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Abstract

In this paper a new fault tolerant control scheme is propoad@re only measured system outputs are assumed to bebdwaila
The scheme ensures closed-loop stability throughout ttieeaosed-loop response of the system even in the presdroegtain
actuator faults/failures. This is accomplished by incoatiog ideas of integral sliding modes, unknown input obees and a
fixed control allocation scheme. A rigorous closed-looiity analysis is undertaken, and in fact a convex repregem of
the problem is created in order to synthesize the contratierobserver gains. The efficacy of the proposed schemetés tieg
applying it to a benchmark civil aircraft model.

Keywords: Fault tolerant control (FTC), integral sliding mode (ISM)ntrol, linear matrix inequalities (LMI).

1. Introduction advantage of the observer to provide state estimates tonuse i
) the control. Similarly Kanev (2004) uses a Kalman filter in
Fault tolerant control (FTC) systems are designed to be ablgqnjynction with a finite-horizon MPC formulation (which-as

to handle emergency situations arising from actuator and/ayymes state availability) in a single optimization approac

e e o e oeera 1 o RedUNGancy i key clement n any FTC sysem, and .
beeﬁ roposed to tagkle this roblemybased on differengdesi ploiting it in an efficient way, in any over-actuated system,

prop . ) P ng is important. Control allocation (CA) is one approach which
paradigms, and it remains an open area of research. In most e

. > Chn effectively manage this redundancy (Boskovic and Mehra
gineering systems, not all states are measurable and d)hereflzooz; Harkegard and Glad, 2005). By using CA methods, the

foufgéfieggﬁz ngi?eefz_?z:e Iri?;r;en?rzs'ﬁgltﬁbgg':uagsﬁfapphvirtual control effort produced by the nominal controll@ncbe
y : ! a5 distributed among the actuators to achieve the desiredmperf

control (§ee for example Gangu!i etal. (2002)) an_d eigexsir mance. One of the benefits of using CA methods is that they can
ture assignment (Duan (2003)) inherently deal with the olutp be used with other control design techniques to handlesfault

feedback situation, and do not require observers for em'mafailures: for details see for example (Buffington, 1997).

ing the unmeasured statesOther FTC methods such as the L _
Pseudo Inverse Method (e.g. Konstantopoulos and Antsaklis Sliding mode control (SMC) (Edwards and Spurgeon, 1998;

(1999)) use static output feedback to deal with actuatdtsau Utkin et al., 1999) has attracted much recent attention é th

and the model-following approach of Tao and Joshi (2008) eX]field of FTC, due to its inherent robustness properties again
atched uncertainties. As argued in Alwi et al. (2011), SMC

ploits an adaptive output feedback framework which does nof" o . . ) .
require state estimation. _has a natural capability for dealing with faults (i.e. a retiton

In many FTC schemes, a fault detection and isolation (FDI" the effectiveness) in actuators, but cannot deal diyewith

componentis an important part of the overall system anddd us (°t@! failures. However an appropriate combination of SMC
to trigger controller reconfiguration. Some FDI schemesehavand CA can achieve tolerance to a wide class of total actuator

the capability not only to detect faults, but to simultangigu failures (Alwi and Edwards, 2008a; Shtessel et al., 2008). |

provide estimates of the states — for example Zhang and Jiar‘?d' these earlier schemes it is assumed that full staterimder

(2002) which uses a Kalman filter to estimate the efficiency offon is available for the controller design. In order to ehate

the actuators. Papers such as Zhang and Jiang (2002, zodtﬁjreaching phase associated with traditional SMC techniques,
d to ensure a sliding mode throughout the entire closeg-lo

(which use Kalman filters and eigenstructure assignmerchas a

control design) use an integrated FDI/FTC structure and tak/€SPOnse of the system, the idea of integral sliding modé)|S
control was initially proposed in Utkin and Shi (1996). More

recently Hamayun et al. (2012) considered the combination o
*Corresponding author: Tel.: +44 116 223 1303; fax: +44 1152519 ISM control with CA to accommodate the potential faultdffai
Email addresses: nt h11@e. ac. uk (M. T. Hamayun), ures associated with the actuators, but the ideas wereapac|

c. edwar ds@xet er . ac. uk (C. Edwards)hal8@ e. ac. uk (H. Alwi) . .
1Although certainH,, problems yield dynamical controllers which can be under the assumption that all states are available.

interpreted in a feedback/observer paradigm. The main contribution of this paper is to relax the assunmptio
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associated with (Alwi and Edwards, 2008a; Hamayun et al.this redundancy, as in Alwi and Edwards (2008a), it is assume
2012) that state information is known, and to consider axte the input distribution matrix can be partitioned such that

the situation where only measured outputs are availabldy Ea

work on I1SM control (not in the context of FTC) also assumed B [ B1 ] @
state information (Utkin and Shi, 1996; Castanos and Fridma Bz

2006), but this has more recently been extended to the situa-

tion where only measured outputs are available (Bejaraab,et WhereBi € R"V™ andB, € R"™is of rankl < m. After par-
2009, 2007). In (Bejarano et al., 2007), an ISM controlléngs  titioning, by appropriate scaling of the ldsitates via a change
output information was used to compensate for matched uncei the state-space coordinates, it can be ens@&] = I,
tainties, and a hierarchical sliding mode observer wasgsep ~ Which in turn implies||B;|| = 1. As argued in Alwi and Ed-
to estimate the states. In (Chang, 2009) the state dependeM@rds (2008a), it is assumed thia|| < [|Bll, so that the
methods from (Cao and Xu, 2004), were developed into an outeontrol action predominantly acts in the lasthannels of the
put feedback framework by introducing a dynamic output de-System. Using (4), the system in (1) can be written as
pendent sliding surface employing a full order compensator

In this paper, a new fault tolerant control scheme is progose X(t) = (A+ A%)x(t) + Sl }(| — K(t)) u(t) (5)
for the case when only the system outputs are measured. A 2 W—W(t)

full order linear unknown input observer (UIO) is employed t

estimate the system states used in the underlying (virtea)  where the matrixW(t) is diagonal and its diagonal elements
troller. In the proposed FTC scheme, actuator faults are-mody;(t) satisfy 0< wi(t) < 1.

elled using an effectiveness gain matrix, whereas comgdonen The objective of the paper is to develop a control scheme,
faults are modelled as parametric uncertainty in the system  based only on output measurements, which can maintainctlose
trix. The proposed scheme does not attempt to estimate tHeop stability in the face of a class of actuator faults arildfes.
actuator faults/failures (using an FDI scheme), instefaglyo-  The physical control lawu(t) is realized by a so-called ‘fixed’
bustness properties of the UIO coupled with the ISM aredelie control allocation scheme of the form

upon. Compared to Alwi and Edwards (2008a); Hamayun et al.

(2012), a fixed control allocation scheme is used to traaslat u(t) = BIw(t) (6)

the virtual control signals into physical actuator demantls

LMI synthesis procedure is proposed in order to synthesige t Wherex(t) € R' is the ‘virtual control’ effort produced by the
observer gains and the controller parameters in a tractesgfe ~ control law, which will be described in the sequel.

An aircraft benchmark model from the literature is used to in Remark 1: The control allocation structure in (6) is different

vestigate the feasibility of the scheme (Edwards et al.pp01  to the ones in Alwi and Edwards (2008a) and Hamayun et al.
(2012), since both requing/(t) (or a good estimate aiV(t) to

_ be known). The fixed CA/ISM scheme developed in this paper
2. Problem Formulation will be independent of W(t) and will not require an FDI scheme.

i ) . By using (6), equation (5) can be written as
Consider an uncertain system with actuator and component

faults or failures written as (1) = (A+ A)X(D + Szwgg Sg }V ® %
x(t) = (A+ A)X(t) + Bu(t) — BK()u(t) (1) L T2
y(t) = Cx(t) 2) Bu(t)

In the nominal case when there is no fault (i.e. whegt) = |

whereA e R™" js the state matrixd? is parametric uncertaint . - o
© b y andA’ = 0), equation (7) simplifies to

in the system matrix arising from imprecisely known param-

eters and possible faults at a component leiiele R™™ is B,BT

the input distribution matrix an€ € RP" is the output dis- X0 =A@+ ) 2 }V(t) (8)

tribution matrix wherep > m. The diagonal weighting ma- —_—

trix K(t) = diag{ka(t), .., km(t)}, where the scalang (t), .., km(t), B

model the effectiveness level of the actuatorss () = O, the . . . .
sk becauseB,B] = || by design. The following assumption will

correspondingth actuator is fault free and working perfectly,
whereas if 1> k(t) > 0, an actuator fault is present. The value
ki(t) = 1 indicates thath actuator has completely failed. Itis a1 The pair @&, B,) is controllable.
assumed that controlled outputs for the system are given by

be made and used in the remainder of the paper.

Ye(t) = Cex(b) (3) 3. ISM Controller Design

whereC. € R*"andl < m. This implies there is redundancyin  An integral sliding mode strategy (Utkin and Shi, 1996) will
the system in terms of the number of control inputs. This willbe adopted for synthesizing the virtual control sign@. The
be exploited in the sequel to achieve fault tolerance. Tolves virtual control signal/(t) will use estimated stategt], obtained
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from an observer, because it is assumed only outputs are meld-(t) := x(t) — X(t), using (1) and (11), after some algebra and
sured. As a first step, an output and state-estimate dependesimplifications based on (12)-(14), the error dynamics
integral switching function is proposed of the form

&(t) = Aog(t) + (I — HC)AX(1) (15)
t
o(t) = Gy(t) - Gy(0) + fo FX(r)dr (9)  The choice of the gai in (9) suggested in this paper is
G := By((CB)'CB) }(CB)" (16)

whereG € R*P andF e R*" are design feedback gains, se-

lected to specify nominal closed-loop performance. The existence of the inverse in expression (16) is guardntee
!n order to create the state estlma(e), a full-order unknown by assumptiorA2. As a result of this choice @, generically
input observer UIQ develope_d in (_:hen and Patton (1999) '%CBW(t) — B,W(t)BI, which is symmetric. The symmetry is
used. The expressidK(u(t) in (1) is treated as an unknown ,5411ant and simplifies much of the subsequent analysis and
input since by assumptiol(t) is unknown. Consequently the s the introduction of conservatism. Also nominalliem

distribution matrr]ix associated with the unknf?vyn input agg) there are no faults an = I, from the special properties of the
be rejected is chosen 8s Necessary and sufficient conditions matrix By, it follows that

for a linear UIO to exist for the system in (1)-(2), to provide
insensitivity with respect to the terBK (t)u(t), are GCBy(t)lw- = B2BY =1

A2: rank(CB) = rank(B) =m This means, nominallyG has the ‘pseudo inverse properties’
which Castanos and Fridman (2006) argue are optimal from the
point of view of minimizing the impact of unmatched uncer-
The structure of the full-order UIO from Chen and Pattontainties on the closed loop dynamics.

A3: the triple A, B, C) is minimum phase

(1999) in this particular case Suppose a control law can be designed to force a sliding mo-
_ tion for all time. The equivalent controlg(t) necessary to
2(t) = AoZl) + Ly(t) (10)  maintain sliding is obtained from equating= 0 (Utkin et al.,
K(t) = zZ(t) + Hy(t) (11)  1999). The derivative af(t) in (9) is

wherex(t) is the estimated state, aAd, L andH are design pa- o(t) = Gy(t) + FX(t) a7)

rameters of appropriate dimension chosen in order to déeoup o _ _ _
the unknown inputs. In particular the mattike R™P mustbe ~ Then substituting from equation (7) and equating) = 0
chosen so that yields

(I-HC)B=0 (12) veq(t) = —(GCB\N(t))_l(F)?(t) + GC(A + A°)x(t)) (18)
As argued in Chen and Patton (1999), Assump#@ris suffi- _ _ _
cient to solve (12), an#ll := B((CB)"CB)"}(CB)" is an appro- under the assumption d&CB,(t)) # 0. With the choice oG

priate choice. After computing, the matrix in (16), it follows GCBy(t) = B,W(t)B], and
Ay = A-HCA-L,C (13) Veq(t)=—(B2W(t)B]) {FR(t) + GC(A + A°)x(t)) (19)
An

Substituting (19) into (7), the sliding dynamics are given b
can be defined, where; € R™P is design freedom which is ) )
exploited to make\, Hurwitz. Finally X(t)=(A+ A°)x(1)-Bm(FX(t) + GC(A + A°)x(1)) (20)

L2 = AoH 14 where
o - Bm(t) := B1W(t)B] (B2W(1)B]) ™"

and the gairL := Ly + L. l
Remark 2: The ISM scheme in this paper can tolerate the preSAdding and subtracting the terBy(FX(t) + GC(A+ A)x(t)) to

ence of stable invariant zeros (assump#a). However invari- the right hand side of (20) and exploiting the fact tbé) :=

ant zeros preclude the use of tsteong observabilitgpproach X(t) — (1), the sliding dynamics can be written as

in (Bejarano et al., 2009, 2007However there is a price to

be paid for this increase in applicability. In this paper state X(t) = (A-B,F—B,GCA)X(t) + A°x(t) — B,GCA’x(t)
estimatex(t) — x(t) asymptotically, whereas the use of high- + B,Fe(t) + BO(t(Fx(t) — Fe(t) + GC(A+A%)x(t)) (21)
order sliding modes in (Bejarano et al., 2009, 2007) pravide

(arbitrarily small) finite time convergence of the statéreat ~ Where

tion error to zero for their observer. B:= [ 'f(‘)—' ] (22)

and

2In Chen and Patton (1999), the necessary and sufficient timmslistated _ T T Ty-1
for solving (12)-(14) are thatank(CB) = rank(B) and €., An) is detectable. As @(t) = B1B; — BiW(1)B, (B W(1)B;) (23)
argued in Tan and Edwards (2003) these are equivaleh endA3. o)




Combining equations (15) and (21), the closed-loop system d be made Hurwitz, and hence nominally the closed loop system

namics can be written as is stable. However for the fault/failure cases, stabiliéeds to
. be proved. Define
et |_| Ao 0 e(t) e(t) =
[X(t) - B,F A.-B,F X(t) +BaA(t) Ca X(t) (24) Y2 = ||Ga(s)||oo (32)
N——
" ) e Gu(9) = Casl - A) B (33)
) := Cy(sl —
whereA, := (I - B,GC)A and 2 2 2
Proposition 1: In fault/failure conditions, for any combination
(I—HC) 0 O 0 | of (wa(t), . .., Wm(t)) such that de@,WB]) # 0, the closed-loop
Ba:= [ (1-BGC) B B } Ca:= _OF GCAI~+ F system in (27) will be stable if:
. . Y2ya<1 (34)
and the uncertainty term(t) is
. s s Proof. In order to establish closed-loop stability, the system de-
A(t) :=diag| A° @(t) DHGCA® | (25)  fined in (27) can also be written as
It is convenient to analyze (24) in the, §) coordinates. fa) = AaRa(t) + Bala(t) (35)
Va(t) = Cak(t 36
X(t) X(t) whereTy(t) := A(t)Va(t). In this form, equation (27), is the
'\{a' ] pe feedback interconnection of the known linear sys@jyts), and
the bounded uncertain gaix(t). According to the small gain
then it follows in the newé, X) coordinates theorem, the feedback interconnectior3g{s) andA(t) will be
R — — — stable if (34) is satisfied. [ ]
Xa(t) = AaXa(t) + BaA(t)CaXa(t) (27)
Remark 3: Note that by hypothesis; = ||B4]| is assumed to be
where small. Furthermore iR’ = 0, then||A(t)|| — 0 as||B4|| — 0 and
— ~ = Ao 0 Proposition 1 is trivially satisfied.
= TAT '= 28
R o= TA [ AN ] (28) |
_ _ (I—HC) 0 o0 3.2. LMI Synthesis
Ba = TBa= HC - B,GC § B (29) In this section, the observer gain and the controller gain
| F are synthesized, so that stability condition (34) is saisfi
~ ~_ For the triple A, Ba, C3), from the Bounded Real Lemma,
_ 1_ e
Ca = Gl = G(IZA GCAI+ F (30) [1Ga(9)ll < 72 if and only if there exists a s.p.d matrix €
R2™2" gych that

In order to ensure that the terd(t) in (25) is bounded,
note that®(t) = BiB] — y(t) and y(t) = BiB(t), where
B;(t) is a right pseudo inverse d@,. Using the pseudo in-
verse properties in Stewart (1989), and arguing exacthnas i
Alwi and Edwards (2008a), there exists a scalgsuch that
IBL)I = [IW(t)B](B2W(t)B]) Y| < yo for all combinations
of (wi(t),...,wn(t)) such that deEZWB;) # 0. Therefore

AX+ XAl Bs XCI
Bl 3l 0 |<O (37)
CaX 0o -l

Here it is assumed that = diag(Xy, Xz), where the two sub-
blocksXy, X; € R™" are s.p.d. With this assumption

Il < y1y0 andll@®)Il < y2(1 + yo). X4 Xo
Ad: Assume that the parametric uncertaiafyis bounded, and CaX = G%(Axl GCA>>((2 +Y (38)
therefore sincgd(t)|| is bounded, it follows 1 2
1AM < va (31) whereY := FX,. The top left sub-block in (37)
T T T
for some positive scala. A AT _ | AXKit+ XAy XiAg — XiAy
P Al AX + XAl = [ AKXy — Ao o (39)

3.1. Closed-loop Sability Analysis

In the nominal case, (i.e. whaN(t) = I, A% = 0 andA(t) =
0), equation (27) simplifies t(Xa(t) Ax%a(t). From (28) it
is clear that the eigenvalues & are given by the union of
the eigenvalues ofy and A; — B,F. Both these matrices can
be made Hurwitz by choice of the design freedom matrices whereg is a positive scalar anE € R™P® is chosen so that
from (13) andF respectively. Consequently, by desiga,can  (An, B, EC) is minimum phase. This is possible (B, C) is

4

where® = AXo+XAl-B,Y-YTB!. Alsowrite Ay = Ap—L,C
whereAy, is from (13). To create a convex representation, define
the observer gain

L, := BBE (40)



minimum phase (Edwards et al., 2007). Then as argued in Edrhe following final assumption will be made:

wards et al. (2007), it is possible to find an s.p.d ma®ixhich o i
has a structur® = NTdiag(Py, P2)N such thatPB = (EC)T, A5: The plant initial conditionsx(0), although not perfectly

whereN € R™" s invertible (and depends d&) and the s.p.d. known, are assumed to belong tdwown hyper-sphere
matricesP; € R™™*(-M p, ¢ R™M The matrixN is asso- S ={xeR" : |Ix~coll < ro} for some givergo € R" and
ciated with a change of coordinates to force the systemetripl ~ POSitive scalaro.

(An, B, EC) into the canonical form proposed in Edwards et al. Define a time varying scala(t) as the solution to
(2007). DefineX;1 = Pt andX;, = P,L It follows that

L1C = BBEC = #BBP and so if &(t) = —moe(t) + Myl (47)

X1 := P71 = N7ldiag(X11, X12)(N"HT > 0 (41)  wheremg andmy are positive scalars to be defined in the sequel

and letVy = e Poe wherePy is the s.p.d matrix obtained from
thenL:CX; = BBB" andAgX: = AnX1 — BBBT. It follows that solving

the matrix inequality in (37) is affine W.r..t. the deci_siorriva PoAo + AL Pg = —I (48)
ablesXi1, Xi12, X2, 3, Y, and so the synthesis problem is convex. . o
andA’ = 0) the gainF must stabilize - B,F). Since fromAs-  satisfies S
sumption A1, the pair @, B,) is assumed to be controllable, an 2IPollll( = HCO)AI < 1 — po (49)
LQR formulation will be adopted where is selected to mini- \\here 1> 110 > 0. Then the following can be proved:
mize w Proposition 2: Define the modulation gaijn(t) from (46) as
J= f (X" Qx+ v Ry)dt X
0 o(t) = SallGCIIIXI + [ ()1l + e(t) (IGCA| + 6allGCII)/po + 17
whereQ andR are symmetric positive definite design matrices. (1-10)
It is known this problem can be posed as an LMI optimization: _ (50)
Minimize trace(X;%) subject to wherepo = VAmin(Po), the scalasa > [|A°]| andy is a positive
design scalar. Assume the fault tupke(f), . . . , km(t)) belongs
T —YTBT - T to the set
[ AXp + ngx By = Y8 (QX IRY) ] <0 (42
5 — _
D = {(Ka(b), -, k(1)) © Amax(B2K(H)B]) < do < 1)
For a givenL,-gainy,, the overall optimization problem pro- _ o
Minimize trace(Z) w.r.t the decision variable$,,, X1z, Xo,8,Y  €rorelt) = x(t) — X(t) at timet = 0, written &(0), satisfies
subject to 1/e(0)TPoe(0) < €(0). Then the integral sliding mode control
-Z 1, law defined in (44)-(46), guarantees that the system ti@jiest
[ Iy =X ] 0 (43)  remain on the sliding surface.

together with (37), (42), (41) and (43). The matfixs a slack  Proof. Equation (15) can be written as
variable which satisfieg > Xz‘l and therefordrace(Z) >
trace(X;). Finally the controller and observer gains can be &) = (Ao + (I — HO)AY)e(t) + (I — HC)A’X(t) (51)
recovered af = YX;! andL; = BBE. o - o
then the derivative of the positive definite functidgn = e" Ppe

3.3. 1SV Control Laws is given by
A control law will be defined to ensure sliding is maintained ~ V, = —ee’ + 2e"Po(l — HC)A’e + 2e" Py(I — HC)A’X
fromt = 0. Define the virtual control law in (8) as < —[lell? + 2/IPollll(l = HC)AYI(lIel + el
v(t) = () + va(t) (44)  Therefore since by assumptiofiR|[l|(I = HC)AY| < 1 — uo

whereu, > 0 it follows
where the linear part, responsible for the nominal perforcea

A ) R 1- "
ofthe system, is Vo < —iollel2+(1— o)1l < —%vﬁw‘f’nxu Wo (52)
w(t) = —FX(t) — GCAX(t) (45)

wherep; = Amax(Po). By definingV = Vo, equation (52) can

and the nonlinear part be written as

v Mo l—po
vn(t) = —p(t)% for o(t) # 0 (46) V< ‘z—pr + 2\/EIIXII (53)

which for notational convenience can be further written as
wherep(t) is a modulation gain which will be defined later in

the paper. V < —moV + myg| (54)



where the positive scalang, andmy are appropriately defined. are available for use in the control law, whéiis the pitch angle
Comparing (54) and (47), &(0) > V(0), it is easy to show that (rad), @ is the angle of attack (rad)/.s is the true airspeed

e(t) > V(t) forallt > 0 and consequently (m/sec), andj is the pitch rate (rad/sec). The linearized state
e(t) > polle()l| for t>0 (55) Spacemodelis
[ —0.4623 00004 -0.5248 0
. L T .

S|r_1tct:eK(t) = | — W(t) andB;B;, = I;, equation (17) can be A 0 -00149 17171 -9.8046
written as P T | 11071 -00021 -05655 0
o (t) = GC(A+A?)X()+(BW(t) B )v(t)+F X(t) I 1 0 0 0

= GC(A+A’)X(t)+v(t)—(1-B2W(t) B )v(t)+F R(t) [ —0.6228 -1.3578 00599

= GC(A+AY)X(t)+v(t)—(B2(1-W()) B} W(t)+F X(t) By = 0 -01756 57071

= GC(A+A)XD+(O)-BKMBIVO+FS®)  (56) ~O0S5% ~00819 ~0.0085

Substituting the control law (44)-(46) into equation (56)da

exploiting the fact thae(t) = x(t) — X(t) yields The available control surfaces for the longitudinal cohtie

Olong = [de, I, 6epr]T which represent elevator deflection (rad),

o = GCAY(R(t)+e(t)) +GCAe(t)—(B,K B12—)(VI+Vn)_pl (57) horizontal stabilizer deflection (rad) and aggregated itoiig
llerll nal EPR. In the simulations, a series of 3-deg flight patheng|
Now consider the candidate Lyapunov function= 107 (FPA) commands are given to change the altitude of the diycra
From (57) the time derivative while the true airspeeV,s is held constant by using a separate
. inner-loop Proportional Integral (PI) controller whicheetes
V < [l (IGCA’IlIR + (IGCA’l| + IGCAD]el an auto-throttle manipulating EPR. Throughout the simoret
n ||BzK(t)BZ||||V||| —p(1- /10)) (58) it is assumed that the engines are fault free. By splitting the in-

put distribution matrix into matrices which are associatgith

forafault (u(b), ... k(1)) € D. Then from the definition gb(-)  [6,, 5|7 andsep, the linear model can be rewritten as
and the fact that(t) > polle(t)ll, inequality (58) can be writ-

ten asV < —yllo|l = — V2V which is a standard reachability Xp() = ApXp(t) + BsUy + Bedepr (60)
condition, (Edwards and Spurgeon, 1998), and is sufficient t y = CpXp(t) (61)

guarantee that a sliding motion is maintained for all time®

_ T ; 42 ax1
Finally the physical control law(t) is obtained by substituting ggz;eeu;;e[wégtatdg ir]1 tﬁgizncangriﬁ;reés asa ndBe € R
equations (44)-(46) into (6) to obtain
X (t) = ry(t) — C1x
u(t) = BI(—FS(0) — GCAK(Y) — p-~ (59) %) =0 - Coel)

llo(®)l wherer(t) is the reference signal fofi,s tracking and the ma-
Remark 4: Note the control law above does not provide globaltrix C; = [ 01 00 ] The inner-loop PI control is
convergence since the assumptions of Proposition 2 are only
satisfied if the initial conditions of the observer and of ftke depr = Kp(ra(t) — Caxp(t)) + Kixc(t)
ter are chosen so thay/e(0)"Poe(0) < €(0). However both
X(0) ande(0) are user defined parameters, and so provided th

yyhere the Pl gains ar€, = 0.6, andK; = 0.9. Now augment-
x(0) € S defined in Assumption 5, this constraint can always be"d the state

(t) with the plant in (60) yields

satisfied by choice af(0) ande(0). X 0 _C, X 0 |
r|_ r
4. Simulations A e T T
In order to demonstrate the efficacy of the proposed FTC (62)

scheme, a civil aircraft benchmark model from Alwi and Ed-AISO it is assumed that the staxg(t) is available for the con-

wards (2008b) is used in the simulation. To design the conlroller design, thereforg = Cx(t) whereC = diag(1,Cp}. In
troller in (45), the aircraft model has been linearized acban order to introduce steady state tracking for the contraietput

operating condition of straight and level flight with a mass o Ye(!), @ feedforward tern,r» is introduced where
263,000 Kg, 92.6m/s true airspeed, and at an altitude of 600m

. -1 -1
based on 25.6% of maximum thrust. In the simulations, only Lr = ~(C(A-B,F - B,GCA)'B)) (63)
measured system outputs and the exogenous constant signalis the reference to be
q tracked (by the FPA). From assumption Al can always be
100 04y, chosen to ensure thak - B,F — B,GCA) is Hurwitz and there-
y={ 0 1 0 0y "* fore det@ — B,F — B,GCA) # 0. Consequently the inverse in
000 1] , (63) is well defined. In the absence of faults and uncertatiigy
Cp easy to see the linear control laift) = —Fx(t)—GCAX(t)+L,rs



. = [0,0,0,0,0.5(7/180)]" respec-
ing requirement, the control law in (59) must be changed to tively. In Figure 2(a), a failure is considered, where trevator
jams at some offset position. To maintain the performanusecl
u(t) = BI(=FX(t) + L,r2 — GCAX(t) - p o (t) (64) o nominal, the proposed FTC scheme invokes the horizontal
llo- (o)l stabilizer to counteract the failure as can be seen in Fig{ire
In Figure 3(b), the stabilizer runs-away to a maximum positi
t of 3-deg. Due to the availability of the redundant actuaiter.
o(t) = Gy(t) - Gy(0) + f (FX(7) - Liro)dr (65)  elevator) the scheme can still maintain good tracking as see
0 Figure 3(a). In Figure 1, it can be seen that in both scenarios

The fault tolerant controller will now be designed based onthe observer error quickly converges to zero despite thesfau
the system in (62) governed by the triplg, 8, C), using only

the elevator and stabilizer as inputs. A further scalingBof 5 conclusion

is required to ensure thazB; = |} (where in this example

| = 1). In this aircraft systemA, B, C) has one stable invari- In this paper, a new fault tolerant control scheme was pro-
ant zero. In can be verified thaank(CB) = rank(B) = 2,  posed which assumes only output information is availabte an
and therefore AssumptioA2 holds. Since the objective is to Nno information about the actuator faults or failures is kalde.
track an FPA command, the controlled outpugdé) = C.x(t),  To estimate the system states, a linear unknown input observ
whereC, = [ 0 0 0 -1 1 ] The gain in equation (16) is is employed. The estimated states are used in the virtuéiaion

G = [ 0 06694 0 0]. In addition to actuator faults/fail- law to produce signals which are then translated into thephy

. ; . ical control signals (associated with the actuators) byagisi

ures, to introduce potential faults which cause changekeo t _. . 7
. . . fixed control allocation scheme. The closed-loop stabélitgl-
aerodynamics of the aircraft, a 10% change in the aerodynamj

coefficients (due to possible airframe damage) is consxiﬂereyS's.aHOWS for parameter uncertalrjty n t.h.e system mattue(
to airframe damage for example) in addition to actuatortéaul

ensures that at steady stgte= r,. To accommodate this track- X = [0,0,0,0]", andxg

and

specifically or failures. A convex representation of the synthesis nolis
0 0 0 0 0 established in order to prove closed-loop stability by kgsiz-
0 00514 0 00583 0 ing appropriate observer and controller gains. The sirorat
AM=|o 0 00017 0 0 results on a benchmark aircraft model show fast convergaince
0 01006 0 00628 O the observer output error, and demonstrate good FTC feature
0 0 0 0 0 of the proposed scheme.
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Figure 1: State estimation error signals (elevator jam aaldilizer runaway)
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Figure 2: Stabilizer runaway failure
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Figure 3: Stabilizer runaway failure



