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A B S T R A C T   

Objectives: Biomedical natural language processing tools are increasingly being applied for broad-coverage in-
formation extraction—extracting medical information of all types in a scientific document or a clinical note. In 
such broad-coverage settings, linking mentions of medical concepts to standardized vocabularies requires 
choosing the best candidate concepts from large inventories covering dozens of types. This study presents a novel 
semantic type prediction module for biomedical NLP pipelines and two automatically-constructed, large-scale 
datasets with broad coverage of semantic types. 
Methods: We experiment with five off-the-shelf biomedical NLP toolkits on four benchmark datasets for medical 
information extraction from scientific literature and clinical notes. All toolkits adopt a staged approach of 
mention detection followed by two stages of medical entity linking: (1) generating a list of candidate concepts, 
and (2) picking the best concept among them. We introduce a semantic type prediction module to alleviate the 
problem of overgeneration of candidate concepts by filtering out irrelevant candidate concepts based on the 
predicted semantic type of a mention. We present MEDTYPE, a fully modular semantic type prediction model 
which we integrate into the existing NLP toolkits. To address the dearth of broad-coverage training data for 
medical information extraction, we further present WIKIMED and PUBMEDDS, two large-scale datasets for medical 
entity linking. 
Results: Semantic type filtering improves medical entity linking performance across all toolkits and datasets, 
often by several percentage points of F-1. Further, pretraining MEDTYPE on our novel datasets achieves state-of- 
the-art performance for semantic type prediction in biomedical text. 
Conclusions: Semantic type prediction is a key part of building accurate NLP pipelines for broad-coverage in-
formation extraction from biomedical text. We make our source code and novel datasets publicly available to 
foster reproducible research.   

1. Introduction 

Biomedical natural language processing (NLP) tools are increasingly 
being applied for a wide variety of purposes, from clinical research [1] 
to quality improvement [2]. One of the key ways in which these tools are 
used is for broad-coverage information extraction: identifying all of the 
biomedical concepts, of all types, that are mentioned in a given docu-
ment. Several well-known biomedical NLP tools have been developed as 
standalone software packages and are regularly used for broad-coverage 
extraction in non-NLP research: for example, cTAKES [3] has been 
explored for ischemic stroke classification [4] and studying infection 

risk [5]; and MetaMap [6] is frequently used in pharmacovigilance [7] 
and has even been adapted to health outcomes study in social media [8]. 

One of the central challenges in broad-coverage information 
extraction is the diversity of concepts in the standardized vocabularies 
that form the backbone of biomedical text analysis [9]. For example, the 
Unified Medical Language System, or UMLS [10], Metathesaurus con-
tains over 3.5 million unique concepts belonging to 127 different se-
mantic types.1 While much of the prior research on biomedical NLP 
methods has focused on restricted subsets of concepts, such as diseases 
and disorders or genes and proteins [11], general-purpose tools built for 
arbitrary use must deal with the full breadth of concept types in 
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reference vocabularies. 
In this study, we propose semantic type prediction as a key component 

of general-purpose biomedical NLP pipelines. Existing pipelines gener-
ally take a multi-stage approach to information extraction that is a 
natural fit for integrating semantic type prediction. The first stage is 
mention detection (also referred to as named entity recognition, or NER), 
which involves identifying textual mentions corresponding to different 
medical concepts of interest. The second stage is medical entity linking 
(also referred to as medical concept normalization, or MCN [12]), which 
can broadly be broken into two phases of candidate gen-
eration—identifying a set of standardized concepts a specific mention 
may refer to—and disambiguation—picking the best candidate concept 
for the observed mention based on the context (includes both word and 
phrase sense disambiguation, or WSD). 

Compared to mention detection and disambiguation, candidate 
generation is an under-studied component of medical information 
extraction. Prior methods have historically relied on dictionary lookup 
and string matching [6,3] for both NER and candidate generation, 
yielding high precision but incomplete coverage [13,14]. Recent neural 
methods have taken an opposite approach to the problem by using entire 
concept inventories as candidates, providing complete coverage at the 
cost of large candidate set sizes [15–18]. However, this approach rapidly 
becomes intractable when generalizing to wider-coverage vocabularies. 
Thus, robust strategies to reduce overgeneration of candidates are 
required to leverage the high coverage afforded by neural approaches 
for a broad-coverage setting. 

In addition to cataloguing known surface forms for medical concepts, 
the UMLS Metathesaurus also assigns each concept one or more se-
mantic types; these types present a significant and under-utilized 
resource for balancing coverage with candidate set size in medical en-
tity linking. In addition to limiting the set of candidate concepts in full- 
inventory approaches, semantic type information can reduce problems 
of ambiguity in text [19–21]. For example, the string cold can refer to 
common cold (disease), cold temperature (natural phenomena), or cold 
brand (pharmacologic substance) in different contexts. Semantic type 
prediction can thus inform both full-inventory and dictionary-based 
approaches to medical entity linking. 

Identifying the semantic type of mentions has previously been shown 
to improve entity linking performance in Wikipedia [22]. However, this 
idea has not yet been systematically explored for medical entity linking, 
in part due to the dearth of annotated training data for the task. Curation 

of new biomedical text datasets faces significant barriers in the difficulty 
and cost of finding expert annotators [23] as well as the confidentiality 
and privacy issues inherent in sharing medical data [24]. These prob-
lems are only compounded in the broad-coverage setting, where data 
must be sufficiently diverse to represent all the kinds of information 
users of NLP systems may be interested in. 

This article presents two significant innovations, illustrated in Fig. 1: 
(1) a fully modular approach to alleviating candidate set overgeneration 
in medical entity linking via semantic type prediction, and (2) two large- 
scale datasets for medical entity linking research that are freely share-
able. We make the following contributions: 

• We present MEDTYPE, a deep learning-based modular system for se-
mantic type prediction, and incorporate it into five off-the-shelf 
toolkits for medical entity linking. We demonstrate that semantic 
type prediction consistently improves entity linking performance 
across several benchmark datasets.  

• To address the dearth of annotated training data for medical entity 
linking, we present WIKIMED and PUBMEDDS, two automatically- 
created, large-scale datasets which can serve as a useful resource 
for medical entity linking research. Our work also demonstrates that 
pre-training MEDTYPE on our proposed datasets achieves state-of-the- 
art performance on the semantic type prediction task.  

• We show that type-based filtering significantly reduces the number 
of candidates for disambiguation, enabling further improvements in 
the final step of medical entity linking. 

MEDTYPE’s source code and the WIKIMED and PUBMEDDS datasets 
proposed in this paper have been made publicly available at http://gith 
ub.com/svjan5/medtype. 

The remainder of this article is organized as follows. Section 2 
highlights related work in the foundational NLP methods and medical 
NLP literature leading to our work on semantic type filtering. Section 3 
introduces semantic type filtering as a component of the medical in-
formation extraction pipeline, and presents MEDTYPE, our state-of-the-art 
model for biomedical semantic type prediction. Section 4 describes our 
two novel, large-scale corpora, including quality assessments of each 
corpus. Section 5 describes our experimental protocol, and Section 6 
presents the results of our analysis. Finally, Section 7 discusses impli-
cations of our findings for research on broad-coverage information 
extraction, and Section 8 concludes the paper. 

Fig. 1. Overview of article contributions. We present MEDTYPE, a novel, modular system for biomedical semantic type prediction, together with WIKIMED and PUB-
MEDDS, two large-scale, automatically created datasets for medical concept normalization that we use to pretrain MEDTYPE. We show that integrating MEDTYPE with 
five commonly used packages for biomedical information extraction improves performance across the board on four benchmark datasets. 
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2. Related work 

Information extraction is a well-studied task in NLP, and approaches 
often diverge between the foundational methodologies literature, which 
typically utilizes news wire or web text, and the medical NLP literature, 
which reflects adaptations to the unique characteristics of biomedical 
text and knowledge (e.g., specialized language, rich typologies, etc.). In 
this paper, we combine recent insights from foundational methods with 
the rich expert resources that are central to biomedical information 
extraction. 

Much of the research in the foundational methods literature focuses 
on extracting information about real-world entities and concepts (peo-
ple, places, organizations, products, etc.), drawing on knowledge sour-
ces such as Freebase and Wikipedia. In addition to jointly modeling NER 
and entity linking as interdependent tasks [25,26], many studies 
leverage the rich semantics of the target knowledge base to improve 
linking performance [27,28]. Knowledge bases often group entities into 
semantic types, which inform several downstream NLP tasks such as co- 
reference resolution [29], relation extraction [30], question answering 
[31], and language modeling [32]. Recent studies have shown that fine- 
grained entity type prediction improves entity linking in Wikipedia text 
[33,22], indicating a clear potential for type prediction as a standard 
component of entity linking pipelines. 

In the biomedical domain, the role of entity type prediction in 
selecting suitable candidates for medical concept mentions was recog-
nized in some of the earliest rule-based medical information extraction 
tools [34]. However, type prediction is typically deeply embedded in 
rule-based NLP tools, hampering generalizability, and discourages their 
use in deep learning systems. [35] utilized neural language modeling 
frameworks to identify the semantic type of a mention in a medical text, 
but did not apply their predictions downstream; in contrast, [36] uti-
lized approximate dictionary matching heuristics with specialized neu-
ral language models to improve both medical entity typing and entity 
linking in biomedical literature. However, these works have not 
explored the efficacy of incorporating the type information within the 
entity linking task itself. Zhu et al. model mention and entity types as 
latent variable and jointly optimize type learning and entity disambig-
uation. Our work alleviates the overgeneration problem produced by 
both rule-based [14] and deep learning systems in practical broad- 

coverage settings, by using the predicted semantic type to prune irrel-
evant candidates. We do so in a modular fashion, making it easy to 
incorporate in any entity linking architecture. 

3. Semantic type prediction with MEDTYPE 

Broad-coverage information extraction from biomedical text faces 
dual challenges of (1) a breadth of dozens of information types and 
millions of candidate concepts that must be considered; and (2) 
resolving ambiguity even for known surface forms, long recognized as 
challenge for off-the-shelf information extraction tools [6] even while 
development of standalone disambiguation and linking models has 
progressed [37,38]. For instance, as shown in Fig. 2, ‘cold’ can refer to 
several distinct concepts such as common cold(disease), cold temperature 
(natural phenomena), or cold brand of chlorpheniramine-phenylpropanol-
amine (pharmacologic substance). This ambiguity arising from polysemy 
and homonymy leads to overgeneration of candidate concepts, exacer-
bated by the breadth of potential information types of interest. Thus, 
including an additional step to prune irrelevant candidate concepts has 
the potential to improve entity linking performance by simplifying the 
final disambiguation step. 

In this work, we formulate semantic type prediction and filtering as a 
standalone module MEDTYPE : (C ,m)→C

′ , for integration into biomed-
ical information extraction pipelines. The general type prediction and 
filtering process is as follows:  

1. MEDTYPE takes in as input a medical entity mention m and a generated 
set of candidate concepts C = {c 1, c 2,…, c k}, each of which has 
one or more semantic types (here, drawn from the UMLS).  

2. MEDTYPE consists of two steps: MedType Predict : m→t ∈ T, where T is 
the set of all semantic types, and MedType Filter : C →C

′ .  
3. MedType Predict takes the medical entity mention m and predicts the 

most likely semantic type t of the mention.  
4. MedType Filter takes the candidate set C and outputs a filtered set 

C
′

= {c 1′
,c 2′

,…c k′
′

}, such that k′
⩽k and c 1′

…c k′
′ are all of the 

predicted semantic type t. 

We further present a neural implementation of MEDTYPE as a stand-
alone module which can be easily integrated into existing biomedical 

Fig. 2. Overview of MEDTYPE. For a given input text, MEDTYPE takes in the set of identified mentions along with their list of candidate concepts as input. Then, for each 
mention, MEDTYPE predicts its semantic type based on its context in the text. The identified semantic type is used to filter out the irrelevant candidate concepts thus 
controlling overgeneration of candidates and improving medical entity linking. Please refer to Section 3 for details. 
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NLP pipelines. In Fig. 2, MEDTYPE predicts the given occurrence of ‘cold’ 

as referring to a disease, enabling pruning of the other candidates and 
resolving the ambiguity without the need of a dedicated disambiguation 
module. MEDTYPE utilizes recent advances in deep learning-based lan-
guage modeling techniques [39,40] for encoding context to predict the 
semantic type of a mention. The overall semantic type filtering workflow 
and the architecture of MEDTYPE are shown in Fig. 2; details of the se-
mantic type prediction task and MEDTYPE architecture are given in the 
following sections. 

3.1. Information extraction problem definition 

Formally, the task of information extraction is defined as follows. Let 
E = {e 1, e 2,…, e N} be a predefined set of entities in a knowledge 
graph and T = (w 1,w 2,…,w |T |) be a given unstructured text with n 
tokens. The information extraction task involves identifying mentions {
m 1,m 2,…,m k} of the form w i…j in T (mention detection phase) 
and mapping them to an entity e ∈ E (entity linking phase). Following 
prior work [41,42], we define E as the set of entities in the UMLS [10]. 
Most entity linking methods follow a two-step procedure: (1) Candidate 
Generation, which involves generating a probable set of candidates 
C i = {ei 1, ei 2,…, ei l | ei j ∈ E } for each mention m i, and (2) 
Disambiguation (often referred to as Word/Phrase Sense Disambigua-
tion, or WSD), which involves choosing the highest-likelihood candidate 
concept ei j ∈ C i. 

3.2. Candidate pruning using semantic type 

While many non-dictionary-based methods for medical entity linking 
have been proposed (e.g., [43,44]), the most frequently-used off-the- 
shelf tools [6,3] for broad-coverage biomedical information extraction 
(as well as many recent hybrid models [45–47]) rely heavily on dictio-
nary lookup and sub-string matching. In the broad-coverage setting, the 
sheer number of medical concepts and prominence of lexical ambiguity 
among mentions due to homonymy and polysemy [19,20] leads to sys-
tematic over-generation of candidate concepts. 

To alleviate this problem, we utilize an intermediate step of semantic 
type filtering, which takes in a generated candidate set C for a given 
mention m and outputs a filtered set C ′

⫅C based on the predicted se-
mantic type of m. Fig. 2 illustrates this process: several irrelevant 
candidate concepts for the mention cold are pruned by identifying its 
semantic type of Disease/Syndrome in the given context. The semantic 
type of a mention is identified based on its usage in the text. For instance, 
in Fig. 2, based on its occurrence, the mention cough can be interpreted 
as a symptom rather than a medicine. 

3.3. Mapping semantic types to groups 

The semantic types in the UMLS Metathesaurus present two chal-
lenges for type prediction. First, each concept may have more than one 
semantic type (e.g., C0250873 OX7-SAP is both a Pharmacologic Sub-
stance and an Immunologic Factor). Second, type frequencies are strongly 
right-tailed: for example, 907,398 concepts are of type Eukaryote, while 
only two UMLS concepts have type Carbohydrate sequence; these differ-
ences are exacerbated by the sparsity of fine-grained types in entity 
linking datasets. To ameliorate both of these issues, we map the 127 
semantic types in the UMLS Metathesaurus to 24 groups, as shown in 
Table 1. These groupings are derived from the UMLS semantic groups 
defined by [48], with additional use of is-a relationships to split too 
broad groups. We use these broader groups as the labels for multi-label 
semantic type prediction and filtering. 

3.4. MEDTYPE architecture 

MEDTYPE is a neural model for semantic type prediction in biomedical 

text, which is fully modular and can be included in any biomedical NLP 
pipeline. MEDTYPE takes in the input data of the form D = [(x 0, y 0),… 

, (x N, y N)] where x i denotes the mention m i and its surrounding 
context. The context comprises of the neighboring tokens in a window of 
size k, i.e., Con(m i, k) = (m i−k,…,m i−1,m i1,…,m ik) and y i is the 
semantic type. Motivated by the ability to handle polysemous tokens 
and superior modeling capabilities of long range dependencies of 
Transformer-based models [49], we utilize a pre-trained BERT [40] 

Table 1 
Grouping of the 127 semantic types in the UMLS Metathesaurus into 24 semantic 
groups. The semantic groups were derived from McCray et al. [48] and is-a re-
lationships in the Semantic Network. Refer to Section 3.3 for details.  

Groups Semantic Types 
Activities & Behaviors Activity, Behavior, Daily or Recreational Activity, 

Event, Governmental or Regulatory Activity, Individual 
Behavior, Machine Activity, Occupational Activity, 
Social Behavior 

Anatomy Anatomical Structure, Body Location or Region, Body 
Part, Organ, or Organ Component, Body Space or 
Junction, Body Substance, Body System, Cell, Cell 
Component, Embryonic Structure, Fully Formed 
Anatomical Structure, Tissue 

Chemicals & Drugs Amino Acid, Peptide, or Protein, Antibiotic, Biologically 
Active Substance, Biomedical or Dental Material, 
Chemical, Chemical Viewed Functionally, Chemical 
Viewed Structurally, Element, Ion, or Isotope, Enzyme, 
Hazardous or Poisonous Substance, Hormone, 
Immunologic Factor, Indicator, Reagent, or Diagnostic 
Aid, Inorganic Chemical, Nucleic Acid, Nucleoside, or 
Nucleotide, Receptor, Vitamin 

Concepts & Ideas Classification, Conceptual Entity, Group Attribute, Idea 
or Concept, Intellectual Product, Language, 
Quantitative Concept, Regulation or Law, Spatial 
Concept, Temporal Concept 

Devices Drug Delivery Device, Medical Device, Research Device 
Disease or Syndrome Disease or Syndrome 
Disorders Acquired Abnormality, Anatomical Abnormality, Cell or 

Molecular Dysfunction, Congenital Abnormality, 
Experimental Model of Disease, Injury or Poisoning 

Finding Finding 
Functional Concept Functional Concept 
Genes & Molecular 

Sequences 
Amino Acid Sequence, Carbohydrate Sequence, Gene or 
Genome, Molecular Sequence, Nucleotide Sequence 

Living Beings Age Group, Amphibian, Animal, Archaeon, Bacterium, 
Bird, Eukaryote, Family Group, Fish, Fungus, Group, 
Human, Mammal, Organism, Patient or Disabled Group, 
Plant, Population Group, Professional or Occupational 
Group, Reptile, Vertebrate, Virus 

Mental or Behavioral 
Dysfunction 

Mental or Behavioral Dysfunction 

Neoplastic Process Neoplastic Process 
Objects Geographic Area, Entity, Food, Manufactured Object, 

Physical Object, Substance 
Occupations Biomedical Occupation or Discipline, Occupation or 

Discipline 
Organic Chemical Organic Chemical 
Organizations Health Care Related Organization, Organization, 

Professional Society, Self-help or Relief Organization 
Pathologic Function Pathologic Function 
Pharmacologic Substance Clinical Drug, Pharmacologic Substance 
Phenomena Biologic Function, Environmental Effect of Humans, 

Human-caused Phenomenon or Process, Laboratory or 
Test Result, Natural Phenomenon or Process, 
Phenomenon or Process 

Physiology Cell Function, Clinical Attribute, Genetic Function, 
Mental Process, Molecular Function, Organ or Tissue 
Function, Organism Attribute, Organism Function, 
Physiologic Function 

Procedures Diagnostic Procedure, Educational Activity, Health Care 
Activity, Laboratory Procedure, Molecular Biology 
Research Technique, Research Activity, Therapeutic or 
Preventive Procedure 

Qualitative Concept Qualitative Concept 
Sign or Symptom Sign or Symptom  
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encoder and fine-tune it for our type prediction task. In our experiments, 
we use BioBERT [50], an adapted BERT model for biomedical corpora. 
We give the mention with its context, i.e., (m i−k,…,m i−1, [MEN] ,m, [/

MEN] ,m i1,…,m ik) as input to the encoder. Here, the special tokens 
[MEN] and [/MEN] are meant for providing the positional information 
of the mention to the model. Finally, the embedding corresponding to 
[MEN] token is passed to a feed-forward classifier for the prediction of 
semantic types. 

4. Novel datasets for medical entity linking 

The availability of large scale public datasets helps to drive infor-
matics research forwards [51–53]. However, curating large-scale 
biomedical datasets presents significant obstacles, including the 
expense and scarcity of relevant expertise, which largely precludes 
crowd-sourcing [23]; this is compounded in the case of medical records 
by the challenges of maintaining patient confidentiality and privacy 
[24]. To further medical entity linking research in light of these chal-
lenges, we present WIKIMED and PUBMEDDS, two large-scale, automati-
cally-created datasets for medical entity linking. We describe both the 
datasets in detail in the following sections. 

4.1. WIKIMED: Wikipedia-based medical entity linking corpus 

WIKIMED Construction: The overall steps for creating WIKIMED 
dataset are depicted in Fig. 3. Wikipedia, though not restricted to 
medical information, includes a large number of mentions of medical 
concepts that can inform entity typing models. We leverage that for 
constructing WIKIMED dataset. Firstly, we extract the mapping of Wiki-
pedia pages to UMLS concepts from several existing knowledge bases 
such as Wikidata [54], Freebase [55], and the NCBI Taxonomy [56]. 
This gives us a one-to-one mapping of approximately 60,500 Wikipedia 
pages to UMLS concepts. Since UMLS concepts are primarily biomedical 
in nature, this helps us identify the relevant Wikipedia pages for medical 
entity linking. Then, for each Wikipedia article, we linked those men-
tions to UMLS concepts. The Semantic Network (of UMLS) provides 
semantic types for each UMLS concept which we utilize for further 
reassigning mentions to semantic types. This results in a high-quality 
dataset for medical entity typing. Overall, our pipeline extracts around 
1 million mentions spanning across 400 k Wikipedia articles. More de-
tails of the dataset are presented in Table 4. Although WIKIMED contains 
web text on a variety of topics, we find that it helps to improve per-
formance on entity linking in other domains as well as shown in Section 
6.1. 

WIKIMED Quality: The link structure of Wikipedia, which we utilized 
for creating the WIKIMED dataset, is normally treated as ground truth in 
information extraction and natural language processing research 
[57–61]. While errors have been found in Wikipedia link structure 
[62,63], the average error rate of relational statements (including 
incorrect assertions and incorrect links) has been estimated to be around 
2.8% [64], supporting the use of Wikipedia links as a sufficiently high- 
quality resource to yield accurate mappings. To assess the correctness of 
our medically-focused dataset, we randomly sampled 100 links from 
WIKIMED for manual verification. Three authors (SV, DNG, RJ) reviewed 
each sample to assess (1) whether the annotated CUI (identified via 
automated mapping to the UMLS) was appropriate and (2) in cases of an 
incorrect CUI, whether the annotated semantic type was appropriate. 
After resolution of disagreements, we found a CUI-level accuracy of 
91%, and a type-level accuracy of 95% in the 100 reviewed samples. As 
Wikipedia links are provided a priori in the page hypertext, and not all 
relevant mentions of an entity are marked with links, we did not assess 
either precision or recall of mention detection. Thus, while WIKIMED is 
not appropriate for training or evaluating mention detection models, we 
find that it provides a high-quality silver standard resource for medical 
entity linking. 

WIKIMED is significantly larger than previous medical entity linking 
datasets: 3× larger than MedMentions [65], and 10× larger than the 
NCBI Disease Corpus [66]. Moreover, WIKIMED also provides better 
coverage of entities from different semantic types than existing datasets, 
as shown in Table 2. 

4.2. PUBMEDDS: Distantly-supervised biomedical entity linking corpus 

PUBMEDDS Construction: Distant supervision [67] enables auto-
matic generation of training data and has been exploited for several 
tasks [68,69], including identifying potential mentions of medical con-
cepts [70]. To create a large-scale training dataset for medical entity 
linking drawn from biomedical language, we use distant supervision on 
PubMed abstracts to generate PUBMEDDS. An overview of the entire 
process is summarized in Fig. 4. We first run a state-of-the-art biomed-
ical NER model [42] on 20 million PubMed abstracts to extract its 
medical entity mentions. We then use the Medical Subject Headings 
(MeSH) tags assigned to each PubMed article to weakly link the 
extracted entity mentions to a MeSH concept. A mention is linked only 
when it exactly matches with the name of one of the provided MeSH 
headers. The UMLS provides mapping of MeSH headers to UMLS 
concept identifiers, which we utilize to get the semantic type of each 
linked mention from Semantic Network as done for mentions in 
WIKIMED. Using this procedure, we created PUBMEDDS, a dataset with 58 
M annotated mentions, which we utilize for pre-training MEDTYPE. The 
size of PUBMEDDS is around 164 times larger than the current largest 
medical entity linking dataset, MedMentions [65]. Next, we demon-
strate that although PUBMEDDS is distantly-supervised, it has sufficiently 
high precision to serve as a valuable resource for medical entity linking 
research. 

PUBMEDDS Quality Analysis: 
Distant supervision enables large-scale text annotation but can pro-

duce noisy data [71]. In order to assess the quality of PUBMEDDS as a 
dataset for medical entity linking, we identified the subset of documents 
overlapping with three manually-annotated datasets using PubMed ab-
stracts: MedMentions [65], NCBI [66], and Bio CDR [72]. All PubMed 
documents annotated in these three datasets were included in PUB-
MEDDS. This allowed us to compare the precision and recall of our 
distantly-supervised mentions to manual annotations. The results of this 
analysis are reported in Table 3. Reflecting on the strict requirements for 
linking a mention in our dataset (identification with a NER tool and 
exact match to a provided MeSH header), we find that PUBMEDDS omits 
many of the true mentions in these documents, but the vast majority of 
included mentions are annotated correctly (precision of around 84%). 
Thus, while PUBMEDDS would not be appropriate for training medical 
mention detection (NER) models, its annotations are of high quality for 
training entity type prediction and disambiguation models. 

5. Experimental evaluation 

Our work makes three distinct contributions to broad-coverage in-
formation extraction research: (1) a modular formulation of the se-
mantic type prediction task, which can be easily integrated into any 
pipelined approach; (2) our MEDTYPE model for semantic type prediction; 
and (3) our novel datasets for biomedical entity linking research. We 
thus performed two types of experimental evaluations leveraging four 
benchmark datasets for biomedical information extraction (detailed in 
Section 5.1). 

Semantic type prediction: We first evaluated MEDTYPE as a stand-
alone model for semantic type prediction, comparing it against recent 
type prediction models (detailed in Section 5.2) to measure the specific 
improvements yielded by our approach. We used the gold mentions 
annotated in each dataset directly, without use of a mention detection 
model. The label for each mention was identified by mapping its an-
notated CUI to its semantic type(s) in the UMLS, and from there to one or 
more of our 24 semantic groups (described in Section 3.3). We trained 
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each type prediction model to predict these classes, using the training 
portion of each dataset and evaluating on the test set. 

In addition, we measured the impact of our novel entity linking 
datasets: WIKIMED and PUBMEDDS by pretraining our best performing 
model, MEDTYPE on each dataset individually and on both together prior 
to training on each of the four evaluation datasets, and comparing type 
prediction performance to using MEDTYPE without pretraining. 

Information extraction: We then evaluated the impact of using 
semantic type filtering as part of five widely-used biomedical informa-
tion extraction pipelines (detailed in Section 5.3). To evaluate the se-
mantic type filtering module and our MEDTYPE implementation 
separately, we experimented with three approaches for semantic type 
prediction:  

• Oracle (fine): To evaluate the maximum possible improvement from 
type-based pruning of candidate concepts, we experimented with an 
oracle model which always filters the candidate set of entities to 
entities of the same type as the gold standard CUI. The Fine oracle 
filters based on the 127 original types in the UMLS, to control for 
effects of semantic grouping.  

• Oracle (coarse): Our Coarse oracle uses the 24 semantic groups 
defined in Section 3.3, to represent an upper bound of what can be 
achieved using our type prediction models.  

• MEDTYPE: Finally, for a practical evaluation aligned with real-world 
use, we incorporate both MEDTYPE and its strongest competitor type 
prediction model into the information extraction pipelines to 
perform semantic type filtering. 

Fig. 3. Constructing WIKIMED from Wikipedia data. We map each linked mention in Wikipedia articles to a UMLS concept using mappings obtained from Freebase, 
Wikidata and NCBI knowledge bases. 

Table 2 
Frequencies of semantic types in our evaluation datasets and novel training datasets. Overall, we find that our WIKIMED and PUBMEDDS datasets give diverse coverage 
across all semantic types.   

Evaluation datasets Novel datasets 
Categories NCBI Bio CDR ShARe MedMentions WIKIMED PUBMEDDS 
Activities & Behaviors 4 7 1 12,249 554 2,725,161 
Anatomy 3 29 4 19,098 14,366 10,688,138 
Chemicals & Drugs 0 32,436 1 46,420 26,809 44,476,957 
Concepts & Ideas 0 0 1 60,475 2,562 5,274,354 
Devices 0 0 0 2,691 483 242,599 
Disease or Syndrome 10,760 22,603 5,895 11,709 84,706 9,846,667 
Disorders 664 1,853 997 3,575 8,635 1,115,186 
Finding 749 2,220 500 15,666 9,285 1,778,023 
Functional Concept 0 0 1 23,672 117 48,553 
Genes & Molecular Sequences 20 0 0 5,582 446 281,662 
Living Beings 0 43 7 31,691 919,694 21,339,662 
Mental or Behavioral Dysfunction 293 3,657 410 2,463 19,196 2,353,547 
Neoplastic Process 4,022 2,301 323 4,635 16,823 1,476,843 
Objects 0 129 2 10,357 421 5,184,355 
Occupations 0 0 0 1,443 1,156 654,604 
Organic Chemical 0 90,428 1 10,258 17,330 50,248,085 
Organizations 0 0 0 2,276 0 298,119 
Pathologic Function 143 3,290 2,285 4,121 4,474 1,895,835 
Pharmacologic Substance 0 90,872 1 11,935 24,878 50,696,769 
Phenomena 4 163 2 7,210 317 1,722,873 
Physiology 15 166 3 24,753 2,054 10,674,561 
Procedures 5 73 4 37,616 4,008 7,471,434 
Qualitative Concept 0 0 7 32,564 106 1,211,747 
Sign or Symptom 211 9,844 2,687 1,809 4,212 3,750,734  
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Under each of these settings, we integrate semantic type prediction 
into the information extraction pipeline as follows:  

1. Run biomedical information extraction tools to identify (1) mentions 
of medical concepts in a document; and (2) a ranked list of candidate 
CUIs for each mention.  

2. Use one of the above semantic type prediction approaches to predict 
the type of each mention, and filter the list of candidate CUIs to only 
CUIs of that type.  

3. Return the highest-ranked CUI in the filtered candidates as the final 
entity linking prediction. 

5.1. Datasets 

In our experiments, we evaluate the models on four benchmark 
datasets: the NCBI Disease Corpus [66], Bio CDR [72], ShARe [73], and 
MedMentions [65] for medical entity linking. These datasets span across 
different text genres, such as biomedical research articles and Electronic 
Health Records (EHR), and information domains, allowing us to eval-
uate the generality of MEDTYPE across diverse domains. The dataset 
statistics and the semantic type distribution are presented in Table 4 and 
Table 2 respectively. Below, we provide a short description of each 
dataset.  

• NCBI: The NCBI Disease Corpus [66], which we refer to as NCBI for 
brevity, consists of 793 PubMed abstracts annotated with disease 

mentions and their corresponding concepts in the MEDIC vocabulary 
[74].  

• Bio CDR: The CDR corpus [72] consists of 1,500 PubMed abstracts 
annotated with mentions of chemicals, diseases, and relations be-
tween them. These mentions were normalized to their unique 
concept identifiers, using MeSH as the controlled vocabulary. 

• ShARe: The ShARe corpus [75] is a collection of de-identified clin-
ical notes, which was used for a series of NLP shared tasks. We use 
the subset used in a 2014 shared task [76], consisting of 431 docu-
ments annotated for disorder mentions and grounded to SNOMED 
CT.  

• MedMentions: The MedMentions data of [65] consists of 4,392 
PubMed abstracts annotated with several biomedical mentions. Each 
mention is labeled with a unique concept identifier and a semantic 
type using the UMLS as the target ontology. 

5.2. Type prediction baselines 

We compare MEDTYPE against four recent neural entity typing 
methods. AttentionNER [77] utilizes attention mechanism for extract-
ing relevant information from the context of a mention for type pre-
diction. DeepType-FC and DeepType-RNN are two neural network 
based models proposed by [22] for entity typing. Type-CNN [78] is 
another neural approach which utilizes CNNs for modeling the global 
context of a mention for type prediction. MedNER [36] uses NLM and 
dictionary mapping to predict semantic type of medical mentions. 

5.3. Biomedical information extraction tools 

We integrate MEDTYPE into five widely-used tools for biomedical in-
formation extraction, each of which performs mention detection (NER) 
and produces a ranked list of candidate CUIs for each mention. Below, 
we describe each of them in brief.  

• MetaMap [6] leverages a knowledge-intensive approach based on 
symbolic NLP and linguistic techniques to map biomedical mentions 
in text to UMLS concepts. MetaMap was developed for indexing 
scientific literature. 

• cTAKES [3] uses a terminology-agnostic dictionary look-up algo-
rithm for mapping named entities to UMLS concepts. We utilize the 
Clinical Pipeline of cTAKES augmented with LVG Annotator2. 
cTAKES was developed for analyzing clinical text. 

• MetaMapLite [79] re-implements the basic functionalities of Meta-
Map with an additional emphasis on real-time processing and 
competitive performance.  

• QuickUMLS [41] is a fast, unsupervised algorithm that leverages 
approximate, dictionary-matching techniques for mapping 

Fig. 4. Constructing PUBMEDDS using distant-supervision on PubMed corpus. 
For each article, we apply biomedical NER on its abstract for obtaining relevant 
entity mentions which are then linked using supervision from MeSH headings of 
the article. Refer to Section 4.2 for details. 

Table 3 
Quality assessment of PUBMEDDS, based on the subset of documents it shares 
with the NCBI Disease Corpus, Bio CDR, and MedMentions. Precision and recall 
are calculated with respect to overlap between our automated annotations in 
PUBMEDDS and the gold standard annotations in the comparison datasets. We 
find that although PUBMEDDS has low coverage, extracted mentions have high 
precision across the three datasets.  

Documents shared with Precision Recall 
NCBI 86.3 6.5 
Bio CDR 75.8 1.3 
MedMentions 90.3 5.3  

Table 4 
Details of the medical entity linking datasets used in our experiments; #Unq Con 
refers to the number of unique CUIs in each dataset. WIKIMED is our novel 
automatically-annotated Wikipedia dataset, and PUBMEDDS is our novel distantly 
supervised dataset.  

Datasets #Documents #Sentences #Mentions #Unq Concepts 
NCBI 792 7,645 6,817 1,638 
Bio CDR 1,500 14,166 28,559 9,149 
ShARe 431 27,246 17,809 1,719 
MedMentions 4,392 42,602 352,496 34,724 
WIKIMED 393,618 11,331,321 1,067,083 57,739 
PUBMEDDS 13,197,430 127,670,590 57,943,354 44,881  

2 https://cwiki.apache.org/confluence/display/cTAKES/cTAKES+4.0+- 
+LVG. 
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biomedical entities in text. QuickUMLS was developed as a general- 
purpose tool and evaluated on consumer-generated texts [41].  

• ScispaCy [42] builds upon the robust spaCy library [80] for several 
biomedical and scientific text-processing applications such as 
parsing, named entity recognition, and entity linking. ScispaCy was 
developed primarily for analyzing scientific literature. 

We do not use the recent CLAMP [16] system in our experiments, as 
it does not provide access to a generated list of candidates for a mention 
prior to the disambiguation step. 

5.4. Evaluation metrics 

For semantic type prediction, which we model as a multi-label 
classification problem, following [81,82], we use the area under the 
Precision-Recall curve (AUC) as our evaluation metric. 

For entity linking, we evaluate the performance using F1-score for 
two metrics. In (1) Exact_mention_id_match (Exact), true positives are 
only those samples where both the predicted mention bounds and entity 
concept identifier exactly match the annotation. This is directly adopted 
from TAC KBP 20133. In (2) Partial_mention_id_match (Partial), a 
weighted score is assigned to predicted mentions based on the amount of 
overlap with annotated mention bounds and entity id match. Following 
[83], for mention matching, the number of overlapped characters be-
tween system generated mention and a ground-truth mention is 
considered. All the scores are computed using an open-source entity 
linking evaluation toolkit4. 

5.5. Implementation details 

Online Demo & medtype-as-service: Along with providing a step- 
by-step guide for reproducing all the results reported in the paper, we 
also provide code for running an online demo of MEDTYPE. We also 
provide a scalable implementation of MEDTYPE called medtype-as-service 
which is based on bert-as-service [84] for processing thousands of doc-
uments simultaneously. 

Hyperparameters: We use pre-trained weights of BioBERT [50] for 
initializing BERT component of MEDTYPE. MEDTYPE is implemented using 
HuggingFace Transformers library [85]. For training, we utilize Adam 
optimizer [86] with a learning rate in range (10−3,10−5). The window 
size of context (k) is chosen from {48, 64, 128}. The best hyper-
parameters were selected based on the performance on the validation 
split of the datasets. We use the default hyperparameters for all the 
entity linkers and components of MEDTYPE. A grid search over the vali-
dation split was performed for deciding a threshold for each semantic 
type from the range of (0.001, 1). The area under the Precision-Recall 
curve (AUC) was used for choosing the best threshold. 

Training Details: All training was performed on NVIDIA-GTX 
1080Ti GPUs. Each training epoch of MEDTYPE takes from 5 min to 2 
days depending on the size of the dataset. The models are trained for 
multiple epochs until the validation performance starts to degrade. In 
terms of number of parameters, MEDTYPE has around 110 million pa-
rameters (same as BERT-base model). 

6. Results 

Medical information extraction is a complex process, with multiple 
points of evaluation and multiple types of impact from any new 
contribution. We present results for four specific questions that examine 
the impact of semantic type filtering with MEDTYPE:  

Q1. How effective is MEDTYPE for semantic type prediction, and what 
is the impact of our novel datasets? (Section 6.1)  

Q2. Does incorporating MEDTYPE in existing entity linking systems 
help the overall pipeline? (Section 6.2)  

Q3. What specific successes do we see from combining MEDTYPE, 
WIKIMED, and PUBMEDDS, and what are remaining challenges? 
(Section 6.4) 

Q4. How much does semantic type-based filtering help prune irrele-
vant candidates? (Section 6.5) 

6.1. MEDTYPE is State-of-the-art for medical semantic type prediction 

The first step in our evaluation is a modular investigation of the se-
mantic type prediction task on its own. In this section, we compare 
MEDTYPE against the baseline methods detailed in Section 5.2 for se-
mantic type prediction. We also evaluate the effectiveness of utilizing 
WIKIMED and PUBMEDDS datasets for the task. For quantifying the benefit 
of our proposed method and datasets, we report the performance of 
MEDTYPE trained under different settings, as defined below.  

• MEDTYPE (MT) denotes MEDTYPE trained on the training split of the 
corresponding datasets.  

• MT ← WIKIMED refers to the model first trained on WIKIMED and then 
fine-tuned using the training data.  

• MT ← PUBMEDDS similar to T ← WIKIMED, indicates MEDTYPE first 
trained on PUBMEDDS and then fine-tuned on the training data.  

• MT ← Both denotes the combined model which utilizes both the 
proposed datasets. It concatenates BERT encoding from T ← WIKIMED 
and T ← PUBMEDDS models and passes it to a classifier which is 
trained using the training dataset. 

Semantic type prediction results are presented in Table 5. We find 
that MEDTYPE outperforms all the baselines on three of the four evalua-
tion datasets when trained only on the training split. Compared to the 
best performing baseline, we obtain a gain of 0.2, 0.7, and 9.1 AUC on 
Bio CDR, ShARe, and MedMentions respectively. MedMentions contains 
a much greater diversity of semantic types than other datasets (as shown 
in Table 2). Thus, obtaining a large improvement on it indicates that 
MEDTYPE is more suited for handling large set of types compared to the 
baseline methods. 

Further, we find that utilizing our novel datasets WIKIMED and PUB-
MEDDS yields considerable gain in performance. On average, we obtain 
an increase in AUC of 1.7 from WIKIMED alone, 3.9 from PUBMEDDS alone, 
and 4.5 from using both, across all datasets. The combined model which 
allows to incorporate the benefits from both the corpora gives the best 

Table 5 
Semantic type prediction results, comparing MEDTYPE (with and without addi-
tional corpora) to our four baselines; we report the area under the precision- 
recall curve as our evaluation metric. MT ← X denotes MEDTYPE first trained 
on X dataset then fine-tuned using T. We find that MEDTYPE outperforms other 
methods on 3 out of 4 datasets. Also, pre-training on WIKIMED and PUBMEDDS 
gives substantial boost in the performance. More details are provided in Section 
6.1.   

NCBI Bio CDR ShARe MedMentions 
AttentionNER [77] 94.5 89.1 88.7 72.0 
DeepType-FC [22] 95.1 82.9 89.3 72.9 
DeepType-RNN [22] 92.8 86.9 86.1 74.1 
Type-CNN [78] 95.2 88.9 89.8 74.4 
MedNER [36] 95.6 90.2 84.4 67.5 
MEDTYPE (MT) 94.5 90.4 90.5 83.5 
MT ← WIKIMED  94.9 93.5 93.2 84.0 
MT ← PUBMEDDS  96.8 97.3 93.6 86.8 
MT ← Both  97.2 97.3 95.1 87.3  

3 https://tac.nist.gov/2013/KBP/.  
4 https://github.com/wikilinks/neleval. 
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performance. This shows that both the datasets contain complementary 
high-value information for semantic type prediction. 

6.2. MEDTYPE Consistently improves overall information extraction 
performance 

The primary goal of our study is to investigate the impact of adding a 
semantic type prediction module to the medical information extraction 
pipeline. In this section, we evaluate the impact of MEDTYPE on 
biomedical information extraction when integrated with the tools 
detailed in Section 5.3. Table 6 reports the results for the Exact_men-
tion_id_match and Partial_mention_id_match metrics, as described in Sec-
tion 5.4. 

As discussed in Section 5.1, the NCBI, Bio CDR, and ShARe datasets 
were annotated for specific categories of medical concept mentions (e.g., 
diseases and disorders only); concept mentions outside of these cate-
gories were excluded from annotation. By contrast, the information 
extraction tools we experimented with were all preconfigured for broad- 
coverage extraction of all types of medical information. Thus, the set of 
predicted medical concept mentions output by any one of our toolkits 
could include concepts of a type excluded from dataset annotation—-
predictions which we are therefore unable to evaluate. To avoid 
including these mentions in our evaluation, we filtered the output of 
each toolkit for a given dataset to the semantic types included in that 
dataset’s annotation (e.g., disease mentions only for the NCBI Disease 
Corpus). We determined the semantic type of predicted concept men-
tions using the final CUI produced as the top-ranked candidate after 
processing with the full information extraction pipeline (including se-
mantic type prediction, when used). Thus, if the top-ranked candidate 

for a given mention was of an excluded type when using an unmodified 
entity linker, that mention would be excluded from evaluation 
(informing both mention detection and entity linking evaluation); 
however, if the introduction of semantic type filtering removed that top- 
ranked candidate in favor of a lower-ranked candidate of a type included 
in dataset annotation, the mention would be included in evaluation. 

We compare MEDTYPE against the two oracle approaches described in 
Section 5, as well as against the best-performing baseline from Section 
6.1. For each information extraction system, we report its default per-
formance along with the change in scores when adding different type- 
based candidate filtering methods. The results for MEDTYPE are ob-
tained after pre-training on WIKIMED and PUBMEDDS datasets, based on 
our findings in Section 6.1. 

Across most information extraction tools and datasets, MEDTYPE 
yields a substantial improvement in performance, and it consistently 
matches or outperforms Type-CNN, the best prior method for type pre-
diction. Notably, in no situation does MEDTYPE degrade performance; 
thus, the results indicate that including a type-based filtering step en-
hances information extraction systems in most cases. (See Section 7.5 for 
a discussion of the differences between performance of individual in-
formation extraction tools.) The gain with MEDTYPE is comparable to 
improvement with using an oracle, indicating that MEDTYPE is reliable 
enough to use off-the-shelf. The results also show that there is not much 
difference in performance of Oracle (Fine) and Oracle (Coarse). This 
justifies our choice of working with 24 semantic groups rather than the 
127 semantic types defined in the UMLS Metathesaurus. 

We used paired bootstrap significance testing [87] for validating 
statistical significance (p < 0.01) of improvements from MEDTYPE 
compared to the default pipeline and the top performing baseline 

Table 6 
For quantifying the impact of semantic type prediction on medical entity linking, we report the F1-score for five medical entity linking methods on multiple datasets. 
For each method, the first row is its base performance, and the following rows indicate the change in F1-score on incorporating a type-based candidate concepts 
filtering step. Bold indicates the case when MEDTYPE performance matches with an oracle. We report the results with the oracle type predictors (fine-grained and coarse- 
grained) and MEDTYPE. Overall, we find that MEDTYPE gives performance comparable to an oracle and improves medical entity linking across all settings. Please refer to 
Section 6.2 for details.   

NCBI Bio CDR ShARe MedMentions  
Exact Partial Exact Partial Exact Partial Exact Partial 

MetaMap 39.6 45.0 54.2 56.3 33.8 34.6 36.7 39.8 
Oracle (Fine) +0.8 +1.0 +0.3 +0.4 +0.5 +0.6 +6.4 +6.9 
Oracle (Coarse) +0.8 +1.0 +0.2 +0.3 +0.5 +0.6 +5.7 +6.1 
Type-CNN +0.7 +0.8 +0.2 +0.3 +0.2 +0.3 +3.6 +3.8 
MEDTYPE þ0.8 þ1.0 þ0.2 þ0.3 +0.3 +0.4 +4.0 +4.3 
cTakes 39.2 45.9 54.5 57.0 32.3 33.3 16.9 18.3 
Oracle (Fine) +0.3 +0.3 +0.1 +0.2 +0.1 +0.2 +0.2 +0.2 
Oracle (Coarse) +0.3 +0.3 +0.1 +0.2 +0.1 +0.2 +0.2 +0.2 
Type-CNN +0.3 +0.3 +0.1 +0.2 +0.0 +0.1 +0.1 +0.1 
MEDTYPE þ0.3 þ0.3 þ0.1 þ0.1 +0.1 +0.1 þ0.2 þ0.2 
MetaMapLite 35.4 39.4 50.3 51.5 27.1 27.5 32.6 35.2 
Oracle (Fine) +5.9 +5.9 +2.7 +2.8 +4.7 +4.8 +7.2 +7.8 
Oracle (Coarse) +5.9 +5.9 +2.6 +2.7 +4.7 +4.7 +6.0 +6.5 
Type-CNN +5.7 +5.7 +2.3 +2.4 +4.1 +4.1 +3.9 +4.0 
MEDTYPE þ5.9 þ5.9 +2.5 +2.6 +4.3 +4.4 +4.4 +4.6 
QuickUMLS 27.0 31.7 36.5 39.1 17.3 19.2 28.7 31.4 
Oracle (Fine) +0.2 +0.6 +5.0 +5.2 +5.2 +5.5 +9.8 +10.7 
Oracle (Coarse) +0.2 +0.6 +4.5 +4.6 +5.1 +5.4 +7.7 +8.5 
Type-CNN +0.0 +0.2 +4.0 +4.1 +4.0 +4.2 +4.9 +5.2 
MEDTYPE +0.1 +0.5 +4.3 +4.4 +4.8 +5.0 +5.9 +6.4 
ScispaCy 43.1 47.5 49.4 53.7 25.4 29.0 37.2 40.6 
Oracle (Fine) +2.2 +4.1 +1.7 +2.6 +3.5 +5.1 +8.2 +9.4 
Oracle (Coarse) +2.2 +4.1 +1.7 +2.5 +3.4 +5.0 +6.8 +7.8 
Type-CNN +1.7 +3.6 +0.5 +1.2 +2.9 +4.0 +3.5 +3.9 
MEDTYPE +1.9 +3.8 +1.3 +2.2 +3.1 +4.5 +4.1 +4.6  
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performance. Our results clearly support the central thesis of this work, 
that pruning irrelevant candidate concepts based on semantic type helps 
improve medical entity linking. 

6.3. MEDTYPE improves entity linking performance 

The evaluations described in Section 6.2 account for both mention 
detection—which semantic type filtering can affect by removing all 
candidates for a mention, leading to its exclusion—and entity linking. 
We therefore isolated the effect of MEDTYPE on the entity linking portion 
of the information extraction pipeline alone by restricting our analysis to 
only predicted concept mentions overlapping with gold annotated 
mentions, and calculating the Partial_mention_id_match F-1 metric 
(detailed in Section 5.4) on this subset. Table 7 reports results for Scis-
paCy (the best-performing information extraction tool) on all four 
evaluation datasets. 

Baseline performance with ScispaCy is 7–10 points higher in this 
more restricted evaluation, as compared to Table 6, reflecting the 
additional challenges of mention detection which go into the overall 
evaluation. Semantic type filtering leads to similar improvements for 
NCBI and Bio CDR in this setting, but noticeably larger improvements on 
ShARe and MedMentions, demonstrating that overall information 
extraction improvements from semantic type filtering are coming pri-
marily from the entity linking portion of the pipeline. 

6.4. Gains and challenges of MEDTYPE, WIKIMED, and PUBMEDDS 

PUBMEDDS and WIKIMED yield large improvements for rare types: 
As observed in Section 6.1, pretraining MEDTYPE on WIKIMED and PUB-
MEDDS led to substantial increases in semantic type prediction perfor-
mance. In this section, we investigate which types of medical concept 
mentions were improved the most from this pretraining step. For this, 
we report the F1 score of MEDTYPE, MT ← WIKIMED, MT ← PUBMEDDS and 
MT ← Both models (as defined in Section 6.1) across all semantic types 
on all the datasets. The overall results are summarized in Table 8. In 
general, we find that performance improves across all semantic types as 
we utilize additional corpora, but the maximum gain is obtained on 
types which have less coverage in the training split. For instance, on 
types such as Pathological Function and Sign or Symptom in the NCBI 
Disease Corpus, the F1 score jumps from 0 to 80 and 83.3 respectively. 
Thus, the broad coverage of medical concept types in WIKIMED and 
PUBMEDDS, combined with their large scale, helps to fill in the gaps of 
semantic types that are not well-represented in the evaluation datasets 
directly. 

Error analysis of MEDTYPE: To gain insight into further opportunities 
for improvement in semantic type prediction, we analyzed MEDTYPE er-
rors in the validation split of the MedMentions dataset when using our 
best performing model, which is pre-trained on both WIKIMED and PUB-
MEDDS datasets. As reflected by Table 5, MEDTYPE is able to identify the 
correct semantic type in the majority of cases. However, as Table 8 
shows, performance is not uniform across semantic types; e.g., Devices, 

Finding, Occupations, and Phenomena (all involving fairly common 
words) remain particularly challenging in these data. Table 9 shows the 
semantic types most commonly confused with one another, in many 
cases, we see mispredictions of more abstract types such as Objects, 
Concepts & Ideas, and Functional Concepts, regardless of gold semantic 
type. Thus, there is still significant scope for improvement on this 
problem. 

6.5. Impact of semantic type prediction on candidate generation 

The preceding sections have shown that semantic type filtering 
consistently improves entity linking performance when using the 
candidate scoring methods provided in each of our evaluated informa-
tion extraction tools. However, candidate ranking and disambiguation 
are active areas of research [18,37], and the modular nature of both our 
MEDTYPE model and the semantic type filtering task makes it easy to 
incorporate type filtering into any entity extraction pipeline. We 
therefore investigated the impact of semantic type prediction in filtering 
out over-generated candidate concepts, in order to understand how type 
filtering simplifies the final disambiguation task. 

Semantic type-based pruning consistently reduces the candi-
date set size. Fig. 5 illustrates the outcomes of type-based pruning on 
the candidate set sizes for both the 38,234 samples in the MedMentions 
test set where ScispaCy included the correct CUI in its candidate set and 
the 21,388 where it did not. Oracle type information, representing the 
upper bound of what type-based pruning can achieve, reduces the 
candidate set size in over 75% of “Correct candidate present” cases at the 
coarse level, and directly solves the sense disambiguation problem in 
44% of cases. Fine-grained typing, not shown in Fig. 5, only slightly 
improves these results—candidate set size reduction in 81% of cases, full 
disambiguation in 54%—while significantly complicating the type pre-
diction problem, further supporting our choice of coarse labels for 
MEDTYPE. MEDTYPE, in turn, achieves most of the reductions in candidate 
set size yielded by oracle information, and the performance improve-
ments shown in Table 6 clearly demonstrate the practical gains from this 
filtering. MEDTYPE further considerably reduces the number of type 
mispredictions over the best baseline, as seen also in Table 5. 

MEDTYPE can help improve the full extraction pipeline. Failures 
can occur at all three stages of entity extraction: mention detection 
(NER), candidate generation, and disambiguation. Fig. 6 illustrates the 
number of medical concepts extracted by the information extraction 
tools we used in the MedMentions test set, broken down into (1) false 
positive mentions, where the mention detection stage of the pipeline 
produced a false positive entity span; (2) missing correct candidates, 
where the candidate generation phase of the pipeline did not include the 
correct entity in the candidate list; and (3) matches, where the tool 
found a valid span and included the correct entity in the candidate set. 
The five tools evaluated varied widely in the number of entities output, 
but in all cases include a significant number of both mention detection 
and candidate generation errors. In addition to MEDTYPE’s utility in 
reducing candidate set sizes, which allows for broader-coverage candi-
date generation methods, we also observe that in all cases where a false 
positive mention was produced, MEDTYPE classified it as a None type; this 
indicates clear utility in incorporating MEDTYPE as a component of any 
system to filter out false positives in NER. 

Degree of candidate set size reduction from semantic type 
filtering. Fig. 7 expands the analyses presented in Fig. 5 to show the 
detailed distribution of the candidate set sizes within the predicted 
samples of MedMentions that included the correct candidate, comparing 
oracle type filtering strategies to MEDTYPE and the best type prediction 
baseline. ScispaCy, presented here as the best-performing information 
extraction tool on MedMentions, limits its output candidate set to 5 by 
default; however, all tools used displayed similar behavior in our 
experiments. 

Table 7 
Results of Partial_mention_id_match evaluation of ScispaCy on all four evaluation 
datasets. Evaluation is restricted to only predicted samples that overlap with 
gold annotations, to control for the effects of mention detection errors. The 
number of samples in this restricted subset of each dataset is given in the column 
headers.   

NCBI Bio CDR ShARe MedMentions  
(1,042) (9,243) (6,691) (61,367) 

ScispaCy 56.0 60.9 30.9 42.8 
Oracle (Fine) +4.2 +2.7 +5.3 +9.9 
Oracle (Coarse) +4.2 +2.6 +5.3 +8.1 
Type-CNN +3.5 +1.2 +4.2 +4.1 
MEDTYPE +3.8 +2.2 +4.7 +4.9  
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7. Discussion 

We have demonstrated that semantic type filtering is a valuable 
addition to NLP pipelines for broad-coverage biomedical information 
extraction. We discuss broader impacts of MEDTYPE in biomedical NLP in 
Section 7.1, and other approaches to semantic type filtering in Section 
7.2. We further highlight the contributions of our novel WIKIMED and 
PUBMEDDS datasets for biomedical concept normalization research in 
Section 7.3, and note potential effects of biased data in Section 7.4. 
Finally, we discuss two further implications of our findings for continued 
research on this important use case: the choice of information extraction 
tool for a given setting (Section 7.5), and opportunities for further 
research synthesizing semantic type prediction and disambiguation 
(Section 7.6). 

7.1. Broader applicability of MEDTYPE in biomedical NLP 

Identifying mentions of biomedical concepts in text is one of the 
fundamental building blocks of biomedical NLP. As a result, a wide 
variety of highly heterogeneous methods have been developed to 
perform concept identification [88]. As a fully modular component 

which takes as input a set of candidates and returns a set of candidate as 
output, MEDTYPE can be easily incorporated into any type of medical 
concept recognition system that uses a set of candidate concepts. Such 
systems are key elements of NLP pipelines for diverse applications, such 
as adverse drug event detection [89], biosurveillance [90], and patient 
phenotyping [91]. Morever, many biomedical NLP applications that do 
not use concept-level mapping nevertheless make use of coarse-grained 
type information [92,93], which the modular type prediction compo-
nent of MEDTYPE is well positioned to enhance. MEDTYPE’s role in refining 
and organizing medical information in text thus makes it a valuable 
addition to a wide variety of biomedical NLP pipelines, and its fine- 
tuning process can be easily used to adapt it to any dataset. 

7.2. Generalizability and other approaches to semantic type filtering 

Beyond alignment to the UMLS and other controlled vocabularies, 
biomedical NLP systems often employ custom typologies for specific 
applications, such as in analyzing radiology notes [94] or functional 
status information [95]. As seen in our experiments without pretraining, 
MEDTYPE can be trained to predict the semantic types of a dataset using a 
relatively small amount of data (i.e., hundreds of documents). Thus, 
MEDTYPE could be deployed as an element of NLP pipelines with custom 
typologies as well, via an intermediate step of training the type pre-
diction model on the task-specific dataset. 

More broadly, semantic type filtering as presented here is not specific 
to our MEDTYPE implementation; a variety of approaches could be used 
within the general framework described in Section 3. Past work has 
leveraged rule-based and lexical approaches for semantic type predic-
tion [6,94], or incorporated semantic type prediction as one element of a 
larger joint neural system [36]. MEDTYPE serves as a strong baseline for 
additional research in this area. 

7.3. WIKIMED and PUBMEDDS are valuable resources for biomedical 
concept normalization research 

The expense and difficulty of producing large-scale datasets is a 
major limiting factor in biomedical NLP research. This is particularly the 

Table 8 
Type-wise analysis of the impact on using MEDTYPE with PUBMEDDS on NCBI, Bio CDR, ShARe, and MedMentions datasets. We report F1-score for each semantic type. 
MT denotes MEDTYPE, ← W and ← P indicate MEDTYPE first pre-trained on WIKIMED and PUBMEDDS dataset, and ← B denotes MEDTYPE pre-trained on both the datasets. ‘-’ 
mean that the semantic type was not part of the dataset.   

NCBI Bio CDR ShARe MedMentions  
MT ← W  ← P  ← B  MT ← W  ← P  ← B  MT ← W  ← P  ← B  MT ← W  ← P  ← B  

Activities & Beh. - - - - - - - - - - - - 71.9 71.7 74.4 74.9 
Anatomy - - - - - - - - - - - - 81.3 82.7 86.5 86 
Chemicals & Drugs - - - - 83 83 91.5 91.8 - - - - 77.8 78.1 82.2 82.2 
Concepts & Ideas - - - - - - - - - - - - 80.5 81.2 82.8 82.8 
Devices - - - - - - - - - - - - 52.2 46.4 55.5 54.1 
Disease or Syn. 94.5 95.5 97.2 97.6 87.8 90.5 93.2 93.7 84.6 91.3 92.3 92.8 79 81 84.4 84.9 
Disorders 58.9 68.7 69 69.2 82.4 79.4 85.8 85.7 50.7 78 79.9 82.1 62.1 64.4 67.9 68.6 
Finding 0 45 46.8 51.2 59.6 77.1 86.1 87.6 47.5 79.5 82.5 83.3 54.8 57.5 58.5 59.8 
Functional Concept - - - - - - - - - - - - 76.7 76.4 77.2 77.4 
Genes & Mol. Seq. - - - - - - - - - - - - 67.8 67 72 72 
Living Beings - - - - 0 0 57.1 40 - - - - 88.1 88.6 90.1 90.1 
Mental/Beh. Dys. 17.4 81.1 83.3 83.3 58.8 90.1 92.6 92.9 48.4 83.2 78.8 85.4 76.7 79 80.7 82.2 
Neoplastic Process 91.7 93.1 94.2 92.7 90.9 90.8 94.6 92.2 71.5 89.2 90.9 91.4 85.6 86 87.4 88.1 
Objects - - - - 0 20.8 46.4 29.2 - - - - 72.3 71.6 75.7 76.1 
Occupations - - - - - - - - - - - - 46.7 47.1 58.4 55.5 
Organic Chemical - - - - 91.9 91.3 94.3 94.1 - - - - 71.9 73.6 80.6 80.2 
Organizations - - - - - - - - - - - - 73 74 75.6 77.3 
Pathologic Function 0 76.2 82.4 80 59.6 86.2 90.2 91 74.6 85.1 85.9 86.5 65.6 69.9 70.1 72.7 
Pharm. Substance - - - - 92 91.8 93.3 93.1 - - - - 63.6 64.3 70.8 70.3 
Phenomena - - - - 33.3 74.3 93.8 92.3 - - - - 51.1 54.3 61.5 60.7 
Physiology - - - - 0 60.8 63.7 60.8 - - - - 72.7 74.6 77.3 77.8 
Procedures - - - - 0 0 44.4 53.3 - - - - 77.1 78.3 80.3 80.2 
Qualitative Concept - - - - - - - - - - - - 82.8 83.5 84.1 84.4 
Sign or Symptom 0 81.8 83.3 83.3 46.4 89.5 89.9 91.7 80.6 92.8 94.7 94.4 72.1 75.4 75.1 78.9  

Table 9 
Most frequent confusions in semantic type predictions on the MedMentions 
validation set, using MEDTYPE pretrained on WIKIMED and PUBMEDDS.  

Target Semantic Type Top Confused Semantic Types 
Devices Concepts & Ideas, Objects, Procedures, 
Disorders Disease or Syndrome, Finding 
Finding Concept & Ideas, Physiology, Functional Concept 
Functional Concept Procedures, Concepts & Ideas 
Genes & Mol. Sequences Chemicals & Drugs 
Mental and Behavioral Dys. Disease or Syndrome, Finding 
Objects Concepts & Ideas, Chemicals & Drugs 
Occupations Procedures, Concepts & Ideas, Functional Concepts 
Organic Chemicals Chemicals & Drugs, Pharmacological Substances 
Organizations Concepts & Ideas, Procedures, Living Beings 
Pathologic Functions Disease or Syndrome, Finding, Functional Concepts 
Pharmacological Substance Chemical & Drugs, Organic Chemicals  
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case for the labor-intensive task of annotating datasets for biomedical 
concept normalization, where information density is high and there are 
thousands of candidate concepts to choose from in the annotation pro-
cess. The WIKIMED and PUBMEDDS datasets introduced in this work are a 
step towards alleviating this problem, presenting millions of annotated 
concept mentions with a high diversity in semantic type coverage. While 
these datasets were automatically created and therefore subject to noise 
from the link mapping process (WIKIMED) and from distant supervision 
(PUBMEDDS), our evaluation of them shows the annotations to be a high- 
quality silver standard, which can serve as a valuable resource for 
further research on semantic type prediction and biomedical concept 
normalization.5 

7.4. Potential effects of biased data on MEDTYPE and novel datasets 

The effects of biased data and algorithms in producing biased AI 
systems (including medical AI systems) is an important and rapidly- 
growing area of inquiry [96,97]. While MEDTYPE is not directly predict-
ing sensitive information related to patients, or decisions about their 
treatment, it is nonetheless worth noting potential sources of bias that 
may be reflected in the outcomes of this study. Two interrelated types of 
bias are important to discuss: demographic bias (e.g., racial or gender 
bias) and statistical bias (in the sense of modeling the characteristics of 
one dataset over another). One major contributing factor to de-
mographic bias in NLP systems is a lack of representatively diverse data; 
by learning the characteristics of data produced by a subset of the 
population, the resulting models are less effective in more diverse set-
tings [98,99]. A significant portion of biomedical NLP research 
(including many of the datasets used in this article) relies on Pub-
Med—which reflects racial disparities in scientific funding and publi-
cation [100]—and Wikipedia—which exhibits both racial and gender 
biases in the presentation of information [101,102]. These biases thus 

Fig. 5. Outcomes of semantic type filtering in 
MedMentions data, in terms of reduction in 
candidate set size. All results are reported using 
the best-performing information extraction model 
(ScispaCy). Top graphs display candidate set 
reduction using oracle type filtering, broken 
down into whether the correct candidate was 
included in the list generated by ScispaCy. Bot-
tom graphs illustrate corresponding outcomes 
from MEDTYPE and the strongest type prediction 
baseline (Type CNN), broken down by whether 
the predicted type was correct. The number of 
samples each graph displays is provided, along 
with the percentage of these samples included in 
each reduction category.   

Fig. 6. Error analysis of output predictions from all information extraction 
tools on the MedMentions test set (annotated set size: 70,405 mentions). False 
positive mentions are spurious entity spans extracted by the tools; Missing 
correct candidate cases indicate exclusion of the correct entity from the 
returned candidate list. Matched indicates that neither of these errors were 
present. Refer to Section 6.5 for details. 

Fig. 7. Distribution of candidate set sizes in MedMentions using ScispaCy, 
comparing unfiltered concepts to candidate sets filtered using semantic type 
prediction strategies. Only mentions predicted by ScispaCy that included the 
correct CUI in the candidate set are included. Larger bars to the left-hand side of 
the figure indicate greater reductions in candidate set size. 

5 We note that WIKIMED and PUBMEDDS should not, however, be used to train 
biomedical mention detection (NER) systems, as the automated annotation 
process emphasized precision over recall and many potentially valid concept 
mentions were not included due to missing links (wiki) or MeSH headers 
(PUBMEDDS). 
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have the potential to be propagated in terms of the different sets of 
language in which NLP models will be most effective. From a more 
statistical sense, models trained on one genre of text (such as Wikipedia) 
generally show some performance degradation when applied to text 
from other genres (such as PubMed). Investigating potential biases in 
biomedical NLP systems for information extraction is an important di-
rection to continue in future work. 

7.5. Contribution of semantic type filtering by information extraction 
toolkit 

While our results show consistent improvements in information 
extraction performance from integrating semantic type prediction, the 
effect size varies from toolkit to toolkit and genre to genre. For example, 
improvements in MetaMap performance are 1% or less for NCBI, Bio 
CDR, and ShARe, while QuickUMLS performance noticeably improves 
on all datasets but NCBI, and ScispaCy and MetaMapLite show large 
improvements from semantic type filtering across the board. These 
differences are in large part attributable to differences in the size of the 
candidate set produced by each toolkit; for example, cTAKES, which sees 
small relative improvements from type filtering, produces the fewest 
average candidates per mention of the tools we used, while ScispaCy (as 
illustrated in Fig. 7) produces its built-in maximum of 5 candidates for 
the majority of samples analyzed. This indicates that revisiting candi-
date generation strategies, using semantic type filtering to balance out 
more permissive candidate generation, is a worthwhile direction for 
improving coverage in biomedical information extraction. 

7.6. Opportunities for disambiguation research using semantic type 
filtering 

Disambiguating the candidate concepts produced by medical entity 
extraction pipelines has been a long-standing area of research, with 
several tools developed to integrate with existing pipelines. The YTEX 
suite of algorithms [103,104] extends both MetaMap and cTAKES with a 
disambiguation module that helps to reduce noise considerably, 
although [105] found that it often over-filtered correct concepts. There 
has also been significant research in recent years on developing stand-
alone models for disambiguation, using co-occurrence and feature-based 
approaches [106–108] as well as neural models [37,109]. Medical 
concept normalization more broadly has also become an increasing 
research focus [38,15], with significant opportunities for disambigua-
tion research [21]. 

MEDTYPE, and the semantic type filtering task more broadly, can be 
easily combined with any of these approaches to create a multi-stage 
filtering strategy for the disambiguation stage of the information 
extraction pipeline. MEDTYPE performs coarse filtering to a high- 
confidence set based on predicted type, a key step for narrowing down 
over-generated candidate sets in both open-ended deep learning systems 
and dictionary-based pipelines built for broad coverage; disambiguation 
methods can then perform a fine-grained selection of the correct 
candidate to further improve entity linking performance. We highlight 
this as an important direction for future work on medical entity linking. 

7.7. Limitations of this study 

MEDTYPE consistently improves the performance of the medical entity 
linking systems we evaluated. However, this study has some limitations 
that can help to guide further research on medical entity linking 
methods. While our use of coarse-grained semantic types simplified the 
type prediction task and removed the issue of multiple valid types for 
UMLS concepts, these semantic groups can be overly broad in practice 
(e.g., combining symptoms and diagnoses into a single category) and 
may be qualitatively undesirable. Our fine-grained oracle results in 
Table 6 also showed frequent improvement over the coarse-grained 
oracle, particularly in the heterogeneous MedMentions dataset, 

suggesting further potential improvement from a more granular type 
prediction system. 

In addition, while MEDTYPE helps to correct for candidate generation 
errors by pruning out all candidate concepts of the wrong type, it cannot 
identify a candidate that was not generated in the first place. Similarly, a 
candidate selection algorithm that improperly scores candidate concepts 
within a single semantic type will not be affected by MEDTYPE. Future 
research can leverage the value of semantic type filtering to take 
advantage of broad-coverage candidate generation approaches to 
improve recall, and fine-grained candidate scoring algorithms focusing 
on specific semantic types to improve precision. 

For application purposes in biomedical settings, explainability and 
system accountability are often of high importance. Providing expla-
nations for the opaque outputs of deep neural network models in med-
ical settings remains a significant challenge [110], and there is an active 
debate over how explainable such models can be [111]. Providing 
insight into MEDTYPE successes and failures, and options for users to 
adjust system parameters for their specific settings, will be an important 
part of supporting broader adoption of biomedical NLP technologies like 
MEDTYPE. 

Finally, our results are necessarily limited by the homogeneity of 
some of our datasets. Of the evaluation sets, only MedMentions includes 
samples of all semantic types; our picture of MEDTYPE’s impact is thus 
incomplete for other PubMed data or for clinical language. 

8. Conclusion 

Broad-coverage information extraction from biomedical text is an 
important application area for biomedical NLP tools, and one which 
poses significant challenges in the scale and diversity of information to 
extract. To help address these challenges, we introduced semantic type 
prediction as a modular component of biomedical information extrac-
tion pipelines, and presented MEDTYPE, a state-of-the-art neural model 
for semantic type prediction. We demonstrated that semantic type pre-
diction measurably improves information extraction performance on 
four benchmark datasets from different genres of text and types of in-
formation, and that these improvements are observed consistently when 
integrating type prediction into five commonly-used tools for biomed-
ical information extraction. We further presented two new, 
automatically-created datasets, WIKIMED and PUBMEDDS, which are 
significantly larger than any previous resources for medical entity 
linking research. While the automated annotation processes to create 
these datasets introduced some noise, they retained high fidelity in their 
annotations (over 84% precision for PUBMEDDS, and 91% CUI-level ac-
curacy in WIKIMED) and our results demonstrate their utility in training 
semantic type prediction models. We make the source code for our ex-
periments and our two novel datasets available to the community from 
http://github.com/svjan5/medtype, as a resource for further research 
on biomedical information extraction. 
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