datasets,
namely Yes.com and Foursquare. The former is related to the music domain, while
the latter deals with check-ins performed at specific POlIs.

Because we are interested in modeling sequences, it is important that the tempo-
ral information available is actually meaningful. For example, the popular Movie-
Lens datasets [57] cannot be exploited for our purposes because the timestamps
are associated with the action of assigning a rating on the platform and not with
the action of watching a movie. This hypothesis is supported by the fact that,
if we apply Algorithm 4.1 to the MovieLens 1M dataset with 67 = 1 h, we obtain
unrealistic sequences with an average length of about 56 movies.

The Yes.com and Foursquare datasets are characterized by a different distri-
bution of their items, i.e., songs and venue categories, as it can be observed from
Figure 4.3. In particular, Foursquare contains few items that are extremely popu-
lar, while Yes.com presents a plot that is smoother. This conclusion is numerically
supported by the values of entropy [118] obtained for the two distributions, which
are 4.95 for Foursquare and 6.75 for Yes.com. Furthermore, the number of se-
quences available in Foursquare is about 40 times higher with respect to Yes.com.
Table 4.1 summarizes the number of users, items, ratings, and sequences available
in these datasets, which are described in detail in the following sections.

Dataset || |Z| IR |S]|

Yes.com 1 1089 118,022 10,551
Foursquare 44,319 651 1,047,429 400,261

Table 4.1: The number of users, items, ratings, and sequences after the preprocess-
ing steps. The Yes.com dataset has only one user.

69

4 — Evaluation of Sequence-based Recommender Systems

10° A
3 Foursquare
I Yes.com
0 104 .
(®)]
£
©
‘s
8 103-:
€]
=]
Z
102 E
0 200 400 600 800 1000

Iltem by popularity

Figure 4.3: A stacked bar plot with a logarithmic scale representing the number of
ratings for each item. Note the different shapes of their long-tail distributions: it
is possible to observe that Foursquare has more popular items than Yes.com.

Yes.com

This dataset contains several playlists originally collected by Shuo Chen from
Yes.com in the context of his research on Metric Embedding [28]. Such website
provided a set of APIs® for programmatically retrieving songs aired by different
radio stations in the United States. By crawling them in the period from December
2010 to May 2011, he managed to obtain 2,840,553 transitions. Even if Yes.com is
no longer active, the playlist dataset is publicly available.®

Yes.com does not include the timestamps, but only the playlists. Therefore, we
have assumed that each playlist represents a sequence, as defined in our evalua-
tion framework. In this case, it is not necessary to apply Algorithm 4.1 because
the sequences are already available in the dataset in an explicit form. Because
a timestamp-based splitting is not feasible, we have selected, for this dataset, a
random splitting protocol for dividing the sequences between training and test set.

Since we do not have any information regarding the radio stations, it is nec-
essary to consider the playlists as if they were created by the same user. This

3http://web.archive.org/web/20150316134941/http://api.yes.com
“https://www.cs.cornell.edu/~shuochen/Ime/data_page.html

70

http://web.archive.org/web/20150316134941/http://api.yes.com
https://www.cs.cornell.edu/~shuochen/lme/data_page.html

4.3 — Experimental Analysis

approximation is acceptable in the context of sequence recommendation and it is
allowed by the evaluation framework. In fact, differently from traditional evalua-
tion approaches, all the metrics that we propose are averaged over the sequences
and not over the users.

Because of the computational complexity of the task, we have randomly reduced
the complete dataset 10 times its original size and we have pruned the songs that
appear less than 50 times.

Foursquare

The second dataset that we have selected for performing the experimental eval-
uation of the framework is similar to the one described in [100] and it was created
following the same protocol.

We collected the check-ins performed by the users of the Foursquare Swarm
mobile application® and publicly shared on Twitter from the Twitter API. Then,
we retrieved the category of the place associated with the check-in thanks to the
Foursquare API. For this reason, the items of the dataset are represented by the
venue categories available in the Foursquare taxonomy.® The collection phase lasted
from October to December 2017.

To avoid exploiting the interactions generated by automated scripts, we have
discarded the users that performed multiple check-ins in less than one minute.
We have also pruned the check-ins associated with the venue categories that are
usually not of interest for a tourist, for example the ones related to workplaces. For
generating the sequences more efficiently, we decided to also remove the users that
have performed less than 10 check-ins in total.

We have set the J7 parameter of the evaluation framework to 8 h. Regarding
the splitting protocol, we have selected the timestamp-based one, considering the
timestamp associated with the first rating as the timestamp of the sequence.

4.3.3 Results

Table 4.2 summarizes the figures of the evaluation conducted with Yes.com. The
MP recommender achieved a fair precision, but at the price of a very low coverage,
because its predictions are deterministic. Unsurprisingly, the lowest precision and
the highest novelty and diversity are associated with the random recommender.
In contrast, the unigram, the bigram, and the CRF recommenders obtained com-
parable scores of precision, but the bigram is the most appealing of these three
techniques, because of its lower perplexity and higher novelty.

Shttps://www.swarmapp.com

Shttps://developer.foursquare.com/docs/resources/categories

71

https://www.swarmapp.com
https://developer.foursquare.com/docs/resources/categories

4 — Evaluation of Sequence-based Recommender Systems

Metric MP Random Unigram Bigram CRF RNN

Coverage 0.0046 1.0000 0.9945 1.0000 0.9991 0.9458
Precision ~ 0.0503 0.0090 0.0127 0.0103 0.0190 0.0782
nDPM 0.5007 0.5000 0.5000 0.5000 0.5000 0.4986
Diversity 0.6925 0.9900 0.9815 0.9854 0.9788 0.9052
Novelty 7.2383 10.380 9.7349 10.315 9.8449 9.5762
Serendipity 0.0000 0.0089 0.0107 0.0095 0.0179 0.0706
Confidence 1.0000 0.0009 0.0016 0.0011 0.0020 0.0123
Perplexity ~ +o0 1089.0 848.96 637.53 T747.33 183.49

Table 4.2: The results of the baselines and both CRF and RNN with Yes.com.

We can observe that the RNN recommender achieved the highest precision and
the lowest perplexity, resulting to be the most promising algorithm for future online
experimentations. Its nDPM is slightly lower than 0.5, meaning that the items are
usually predicted in the correct order. We can also observe that its serendipity is
close to the value of precision: for this reason, it is possible to assume that most of
the sequences are not obvious.

Table 4.3 lists, instead, the results obtained with Foursquare. In this case, the
MP recommender system accounted for the highest precision, meaning that the
top-5 items are extremely widespread, but, as usual, its coverage is very limited,
and it achieved the lowest novelty. On the other hand, the random recommender
scored the lowest precision, and the highest coverage and novelty. The differences
among the unigram, the bigram, and the CRF recommenders are more striking
than in the previous experiment: with this dataset, the unigram accounted for
higher precision because of the popularity of some items, while the bigram for the
lowest perplexity.

Metric MP Random Unigram Bigram CRF RNN

Coverage 0.0077 1.0000 0.9616 1.0000 0.9677 0.5069
Precision 0.2259 0.0080 0.0774 0.0607 0.0754 0.0962
nDPM 0.4998 0.5000 0.4994 0.4998 0.4993 0.4991
Diversity ~ 0.9194 0.9971 0.9616 0.9777 0.9621 0.9469
Novelty 4.6056 12.300 7.1421 9.0216 7.3710 6.8374
Serendipity 0.0000 0.0060 0.0256 0.0230 0.0252 0.0365
Confidence 1.0000 0.0015 0.0171 0.0140 0.0179 0.0264
Perplexity 400 651.00 141.41 122.99 14749 140.39

Table 4.3: The results of the baselines and both CRF and RNN with Foursquare.

72

4.3 — Experimental Analysis

The RNN recommender system obtained the second-best precision and perplex-
ity, resulting in a good compromise if we are interested in optimizing both these
metrics. Its fair coverage and the low value of serendipity are other hints of the
fact that the Foursquare dataset contains few items that are very popular: this
characteristic was, in fact, learned and exploited by the recommender.

Finally, we report in Table 4.4 the amount of time needed for computing the
previously described evaluation metrics per recommendation algorithm with the
Foursquare and Yes.com datasets. We observe that in the worst case, the evaluation
framework was able to conduct an experimental campaign in a few hours. The
metric of diversity was the most computationally expensive one because of the
time needed to compute the cosine similarity. This fact is particularly evident
if we consider the seconds spent to evaluate the random recommender with the
Foursquare dataset.

Dataset ~ Div. MP Random Unigram Bigram CRF RNN

Yes.com Yes 0.84 4.25 3.97 4.05 963.65 66.04
Yes.com No 0.78 1.14 0.98 1.05 865.17 60.68
Foursquare Yes 15.88 1326.31 58.64 101.73 4096.78 1223.26
Foursquare No 13.75 24.63 13.05 16.78 3989.17 1194.52

Table 4.4: The time in seconds required to evaluate different algorithms with our
framework. We do not consider the time for training the CRF and RNN models.
To improve the efficiency of the framework it is possible to avoid computing the
computationally expensive metric of diversity.

As expected, the baseline recommenders are less demanding with respect to the
CRF and RNN models. However, this analysis is beyond the scope of this work, as
we are only interested in optimizing the evaluation framework. If we do not consider
the metric of diversity, we observe that the time required for the evaluation phase
is linear with respect to the size of the dataset.

4.3.4 Discussion

In the following, we will analyze the results of the empirical analysis to justify
the answers to the research questions that were provided in Section 4.1 and in
Section 4.2. In particular, our main aim is to explain why it is necessary to rely on
a multicriteria framework that includes several metrics to evaluate a sequence-based
recommender system.

In Section 4.1 we have introduced the concept of rating and we have defined
it considering three different elements: an item, a user, and a timestamp. The
idea of associating a user with an item is the basic principle of almost every

73

4 — Evaluation of Sequence-based Recommender Systems

recommender, while the timestamp is necessary in order to introduce a tempo-
ral dimension, and, therefore, the possibility of creating and suggesting sequences,
as proposed in RQ2.1. Nevertheless, we have successfully applied our evaluation
framework in an experiment based on the Yes.com dataset, which does not include
any user. Even though a more general use case has been considered during its
formalization, it is possible to also exploit it in other scenarios, still obtaining an
interesting picture of the recommenders under evaluation.

As described in Section 4.2.2, our answer to RQ2.2 is an evaluation framework
that includes eight different metrics, capable of capturing the various character-
istics of the algorithms available. For example, even if the precision of the MP
recommender system is very high when tested with Foursquare, we can immedi-
ately discard it because of its low coverage. In the same way, the interesting values
of diversity and novelty achieved by the random recommender are associated with
an unacceptable score of perplexity.

In Table 4.5 we present an interpretation of the metrics available in the frame-
work. These descriptions are meant to offer a human understanding of the results
of the offline evaluation. It is worth noticing that these metrics consider only some
of the properties of a recommender system [55]. However, it is our opinion that
those properties are the most salient ones that can be analyzed in our context,
without realizing a live system.

Metric Interpretation

Coverage The percentage of items that are recommended in the evaluation
Precision The percentage of items that are correctly recommended

nDPM The correctness of the ordering inside the sequences

Diversity How diverse are the items inside the sequences

Novelty How unexpected are the recommended items

Serendipity The percentage of non-obvious items that are correct
Confidence The confidence that the recommender has about its predictions
Perplexity =~ How much the recommender is “surprised” by the test sequences

Table 4.5: A human readable interpretation of the metrics.

The different characteristics of the datasets exploited during the empirical anal-
ysis are reflected in their respective figures. In particular, while the values of preci-
sion obtained by the random recommender in the two experiments are comparable,
the figures associated with both MP and unigram methods are dramatically differ-
ent. This fact suggests that Foursquare contains a few items that are extremely
popular, as it was already clear from Figure 4.3.

On the other hand, the RNN recommender obtained, with both datasets, com-
parable values of precision, but a very different coverage. For this reason, we can
suppose that this approach, differently from the CRF recommender, is capable of

74

4.4 — Conclusion

better adapting itself to the characteristics of the dataset. The fact that we can
draw such a conclusion supports the validity of Sequeval.

Furthermore, we have observed that the amount of time required to compute the
evaluation metrics is linear with respect to the dataset size, if we do not consider
the metric of diversity. In fact, the computational cost of the cosine similarity was
too elevated when we analyzed the behavior of the random recommender with a
more demanding dataset. However, because of the modular structure of sequeval,
it is easy to avoid computing the metric of diversity for such a recommender.

In line with RQ2.3, we have described in Section 4.2.3 four different baseline
recommenders. From the results of the experiments, it is possible to observe that
the values obtained by some of them are fixed. For example, the MP recommender
will always achieve a serendipity equal to 0, and a confidence equal to 1. Its
perplexity is usually 400, if at least one of the recommended sequences is incorrect.
The items suggested are, in fact, considered obvious by definition, and the algorithm
is certain of the recommendation because its behavior is deterministic. In a similar
way, the perplexity of the random recommender is equal to the total number of items
available, i.e., |Z|, because of the definition of perplexity provided in Section 4.2.2.

These two baselines are methods commonly exploited in the literature for evalu-
ating recommender systems. Additionally, we have proposed two techniques better
suited for the sequence recommendation problem. The unigram recommender is
similar to the MP one, but it is non-deterministic, and it obtained a higher nov-
elty. In contrast, the bigram recommender is the most complex baseline, because
it considers the previous item to suggest the next one. For this reason, it always
achieved the lowest perplexity among the baselines considered.

4.4 Conclusion

In this chapter, we have discussed the problem of recommending sequences of
items tailored to the needs of a certain user. We have introduced an offline evalu-
ation framework, called Sequeval, capable of handling this novel family of recom-
mender systems in an offline scenario and we have developed an implementation of
it that is publicly available on GitHub. We have included in such a framework an
evaluation protocol and eight different metrics, to better capture the characteristics
of the algorithms considered.

We have performed an empirical analysis of Sequeval by relying on it for con-
ducting a comparison among four baselines, a CRF recommender, and an RNN-
based one. The results have highlighted the fact that this framework is flexible, as
it can be successfully applied in non-standard recommendation scenarios, such as
with Yes.com, and complete, because of the different metrics included that consider
several dimensions of the recommended sequences. In addition, we have observed
that the RNN recommender system can effectively adapt itself to the characteristics

75

4 — Evaluation of Sequence-based Recommender Systems

of the training dataset. This conclusion supports the validity of Sequeval as a tool
for conducting an offline experimentation.

The formal definitions provided in Section 4.1 have been conceived as an exten-
sion of the seminal works on recommenders capable of recommending sequences.
For this reason, it is possible to set the length of the recommended sequences to 1 if
we are interested in obtaining a single item. In a similar way, the item included in
the seed rating can be exploited in order to set the context of the recommendation,
but it can also be ignored if we want a sequence only based on the target user.

76

Chapter 5

Evaluation of Top-k
Recommender Systems

Different authors have empirically demonstrated that offline evaluation proto-
cols in the context of recommender systems have several weaknesses [116]. For
example, it is widely known that comparing results obtained in different exper-
imental settings should be done with caution, as the slightest difference in the
evaluation protocol may result in measures that are totally inconsistent [70].

Nevertheless, offline experiments are extremely important for comparing a large
number of candidate algorithms without sustaining the costs of an online evaluation
involving too many human subjects [55]. After having pruned the set of available
systems, it is however advisable to analyze them in a real environment for obtaining
more conclusive results, as discussed in Section 2.2.

In this chapter, we apply the knowledge about multicriteria evaluation we gained
from the work presented in Chapter 4 to the more traditional setting of top-£ lists
of suggested items. We propose a way of overcoming the problem of comparing
offline evaluation results obtained from different recommendation algorithms in
heterogeneous settings. To this end, we designed and implemented an open source
evaluation framework for top-k prediction methods, called RecLab,! that is capable
of interacting with several recommenders using RESTful APIs.

The responsibilities of the evaluator and the recommender are clearly separated
because of the distributed architecture of the system. The evaluator is in charge of
building a training set, selecting a set of users to whom recommend the items, and
computing the evaluation metrics. On the other hand, the recommender must be
capable of predicting a list of the most appropriate items for each user, given the
information available in the training set.

The configuration parameters of each experiment are left to the user of the

'https://github.com/D2KLab/reclab

77

https://github.com/D2KLab/reclab

5 — Evaluation of Top-k Recommender Systems

toolkit, who is free to choose the dataset, the splitting strategy, the size of the test
set, the length k of the recommended lists, and the rating threshold between relevant
and irrelevant items. The experiment can be designed and run by simply interacting
with a web-based GUI provided by the toolkit. Other researchers can easily plug
their recommender systems into the evaluation pipeline by implementing the APIs
defined by RecLab and by deploying them on a server. Thanks to this approach,
it is possible to compare, in a controlled environment, different algorithms and
techniques without necessary disclosing their implementation details. The results
of each experiment, along with the respective configuration parameters, are publicly
available to support accountability and comparative analyses of the results.

More formally, we aim to provide an answer to the following research questions.

RQ3.1 How can different top-k recommender systems be fairly compared in het-
erogeneous settings without necessary exposing their algorithms?

RQ3.2 To what extent it is possible to support the reproducibility of the experi-
ments and the accountability of the results?

RQ3.3 How can the availability of different metrics support the experimenter in
the interpretation of the obtained results?

The remainder of this chapter is structured as follows. In Section 5.1 we intro-
duce the main design choices behind our evaluation framework, while in Section 5.2
we describe how different recommenders can interact with the evaluator. In Sec-
tion 5.3 we explain the mathematical details of the metrics computed during the
evaluation phase. We present and discuss our results in Section 5.4 and, in Sec-
tion 5.5, we provide the conclusions.

5.1 RecLab Evaluation Framework

RecLab has been implemented as a distributed web application: its users can
setup the experimental environment by simply visiting a web page. This step is
crucial for the correct execution of the measurements, as selecting inconsistent or
wrong values may lead to results that are extremely difficult to interpret [70].

In details, the experimenter needs to specify the following parameters before
starting an evaluation:

 the initial rating dataset;
o the technique used to split the dataset;
o the size of the training and the test set;

o the length k£ of the lists of recommended items;

78

5.1 — RecLab Evaluation Framework

o the threshold between negative and positive ratings;

e the list of recommenders to be evaluated.

We included in this evaluation framework three widely used rating datasets:
MovieLens 100K,?> MovieLens 1M, and HetRec LastFM.* The MovieLens datasets
are among the most popular recommender systems datasets about movies prefer-
ences [57], while the last one is particularly interesting as it contains the number
of times each user listened to a specific artist on LastFM [22]. Other datasets can
be easily added by editing a configuration file.

We provide two different methods for splitting the rating dataset R in a training
set Rirain and a test set Ryesr such that R = Ripein URiest- The first one is a random
splitting method that assigns each rating p € R to the test set or the training set
according to a probability specified by the user, that is proportional to the expected
size of the test set. In general, this method should be the preferred one when no
temporal information is available [55]; the default size of the test set is the 20% of
the ratings present in the whole dataset.

A second splitting technique is based on the timestamps associated to the rat-
ings: the whole dataset is ordered from the oldest to the newest rating; then, the
first ones are assigned to Ryyqin, While the others to R;.s. This protocol simulates
the behaviour of a recommender introduced at a certain point in time in the system.
While the HetRec LastFM dataset does not include any timestamp, the MovieLens
ones do. However, their values probably do not represent when users watched a
certain movie, but when they rated it on the platform.

Another fundamental parameter of the experiment is the length &k of the lists
of recommended items, as it will deeply influence all the metrics computed by the
evaluator. This value should be set according to the number of items that the final
application will display to its users. Typical values for this criterion are 5 or 10.

The experimenter also needs to specify what is the threshold between negative
and positive ratings: only ratings with a value strictly greater than the threshold
will be considered [likes during the evaluation phase. Many recommenders will only
analyze positive ratings during the training phase. However, this is beyond the
scope of the evaluator, so it is a responsibility of the recommender to properly
load the ratings. The most appropriate value for this parameter depends on the
dataset: a typical setting for MovieLens datasets is 3, thus only 4 and 5 stars
ratings are considered positive. For the HetRec LastFM dataset, as the rating
value represents the number of times a user listened to an artist, any small number
may be reasonable, including 0.

Zhttps://grouplens.org/datasets/movielens/100k/
3https://grouplens.org/datasets/movielens/1m/
“https://grouplens.org/datasets/hetrec-2011/

79

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/hetrec-2011/

5 — Evaluation of Top-k Recommender Systems

For demonstrative purposes, we included in RecLab a set of recommender sys-
tems that follow the interaction protocol described in Section 5.2. However, anyone
is encouraged to implement other techniques for the purpose of evaluating them
with this framework. Further recommenders can be added by simply inserting their
URIs in a configuration file present in our repository. All available recommenders
are then displayed to the experimenter, for letting her select which ones to evaluate.

In details, we have realized the classical most popular and random recom-
menders. Our most popular recommender is personalized: it will never suggest
to a certain user items already rated by the same user in the training set. On the
other hand, the random recommender will select any item available in the training
set with an equal probability.

Furthermore, we have included the MyMediaLite [46] implementations of the
Item KNN, User KNN, BPRMF, and WRMF recommender systems using their
default settings.® BPRMF is a recommendation algorithm based on a Bayesian
ranking optimization method [111], while WRMF is weighted matrix factorization
technique [68].

5.2 Interaction Protocol

RecLab is a distributed evaluation framework. For this reason, it exploits con-
solidated web standards to create a communication channel among itself and the
recommenders under analysis: the overall protocol is graphically depicted as a UML
sequence diagram in Figure 5.1 and it represents our answer to RQ3.1. This inter-
action is initiated when the experimenter decides to execute a new evaluation, and
it is repeated for every recommender selected as part of it.

First, the evaluator requests the recommender to train a new recommendation
model with a POST on the resource /model. It provides to the recommender a URI
from which it can download the training set and the rating threshold, as specified by
the experimenter. Only the ratings with a value strictly greater than the threshold
should be considered as positive feedbacks.

The recommender can now retrieve the training set from the provided URI.
Each training set is specific for a particular experiment, but it is created at run
time by the evaluator using the configuration settings specified by the user. The
training set consists of a list of ratings, where each rating associates a user, an item,
and, optionally, a timestamp to a numerical value.

Now the recommender has all the information required to perform the training
process. Meanwhile, the evaluator will start asking asynchronously to the recom-
mender if this phase has ended with a GET of /model. When the recommender is

Shttp://www.mymedialite.net/documentation/item_prediction.html

80

http://www.mymedialite.net/documentation/item_prediction.html

5.2 — Interaction Protocol

Evaluator Recommender
T T
I POST /model I

GET /dataset
|-
dataset >
GET /model
>
< model
POST /recommendation
GET /recommendation
|
< recommendation
DELETE /model
|

Figure 5.1: A UML sequence diagram describing the RecLab interaction protocol.

ready to suggest items, the evaluator is informed of that and it can proceed to the
next step.

The evaluator asks the recommender system, with a POST on the resource
/recommendation, to create a list of k items for each user specified in the pay-
load of the request. The list of users to whom recommend the items contains all
the users available in the test set, while the value of k was initially provided by
the experimenter. Note that it is a responsibility of the recommender avoiding to
suggest items already rated by a particular user in the training set. In general,
there is no guarantee that the test set will only contain users and items available
in the training set.

Because also the recommendation phase may be time consuming, it is considered
asynchronous, similarly to the training one. The evaluator starts asking with a
GET on the same resource if the lists of recommendations are ready. When they
are correctly retrieved, the evaluator asks the recommender to DELETE the /model

81

5 — Evaluation of Top-k Recommender Systems

to avoid consuming memory, while it begins to compute the evaluation metrics
detailed in Section 5.3.

5.3 Evaluation Metrics

In order to better analyze the recommender systems under evaluation from
different perspectives, we decided to include in RecLab a comprehensive set of
seven different metrics. In fact, it is not possible to accurately evaluate in an
offline experiment a set of recommenders by only relying on a single indicator [62].
In addition to traditional metrics such as coverage and precision, we propose less
widespread ones like novelty, diversity, and serendipity.

These metrics are similar to the ones introduced in Section 4.2.2, but while the
latter were designed to evaluate sequences of recommended items, the former are
more appropriate for ranked lists of suggestions. We added to RecLab the popular
metric of recall, which was not really meaningful in the context of sequence-based
recommenders. Furthermore, the metric of nDPM was put aside in favor of nDCG,
as it seemed more appropriate to characterize the raking of a list. Finally, we did
not consider the metrics of confidence and perplexity, as they would require the
recommender systems to also provide a probability for each suggested item, which
is beyond the scope of our evaluation framework. This multicriteria set is not final,
as RecLab can be easily expanded in order to compute additional metrics that the
community considers useful.

In the following, we define U as the set users v € U, 7 as the set of items ¢t € Z,
and R as the set of ratings p € R. Furthermore, we define rec(v, k) as the list
of the top-k items recommended to user v and ref(v) as the set of items rated
positively by user v in the test set Ryes:-

5.3.1 Coverage

The coverage of a recommender is a measure that represents the number of
items in the catalog over which the system can make suggestions [55]. Given the
lists of recommended items for each user in the test set, we compute the percentage
of suggested items with respect to the distinct items available in the training set.

Trec(n
coverage(k) — |UueL|1tIest Tc(,k)|
train

This metric captures if the recommender is capable of suggesting enough various
items to each user, or if it always proposes the same items to all the users. Cover-
age should be analyzed together with precision, otherwise it is clear that random
recommendations will achieve optimal results [62].

82

5.3 — Evaluation Metrics

5.3.2 Precision

Precision, in the context of information retrieval, represents the fraction of se-
lected documents that are relevant. For a recommender system, it measures the
fraction of recommended items that are liked by a user [117].

>

vEUtest

1
|utest |

[rec(v, k) Nref(v)]
k

precision (k) =

In order to avoid overestimating the value of precision, we assume that all non-
rated items are irrelevant [121].

5.3.3 Recall

Complementary to precision, recall represents the fraction of relevant documents
that have been selected. In the context of recommender systems, it measures the
fraction of correctly recommended items with respect to all the items the are liked
by a user [117].

1 |rec(v, k) Nref(v)]
|utest| VEUest |7“€f(’U)|

If the set of items rated positively by a user is empty, we assume that the recall
for that user is 0 by definition.

recall(k) =

5.3.4 nDCG

The Normalized Discounted Cumulative Gain is another information retrieval
metric, that also considers a logarithmic gain related to the position of each cor-
rectly predicted item [71]. This metric reveals if a recommender is capable of
correctly predicting items at the top of the list.

1 {ei} Nref(v)]
deg(k) =
g(k) \Uyest| Ueuz;est; logs(i+ 1)

Where ¢ € rec(v, k). The DCG value needs to be divided by the ideal DCG for
normalization. The ideal DCG can be computed with the same formula, assuming
that all recommended items are relevant for the associated user.

5.3.5 Novelty

This metric rewards algorithms capable of suggesting items that belong to the
long-tail of the catalog, and so it is unlikely that they are already known by a
certain user [132].

83

5 — Evaluation of Top-k Recommender Systems

In this way, it is possible to check that the recommended items are not too
popular and obvious.

1 k
novelty (k) = U < F - YD log, freq(v;)

VEUtest 1=1
Where ¢ € rec(v, k) and freq : Z — [0, 1] represents the probability of observing
the item ¢ in Zy.q:,. We also assume that log,(0) = 0 by definition.

5.3.6 Diversity

The metric of diversity is inspired by the metric of Intra-List Similarity proposed
by Ziegler et al. [141]. It measures how much the items included in the recommended
lists are diverse. A higher diversity may be beneficial for the users, as they are
encouraged to better explore the catalog [97].

_ L Z@i,‘v’j:0<i<j 1 — sim(s;, 1)
’utest| k % (]{7 — 1)

Where ¢ € rec(v, k) and sim : Z x T — [—1,1] is a similarity measure between
two items. We decided to exploit the cosine similarity computed between the vectors
representing the users who liked the two items in the training set.

The resulting value is a number in the interval [0,2]: higher values imply an
higher diversity.

diversity (k)

vEUtest

5.3.7 Serendipity

Serendipity can be defined as the capability of identifying items that are both
attractive and unexpected [48]. It is possible to measure the serendipity of a rec-
ommender by computing its precision after having discarded the items suggested
by a primitive recommender [47].

1 |(rec(v, k) \ prim(k)) Nref(v)|
|utest| ki
Where prim(k) is the set of the top-k most popular items available in the

training set. We can, in fact, suppose that popular items are already known by
several users, and thus they cannot contribute to the serendipity of the suggestions.

serendipity (k)

vEUtest

5.4 Experimental Results

To prove the effectiveness of RecLab, we performed three different experiments
with the recommender systems described in Section 5.1 whose implementation de-
tails are available in our repository, in line with RQ3.2.

84

5.4 — Experimental Results

‘Suryyds durejsowary o) pue joseIep AT SUSTOIAOIN oY) [IM SHNSOI UOI)RN[eAT :7'G O[qR],

6C6TCT'0 GLTL8G0 L661¥6'8 SLIL6C0 0099900 ¥919L8°0 LEGIET O ANIMN
GLICTT'O0 C8ETT90 GPGE80'6 09¥¢8C0 G¥8¢90°0 6EES9C0 8I60CE 0 ANHdd
OLVPITO 99CL99°0 ¢68¢h88 0¢LE6CD T60c90°0 ¢¥04LE0 ¢CVLIT O NN3 10s[)
¢96960°0 GL60L9°0 SET6GL6 8GIVPC 0 16¥950°0 96C1€C0 VOSTIED NN3 wolf
LTG990°0 TSE8TS'0 TSTIPE'8 €99€LT'0 SFIEC0'0 L8FLST'0 TIPLE00 Tendod 3soy
8€6910°0 669€96°0 0981 €T ¥6ELI0°0 O0T6200°0 GGSLT00 6TLEGGO wopuey

Andipuarog ANSIOAL(] A)PAON DU [[BO9Y UOISIOI] 9SRISAO)) WILI0S[Y

"8ur)ds wopuel v pur joseIep N SUSTOIAOIA O M SHNSOI UOIJeN[eA] :T°G 9[qe],

GESOTC'0 €L9L99°0 CCP8ET'6 80O8LEC'O GC669T°0 00¥84GC'0 ¥59S0CT°0 ANIMN
GLOILTO €COLTLO0 CClELV'6 GC9L¥c 0 GIS8¥YI0 ¥I9¥4ce 0 L06ITE0 ANHdd
064500 9€¥LG9°0 LGTCG06 TEOSG6C0 6LI6ST0 LECEITCO CELIVIO NN3 10s[]
LE996T°0 L8GREL'0 V04GS0T 9¥I¥Pec 0 809LET'O0 8COCICO LTGELY O NN wolf
698TL0°0 ¥2G009'0 SPE08S'8 TIGRST'0 ¥6EF80'0 9FISFT'0 0T6L10°0 Temdod 1soly
€00900°0 498%996°0 9¢SLEET 6909000 9¢Sc00°0 ¢S1500°0 000000 T wopuey

Andipusarog ANSIOAL(] A)PAON DU [[BO9Y UOISIAIJ 9SRIDAO)) WILI0S[Y

85

5 — Evaluation of Top-k Recommender Systems

Algorithm Coverage Precision Recall nDCG Novelty Diversity Serendipity
Random 0.708420 0.000584 0.000632 0.000623 15.30801 0.998417 0.000584
Most Popular 0.001692 0.066773 0.069242 0.076932 7.736651 0.632728 0.019161
Item KNN 0.235489 0.126168 0.131249 0.143234 12.56312 0.774870 0.101486
User KNN 0.031299 0.158652 0.164218 0.193206 8.735683 0.717815 0.115711
BPRMF 0.024597 0.078715 0.081908 0.086609 8.280671 0.752627 0.038800
WRMF 0.015617 0.164809 0.170302 0.201023 8.849644 0.763729 0.123992

Table 5.3: Evaluation results with the HetRec LastF'M dataset and a random splitting.

86

5.5 — Conclusion

In the first one, we selected the MovieLens 1M dataset and we chose a random
splitting protocol. For the other parameters, we used the default values of the
framework: the test set size is the 20% of the dataset, the length % of the recom-
mended lists is equal to 10, while the rating threshold is equal to 3. The results of
this first experiment are reported in Table 5.1.

In the second experiment, we changed the splitting protocol to the timestamp-
based one, while we retained all other parameters unmodified. The results are
reported in Table 5.2.

Finally, for performing the third experiment, we selected the HetRec LastFM
dataset. All other parameters are the same of the first experiment, but the rating
threshold, which is now equal to 0. The results of this last experiment are reported
in Table 5.3.

As expected, the random recommender always achieves the best coverage, nov-
elty, and diversity, while also obtaining the worst precision, recall, nDCG, and
serendipity. On the other hand, the most popular recommender has a very low
coverage and novelty, but it also has interesting values of precision and nDCG,
especially with the MovieLens dataset. Note its impressive increase in terms of
precision obtained by simply changing the splitting protocol.

The measures of serendipity are not exactly zero because this implementation
of the most popular recommender suggests a personalized list of popular items,
avoiding the ones already rated by the same user in the training set.

If we ignore the random suggestions, the Item KNN recommender obtains the
best results in terms of coverage, novelty, and diversity in all the experiments.
Regarding the metric of precision, we observe interesting results with the User KNN
recommender in the first experiment, with the User KNN and the WRMF in the
second one, and with the WRMF in the last one. We observe a dramatic decrease
in precision of the BPRMF recommender in the LastFM experiment, probably due
to the characteristics of the dataset.

In the last experiment, the WRMF' algorithm achieves the best values of pre-
cision, recall, nDCG, and serendipity. However, it also scores a very low coverage;
in contrast, the Item KNN recommender has a fair precision and an interesting
coverage. For this reason, it would be useful to compare these algorithms in an
online experiment involving human subjects.

The availability of different evaluation metrics was of paramount importance to
reach these conclusions, which represent our answer to RQ3.3.

5.5 Conclusion
In this chapter, we have introduced RecLab, an open source framework for

evaluating top-k recommender systems in a distributed setting. The main aim of
this work is to support the accountability and the reproducibility of the results of

87

5 — Evaluation of Top-k Recommender Systems

the experiments by permanently storing and publicly displaying their configuration
parameters and numerical outcomes.

RecLab is based on a RESTful interaction protocol that enables researchers
to evaluate different recommenders created with heterogeneous technologies in a
common experimental context and with a comprehensive set of metrics.

The results of each experiment can be easily retrieved and automatically pro-
cessed using a machine-readable format.

We exploited RecLab for performing three experiments involving all the recom-
menders at our disposal. We empirically validated the importance of considering
different metrics in order to execute a reliable evaluation also in the context of top-k
recommender systems and we observed the impact of the configuration parameters
on the outcome of the experiments.

The scope of this evaluation framework could be expanded by integrating in it
more rating datasets and additional recommendation techniques. We also envision
the possibility of enhancing the interaction protocol in order to let the experimenter
specify the configuration parameters of each recommender.

88

Chapter 6

Qualitative Analysis with Rating
Datasets Visualization

Being able to correctly interpreting the results obtained during an offline evalu-
ation of different recommender systems is of paramount importance for understand-
ing the quality of the suggested items [47]. However, this task is particularly difficult
as it requires knowing several details regarding the evaluation protocol [116]. For
this reason, in Chapter 4 and 5, we have formalized two evaluation frameworks to
address the problem of reproducibility in recommender systems research.

In the following, we consider the task of characterizing the rating dataset ex-
ploited for conducting the experiments, as it has a profound impact on the final
result. For example, sparse datasets usually yield to lower evaluation scores with
respect to more dense datasets [33]. On the other hand, datasets with many popu-
lar items tend to advantage systems that create less diverse suggestions [132], like
the most popular baseline. There are also some subtle differences among rating
datasets related to the application domain or the collection protocol that could
affect the choice of the most appropriate recommender system.

Different metrics have been proposed in literature to summarize the main char-
acteristic of a rating dataset, i.e. sparsity or entropy. However, we argue that such
metrics are not sufficient for comparing datasets in a reliable way, as many other
facets should be taken into account. For example, it is not possible to understand
the rating behaviors of specific groups of users nor the popularity of the most rated
items by only looking at some general statistics computed on the whole dataset.

A possible solution to this problem could be represented by data visualization
techniques [77]. However, most of the methods available in literature are designed
to display the output of a recommendation model and not the original dataset [50,
23]. In contrast, we argue that it is necessary to visually explore a rating dataset
even before it is used to train a recommender system, for understanding how the
input data will influence the outputs under analysis.

89

6 — Qualitative Analysis with Rating Datasets Visualization

In this chapter, we propose a novel qualitative approach based on data visual-
ization for creating a graphical summary of any collection of user preferences. This
method is useful for visually identifying similarities and differences among the avail-
able datasets. In fact, we argue that if two datasets result in similar visualizations,
the behavior of different recommender systems relying on them will be consistent.
Furthermore, we present a Web-based tool, named RS-viz, for easily constructing
the proposed visualization and comparing rating datasets in an intuitive way. The
software code of RS-viz is freely available on GitHub.!

Differently from the plotting capabilities already available in specialized software
like Matlab or Scilab, our approach is more general, as it can be applied in a
consistent way by different users on any dataset and it can be exploited on many
devices without the need of installing specific tools.

More formally, we aim to provide an answer to the following research questions.

RQ4.1 How can data visualization techniques be exploited to create a graphical
summary of the main characteristics of a rating dataset?

RQ4.2 To what extent the graphical representation of different rating datasets can
be useful to easily identify their similarities and diversities?

The remainder of this chapter is structured as follows. In Section 6.1 we present
the approach used to construct the scatter plot and we describe the implementation
details of the Web-based tool RS-viz. In Section 6.2, we comment on the outcome
of an evaluation campaign designed to validate the proposed method. Finally, in
Section 6.3, we provide the conclusions.

6.1 Visualization Approach

In this section, we first describe the algorithm that we devised as an answer
to RQ4.1 for creating a scatter plot that represents a rating dataset (Section 6.1.1),
then we introduce the implementation details of RS-viz (Section 6.1.2).

6.1.1 Scatter Plot Construction

For visually representing the rating matrix associated with a generic dataset we
opted for a 3D scatter plot. The rationale behind this choice is that each point in
the visualization could intuitively represent a single rating from the dataset: the
value of the z-axis is the identifier of the user, the value of the y-axis is the identifier
of the item, while the value of the z-axis is the rating itself, if it is expressed on a
numerical scale.

https://github.com/D2KLab/rs-viz

90

https://github.com/D2KLab/rs-viz

6.1 — Visualization Approach

However, it is easy to foresee that this approach cannot handle complex datasets
with many preferences, as it requires one point for each rating. If the ratings
available are only binary, a traditional scatter plot would suffice.

For these reasons, we decided to create a more compact representation of the
rating matrix before visualizing it. In details, we first associated the users and the
items with internal numerical identifiers according to their frequency of appearance
in the dataset. Therefore, we associated the most rated item with the value of 1,
and the second most rated item with the value of 2. The same approach was
followed for ordering the identifiers of the users according to the number of ratings
that they expressed.

Then, we linearly normalized such identifiers within an interval ranging from 0
to a user provided value, which represents the size of a squared rating matrix in
a transformed space. Finally, we binarized the ratings from the original dataset
according to a user provided threshold and we counted, for each cell of the trans-
formed matrix, the number of positive preferences associated with that cell.

For example, if the user 40 expressed a preference for the item 360 in a dataset
where the number of users is 941, the number of items is 1446, and the number of
normalized users and items is equal to 100, that rating would be associated with
the cell (4,24) because [40 <+ 941 x 100] = 4 and [360 + 1446 x 100| = 24.

Therefore, the value of the z-axis represents the number of positive ratings
associated with a sub-matrix of the original dataset, sorted by item popularity
and user activity. In order to enhance the readability of the visualization, we also
represented the value of the z-axis using a logarithmic color scale.

As an example of the proposed method, we report in Figure 6.1 and Figure 6.2
the scatter plots obtained from the MovieLens 100K and MovieL.ens 1M datasets,
when the rating threshold is equal to 3, and the number of normalized users and
items is equal to 100.

By looking at the values of the z-axis, it is possible to observe in an intuitive
way that MovieLens 1M contains a higher number of popular items and of very
active users. This conclusion is consistent with the findings of other works that
analyze the main characteristics of the MovieLens datasets [33].

6.1.2 Software Implementation

We realized a software implementation of the proposed approach as a Web-
based tool, called RS-viz, which is freely available. Our visualization framework
has been developed using the JavaScript programming language and it runs entirely
in a user’s browser. For this reason, it can also be exploited for analyzing private
datasets, as no information about them is sent to remote servers.

91

6 — Qualitative Analysis with Rating Datasets Visualization

120

al

sl

wned

5]

]

& %

Figure 6.1: A scatter plot representing the MovieLens 100K dataset.

The user needs to visit the Web-page of RS-viz? and select one of the built-in

datasets or provide her own dataset as a CSV file. Then, she needs to specify the
threshold between positive and negative ratings and the number of normalized users
and items, which should be selected also considering the rating scale of the input
dataset and the desired visualization density. A screenshot of the form containing
the configuration parameters of RS-viz is reported in Figure 6.3.

After a few seconds, an interactive 3D scatter plot is constructed on the right
side of the page. The user can inspect the plot by rotating the camera and finally
save the result as a PNG file.

’https://d2klab.github.io/rs-viz/

92

https://d2klab.github.io/rs-viz/

6.2 — Evaluation Campaign

Y

1500

4P

10(\00

Figure 6.2: A scatter plot representing the MovieLens 1M dataset.

6.2 Evaluation Campaign

In the following, we report the numerical outcomes of an evaluation campaign
conducted on the HetRec LastFM dataset using different recommendation ap-
proaches with the purpose of understanding if our visualization technique is capable
of capturing the different characteristics of a rating dataset and to what extent they
influence the recommendation coverage and accuracy.

6.2.1 Experimental Setup

We performed two different experiments with the HetRec LastFM dataset and
our evaluation framework RecLab, discussed in Chapter 5.

In the first one, we set the rating threshold equal to 0, while in the second one,
we set it equal to 1,000. For the other parameters, we used the default values of the
framework: we selected a random splitting protocol, the test set size as the 20% of
the dataset, and the length k of the recommended lists equal to 10.

We considered different recommendation approaches, namely the most popular
and random baselines and the MyMediaLite [46] implementations of the Item KNN,

93

6 — Qualitative Analysis with Rating Datasets Visualization

Select dataset

MovieLens 100K :I
Select a built-in dataset or use a custom one.
Upload dataset

Browse... Mo file selected.

Provide a custom dataset as a CSV file.
Field separator

Tabulation :I

The field separator used by the dataset.
Rating threshold

3 g
The rating threshold between relevant and irrelevant items.

Normalized users and items

100 S

The number of normalized users and items to show in the scatter plot.

Visualize the dataset

Figure 6.3: The configuration parameters of RS-viz.

User KNN, BPRMF, and WRMF recommender systems using their default settings.

We computed the metrics of coverage, precision, recall, and nDCG. The results
of these experiments are reported in Table 6.1. The same datasets obtained from
HetRec LastFM by varying the rating threshold were exploited for creating two
scatter plots using RS-viz, as displayed in Figure 6.4.

6.2.2 Discussion

From the visualization provided in Figure 6.4a, we can observe that the Het-
Rec LastFM dataset has a very different structure from the one of the MovieLens
datasets. In fact, a limited number of items are associated with the preferences
of almost all users, as it can be deduced by considering only the ratings expressed
for popular items, that is the ones with low identifiers. Please note that such rat-
ings seem not related to the identifier of the user, resulting in a scatter plot that
resembles the shape of a half cylinder.

Furthermore, less popular items seem to be liked by less active users. This

94

6.2 — Evaluation Campaign

Algorithm Coverage Precision Recall nDCG

Random 0.706679 0.000798 0.000745 0.000858
Most Popular 0.001692 0.071170 0.071480 0.079673
Item KNN 0.235321 0.129362 0.131967 0.145258
User KNN 0.030074 0.157234 0.160353 0.193121
BPRMF 0.022979 0.081277 0.082248 0.094737
WRMF 0.015558 0.159947 0.162332 0.195107

(a) Rating threshold = 0

Algorithm Coverage Precision Recall nDCG

Random 0.705562 0.000107 0.000622 0.000133
Most Popular 0.001684 0.022122 0.090233 0.027437
[tem KNN 0.107233 0.002878 0.013012 0.002686
User KNN 0.049343 0.040672 0.160767 0.055013
BPRMF 0.003756 0.021695 0.088211 0.024366
WRMF 0.012886 0.039606 0.157484 0.053148

(b) Rating threshold = 1,000

Table 6.1: The numerical results of the experimental comparison using the HetRec
LastFM dataset.

behavior can be observed by looking at the lower part of Figure 6.4a. Users with
a high identifier have rated a more widespread set of items, while users with a low
identifier have rated popular items more frequently.

These differences can be easily explained if we consider the collection protocol
and the domain of the dataset under analysis. The ratings in the LastFM datasets
represent the number of times a user listened to a particular artist: they were
collected in an implicit way and their values range from one to tens of thousands.

Also the strange area in the plot with almost no preferences is a direct result
of the collection protocol, which relied on the LastFM website to obtain the top
artists for a set of users. In fact, the list of artists available in the dataset is limited
to 50 items for each user.

If we increase the value of the rating threshold, we can observe that the resulting
scatter plot represented in Figure 6.4b is more similar to the ones of the MovieLens
datasets, resulting in a very typical long tail distribution with respect to both the
items and the users. This outcome is due to the fact that we removed ratings
produced by more casual listeners.

From the numerical outcomes of the experiments, we can deduce that the User
KNN and WRMF algorithms are the most appropriate ones with both the different

95

6 — Qualitative Analysis with Rating Datasets Visualization

rating thresholds. In general, all the recommenders available perform worse with
a higher threshold. In fact, from the visualizations it is clear that the number of
available preferences is much lower with respect to the MovieLens 100K dataset,
as the scatter plot represented in Figure 6.4b is sparser than the one available in
Figure 6.1. Because user preferences are more limited in number and fragmented,
the task of any recommender system is necessarily harder.

Interestingly, the Item KNN, differently from the User KNN, experienced a
dramatic drop in all the metrics considered. This result may have been caused by
the fact that a very low number of users is available for each item of the dataset.
Also this characteristic can be observed from the generated scatter plot by looking
at the lower part of Figure 6.4b. The white horizontal stripes denote groups of
items that have been rated by only a few very active users.

These experimental results support the validity of our visualization approach
and they represent our answer to RQ4.2.

6.3 Conclusion

In this chapter, we proposed a method for creating graphical summaries of
any rating dataset for the purpose of enabling researchers and practitioners to
better interpret the results of an offline evaluation campaign. Furthermore, we
introduced RS-viz, a Web-based tool capable of creating an interactive 3D scatter
plot according to the aforementioned approach starting from a user provided CSV
dataset or a built-in collection of ratings.

We validated the capabilities of such visualizations to reveal useful information
by comparing the graphical representations of the HetRec LastFM dataset con-
structed with different rating thresholds with the numerical outcomes of two offline
experiments involving various recommendation techniques.

96

6.3 — Conclusion

% User

i
|
|

40

[

.\UﬂU:’

20

ltem & . ' > “ & User

»

(b) Rating threshold = 1,000

Figure 6.4: The scatter plots obtained using the HetRec LastFM dataset with
different rating thresholds.

97

98

Chapter 7

Generation and Evaluation of
Synthetic Datasets

It is necessary to rely on a collection of user preferences obtained in a par-
ticular domain to perform an offline experiment. For example, the MovieLens
datasets represent a popular choice for conducting an offline evaluation in the field
of movie recommender systems [57]. Nevertheless, the number and the variety of
publicly available rating datasets is often limited, especially in less mainstream
domains [127]. It is possible to identify different causes for this problem. For ex-
ample, the companies capable of collecting rating datasets are usually reluctant to
share them, because of the fear of violating the privacy of their users or of exposing
commercially sensible data to their competitors. On the other hand, researchers
often do not have the resources for obtaining a sufficient number of ratings that are
worth to be publicly released, as discussed in Section 3.2.8.

Because of the shortage of public datasets, practitioners have started to rely on
synthetic ratings in order to conduct their offline experiments [137]. An obvious
advantage of such an approach is that it enables the creation of rating datasets
with an arbitrary number of users and items at a limited cost of dataset acquisition.
However, the results obtained from such experiments may be questionable, as the
generated datasets are usually not capable of capturing the characteristics of a
particular domain of interest [88]. For example, different generative approaches
only rely on descriptive statistics, like mean and standard deviation, and, for this
reason, they fail to mimic the individual behavior of a user.

In this chapter, we propose a novel approach for automatically generating syn-
thetic datasets with a configurable number of users leveraging on a reference dataset
that is used as the seed of the process and that encodes the peculiarities of a do-
main of interest. Such a generative method can be exploited to create different
rating datasets containing users that exhibit behaviors similar to the ones available
in the reference dataset. However, the synthetic users do not have a direct relation
with the real users and, therefore, no private or commercially sensible information

99

7 — Generation and Evaluation of Synthetic Datasets

is leaked. At the same time, because the number of synthetic users is configurable,
the generated dataset can be exploited to conduct scalability tests in a realistic way
and to train recommendation algorithms using reinforcement learning approaches.

More formally, we aim to provide an answer to the following research questions.

RQ4.3 What is the impact of using a synthetic dataset instead of a real one on
the results of an offline experiment in the context of recommender systems?

RQ4.4 Can a generative approach be exploited to create a synthetic dataset that
exhibits properties similar enough to the ones of a real dataset?

RQ4.5 To what extent this method can be consistently applied to datasets from
different domains and of different sizes?

The remainder of this chapter is structured as follows. In Section 7.1 we intro-
duce the generative approach for creating synthetic datasets, while in Section 7.2
we describe the experimental setup designed to validate it. We present and discuss
the results in Section 7.3 and, in Section 7.4, we provide the conclusions.

7.1 Dataset Generation

Our approach for generating synthetic datasets starting from a reference dataset
consists of two steps. In the first one, it is necessary to analyze an existing collection
of user preferences in order to obtain an accurate representation of the domain of
interest. Then, in the second one, it is possible to exploit such a representation for
creating different generated datasets.

We argue that only relying on a few statistical distributions computed empir-
ically at a global level from an existing dataset or specified by a researcher is not
sufficient to realistically simulate the individual tastes of human beings [88]. Such
methods would lead to the creation of datasets with users having no individual
preferences, thus making the task of any recommender system nearly impossible.

For this reason, we included a preliminary clustering phase as part of the first
step in order to group the users in a fixed number of communities. The individual
rating behaviors, represented by different statistical distributions, are learned for
each community and then exploited during the sampling phase.

For simplicity, we assume that each user can only express positive preferences
about the items available in the system. However, this approach can also be ex-
ploited to simulate datasets with ratings expressed on a more complex scale by
repeating these steps for each rating value and then by merging the results.

In the following, we detail the user clustering and distribution learning process
(Section 7.1.1) and the rating sampling algorithm (Section 7.1.2).

100

7.1 — Dataset Generation

7.1.1 User Clustering and Distribution Learning

We represent each user v € U from the reference dataset as a vector with length
equal to the number of items |Z|. The component ¥; of such a vector is equal to 1 if
the user v expressed a positive rating p about the i-th item of the catalog, otherwise
it is equal to 0.

Given this data structure, we decided to apply the K-means clustering algo-
rithm [58] to group together users who liked a similar set of items in K different
clusters. In the following, we define C as the set of clusters, therefore |C| = K.
The value of K needs to be empirically selected by the experimenter because, in
general, it depends on the characteristics of the reference dataset.

Every cluster identifies a different community of users. For generating a dataset
similar to the reference one, it is necessary to know how many users belong to
each community and what are the item preferences associated with them. More in
detail, we create the following empirical distributions from the reference ratings:

o PY how users are distributed in K clusters;
o PV, how ratings are distributed in || users for each cluster;
o Pl how ratings are distributed in |Z| items for each cluster.

Note that only the first distribution is global, while the second and the third
ones are associated with a cluster.

The distribution P represents the probability of assigning a user to a certain
cluster and it is computed by counting the number of users per cluster. The dis-
tribution PY represents the probability of finding a certain number of ratings per
user in the cluster k and it is computed by counting the number of ratings per user.
Finally, the distribution P/ represents the probability of finding a certain number
of ratings per item in the cluster k and it is computed by counting the number of
ratings per item.

The user clustering and distribution learning process is formalized in Algo-
rithm 7.3. Its output is represented by the previously mentioned distributions.

7.1.2 Rating Sampling

Starting from the empirical distributions obtained from Algorithm 7.3, it is
possible to generate a synthetic dataset by applying to them a sampling function
0. In the following, we assume that o is the weighted random sampling function.

As previously mentioned, the experimenter can select the number of users avail-
able in the generated dataset. This value, called U, is an input of the rating sam-
pling algorithm, together with the probability distributions. The synthetic dataset
can also have the same number of users available in the reference dataset, that is
U = |U|, in order to create a more realistic dataset.

101

7 — Generation and Evaluation of Synthetic Datasets

Algorithm 7.3 User clustering and distribution learning, given a reference dataset
and the number of clusters.
Require: U # {0} NK > 0N K < |U|

1: C < K-means(U, K)

2: PY«+ P(veCy)
3 forallke {1,...,K} do
4. PV« P(p,Jv € Cy)
)
6
7

Pl « P(p|t €L, ANv € Cy)
: end for
. return P¢, PV, P!

Firstly, each generated user u is assigned to a cluster k£ from the reference
dataset, according to the distribution of users per cluster. Then, the number of
ratings I for that user is selected considering the distribution of ratings per user
in the cluster k. Finally, I items are sampled without replacement () from the
distribution of ratings per item in the cluster k. Thus, the number of user ratings
and her liked items are associated with a particular community of users.

The rating sampling procedure is formalized in Algorithm 7.4.

Algorithm 7.4 Rating sampling, given the required number of users and the
distributions computed in Algorithm 7.3.

Require: U > 0, P¢, PV, P}

1: R+ {0}

2: for allue {1,...,U} do
3: k (—U(PC)

4: I+ O'(P,?)

5. forallie{l,...,I} do
6: Pui 6(P,f)

7 R(-RU{puﬂ}

8: end for

9: end for

10: return R

7.2 Experimental Setup

We compared the results obtained from the evaluation of different recommenders
conducted on popular datasets typically exploited in literature with the ones com-
puted in the same experimental conditions using various collections of synthetic
preferences generated starting from them using multiple techniques.

102

7.2 — Experimental Setup

In fact, we claim that a synthetic dataset can be successfully used during an
evaluation campaign if the behavior of the recommender systems under analysis is
similar to one that it would be possible to observe with the reference dataset. Thus,
almost all the possible pairs of recommenders should exhibit the same relation of
order for a given dimension and lead to similar conclusions.

Furthermore, we investigated what is the impact of the parameter K on the
results of the evaluation, in order to understand how to empirically select the most
appropriate value for it.

In our experiments, we utilized Random, Most Popular, User KNN, BPRMF,
and WRMF recommendation algorithms and the metrics of precision, recall, and
nDCG as defined in the evaluation framework RecLab discussed in Chapter 5.
Regarding the user preferences, we exploited the binarized versions of the Movie-
Lens 100K, MovieLens 1M, and LastFM [22] datasets. We considered as positive
all ratings with a value higher than 3 for MovieLens and than 0 for LastFM. We
relied on the default values of the evaluation framework for all other experimental
parameters: we followed a random splitting protocol with a test set size equal to
the 20% of all available ratings and we recommended 10 items for each test user.

From the aforementioned reference datasets we generated their synthetic ver-
sions exploiting the procedure described in Section 7.1. We considered U equal to
the number of users originally available, in order to compare datasets of similar
size. Furthermore, we also created three baseline synthetic collections with the
same number of ratings by not applying the user clustering phase. All the users of
such baselines exhibit the same rating behavior, similarly to the approach described
in [25]. In Table 7.1, we report different statistics regarding the baseline, generated,
and reference datasets.

Dataset Version Users Items Ratings

MovieLens 100K Baseline 942 1,374 55,375
MovieLens 100K Generated 942 1,332 53,915
MovieLens 100K Reference 942 1,447 55,375

MovieLens 1M Baseline 6,038 3,463 575,281
MovieLens 1M Generated 6,038 3,457 584,101
MovieLens 1M Reference 6,038 3,533 575,281

LastFM Baseline 1,888 13,342 92,834
LastFM Generated 1,892 13,442 92510
LastFM Reference 1,892 17,632 92,834

Table 7.1: The total number of users, items, and ratings available in the datasets.

103

7 — Generation and Evaluation of Synthetic Datasets

7.3 Results

In this section, we first discuss the impact of the number of user communities
on the evaluation results, then we present a comparison between exploiting the
synthetic and the reference datasets.

7.3.1 Number of User Communities

Dataset Most Popular User KNN BPRMF WRMF

K=5 0.088449 0.099890 0.078768 0.091749
K =10 0.095793 0.124595 0.102805 0.111974
K =50 0.098378 0.133946 0.103243 0.133838
K =100 0.102415 0.150494 0.115587 0.149945
K =200 0.099672 0.154158 0.122538 0.164114

Table 7.2: The values of precision obtained with the synthetic versions of the
MovieLens 100K dataset by varying K.

For studying what is the impact of the value K on the results of an eval-
uation conducted with a synthetic dataset, we computed the measure of preci-
sion on different synthetic versions of the MovieLens 100K dataset created with
K = {5, 10, 50, 100, 200}. We report the numerical outcomes of this experiment
in Table 7.2.

We also observed that it is possible to obtain similar results by considering other
datasets and metrics. As expected, the values of precision for all the algorithms
but the Random and Most Popular approaches improve by increasing the number
of available clusters. However, this relationship is not linear, as doubling its value
from 100 to 200 only slightly improves the results.

We empirically observed that reasonable values for K could be 100 or 200. In
Section 7.3.2, we will assume that K = 200.

Therefore, we can provide an answer to RQ4.3 by observing that the impact of
using a synthetic dataset in an evaluation campaign can be mitigated if we are able
to simulate a sufficient number of heterogeneous user communities.

7.3.2 Synthetic and Reference Datasets

As anticipated in Section 7.2, we compared the evaluation results obtained when
relying on the reference dataset and two synthetic datasets created with different
approaches. We repeated this experiment with datasets of different sizes and from
different domains in order to assess the generalizability of the results.

104

7.3 — Results

Algorithm Precision Recall nDCG

Random 0.009416 0.008877 0.009841
Most Popular 0.060065 0.053209 0.064384
User KNN 0.055952 0.050587 0.058744
BPRMF 0.045346 0.033628 0.048740
WRMF 0.047078 0.042876 0.048104

(a) Baseline dataset

Algorithm Precision Recall nDCG

Random 0.009847 0.008977 0.010022
Most Popular 0.099672 0.083875 0.110229
User KNN 0.154158 0.135917 0.169499
BPRMF 0.122538 0.106186 0.129742
WRMF 0.164114 0.144272 0.173916

(b) Generated dataset

Algorithm Precision Recall nDCG

Random 0.007743 0.006300 0.008183
Most Popular 0.112759 0.102804 0.130632
User KNN 0.205234 0.221684 0.233362
BPRMF 0.182770 0.186838 0.198869
WRMF 0.221592 0.233235 0.250386

(c) Reference dataset

Table 7.3: The results obtained with the baseline, generated, and reference versions
of MovieLens 100K.

The results obtained with MovieLens 100K, MovieLens 1M, and LastFM are
available in Table 7.3, Table 7.4, and Table 7.5 respectively.

We observe that in all experiments and for almost all the possible pairs of
recommenders the relative order of the measures is the same between the generated
and the reference datasets.

As expected, their values are lower when exploiting the synthetic ratings, as they
do not represent real preferences. Nevertheless, they are still useful to identify the
most promising recommendation techniques in a certain domain, while the results
obtained with the baseline datasets cannot be exploited for such a purpose.

With respect to RQ4.4, we can conclude that a generative approach capable
of replicating the behaviors of different groups of users can be used for creating

105

7 — Generation and Evaluation of Synthetic Datasets

Algorithm Precision Recall nDCG

Random 0.004989 0.002733 0.004803
Most Popular 0.066483 0.037723 0.068991
User KNN 0.064708 0.035976 0.066573
BPRMF 0.057459 0.027145 0.059226
WRMF 0.053022 0.027763 0.055035

(a) Baseline dataset

Algorithm Precision Recall nDCG

Random 0.005712 0.002678 0.005580
Most Popular 0.101570 0.061565 0.107356
User KNN 0.129113 0.078716 0.136779
BPRMF 0.106948 0.057729 0.111058
WRMF 0.133723 0.080045 0.140670

(b) Generated dataset

Algorithm Precision Recall nDCG

Random 0.005589 0.002862 0.005657
Most Popular 0.131982 0.082978 0.142782
User KNN 0.232082 0.172290 0.262018
BPRMF 0.199633 0.136378 0.218727
WRMF 0.227878 0.154425 0.252999

(c) Reference dataset

Table 7.4: The results obtained with the baseline, generated, and reference versions

of MovieLens 1M.

realistic datasets. We also discovered, as an answer to RQ4.5, that our approach
can be potentially applied to datasets from different domains and of different sizes.

7.4 Conclusion

In this chapter, we have discussed a method for generating synthetic datasets
with an arbitrary number of users starting from existing collections of preferences.
Differently from the approaches already available in literature, we propose to first
model user communities in order to generate more realistic ratings that can be

successfully exploited during an evaluation campaign.

106

7.4 — Conclusion

Algorithm Precision Recall nDCG

Random 0.000691 0.000656 0.000869
Most Popular 0.046281 0.046513 0.048636
User KNN 0.042614 0.043088 0.044308
BPRMF 0.039957 0.040543 0.041804
WRMF 0.032731 0.032974 0.033975

(a) Baseline dataset

Algorithm Precision Recall nDCG

Random 0.000532 0.000520 0.000548
Most Popular 0.052844 0.054597 0.056285
User KNN 0.101435 0.104549 0.113433
BPRMF 0.062307 0.064720 0.066835
WRMF 0.090324 0.092860 0.099598

(b) Generated dataset

Algorithm Precision Recall nDCG

Random 0.000797 0.000825 0.000791
Most Popular 0.067906 0.068970 0.075406
User KNN 0.156057 0.160451 0.189487
BPRMF 0.075877 0.077336 0.087066
WRMF 0.160202 0.164468 0.193937

(c) Reference dataset

Table 7.5: The results obtained with the baseline, generated, and reference versions

of LastF'M.

We empirically verified that the outcome of an offline comparison among differ-
ent recommender systems conducted exploiting the generated datasets is consistent
with the results obtained when using the reference datasets, provided that a suf-
ficient number of user clusters is selected. This finding could encourage private
companies to publicly release synthetic datasets created from internally available
data without the fear of violating the privacy of their users or of exposing commer-

cially sensible information.

107

108

Chapter 8

First Use Case: Semantic Review
Recommender

During the last decade, the Web has evolved from an information space to share
textual documents into a medium to distribute structured data. Linked Data' is a
set of best practices for publishing and interlinking data on the Web and it is the
base of the Web of Data, an interconnected global knowledge graph. Because of
the increased amount of machine-readable knowledge freely available on the Web,
there is a high interest in investigating how such information can be used to improve
recommender systems [44], as reviewed in Section 2.1.4.

Currently, most recommender systems exploit ratings to infer user preferences,
although the growing popularity of social and e-commerce websites has encouraged
users to write reviews. These reviews enable recommender systems to represent the
multi-faceted nature of users’ opinions and build a fine-grained preference model,
which cannot be obtained from overall ratings [27]. Additionally, as discussed in
Section 2.1.3, recommender systems may take advantage of reviews because they
are harder to fake than ratings, are richer of information, and users may struggle to
express their preference as ratings. Some studies have also documented the positive
influence of product reviews on the decision processes of new users [26, 75].

In this chapter, we address the issue of mining reviews and show how the ex-
tracted information, combined with Linked Data, can be exploited in recommenda-
tion tasks. On one side Linked Data can provide a rich content-based representation
of the items to be recommended since they include interesting features. For exam-
ple, movies represented in DBpedia? contain basic information such as cast and
director, but also some unexpected relations, such as the fact that both Braveheart
and Saving Private Ryan won the Best Sound Editing Academy Award. On the

http://linkeddata.org
’http://dbpedia.org

109

http://linkeddata.org
http://dbpedia.org

8 — First Use Case: Semantic Review Recommender

other side, reviews may reveal additional connections among items. For instance,
various reviews of Interstellar mention Stanley Kubrick, although in DBpedia there
is not a direct link between these two resources.

Therefore, we propose a new recommendation approach that semantically anno-
tates reviews to extract useful information from them. The annotated entities and
the knowledge freely available in the Web of Data are then combined to discover
additional resources and generate recommendations. Our method can exploit any
dataset available in the Web of Data to provide recommendations, although we rely
on DBpedia and Wikidata® in our implementation.

We conducted an offline study to find the best configuration of our technique
for these two datasets and comparatively evaluate our approach against a Linked
Data-based and some more traditional algorithms based on ratings. We performed
our study in the movie, book, and music domains, and the evaluation took into
account different properties of recommender systems, that is prediction accuracy
(both in terms of ratings and ranking), diversity, and novelty using a multicriteria
approach. In fact, as discussed in Section 2.2.2, not only accuracy is important:
recommendations that are too obvious or already known to users may not sat-
isfy them, although they match their taste. The results showed that our method
achieved the highest diversity, provided a better accuracy than the approach based
on Linked Data, and increased the novelty of recommendations with respect to
collaborative filtering techniques.

The remainder of this chapter is organized as follows. In Section 8.1 we present
our approach, while, in Section 8.2, we describe the evaluation method. Then,
in Section 8.3, we show the obtained results and in Section 8.4 we discuss them.
Finally, in Section 8.5, we provide the conclusions.

8.1 Approach

The architecture of SemRevRec is depicted in Figure 8.1. The system consists
of two main modules that are highlighted with different colors: semantic annotation
and discovery, and recommendation. The former is responsible for feeding the rec-
ommender system with semantically annotated entities and Linked Data through
the knowledge base, while the latter provides recommendations to users. Every
time a new review is submitted, the system executes the semantic annotation and
discovery steps and possibly adds new entities, while the recommendation process
can start when the user provides an initial item. The recommendation module
works online, while the semantic annotation and discovery are done offline. Ini-
tially, some reviews are annotated and the resulting entities are used to discover
additional entities through Linked Data. FEach of these two modules is made up

3https://www.wikidata.org

110

https://www.wikidata.org

8.1 — Approach

of the illustrated submodules, which are responsible for specific steps of the whole
process: annotation, discovery, generation of recommendations, and their ranking.
The storage of entities is not a step, but the corresponding database is a transversal
submodule used by all the others.

SemRevRec deals with the annotated or discovered entities and the items to rec-
ommend. We consider the items as a particular type of entities since SemRevRec
suggests items that may be annotated or discovered entities. An item may not
appear as an entity in the system, for instance a movie that was reviewed but never
annotated or discovered. However, this does not mean that an entity corresponding
to such a movie does not exist in the considered knowledge base. Semantic annota-
tion and discovery steps are explained in Section 8.1.1, while the recommendation
process is presented in Section 8.1.2.

Although our approach is not bound to a particular domain or knowledge base
available in the Web of Data, in our implementation we focus on movies, books,
and music, while we rely on DBpedia and Wikidata to identify possible differences
between these two knowledge bases. We chose them for annotation and discovery
because they are two of the main datasets in the Web of Data and they have a vast
amount of resources that belongs to a variety of domains. We used reviews from
IMDb* for movies, LibraryThing® for books, and Amazon® for music.

8.1.1 Semantic Annotation and Discovery

Semantic annotation is the process of annotating textual or multimedia contents
with semantic tags to add information about their meaning [115]. In written text,
this can be done by associating a URI to the recognized entities. We considered
two popular semantic annotators that rely on Wikipedia: AIDA [65] and DBpedia,
Spotlight [35]. They are both capable of disambiguating entities according to the
surrounding context: this is useful because users frequently write acronyms and
abbreviations. We finally selected AIDA because it is more accurate according to
an independent comparison [45].

The module of semantic annotation and discovery analyzes the text of the re-
views and stores the identified entities in a relational database. The URI of each
annotated entity is associated with the URI of the reviewed item and with the oc-
currence of that entity in all the reviews of that item. In fact, the same entity may
appear again in reviews regarding another item. AIDA is capable of identifying
and disambiguating entities mentioned in the review considering, by default, the

‘http://www.imdb.com
Shttps://www.librarything.com

Shttps://www.amazon.com

111

http://www.imdb.com
https://www.librarything.com
https://www.amazon.com

8 — First Use Case: Semantic Review Recommender

Knowledge
base

Semantic Annotation
and
Discovery

Review Semantic Annotator Discoverer

o~)
(D
=

Recommendation

- Generator

~—

—y

Ranker

— —

. =
[=

Figure 8.1: The system architecture of SemRevRec.

ones available in YAGO.”

The YAGO resources are mapped with the equivalent ones available in DBpedia
exploiting the similar structure of the URIs. For example, yago-res:The Matrix
corresponds to dbr:The_Matrix because their URIs where both generated starting
from the title of the same Wikipedia article. In contrast, the mapping between
DBpedia and Wikidata relies on the owl:sameAs predicate available in DBpedia.
If the same entity corresponds to more than one in the other knowledge base, it
is ignored in order to avoid probable inconsistencies. The same holds if there is
no owl:sameAs property. In principle, it is also possible to perform the semantic
annotation phase relying on a custom knowledge base, but AIDA is provided with
a precomputed database that includes all the necessary information for annotating
using YAGO. In our case, since DBpedia and Wikidata are both well interlinked

"http://www.yago-knowledge.org

112

http://www.yago-knowledge.org

8.1 — Approach

with YAGO, it was less time consuming computing the mapping rather than the
information needed by the annotator.

Finally, the types of each entity are obtained from the target knowledge base,
optionally considering only a subset of them (for example, only the DBpedia on-
tology types, such as dbo:Film). This is done in order to minimize the amount of
information retrieved and to reduce the time required for this operation. The types
are stored locally because they are not expected to change often and reading them
from a database is more efficient than querying the original knowledge base.

Semantic annotation allows SemRevRec to exploit Linked Data for retrieving
additional entities. This is possible because the annotated entities are also resources
in the Web of Data. Thus, the discoverer can find resources that are related to the
annotated entities in order to enable our system to recommend more items. Re-
views are a source of non-trivial relations: for example, in a movie recommendation
scenario, a user can mention a movie that reminds her the reviewed one because of
the colors, the setting, or the atmosphere, and these features are hardly available as
Linked Data. At the same time, Linked Data can enrich information coming from
users. For instance, they enable the discoverer to obtain other movies in which an
actor mentioned in a review played. The discovery can take into account various
properties, from more traditional ones, such as the genre, the director, or the actors,
to more unexpected ones, such as other movies shot in the same place.

Given the annotated entities, the discoverer retrieves from the knowledge base
other relevant entities through SPARQL queries. It relies on some properties that
can be configured and depend on the domain and on the dataset considered. The
discovery is not bound to a particular knowledge base or domain. On the contrary,
this approach is fairly general since it relies only on RDF and SPARQL. In our
implementation, we considered DBpedia and Wikidata, and we focused on movie,
book, and music recommendations. Table 8.1 summarizes the properties that we
selected for discovering further items to recommend starting from the entities avail-
able in the reviews.

Domain DBpedia Wikidata

Movie dbo:starring wdt:P161
Movie dbo:director wdt:P57
Book dbo:author wdt : P50
Music dbo:artist wdt:P175
Music dbo:writer wdt :P676

Table 8.1: The properties considered for the discovery phase.

More specifically, the discoverer reads the annotated entities stored during the
semantic annotation phase. The discoverer is able to obtain all the resources that
have the given entities as an object of the selected properties. For example, in the

113

8 — First Use Case: Semantic Review Recommender

movie domain, we selected dbo:starring and dbo:director in the case of DBpe-
dia because most of the annotated properties, when not movies, were actors and
directors. This allows the system to discover other movies from the same director
or actor named in a given review. Sometimes directors or actors not involved in
the movie were also mentioned for comparison. The discoverer can retrieve other
movies from these entities that are relevant for the user who wrote the review, thus
can also be of interest for other users. Similarly to movies, we selected dbo:author
for books as well as dbo:artist and dbo:writer for music because most of the
annotated entities were authors, artists or writers when not books and songs, re-
spectively. It is possible to exploit both direct and inverse properties.

The discoverer stores the discovered entities in a relational database for effi-
ciency reasons. The URI of each discovered entity is associated with the URI of
the annotated entity through which it was discovered, and, optionally, with the
LDSD measure [104] between them. This measure is inversely proportional to the
number of links between two resources: more links result in a lower distance. Each
discovered entity may be found through more than a single annotated entity. The
LDSD can be exploited in the ranking phase, which is described in Section 8.1.3.
However, since its computation is expensive due to the various SPARQL queries
involved, it may be optionally skipped to speed up the discovery step. Obviously,
in this case, the LDSD measure does not contribute to the ranking.

8.1.2 Recommendation

The recommendation process consists of two main steps: the generation of the
candidate recommendations and their ranking. Given an initial item, SemRevRec
retrieves all the entities that are related to the initial item and then ranks them.

Firstly, the system selects the annotated entities that were mentioned in the
reviews of the initial item. Afterwards, it obtains the entities that mention the
initial item, that is entities whose reviews generated an annotated entity that cor-
responds to the initial item. For example, if the initial item is Interstellar and a
review of 2001: A Space Odyssey mention Interstellar, then 2001: A Space Odyssey
is considered as a candidate recommendation.

Secondly, SemRevRec optionally retrieves the discovered entities. They may
include entities discovered through the initial item. For instance, if the initial item
is Interstellar and The Dark Knight was previously discovered because both these
movies have been directed by Christopher Nolan, The Dark Knight is selected. The
same holds if Interstellar was discovered from The Dark Knight, that is Christopher
Nolan was annotated in the reviews of the latter. Similarly, the entities discovered
through other entities that were annotated in the reviews of the initial item are
relevant. For example, if Interstellar is the initial item, Stanley Kubrick was an-
notated in one of its reviews, and 2001: A Space Odyssey was discovered through
Stanley Kubrick, then 2001: A Space Odyssey is a candidate recommendation.

114

8.1 — Approach

It is possible to configure the generator to include in the candidate recommen-
dations the discovered entities or not. It is also possible to specify the minimum
occurrence required for entities to be included in the candidate recommendation
set, which is expressed as a percentage of the maximum occurrence of entities in
the reviews of the item considered.

8.1.3 Ranking Functions

Finally, SemRevRec ranks the candidate recommendations. We defined three
different ranking functions. The first one is presented in Equation 8.1 and takes
into account only the occurrence occur(i) of the entities available in the reviews.
occur(i) is equal to the number of reviews of an initial item i;, where an entity i is
annotated plus the number of reviews of i where i;, is annotated (if any). However,
the entity ¢« can be annotated or discovered. For the latter, the occurrence of the
entity through which it was discovered is used. The « coefficient is 1 if ¢ is an
annotated entity. Otherwise, it can be configured to a custom value (the default is
0.5) to weight the contribution of a discovered entity to the ranking. To obtain a
value between 0 and 1, R1 is normalized to the maximum occurrence of entities j
that belong to the candidate recommendation set C'R.

_ a - occur (i, iy,)
R1(i) = — (8.1)
mazjecr(occur(j, iy,))

The second ranking function (Equation 8.2) also considers the LDSD measure
between each discovered entity and the entity through which it was discovered.
This avoids assigning the same value to all the entities discovered through the
same annotated entity as R1 does. As for R1, the entity ¢ can be annotated or
discovered. The [coefficient is 1 if ¢ is an annotated entity, 0.5 otherwise. The
v coefficient is 0.5 for discovered entities, 0 otherwise. In this way, R2 returns a
number between 0 and 1, which is equal to R1 for the annotated entities, while,
for the discovered entities, it is the average of R1 and LDSD(i,i,), where i, is the
entity through which ¢ was discovered.

R2(i) = B+ R1(i) + - (1 — LDSD(i,i,)) (8.2)

The third ranking function (Equation 8.3) considers the LDSD measure be-
tween an entity ¢ and the initial item ¢;,. The coefficients n and x can be set to
custom values and they allow the ranker to weight differently the contribution of
the occurrence in the review (given by R2) and Linked Data (through the LDSD).

R3(i) =n- R2(i) + k- (1 — LDSD(i, is,)) (8.3)

LDSD measures between discovered entities and the entities through which they
were discovered need to be precomputed at discovery time (see Section 8.1.1) to

115

8 — First Use Case: Semantic Review Recommender

enable SemRevRec to exploit R2, LDSD measures between entities in C'R and the
initial item need to be computed while ranking.

8.2 Evaluation Procedure

We evaluated the performance of SemRevRec with two offline experiments con-
ducted in the movie, book, and music domains. The purpose of the first experiment
is to understand the impact of the ranking function, the discovery, the occurrence
threshold, and the coefficients of R3. Furthermore, we performed the first experi-
ment two times, first relying on DBpedia and then on Wikidata, to assess the effect
of the knowledge base on the quality of the recommended items. The aim of the
second experiment is to compare our proposal with traditional recommendation
techniques that rely on ratings and a recommender system based on Linked Data.

For conducting both experiments, we obtained from IMDb, LibraryThing, and
Amazon the user reviews regarding all the items included in the MovieLens 1M,?
the LibraryThing® and the HetRec 2011 LastFM!? datasets of user ratings.

The items of such rating datasets were mapped with the corresponding enti-
ties available in DBpedia relying on the work of Di Noia et al. [39]. Furthermore,
their equivalent entities in Wikidata were obtained from DBpedia itself, as de-
scribed in Section 8.1.1. For the purpose of retrieving the user reviews, Wikidata
was exploited in order to discover the IMDDb identifiers of the movies available in
the MovieLens 1M dataset. On the contrary, the LibraryThing dataset already
contained the references useful for obtaining the reviews. Regarding the musical
artists present in the HetRec 2011 LastFM dataset, we relied on the search feature
of Amazon for identifying their most reviewed musical work.

Movie Book Music
Users 6,040 7,279 1,892
Items 3,706 37,232 17,632
Ratings 1,000,209 2,056,487 92,834
Reviews 559,858 363,791 669,978
Distinct entities 107,468 77,120 70,762
Total entities 574,435 303,705 296,777

Table 8.2: Statistics about the available datasets and reviews.

8http://grouplens.org/datasets/movielens/1m/
Shttp://www.macle.nl/tud/LT/
Ohttp://ir.ii.uam.es/hetrec2011/datasets/lastfm/readme. txt

116

http://grouplens.org/datasets/movielens/1m/
http://www.macle.nl/tud/LT/
http://ir.ii.uam.es/hetrec2011/datasets/lastfm/readme.txt

8.2 — Evaluation Procedure

o
O | _—
O 1
N .
.
o .
O — 1
0 '
o :
8 - .
= X
o
o —]
0
T fl :
X g =
O —]
T T T
Movie Book Music

Figure 8.2: Distribution of entities extracted from the reviews per domain.

Table 8.2 lists several statistics regarding the exploited rating datasets and the
analyzed reviews in the three domains considered. It is worth noting that the
LastFM dataset contains a limited number of ratings with respect to the other
datasets and, for this reason, it is the most sparse one. The LibraryThing dataset
includes a considerable number of items, even if fewer reviews are available in the
book domain. Regarding the outcome of the semantic annotation, the number of
distinct and total entities identified in user reviews is reported. The ratio between
these two values may be considered a measure of the variety of the mentioned
topics. According to this measure, the reviews about movies are the most varied
ones in terms of entities.

Figure 8.2 displays the boxplots representing the distributions of the number of
annotated entities per each item according to the domain, excluding the outliers for
graphical reasons. Given the interquartile range IQR = Q3 — 1, all data points
not belonging to the interval (Q1—1.5-IQR; Q3+ 1.5-IQR) are considered outliers.
It is clear that movie reviews are fairly different from the other ones. This may be
related to the higher ratio between reviews and items in the movie domain.

We relied on a 5-fold cross-validation in order to perform the evaluations. We
considered ratings positive if their score was greater than 3 on a scale from 1 to 5
for MovieLens, greater than 6 on a scale from 1 to 10 for LibraryThing, and greater
than 0 for LastFM. In fact, the latter dataset contains implicit feedback, while
the others are examples of explicit feedback. Exploiting the lists of the top-10
recommendations for each user, we computed the measures of precision, recall,
nDCG, Entropy Based Novelty (EBN) [13], and diversity [138].

117

8 — First Use Case: Semantic Review Recommender

For the implementation, we rely on the LibRec library.!! It computes measures
according to the all unrated items protocol [121]. More specifically, it creates a
top-k recommendation list for each user by predicting a score for every item not
rated by that particular user, whether that item appears in the user test set or not.
All the non-rated items are considered to be irrelevant for the user. This explains
the low values for the measures (in particular precision and recall) as the quality
of recommendations tend to be underestimated. However, Steck [121] suggests to
rely on this protocol rather than the rated test-items, which includes only rated test
items in the top-k list, as the user satisfaction regarding top-k£ recommendations
depends on the ranking of all items.

8.3 Evaluation Results

We report the results of the first experiment on optimizing the parameters of
our SemRevRec system in Section 8.3.1. The results of comparing our approach
with baselines from related work are documented in Section 8.3.2.

8.3.1 Optimizing the SemRevRec Parameters

In this experiment, we evaluated the impact of the ranking function, the dis-
covery, the occurrence threshold, and the coefficients of R3 on the performance of
our algorithm. We executed SemRevRec in three domains with different ranking
functions with and without the discovery phase. We also varied the configura-
tion parameters n and x of the ranking function R3, in order to identify possible
relationships between the occurrence and the LDSD measure. Furthermore, we
considered how the percentage of the minimum occurrence required for entities to
be included in the candidate recommendation set impacts on the results. The main
configurations tested are listed in Table 8.3.

Table 8.4, Table 8.5, and Table 8.6 summarize the results obtained with the DB-
pedia knowledge base in the movie, book, and music domain. For all the measures
but EBN, higher values represent better results, while the lower is EBN, the higher
is the novelty. The best values and configurations are highlighted in boldface.'?
For deciding if the difference between two measures was statistically significant,
we relied on the Welch’s t-test (or unequal variances t-test), an adaptation of the
Student’s t-test more reliable when the two samples have unequal variances and
unequal sample sizes [114]. We considered p < 0.001 because we applied the Bon-
ferroni correction as we performed pairwise comparisons.

Uhttps://www.librec.net

12More values are highlighted for the same measure if the differences among them are not
statistically significant.

118

https://www.librec.net

8.3 — Evaluation Results

Conf. Ranking Discovered Occurrence 7 K
C1 R1 False 0.05 -

C2 R1 True 0.05 -

C3 R2 False 0.05 -

C4 R2 True 0.05 - -
Ch R3 False 0.05 0.50 0.50
C6 R3 True 0.05 0.50 0.50
Cc7 R3 True 0.05 0.75 0.25
C8 R3 True 0.05 0.25 0.75

Table 8.3: The configuration parameters of SemRevRec.

The obtained results suggest that the discovery of additional entities through
Linked Data is useful for improving the precision of the recommended items. In
fact, the best configurations in all the domains but music (C8 for movies, C2 for
books) rely on it. In the music domain there is not a significant difference in the
measures when relying on the discovery phase. This may be related to the fact that
we considered reviews about musical works in order to recommend musical artists.

The best ranking function depends instead on the domain. For movies, R3
outperformed the other rankers (C8), while, for book and music recommendations,
R1 accounts for the best results (C2), although in the music domain the values
obtained with R1 and R2 were equivalent (C4). This suggests that a simpler ranker
may be more effective on sparse data, and it could be better to rely on information
from reviews than on Linked Data. Additionally, the coefficients n and s of R3
may have a high impact on the results as shown by C6, C7, and C8 in Table 8.4,
even if, in the music domain, the measures do not vary. In particular, C8 improves
significantly the precision and recall measures with respect to other configurations
of R3 in the movie and book domains.

Conf. Precis. Recall nDCG EBN Divers.

C1 0.0604 0.0399 0.0412 1.2804 0.2431
C2 0.0529 0.0327 0.0343 1.2776 0.1629
C3 0.0604 0.0399 0.0412 1.2804 0.2431
C4 0.0276 0.0178 0.0197 0.7820 0.1716
C5 0.0683 0.0424 0.0491 1.0047 0.1795
C6 0.0460 0.0255 0.0320 0.9354 0.1794
Cr 0.0344 0.0191 0.0243 0.8248 0.1464
C8 0.0711 0.0478 0.0524 1.0163 0.2114

Table 8.4: Experimental results obtained with MovieLens and DBpedia.

119

8 — First Use Case: Semantic Review Recommender

Conf. Precis. Recall nDCG EBN Divers.

C1 0.0396 0.0350 0.0341 0.4081 0.7701
C2 0.0506 0.0497 0.0465 0.2771 0.7780
C3 0.0396 0.0350 0.0341 0.4081 0.7701
C4 0.0357 0.0340 0.0353 0.1946 0.8919
C5 0.0462 0.0373 0.0462 0.2809 0.8663
C6 0.0356 0.0331 0.0366 0.2280 0.9039
C7 0.0306 0.0269 0.0317 0.2444 0.8932
C8 0.0421 0.0418 0.0429 0.2077 0.9118

Table 8.5: Experimental results obtained with LibraryThing and DBpedia.

Conf. Precis. Recall nDCG EBN Divers.

C1 0.0495 0.0504 0.0486 0.7894 0.5654
C2 0.0504 0.0515 0.0473 0.6640 0.6021
C3 0.0495 0.0504 0.0486 0.7894 0.5654
C4 0.0504 0.0515 0.0473 0.6640 0.6022
C5 0.0363 0.0371 0.0378 0.2619 0.9238
C6 0.0360 0.0370 0.0378 0.2422 0.9325
C7 0.0361 0.0369 0.0378 0.2425 0.9325
C8 0.0360 0.0368 0.0378 0.2411 0.9329

Table 8.6: Experimental results obtained with LastFM and DBpedia.

Figure 8.3 illustrates the performance in terms of nDCG of the three ranking
functions available in SemRevRec when the number of entities considered for the
recommendation process varies. The occurrence represents the minimum number
of times an entity needs to be annotated in the reviews of a certain item in order to
be included in the candidate recommendation set. It is expressed as a percentage
of the most annotated entity for an item. The plot is based on the results obtained
in the movie domain with the Wikidata knowledge base, as this can be considered
the most representative case. Unsurprisingly, all rankers tend to converge, as the
number of entities available decreases. However, it is important to notice that
the nDCG is monotonically decreasing. This fact happens in the majority of the
domains with both knowledge bases and supports the hypothesis that the higher is
the number of available entities, the better is the quality of the recommendations.

Figure 8.4 compares the results obtained by the best configuration of our algo-
rithm when using DBpedia and Wikidata for each domain. Although both knowl-
edge bases are derived from Wikipedia, the results differ. In particular, Wikidata
outperformed DBpedia in the vast majority of the considered measures. A possible

120

8.3 — Evaluation Results

@ mmmim e ..
2 e —e— R
8 ~e --4-- R2
o . - R3
\
'\
3
Q7 A
o \
.\
.\.
1] \
g - :
5 \
Q © | Ao Ao _ .
s“s \.
s)r s‘\\ \
~ -
S Al -
o S~ ~..
S ~e
~
~
v Ss
& | T RN
g \ \\A
e . TTTmmee- A
o
[se}
o

0.2 0.4 0.6 0.8
Occurrence

Figure 8.3: The nDCG score obtained by varying the number of entities considered
with MovieLens and Wikidata.

reason may be that Wikidata provides higher data quality for the recommendation
task, as it also contains knowledge manually encoded by human editors. At the
instance level, this may be primary due to the interlinking of resources since we
rely on the LDSD measure that exploits direct and indirect links. At the ontology
level, the properties considered in the discovery may also have an high impact. We
should investigate which features of a knowledge base are well suited for a Linked
Data-based recommender system, although they can also depend on the particular
domain considered.

Table 8.7 lists the results obtained with Wikidata. They vary significantly when
the n and k weights of the ranking function R3 are changed. Thus, we decided to
include in this chapter only the results related to the configurations C4, C6, C7, and
(8, although we tested all the ones listed in Table 8.3. The complete evaluation is
available on the Web.'® In general, Wikidata provides better results with respect
to DBpedia and this behavior is consistent in all domains, but differences are more
significant when movies are recommended.

Bhttps://doi.org/10.6084/m9.figshare.5074081

121

https://doi.org/10.6084/m9.figshare.5074081

8 — First Use Case: Semantic Review Recommender

LibraryThing MovieLens

LastFM

Precision Recall nDGC Novelty Diversity
0.0478 0.0524 1.0163 0.2114
0.0561 0.0686 1.4188 0.1513
0.0421 0.0429 0.2077 0.9118
0.0530 0.0536 0.2318
0.0515 0.6640
0.0549 0.6319
T T T T 1 | I . — — — | N . — | I N R E
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 00 04 08 12 00 02 04 06 08

Figure 8.4: A comparison between DBpedia and Wikidata. Light grey represents DBpedia, dark grey Wikidata.

122

8.3 — Evaluation Results

Conf. Domain Precis. Recall nDCG EBN Divers.

C4 Movie 0.0582 0.0368 0.0438 1.3626 0.1223
C6 Movie 0.0757 0.0487 0.0588 1.4284 0.1461
C7 Movie 0.0728 0.0459 0.0552 1.4322 0.1423
C8 Movie 0.0857 0.0561 0.0686 1.4188 0.1513

C4 Book 0.0392 0.0373 0.0379 0.2634 0.8455
C6 Book 0.0452 0.0443 0.0466 0.2621 0.8705
C7 Book 0.0365 0.0334 0.0380 0.2809 0.8600
C8 Book 0.0530 0.0530 0.0536 0.2318 0.8846

C4 Music 0.0536 0.0549 0.0502 0.6319 0.6168
C6 Music 0.0384 0.0395 0.0375 0.3083 0.9314
Ccr Music 0.0390 0.0401 0.0380 0.3062 0.9327
C8 Music 0.0367 0.0377 0.0363 0.3178 0.9322

Table 8.7: Experimental results obtained with Wikidata.

8.3.2 Comparison with Baselines

We compared our technique to the Most Popular, Random Guess, Item KNN,
and Bayesian Personalized Ranking (BPR) [111] algorithms, as implemented in
LibRec, and with SPrank [39], a state-of-the-art Linked Data-based recommender.
We set the neighborhood size for Item KNN to 80, while we used 100 factors for
BPR, as done by Musto et al. [95]. We configured SPrank to exploit LambdaMart
as the ranking method and to follow in the DBpedia graph the same properties
that we selected for our algorithm, as listed in Table 8.1.

Table 8.8, Table 8.9, and Table 8.10 list the results obtained in the movie, book,
and music domain, respectively. The best values are highlighted in boldface.'* For
SemRevRec, we reported both the configuration with the best trade-off among the
various measures and the best scores achieved for each measure in the experiment
described in Section 8.3.1. In all the experimental trails, SemRevRec provided the
best diversity and a better accuracy (both in rating prediction and ranking) than
SPrank, while it improved in novelty with respect to traditional techniques. BPR
accounted for the highest precision, recall, and nDCG. In general, the diversity is
rather low for movies, while for music and books is above 0.6, apart for Item KNN.

MMore values are highlighted for the same measure if the differences among them are not
statistically significant. In the case of EBN and diversity, when Random Guess was the best,
we also highlighted the second best because its precision, recall, and nDCG were close to zero.
This means that the recommendations provided are completely unrelated and their novelty and
diversity are not relevant.

123

8 — First Use Case: Semantic Review Recommender

The differences between SemRevRec and the other approaches are statistically
significant according to the Welch’s t-test with p < 0.001, except for SPrank, BRP,
Most Popular, and Random Guess in the movie domain regarding the measure
of diversity, SPrank in the book domain regarding the measures of precision and
diversity, and Most Popular in the music domain regarding the measure of diversity.

Algorithm Precis. Recall nDCG EBN Divers.

SemRevRec 0.0857 0.0561 0.0686 1.4188 0.1513
— Best Scores 0.0857 0.0561 0.0686 0.7820 0.2431

SPrank 0.0445 0.0254 0.0280 0.8813 0.1612
Item KNN 0.1626 0.1105 0.1302 2.6846 0.0696
BPR 0.2347 0.1737 0.1930 1.8358 0.1769
Popular 0.1325 0.0840 0.0969 2.7439 0.1412
Random 0.0055 0.0028 0.0031 0.3018 0.1679

Table 8.8: Experimental comparison using the MovieLens dataset.

Algorithm Precis. Recall nDCG EBN Divers.

SemRevRec 0.0530 0.0530 0.0536 0.2318 0.8846
— Best Scores 0.0530 0.0530 0.0536 0.1946 0.9118

SPrank 0.0379 0.0346 0.0337 0.1562 0.8037
Item KNN 0.0620 0.0564 0.0662 1.4956 0.2259
BPR 0.0862 0.0817 0.0895 0.6043 0.7177
Popular 0.0423 0.0343 0.0447 1.6034 0.6483
Random 0.0004 0.0002 0.0003 0.0382 0.9879

Table 8.9: Experimental comparison using the LibraryThing dataset.

8.4 Discussion

In general, the results obtained by our algorithm in the music and book domains
are not as good as the ones achieved with movie recommendations. This may be
due to the characteristics of the reviews, as illustrated in Figure 8.2 and previously
discussed. The entities annotated for each item in these two domains are much less
than the entities available in movie reviews. This fact should be further studied.
Furthermore, it would be interesting to investigate the impact of the number of
reviews available and their quality with respect to the recommendation process.
For example, a meaningful album review mentions the author and similar albums

124

8.4 — Discussion

Algorithm Precis. Recall nDCG EBN Divers.

SemRevRec 0.0536 0.0549 0.0502 0.6319 0.6168
— Best Scores 0.0536 0.0549 0.0502 0.2411 0.9329

SPrank 0.0156 0.0158 0.0176 0.1834 0.9077
Item KNN 0.1392 0.1428 0.1720 1.6023 0.4730
BPR 0.1545 0.1583 0.1808 0.9404 0.6547
Popular 0.0686 0.0703 0.0791 2.0360 0.6519
Random 0.0005 0.0005 0.0004 0.0442 0.9946

Table 8.10: Experimental comparison using the LastFM dataset.

or artists the user liked, while a review describing the package is not very useful
in our scenario. In fact, we aim to suggest other artists to listen to, although
packaging may impact on the decision of buying a physical copy of that album.
Finally, the significant difference in the results obtained when exploiting Wikidata
or DBpedia suggests that the impact of knowledge bases, notably the selection of
types and properties exploited, on the performance should be further analyzed.

In this work, we relied on all the reviews available for the items present in the
rating datasets used for the evaluation. However, only reviews about some items,
for example the ones with the average rating higher than a threshold, or only
some reviews for each item, for example only the ones that are rated positively,
could be considered during the semantic annotation phase. Nevertheless, lower
performance on music artists and books was expected because the available ratings
were more sparse than the ones regarding movies. This holds for all the algorithms
and explains the general difference of scores in these domains.

SemRevRec showed the best diversity. In the sparse dataset of books, it achieved
precision, recall, and nDCG comparable to [tem KNN with a much higher diversity,
although the former is a content-based method. Collaborative filtering techniques
are known to suffer less of the overspecilization problem and provide better rating
prediction and ranking than content-based ones. For this reason, although collab-
orative filtering is very popular, we decided to include in the baseline a technique
among many, that is BPR, one of the newest and most promising. Nevertheless,
it showed a lower diversity than our algorithm. Not surprisingly, it also accounted
for the best rating prediction and ranking.

Our approach also provided a higher novelty than traditional techniques and
a better rating prediction and ranking than SPrank. In the movie domain, Sem-
RevRec accounted for the best novelty, while with music and books for the second
best, with results close to SPrank. Additionally, when optimized for this measure,
SemRevRec had similar or higher rating prediction and ranking than SPrank. On
the contrary, when the former is optimized for rating prediction and ranking, it

125

8 — First Use Case: Semantic Review Recommender

could be preferred to the latter to increase the novelty of recommendations, while
also limiting the loss in rating prediction and ranking.

Finally, SemRevRec was evaluated considering the recommendations generated
for all the previous items a user liked, as its generation approach is rather naive and
it takes into account only an initial item. Combining it with a machine learning
technique could significantly improve its performance, but further experiments are
required to prove this.

8.5 Conclusion

In this chapter we proposed a novel recommendation approach based on the
semantic annotation of user reviews and Linked Data. We conducted an offline
study of the recommender system in the movie, book, and music domains, which
showed that our method provides the best diversity. It also improved rating pre-
diction and ranking compared to another algorithm based on Linked Data, while
it increased the novelty of recommendations with respect to traditional techniques.
Furthermore, we tested our approach with different knowledge bases and Wikidata
systematically achieved better results than DBpedia. Although the reviews avail-
able for the book and music domains seem to contain a smaller amount of useful
information, the results of the offline study suggest that our algorithm can provide
more diverse recommendations and reach an interesting compromise between the
accuracy and the novelty of the suggested items.

This work represents a practical application of multicriteria evaluation ap-
proaches, but it also raises further interesting research issues that still need to be
properly addressed. For this reason, we intend to investigate in greater details how
the nature of the user reviews influences the performance of our algorithm. Further-
more, the significant difference in the results obtained when exploiting Wikidata or
DBpedia suggests that too little is known about how knowledge bases (notably their
types and properties) might impact on the performance of Linked Data-based rec-
ommender systems. We also plan to take into account the sentiment of the reviews,
that is whether the overall opinion on the item reviewed is positive or negative. Fi-
nally, we are evaluating applications of our approach on textual resources different
than reviews, for example research papers or their abstracts. In this case sentiment
would not be relevant, while annotated entities could be concepts representing the
main topics addressed in the document.

126

Chapter 9

Second Use Case: Music
Recommender System

In recent years, music streaming services strongly modified the way in which
people access to music content. In particular, the music experience does not foresee
anymore to follow pre-defined collections of tracks edited by music artists or labels:
the end-user is now free to produce her own playlist with potentially unlimited
freedom. As a consequence, the automatic playlist generation and continuation are
now crucial tasks in the recommender system field.

This chapter describes the results obtained by the D2KLab team, lead by the
author of this dissertation, for the task of playlist completion obtained in the con-
text of the RecSys Challenge 2018. This work relies on an ensemble strategy which
involves different types of features, including sequential embeddings, title embed-
dings and lyrics features. Therefore, the proposed approach could be considered a
multicriteria sequence-based recommender system. Following the challenge rules,!
the target dataset is the Million Playlist Dataset (MPD), which contains meta-
data for 1 million playlists gathering more than 2.2 million distinct tracks. The
implementation of our approach is publicly available on GitHub.?

The remainder of this chapter is structured as follows: Section 9.1 presents our
ensemble approach, while Section 9.2 details the design of the Recurrent Neural
Networks. In Section 9.3 we discuss the intuition behind the implementation of
Title2Rec. Section 9.4 explains the optimization conducted on the ensemble, the
RNN, and Title2Rec. We describe the experimental results in Section 9.5. Finally,
in Section 9.6, we provide the conclusions.

https://recsys-challenge.spotify.com/rules
’https://github.com/D2KLab/recsys18_challenge

127

https://recsys-challenge.spotify.com/rules
https://github.com/D2KLab/recsys18_challenge

9 — Second Use Case: Music Recommender System

9.1 Ensemble

Our approach builds upon an ensemble voting strategy of different runs of mul-
tiple Recurrent Neural Networks (RNNs) and one execution of Title2Rec. The
RNNs are configured differently in terms of network inputs and hyper-parameters.
The RNNs are used to predict the missing tracks to be part of a playlist and thus
assume to have seed(s) track(s) of the playlist to be utilized as initial elements of
the network bootstrap (Section 9.2). However, when only the title of the playlist
is available, our approach relies on a fall-back strategy that implements a K-means
clustering of the playlists and a word embedding model of their titles (trained with
fastText), called Title2Rec (Section 9.3). Figure 9.1 illustrates the overall approach.

/Playlist/L> RNN; v
N
€
/ Title /L> Title2Rec A
i
/p|ay|ist/_> RNN, ,
4N
o— Ensemble —»
/ Title /—> Title2Rec A
p
/Playlist/L> RNN, !
N
N
/ Title /L> Title2Rec A

Figure 9.1: The proposed ensemble architecture for playlist completion. The inputs
are a playlist and its title.

The ensemble weighs the rankings of the different runs by giving more impor-
tance (more weights) to the top ranked tracks and less to the low ranked tracks,
similarly to a Borda count election. In detail, given a ranked set of predictions
coming from a configuration k, corresponding to a particular configuration of the
RNN jointly combined with Title2Rec, Ry, = {T1,T5,...,T500}, we assign to each
track a score s; that has its maximum for the first track in the ranking and mini-
mum for the last one, i.e. sx(7;) = 500 — ¢ + 1. Then, we sum the scores over all
the configurations that we want to ensemble, obtaining a final score for each track
s(T;) = > sk(T;) that we use to create the final ranking of the tracks. Take as
an example (with 3 tracks instead of 500 in the predictions) a configuration 1 with
ranking Ry = {7}, Tz, T3} and a configuration 2 with ranking Ry = {7, T3, T>}. We
would get s1(137) = 3, s1(T2) = 2, s1(T3) = 1, 52(Th) = 3, s2(T3) = 2, 55(T3) = 1
and thus s(77) =3+3 =06, s(Tz) =2+ 1 =3, s(T3) = 1 + 2 = 3, obtaining as a

128

9.2 — Recurrent Neural Networks

final ranking R = {7, T3, T3}, or equivalently R = {13,753, T2} as T, and T3 have
the same score.

9.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are one of the most commonly used ty-
pology of neural networks [78]. In recent years, thanks to advancements in their
architecture [64, 30] and in computational power, they have become the standard
to effectively model sequential data. They have been used successfully for tasks
such as sentiment analysis [126], speech recognition [54], image captioning [74],
predicting tourist paths [100] and neural language models [87]. One of the typical
applications of RNNs is language modeling, i.e. the task of learning a probabilistic
model of text in order to generate new text by recursively predicting the next word
in a sentence [124]. We use RNNs, more specifically Long-Short Term Memory
(LSTM) cells [64], in a similar vein to the language modeling problem, i.e. training
the network to predict the next track in a playlist and sampling tracks from the
learned probability model to generate predictions. In practice, rather than using
only the track as input, we use a richer representation that also exploits the artist,
the album, the title and, possibly, lyrics features (Figure 9.2).

In the following sections, we describe in detail the input features as well as the
generation strategy.

T, Ts T3 Ts Target
Softmax Softmax Softmax Softmax Output
Oo 01 0> 03 layer
A A A A [track w2v embeddings
W W W, W
° ° ° ° [] album w2v embeddings
h h h h i
—» LSTM {—»/ LSTM (s LSTM —» LSTM | " [artistwav embeddings
A A A A [title2rec embeddings
X X X X
0 1 2 3 lyrics features
Input
layer

input featuresT input featuresT input featuresT input featuresT
To T T2 Ts

Figure 9.2: Our RNN architecture for playlist completion. The input vectors in-

clude word2vec embeddings for the track, the album, and the artist, a fastText
embedding for the playlist title and numerous features extracted from the lyrics.

129

9 — Second Use Case: Music Recommender System

9.2.1 Input Vectors
Track, Album and Artist Embeddings

In order to leverage the information in the dataset concerning tracks, artists and
albums, we opt for an approach based on word2vec [86] embeddings. More precisely,
we train the word2vec model separately on sequences of tracks, albums and artists
in the order of appearance in the playlist, obtaining three separated word2vec
models encoding co-occurrence patterns of tracks, albums and artists respectively.
Each word2vec model is based on the Skip-gram model with negative sampling
using default hyper-parameters of the Gensim implementation [109]: embedding
vector dimension is d = 100, learning rate a = 0.025 linearly decaying up to
min, = 0.0001, window size ¢ = 5, number of epochs is n = 5.

We concatenate the three representations of the tracks, albums and artists,
obtaining an input vector x,», whose dimensionality is |z,2,| = 300.

Title Embeddings

The title of a playlist can potentially contain interesting information about the
intention and the purpose of its creator. The title can suggest that the tracks in
certain playlist are intended to suit a certain goal (e.g. party, workout), a mood
(sad songs, relaxing), a genre (country, reggae), or a topic (90°s, Christmas). Our
intuition, supported by the experiments described later in this section, is that
playlists with similar titles may contain similar tracks. The title similarity could
rely on pre-trained models and thesauri. However, we opted for computing a model
that is specific for the playlist continuation task, using the sole data of the MPD.

A playlist embedding p,9, is computed as the mean of the embeddings of the
tracks composing the playlist, as generated in the previous section. The playlist
embeddings are then grouped in n clusters, applying the K-means algorithm [58].

We empirically observed that, apart from very general clusters, we also created
clusters containing specialized playlists, obtaining as a consequence groups of titles
that belong to the same semantic area. For example, a cluster contains playlists
like Christmas feels, December or with titles including the emoji of Santa Claus,
while another group encompasses playlists like country and Alabama.

Each cluster ¢ expresses a composed label, which is the concatenation of the
titles of all the playlist p € ¢ separated by a blank space. These labels can be
seen as a corpus of n documents (one for each cluster) that is used as input for
the fastText algorithm [72]. Because this algorithm is able to represent textual
information at the level of n-grams from 3 to 6 character, the Title2Rec model in
output computes the embeddings of any playlist title, being this already seen in
the dataset or totally unknown. Figure 9.3 illustrates the process of the Title2Rec
model generation.

130

9.2 — Recurrent Neural Networks

n clusters Titles n documents t2r

X — —»| K-means > . »| fastText ——»
w2y Puw2v concatenation model

mean of tracks
in each playlist

Figure 9.3: The pipeline for generating the title embedding model used in Title2Rec.
The embeddings are computed through a fastText model trained on a corpus of
concatenated titles of similar playlists.

Lyrics Embeddings

Since playlists contain tracks that share semantic properties (such as the genre)
and acoustic properties (such as the mood), we hypothesize their lyrics share fea-
tures as well. To this end, we extract numerous features from the lyrics for a large
set of tracks used in the MPD dataset (v € R™) that describe different stylistic and
linguistic dimensions of a song text:

o wvocabulary (v € R): as a measure of the vocabulary richness, we compute the
type-token ratio of a song text.

o style (v € R*): to estimate the linguistic style of a song text, we measure
the line lengths (in characters and in tokens) and the frequencies of all major
part-of-speech tags. We further count rhyme occurrences and “echoisms”
(sung words like “laaalala” and “yeeeececaaaaaaah”).

o semantics (v € R%): we build a topic model with 60 topics on the song text
bag of words using Latent Dirichlet Allocation [17]. Each song text is then
represented by its association to these topics.

e orientation (v € R3): this dimension models how the song narrative (entities,
events) is oriented with respect to the world. We encode a temporal dimen-
sion, i.e. whether the song mainly recounts past experiences or present /future
ones, by representing the fraction of past tense verb forms to all verb forms
as a feature.

« emotion (v € R%): we model the subjectivity (subjective vs. objective) as
well as the polarity (positive vs. negative) of the song text. Furthermore, the
emotions conveyed are modelled in a common two-dimensional model that
accounts for degrees of arousal and valence.

o song structure (v € R?): as a proxy of the structure of the lyrics, we use the
line lengths as well as the lengths of paragraphs in the song text.

For experimental purposes, we grouped the previous features in two categories:

131

9 — Second Use Case: Music Recommender System

o deterministic (v € R*): it encompasses all features generated in a determinis-
tic way such as features related to the structure, the vocabulary, and the style
of the lyrics. We excluded from this group the frequencies of part-of-speech
tags, as they depend on the tagger used.

o fuzzy (v € R™®): it includes the features generated in a non-deterministic
fashion such as orientation, emotion, and the frequencies of POS tags.

All features are scaled using a custom feature scaler that combines two elements.
It accounts for outliers by scaling the data non-linearly based on the percentile of
the feature value distribution they belong to. Finally, it scales the data linearly to
the same [—1,1] interval that non-lyrics features live in.

Retrieving lyrics for the MPD dataset is achieved by linking it to the WASABI
corpus [85].> The WASABI corpus is an ongoing resource that contains 2.1M song
texts (of 77k artists), and for each song it provides the following information: the
lyrics extracted from http://lyrics.wikia.com, the synchronized lyrics (when
available) from http://usdb.animux.de, DBpedia abstracts and categories the
song belongs to, genre, label, writer, release date, awards, producers, artist and/or
band members, the stereo audio track from Deezer (when available), the unmixed
audio tracks of the song, its ISRC, BPM, and duration. In total, we linked 416k
tracks in MPD (out of 2.2M unique tracks) to WASABI tracks that contain the
lyrics. While the linked tracks proportion with ~20% seems small, the linked tracks
cover 53% of all 66M track occurrences in MPD because of the typical fat-tailed
distribution, where some songs are extremely common while most titles occur only
rarely in a playlist. Linking the lyrics was done in three levels of accuracy: direct
Spotify URI matching gave us 155k links, exact artist and title matching provided
334k matches, and finally lower casing and deleting bracketed content (in song titles
only) led to 51k matches. As the results overlap we ended up with 416k matched
tracks in total. Some of our lyrics features are language-specific, so we decided to
compute lyrics features exclusively on English song texts. This finally resulted in
367k English song texts we computed lyrical features on. Language detection is
done with the langdetect package? and datasets of MPD and WASABI are merged
along the axes of their Spotify URIs, artist names, song title names, respectively.

9.2.2 Learning Model

As mentioned earlier, we address the problem of playlist continuation as a lan-
guage modeling problem. More specifically, we train the RNN to predict the next
track in a playlist, defining the targets Y to be the inputs X shifted in time, i.e.

3https://wasabi.i3s.unice.fr

“https://github.com/Mimino666/langdetect

132

http://lyrics.wikia.com
http://usdb.animux.de
https://wasabi.i3s.unice.fr
https://github.com/Mimino666/langdetect

9.3 — Title2Rec

X = {(T%, 194, ... ,ijj,l)} and Y = {(T71,T7,... ,T]{}j)} where T represents a
track and its metadata (artist, album, playlist title, lyrics features), T represents a
track id in a playlist, j = 1, ..., M is a playlist index and N; is the length of the j-th
playlist. In this way, we train the model to learn a probability distribution of the
next track P(7T) N\T Vo1, Tn_o,. .. ,TO) given the previous ones, which is parametrized
by the network outputs that are converted into probabilities by the final softmax
layer (Figure 9.2). The training algorithm attempts to minimize the cross-entropy
loss function L, that measures the disagreement between the learned probability
model and the observed probability model of the targets Y. The perplexity metric
that is reported in the experiments is similar to the one detailed in Section 4.2.2
and it corresponds to ppl = 2F. In practice, rather than using probabilities, we use
the ‘logits’” p; where ¢ is a track index, un-normalized scores that are proportional
to the probabilities. Different optimization algorithms to minimize the loss are
empirically compared to select the most appropriate one.

9.2.3 Generating Predictions

We experiment three different strategies to generate track predictions from the
RNN. Given an input seed and the hidden state, the trained model outputs the
logits p;, i.e. un-normalized scores that are proportional to the probability that
a given track appears after the sequence of seeds s. In details, we considered the
following approaches, as depicted in Figure 9.4.

do_sample It samples the track with the highest logit p;, where 1= arg mazx(p;),
given the set of seeds s. It adds the sampled track ¢ to the seeds s, then it
repeats the previous operations until 500 tracks are sampled.

do_rank It ranks the tracks according to their logit value p;, given all the seeds s,
then it selects the top-500 tracks with the highest logit.

do_summed_rank It computes the logits p; for every seed. It averages all the logits
in the sequence obtaining p; and then it ranks the tracks according to the
values of p;.

9.3 Title2Rec

Title2Rec recommends tracks taking as input the playlist title, following the
procedure illustrated in Figure 9.5. The title is translated into a vector pys,., named
title embedding, computed by applying the strategy described in Section 9.2.1 to
the playlists defined in the MPD dataset.

Given a new seed playlist, we compute its title embedding in the same way.
Then, we select a subset P including the top-300 most similar playlists to the given

133

9 — Second Use Case: Music Recommender System

Output; Output; Output,
RNN » RNN » RNN » RNN » RNN

{ Input; / / Input; / / Input, /

Logits
RNN » RNN » RNN L Ranker —W
A A A
{ Input; / / Input; / / Input, /
(b) do_rank
Logits; Logits, Logits,,

\

Py
pd
pd
\

Py
Z
pd

Ranker —/ Output /

RNN
A
{ Input; / / Input; / / Input, /

(c) do_summed_rank
Figure 9.4: Our three strategies for generating track predictions.
one by comparing its embeddings with p;s, using the cosine similarity. Finally, the
required number of tracks are selected among the ones available in P. The tracks

have been ordered to ensure that the most popular ones in P are placed at the top
of the list.

9.4 Optimization

In the following, we describe the empirical evaluations conducted with the pur-
pose of optimizing the configuration of the RNN, Title2Rec, and the ensemble.

134

9.4 — Optimization

known
playlists' titles

'

fastText |, fitlevectors
for each playlist

f '

t2 del cosine P
rmode similarity — 300 most similar
playlists

v t

fastText | » ftitlevector
of the new playlist

new playlist
title

Figure 9.5: The Title2Rec algorithm compares the fastText representation of the
title of a seed playlist to the known ones using the cosine similarity:.

9.4.1 RNN Optimization

For optimizing the hyper-parameters of the RNN, we executed a grid search
on a down-sampled version of the MPD dataset containing 100,000 playlists. We
considered the following parameters:

e optimizer: opt = {Gradient, RMSProp, ADAM?}
e learning rate: Ir = {1, 0.5, 0.1, 0.01}

« number of steps: ns = {10, 20}

o hidden layer size: hl = {50, 100}

For each configuration (opt, [r, ns, hl), we trained the RNN model and we mea-
sured its perplexity on a validation set consisting of 1,000 playlists. Furthermore,
we measured its R-Precision, nDCG, and Click metrics as defined in the challenge
rules on a separate test set of the same size. The validation and test sets used
for optimization purposes contain playlists with the first 5 tracks available as the
initial seed, while the others are hidden.

135

9 — Second Use Case: Music Recommender System

We considered a total of 48 possible configurations: the values of perplexity of
the most significant ones are reported in Table 9.1. Perplexity measures the ‘sur-
prise’ of the probabilistic model in observing the data and it is defined as s* where
L is the cross-entropy loss function. Thus, lower values of perplexity corresponds
to better models. We observe that, when the hidden size is fixed, the best perform-
ing optimizer is ADAM. Furthermore, increasing the number of steps reduces the
perplexity of the RNN, but it does not have a significant effect on the R-Prec.

Finally, because of time constrains, we selected the configuration (ADAM, 1,
10, 50) as the optimal one, despite its higher perplexity: in fact, we empirically
observed that a smaller hidden size results in a shorter training duration.

Optimizer L.R. Steps Hidden ppl Time R-Prec.
ADAM 1 20 100 1357.04 3:29 0.1739
ADAM 1 10 100 1482.86 3:39 0.1742
Gradient 1 10 100 1693.96 3:32 0.1566
ADAM 1 10 50 1716.92 2:30 0.1745
Gradient 1 10 50 2005.54 2:25 0.1543

Table 9.1: The results of the most significant RNN models. ‘L.R. stands for learning
rate, ‘Steps’ for the number of time steps, ‘Hidden’ for the size of the hidden layer,
‘ppl” stands for perplexity, ‘Time’ is the training time in hours:minutes.

We evaluated in a controlled setting all the strategies for generating the rec-
ommended tracks described in Section 9.2.3. We observed that, independently
from other hyper-parameters, the technique called do_summed_rank systemati-
cally achieved better results than the other ones in all the metrics considered. For
this reason, we selected this algorithm as our track generation strategy.

Finally, we analyzed the effects on the evaluation metrics of the different cat-
egories of features extracted from the lyrics as defined in Section 9.2.1, and we
selected the groups emotion and fuzzy as the most performing ones.

9.4.2 Title2Rec Optimization

In order to improve the performances of Title2Rec, we worked on different parts
of the pipeline. Each optimization has been tested by running the algorithm on a
validation set of 1,000 playlists. Then, only the edits that improved the scores with
respect to the non-optimized version have been kept in the final version.

We applied a pre-processing on each single title that performed a series of tasks:

e lowercasing;

o detecting and separating emoji from words;

136

9.4 — Optimization

» separating the skin code from the emoji;

detecting and separating emoticons from words;

o transforming space-separated single letters into words (e.g. “w o rk o u t”
becomes “workout”;

e remove ‘#’ from hashtags.
Other tasks that have been tested with no improvements are:

o detecting and separating punctuation from words;
e removing stop words;

« removing all spaces.

The latter point has been partially exploited because we noticed an improvement
in the results by including in the corpus both versions of the title, that is keeping
the spaces (as in “green day”) and removing them (“greenday”).

Another optimization step included the usage of different parameters for exe-
cuting the pipeline. The clustering phase have been tested with different values of
k (the number of clusters in output for the K-means algorithm). The value of 500
gives better results than smaller and bigger ones, which produce clusters that are
respectively less specialized and less populated. The fastText training has been run
with 5 epochs, a learning rate of 0.1 and different loss functions (ns, hs, softmaz),
window sizes (3, 5, 10). The values in italics represent the best results.

The ordering by popularity described in Section 9.3 has been modified so that
the impact of each playlist is proportional to the similarity of its title to the seed.
In other words, a track has a higher chance to be recommended if it is included in
a large number of playlists in P and if most of them are among the top ones more
similar to the seed.

Finally, some improvements come from the inclusion of the playlist descriptions
in the training. On the whole set of descriptions in the MPD dataset, we compute
a TF-IDF model. Thanks to this, we are able to extract a set of keywords for each
description by selecting the three words with the highest score. These keywords
are added to the documents used to build the clusters. The contribution of the
description is null when the playlist does not include any.

9.4.3 Ensemble Optimization

We studied the performance of the ensemble by applying a combination with-
out repetition sampling of different runs for each of the tracks, namely main and
creative, and for different groups of runs. In detail, given n the total number of

137

9 — Second Use Case: Music Recommender System

runs, and k the grouping factor, we devised a number of ﬁlk,), where we varied
k=1,...,n—1. We then selected the best performing configuration for both the
main and the creative tracks by optimizing the three metrics used for the final

ranking. These configurations are reported in Section 9.5.

9.5 Experimental Results

In order to evaluate the effectiveness of our approach, we have divided the official
MPD dataset in a training, a validation, and a test set. The validation and the
test set contain 10,000 playlists each, that is the 1% of the original dataset. These
playlists have been selected according to the characteristics of the MPD provided
by Spotify.> Thus, the validation and test playlists are divided into 10 different
categories: each of them defines a peculiar way of hiding some information during
the testing phase, i.e. the number of seed tracks or their order.

Furthermore, we have implemented an evaluation tool that computes on our
split the same metrics that are described in the challenge rules. Following this
approach, it is possible to inspect the evaluation results for each category of the
test set separately. As expected, the category containing playlists with only their
title and no tracks proved to be the most difficult one to address.

Table 9.2 contains the results obtained on our test set by Title2Rec, Word2Rec,
and the RNNs trained with different optimizers and input vectors. Word2Rec
corresponds to the word2vec model trained on sequences of tracks as described
in Section 9.2.1 and used to generate predictions directly by looking up the 500
most similar tracks to the seeds. All the neural models, but the first two, were
trained with the optimal configuration described in Section 9.4.1. These models
are computationally demanding: the training phase lasted more than three days
per epoch. The numbers 300 and 400 represent the dimensionality of the input
vectors: the 300 models were trained without the title embeddings, while the 400
ones also exploit the fastText model described in Section 9.2.1. All the RNNs that
include the features extracted from the lyrics were trained with input vectors of
dimensionality higher than 400.

Table 9.3 lists the results computed on our test set for the best performing
configurations in the two tracks of the challenge. The models combined in the
ensemble are the following:

Main track RNN 300 (Gradient; Epoch 1 and 2), RNN 300 (ADAM; Epoch 1
and 2), and RNN 400 (Epoch 1 and 2).

Creative track RNN 300 (Gradient; Epoch 1 and 2), RNN 300 (ADAM; Epoch 1

Shttps://recsys-challenge.spotify.com/challenge_readme

138

https://recsys-challenge.spotify.com/challenge_readme

9.6 — Conclusion

RNN Emotion ADAM
RNN Emotion ADAM
RNN Fuzzy ADAM
RNN Fuzzy ADAM

0.1556 0.1702 4.0101
0.1500 0.1680 4.3594
0.1555 0.1698 3.9950
0.1503 0.1683 4.3456

Approach Optimizer Epoch R-Prec. nDCG Click
Title2Rec - - 0.0837 0.1260 12.007
Word2Rec - - 0.0963 0.1444 8.4322
RNN 300 Gradient 1 0.1417 0.1621 4.1902
RNN 300 Gradient 2 0.1500 0.1656 3.9433
RNN 300 ADAM 1 0.1557 0.1702 3.9213
RNN 300 ADAM 2 0.1457 0.1672 4.4224
RNN 400 ADAM 1 0.1572 0.1708 3.9340
RNN 400 ADAM 2 0.1520 0.1694 4.1307

1

2

1

2

Table 9.2: Experimental results of different approaches on our test set.

only), RNN 400 (Epoch 1 and 2), RNN Emotion (Epoch 1 and 2), and RNN
Fuzzy (Epoch 1 and 2).

Track R-Precision nDCG Click

Main 0.1611 0.1710 3.6349
Creative 0.1634 0.1717 3.5964

Table 9.3: Experimental results of the ensemble on our test set.

9.6 Conclusion

Completing automatically playlists with tracks contained in the MPD dataset
is a particularly difficult task due to the dataset dimension and the variety of
playlists generated by numerous users having different likes and behaviors bringing
great diversity. In this chapter, we presented the D2KLab recommender system that
implements an ensemble approach of multiple learning models differently optimized
combined with a Borda count strategy. Each model runs an RNN that exploits a
wide range of playlist features such as artist, album, track, lyrics (used for the
creative track), title and a so-called Title2Rec that takes as input the title and that
is used, as fall-back strategy, when playlists do not contain any track. The approach
showed to be robust in such a complex setting demonstrating the effectiveness of
learning models for automatic playlist completion.

139

9 — Second Use Case: Music Recommender System

The experimental analysis brought to further attention three points, namely
the generation strategy, complementarity of the learning models, and computing
time. The generation strategy has a great impact on the results and it pointed out
that a recurrent decoding stage is less performing than using a ranking strategy
that weighs the output of each RNN of the encoding stage. The ensemble strategy
aggregates different outputs of the learning model runs by pivoting the generated
ranking. This has granted a sensible increment in performance, so we plan to study
further the complementarity of the runs and to build a learning model to automat-
ically select the best candidates. Finally, the computing time has been a crucial
experimental setup element due to the generation of the RNN learning model; we
addressed it by creating different sizes of the MPD dataset randomly selected and
by optimizing the learning models on the hardware at disposal, becoming another
factor of differentiation for shaping a performing submission.

140

Chapter 10

Conclusion and Future Work

This dissertation explored different challenges related to the offline evaluation of
sequence-based and top-k£ recommender systems. We proposed to adopt a multicri-
teria approach to mitigate the popularity bias introduced by many rating datasets
and a robust evaluation protocol to ensure the reproducibility of the results. In par-
ticular, we considered three main research lines: identifying the most appropriate
metrics to evaluate a sequence-based recommender system, creating a protocol suit-
able for comparing ranked lists of suggestions, and analyzing the structure of rating
datasets to understand their impact on the results of an offline trail.

We proposed two evaluation protocols by formalizing their theoretical back-
grounds and by also developing their software implementations. While relying on
them, we studied a possible technique to visualize the internal structure of any
rating dataset and we designed a method for generating synthetic collections of
user preferences that could be successfully exploited to conduct offline evaluations.
Finally, we applied our knowledge of multicriteria approaches to different use cases,
by designing novel recommendation algorithms and assessing their performance.

In detail, the main contributions of this dissertation are the following:

« A systematic literature review about multicriteria recommender systems, that
was reported in Chapter 3.

e Sequeval, an offline evaluation protocol for sequence-based recommenders,
introduced in Chapter 4.

o A distributed approach to assess the quality of top-k lists of suggestions,
called RecLab and discussed in Chapter 5.

e RS-viz, a method for visualizing with a 3D scatter plot the ratings available
in a dataset, that was presented in Chapter 6.

o A clustering technique capable of generating synthetic datasets in a realistic
way starting from already existing ones, as shown in Chapter 7.

141

10 — Conclusion and Future Work

e The evaluation of a recommender based on the entities mentioned in the
reviews of the suggested items, described in Chapter 8.

o The creation of an RNN-based algorithm to suggest sequences of songs to be
added to a playlist, that was outlined in Chapter 9.

The systematic literature review explored the topic of multicriteria recom-
menders, as defined by the structure of their users’ preferences. We investigated
the approaches currently available in literature and how they were evaluated, con-
sidering the protocols, the metrics, and the datasets. We discovered that it is not
possible to directly compare different algorithms due to the variability in the eval-
uation methods adopted by the reviewed studies. Furthermore, the lack of publicly
available rating datasets emerged as another critical point.

Sequeval is an experimental protocol for performing the offline evaluation of
sequence-based recommender systems. It exploits a multicriteria approach to ana-
lyze the suggested sequences from different angles, considering eight metrics. There-
fore, the experimenter can select the most promising techniques according to the
dimensions she considers the most relevant in a domain of interest. We conducted
different experimental campaigns by relying on this framework and we observed
that the results are adequate to identify the straights and weaknesses of the rec-
ommendation algorithms under investigation.

A similar multifaceted set of metrics was exploited for creating RecLab, a
method to evaluate top-k recommender systems in a distributed fashion. By rely-
ing on widespread Web protocols, it is possible to assess in a reliable way different
algorithms without exposing their implementation details. Please note that both
frameworks are not bound to any particular rating dataset or splitting strategy.
We empirically observed the effect of the configuration parameters of RecLab on
the experimental results considering different domains and recommenders.

To better interpret the results of an evaluation campaign, we proposed and pro-
totyped RS-viz, an interactive visualization method for understanding the structure
of the preferences available in a dataset. From the resulting plots, it is possible to
intuitively observe unexpected statistical distributions, and, thus, being aware of
the probable presence of an associated bias in the suggested items. We validated
this hypothesis considering different versions of the LastFM dataset and the nu-
merical results obtained from them with multiple recommenders.

Because of the scarcity of publicly available collections of ratings highlighted
by our systematic literature review, we designed a method to generate synthetic
datasets that exhibit the same properties of existing ones. By relying on RecLab, we
verified that this approach is useful to anonymize potentially private ratings while
preserving the possibility of using them to successfully train a recommender system.
In particular, we observed that the experimental results obtained when relying on
the generated datasets are consistent with the ones of the reference datasets.

142

10.1 — Limitations

We applied a multicriteria evaluation protocol to a recommender system based
on the semantic annotation of user reviews, named SemRevRec. The motivating
idea of this content-based approach is that users could explicitly mention items that
are unexpected but also related with the initial one. Our offline study conducted in
multiple domains showed that this method provides the best diversity among the
considered approaches, while also increasing the precision of the suggestions with
respect to another method based on Linked Data.

Finally, in the context of the RecSys Challenge 2018, we designed a novel
sequence-based recommender system based on Recurrent Neural Networks and text
embeddings. The goal of this approach is to suggest how to complete a music
playlist starting from a few seed songs and the title of the playlist. The proposed
method was evaluated in a multicriteria fashion considering three metrics that were
defined by the organizers of the challenge. Despite the high competitiveness of this
field, our approach has been ranked in the first third of the leaderboard.

The complete list of the publications describing the studies discussed in this
dissertation is available in Appendix B.

10.1 Limitations

In the systematic literature review reported in Chapter 3, we considered as mul-
ticriteria only the recommender systems that are capable of exploiting a dataset
containing multiple ratings for each user—item pair, thus representing more com-
plex user preferences. This strict choice was necessary to clearly define the scope
of our investigation. Nevertheless, in the remainder of this dissertation we focused
our attention on the experimental approaches for assessing existing algorithms and
we mainly considered “multicriteria” as an evaluation technique based on multiple
measures. Furthermore, the recommender discussed in Chapter 9 could be consid-
ered a multicriteria one with respect to the content-based attributes of the items.

Both Sequeval and RecLab rely on several recommendation performance objec-
tives. However, the availability of many metrics may produce results which are
difficult to interpret, especially if we are uncertain of what are the most relevant
dimensions in our recommendation scenario. For this reason, it would be useful
to define a way for summarizing the outcome of an evaluation campaign. More
in general, this is a common limitation of offline experiments, and it needs to be
addressed by analyzing the most promising algorithms in a subsequent online trail.

Our visualization toolkit RS-viz was empirically validated by comparing the
plots obtained from alternative versions of a rating dataset with the correspond-
ing results of two offline trails involving multiple algorithms. However, we should
confirm these results by conducting a user study to investigate if researchers and
practitioners are able to correctly use it to explain the performance of different
recommender systems in a particular domain.

143

10 — Conclusion and Future Work

The approach proposed to generate synthetic datasets starting from an existing
one is based on the K-means clustering algorithm. Even if we studied the impact
of the value of K on the recommendation results, additional work is required to
better understand what is the optimal value for a certain domain. Furthermore,
we should also investigate what is the effect of artificially increasing the number of
users during the generation phase.

10.2 Future work

The offline comparison of different recommender systems is a challenging task
that can be successfully completed only by understating the structure of the rating
dataset, the impact of the evaluation protocol, and the meaning of the exploited
metrics. Even if in an industrial setting the ultimate method for assessing a recom-
mendation algorithm is studying its impact on company profits, there is anyway the
need of conducting offline experiments for comparing a large number of alternatives
or selecting the most promising configuration parameters.

This dissertation discussed an evaluation framework for sequence-based recom-
mender systems, a distributed approach for analyzing top-k ranked lists of sug-
gestions, a method for visualizing datasets of user preferences, and a generative
approach for creating synthetic ratings. Nevertheless, the outcomes of these stud-
ies pose further research challenges that should be address by future works.

Regarding both evaluation toolkits, we plan to study in more depth what are
the relationships among the different metrics included in the frameworks, with the
purpose of integrating them in a final value that expresses the overall quality of
the recommender. Such a global score should be related to the recommendation
scenario: for example, diversity may be important when recommending POls to a
tourist, but less useful in the music domain.

Furthermore, it would be desirable to be able to create evaluation frameworks
that are adopted by a community of researchers when testing their algorithms,
harmonizing the evaluation protocols and the interpretation of the performance of
the analyzed recommender systems. For this reason, it is necessary to identify and
to include in them some additional meaningful datasets, related to different domains
that could be exploited during the evaluation phase, as well as other baselines and
novel recommendation methods.

Finally, we would like to expand our evaluation frameworks to also support the
online experimentation that should be performed after the offline analysis. The
final goal of this dissertation is, in fact, to enable researchers to spend more time in
realizing the recommendation algorithm as they can rely on an evaluation protocol
that has already been designed and validated.

With respect to RS-viz, we would like to quantitatively characterize rating
datasets according to different dimensions and place them in various categories,

144

10.2 — Future work

for example by analyzing the diversity of user preferences or the tendency to rate
popular items only. This empirical categorization would enable the users of our
tool to better understand the ratings available and to select the most appropriate
recommendation approach according to such proprieties.

Furthermore, we would like to improve RS-viz by developing other visualization
methods to enable more comprehensive analysis. Finally, additional studies are
needed to better understand how the proposed approach could be extended for also
visualizing non-conventional datasets, for example the ones enhanced with context-
aware information like spatial and temporal data.

Finally, there is the need of exploring additional methods for creating synthetic
datasets. We believe that Generative Adversarial Networks (GANs) could be suc-
cessfully exploited for this task, as they are already used to generate fake images
starting from real ones [53]. Such approaches would require the definition of a way
for representing the preferences of a user similarly to an image.

145

146

SOOIAIOG
29 suorjeoriddy paseq-qepn

sunyew
TOTSTOOP AINLIY)e-TINT

pue uoIpeI3oju] UOIYeULIOJU] U0 poseq Sw)SAs q ‘1qunQO
Are1qry ey JNDV UO 90ULISJUO)) [RUOIJRUIDNU] €0 IOPUSWIUIOIDI BLIOILID-TINIA g ‘ueg o ‘pnotpH vd
SUI9SAS
92I0WIWIO)) JTUOIIAH IOPUOTIIOIDI BLI}LID-I}[NTL A ‘ITPIpen)
Areiqry NS WOV U0 20URISJUO)) NOV WIET Z10% 10J syuawwsordul AoeImody iz ‘efeyerey] (] ‘yoruue[ed
SUOI}RPUSUIIOIDT
ASoroutoaf, pozireuostod 10y yoroxdde
JUeSY JUSI[[eIu] SULISY[Y SAT)RIOQR[[0D
pue 90udSI[eU] oA\ UO POOURUD-O1IUBTIDS
Areiqry P8I WOV S9OULILIUO)) [RUOIIRWINU] TT(T RLIDLID-T)[NW PLIGAY rn D “moquueyg od
soousIojoId RLIDILIO Iosn
SW9YSAG IOPUOUITIOINY] U0 Poseq UOI}epUomIIOddT T ‘nY
Areiqry [enSIq WOV~ U0 90URI0JU0) INDV UWLA T10T 9OIAISS RLIDLID-TYNIN N ‘astlpuetpy T ‘nrT 1d
90IN0g uorjyestqng Iedx oINT, oy 9po)

MIIAIY OINIRIDIIT OI)RUWI)ISAQ

VvV Xipuaddy

147

A — Systematic Literature Review

JIOMOFRUR]\ UOT}RULIOJU]
[BIISI(] UO 9OUDIDJUO))

S9I0)S SUI[-UO UT
SUOI)RPUSUIUIONDT }I0S-T)[NT
I0J W9)SAS IOPUSUITIOIDT

RAAAR LS UNEN

oro1dX HHAT [eUoTyewIaU] PIYT, 800¢ pPoseq-HHHILANOYUd N TR IRyD Y SjeudIN ¢ld
UOT)RZI[RUOSIOJ
pue uoryerdepy ‘SurEpPOIN SUOI}RPUSTUIODT "H ‘rewny N “RIUSIN
Arexqr 1181 NDV I9S() UO 90UdIOJUO)) 197 RI0C [eooxdIoar Ul ssouIreq T, ‘ear(A ‘Suayy 11d
SISPOOUD OJNR PAYIRIS
SUISTL SUOI}RPUITUIOIDT 'S
SUIDISAG IOPUOUITIOIY] RLIS)LID-T)[NUI M ‘nqeg ¥ g ‘erjed S
Areiqry 1RSI WOV U0 90UIOJuo)) INOV UIZT 8107 ur Surures] souaIojard Iosn Y ‘epedeaig (T ‘Afrederre], 01d
S9ORJINUT I9S[) yorordde UoIepPULaIuIodal
JUSSI[[JU] UO dOUSIJUO)) RLIO)LID-T) N
Arexqry redsiq WOV [RUOnyRWINU] pugg LT0G [oA0U Y iSUTRYD BLIBILIT ‘A ‘Suyy, 6d
S9OURING surures] souatejeId
®)R(] UO S8OULISJUO)) USNOIY) SUOI)RPUSUIUIOIDT Y ‘opuruIoy Y]
Arexqry [e8Id WOV AT WOV qHmog LT0g BLOND-BMN - eed g Y epedeorg g4
UOT)OD[0S dSIN0D FUIPINSG
10} $98INn0d mau uo sdr)
Areiquy ePSI WOV QOUAIOJUO)) JSeH-YINOS LT0g Pozifeuosiod SUIPUSIUIOI] ‘A ‘redq 2d
SMOTADI
,SI9SNL JO SISATRUR JUSWIIIUOS
poseq-joodse urjrodxe
SUWID)ISAG IOPULTIUIONY] UO WOYSAS IOPUIWUWOIDL ‘d ‘sdorT '5) ‘oreIouwog
Are1qr ey WOV Q0URIJUO)) NDV YIuaad[q LT0% RUIOJLID-I)[NW 7 N ‘STWUWOL) 8D) ‘OISnIA 9d
SOINSBOW AJLIR[IUIIS
QAI1D9JJ0 SUIZI[IIN WA)SAS
surnduro)) pue Surures| J9PULUWIUIONdT RLISILIO 19N
QUITOR]\ UO 90UIJUO)) 09 yoeoxdde uoryezrurdo d ‘IpoAIM(]
Arexqr 1ey8yq WOV reuonjeuwroiuy 416 A10% urrems aprred y CA ‘queyl cd ‘Areypnot) ¢d
901IN0gG uonedIqng Iedx OINT, Ioymy opop

148

A — Systematic Literature Review

SW9ISAG UOT)RULIOJU]
puR OIIOI)09[P0URN
uo wmnrsodwAg

senbruioe) UoIonpal
A[euoIsuaWIp pue SULI)Y
9ATIRIO(R[[0D RLIO)LIO-TY[NUL
£Aq UOI)ePULWIIIODDT

' ‘Aelypedoyniy

aroldy HHAI [rUOIRUWINNU] HHH] GI0Z AMSIoArun ® o} yoeoidde uy g ‘esearn) 3y " ‘epyog 61d
UOISSOISII
UOIYRISOIUT 29 OSTIOY 10990A j10ddns)M WIDISAS
UOI}RULIOJU] UO 90USISJUO)) IOPUSUIUIONDT RLISYLIDTI[TIL ‘G ‘(oredueyy 'y ‘nseye],
or01dY HHAHT [euonyewIU] Iyl HIHI €T0¢ ®© I0J [9pOWI UeIsofee] -d ‘unyIpednyyjeureg 8Td
suorye[o.l
SUIOISAG puR SUTITRISOL] douaIojoId oaryejIrenb
uo wnisodwAg ysnoay) uonorpaid swe)sAs "V LRIYNON
aro[dX HHAI [euornyeuIoju] YarT €108 JIOPUOWIWO0991 SUIDURYUL] Sy ‘mrelpeq S ‘eutinog L1d
SULIGPUISUS] 9FPO[MOUY] PUR R)RP POYUI[UO POsR(W)SAS
Iopnduwo)) UO 9OUSINJU0) UOI}RPUIUITIOIIT UOIYRITO ‘N
o10[dX HHAT [BUOT}RWIOI] PUZ GT0T PHIqAY LW Y Tueyey] o ‘WeEsuLeyz 914
SUOT)RISUSY) SOOIAIOS-0 pazIfeuostod
MoN :ASo[ouyoay, SSOUISIL(-0)-)UOWULIDAOS
UOI}RULIOU] UO 9)USISJUO)) 10] Wo)SAS UOTYRPUSTITIOIDT
aro[dy} HHAT [RUOIYRUIIU] [JUSAS (OT0T PLIQAY JO SIomowel] Y g) ‘“anoqureys C1d
surnduo))
OIURWOG UO 90ULIDJUO)) UOI}RPUIIIIOIOT 9OTAIOS T ‘ny SN ‘adtlpuryen
aro[dy} HHTL [euoryewIoU] Yrmoy gHI 010 I0J AJLIR[IuuIs)1Xo3uod Surs() g ‘Onoory T ‘i ¥1d
UOI}RPUSWITIOIAL 19339(
SYIOMIDN [RID0G 10} SULIDY SAIJRIOQR[[0D
Jo spoadsy Teuoryeinduo)) RLIDILIOI)[NU PUR UOISSOIZOT ‘d ‘X
ar0[dyY HHH] UO 90ULIdJUO)) [RUOI)RWINU] (T0G Teoul] ofdriymumr Surjersojuy SO A ‘oryl G- ‘Suemy e1d
90IN0g uonesrqng Iesx OINT, Ioymy opop

149

A — Systematic Literature Review

diy)-uo-swe)sAg
9109-AURIA[/9100T) NN

SUIO)SAS TOPUIUITIOIDT
RLIOJLID-T) UL UT SIOST

poppeoquy uo wnisodwAg JO soouaIejeId Surepouwt ‘N ‘uesseq
o10[dX THHI [RUORIION] IgT HHAT 810¢ 10f yoroxdde poseq-Azzny v =g "N MPO “IN ‘BpeweH Gzd
yredg eyoedy
Tomduwo)-A£3o10uyoq], SUISN I9)SN[O U0 SULIDI[Y
pU® 90USIDG UO 9OUSISJUO)) 9ATIRIO(R[[0D BLIO)LID-T}[NUL
aro[dy} HHTL [euonjewIoiu] pug 910% jo uonjejuoweldw] ‘ONIRUIAN 'Y ‘OjurAR(TA\ ved
SULIOsUISUY 10] SUI9)SAS
SUTUIRST PUR ‘JUSUISSISSY JI9PULUIUIONdT RLISYLID-T) NI
‘SUIYDRI], UO 9OULIJUO)) SUISTL UOI}RPUIIIUIOI]
aro1dx HHAT [euonyewroiu] qHH] 9T0¢ S199[qo Surures| Suoueyuy ‘N ‘epeweH TN ‘UeSSeH ezd
Surreaurdusy
UOT)ROTUNUIUIO)) 1SLINOY
pue Surnduwo)) ur sedoueApY IOJ WID)ISAS IOPUDUIUIOI I, ‘eany SN
or0[dY HHH] UO 90USISJUO)) [RUOIIRUINU] 9T(F oA110R0Id DIeMR-1X0JU00 7 G ‘RIIMBN 7] ‘Olo(-Ao[ysy ced
Surreaurduny
9IBM1JOG PUR 9OUDIOG UOT)RPUIUIUIONDT
Ionduwo)) uo 90ULILfuo)) RLISJLID-T)[NUWL 10} onbruyosy ‘G ‘[oxeoue]y
aro1dx qHAT JUIO[TRUOIIRUINIU] TIET 9T0T uore3oIsse [PAOU I, ‘oossurIeMRSY 1¢d
surnduo))
pue 90UISI[[OIU] QAISBAIDJ
‘Sunndwo)) eanodeg pue
orwouojny ‘orqepusda(]
{SUOTI)RITUNUIWIO))
pue Sunnduio))
snoymbiq) A3ojourpaq,
UOIJeULIOJU] PUR W)SAS UOT)ePUSUIIOIDT
Iomnduwo)) U0 9OUSINJUO)) [99107 Poseq-moTAl "\ ‘uo8epy
or01dX AT [euonjewu] HHHI ST0¢ BLIDILDL-T)IU Crofyerg C X “euLreyg 0cd
90IN0g uonedIqng Iedx OINT, Ioymy opop

150

A — Systematic Literature Review

se130[0uYDaT,

seouaIefaId Jo A)ISUa)UL
Juryerodioour sura)sAs
Sur)RI RLIO)LID-T)NT

PoTeds [eAIajul I0] anbruyoey

(I ‘stpodso(q

98pa[mouy Jo goAA ST UOISIOa(] JUASI[PIU] STOT UOI}ePUIWIWOIDT MU - ‘noroysody Y TOMIN ged
SUOI}RPUSUITIOIDT
QOUaSI[[PIU] RLILID-T) NI poseq-dnorsd ‘d ‘tpeg
98pa[mou Jo qaM IST feynay perddy §10z 10§ romeureyy pesodoid y “H RPN S A MXIA Ted
WR)SAS
IOPUOWIIOIDT 9D ISUITIOD-O
OI89S9Y 99I9WUWIO)) RLISILIDIYNUI UL JOR(PO e
28po[Mouy JO o IST OIUOIO9[H JO [ewINOL (010G o1 dur uo Apngs y ‘IRWINYRAIG Y ‘[PATUR[RJ oed
WR)SAS
IOPUOIIODDT RLIYLIO-T}[NTT
09 SISATeUR OIJURIILS JUO)R] ‘7 ‘Surr A\ ‘uibSuerp
o8parmouy] Jo qa IST suorjyedruUNUWO) 1y 600 onsiiqeqord Suididdy o7 ‘Sunmpeng vz ‘WX 6gd
SULIOY SATYRIO]R[[0D
90UASI[AIU] [RDYIIY AImm 9nqrijerymu
pue uonIusoosy wvled Ul $9010YD USISop ‘0 ‘nomodolso))
93po[mouy Jo gOM\ TSI JO [eUINO[[RUOIYRUIDIU] L00T Jo sisATeue TejuowLIddX “N ‘stesnoue]y 8¢d
wyjLIosde
suorjeorddy pue swo)sAg SULIOY SAT)RIO]R[[0D
or01dX AT JUOSI[[PIU] UL SUOyeAOUU] RT(T BLIDLID-THITW JsNqOT VOSIg NV ML Led
diy)-uo-swe)sAg WISAS IOPULUIUIODDT
9109-AURIA /0100T) NN RLIOILID-T)NUL © JO ADRINOOR
poppequiy uo wnisodwAg uororpaad Suraoxduar 10§ “H ‘powrwureyolN -]
or01dX AT [euonyewIo] YIZT HAAI 8T07 WyIoS[e orouds oanpdepy ‘wefesinpqy S| ‘PowrRyoly 9zd
90IN0g uorjesrqng Ieox OINT, oy 9pod

151

A — Systematic Literature Review

199I[(JOOUSIIG

199I1(JOOUSIOIG

199I(JOOUSIOG

199I[(JOOUSIIG

JI3IL(JOOUDING

19911(JOOUSIOG

98pa[MOUy JO oM ST

SUIOISAG POsRG-03Pa[MOUY]

SOOUAIDG TOT}RULIOJU]

Surnnduosoins N

suorjeorddy pue yoIeasay]
92I0WIWIO)) JTUOIFIAH

suonyeoijddy pue yoressoy
90I8WUIO)) JTUOIIDAH

suoryeorddy
UM SWRISAG Jrdxry

SOT)RULIOJUT

V10T

V102

V102

€10¢C

1T0C

010C

810¢

segnqLI}R
[BOLI039)8D PaN[eA-T)NUI
puR OLIDWINU UO SUTULIRS]
9ouaIsjerd orjeUIONNY
90190

dnoid poseq-uoryeso|
10J WISTIRTDSOUI
IOPULUINIODDI [RIDOS Y

SULIY SATIRIOQR[[0D
RLIDILID-T)[nw 10 uorjdoorod
ToAR[-0[3UIS pose(-ALIR[IWUIS

OATIIPPRUON
UOT)RPUIUIUIONDT 9)RINDIIR

10§ suorurdo 1esn pue
seouaIofaId I9sn SurUIqUIo))

spoyjeut

UOT)R)IDI[P-00UsIofoId

JO UOTJRN[RAG] :9JISUITOD-O
10 SUID)SAS IOPUIIUIOIDT
poseq-Ayn Surusso(J
UoIjeN[eAd pue
‘uoryejuowordwir ‘usIso(]
:uorg097es auoyd e[rqowr

I0J W9)SAS UOTIRPUSTUTIOIDT
pozijeuosiod paseq-qom Y

SUI9)SAS

ISPULUIUIONDI BLISHLII-T} UL
ur uonorpaxd sousiejord

10} swyjLIose uoryezimrdo
wrrems aporyred pue
SYIOMIOU [RINOU [RIOYI)IY

" ‘uIesy
Sy ‘OUBION ‘T ‘ULIRIN

.m-q
W D moud CNTA T

ORI TDE

X ‘N A ‘8uog
T, ‘Suepn ol CH ‘M

‘1-'S ‘Sueng

'd- 1L ‘Suer - A oy
“H7[°d TH “N-d ‘1)

‘JN ‘uessef] N ‘eprurep

6€d

8¢d

Led

9¢d

ged

ved

€ed

901109

uoredtqn g

TR9K

O[T,

oYy

oPoD

152

A — Systematic Literature Review

QUSSP [RDYIIY

UOI}RPUSUITIOIDT
auotdjrews jo uoryeordde
Uy WRISAS IOPUaIIOIdT
® PN 0} SULIISN[D opreis

pue Surnuel 10j suostredurod

100II([90USIDG Jo suonyeorddy Sureoutduy 2T(0g ostmared oA1)TUS0D AzzZnj oy T, A Y ‘ueng OFd
senbruyoey
Azznj-oImau pue A30[03U0
suorpeorddy pur yoIeasey| SUISTL WOYSAS IOPUIUWOIDT ‘H 'S
109II([OOUDIDG 90IOWWIO)) JIUOIA[H LT0G RLIOJLID-T)[NW PLIGAY Y/ ‘opezIy Y "N ‘AueuLIoy] Srvd
uorjezrurydo wrems aporjred
pue oInsesw AJLIR[IUIS
QAT1D9JJO SUIZI[IIN WA)SAS
JIOPUSITIOIDT RLIDYLIO T[N ‘d ‘Tpeatm(
1O0I[(JOOURIDG 90URIDG Jondwo)) vIpadold LT10G Ur 9sIoU [RINjRU SUIPURH CA ‘queyl cd ‘Areypnot) 7Pd
yoroxdde
UOI)RPULUIUIONdT PUR
Sunnduwo) Surgord 1osn [oA0U ® M ‘A ‘Teyoruey,
199I1(JOUDIOG O[IOIN pue dalseAldd LT0T Ayrqow jrewrg oAy, () SR SN Werowy ehd
seInseawt
orgdosoagnou orerqo3[e
U0 poseq SISOUSeIP [RIIPo
IO TO)SAS IOPUOUIUIOIDT ‘AN QUIN (N
10IL(JAIUIIOG Sunndwo) 4308 parnddy LT0z ordosonmou - quey L, CH T 'W0S N MV gvd
SIsouseIp
[BOIPOW 10J [00} DATIOOD
Uy SWOISAS IOPUOTUIOIDT
100II([9OUSIOG SUIOISAG poseg-03pa[mouy G10g AZzny O1)STUOTYIMAU] "I, 'N ‘SuoyJ, :'H T ‘Uog 17d
SULIOY SATYRIO]R[[0D
suoryeorddy RLIDILID-T)[NW 10F soyprordde N ‘Uutuyly QO
109II([OOURIOG M swelsAg pdxy F10g UOT)RPUSMII0DI PLIGAH ‘wryeIqy uIq SN TUSRIIN ord
901IN0gG uonedIqng Iedx OINT, Ioymy opop

153

A — Systematic Literature Review

swagsAs guryer
RLIOJIIDINU 10J Sanbruyoa)

sndoog SWIOISAG USR] HHHAT 00T UOI)RPULWIUIONDI MON A ‘UOMY :'5) ‘SNIOIARTIOPY ecd
yoroxdde
SULISN[D BLIDYLIO-T}[N
UO POse(WDISAS
102IL([QOURIDG 90ULIDg Induwo)) vIpadold QT0% ISPUSUIUIONdI paroIduil Uy MV SN CPISean 2cd
oroxdde erIoLIO-T3 MW
ysno1 y :ssuryel
ongeA SIoSn UO paseq
POy UOTIRPUSTUTOIDT
Uo1ONpPOIJ §Qd Snomsuod
109II(JOOUSING Iaues[)) JO [eWINOf {T(0T A[[RIUSWUOIIAUD UY ‘L ‘oexeg A\ ‘Suog 1¢d
SO0 JO ‘] “eWPOIA -RIDLIOH
UOT)RUIUSSSIP SAI)I[AS 10] od ‘1sesy i'H)
yoeqpesy jIdwr uo peaseq "y ‘odsar)) (1 ‘eurjump)
100II(JOOUSIOG S9OUSING UOIYRULIONU] RT(T WYSAS IOPULIWIUIONAT Y A ‘ZOPIRA-ZOUNN ocd
Jostapydiry, "V ‘yopeziy
UO 9SRD Y/ :S9)IS YIOMIOU o] ‘Lreqyy °Q ‘prureg
EBEIBIN [RIDOS UI MBIASI SUI[UO FUIST o6 ‘TpIOUepLIRSOpR A
109II(JOOUSIOG reuoryeinduwroy) Jo [RWINOF QT(T SuIYRW UOISIOOP SIO[OARIT, CO ‘wrgelq] SN ‘TUSe[IN 67d
SUI9)SAS
Sur)RI UOLI)LID-O[3ULS
woIy seouaIsjald ejepelaw
gonpoid s 1esn JuLLISJU] Y ‘sourese)
J00IL([OOUSIOG swo)sAq proddng uorswo(] {107 ISUOI)RPUSWITIOIAT J () XH CA T “Te9IN Y ‘or[uIse) 7d
SIsATeue
JOIARTD(Q IOSTL POPUDIXD
SUIST WOYSAS IOPUSUWOIDT
suoryeorddy pue yoIeasay| Pposeq-onqrIjye-rynu o ‘npny o ‘we3opAy
100IL([9OUSIOG 90IdWIWIO)) OTUOIYR[|T10T poIySom Y SV NI Y N ‘[oAeoy 7d
901IN0gG uonedIqng Iedx OINT, Ioymy opop

154

A — Systematic Literature Review

SUT{RN-UOISIOa(]
RLIOJLIDIMIN Ul
90USSI[[oU] [RUOIIRINAUIO))

SUI9SAS

IoPUAUIUIONdI pazijeuosiod
10J SULISY JSTLIY

pue SULIS)I SAIIRIOR[[0D

sndoog uo wnsodwAg AT 1108 RLIDILIO-T)[NW SUI)RISOIU] Ty O “anoqureys 19d
soyproxdde
SUIR)SAG RLIDLIDI}NUI-AZZN]
UOT)RULIOJU] SSOUISTLE SUISN WHISAS IOPUSUWIUIO0IDT e
sndoog JO [PWINO(* [RUOIJRUINU] [T(0T QAT)RIOQR[[0D U0 ApPNIS Y ‘TRWUNYRAIG (3 ‘[oATUR[R] 09d
SWIDYSAS JOPULWIUIOIdT UL Y ‘sennosy, ¢ N
sndoog SWIOISAG USR] HHHAT [10¢ SUIPPOU I8ST RLISILIDINIA ‘STUISYeSIRIN 3 ‘IRION R 6¢d
SUI9ISAS
IOPUSITIODAI I0] W HLIOS[R ‘[‘Sunysoy ‘'S
sndoog QROIJRULIOJUT RJUSWRPUN] TT0G OLIOWL RLISILID-IINWL 7) ‘epn[e)) 'y ‘epezieiyyy]¢d
QY PLIILID-T) I
SWo)SAG I0] INDIN UO poaseq
UOT)RULIOJU] 9OUDISJUO)) 9[goId Iosn OTWRUAD pue Y ‘nseye], g ‘(omesueyy
sndoog reuornjeuwrolu] SIAVI 0103 aATyRjussaIdal peoueApy -d ‘Suepyoyd3uef, 28d
suoryeorddy
pue u3rso(] SWoISAS SMOTA TSI UO Poseq
JUOSI[[JU] UO dOUIJUO)) suorjouny uoryesoI3de Jursn
sndoog [euonyewIo)u] Y107 010G s10301paId RLISJLIDIJINN 7 ‘Zoyourg i"d *Aq ‘Ouresnory 9¢d
SUI9ISAS
IOPUSITIODDT RLIYLIO-T}[NTT
A3o[ounoa], UOTYeULIOJU] ur Surysrom oInjesy
sndoog 90UDBI0ATIO)) JO [RUINOf (T(F I0J SWILIOS[R D1)OULK) ‘G- ‘Suemy ¢ed
UOIJRISOIU] PUR OSNOY SW)SAS
UOT)RULIOJU] UO 9DUDIDJUO)) UOIIRPUSOWIIOIDT UT SSUIJRI
sndoog [eUOIYRUWINNU] HHHT 2007 ®LRILD-T)Muw Jurjeiodioouy ‘0= M ‘Suol, CH-H ‘00 ¥¢d
90IN0g uorjesrqng Ieox o[, Ioymy opop

155

A — Systematic Literature Review

£19100G 98pa[mouy|

Sjosejep SUrLIRY|

poouRyUL A30[0UYDD) IOAO
SWI}LI0F[e UOTYePUSUIIOIDT
RLIOJLID-T) N

D SISN0IG D

sndoog pue Sururear -5 Jo [ewImor y10g Jo Apnjs L1ogerordxsy ‘SOZRISIAY *N ‘SI[oSNOURIN R9d
surAng-dnoid
10} UOI}epPUOUIIOIdT
Joyeryur 0} uorjyeordde
SJ1 puR UOI)R[DI 9OUSISYIPUI
QOUOSI[OUT o1} Sursn yoeoidde Juroyy
sndoog eIy poyddy §IOZ 9AIFRIOQR[0D BRI ¥ DA TMH L9d
yorordde Sunyew
SOOIAISG pu®R UOTSIOOP BII)LID-T)NUL B UO
SYIOMION UOIIRIOUOL) JXON PoOse(SWO)SAS IoPUOUIUIOIDT g ‘1qunQ
sndodog U0 90ULILJUO)) [RUOIJRUINU] FT(0T Surdderysyoog g ‘A g ‘pnoipH 994
Surmedursuny
2IBRM)JOG PUR 9OUSIOG JNIomaurej
Ionduio)) U0 90UISJuo)) SULIY OAT}RIOQR[[0D
sndoog JUIOf Teuonyeuwrd|u] YITT $10% paseq-w)l RLIDILID-I) [N "0 ‘TereY Y ‘esng ¢od
SUI9ISAS
SYIOMIDN [eINON JIOpULUITIODD BLISHLIO-T} NI ‘N ‘stnosjyedesT,
sndoog Jo suorjeorddy Surwoursuy FT0% Ul S[OPOW JOSTL SUTUIRST SN ‘snoopyoredy 94
UOI)RULIOJUT
LI J1oT[dut
UO Pase(q UOI)RPUSUIUIOIT
QOUOSI[OUT RLIO)LIDI) [N d ‘Suenduwoog
sndoog repynay parddy €10z Prq4Y 1oy Surgord priqAy CM TpemstepuRld €9d
UOT)RISOU] 29 9STOY surgold 1esn poseq-[opout
UOI}RULIOJU] UO 9OUSIOJUO)) ueisoAeyq Aq SuLO)y ‘G ‘[or00uRIy Y ‘nseyR],
sndoog reuoryewIo(u] YieT 4l ¢I10T OATIRIOQR[[0D RLIOLIOT)NIA -d ‘unyIpeAryjjeuwreg 29d
901IN0gG uonedIqng Iedx OINT, Ioymy opop

156

A — Systematic Literature Review

SUOT}epPUolWIOI9.1 Ppaseq

SOI30TOUTOA], RLIOILID-T)[NT UT SOINSBOTT T ‘NOLIdY}Joe1Z)eH
yury 1eguridg JPA\ PUR 90100 €00% Ayreqruars Suryordxng N ‘stprideoereyy 9,d
WYSAS IOPUIUIUIONAT
SWR)SAG JUOBI[[oJU] I0] RLIOYLID-T)[NT TOJ
A3o[ouros, WOTYRITUNUITIO)) yoeoxdde poseq-uoIssaIsal ‘A ‘quey] v g
sndoog pue uoryewrIoju] L10¢ pue UorezII01oe] XLIje\ TPoAIM(T G "H) ‘Tepumleyy ¢ld
sgurjelr (o304
UOT)R[NUIIG PO2INOS-PMOID RLISJLID-T) NI ‘0r
pue SuI[epofN uo wog uorodrpard ‘oymsing ‘g ‘oIeyeN < H
sndoog oouaIayuo)) uradoiny IST¢ LT0C urjer pue IuryoIJ ‘ZO[9 A\ -ZORZUOK) ("] ‘[eor] ¥.d
SUIISAS IOPUSUIUIOIDT
RLIOILID-T)[NU JO
Aoenooe o) Sursoxdur 10§
sndoog seousrog porddy 270¢ yoroxdde syiomjeu [einsu y ‘N ‘eprurey N ‘Uessey erd
WR)SAS
surndwo)) pue swo)sAG IOPUOIIODDT RLIYLIO-T}[NTT ‘A ‘e
sndoog JUSSI[[PIU] UI SOOURADY LT(0T pooueyUe-ISNIT, “d (TPOATM(T Y ‘TUIRMSOX) oLd
uoryeonpy pojroddng soInqLIj)e ‘S “eUVIH
Ionduro)) U0 9oULILJUO)) Suryenpris U0 pose(Wo)SAS - ‘eurrey -0y ‘siyeurdg
sndoog [euonjewIaU] Y16 LI0G IOPUSWITIOIAI 9SIN0D Y g ‘ysereurysyurg 12d
s@urjes eI}l
ASoouyoay, INW UO pose(SWISAS
puR SULIOSUISUY ‘S9OUSING JI9pULWIIONdl pazijeuosiad ‘0)
sndoog perddy jo [eurnopr yoIeesey G10g 09 preoxdde [paou Y ‘urAIPRYRIN 'S A ‘BUOUS 0.d
Azzny Suisn
WRISAS UOI)RPUIUIUIODDT
S9OULING Areurno a[iqouwt Jo
porddy pue Suriesursuy ssooo1d Ayprerary ondreur [‘tarueq) M ‘eyerq
sndoog Jo reumnof NJYV S10¢ Ul FuI)ySom SOATIRUINNY N ‘ejueuy Y ‘OjipuRuLlg 69d
90IN0g uorjesrqng Ieox o[, Ioymy opop

157

A — Systematic Literature Review

SUOIJEPUIMIUI0IT pasoxduil
pue sIsAJeue uorjoe)sIyes

WSLINOT, 10} YOR(PIJ IOWO0ISTIO ‘N ‘syong
yury 1e3uridg 29 ASo[ouypa], uoryeurIou] $10g RLIOILID-T)[NUW SULSRIOADT SN ‘Teyuey - ‘yoeuuep e’d
QUIYDRUW I0109A
110ddns pue Ajrrefruurs
poseq-oouaIoford [Im
SYIOMION yorordde UOIepPUIUIUIONdT
yury 1eguridg [eINON UI SOOURAPY €107 RLIO)LID-T)[NW ISNGOI Y MY e ‘ue 28d
Y ‘nseyeq,
g ‘wroyjeopemnyjurg
IR SRURN] JIOPUSUIUIOIDT “ M ‘Suodurodurierey))
pue ASojounyoqf, Sur)RI RLIOLID-T) N -d ‘unyrpeAryjjewreg
yury 1eguridg ‘SW9YSAG UOTIRUWLION] 10T 10} o[goId RLISILIO pasuey] g ‘foreaur]y 18d
SUI0ISAG SULIepUISUH SUIDYSAS UOI)ePUIIUIOIDT
pue uorjRULION] JUISI[[IU] 98R)LIY [eInjmd A ‘ouessoy T, ‘T[[eSOY
yury 1eguridg pue peseg-oSpomouy] (010g Ul [RASLIJOI RLISJLID-TYMN N ‘ezIoyer] (] 'd ‘ojuojrg 08d
so1AdeJ Ul UOI}RPUSWTIOIDL
Toded yoresser 10y yorordde
Priop wed(ue ur SULIY OAT}RIOQR[[0D o ‘IneuIry
yury megutidg UorjeAOUU] :SOI30[OUYIRI-H 6007 RLIDILID-T)NW ©H ‘08eH 'y ‘YreN 6.d
Uo1)09[es spunj A3mbs 09
A1001(T, uorjeordde uy :seypeordde VM ‘SToreueiy
yury 1e8uridg UOISIOR(] JTWILIOZY 6003 IOPULWIIIOIDI PLIGAY MON g N ‘stursyesjey {Ld
SW)LIOS[® SULIDI[Y
oAlRIOqe[[0d LNVIN
Jo ooueuriofrod pojoadxe D ‘nomnodojson)
yury 1gutidg £3e100g 93ormousy] wod() oY, 8007 oY} Jo Apnjs Areurmrpol ©N ‘SI[esnouey 22d
901IN0gG uonedIqng Iedx OINT, Ioymy opop

158

A — Systematic Literature Review

SIUOTIUOIIATD
IO Ul SULIS)Y 9AI}RIOCR[[0D
pozireuosiad 10]

suoryeorddy UOI}RISOIUT PUR UOI)RZI[RIO] ‘a
ury 1dutdg pue S[00T, BIPoWBM L10T X[I§RUL RLIDYLID-IIN OO “A-T 0N “DH ‘0M 06d
yoeoidde uersedeq Azznj uo
suoryeorddy Pposeq WoISAS IOPULWIUIOIT d ‘TpeAtm(J
qur] 1edundg pue S[00T, BIPOWHMIN LT0T BLIS}LIO-TNU PoOUeY U L TerRyL A YUy 68d
WOISAS IOPUIWIUIOIDT
RLIDILID-T)NW 09 yorordde d ‘IpeAIM(]
yury 1eguridg r)R(] 81 pue Surtury ©1e 9107 UOISSOISOI IeaUl] CA C‘quey L ‘tuereyr 8d
WILIOS[® D[10U3
SUISN WOISAS IOPUOUIULOIDT
uo1)RIO[AXH o3po[mouy| UOLIOYLID I) W ® JO AjIenb MOV ‘Temster J ‘IpoAImM(]
yury 1eguridg pue 90ueBI[[eju] SUIUI]N GI()Z UOIIRPUSWIIOIAI SUDUe U] A ‘quey Sy ‘ueealed 28d
SMOIASI SUIXOqUN FUTUIW
Aq [opoW UOT)ePUSTTIOIAT
Po1ROII-0D AT[JI0MISTLIY N/
TUOUWIOFRURN SSOUISNE-d ® SPIRMO], jI9))ReUL ‘Suepp D H ‘Sueny))
yury 1esuridg pu®R SWLISAG UOIYRULIOIU] GT(F UOT)RULIOJUT S[(RI[I S90(] ST ‘wreyd S 1T 98d
UOT)RPULUIIIOIDT
@107 snoymbiqn jo
surnduo)) soueuriofrad o1y Surzrurydo
pozZiuewny pue 9ouoSI[[oju] 10§ porordde Surmurersord
yury 1e8uridg JuaIquIy JOo [euwInof GI0% Ieoul[uou pue Azznyj H A ‘Suweny)) {7, ‘Uey) ¢’d
senbruyoey
A7zzZNnj-0Inou pue UoIONpal
Ayreuorsuowiip suisn
WDISAS UOT)RPUIUIUIONDT "M ‘erreey N ‘uruygp
yury 1eduridg suryndwo)) 530S F10g RUIOILD-I)NW g " ‘Wigerqy ©N ‘TYse[IN 7Rd
901IN0gG uonedIqng Iedx OINT, Ioymy opop

159

A — Systematic Literature Review

yury 1eguridg

yury 1eguridg

yury 1eduridg

surnduwo)) 199sny))

surndwo)) 1o9sny))

Surredursuny
pue 90uaIog BIe(]

810¢

810¢

L10¢

X9} MITADI

pue s3urjel BLIOILID-T)NUI
gurderoas] Aq uorjorpaxd
SUI)el POSe(-MOIAI

I0J Jopow TeInau paygrun A\
souryoRW

UOI}RZLIO}OR] UO Paseq
SOWIOTDS UOTJRPUSTITIOIAT
RLIOLID-T) NN

®)ep

PO2INOSPMOID RLIDILID-T) NI
JO SUI[[OPOWL Poseq-ISTLI],

TN ‘DI e ‘Suepn
"M X TS T VA SuIg

M DX S TT VX SSuig
"D [orm3mg

CH ‘ZO[9A-ZO[RZUOK)

g ‘OTOYRIN *' TR

€6d

¢c6d

T6d

901109

uoredtqn g

TR9K

O[T,

oYy

oPoD

160

Appendix B

Publication List

The studies discussed as part of the present dissertation, in which I have been
either the main author or a co-author, have been published in the following confer-
ence proceedings or journals.

» lacopo Vagliano, Diego Monti, and Maurizio Morisio. “SemRevRec: A Rec-
ommender System based on User Reviews and Linked Data”. In: Proceedings
of the Poster Track of the 11th ACM Conference on Recommender Systems.
Como, Italy: CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-
1905/recsys2017_poster10.pdf

» Jacopo Vagliano, Diego Monti, Ansgar Scherp, and Maurizio Morisio. “Con-
tent Recommendation Through Semantic Annotation of User Reviews and
Linked Data”. In: Proceedings of the Knowledge Capture Conference. K-CAP
2017. Austin, TX, USA: ACM, 2017, 32:1-32:4. DOI: 10.1145/3148011.
3148035

o Diego Monti, Enrico Palumbo, Giuseppe Rizzo, and Maurizio Morisio. “Se-
queval: A framework to assess and benchmark sequence-based recommender
systems”. In: Proceedings of the Workshop on Offline Evaluation for Recom-
mender Systems co-located with the 12th ACM Conference on Recommender
Systems. Vancouver, BC, Canada: Workshop Organizers, 2018. URL: https:
//arxiv.org/abs/1810.04956

o Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “A Distributed and Ac-
countable Approach to Offline Recommender Systems Evaluation”. In: Pro-
ceedings of the Workshop on Offline FEvaluation for Recommender Systems
co-located with the 12th ACM Conference on Recommender Systems. Van-
couver, BC, Canada: Workshop Organizers, 2018. URL: https://arxiv.
org/abs/1810.04957

161

http://ceur-ws.org/Vol-1905/recsys2017_poster10.pdf
http://ceur-ws.org/Vol-1905/recsys2017_poster10.pdf
https://doi.org/10.1145/3148011.3148035
https://doi.org/10.1145/3148011.3148035
https://arxiv.org/abs/1810.04956
https://arxiv.org/abs/1810.04956
https://arxiv.org/abs/1810.04957
https://arxiv.org/abs/1810.04957

B — Publication List

o Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaél
Troncy, Michael Fell, Elena Cabrio, and Maurizio Morisio. “An Ensemble
Approach of Recurrent Neural Networks Using Pre-Trained Embeddings for
Playlist Completion”. In: Proceedings of the ACM Recommender Systems
Challenge 2018. RecSys Challenge '18. Vancouver, BC, Canada: ACM,
2018, 13:1-13:6. DOI: 10.1145/3267471.3267484

e Diego Monti, Enrico Palumbo, Giuseppe Rizzo, and Maurizio Morisio. “Se-
queval: An Offline Evaluation Framework for Sequence-Based Recommender
Systems”. In: Information 10.5 (May 2019), p. 174. DOI: 10 . 3390/
info10050174

o Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “Visualizing Ratings
in Recommender System Datasets”. In: Proceedings of the 6th Joint Work-
shop on Interfaces and Human Decision Making for Recommender Systems
co-located with the 13th ACM Conference on Recommender Systems. Copen-
hagen, Denmark: CEUR-WS.org, 2019, pp. 60-64. URL: http://ceur-
ws.org/Vol-2450/short2.pdf

o Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “All You Need is Rat-
ings: A Clustering Approach to Synthetic Rating Datasets Generation”. In:
Proceedings of the Workshop on Reinforcement and Robust Estimators co-
located with the 13th ACM Conference on Recommender Systems. Copen-
hagen, Denmark: Workshop Organizers, 2019. URL: https://arxiv.org/
abs/1909.00687

Furthermore, in the context of my Ph.D. career, I have collaborated as a co-
author to the realization of the following studies.

o Giulio Carducci, Giuseppe Rizzo, Diego Monti, Enrico Palumbo, and Mau-
rizio Morisio. “TwitPersonality: Computing Personality Traits from Tweets
Using Word Embeddings and Supervised Learning”. In: Information 9.5
(May 2018), p. 127. DOI: 10.3390/inf09050127

o Simone Leonardi, Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “Min-
ing Micro-Influencers from Social Media Posts”. In: Proceedings of the 35th
Annual ACM Symposium on Applied Computing. Brno, Czech Republic:
ACM, 2020, pp. 867-874. DOI: 10.1145/3341105.3373954

« Simone Leonardi, Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “Mul-
tilingual Transformer-Based Personality Traits Estimation”. In: Information
11.4 (Apr. 2020), p. 179. pOI: 10.3390/inf011040179

162

https://doi.org/10.1145/3267471.3267484
https://doi.org/10.3390/info10050174
https://doi.org/10.3390/info10050174
http://ceur-ws.org/Vol-2450/short2.pdf
http://ceur-ws.org/Vol-2450/short2.pdf
https://arxiv.org/abs/1909.00687
https://arxiv.org/abs/1909.00687
https://doi.org/10.3390/info9050127
https://doi.org/10.1145/3341105.3373954
https://doi.org/10.3390/info11040179

B — Publication List

o Enrico Palumbo, Diego Monti, Giuseppe Rizzo, Raphaél Troncy, and Elena
Baralis. “entity2rec: Property-Specific Knowledge Graph Embeddings for
Item Recommendation”. In: FEzxpert Systems with Applications 151 (Aug.
2020), p. 113235. pOI: 10.1016/j.eswa.2020.113235

The quality of the conferences and journals selected as publication venues of
the aforementioned studies is attested by the following indicators.

o Expert Systems with Applications, CiteScore quartile: Q1
o Information, CiteScore quartile: Q2

o Knowledge Capture Conference, CORE rank: A

o ACM Symposium on Applied Computing, CORE rank: B

o ACM International Conference on Recommender Systems, CORE rank: B

163

https://doi.org/10.1016/j.eswa.2020.113235

Bibliography

Silvana Aciar, Debbie Zhang, Simeon Simoff, and John Debenham. “In-
formed Recommender: Basing Recommendations on Consumer Product Re-
views”. In: IEEFE Intelligent Systems 22.3 (2007), pp. 39-47. 1SSN: 1541-1672.
DOI: 10.1109/MIS.2007.565.

Gediminas Adomavicius and YoungOk Kwon. “Multi-Criteria Recommender
Systems”. In: Recommender Systems Handbook. Springer, 2015, pp. 847-880.
DOI: 10.1007/978-1-4899-7637-6_25.

Gediminas Adomavicius and Alexander Tuzhilin. “Context-Aware Recom-
mender Systems”. In: Recommender Systems Handbook. Springer, 2015,
pp. 191-226. DOT: 10.1007/978-1-4899-7637-6_6.

Gediminas Adomavicius and Alexander Tuzhilin. “Toward the next genera-
tion of recommender systems: a survey of the state-of-the-art and possible
extensions”. In: IEEE Transactions on Knowledge and Data Engineering
17.6 (2005), pp. 734-749. DOIL: 10.1109/tkde.2005.99.

Charu C. Aggarwal. “Mining Discrete Sequences”. In: Data Mining. Springer
International Publishing, 2015. Chap. 15, pp. 493-529. DO1: 10.1007/978-
3-319-14142-8_15.

Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining
Association Rules in Large Databases”. In: Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases. VLDB '94. Burlington, MA,
USA: Morgan Kaufmann Publishers, 1994, pp. 487-499.

Massimiliano Albanese, Angelo Chianese, Antonio d’Acierno, Vincenzo
Moscato, and Antonio Picariello. “A multimedia recommender integrating
object features and user behavior”. In: Multimedia Tools and Applications
50.3 (2010), pp. 563-585. DOIL: 10.1007/s11042-010-0480-8.

Massimiliano Albanese, Antonio d’Acierno, Vincenzo Moscato, Fabio Persia,
and Antonio Picariello. “A Multimedia Recommender System”. In: ACM
Transactions on Internet Technology 13.1 (2013), pp. 1-32. DOI: 10.1145/
2532640.

165

https://doi.org/10.1109/MIS.2007.55
https://doi.org/10.1007/978-1-4899-7637-6_25
https://doi.org/10.1007/978-1-4899-7637-6_6
https://doi.org/10.1109/tkde.2005.99
https://doi.org/10.1007/978-3-319-14142-8_15
https://doi.org/10.1007/978-3-319-14142-8_15
https://doi.org/10.1007/s11042-010-0480-8
https://doi.org/10.1145/2532640
https://doi.org/10.1145/2532640

BIBLIOGRAPHY

[10]

[11]

[12]

[15]

[16]

[17]

[18]

Massimiliano Albanese, Antonio d’Acierno, Vincenzo Moscato, Fabio Per-
sia, and Antonio Picariello. “A Multimedia Semantic Recommender System
for Cultural Heritage Applications”. In: Fifth International Conference on
Semantic Computing. IEEE, 2011. DOI: 10.1109/icsc.2011.47.

Flora Amato, Vincenzo Moscato, Antonio Picariello, and Giancarlo Sperli.
“KIRA: A System for Knowledge-Based Access to Multimedia Art Collec-
tions”. In: 11th International Conference on Semantic Computing. IEEE,
2017. por: 10.1109/icsc.2017.59.

Marko Balabanovi¢ and Yoav Shoham. “Fab: content-based, collaborative
recommendation”. In: Communications of the ACM 40.3 (1997), pp. 66-72.
DOI: 10.1145/245108.245124.

Chumki Basu, Haym Hirsh, and William Cohen. “Recommendation As Clas-
sification: Using Social and Content-based Information in Recommenda-
tion”. In: Proceedings of the Fifteenth National Conference on Artificial In-
telligence. Madison, Wisconsin, USA: AAAIT Press, 1998, pp. 714-720. URL:
https://www.aaai.org/Papers/AAAT/1998/AAATO98-101.pdf.

Alejandro Bellogin, Ivan Cantador, and Pablo Castells. “A Study of Hetero-
geneity in Recommendations for a Social Music Service”. In: Proceedings of
the 1st International Workshop on Information Heterogeneity and Fusion in
Recommender Systems. HetRec '10. ACM, 2010, pp. 1-8. 1SBN: 978-1-4503-
0407-8. DOI: 10.1145/1869446.1869447.

Alejandro Bellogin, Pablo Castells, and Ivan Cantador. “Statistical biases
in Information Retrieval metrics for recommender systems”. In: Information
Retrieval Journal 20.6 (2017), pp. 606-634. DOI: 10.1007/s10791-017~
9312-z.

Alejandro Bellogin and Pablo Sanchez. “Collaborative filtering based on
subsequence matching: A new approach”. In: Information Sciences 418-419
(2017), pp. 432-446. DOI: 10.1016/7.1ins.2017.08.016.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin.
“A Neural Probabilistic Language Model”. In: Journal of Machine Learning
Research 3 (2003), pp. 1137-1155. URL: http://www. jmlr.org/papers/
v3/bengio03a.html.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan. “Latent Dirichlet
Allocation”. In: Journal of Machine Learning Research 3 (2003), pp. 993—
1022. 1SSN: 1532-4435.

Jestus Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiér-
rez. “Recommender systems survey”. In: Knowledge-Based Systems 46 (July
2013), pp. 109-132. DOI: 10.1016/j.knosys.2013.03.012.

166

https://doi.org/10.1109/icsc.2011.47
https://doi.org/10.1109/icsc.2017.59
https://doi.org/10.1145/245108.245124
https://www.aaai.org/Papers/AAAI/1998/AAAI98-101.pdf
https://doi.org/10.1145/1869446.1869447
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1016/j.ins.2017.08.016
http://www.jmlr.org/papers/v3/bengio03a.html
http://www.jmlr.org/papers/v3/bengio03a.html
https://doi.org/10.1016/j.knosys.2013.03.012

BIBLIOGRAPHY

[19]

[20]

[21]

[22]

23]

[25]

[26]

[27]

Robin Burke. “Hybrid Web Recommender Systems”. In: The Adaptive Web.
Springer Berlin Heidelberg, 2007, pp. 377—408. DOI: 10.1007/978-3-540-
72079-9_12.

Pedro G. Campos, Fernando Diez, and Ivan Cantador. “Time-aware recom-
mender systems: a comprehensive survey and analysis of existing evaluation
protocols”. In: User Modeling and User-Adapted Interaction 24.1-2 (2013),
pp. 67-119. DOL: 10.1007/511257-012-9136-x.

Erion Cano and Maurizio Morisio. “Hybrid recommender systems: A system-
atic literature review”. In: Intelligent Data Analysis 21.6 (2017), pp. 1487—
1524. 18SN: 1088-467X. DOI: 10.3233/IDA-163209.

Ivan Cantador, Peter Brusilovsky, and Tsvi Kuflik. “Second Workshop
on Information Heterogeneity and Fusion in Recommender Systems (Het-
Rec2011)”. In: Proceedings of the Fifth ACM Conference on Recommender
Systems. RecSys "11. Chicago, Illinois, USA: ACM, 2011, pp. 387-388. ISBN:
978-1-4503-0683-6. DOI: 10.1145/2043932.2044016.

Bruno Cardoso, Gayane Sedrakyan, Francisco Gutiérrez, Denis Parra, Peter
Brusilovsky, and Katrien Verbert. “IntersectionExplorer, a multi-perspective
approach for exploring recommendations”. In: International Journal of
Human-Computer Studies 121 (2019), pp. 73-92. bor: 10.1016/j.1ijhcs.
2018.04.008.

Giulio Carducci, Giuseppe Rizzo, Diego Monti, Enrico Palumbo, and Mau-
rizio Morisio. “TwitPersonality: Computing Personality Traits from Tweets
Using Word Embeddings and Supervised Learning”. In: Information 9.5
(May 2018), p. 127. por: 10.3390/inf09050127.

Maria del Carmen Rodriguez-Hernandez, Sergio Ilarri, Ramén Hermoso, and
Raquel Trillo-Lado. “DataGenCARS: A generator of synthetic data for the
evaluation of context-aware recommendation systems”. In: Pervasive and
Mobile Computing 38 (2017), pp. 516-541. DOI: 10.1016/j.pmcj.2016.09.
020.

Patrali Chatterjee. “Online reviews: Do consumers use them?” In: Advances
in Consumer Research 28 (2001), pp. 129-133. URL: http://acrwebsite.
org/volumes/8455/volumes/v28/NA-28.

Li Chen, Guanliang Chen, and Feng Wang. “Recommender systems based
on user reviews: The state of the art”. In: User Modeling and User-Adapted
Interaction 25.2 (2015), pp. 99-154. 1SSN: 1573-1391. DOI: 10.1007/s11257~
015-9155-5.

167

https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/s11257-012-9136-x
https://doi.org/10.3233/IDA-163209
https://doi.org/10.1145/2043932.2044016
https://doi.org/10.1016/j.ijhcs.2018.04.008
https://doi.org/10.1016/j.ijhcs.2018.04.008
https://doi.org/10.3390/info9050127
https://doi.org/10.1016/j.pmcj.2016.09.020
https://doi.org/10.1016/j.pmcj.2016.09.020
http://acrwebsite.org/volumes/8455/volumes/v28/NA-28
http://acrwebsite.org/volumes/8455/volumes/v28/NA-28
https://doi.org/10.1007/s11257-015-9155-5
https://doi.org/10.1007/s11257-015-9155-5

BIBLIOGRAPHY

28]

[29]

[30]

[31]

32]

[33]

[34]

[36]

[37]

Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten Joachims.
“Playlist prediction via metric embedding”. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM Press, 2012, pp. 714-722. DOI: 10.1145/2339530.2339643.

Stanley F. Chen and Joshua Goodman. “An empirical study of smoothing
techniques for language modeling”. In: Computer Speech € Language 13.4
(1999), pp. 359-393. DOI: 10.1006/csla.1999.0128.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
“Empirical evaluation of gated recurrent neural networks on sequence model-
ing”. In: arXiv preprint (2014). URL: https://arxiv.org/abs/1412.3555.

Ludovik Coba, Panagiotis Symeonidis, and Markus Zanker. “Visual Analysis
of Recommendation Performance”. In: Proceedings of the Eleventh ACM
Conference on Recommender Systems. RecSys "17. Como, Italy: ACM, 2017,
pp. 362-363. 1SBN: 978-1-4503-4652-8. DOIL: 10.1145/3109859.3109982.

Alberto Costa and Fabio Roda. “Recommender systems by means of infor-
mation retrieval”. In: Proceedings of the International Conference on Web
Intelligence, Mining and Semantics. ACM Press, 2011. po1: 10 . 1145/
1988688 .1988755.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. “Performance of Rec-
ommender Algorithms on Top-n Recommendation Tasks”. In: Proceedings
of the Fourth ACM Conference on Recommender Systems. RecSys "10. New
York, NY, USA: ACM, 2010, pp. 39-46. DOI: 10.1145/1864708. 1864721,

Daniela S. Cruzes and Tore Dyba. “Recommended Steps for Thematic Syn-
thesis in Software Engineering”. In: 2011 International Symposium on Em-
pirical Software Engineering and Measurement. IEEE, 2011. DO1: 10.1109/
esem.2011.36.

Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N. Mendes. “Im-
proving Efficiency and Accuracy in Multilingual Entity Extraction”. In:

Proceedings of the 9th International Conference on Semantic Systems. I-
SEMANTICS ’13. ACM, 2013. po1: 10.1145/2506182.2506198.

Danica Damljanovic, Milan Stankovic, and Philippe Laublet. “Linked Data-
Based Concept Recommendation: Comparison of Different Methods in Open
Innovation Scenario”. In: The Semantic Web: Research and Applications.
Springer Berlin Heidelberg, 2012, pp. 24-38. 1SBN: 978-3-642-30283-1. DOTI:
10.1007/978-3-642-30284-8 9.

Tommaso Di Noia and Vito Claudio Ostuni. “Recommender Systems and
Linked Open Data”. In: Reasoning Web. Web Logic Rules. Springer Interna-
tional Publishing, 2015, pp. 88-113. 1SBN: 978-3-319-21768-0. pO1: 10.1007/
978-3-319-21768-0_4.

168

https://doi.org/10.1145/2339530.2339643
https://doi.org/10.1006/csla.1999.0128
https://arxiv.org/abs/1412.3555
https://doi.org/10.1145/3109859.3109982
https://doi.org/10.1145/1988688.1988755
https://doi.org/10.1145/1988688.1988755
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1109/esem.2011.36
https://doi.org/10.1109/esem.2011.36
https://doi.org/10.1145/2506182.2506198
https://doi.org/10.1007/978-3-642-30284-8_9
https://doi.org/10.1007/978-3-319-21768-0_4
https://doi.org/10.1007/978-3-319-21768-0_4

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, and Davide
Romito. “Exploiting the Web of Data in Model-based Recommender Sys-
tems”. In: Proceedings of the Sizth ACM Conference on Recommender Sys-
tems. RecSys ’12. Dublin, Ireland: ACM, 2012, pp. 253-256. ISBN: 978-1-
4503-1270-7. por1: 10.1145/2365952.2366007.

Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di Sci-
ascio. “SPrank: Semantic Path-Based Ranking for Top-N Recommendations
Using Linked Open Data”. In: ACM Trans. Intell. Syst. Technol. 8.1 (2016),
9:1-9:34. 18SN: 2157-6904. DOI: 10.1145/2899005.

Yi Ding and Xue Li. “Time weight collaborative filtering”. In: Proceedings
of the 14th ACM International Conference on Information and Knowledge
Management. ACM Press, 2005, pp. 485-492. po1: 10 . 1145/1099554 .
1099689.

Ruihai Dong, Markus Schaal, Michael P. O’'Mahony, Kevin McCarthy, and
Barry Smyth. “Opinionated Product Recommendation”. In: Case-Based
Reasoning Research and Development. Springer Berlin Heidelberg, 2013,
pp. 44-58. DOI: 10.1007/978-3-642-39056-2_4.

Jakub Dzikowski, Monika Kaczmarek, Szymon Lazaruk, and Witold
Abramowicz. “Challenges in Using Linked Data within a Social Web Recom-
mendation Application to Semantically Annotate and Discover Venues”. In:
Multidisciplinary Research and Practice for Information Systems. Springer
Berlin Heidelberg, 2012, pp. 360-374. ISBN: 978-3-642-32498-7. DOI: 10 .
1007/978-3-642-32498-7_27.

Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee,
and Quan Yuan. “Personalized Ranking Metric Embedding for Next New
POI Recommendation”. In: Proceedings of the 24th International Confer-
ence on Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 2015,
pp. 2069-2075. 1SBN: 978-1-57735-738-4. URL: https://www.ijcai.org/
Proceedings/15/Papers/293.pdf.

Cristhian Figueroa, lacopo Vagliano, Oscar Rodriguez Rocha, and Maurizio
Morisio. “A systematic literature review of Linked Data-based recommender
systems”. In: Concurrency and Computation: Practice and Experience 27.17
(2015), pp. 4659-4684. DOI: 10.1002/cpe . 3449.

Aldo Gangemi. “A Comparison of Knowledge Extraction Tools for the Se-
mantic Web”. In: The Semantic Web: Semantics and Big Data. ESWC 2013.
Springer Berlin Heidelberg, 2013, pp. 351-366. DOI: 10.1007/978-3-642-
38288-8_24.

169

https://doi.org/10.1145/2365952.2366007
https://doi.org/10.1145/2899005
https://doi.org/10.1145/1099554.1099689
https://doi.org/10.1145/1099554.1099689
https://doi.org/10.1007/978-3-642-39056-2_4
https://doi.org/10.1007/978-3-642-32498-7_27
https://doi.org/10.1007/978-3-642-32498-7_27
https://www.ijcai.org/Proceedings/15/Papers/293.pdf
https://www.ijcai.org/Proceedings/15/Papers/293.pdf
https://doi.org/10.1002/cpe.3449
https://doi.org/10.1007/978-3-642-38288-8_24
https://doi.org/10.1007/978-3-642-38288-8_24

BIBLIOGRAPHY

[46]

[48]

[49]

[51]

[52]

[53]

[54]

[55]

Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. “MyMediaLite: A Free Recommender System Library”. In: Pro-
ceedings of the 5th ACM Conference on Recommender Systems. RecSys "11.
Chicago, llinois, USA: ACM, 2011, pp. 305-308. DOI: 10.1145/2043932.
2043989.

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond Ac-
curacy: Evaluating Recommender Systems by Coverage and Serendipity”.
In: Proceedings of the Fourth ACM Conference on Recommender Systems.
RecSys '10. New York, NY, USA: ACM, 2010, pp. 257-260. poI: 10.1145/
1864708.1864761.

Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, and Cataldo Musto.
“An investigation on the serendipity problem in recommender systems”. In:
Information Processing € Management 51.5 (2015), pp. 695-717. DOI: 10.
1016/3.ipm.2015.06.008.

Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci, and
Giovanni Semeraro. “Semantics-Aware Content-Based Recommender Sys-
tems”. In: Recommender Systems Handbook. Springer, 2015, pp. 119-159.
DOI: 10.1007/978-1-4899-7637-6_4.

Stephanie Gil, Jestis Bobadilla, Fernando Ortega, and Bo O. Zhu. “VisualRS:
Java framework for visualization of recommender systems information”. In:
Knowledge-Based Systems 155 (2018), pp. 66-70. DOI: 10.1016/j.knosys.
2018.04.028.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. “Using
collaborative filtering to weave an information tapestry”. In: Communica-
tions of the ACM 35.12 (1992), pp. 61-70. DOI: 10.1145/138859.138867.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016. 1SBN: 978-0-262-03561-3.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Ad-
versarial Nets”. In: Proceedings of the 27th International Conference on Neu-
ral Information Processing Systems. Vol. 2. Cambridge, MA, USA: MIT
Press, 2014, pp. 2672-2680.

Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. “Speech recog-
nition with deep recurrent neural networks”. In: IEEE International Con-
ference on Acoustics, Speech and Signal Processing. IEEE, 2013. DOI: 10.
1109/icassp.2013.6638947.

Asela Gunawardana and Guy Shani. “Evaluating Recommender Systems”.
In: Recommender Systems Handbook. Springer, 2015. Chap. 8, pp. 265-308.
DOI: 10.1007/978-1-4899-7637-6_8.

170

https://doi.org/10.1145/2043932.2043989
https://doi.org/10.1145/2043932.2043989
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1016/j.ipm.2015.06.008
https://doi.org/10.1016/j.ipm.2015.06.008
https://doi.org/10.1007/978-1-4899-7637-6_4
https://doi.org/10.1016/j.knosys.2018.04.028
https://doi.org/10.1016/j.knosys.2018.04.028
https://doi.org/10.1145/138859.138867
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/icassp.2013.6638947
https://doi.org/10.1109/icassp.2013.6638947
https://doi.org/10.1007/978-1-4899-7637-6_8

BIBLIOGRAPHY

[60]

[61]

[63]

[64]

[65]

[66]

Ido Guy. “Social Recommender Systems”. In: Recommender Systems Hand-
book. Springer, 2015, pp. 511-543. DOI: 10.1007/978-1-4899-7637-6_15.

F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: His-
tory and Context”. In: ACM Transactions on Interactive Intelligent Systems
5.4 (2015), pp. 1-19. DOI: 10.1145/2827872.

John A. Hartigan and Manchek A. Wong. “Algorithm AS 136: A K-Means
Clustering Algorithm”. In: Applied Statistics 28.1 (1979), p. 100. DOIL: 10.
2307/2346830.

Ruining He, Wang-Cheng Kang, and Julian McAuley. “Translation-based
Recommendation”. In: Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems. ACM Press, 2017, pp. 161-169. DOI: 10.1145/3109859.
3109882.

Benjamin Heitmann and Conor Hayes. “Using Linked Data to Build Open,
Collaborative Recommender Systems”. In: AAAI Spring Symposium: Linked
Data Meets Artificial Intelligence. AAAT, 2010, pp. 76-81.

Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. “Explaining
collaborative filtering recommendations”. In: Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work. ACM Press, 2000,
pp. 241-250. poI: 10.1145/358916.358995.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. “Evaluating collaborative filtering recommender systems”. In: ACM
Transactions on Information Systems 22.1 (2004), pp. 5-53. DOI: 10.1145/
963770.963772.

Daniel S. Hirschberg. “A linear space algorithm for computing maximal com-
mon subsequences”. In: Communications of the ACM 18.6 (1975), pp. 341-
343. DOI: 10.1145/360825.360861.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.
9.8.1735.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fiirstenau,
Manfred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. “Robust Disambiguation of Named Entities in Text”. In: EMNLP
2011. ACL, 2011, pp. 782-792.

Jong-yi Hong, Eui-ho Suh, and Sung-Jin Kim. “Context-aware systems: A
literature review and classification”. In: Fxpert Systems with Applications
36.4 (2009), pp. 8509-8522. DOI: 10.1016/j.eswa.2008.10.071.

171

https://doi.org/10.1007/978-1-4899-7637-6_15
https://doi.org/10.1145/2827872
https://doi.org/10.2307/2346830
https://doi.org/10.2307/2346830
https://doi.org/10.1145/3109859.3109882
https://doi.org/10.1145/3109859.3109882
https://doi.org/10.1145/358916.358995
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/360825.360861
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.eswa.2008.10.071

BIBLIOGRAPHY

[68]

[69]

[70]

[75]

[76]

Kenneth Houkjeer, Kristian Torp, and Rico Wind. “Simple and Realistic
Data Generation”. In: Proceedings of the 32nd International Conference on
Very Large Data Bases. VLDB ’06. Seoul, Korea: VLDB Endowment, 2006,
pp. 1243-1246.

Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative Filtering for
Implicit Feedback Datasets”. In: Proceedings of the 2008 Fighth IEEE In-
ternational Conference on Data Mining. ICDM ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 263-272. 1SBN: 978-0-7695-3502-9. DOI:
10.1109/1ICDM.2008.22.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. Recommender systems: an introduction. Cambridge University
Press, 2010. po1: 10.1017/CB09780511763113.

Dietmar Jannach, Lukas Lerche, Iman Kamehkhosh, and Michael Jugovac.
“What recommenders recommend: an analysis of recommendation biases
and possible countermeasures”. In: User Modeling and User-Adapted Inter-
action 25.5 (2015), pp. 427-491. DOT: 10.1007/s11257-015-9165-3.

Kalervo Jarvelin and Jaana Kekaldinen. “Cumulated gain-based evalua-
tion of IR techniques”. In: ACM Transactions on Information Systems 20.4
(2002), pp. 422-446. pDOIL: 10.1145/582415.582418.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve
Jégou, and Tomas Mikolov. “FastText.zip: Compressing text classification
models”. In: arXiv preprint (2016). URL: https://arxiv.org/abs/1612.
03651.

Daniel Jurafsky and James H. Martin. Speech and Language Processing.
Prentice Hall, 2008. 1SBN: 978-0-13-187321-6.

Andrej Karpathy and Li Fei-Fei. “Deep visual-semantic alignments for gener-
ating image descriptions”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2015, pp. 3128-3137. por: 10.1109/
TPAMI.2016.2598339.

Young Ae Kim and Jaideep Srivastava. “Impact of Social Influence in e-
Commerce Decision Making”. In: Proceedings of the Ninth International
Conference on FElectronic Commerce. ICEC ’07. Minneapolis, MN, USA:
ACM, 2007, pp. 293-302. 1sBN: 978-1-59593-700-1. DOI: 10.1145/1282100.
1282157.

Barbara Kitchenham and Stuart Charters. Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering. 2007.

172

https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1017/CBO9780511763113
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1145/582415.582418
https://arxiv.org/abs/1612.03651
https://arxiv.org/abs/1612.03651
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1145/1282100.1282157
https://doi.org/10.1145/1282100.1282157

BIBLIOGRAPHY

78]

[79]

[30]

[81]

[85]

Johannes Kunkel, Benedikt Loepp, and Jiirgen Ziegler. “A 3D Item Space
Visualization for Presenting and Manipulating User Preferences in Collab-
orative Filtering”. In: Proceedings of the 22nd International Conference on
Intelligent User Interfaces. IUI '17. New York, NY, USA: ACM, 2017, pp. 3
15. por: 10.1145/3025171.3025189.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436-444. poO1: 10.1038/nature14539.

Simone Leonardi, Diego Monti, Giuseppe Rizzo, and Maurizio Morisio.
“Mining Micro-Influencers from Social Media Posts”. In: Proceedings of the
35th Annual ACM Symposium on Applied Computing. Brno, Czech Repub-
lic: ACM, 2020, pp. 867-874. DOI: 10.1145/3341105.3373954.

Simone Leonardi, Diego Monti, Giuseppe Rizzo, and Maurizio Morisio.
“Multilingual Transformer-Based Personality Traits Estimation”. In: Infor-
mation 11.4 (Apr. 2020), p. 179. DOI: 10.3390/inf011040179.

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang.
“Recommender system application developments: A survey”. In: Decision
Support Systems 74 (June 2015), pp. 12-32. DOI: 10.1016/j.dss.2015.03.
008.

Malte Ludewig and Dietmar Jannach. “Evaluation of session-based recom-
mendation algorithms”. In: User Modeling and User-Adapted Interaction
28.4-5 (2018), pp. 331-390. DOI: 10.1007/s11257-018-9209-6.

Nikos Manouselis and Constantina Costopoulou. “Analysis and Classifica-
tion of Multi-Criteria Recommender Systems”. In: World Wide Web 10.4
(2007), pp. 415-441. DOI: 10.1007/511280-007-0019-8.

Nikos Manouselis and Constantina Costopoulou. “Preliminary Study of the
Expected Performance of MAUT Collaborative Filtering Algorithms”. In:
The Open Knowlege Society. A Computer Science and Information Systems
Manifesto. New York, NY, USA: Springer Publishing, 2008, pp. 527-536.
DOI: 10.1007/978-3-540-87783-7_67.

Gabriel Meseguer-Brocal, Geoffroy Peeters, Guillaume Pellerin, Michel
Buffa, Elena Cabrio, Catherine Faron Zucker, Alain Giboin, Isabelle Mirbel,
Romain Hennequin, Manuel Moussallam, Francesco Piccoli, and Thomas
Fillon. “WASABI: a Two Million Song Database Project with Audio and
Cultural Metadata plus WebAudio enhanced Client Applications”. In: Pro-
ceedings of 3rd Web Audio Conference. London, United Kingdom, 2017. URL:
https://qmro.qgmul.ac.uk/xmlui/handle/123456789/26123.

173

https://doi.org/10.1145/3025171.3025189
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3341105.3373954
https://doi.org/10.3390/info11040179
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1016/j.dss.2015.03.008
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11280-007-0019-8
https://doi.org/10.1007/978-3-540-87783-7_67
https://qmro.qmul.ac.uk/xmlui/handle/123456789/26123

BIBLIOGRAPHY

[87]

[33]

[90]

[91]

[92]

93]

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.
“Distributed representations of words and phrases and their compositional-

ity”. In: Advances in neural information processing systems. 2013, pp. 3111—
3119.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev
Khudanpur. “Recurrent neural network based language model”. In: Inter-
speech. Vol. 2. 2010, p. 3.

Miquel Montaner, Beatriz Loépez, and Josep Lluis de la Rosa. “Evalua-
tion of recommender systems through simulated users”. In: Proceedings
of the 4th International Workshop on Pattern Recognition in Information
Systems. Setubal, Portugal: SciTePress, 2004, pp. 1-6. DoI: 10 . 5220/
0002622703030308.

Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “A Distributed and
Accountable Approach to Offline Recommender Systems Evaluation”. In:
Proceedings of the Workshop on Offline Evaluation for Recommender Sys-
tems co-located with the 12th ACM Conference on Recommender Systems.
Vancouver, BC, Canada: Workshop Organizers, 2018. URL: https://arxiv.
org/abs/1810.04957.

Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “All You Need is Rat-
ings: A Clustering Approach to Synthetic Rating Datasets Generation”. In:
Proceedings of the Workshop on Reinforcement and Robust Estimators co-
located with the 13th ACM Conference on Recommender Systems. Copen-
hagen, Denmark: Workshop Organizers, 2019. URL: https://arxiv.org/
abs/1909.00687.

Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. “Visualizing Ratings
in Recommender System Datasets”. In: Proceedings of the 6th Joint Work-
shop on Interfaces and Human Decision Making for Recommender Systems
co-located with the 13th ACM Conference on Recommender Systems. Copen-
hagen, Denmark: CEUR-WS.org, 2019, pp. 60-64. URL: http://ceur-
ws.org/Vol-2450/short2.pdf.

Diego Monti, Enrico Palumbo, Giuseppe Rizzo, Pasquale Lisena, Raphaél
Troncy, Michael Fell, Elena Cabrio, and Maurizio Morisio. “An Ensemble
Approach of Recurrent Neural Networks Using Pre-Trained Embeddings for
Playlist Completion”. In: Proceedings of the ACM Recommender Systems
Challenge 2018. RecSys Challenge '18. Vancouver, BC, Canada: ACM, 2018,
13:1-13:6. DOI: 10.1145/3267471.3267484.

Diego Monti, Enrico Palumbo, Giuseppe Rizzo, and Maurizio Morisio. “Se-
queval: A framework to assess and benchmark sequence-based recommender
systems”. In: Proceedings of the Workshop on Offline Evaluation for Recom-
mender Systems co-located with the 12th ACM Conference on Recommender

174

https://doi.org/10.5220/0002622703030308
https://doi.org/10.5220/0002622703030308
https://arxiv.org/abs/1810.04957
https://arxiv.org/abs/1810.04957
https://arxiv.org/abs/1909.00687
https://arxiv.org/abs/1909.00687
http://ceur-ws.org/Vol-2450/short2.pdf
http://ceur-ws.org/Vol-2450/short2.pdf
https://doi.org/10.1145/3267471.3267484

BIBLIOGRAPHY

[94]

[95]

[96]

[97]

[99]

[100]

[101]

Systems. Vancouver, BC, Canada: Workshop Organizers, 2018. URL: https:
//arxiv.org/abs/1810.04956.

Diego Monti, Enrico Palumbo, Giuseppe Rizzo, and Maurizio Morisio.
“Sequeval: An Offline Evaluation Framework for Sequence-Based Recom-
mender Systems”. In: Information 10.5 (May 2019), p. 174. DOI: 10.3390/
info10050174.

Cataldo Musto, Pasquale Lops, Pierpaolo Basile, Marco de Gemmis, and
Giovanni Semeraro. “Semantics-aware Graph-based Recommender Systems
Exploiting Linked Open Data”. In: Proceedings of the 2016 Conference on
User Modeling Adaptation and Personalization. UMAP ’16. Halifax, Nova
Scotia, Canada: ACM, 2016, pp. 229-237. 1SBN: 978-1-4503-4368-8. DOTI:
10.1145/2930238.2930249.

Jorge Nocedal. “Updating quasi-Newton matrices with limited storage”. In:
Mathematics of Computation 35.151 (1980), pp. 773-782. DOIL: 10.1090/
s0025-5718-1980-0572855-7.

Tommaso Di Noia, Vito Claudio Ostuni, Jessica Rosati, Paolo Tomeo, and
Eugenio Di Sciascio. “An analysis of users’ propensity toward diversity in
recommendations”. In: Proceedings of the 8th ACM Conference on Recom-
mender Systems. ACM Press, 2014, pp. 285-288. DOI: 10.1145/2645710.
2645774.

Vito Claudio Ostuni, Tommaso Di Noia, Roberto Mirizzi, and Fugenio Di
Sciascio. “A Linked Data Recommender System Using a Neighborhood-
Based Graph Kernel”. In: E-Commerce and Web Technologies. EC-Web
2014. Springer International Publishing, 2014, pp. 89—-100. 1SBN: 978-3-319-
10491-1. por: 10.1007/978-3-319-10491-1 _10.

Enrico Palumbo, Diego Monti, Giuseppe Rizzo, Raphaél Troncy, and Elena
Baralis. “entity2rec: Property-Specific Knowledge Graph Embeddings for
Item Recommendation”. In: Expert Systems with Applications 151 (Aug.
2020), p. 113235. DOI: 10.1016/j.eswa.2020.113235.

Enrico Palumbo, Giuseppe Rizzo, Raphaél Troncy, and Elena Baralis. “Pre-
dicting Your Next Stop-over from Location-based Social Network Data with
Recurrent Neural Networks”. In: Proceedings of the 2nd Workshop on Recom-
menders in Tourism co-located with 11th ACM Conference on Recommender
Systems. CEUR Workshop Proceedings 1906. CEUR-WS.org, 2017, pp. 1-8.
URL: http://ceur-ws.org/Vol-1906/paperl.pdf.

Dimitris Paraschakis, Bengt J. Nilsson, and John Hollander. “Comparative
Evaluation of Top-N Recommenders in e-Commerce: An Industrial Perspec-
tive”. In: IEEFE 14th International Conference on Machine Learning and
Applications. IEEE, 2015, pp. 1024-1031. poI: 10.1109/icmla.2015.183.

175

https://arxiv.org/abs/1810.04956
https://arxiv.org/abs/1810.04956
https://doi.org/10.3390/info10050174
https://doi.org/10.3390/info10050174
https://doi.org/10.1145/2930238.2930249
https://doi.org/10.1090/s0025-5718-1980-0572855-7
https://doi.org/10.1090/s0025-5718-1980-0572855-7
https://doi.org/10.1145/2645710.2645774
https://doi.org/10.1145/2645710.2645774
https://doi.org/10.1007/978-3-319-10491-1_10
https://doi.org/10.1016/j.eswa.2020.113235
http://ceur-ws.org/Vol-1906/paper1.pdf
https://doi.org/10.1109/icmla.2015.183

BIBLIOGRAPHY

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim.
“A literature review and classification of recommender systems research”.
In: Expert Systems with Applications 39.11 (2012), pp. 10059-10072. DOTI:
10.1016/j.eswa.2012.02.038.

Marden Pasinato, Carlos Eduardo Mello, Marie-Aude Aufaure, and Geraldo
Zimbrao. “Generating Synthetic Data for Context-Aware Recommender Sys-
tems”. In: 2013 BRICS Congress on Computational Intelligence and 11th
Brazilian Congress on Computational Intelligence. New York, NY, USA:
IEEE, 2013, pp. 563-567. DOI: 10.1109/brics-cci-cbic.2013.99.

Alexandre Passant. “dbrec: Music Recommendations Using DBpedia”. In:
The Semantic Web. Vol. 2. ISWC 2010. Springer Berlin Heidelberg, 2010,
pp. 209-224. DOI: 10.1007/978-3-642-17749-1_14.

Ivens Portugal, Paulo Alencar, and Donald Cowan. “The use of machine
learning algorithms in recommender systems: A systematic review”. In: Fux-
pert Systems with Applications 97 (2018), pp. 205-227. DOT: 10.1016/j .
eswa.2017.12.020.

Vasiliki Pouli, Stella Kafetzoglou, Eirini Eleni Tsiropoulou, Aggeliki Dim-
itriou, and Symeon Papavassiliou. “Personalized multimedia content re-
trieval through relevance feedback techniques for enhanced user experience”.
In: 13th International Conference on Telecommunications. IEEE, 2015. DOI:
10.1109/contel.2015.7231205.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. “Opinion Word Expansion
and Target Extraction through Double Propagation”. In: Comput. Linguist.
37.1 (2011), pp. 9-27. 1SSN: 0891-2017. DOI: 10.1162/coli_a_00034.

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. “Sequence-
Aware Recommender Systems”. In: ACM Computing Surveys 51.4 (2018),
pp. 1-36. DOL: 10.1145/31906186.

Radim Rehurek and Petr Sojka. “Software Framework for Topic Modelling
with Large Corpora”. In: Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Valletta, Malta: ELRA, 2010, pp. 45-50.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. “Fac-
torizing personalized Markov chains for next-basket recommendation”. In:
Proceedings of the 19th International Conference on World Wide Web. ACM
Press, 2010, pp. 811-820. DOT: 10.1145/1772690.1772773.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. “BPR: Bayesian Personalized Ranking from Implicit Feedback”. In:

Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press, 2009, pp. 452—

176

https://doi.org/10.1016/j.eswa.2012.02.038
https://doi.org/10.1109/brics-cci-cbic.2013.99
https://doi.org/10.1007/978-3-642-17749-1_14
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1109/contel.2015.7231205
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.1145/3190616
https://doi.org/10.1145/1772690.1772773

BIBLIOGRAPHY

[112]

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

461. 1SBN: 978-0-9749039-5-8. URL: https://arxiv.org/pdf/1205.2618.
pdf.

Francesco Ricci, Lior Rokach, and Bracha Shapira. “Recommender Sys-
tems: Introduction and Challenges”. In: Recommender Systems Handbook.
Springer, 2015. Chap. 1, pp. 1-34. por: 10.1007/978-1-4899-7637-6_1.

Cornelis Joost van Rijsbergen. Information Retrieval. Butterworth-
Heinemann, 1979.

Graeme D. Ruxton. “The unequal variance t-test is an underused alternative
to Student’s t-test and the Mann—Whitney U test”. In: Behavioral Ecology
17.4 (2006), pp. 688-690. DOI: 10.1093/beheco/ark016.

Carsten Saathoff and Ansgar Scherp. “Unlocking the Semantics of Multi-
media Presentations in the Web with the Multimedia Metadata Ontology™”.
In: Proceedings of the 19th International Conference on World Wide Web.
WWW ’10. Raleigh, North Carolina, USA: ACM, 2010, pp. 831-840. ISBN:
978-1-60558-799-8. DOI: 10.1145/1772690.1772775.

Alan Said and Alejandro Bellogin. “Comparative recommender system eval-
uation”. In: Proceedings of the 8th ACM Conference on Recommender Sys-
tems. ACM Press, 2014, pp. 129-136. DOL: 10.1145/2645710.2645746.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. “Analysis
of recommendation algorithms for e-commerce”. In: Proceedings of the 2nd
ACM Conference on FElectronic Commerce. ACM Press, 2000, pp. 158-167.
DOI: 10.1145/352871.352887.

Claude Elwood Shannon. “A Mathematical Theory of Communication”. In:
Bell System Technical Journal 27.3 (1948), pp. 379-423. DOIL: 10.1002/j .
1538-7305.1948.tb01338.x.

Gamgarn Somprasertsri and Pattarachai Lalitrojwong. “Extracting product
features and opinions from product reviews using dependency analysis”. In:
Seventh International Conference on Fuzzy Systems and Knowledge Discov-
ery. FSKD ’10. IEEE, 2010, pp. 2358-2362. DOI: 10.1109/FSKD . 2010 .
5569865.

Eleni Stai, Stella Kafetzoglou, Eirini Eleni Tsiropoulou, and Symeon Pa-
pavassiliou. “A holistic approach for personalization, relevance feedback &
recommendation in enriched multimedia content”. In: Multimedia Tools and
Applications 77.1 (2016), pp. 283-326. DOT: 10.1007/s11042-016-4209-1.

Harald Steck. “Evaluation of Recommendations: Rating-prediction and
Ranking”. In: Proceedings of the 7th ACM Conference on Recommender
Systems. RecSys "13. Hong Kong, China: ACM, 2013, pp. 213-220. ISBN:
978-1-4503-2409-0. poI1: 10.1145/2507157.2507160.

177

https://arxiv.org/pdf/1205.2618.pdf
https://arxiv.org/pdf/1205.2618.pdf
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1093/beheco/ark016
https://doi.org/10.1145/1772690.1772775
https://doi.org/10.1145/2645710.2645746
https://doi.org/10.1145/352871.352887
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/FSKD.2010.5569865
https://doi.org/10.1109/FSKD.2010.5569865
https://doi.org/10.1007/s11042-016-4209-1
https://doi.org/10.1145/2507157.2507160

BIBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

Xiaoyuan Su and Taghi M. Khoshgoftaar. “A Survey of Collaborative Fil-
tering Techniques”. In: Advances in Artificial Intelligence (2009), pp. 1-19.
DOI: 10.1155/2009/421425.

Xin Su, Giancarlo Sperli, Vincenzo Moscato, Antonio Picariello, Christian
Esposito, and Chang Choi. “An Edge Intelligence Empowered Recommender
System Enabling Cultural Heritage Applications”. In: IEEFE Transactions on
Industrial Informatics (2019), pp. 1-1. boI: 10.1109/tii.2019.2908056.

[lya Sutskever, James Martens, and Geoffrey Hinton. “Generating text with
recurrent neural networks”. In: Proceedings of the 28th International Con-
ference on Machine Learning. 2011, pp. 1017-1024.

Charles Sutton and Andrew McCallum. “An Introduction to Conditional
Random Fields”. In: Foundations and Trends in Machine Learning 4.4
(2011), pp. 267-373. DOL: 10.1561/2200000013.

Duyu Tang, Bing Qin, and Ting Liu. “Document Modeling with Gated Re-
current Neural Network for Sentiment Classification”. In: EMNLP. 2015,
pp. 1422-1432. por: 10.18653/v1/D15-1167.

Karen H. L. Tso and Lars Schmidt-Thieme. “Empirical Analysis of
Attribute-Aware Recommendation Algorithms with Variable Synthetic
Data”. In: Studies in Classification, Data Analysis, and Knowledge Orga-
nization. New York, NY, USA: Springer Publishing, 2006, pp. 271-278. DOT:
10.1007/3-540-34416-0_29.

Andrew H. Turpin and William Hersh. “Why batch and user evaluations do
not give the same results”. In: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval. ACM Press, 2001, pp. 225-231. DOI: 10.1145/383952.383992.

lacopo Vagliano, Diego Monti, and Maurizio Morisio. “SemRevRec: A Rec-
ommender System based on User Reviews and Linked Data”. In: Proceedings
of the Poster Track of the 11th ACM Conference on Recommender Sys-
tems. Como, Italy: CEUR-WS.org, 2017. URL: http://ceur-ws.org/Vol-
1905/recsys2017_poster10.pdf.

Iacopo Vagliano, Diego Monti, Ansgar Scherp, and Maurizio Morisio. “Con-
tent Recommendation Through Semantic Annotation of User Reviews and
Linked Data”. In: Proceedings of the Knowledge Capture Conference. K-CAP
2017. Austin, TX, USA: ACM, 2017, 32:1-32:4. por: 10.1145/3148011.
3148035.

178

https://doi.org/10.1155/2009/421425
https://doi.org/10.1109/tii.2019.2908056
https://doi.org/10.1561/2200000013
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.1007/3-540-34416-0_29
https://doi.org/10.1145/383952.383992
http://ceur-ws.org/Vol-1905/recsys2017_poster10.pdf
http://ceur-ws.org/Vol-1905/recsys2017_poster10.pdf
https://doi.org/10.1145/3148011.3148035
https://doi.org/10.1145/3148011.3148035

BIBLIOGRAPHY

[131]

[132]

[133]

[134]

135

[136]

[137]

138

lacopo Vagliano, Cristhian Figueroa, Oscar Rodriguez Rocha, Marco Torchi-
ano, Catherine Faron-Zucker, and Maurizio Morisio. “ReDyAl: A Dynamic
Recommendation Algorithm based on Linked Data”. In: New Trends in
Content-Based Recommender Systems. CEUR Workshop Proceedings 1673.
CEUR-WS.org, 2016, pp. 31-38. URL: http://ceur-ws.org/Vol-1673/
paper6.pdf.

Sail Vargas and Pablo Castells. “Rank and Relevance in Novelty and Diver-
sity Metrics for Recommender Systems”. In: Proceedings of the Fifth ACM
Conference on Recommender Systems. RecSys '11. New York, NY, USA:
ACM, 2011, pp. 109-116. DOI: 10.1145/2043932.2043955.

Hongning Wang, Yue Lu, and Chengxiang Zhai. “Latent aspect rating anal-
ysis on review text data”. In: Proceedings of the 16th ACM SIGKDD inter-
national conference on knowledge discovery and data mining. ACM, 2010.
DOI: 10.1145/1835804.1835903.

Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and
Xueqi Cheng. “Learning Hierarchical Representation Model for Next Basket
Recommendation”. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM
Press, 2015, pp. 403-412. DOL: 10.1145/2766462 . 2767694.

Yiyu Yao. “Measuring retrieval effectiveness based on user preference of
documents”. In: Journal of the American Society for Information Science
46.2 (1995), pp. 133-145. DOI: 10.1002/ (sici) 1097 -4571(199503) 46 :
2<133::aid-asi6>3.0.co;2-z.

Alexander Yates, James Joseph, Ana-Maria Popescu, Alexander D. Cohn,
and Nick Sillick. “SHOPSMART: Product Recommendations Through Tech-
nical Specifications and User Reviews”. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management. CIKM ’08. ACM,
2008, pp. 1501-1502. 1SBN: 978-1-59593-991-3. DOI: 10 . 1145/ 1458082 .
1458355.

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon. “Scalable Coordi-
nate Descent Approaches to Parallel Matrix Factorization for Recommender
Systems”. In: 2012 IEEFE 12th International Conference on Data Mining.
New York, NY, USA: IEEE, 2012, pp. 765-774. DOI: 10.1109/icdm.2012.
168.

Mi Zhang and Neil Hurley. “Avoiding Monotony: Improving the Diversity
of Recommendation Lists”. In: Proceedings of the 2008 ACM Conference on
Recommender Systems. RecSys 08. ACM, 2008, pp. 123-130. 1SBN: 978-1-
60558-093-7. DOI: 10.1145/1454008.1454030.

179

http://ceur-ws.org/Vol-1673/paper6.pdf
http://ceur-ws.org/Vol-1673/paper6.pdf
https://doi.org/10.1145/2043932.2043955
https://doi.org/10.1145/1835804.1835903
https://doi.org/10.1145/2766462.2767694
https://doi.org/10.1002/(sici)1097-4571(199503)46:2<133::aid-asi6>3.0.co;2-z
https://doi.org/10.1002/(sici)1097-4571(199503)46:2<133::aid-asi6>3.0.co;2-z
https://doi.org/10.1145/1458082.1458355
https://doi.org/10.1145/1458082.1458355
https://doi.org/10.1109/icdm.2012.168
https://doi.org/10.1109/icdm.2012.168
https://doi.org/10.1145/1454008.1454030

BIBLIOGRAPHY

[139)]

[140]

[141]

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. “Deep Learning Based Rec-
ommender System”. In: ACM Computing Surveys 52.1 (2019), pp. 1-38. DOI:
10.1145/3285029.

Baoyao Zhou, Siu Cheung Hui, and Kuiyu Chang. “An intelligent recom-
mender system using sequential Web access patterns”. In: IEEE Confer-
ence on Cybernetics and Intelligent Systems. IEEE, 2004, pp. 393-398. DOI:
10.1109/iccis.2004.1460447.

Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
“Improving recommendation lists through topic diversification”. In: Proceed-
ings of the 14th International Conference on World Wide Web. ACM Press,
2005, pp. 22-32. DOI: 10.1145/1060745.1060754.

180

https://doi.org/10.1145/3285029
https://doi.org/10.1109/iccis.2004.1460447
https://doi.org/10.1145/1060745.1060754

This Ph.D. thesis has been typeset
by means of the TgX-system facil-
ities. The typesetting engine was
pdfIXTEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

