1,238 research outputs found

    Optimal sliding mode controllers for attitude tracking of spacecraft

    Get PDF
    This paper studies two optimal sliding mode control laws using integral sliding mode control (ISM) for some spacecraft attitude tracking problems. Integral sliding mode control combining the first order sliding mode and optimal control is applied to quaternion-based spacecraft attitude tracking manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state dependent Riccati equation (SDRE) and Control Lyapunov function (CLF) approaches are used to solve the infinite-time nonlinear optimal problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify the usefulness of these controllers

    Parameter Identification and Hybrid Synchronization in an Array of Coupled Chaotic Systems with Ring Connection: An Adaptive Integral Sliding Mode Approach

    Get PDF
    This article presents an adaptive integral sliding mode control (SMC) design method for parameter identification and hybrid synchronization of chaotic systems connected in ring topology. To employ the adaptive integral sliding mode control, the error system is transformed into a special structure containing nominal part and some unknown terms. The unknown terms are computed adaptively. Then the error system is stabilized using integral sliding mode control. The controller of the error system is created that contains both the nominal control and the compensator control. The adapted laws and compensator controller are derived using Lyapunov stability theory. The effectiveness of the proposed technique is validated through numerical examples

    Adaptive integral sliding mode control for active vibration absorber design

    Get PDF
    A new tuning method for active vibration absorber design is presented in this paper. A robust, adaptive control scheme based on a variable structure with an adaptive discontinuity surface is designed and simulated. Robust synthesis of an adaptive discontinuity surface based on an augmented state-space is discussed. The proposed tuning scheme has three superior features compared with the existing counterparts in that: (i) it is completely insensitive to changes in the stiffness and damping of the absorber, (ii) it is capable of suppressing cyclic vibrations over a wide range of frequencies, (iii) its real-time operation requires only one adjustable gain

    On the discrete-time integral sliding mode control

    Get PDF
    A new discrete-time integral sliding mode control (DISMC) scheme is proposed for sampled-data systems. The new control scheme is characterized by a discrete-time integral switching surface which inherits the desired properties of the continuous-time integral switching surface, such as full order sliding manifold with eigenvalue assignment, and elimination of the reaching phase. In particular, comparing with existing discrete-time sliding mode control, the new scheme is able to achieve more precise tracking performance. It will be shown in this work that, the new control scheme achieves O(T2) steadystate error for state regulation with the widely adopted delaybased disturbance estimation. Another desirable feature is, the proposed DISMC prevents the generation of overlarge control actions, which are usually inevitable due to the deadbeat poles of a reduced order sliding manifold designed for sampled-data systems. Both the theoretical analysis and illustrative example demonstrate the validity of the proposed scheme

    Robust Stabilisation of T-S Fuzzy Stochastic Descriptor Systems via Integral Sliding Modes

    Get PDF
    This paper addresses the robust stabilisation problem for T-S fuzzy stochastic descriptor systems using an integral sliding mode control paradigm. A classical integral sliding mode control scheme and a non-parallel distributed compensation (Non-PDC) integral sliding mode control scheme are presented. It is shown that two restrictive assumptions previously adopted developing sliding mode controllers for T-S fuzzy stochastic systems are not required with the proposed framework. A unified framework for sliding mode control of T-S fuzzy systems is formulated. The proposed Non-PDC integral sliding mode control scheme encompasses existing schemes when the previously imposed assumptions hold. Stability of the sliding motion is analysed and the sliding mode controller is parameterised in terms of the solutions of a set of linear matrix inequalities (LMIs) which facilitates design. The methodology is applied to an inverted pendulum model to validate the effectiveness of the results presented

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Sliding mode control of active suspension system

    Get PDF
    The purpose of this paper is to present a new approach in controlling an active suspension system. This approach utilized the proportional integral sliding mode control scheme. Using this type of sliding surface, the asymptotic stability of the system during sliding mode is assured compared to the conventional sliding surface. The proposed control scheme is applied in designing an automotive active suspension system for a quarter-car model and its performance is compared with the existing passive suspension system. A simulation study is performed to prove the effectiveness of this control design

    Model reference adaptive integral sliding mode control for switched delay systems

    Get PDF
    Makalenin ilk sayfası kayda eklenmiştir.This paper proposes a strategy of model reference adaptive integral sliding mode variable structure control to solve the tracking problem for a class of uncertain switched systems with time-varying delay. A stable integral sliding surface is first constructed. An adaptive control technique is used to adapt the unknown upper bounds of perturbations. Furthermore, adaptive variable structure controllers are employed such that the switched delay system containing perturbations with unknown upper bounds tracks the reference model under arbitrary switching signals. Finally, a numerical example is given to illustrate the effectiveness of the proposed design method

    Modified Nonlinear Integral Sliding Mode Control for Satellite Attitude Stabilization Using Magnetically Suspended Gimbaled Momentum Wheel

    Get PDF
    This paper treats the attitude stabilization problem for satellite using only one MSGMW (Magnetically Suspended Gimbaled Momentum Wheel). To start, the coupled dynamic model of satellite and MSGMW is defined and simplified based on the fact that the attitude errors are small during the mission mode that the MSGMW services. In order to improve the dynamic performance, reduce the steady state error and avoid the chattering phenomenon, a modified integral chattering-free sliding mode controller with a nonlinear integral function and a saturation function is introduced. Lyapunov theory is employed to prove the convergence characteristic outside the boundary layer and the terminal convergence characteristic inside the boundary layer. A numerical simulation example is employed to show the effectiveness and suitability of the proposed controller

    Fault tolerant longitudinal aircraft control using non-linear integral sliding mode

    Get PDF
    Copyright © 2014 Institution of Engineering and Technology (IET)This study proposes a novel non-linear fault tolerant scheme for longitudinal control of an aircraft system, comprising an integral sliding mode control allocation scheme and a backstepping structure. In fault free conditions, the closed loop system is governed by the backstepping controller and the integral sliding mode control allocation scheme only influences the performance if faults/failures occur in the primary control surfaces. In this situation, the allocation scheme redistributes the control signals to the secondary control surfaces and the scheme is able to tolerate total failures in the primary actuator. A backstepping scheme taken from the existing literature is designed for flight path angle tracking (based on the non-linear equations of motion) and this is used as the underlying baseline controller in nominal conditions. The efficacy of the scheme is demonstrated using a high-fidelity aircraft benchmark model. Excellent results are obtained in the presence of plant/model uncertainty in both fault free and faulty conditions
    corecore