158 research outputs found

    Integral sliding mode fault tolerant control allocation for a class of affine nonlinear system

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from the literature. Good simulation results show the efficacy of the scheme

    Fault Tolerant Control of a X8-VB Quadcopter

    Get PDF
    In this dissertation new modeling and fault tolerant control methodologies of a quadcopter with X8 configuration are proposed; studies done to actuators faults and possible reconfigurations are also presented. The main research effort has been done to design and implement the kinematic and dynamic model of a quadcopter with X8 configuration in Simulink®. Moreover, simulation and control of the quadcopter in a virtual reality world using Simulink3D® and real world experimental results from a quadcopter assembled for this purpose. The main contributions are the modeling of a X8 architecture and a fault tolerant control approach. In order to show the performance of the controllers in closed-loop, simulation results with the model of a X8 quadcopter and real world experiments are presented. The simulations and experiments revealed good performance of the control systems due to the aircraft model quality. The conclusion of the theoretical studies done in the field of actuators’ fault tolerance were validated with simulation and real experiments

    Design and analysis of an integral sliding mode fault-tolerant control scheme

    Get PDF
    This is the author's version of an artiucle subseqiently published in IEEE Transactions on Automatic Control. The definitive published version is available via doi: 10.1109/TAC.2011.2180090A novel scheme for fault-tolerant control is proposed in this paper, in which integral sliding mode ideas are incorporated with control allocation to cope with the total failure of certain actuators, under the assumption that redundancy is available in the system. The proposed scheme uses the effectiveness level of the actuators to redistribute the control signals to healthy actuators without reconfiguring the controller. The effectiveness of the proposed scheme against faults or failures is tested in simulation based on a large transport aircraft model. © 2011 IEEE

    A fault tolerant control allocation scheme with output integral sliding modes

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Automatica. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Automatica Vol. 49 (2013), DOI: 10.1016/j.automatica.2013.02.043In this paper a new fault tolerant control scheme is proposed, where only measured system outputs are assumed to be available. The scheme ensures closed-loop stability throughout the entire closed-loop response of the system even in the presence of certain actuator faults/failures. This is accomplished by incorporating ideas of integral sliding modes, unknown input observers and a fixed control allocation scheme. A rigorous closed-loop stability analysis is undertaken, and in fact a convex representation of the problem is created in order to synthesize the controller and observer gains. The efficacy of the proposed scheme is tested by applying it to a benchmark civil aircraft model

    Fault tolerant control of multi-rotor unmanned aerial vehicles using sliding mode based schemes

    Get PDF
    This thesis investigates fault-tolerant control (FTC) for the specific application of small multirotor unmanned aerial vehicles (Unmanned Aerial Vehicle (UAV)s). The fault-tolerant controllers in this thesis are based on the combination of sliding mode control with control allocation where the control signals are distributed based on motors' health level. This alleviates the need to reconfigure the overall structure of the controllers. The thesis considered both the over actuated (sufficient redundancy) and under-actuated UAVs. Three multirotor UAVs have been considered in this thesis which includes a quadrotor (4 rotors), an Octocopter (8 rotors) and a spherical UAV. The non-linear mathematical models for each of the UAVs are presented. One of the main contributions of this thesis is the hardware implementation of the sliding mode Fault Tolerant Control (FTC) scheme on an open-source autopilot microcontroller called Pixhawk for a quadrotor UAV. The controller was developed in Simulink and implemented on the microcontroller using the Matlab/Simulink support packages. A gimbal- based test rig was developed and built to offer a safe test bed for testing control designs. Actual flight tests were done which showed sound responses during fault-free and faulty scenarios. This work represents one of successful implementation work of sliding mode FTC in the literature. Another key contribution of this thesis is the development of the mathematical model of a unique spherical UAV with highly redundant control inputs. The use of novel 8 flaps and 2 rotors configuration of the spherical UAV considered in this thesis provides a unique fault tolerant capability, especially when combined with the sliding mode-based FTC scheme. A key development in the later chapters of the thesis considers fault-tolerant control strategy when no redundancy is available. Unlike many works which consider FTC on quadrotors in the literature (which can only handle faults), the proposed schemes in the later chapters also include cases when failures also occur converting the system to an under actuated system. In one chapter, a bespoke Linear Parameter Varying (LPV) based controller is developed for a reduced attitude dynamics system by exploiting non-standard equation of motions which relates to position acceleration and load factor dynamics. This is unique as compared to the typical Euler angle control (roll, pitch and yaw angle control). In the last chapter, a fault-tolerant control scheme which can handle both the over and under actuated system is presented. The scheme considers an octocopter and can be used in fault-free, faulty and failure conditions up to two remaining motors. The scheme exploits the differential flatness property, another unique property of multirotor UAVs. This allows both inner loop and outer loop controller to be designed using sliding mode (as opposed to many sliding mode FTC in the literature, which only considers sliding mode for the inner loop control)

    Fault tolerant sliding mode control design with piloted simulator evaluation

    Get PDF
    Copyright © 2008 American Institute of Aeronautics and AstronauticsThis paper considers sliding mode allocation schemes for fault tolerant control. The schemes allow redistribution of the control signals to the remaining functioning actuators when a fault or failure occurs. The paper analyzes the schemes and determines conditions under which closed–loop stability is retained for a certain class of faults and failures. It is shown that faults and even certain total actuator failures can be handled directly without reconfiguring the controller. The results obtained from implementing the controllers on the SIMONA research flight simulator, configured to represent a B747 aircraft, show good performance in both nominal and failure scenarios even in wind and gust conditions

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Integrated approaches to handle UAV actuator fault

    Get PDF
    Unmanned AerialVehicles (UAV) has historically shown to be unreliable when compared to their manned counterparts. Part of the reason is they may not be able to a ord the redundancies required to handle faults from system or cost constraints. This research explores instances when actuator fault handling may be improved with integrated approaches for small UAVs which have limited actuator redundancy. The research started with examining the possibility of handling the case where no actuator redundancy remains post fault. Two fault recovery schemes, combing control allocation and hardware means, for a Quad Rotor UAV with no redundancy upon fault event are developed to enable safe emergency landing. Inspired by the integrated approach, a proposed integrated actuator control scheme is developed, and shown to reduce the magnitude of the error dynamics when input saturation faults occur. Geometrical insights to the proposed actuator scheme are obtained. Simulations using an Aerosonde UAV model with the proposed scheme showed significant improvements to the fault tolerant stuck fault range and improved guidance tracking performance. While much research literature has previously been focused on the controller to handle actuator faults, fault tolerant guidance schemes may also be utilized to accommodate the fault. One possible advantage of using fault tolerant guidance is that it may consider the fault degradation e ects on the overall mission. A fault tolerant guidance reconfiguration method is developed for a path following mission. The method provides an additional degree of freedom in design, which allows more flexibility to the designer to meet mission requirements. This research has provided fresh insights into the handling UAV extremal actuator faults through integrated approaches. The impact of this work is to expand on the possibilities a practitioner may have for improving the fault handling capabilities of a UAV

    Observer-Based Optimal Control of a Quadplane with Active Wind Disturbance and Actuator Fault Rejection

    Get PDF
    Hybrid aircraft configurations with combined cruise and vertical flight capabilities are increasingly being considered for unmanned aircraft and urban air mobility missions. To ensure the safety and autonomy of such missions, control challenges including fault tolerance and windy conditions must be addressed. This paper presents an observer-based optimal control approach for the active combined fault and wind disturbance rejection, with application to a quadplane unmanned aerial vehicle. The quadplane model is linearised for the longitudinal plane, vertical takeoff and landing and transition modes. Wind gusts are modelled using a Dryden turbulence model. An unknown input observer is first developed for the estimation of wind disturbance by defining an auxiliary variable that emulates body referenced accelerations. The approach is then extended to simultaneous rejection of intermittent elevator faults and wind disturbance velocities. Estimation error is mathematically proven to converge to zero, assuming a piecewise constant disturbance. A numerical simulation analysis demonstrates that for a typical quadplane flight profile at 100 m altitude, the observer-based wind gust and fault correction significantly enhances trajectory tracking accuracy compared to a linear quadratic regulator and to a H-infinity controller, which are both taken, without loss of generality, as benchmark controllers to be enhanced. This is done by adding wind and fault compensation terms to the controller with admissible control effort. The proposed observer is also shown to enhance accuracy and observer-based rejection of disturbances and faults compared to three alternative observers, based on output error integration, acceleration feedback and a sliding mode observer, respectively. The proposed approach is particularly efficient for the active rejection of actuator faults under windy conditions.</p
    • …
    corecore