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Abstract

In this paper a new fault tolerant control scheme is proposed, where only measured system outputs are assumed to be available.
The scheme ensures closed-loop stability throughout the entire closed-loop response of the system even in the presenceof certain
actuator faults/failures. This is accomplished by incorporating ideas of integral sliding modes, unknown input observers and a
fixed control allocation scheme. A rigorous closed-loop stability analysis is undertaken, and in fact a convex representation of
the problem is created in order to synthesize the controllerand observer gains. The efficacy of the proposed scheme is tested by
applying it to a benchmark civil aircraft model.
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1. Introduction

Fault tolerant control (FTC) systems are designed to be able
to handle emergency situations arising from actuator and/or
sensor faults, and improve the reliability of the overall sys-
tem. In the existing literature many control schemes have
been proposed to tackle this problem based on different design
paradigms, and it remains an open area of research. In most en-
gineering systems, not all states are measurable and therefore
output feedback schemes are more desirable. This also applies
to FTC systems. In the FTC literature, methods such asH∞
control (see for example Ganguli et al. (2002)) and eigenstruc-
ture assignment (Duan (2003)) inherently deal with the output
feedback situation, and do not require observers for estimat-
ing the unmeasured states1. Other FTC methods such as the
Pseudo Inverse Method (e.g. Konstantopoulos and Antsaklis
(1999)) use static output feedback to deal with actuator faults
and the model-following approach of Tao and Joshi (2008) ex-
ploits an adaptive output feedback framework which does not
require state estimation.

In many FTC schemes, a fault detection and isolation (FDI)
component is an important part of the overall system and is used
to trigger controller reconfiguration. Some FDI schemes have
the capability not only to detect faults, but to simultaneously
provide estimates of the states – for example Zhang and Jiang
(2002) which uses a Kalman filter to estimate the efficiency of
the actuators. Papers such as Zhang and Jiang (2002, 2001)
(which use Kalman filters and eigenstructure assignment based
control design) use an integrated FDI/FTC structure and take
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1Although certainH∞ problems yield dynamical controllers which can be

interpreted in a feedback/observer paradigm.

advantage of the observer to provide state estimates to use in
the control. Similarly Kanev (2004) uses a Kalman filter in
conjunction with a finite-horizon MPC formulation (which as-
sumes state availability) in a single optimization approach.

Redundancy is a key element in any FTC system, and ex-
ploiting it in an efficient way, in any over-actuated system,
is important. Control allocation (CA) is one approach which
can effectively manage this redundancy (Boskovic and Mehra,
2002; Harkegard and Glad, 2005). By using CA methods, the
virtual control effort produced by the nominal controller can be
distributed among the actuators to achieve the desired perfor-
mance. One of the benefits of using CA methods is that they can
be used with other control design techniques to handle faults/-
failures: for details see for example (Buffington, 1997).

Sliding mode control (SMC) (Edwards and Spurgeon, 1998;
Utkin et al., 1999) has attracted much recent attention in the
field of FTC, due to its inherent robustness properties against
matched uncertainties. As argued in Alwi et al. (2011), SMC
has a natural capability for dealing with faults (i.e. a reduction
in the effectiveness) in actuators, but cannot deal directly with
total failures. However an appropriate combination of SMC
and CA can achieve tolerance to a wide class of total actuator
failures (Alwi and Edwards, 2008a; Shtessel et al., 2002). In
all these earlier schemes it is assumed that full state informa-
tion is available for the controller design. In order to eliminate
thereaching phase associated with traditional SMC techniques,
and to ensure a sliding mode throughout the entire closed-loop
response of the system, the idea of integral sliding mode (ISM)
control was initially proposed in Utkin and Shi (1996). More
recently Hamayun et al. (2012) considered the combination of
ISM control with CA to accommodate the potential faults/fail-
ures associated with the actuators, but the ideas were developed
under the assumption that all states are available.

The main contribution of this paper is to relax the assumption
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associated with (Alwi and Edwards, 2008a; Hamayun et al.,
2012) that state information is known, and to consider instead
the situation where only measured outputs are available. Early
work on ISM control (not in the context of FTC) also assumed
state information (Utkin and Shi, 1996; Castanos and Fridman,
2006), but this has more recently been extended to the situa-
tion where only measured outputs are available (Bejarano etal.,
2009, 2007). In (Bejarano et al., 2007), an ISM controller using
output information was used to compensate for matched uncer-
tainties, and a hierarchical sliding mode observer was proposed
to estimate the states. In (Chang, 2009) the state dependent
methods from (Cao and Xu, 2004), were developed into an out-
put feedback framework by introducing a dynamic output de-
pendent sliding surface employing a full order compensator.

In this paper, a new fault tolerant control scheme is proposed
for the case when only the system outputs are measured. A
full order linear unknown input observer (UIO) is employed to
estimate the system states used in the underlying (virtual)con-
troller. In the proposed FTC scheme, actuator faults are mod-
elled using an effectiveness gain matrix, whereas component
faults are modelled as parametric uncertainty in the systemma-
trix. The proposed scheme does not attempt to estimate the
actuator faults/failures (using an FDI scheme), instead, the ro-
bustness properties of the UIO coupled with the ISM are relied
upon. Compared to Alwi and Edwards (2008a); Hamayun et al.
(2012), a fixed control allocation scheme is used to translate
the virtual control signals into physical actuator demands. An
LMI synthesis procedure is proposed in order to synthesize the
observer gains and the controller parameters in a tractableway.
An aircraft benchmark model from the literature is used to in-
vestigate the feasibility of the scheme (Edwards et al., 2010).

2. Problem Formulation

Consider an uncertain system with actuator and component
faults or failures written as

ẋ(t) = (A + Aδ)x(t) + Bu(t) − BK(t)u(t) (1)

y(t) = Cx(t) (2)

whereA ∈ Rn×n is the state matrix,Aδ is parametric uncertainty
in the system matrix arising from imprecisely known param-
eters and possible faults at a component level,B ∈ R

n×m is
the input distribution matrix andC ∈ R

p×n is the output dis-
tribution matrix wherep ≥ m. The diagonal weighting ma-
trix K(t) = diag{k1(t), .., km(t)}, where the scalarsk1(t), .., km(t),
model the effectiveness level of the actuators. Ifki(t) = 0, the
correspondingith actuator is fault free and working perfectly,
whereas if 1> ki(t) > 0, an actuator fault is present. The value
ki(t) = 1 indicates theith actuator has completely failed. It is
assumed that controlled outputs for the system are given by

yc(t) = Ccx(t) (3)

whereCc ∈ Rl×n andl < m. This implies there is redundancy in
the system in terms of the number of control inputs. This will
be exploited in the sequel to achieve fault tolerance. To resolve

this redundancy, as in Alwi and Edwards (2008a), it is assumed
the input distribution matrix can be partitioned such that

B =

[
B1

B2

]
(4)

whereB1 ∈ R(n−l)×m andB2 ∈ Rl×m is of rankl < m. After par-
titioning, by appropriate scaling of the lastl states via a change
in the state-space coordinates, it can be ensuredB2BT

2 = Il,
which in turn implies‖B2‖ = 1. As argued in Alwi and Ed-
wards (2008a), it is assumed that‖B1‖ ≪ ‖B2‖, so that the
control action predominantly acts in the lastl channels of the
system. Using (4), the system in (1) can be written as

ẋ(t) = (A + Aδ)x(t) +

[
B1

B2

]
(I − K(t))︸     ︷︷     ︸

W(t)

u(t) (5)

where the matrixW(t) is diagonal and its diagonal elements
wi(t) satisfy 0≤ wi(t) ≤ 1.

The objective of the paper is to develop a control scheme,
based only on output measurements, which can maintain closed
loop stability in the face of a class of actuator faults and failures.
The physical control lawu(t) is realized by a so-called ‘fixed’
control allocation scheme of the form

u(t) = BT
2ν(t) (6)

whereν(t) ∈ R
l is the ‘virtual control’ effort produced by the

control law, which will be described in the sequel.
Remark 1: The control allocation structure in (6) is different
to the ones in Alwi and Edwards (2008a) and Hamayun et al.
(2012), since both requireW(t) (or a good estimate ofW(t) to
be known). The fixed CA/ISM scheme developed in this paper
will be independent of W(t) and will not require an FDI scheme.
By using (6), equation (5) can be written as

ẋ(t) = (A + Aδ)x(t) +

[
B1W(t)BT

2
B2W(t)BT

2

]

︸            ︷︷            ︸
Bw(t)

ν(t) (7)

In the nominal case when there is no fault (i.e. whenW(t) = I
andAδ

= 0), equation (7) simplifies to

ẋ(t) = Ax(t) +

[
B1BT

2
Il

]

︸     ︷︷     ︸
Bν

ν(t) (8)

becauseB2BT
2 = Il by design. The following assumption will

be made and used in the remainder of the paper.

A1: The pair (A, Bν) is controllable.

3. ISM Controller Design

An integral sliding mode strategy (Utkin and Shi, 1996) will
be adopted for synthesizing the virtual control signalν(t). The
virtual control signalν(t) will use estimated states ˆx(t), obtained

2



from an observer, because it is assumed only outputs are mea-
sured. As a first step, an output and state-estimate dependent
integral switching function is proposed of the form

σ(t) = Gy(t) −Gy(0)+
∫ t

0
Fx̂(τ)dτ (9)

whereG ∈ R
l×p andF ∈ R

l×n are design feedback gains, se-
lected to specify nominal closed-loop performance.
In order to create the state estimate ˆx(t), a full-order unknown
input observer UIO developed in Chen and Patton (1999) is
used. The expressionBK(t)u(t) in (1) is treated as an unknown
input since by assumptionK(t) is unknown. Consequently the
distribution matrix associated with the unknown input signal to
be rejected is chosen asB. Necessary and sufficient conditions2

for a linear UIO to exist for the system in (1)-(2), to provide
insensitivity with respect to the termBK(t)u(t), are

A2: rank(CB) = rank(B) = m

A3: the triple (A, B,C) is minimum phase

The structure of the full-order UIO from Chen and Patton
(1999) in this particular case

ż(t) = A0z(t) + Ly(t) (10)

x̂(t) = z(t) + Hy(t) (11)

wherex̂(t) is the estimated state, andA0, L andH are design pa-
rameters of appropriate dimension chosen in order to decouple
the unknown inputs. In particular the matrixH ∈ Rn×p must be
chosen so that

(I − HC)B = 0 (12)

As argued in Chen and Patton (1999), AssumptionA2 is suffi-
cient to solve (12), andH := B((CB)TCB)−1(CB)T is an appro-
priate choice. After computingH, the matrix

A0 := A − HCA︸     ︷︷     ︸
Ah

−L1C (13)

can be defined, whereL1 ∈ R
n×p is design freedom which is

exploited to makeA0 Hurwitz. Finally

L2 := A0H (14)

and the gainL := L1 + L2.
Remark 2: The ISM scheme in this paper can tolerate the pres-
ence of stable invariant zeros (assumptionA3). However invari-
ant zeros preclude the use of thestrong observabilityapproach
in (Bejarano et al., 2009, 2007).However there is a price to
be paid for this increase in applicability. In this paper thestate
estimate ˆx(t) → x(t) asymptotically, whereas the use of high-
order sliding modes in (Bejarano et al., 2009, 2007) provides
(arbitrarily small) finite time convergence of the state estima-
tion error to zero for their observer.

2In Chen and Patton (1999), the necessary and sufficient conditions stated
for solving (12)-(14) are thatrank(CB) = rank(B) and (C, Ah) is detectable. As
argued in Tan and Edwards (2003) these are equivalent toA2 andA3.

If e(t) := x(t) − x̂(t), using (1) and (11), after some algebra and
simplifications based on (12)-(14), the error dynamics

ė(t) = A0e(t) + (I − HC)Aδx(t) (15)

The choice of the gainG in (9) suggested in this paper is

G := B2
(
(CB)TCB

)−1(CB)T (16)

The existence of the inverse in expression (16) is guaranteed
by assumptionA2. As a result of this choice ofG, generically
GCBw(t) = B2W(t)BT

2 , which is symmetric. The symmetry is
important and simplifies much of the subsequent analysis and
avoids the introduction of conservatism. Also nominally, when
there are no faults andW = I, from the special properties of the
matrix B2, it follows that

GCBw(t)|W=I = B2BT
2 = I

This means, nominally,G has the ‘pseudo inverse properties’
which Castanos and Fridman (2006) argue are optimal from the
point of view of minimizing the impact of unmatched uncer-
tainties on the closed loop dynamics.

Suppose a control law can be designed to force a sliding mo-
tion for all time. The equivalent controlνeq(t) necessary to
maintain sliding is obtained from equating ˙σ = 0 (Utkin et al.,
1999). The derivative ofσ(t) in (9) is

σ̇(t) = Gẏ(t) + Fx̂(t) (17)

Then substituting from equation (7) and equating ˙σ(t) = 0
yields

νeq(t) = −(GCBw(t))−1(Fx̂(t) +GC(A + Aδ)x(t)
)

(18)

under the assumption det(GCBw(t)) , 0. With the choice ofG
in (16), it followsGCBw(t) = B2W(t)BT

2 , and

νeq(t)=−(B2W(t)BT
2 )−1(Fx̂(t) +GC(A + Aδ)x(t)

)
(19)

Substituting (19) into (7), the sliding dynamics are given by

ẋ(t)=(A+ Aδ)x(t)−Bm
(
Fx̂(t) +GC(A + Aδ)x(t)

)
(20)

where

Bm(t) :=

[
B1W(t)BT

2 (B2W(t)BT
2 )−1

Il

]

Adding and subtracting the termBν

(
Fx̂(t)+GC(A+ Aδ)x(t)

)
to

the right hand side of (20) and exploiting the fact thate(t) :=
x(t) − x̂(t), the sliding dynamics can be written as

ẋ(t) = (A−BνF−BνGCA)x(t)+ Aδx(t) − BνGCAδx(t)

+ BνFe(t)+ B̃Φ(t)
(
Fx(t)− Fe(t)+GC(A+Aδ)x(t)

)
(21)

where

B̃ :=

[
In−l

0

]
(22)

and
Φ(t) = B1BT

2 − B1W(t)BT
2 (B2W(t)BT

2 )−1

︸                         ︷︷                         ︸
ψ(t)

(23)
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Combining equations (15) and (21), the closed-loop system dy-
namics can be written as
[

ė(t)
ẋ(t)

]
=

[
A0 0

BνF Ac − BνF

]

︸                  ︷︷                  ︸
Aa

[
e(t)
x(t)

]

︸︷︷︸
xa

+Ba∆(t) Ca

[
e(t)
x(t)

]
(24)

whereAc := (I − BνGC)A and

Ba :=

[
(I − HC) 0 0

(I − BνGC) B̃ B̃

]
Ca :=



0 I
−F GCA + F
0 I



and the uncertainty term∆(t) is

∆(t) := diag
[

Aδ
Φ(t) Φ(t)GCAδ

]
(25)

It is convenient to analyze (24) in the (e, x̂) coordinates.
[

e(t)
x̂(t)

]

︸   ︷︷   ︸
x̂a

=

[
I 0
−I I

]

︸      ︷︷      ︸
T̃

[
e(t)
x(t)

]
(26)

then it follows in the new (e, x̂) coordinates

˙̂xa(t) = Ãa x̂a(t) + B̃a∆(t)C̃a x̂a(t) (27)

where

Ãa := T̃ AaT̃−1
=

[
A0 0

Ac − A0 Ac − BνF

]
(28)

B̃a := T̃ Ba =

[
(I − HC) 0 0

HC − BνGC B̃ B̃

]
(29)

C̃a := CaT̃−1
=



I I
GCA GCA + F

I I

 (30)

In order to ensure that the termΦ(t) in (25) is bounded,
note thatΦ(t) = B1BT

2 − ψ(t) and ψ(t) = B1B†2(t), where
B†2(t) is a right pseudo inverse ofB2. Using the pseudo in-
verse properties in Stewart (1989), and arguing exactly as in
Alwi and Edwards (2008a), there exists a scalarγ0 such that
‖B†2(t)‖ := ‖W(t)BT

2 (B2W(t)BT
2 )−1‖ < γ0 for all combinations

of (w1(t), . . . ,wm(t)) such that det(B2WBT
2 ) , 0. Therefore

‖ψ(t)‖ ≤ γ1γ0 and‖Φ(t)‖ ≤ γ1(1+ γ0).

A4: Assume that the parametric uncertaintyAδ is bounded, and
therefore since‖Φ(t)‖ is bounded, it follows

‖∆(t)‖ < γa (31)

for some positive scalarγa.

3.1. Closed-loop Stability Analysis

In the nominal case, (i.e. whenW(t) = I, Aδ
= 0 and∆(t) =

0), equation (27) simplifies tô̇xa(t) = Ãa x̂a(t). From (28) it
is clear that the eigenvalues of̃Aa are given by the union of
the eigenvalues ofA0 andAc − BνF. Both these matrices can
be made Hurwitz by choice of the design freedom matricesL1

from (13) andF respectively. Consequently, by design,Ãa can

be made Hurwitz, and hence nominally the closed loop system
is stable. However for the fault/failure cases, stability needs to
be proved. Define

γ2 = ‖G̃a(s)‖∞ (32)

where
G̃a(s) := C̃a(sI − Ãa)−1B̃a (33)

Proposition 1: In fault/failure conditions, for any combination
of (w1(t), . . . ,wm(t)) such that det(B2WBT

2 ) , 0, the closed-loop
system in (27) will be stable if:

γ2γa < 1 (34)

Proof. In order to establish closed-loop stability, the system de-
fined in (27) can also be written as

˙̂xa(t) = Ãa x̂a(t) + B̃aũa(t) (35)

ỹa(t) = C̃a x̂a(t) (36)

where ũa(t) := ∆(t) ỹa(t). In this form, equation (27), is the
feedback interconnection of the known linear systemG̃a(s), and
the bounded uncertain gain∆(t). According to the small gain
theorem, the feedback interconnection ofG̃a(s) and∆(t) will be
stable if (34) is satisfied.

Remark 3: Note that by hypothesis,γ1 = ‖B1‖ is assumed to be
small. Furthermore ifAδ

= 0, then‖∆(t)‖ → 0 as‖B1‖ → 0 and
Proposition 1 is trivially satisfied.

3.2. LMI Synthesis

In this section, the observer gainL1 and the controller gain
F are synthesized, so that stability condition (34) is satisfied.
For the triple (̃Aa, B̃a, C̃a), from the Bounded Real Lemma,
‖G̃a(s)‖∞ < γ2 if and only if there exists a s.p.d matrixX ∈
IR2n×2n such that



ÃaX + XÃT
a B̃a XC̃T

a

B̃T
a −γ2

2I 0
C̃aX 0 −I

 < 0 (37)

Here it is assumed thatX = diag(X1, X2), where the two sub-
blocksX1, X2 ∈ IRn×n are s.p.d. With this assumption

C̃aX =



X1 X2

GCAX1 GCAX2 + Y
X1 X2

 (38)

whereY := FX2. The top left sub-block in (37)

ÃaX + XÃT
a =

[
A0X1 + X1AT

0 X1AT
c − X1AT

0
AcX1 − A0X1 Θ

]
(39)

whereΘ = AcX2+X2AT
c−BνY−YTBT

ν . Also writeA0 = Ah−L1C
whereAh is from (13). To create a convex representation, define
the observer gain

L1 := βBE (40)

whereβ is a positive scalar andE ∈ IRm×p is chosen so that
(Ah, B, EC) is minimum phase. This is possible if (A, B,C) is
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minimum phase (Edwards et al., 2007). Then as argued in Ed-
wards et al. (2007), it is possible to find an s.p.d matrixP which
has a structureP = NTdiag(P1, P2)N such thatPB = (EC)T,
whereN ∈ IRn×n is invertible (and depends onE) and the s.p.d.
matricesP1 ∈ IR(n−m)×(n−m), P2 ∈ IRm×m. The matrixN is asso-
ciated with a change of coordinates to force the system triple
(Ah, B, EC) into the canonical form proposed in Edwards et al.
(2007). DefineX11 = P−1

1 and X12 = P−1
2 . It follows that

L1C = βBEC = βBBTP and so if

X1 := P−1
= N−1diag(X11, X12)(N

−1)T > 0 (41)

thenL1CX1 = βBBT andA0X1 = AhX1 − βBBT. It follows that
the matrix inequality in (37) is affine w.r.t. the decision vari-
ablesX11, X12, X2, β, Y, and so the synthesis problem is convex.

For the nominal system in (8), (i.e. in the case whenW(t) = I
andAδ

= 0) the gainF must stabilize (A−BνF). Since fromAs-
sumption A1, the pair (A, Bν) is assumed to be controllable, an
LQR formulation will be adopted whereF is selected to mini-
mize

J =
∫ ∞

0
(xT Qx + νT Rν)dt

whereQ andR are symmetric positive definite design matrices.
It is known this problem can be posed as an LMI optimization:

Minimize trace(X−1
2 ) subject to

[
AX2 + X2AT − BνY − YT BT

ν (QX2 − RY)T

QX2 − RY −I

]
< 0 (42)

For a givenL2-gainγ2, the overall optimization problem pro-
posed in convex form becomes:
Minimize trace(Z) w.r.t the decision variablesX11, X12, X2, β, Y
subject to [

−Z In

In −X2

]
< 0 (43)

together with (37), (42), (41) and (43). The matrixZ is a slack
variable which satisfiesZ > X−1

2 and thereforetrace(Z) ≥
trace(X−1

2 ). Finally the controller and observer gains can be
recovered asF = YX−1

2 andL1 = βBE.

3.3. ISM Control Laws

A control law will be defined to ensure sliding is maintained
from t = 0. Define the virtual control law in (8) as

ν(t) = νl(t) + νn(t) (44)

where the linear part, responsible for the nominal performance
of the system, is

νl(t) = −Fx̂(t) −GCAx̂(t) (45)

and the nonlinear part

νn(t) = −ρ(t)
σ(t)
‖σ(t)‖ for σ(t) , 0 (46)

whereρ(t) is a modulation gain which will be defined later in
the paper.

The following final assumption will be made:

A5: The plant initial conditionsx(0), although not perfectly
known, are assumed to belong to aknown hyper-sphere
S = {x ∈ Rn : ‖x − c0‖ ≤ r0} for some givenc0 ∈ Rn and
positive scalarr0.

Define a time varying scalarǫ(t) as the solution to

ǫ̇(t) = −m0ǫ(t) + m1‖x̂(t)‖ (47)

wherem0 andm1 are positive scalars to be defined in the sequel
and letV0 = eT P0e whereP0 is the s.p.d matrix obtained from
solving

P0A0 + AT
0 P0 = −I (48)

Further, suppose that‖Aδ‖ is sufficiently small so thatP0 also
satisfies

2‖P0‖‖(I − HC)Aδ‖ < 1− µo (49)

where 1> µo > 0. Then the following can be proved:
Proposition 2: Define the modulation gainρ(t) from (46) as

ρ(t) =
δa‖GC‖‖x̂(t)‖ + ‖νl(t)‖ + ǫ(t)(‖GCA‖ + δa‖GC‖)/p0 + η

(1− λ0)
(50)

wherep0 =
√
λmin(P0), the scalarδa > ‖Aδ‖ andη is a positive

design scalar. Assume the fault tuple (k1(t), . . . , km(t)) belongs
to the set

D = {(k1(t), ..., km(t)) : λmax(B2K(t)BT
2 ) < λ0 < 1}

Also assume that by choice of ˆx(0) andǫ(0), the state estimation
error e(t) = x(t) − x̂(t) at time t = 0, written e(0), satisfies√

e(0)T P0e(0) < ǫ(0). Then the integral sliding mode control
law defined in (44)-(46), guarantees that the system trajectories
remain on the sliding surface.

Proof. Equation (15) can be written as

ė(t) = (A0 + (I − HC)Aδ)e(t) + (I − HC)Aδ x̂(t) (51)

then the derivative of the positive definite functionV0 = eT P0e
is given by

V̇0 = −eeT
+ 2eT P0(I − HC)Aδe + 2eT P0(I − HC)Aδ x̂

≤ −‖e‖2 + 2‖P0‖‖(I − HC)Aδ‖(‖e‖2 + ‖e‖‖x̂‖)

Therefore since by assumption 2‖P0‖‖(I − HC)Aδ‖ < 1 − µo

whereµo > 0 it follows

V̇0 ≤ −µ0‖e‖2+(1−µ0)‖x̂‖‖e‖ ≤ −
µ0

p1
V0+

1− µ0√
p1
‖x̂‖
√

V0 (52)

wherep1 = λmax(P0). By definingṼ =
√

V0, equation (52) can
be written as

˙̃V ≤ − µ0

2p1
Ṽ +

1− µ0

2
√

p1
‖x̂‖ (53)

which for notational convenience can be further written as

˙̃V ≤ −m0Ṽ + m1‖x̂‖ (54)
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where the positive scalarsm0, andm1 are appropriately defined.
Comparing (54) and (47), ifǫ(0) > Ṽ(0), it is easy to show that
ǫ(t) > Ṽ(t) for all t ≥ 0 and consequently

ǫ(t) ≥ p0‖e(t)‖ for t ≥ 0 (55)

SinceK(t) = I − W(t) and B2BT
2 = Il, equation (17) can be

written as

σ̇(t) = GC(A+Aδ)x(t)+(B2W(t)BT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ)x(t)+ν(t)−(I−B2W(t)BT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ)x(t)+ν(t)−(B2(I−W(t))BT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ)x(t)+ν(t)−B2K(t)BT
2ν(t)+Fx̂(t) (56)

Substituting the control law (44)-(46) into equation (56) and
exploiting the fact thate(t) = x(t) − x̂(t) yields

σ̇ = GCAδ(x̂(t)+e(t))+GCAe(t)−(B2KBT
2 )(νl+νn)−ρ σ

‖σ‖ (57)

Now consider the candidate Lyapunov functionV = 1
2σ

Tσ.
From (57) the time derivative

V̇ ≤ ‖σ‖
(
‖GCAδ‖‖x̂‖ + (‖GCAδ‖ + ‖GCA‖)‖e‖

+ ‖B2K(t)BT
2‖‖νl‖ − ρ(1− λ0)

)
(58)

for a fault (k1(t), . . . km(t)) ∈ D. Then from the definition ofρ(·)
and the fact thatǫ(t) ≥ p0‖e(t)‖, inequality (58) can be writ-
ten asV̇ ≤ −η‖σ‖ = −η

√
2V which is a standard reachability

condition, (Edwards and Spurgeon, 1998), and is sufficient to
guarantee that a sliding motion is maintained for all time.

Finally the physical control lawu(t) is obtained by substituting
equations (44)-(46) into (6) to obtain

u(t) = BT
2 (−Fx̂(t) −GCAx̂(t) − ρ σ(t)

‖σ(t)‖ ) (59)

Remark 4: Note the control law above does not provide global
convergence since the assumptions of Proposition 2 are only
satisfied if the initial conditions of the observer and of thefil-
ter are chosen so that

√
e(0)T P0e(0) < ǫ(0). However both

x̂(0) andǫ(0) are user defined parameters, and so provided that
x(0) ∈ S defined in Assumption 5, this constraint can always be
satisfied by choice of ˆx(0) andǫ(0).

4. Simulations

In order to demonstrate the efficacy of the proposed FTC
scheme, a civil aircraft benchmark model from Alwi and Ed-
wards (2008b) is used in the simulation. To design the con-
troller in (45), the aircraft model has been linearized around an
operating condition of straight and level flight with a mass of
263,000 Kg, 92.6m/s true airspeed, and at an altitude of 600m
based on 25.6% of maximum thrust. In the simulations, only
measured system outputs

y =



1 0 0 0
0 1 0 0
0 0 0 1


︸               ︷︷               ︸

Cp



q
Vtas

α

θ



are available for use in the control law, whereθ is the pitch angle
(rad), α is the angle of attack (rad),Vtas is the true airspeed
(m/sec), andq is the pitch rate (rad/sec). The linearized state
space model is

Ap =



−0.4623 0.0004 −0.5248 0
0 −0.0149 1.7171 −9.8046

1.1071 −0.0021 −0.5655 0
1 0 0 0



Bp =



−0.6228 −1.3578 0.0599
0 −0.1756 5.7071

−0.0352 −0.0819 −0.0085
0 0 0



The available control surfaces for the longitudinal control are
δlong = [δe, δs, δepr]T which represent elevator deflection (rad),
horizontal stabilizer deflection (rad) and aggregated longitudi-
nal EPR. In the simulations, a series of 3-deg flight path angle
(FPA) commands are given to change the altitude of the aircraft,
while the true airspeedVtas is held constant by using a separate
inner-loop Proportional Integral (PI) controller which creates
an auto-throttle manipulating EPR. Throughout the simulations
it is assumed that the engines are fault free. By splitting the in-
put distribution matrix into matrices which are associatedwith
[δe, δs]T andδepr, the linear model can be rewritten as

ẋp(t) = Ap xp(t) + Bsu1 + Beδepr (60)

y = Cp xp(t) (61)

whereu1 =
[
δe δs

]T
and matricesBs ∈ R4×2 andBe ∈ R4×1.

Define a new state in the PI controller forVtas as

ẋr(t) = r1(t) −C1xp(t)

wherer1(t) is the reference signal forVtas tracking and the ma-
trix C1 =

[
0 1 0 0

]
. The inner-loop PI control is

δepr = Kp(r1(t) −C1xp(t)) + Ki xr(t)

where the PI gains areKp = 0.6, andKi = 0.9. Now augment-
ing the statexr(t) with the plant in (60) yields
[

ẋr

ẋp

]
=

[
0 −C1

BeKi (Ap − BeKpC1)

]

︸                          ︷︷                          ︸
A

[
xr

xp

]

︸︷︷︸
x(t)

+

[
0
Bs

]

︸︷︷︸
B

u1 +

[
I

BeKp

]

︸  ︷︷  ︸
Br

r1

(62)
Also it is assumed that the statexr(t) is available for the con-
troller design, thereforey = Cx(t) whereC = diag{1,Cp}. In
order to introduce steady state tracking for the controlledoutput
yc(t), a feedforward termLrr2 is introduced where

Lr := −(Cc(A − BνF − BνGCA)−1Bν)−1 (63)

and the exogenous constant signalr2 is the reference to be
tracked (by the FPA). From assumption A1,F can always be
chosen to ensure that (A− BνF − BνGCA) is Hurwitz and there-
fore det(A − BνF − BνGCA) , 0. Consequently the inverse in
(63) is well defined. In the absence of faults and uncertaintyit is
easy to see the linear control lawu(t) = −Fx(t)−GCAx(t)+Lrr2
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ensures that at steady stateyc = r2. To accommodate this track-
ing requirement, the control law in (59) must be changed to

u(t) = BT
2 (−Fx̂(t) + Lrr2 −GCAx̂(t) − ρ σ(t)

‖σ(t)‖ ) (64)

and

σ(t) = Gy(t) −Gy(0)+
∫ t

0
(Fx̂(τ) − Lrr2)dτ (65)

The fault tolerant controller will now be designed based on
the system in (62) governed by the triple (A, B,C), using only
the elevator and stabilizer as inputs. A further scaling ofB
is required to ensure thatB2BT

2 = Il (where in this example
l = 1). In this aircraft system (A, B,C) has one stable invari-
ant zero. In can be verified thatrank(CB) = rank(B) = 2,
and therefore AssumptionA2 holds. Since the objective is to
track an FPA command, the controlled output isyc(t) = Cc x(t),
whereCc =

[
0 0 0 −1 1

]
. The gain in equation (16) is

G =
[

0 0.6694 0 0
]
. In addition to actuator faults/fail-

ures, to introduce potential faults which cause changes to the
aerodynamics of the aircraft, a 10% change in the aerodynamic
coefficients (due to possible airframe damage) is considered:
specifically

Aδ
=



0 0 0 0 0
0 0.0514 0 0.0583 0
0 0 0.0017 0 0
0 0.1006 0 0.0628 0
0 0 0 0 0



Choosing

E =

[
−12.4139 −1.6056 12.4139 −1.6056

5.6942 0 −5.6942 0

]

gives ECB = I, and ensures (Ah, B, EC) is minimum phase
with stable zeros at{−1.0000,−0.6451,−1.0000}. With the
choice ofQ = diag(0.02, 0.5, 0.2, 0.1,10) andR = 1 in (42),
solving the LMIs in (37), (42) and (43), gives the feedback
gain F =

[
−0.8142 9.9401 −2.2095 −0.3356 8.8802

]
. In

the simulations, it is assumed that the engines are fault free.
Based on this assumption, using a numerical search, it can be
verified using (25) thatγa = 0.1597. To satisfy the closed-
loop stability condition in (34), the value ofγ2 must satisfy
γ2 <

1
0.1597 = 6.2621. This has been satisfied through the de-

signed parametersL1 andF.

4.1. Simulation Results
In this section the performance of the benchmark civil air-

craft model is demonstrated by considering potential failures in
the actuators. In the simulations, the discontinuity associated
with the control signal in (46) is smoothed using a sigmoidal
approximation σ

‖σ‖+δ , where the value of the positive scalarδ
is chosen asδ = 0.01. The value of the modulation gain is
chosen asρ = 2. In the simulations, the aircraft undergoes
a series of 3-deg FPA commands in order to increase the alti-
tude of the aircraft, while the true airspeedVtas is kept constant.
The initial conditions for the plant and observer are taken as

x0 = [0, 0, 0, 0]T , and x0obs = [0, 0, 0, 0, 0.5(π/180)]T respec-
tively. In Figure 2(a), a failure is considered, where the elevator
jams at some offset position. To maintain the performance close
to nominal, the proposed FTC scheme invokes the horizontal
stabilizer to counteract the failure as can be seen in Figure2(b).
In Figure 3(b), the stabilizer runs-away to a maximum position
of 3-deg. Due to the availability of the redundant actuator (i.e.
elevator) the scheme can still maintain good tracking as seen in
Figure 3(a). In Figure 1, it can be seen that in both scenarios
the observer error quickly converges to zero despite the faults.

5. Conclusion

In this paper, a new fault tolerant control scheme was pro-
posed which assumes only output information is available and
no information about the actuator faults or failures is available.
To estimate the system states, a linear unknown input observer
is employed. The estimated states are used in the virtual control
law to produce signals which are then translated into the phys-
ical control signals (associated with the actuators) by using a
fixed control allocation scheme. The closed-loop stabilityanal-
ysis allows for parameter uncertainty in the system matrix (due
to airframe damage for example) in addition to actuator faults
or failures. A convex representation of the synthesis problem is
established in order to prove closed-loop stability by synthesiz-
ing appropriate observer and controller gains. The simulation
results on a benchmark aircraft model show fast convergenceof
the observer output error, and demonstrate good FTC features
of the proposed scheme.
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Figure 1: State estimation error signals (elevator jam and stabilizer runaway)
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Figure 2: Stabilizer runaway failure
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Figure 3: Stabilizer runaway failure
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