83 research outputs found

    NOBLE - Flexible concept recognition for large-scale biomedical natural language processing

    Get PDF
    Background: Natural language processing (NLP) applications are increasingly important in biomedical data analysis, knowledge engineering, and decision support. Concept recognition is an important component task for NLP pipelines, and can be either general-purpose or domain-specific. We describe a novel, flexible, and general-purpose concept recognition component for NLP pipelines, and compare its speed and accuracy against five commonly used alternatives on both a biological and clinical corpus. NOBLE Coder implements a general algorithm for matching terms to concepts from an arbitrary vocabulary set. The system's matching options can be configured individually or in combination to yield specific system behavior for a variety of NLP tasks. The software is open source, freely available, and easily integrated into UIMA or GATE. We benchmarked speed and accuracy of the system against the CRAFT and ShARe corpora as reference standards and compared it to MMTx, MGrep, Concept Mapper, cTAKES Dictionary Lookup Annotator, and cTAKES Fast Dictionary Lookup Annotator. Results: We describe key advantages of the NOBLE Coder system and associated tools, including its greedy algorithm, configurable matching strategies, and multiple terminology input formats. These features provide unique functionality when compared with existing alternatives, including state-of-the-art systems. On two benchmarking tasks, NOBLE's performance exceeded commonly used alternatives, performing almost as well as the most advanced systems. Error analysis revealed differences in error profiles among systems. Conclusion: NOBLE Coder is comparable to other widely used concept recognition systems in terms of accuracy and speed. Advantages of NOBLE Coder include its interactive terminology builder tool, ease of configuration, and adaptability to various domains and tasks. NOBLE provides a term-to-concept matching system suitable for general concept recognition in biomedical NLP pipelines

    Improving broad-coverage medical entity linking with semantic type prediction and large-scale datasets

    Get PDF
    Objectives Biomedical natural language processing tools are increasingly being applied for broad-coverage information extraction—extracting medical information of all types in a scientific document or a clinical note. In such broad-coverage settings, linking mentions of medical concepts to standardized vocabularies requires choosing the best candidate concepts from large inventories covering dozens of types. This study presents a novel semantic type prediction module for biomedical NLP pipelines and two automatically-constructed, large-scale datasets with broad coverage of semantic types. Methods We experiment with five off-the-shelf biomedical NLP toolkits on four benchmark datasets for medical information extraction from scientific literature and clinical notes. All toolkits adopt a staged approach of mention detection followed by two stages of medical entity linking: (1) generating a list of candidate concepts, and (2) picking the best concept among them. We introduce a semantic type prediction module to alleviate the problem of overgeneration of candidate concepts by filtering out irrelevant candidate concepts based on the predicted semantic type of a mention. We present MedType, a fully modular semantic type prediction model which we integrate into the existing NLP toolkits. To address the dearth of broad-coverage training data for medical information extraction, we further present WikiMed and PubMedDS, two large-scale datasets for medical entity linking. Results Semantic type filtering improves medical entity linking performance across all toolkits and datasets, often by several percentage points of F-1. Further, pretraining MedType on our novel datasets achieves state-of-the-art performance for semantic type prediction in biomedical text. Conclusions Semantic type prediction is a key part of building accurate NLP pipelines for broad-coverage information extraction from biomedical text. We make our source code and novel datasets publicly available to foster reproducible research

    Disease Name Extraction from Clinical Text Using Conditional Random Fields

    Get PDF
    The aim of the research done in this thesis was to extract disease and disorder names from clinical texts. We utilized Conditional Random Fields (CRF) as the main method to label diseases and disorders in clinical sentences. We used some other tools such as MetaMap and Stanford Core NLP tool to extract some crucial features. MetaMap tool was used to identify names of diseases/disorders that are already in UMLS Metathesaurus. Some other important features such as lemmatized versions of words, and POS tags were extracted using the Stanford Core NLP tool. Some more features were extracted directly from UMLS Metathesaurus, including semantic types of words. We participated in the SemEval 2014 competition\u27s Task 7 and used its provided data to train and evaluate our system. Training data contained 199 clinical texts, development data contained 99 clinical texts, and the test data contained 133 clinical texts, these included discharge summaries, echocardiogram, radiology, and ECG reports. We obtained competitive results on the disease/disorder name extraction task. We found through ablation study that while all features contributed, MetaMap matches, POS tags, and previous and next words were the most effective features

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    Text mining processing pipeline for semi structured data D3.3

    Get PDF
    Unstructured and semi-structured cohort data contain relevant information about the health condition of a patient, e.g., free text describing disease diagnoses, drugs, medication reasons, which are often not available in structured formats. One of the challenges posed by medical free texts is that there can be several ways of mentioning a concept. Therefore, encoding free text into unambiguous descriptors allows us to leverage the value of the cohort data, in particular, by facilitating its findability and interoperability across cohorts in the project.Named entity recognition and normalization enable the automatic conversion of free text into standard medical concepts. Given the volume of available data shared in the CINECA project, the WP3 text mining working group has developed named entity normalization techniques to obtain standard concepts from unstructured and semi-structured fields available in the cohorts. In this deliverable, we present the methodology used to develop the different text mining tools created by the dedicated SFU, UMCG, EBI, and HES-SO/SIB groups for specific CINECA cohorts

    Assessing mortality prediction through different representation models based on concepts extracted from clinical notes

    Full text link
    Recent years have seen particular interest in using electronic medical records (EMRs) for secondary purposes to enhance the quality and safety of healthcare delivery. EMRs tend to contain large amounts of valuable clinical notes. Learning of embedding is a method for converting notes into a format that makes them comparable. Transformer-based representation models have recently made a great leap forward. These models are pre-trained on large online datasets to understand natural language texts effectively. The quality of a learning embedding is influenced by how clinical notes are used as input to representation models. A clinical note has several sections with different levels of information value. It is also common for healthcare providers to use different expressions for the same concept. Existing methods use clinical notes directly or with an initial preprocessing as input to representation models. However, to learn a good embedding, we identified the most essential clinical notes section. We then mapped the extracted concepts from selected sections to the standard names in the Unified Medical Language System (UMLS). We used the standard phrases corresponding to the unique concepts as input for clinical models. We performed experiments to measure the usefulness of the learned embedding vectors in the task of hospital mortality prediction on a subset of the publicly available Medical Information Mart for Intensive Care (MIMIC-III) dataset. According to the experiments, clinical transformer-based representation models produced better results with getting input generated by standard names of extracted unique concepts compared to other input formats. The best-performing models were BioBERT, PubMedBERT, and UmlsBERT, respectively

    Automated machine learning for healthcare and clinical notes analysis

    Get PDF
    Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML is to provide seamless integration of ML in various industries, which will facilitate better outcomes in everyday tasks. In healthcare, AutoML has been already applied to easier settings with structured data such as tabular lab data. However, there is still a need for applying AutoML for interpreting medical text, which is being generated at a tremendous rate. For this to happen, a promising method is AutoML for clinical notes analysis, which is an unexplored research area representing a gap in ML research. The main objective of this paper is to fill this gap and provide a comprehensive survey and analytical study towards AutoML for clinical notes. To that end, we first introduce the AutoML technology and review its various tools and techniques. We then survey the literature of AutoML in the healthcare industry and discuss the developments specific to clinical settings, as well as those using general AutoML tools for healthcare applications. With this background, we then discuss challenges of working with clinical notes and highlight the benefits of developing AutoML for medical notes processing. Next, we survey relevant ML research for clinical notes and analyze the literature and the field of AutoML in the healthcare industry. Furthermore, we propose future research directions and shed light on the challenges and opportunities this emerging field holds. With this, we aim to assist the community with the implementation of an AutoML platform for medical notes, which if realized can revolutionize patient outcomes
    • …
    corecore