915 research outputs found

    A simulation-based algorithm for solving the resource-assignment problem in satellite telecommunication networks

    Get PDF
    This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.En este trabajo se propone una heurística para la programación de las solicitudes de capacidad y la asignación periódica de los recursos de radio en las redes de satélites geoestacionarios (GEO) con topología en estrella, con la demanda de acceso múltiple de asignación (DAMA) de protocolo en la capa de enlace, y el Multi-Frequency Time Division (Acceso múltiple por MF-TDMA) y codificación y modulación Adaptable (ACM) en la capa física.En aquest treball es proposa una heurística per a la programació de les sol·licituds de capacitat i l'assignació periòdica dels recursos de ràdio en les xarxes de satèl·lits geoestacionaris (GEO) amb topologia en estrella, amb la demanda d'accés múltiple d'assignació (DAMA) de protocol en la capa d'enllaç, i el Multi-Frequency Time Division (Accés múltiple per MF-TDMA) i codificació i modulació Adaptable (ACM) a la capa física

    Integrated channel assignment and power control in cellular networks using hill-climbing approach.

    Get PDF
    Recent year\u27s incredible success and exponential growth of wireless cellular network services have necessitated careful management of radio resources to improve system capacity. Mainly due to the insufficiency of radio spectrum, reuse or sharing of radio frequency must be considered. In practical, the sharing of radio frequency introduces interferences among users, which in turn limit the system capacity. On the other hand, control of transmitter power can suppress co-channel interference, adjacent channel interference and limits the consumption of power. Thus channel assignment and power control are two effective means in wireless cellular networks and they are highly correlated to each other. Most of the existing papers have focused on optimizing the assignment of channels assuming that the allocation of transmitter power is known and fixed or vice-versa. In this thesis, we study the integration of channel assignment and power control simultaneously to increase the network capacity and throughput. We have proposed a new channel assignment approach, called HCA-PC (Hybrid Channel Assignment + Power Control) using dynamic reuse distance concept to optimize the channel assignment. We develop a Hill-climbing approach with random restart strategy, using an efficient problem representation and a fitness function that optimizes channel assignment and power control in the cellular network. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .V52. Source: Masters Abstracts International, Volume: 44-03, page: 1392. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Improvement at Network Planning using Heuristic Algorithm to Minimize Cost of Distance between Nodes in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMN) consists of wireless stations that are connected with each other in a semi-static configuration. Depending on the configuration of a WMN, different paths between nodes offer different levels of efficiency. One areas of research with regard to WMN is cost minimization. A Modified Binary Particle Swarm Optimization (MBPSO) approach was used to optimize cost. However, minimized cost does not guarantee network performance. This paper thus, modified the minimization function to take into consideration the distance between the different nodes so as to enable better performance while maintaining cost balance. The results were positive with the PDR showing an approximate increase of 17.83% whereas the E2E delay saw an approximate decrease of 8.33%

    A Hybrid ant colony optimization algorithm for solving a highly constrained nurse rostering problem

    Get PDF
    Distribution of work shifts and off days to nurses in a duty roster is a crucial task. In hospital wards, much effort is spent trying to produce workable and quality rosters for their nurses. However, there are cases, such as mandatory working days per week and balanced distribution of shift types that could not be achieved in the manually generated rosters, which are still being practiced. Hence, this study focused on solving those issues arising in nurse rostering problems (NRPs) strategizing on a hybrid of Ant Colony Optimization (ACO) algorithm with a hill climbing technique. The hybridization with the hill climbing is aiming at fine-tuning the initial solution or roster generated by the ACO algorithm to achieve better rosters. The hybrid model is developed with the goal of satisfying the hard constraints, while minimizing the violation of soft constraints in such a way that fulfill hospital’s rules and nurses’ preferences. The real data used for this highly constrained NRPs was obtained from a large Malaysian hospital. Specifically, three main phases were involved in developing the hybrid model, which are generating an initial roster, updating the roster through the ACO algorithm, and implementing the hill climbing to further search for a refined solution. The results show that at a larger value of pheromone, the chance of obtaining a good solution was found with only small penalty values. This study has proven that the hybrid ACO is able to solve NRPs with good potential solutions that fulfilled all the four important criteria, which are coverage, quality, flexibility, and cost. Subsequently, the hybrid model is also beneficial to the hospital’s management whereby nurses can be scheduled with balanced distribution of shifts, which fulfill their preferences as well

    A metaheuristic method for joint task scheduling and virtual machine placement in cloud data centers

    Get PDF
    The virtual machine (VM) allocation problem is one of the main issues in the cloud data centers. This article proposes a new metaheuristic method to optimize joint task scheduling and VM placement in the cloud data center called JTSVMP. The JTSVMP problem composed of two parts, namely task scheduling and VM placement, is carried out by using metaheuristic optimization algorithms (MOAs). The proposed method aims to schedule task into the VM which has the least execution cost within deadline constraint and then place the selected VM on most utilized physical host (PH) within capacity constraint. To evaluate the performance of the proposed method, we compare the performance of task scheduling algorithms only with others that integrate both task scheduling and VM placement using MOAs, namely the basic glowworm swarm optimization (GSO), moth-flame glowworm swarm optimization (MFGSO) and genetic algorithm (GA). Simulation results show that optimizing joint task scheduling and VM placement algorithm leads to better overall results in terms of minimizing execution cost, makespan and degree of imbalance and maximizing PHs resource utilization

    Models for dynamic network loading and algorithms for traffic signal synchronization

    Get PDF
    The effectiveness of optimization strongly relies on the underlying model of the phenomenon. According to this, a considerable effort has been spent in improving the General Link Transmission Model (Gentile, 2008) to address urban networks, intersection and lane modelling and multimodal simulation. A genetic algorithm with a formulation tailored on the signal coordination problem has been integrated with the simulation engine. So, a practical and effective multi-objective optimization tool for traffic signal coordination is here presented
    corecore