1,149 research outputs found

    Identifying public transport gaps using time-dependent accessibility levels

    No full text
    One of the concerns that has aroused much scholarly attention in transport geography lately is the extent to which public transport provision enables the less privileged population segments, especially those without privately owned motorized vehicles, to participate in activities that are deemed normal within the society they live in. This study contributes to this line of inquiry by proposing a methodology for identifying public transit gaps, a mismatch between the socially driven demand for transit and the supply provided by transit agencies. The methodology draws on the latest accomplishments in the field of modeling time-continuous, schedule-based public transport accessibility. Accessibility levels to key destinations are calculated at regular time intervals, and synoptic metrics of these levels over various peak and off-peak time windows are computed for weekdays and weekends. As a result, a temporally reliable picture of accessibility by public transport is constructed. The obtained index of public transport provision is compared to a public transport needs index based on the spatial distribution of various socio-demographics, in order to highlight spatial mismatches between these two indices. The study area consists of Flanders, which is the northern, Dutch-speaking region of Belgium. The results indicate that mainly suburban areas are characterized by high public transport gaps. Due to the time-variability of public transport frequencies, these gaps differ over time

    Recommendations to Harmonize Travel Behaviour Analysis

    Get PDF
    Among several other efforts to identify data needs and to harmonize travel surveys in Europe, this report aims to define recommendations to collect and report travel data with the identification of main data needs and gaps, and with the analysis of alternative sources of information and new data collection techniques. Based on the findings of the previous tasks and a stakeholder workshop in OPTIMISM project, and after a brief review of past studies in the same direction, this report starts from a list of variables which are needed for policy making but are unavailable/insufficient in the context of existing data collection methodologies especially with respect to NTS. The report then, explores alternative sources of information, potential use of modern data collection techniques (mainly ICT applications such as GPS and smart phone technologies) and options to merge them with NTS data. Finally, it discusses recommendations for a Europe-wide travel survey considering the current data needs for policy making in transportation. The research has been conducted under the OPTIMISM project which was received funding from the European Union's Seventh Framework Programme (FP7/2007-2013), grant agreement n° 284892. The report has been produced as the OPTIMISM project deliverable 2.3: Recommendations to Harmonize Travel Behaviour Analysis.JRC.J.1-Economics of Climate Change, Energy and Transpor

    An integrated urban systems model with GIS

    Get PDF
    The purpose of the research is to develop an integrated urban systems model, which will assist in formulating a better land use-transportation policy by simulating the relationships between land use patterns and travel behavior, integrated with geographic information systems (GISs). In order to make an integrated land use-transportation model possible with the assistance of GISs technologies, the following four sub-systems have been developed: (1) an effective traffic analysis zone generation system; (2) an iterative land use and transportation modeling system; (3) efficient interfaces between GIS and land use, and GIS and transportation models; and (4) a user-friendly graphic user interface (GUI) system. By integrating these sub-systems, a variety of alternative land use-transportation policies can be evaluated through the modification of input parameters in each simulation. Eventually, the developed model using a GIS will assist in formulating an effective land use policy by obtaining robust simulation results for both land use-transportation planners and decision makers. The model has been applied to the Urbana-Champaign area as well as to the Seoul region in Korea for a demonstration of the workings of the model.

    Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki : An open data approach

    Get PDF
    In many European cities, support for public transport and cycling in daily mobility is considered an efficient means to reduce air pollution, traffic jams, and carbon emissions. Shared bicycle systems have turned out effective in increasing cycling in many urban areas, particularly when combined with public transportation. In this study, we make an effort to model a hypothetical shared bike system and quantify its spatial effect on public transport travel times. The study area is one of the fastest growing urban agglomerations in Europe, the Greater Helsinki area in Finland. We model the travel times between the population and 16 important destinations in the city centre of Helsinki by public transportation and by public transportation extended with shared bikes. We use open route and timetable databases and tools developed in-house to perform extensive data mining through application programming interfaces (APIs). We show 1) that open transport information interfaces can provide a new effective means to evaluate multimodal accessibility patterns in urban areas and 2) that the launch of a bicycle sharing system could reduce public transportation travel times in the study area on average by more than 10%, meaning some 6 min per each individual trip. We conclude that bicycle sharing systems complementing the traditional public transport system could potentially increase the competitiveness and attractiveness of sustainable modes of urban transport and thus help cities to promote sustainable daily mobility. Finally, we emphasize that the availability of open data sources on urban transport information – such as the public transport data in our case – is vital for analysis of multimodal urban mobility patterns.In many European cities, support for public transport and cycling in daily mobility is considered an efficient means to reduce air pollution, traffic jams, and carbon emissions. Shared bicycle systems have turned out effective in increasing cycling in many urban areas, particularly when combined with public transportation. In this study, we make an effort to model a hypothetical shared bike system and quantify its spatial effect on public transport travel times. The study area is one of the fastest growing urban agglomerations in Europe, the Greater Helsinki area in Finland. We model the travel times between the population and 16 important destinations in the city centre of Helsinki by public transportation and by public transportation extended with shared bikes. We use open route and timetable databases and tools developed in-house to perform extensive data mining through application programming interfaces (APIs). We show 1) that open transport information interfaces can provide a new effective means to evaluate multimodal accessibility patterns in urban areas and 2) that the launch of a bicycle sharing system could reduce public transportation travel times in the study area on average by more than 10%, meaning some 6 min per each individual trip. We conclude that bicycle sharing systems complementing the traditional public transport system could potentially increase the competitiveness and attractiveness of sustainable modes of urban transport and thus help cities to promote sustainable daily mobility. Finally, we emphasize that the availability of open data sources on urban transport information – such as the public transport data in our case – is vital for analysis of multimodal urban mobility patterns.Peer reviewe

    A Quantitative Framework for Assessing Vulnerability and Redundancy of Freight Transportation Networks

    Get PDF
    Freight transportation networks are an important component of everyday life in modern society. Disruption to these networks can make peoples’ daily lives extremely difficult as well as seriously cripple economic productivity. This dissertation develops a quantitative framework for assessing vulnerability and redundancy of freight transportation networks. The framework consists of three major contributions: (1) a two- stage approach for estimating a statewide truck origin-destination (O-D) trip table, (2) a decision support tool for assessing vulnerability of freight transportation networks, and (3) a quantitative approach for measuring redundancy of freight transportation networks.The dissertation first proposes a two-stage approach to estimate a statewide truck O-D trip table. The proposed approach is supported by two sequential stages: the first stage estimates a commodity-based truck O-D trip table using the commodity flows derived from the Freight Analysis Framework (FAF) database, and the second stage uses the path flow estimator (PFE) concept to refine the truck trip table obtained from the first stage using the truck counts from the statewide truck count program. The model allows great flexibility of incorporating data at different spatial levels for estimating the truck O- D trip table. The results from the second stage provide us a better understanding of truck flows on the statewide truck routes and corridors, and allow us to better manage the anticipated impacts caused by network disruptions.A decision support tool is developed to facilitate the decision making system through the application of its database management capabilities, graphical user interface, GIS-based visualization, and transportation network vulnerability analysis. The vulnerability assessment focuses on evaluating the statewide truck-freight bottlenecks/chokepoints. This dissertation proposes two quantitative measures: O-D connectivity (or detour route) in terms of distance and freight flow pattern change in terms of vehicle miles traveled (VMT). The case study adopts a “what-if” analysis approach by generating the disruption scenarios of the structurally deficient bridges in Utah due to earthquakes. In addition, the potential impacts of disruptions to multiple bridges in both rural and urban areas are evaluated and compared to the single bridge failure scenarios.This dissertation also proposes an approach to measure the redundancy of freight transportation networks based on two main dimensions: route diversity and network spare capacity. The route diversity dimension is used to evaluate the existence of multiple efficient routes available for users or the degree of connections between a specific O-D pair. The network spare capacity dimension is used to quantify the network- wide spare capacity with an explicit consideration of congestion effect. These two dimensions can complement each other by providing a two-dimensional characterization of freight transportation network redundancy. Case studies of the Utah statewide transportation network and coal multimodal network are conducted to demonstrate the features of the vulnerability and redundancy measures and the applicability of the quantitative assessment methodology

    Modelling public transport accessibility with Monte Carlo stochastic simulations: A case study of Ostrava

    Get PDF
    Activity-based micro-scale simulation models for transport modelling provide better evaluations of public transport accessibility, enabling researchers to overcome the shortage of reliable real-world data. Current simulation systems face simplifications of personal behaviour, zonal patterns, non-optimisation of public transport trips (choice of the fastest option only), and do not work with real targets and their characteristics. The new TRAMsim system uses a Monte Carlo approach, which evaluates all possible public transport and walking origin-destination (O-D) trips for k-nearest stops within a given time interval, and selects appropriate variants according to the expected scenarios and parameters derived from local surveys. For the city of Ostrava, Czechia, two commuting models were compared based on simulated movements to reach (a) randomly selected large employers and (b) proportionally selected employers using an appropriate distance-decay impedance function derived from various combinations of conditions. The validation of these models confirms the relevance of the proportional gravity-based model. Multidimensional evaluation of the potential accessibility of employers elucidates issues in several localities, including a high number of transfers, high total commuting time, low variety of accessible employers and high pedestrian mode usage. The transport accessibility evaluation based on synthetic trips offers an improved understanding of local situations and helps to assess the impact of planned changes.Web of Science1124art. no. 709

    Framework for integrated planning of bus and paratransit services in Indian cities

    Get PDF
    Public transport services in India and many other developing countries are provided by a combination of formal-Government led public transport systems and informal paratransit or Intermediate Public Transport (IPT) systems, which offer shuttle services along high demand corridors with passengers boarding and alighting at multiple points. Despite limited Government support, paratransit systems continue to thrive in many cities serving a crucial shared mobility need of users, without which cities would have more private vehicle usage. Due to their informal nature and the perceived competition to formal public transport systems, they have traditionally been either excluded from the public transport planning processes or designed as a feeder service to the formal transit system. The current thesis recognises paratransit’s role in serving end to end travel demand needs, particularly in developing economies with limited public transport supply and not just being a feeder to the formal public transport system. Hence, we develop an integrated planning framework that enables formal and informal public transport systems to operate as complementary systems towards meeting the mobility needs of the city. We proved an integrated planning framework based on comprehensive understanding of the demand and supply characteristics of both formal and informal systems which currently operate independently to realign services and complement each other. The tactical planning stage of public transport planning i.e. frequency setting was identified as the ideal stage of planning for integration of the two types of services. This will ensure continuity of their existing route networks and at the same time allow for paratransit services’ flexibility to switch operations between routes. Visakhapatnam, a representative medium sized Indian city with a significant presence of formal public transport in the form of city bus services and paratransit services provided by three-wheeler auto-rickshaws with a seating capacity of three to six passengers, was selected as the case city to demonstrate the methodology. A household survey based data collection and analysis methodology was adopted to analyse the socio-economic and travel demand characteristics of city bus and paratransit users. The variables impacting users’ choice between these two systems were derived through binary logistic regression. The high frequency and low occupancy paratransit systems were more popular among shorter trips, while longer trips preferred the fixed table bus systems. The operational characteristics of bus and paratransit systems were derived through a combination of primary surveys with paratransit operators and secondary data on the city bus operations. Data regarding their network of operation, services offered, passenger demand and revenue generated were collected for analysis. Buses perform a service function in the city by operating throughout the day and on a wider network, while paratransit operates with a profit motive only on high demand corridors and during peak hours. A Data Envelopment Analysis (DEA) based methodology was adopted to compare the performance efficiency of the two systems using a set of input and output indicators that define the performance of the two systems. Paratransit operations were identified to be more efficient compared to buses, due to their demand responsive operations. The lower efficiency of buses was also due to their service obligation to the city to provide affordable services throughout the day, even in areas with low demand. A bi-level transit assignment and frequency optimisation framework is developed to integrate formal bus and paratransit services. The lower-level of the model solves for the multi- modal transit assignment problem while the upper level solves for the integrated frequency optimisation problem. The transit assignment problem was solved from the users perspective i.e. to minimise their travel time through the user-equilibrium method. The frequency optimisation problem was solved using an integer programming formulation with the objective of minimising operational cost of bus and paratransit systems while meeting constraints like the travel demand on any link. The outputs from the optimisation exercise were used to quantify the impact of the public transport system at various levels i.e. users total travel time spent in the system, operators cost of providing the services and the overall impact on the society by estimating its road space requirement and emissions. Alternative user demand and transit supply scenarios were tested to assess their impacts on the society. The results show significant operational cost benefits of an integrated transit assignment and frequency planning approach where paratransit provides demand responsive services for short distance trips while formal public transport provides fixed schedule services on with broader network coverage. The analysis established the complimentary role played by bus and paratransit systems in meeting users travel demands. Therefore, it is recommended that cities harness both the systems towards meeting increasing travel needs of developing economies. Formal transit will continue to be the core of the public transport system, providing fixed route services, while paratransit can augment its capacity on high demand corridors and during peak hours. The planning and frequency optimisation framework developed in this thesis can help cities in identifying the modal-mix of fixed route public transport and on-demand services

    Distributed multimodal journey planner based on mashup of individual planners’ APIs

    Get PDF
    In this research work we describe the creation of the concept of a distributed journey planning system that links as many journey planning services as are available in public transportation operators and willing to participate in one or more networks of journey planners across Europe. This is integrated on European project MASAI and it is part of a development of mobile solutions that allows journey plans in Europe based on public transportation availability, with the possibility of buying tickets in a mobile device with a multi-operator scenario. A semantic context was created in order to identify which Application-Programming Interfaces (APIs) from different public transport operators to use and set start\end trip points.info:eu-repo/semantics/acceptedVersio

    SimMobility Short-Term: An Integrated Microscopic Mobility Simulator

    Get PDF
    This paper presents the development of an integrated microscopic mobility simulator, SimMobility Short-Term (ST). The simulator is integrated because its models, inputs and outputs, simulated components, and code base are integrated within a multiscale agent- and activity-based simu- lation platform capable of simulating different spatiotemporal resolutions and accounting for different levels of travelers’ decision making. The simulator is microscopic because both the demand (agents and its trips) and the supply (trip realization and movements on the network) are microscopic (i.e., modeled individually). Finally, the simulator has mobility because it copes with the multimodal nature of urban networks and the need for the flexible simulation of innovative transportation ser - vices, such as on-demand and smart mobility solutions. This paper follows previous publications that describe SimMobility’s overall framework and models. SimMobility is an open-source, multiscale platform that considers land use, transportation, and mobility-sensitive behavioral models. SimMobility ST aims at simulating the high-resolution movement of agents (traffic, transit, pedestrians, and goods) and the operation of different mobility services and control and information systems. This paper presents the SimMobility ST modeling framework and system architecture and reports on its successful calibration for Singapore and its use in several scenarios of innovative mobility applications. The paper also shows how detailed performance measures from SimMobility ST can be integrated with a daily activity and mobility patterns simulator. Such integration is crucial to model accurately the effect of different technologies and service operations at the urban level, as the identity and preferences of simulated agents are maintained across temporal decision scales, ensuring the consistency and accuracy of simulated accessibility and performance measures of each scenario.Singapore. National Research Foundation (CREATE program)Singapore-MIT Alliance. Center. Future Urban Mobility Interdisciplinary Research Grou
    corecore