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Abstract: A new tuning method for active vibration absorber 
design is presented in this paper. A robust, adaptive control scheme 
based on a variable structure with an adaptive discontinuity surface 
is designed and simulated. Robust synthesis of an adaptive 
discontinuity surface based on an augmented state-space is 
discussed. The proposed tuning scheme has three superior features 
compared with the existing counterparts in that: (i) it is completely 
insensitive to changes in the stiffness and damping of the absorber, 
[ii) it is capable of suppressing cyclic vibrations over a wide range 
of frequencies, (iii) its real-time operation requires only one 
adjustable gain. 
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1. Introduction 
Many engineering structures are disturbed by cyclic load and 
undergo unwanted vibration. In order to avoid large oscillatory 
amplitude when the frequency of the disturbance force coincides 
with the natural frequency of the structure, a vibration absorber is 
employed. The vibration absorber technique refers to the use of a 
mass-spring-damper system that is attached to a primary vibrating 
structure in order to suppress its vibration [ 11. Vibration absorbers 
can be passive, active, or passive-active in nature. A variety of 
active vibration absorber designs, such as the dual-frequency fixed 
delayed resonator [ 2 ] ,  have been reported in the literature. A newly 
proposed band-pass vibration absorber has been discussed in [3], 
however, the proposed absorber itself is not stable even though the 
whole system is stable. Moreover, in these works, modelling errors 
due to changes in stiffness and damping of the absorber are not 
fully addressed. Recently, we have proposed a robust control 
scheme for the design of active vibration absorbers that are 
completely insensitive to their parametric uncertainties using the 
conventional sliding mode control law [4]. This paper continues 
.our work to develop a simple adaptive algorithm combined with an 
integral sliding mode control law to enhance the attenuation level 
when the system is subjected to simple harmonic load. 

11. Development of Adaptive Integral Sliding Mode (AISM) 
Absorber 
Consider the construction of a vibration absorber device which 
consists of an absorber mass-spring-damper trio [m, c, k,] 
attached to a primary mass-spring-damper trio [m, c, k ] .  The 
control objective is to minimise the displacement x of the primary 
mass while keeping the displacement x, of the absorber mass 
bounded. The equations of motion for the combined system are: 

( 1 ab) 
m i +  c i +  - c, (i, - i ) - k , ( x ,  - x ) =  -U + f, i moxa + c, (i, - i)+ k, (x, - x ) =  U. 

The system is augmented to a 3rd order equation by introducing two 
integral state variables: 

1 1 
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(1 b) then becomes: 

majib + c, ( j a  - j ) +  k , ( j , z  - j ) =  U. (3) 
Assume a linear sliding surface of the form: 

Then during sliding mode, i.e., when :Sa, the system dynamics 
are described by: 

The transfer function from x to x, is obtained by applying the 
Laplace transform to (3, resulting in: 

s = j; ,  + pj; + qy + r ( y ,  - y ) 

j ; , + l - y , + p j + q j - l - y = O .  ( 5 )  

(4) 

The principle involved in designing an active absorber is to tune 
the numerator of (6) such that it has a zero at the disturbance 
frequency w, thus producing zero displacement at the point of 
attachment to the primary structure. This can be achieved by 
simply tuning the gain r of the sliding surface S to 0'. Since the 
system has been augmented to 3* order and the corresponding 
sliding surface is of 2"" order, (6) now functions as a notch 
filter. Note that due to the feedback of the integral state defined 
in (2a,b), a saturation problem may m'se if the disturbance has a 
DC component. However, this problem, if it exists, can be 
effectively removed by simply using the relative integral 
displacement state (y - y,). As seen from (6), y = yo at the DC 
level. The presence of a sliding mode controller enables such an 
absorber to be completely insensitive to changes in the stiffness 
k, and damping c, of the absorber. 

III. Sliding Mode Controller Design 
In state-space representation, equations (la,b) can be expressed 
in the form: 

z = AZ +B,U +BJ, (7) 

The design of the sliding mode controller consists of two 
phases. A stable discontinuity surface is first designed to 
describe the dynamics of the system in sliding mode. A 
switching control law is then formed to guarantee that all states 
can converge to this surface. In the design of this sliding 
surface, only the ideal regulator is considered. Miitched 
uncertainties such as unknown excitation force can be handled 
by proper selection of the control function [ 5 ] .  The 
discontinuity surface, S,  is a linear combination of the state 
variables: 

System stability during sliding mode, i.e., when Sa, can be 
achieved by proper selection of C. Given that the matrix CBI is 
nonsingular, the equivalent control during sliding mode is then 
described by: 

(8) s = cz. 

U, = -(CB,)-'CAZ. (9) 
Finally, the control law is expressed as: 

U =U,* + Ksign(S), 
where K is chosen to be large enough to account for uncertainty 
in the magnitude of the disturbance f. Asymptotic stability of 
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the controlled system is guaranteed once the following reaching 
condition is satisfied [ 5 ] :  

sSr-q(s(, q >O. (11) 
N. Discontinuity Surface Synthesis 
Combining (la,b) and (2a,b) gives: 

(12a,b) 

Assuming a sliding surface as in (4), the system dynamics during 
sliding mode are then described by: 

(1 3 0 )  

Taking the Laplace transform of (13a,b) and then substituting 
(13b) into (13a) yields: 

nji.+cj+&+maya = f, i maya +ca(ya - y ) + k a ( j a  -y)=u.  

nji.+cjj+&+maya = f, i ya+rya+pji+qj+ry=0 

--- x ( s )  s 2 + r  -- X a ( s ) - - p s 2 + q S - r  (14a,b) 
F ( s ) - D ( s )  ’ F ( s )  D(s)  ’ 

M (s)= ms2 + CS + k . 
where: D(s)=M(sxs2 +r)-masz(ps2 + q s - r ) ,  

For closed-loop stability, the discontinuity surface gains are 
selected such that D(s) is Hurwitz. 

V. Adaptation Law and Stability Analysis 
The only parameter that needs to be tuned on-line is the gain r of 
the discontinuity surface, which is to be adjusted to the value of d. 
The frequency o of the disturbance can be detected by monitoring 
the zero-crossings of the absorber acceleration signal. This 
adaptive algorithm requires only two feedback signals, %a and 2, 
which are within the structure of the absorber. The stability of the 
adaptive control system is guaranteed, provided that: (i) the 
adaptive discontinuity surface is attractive and (ii) the roots of D(s) 
always have negative real parts during adaptation. Condition (i) 
can be met by the choice of the control law as shown in (lo), while 
condition (ii) can be satisfied by judiciously shaping the root locus 
of D(s) when the gain r varies over the desired suppression 
frequency band. This process can be done off-line. Note that as r = 
a*, this gain would be very large if the suppression band is in the 
range of hundreds of rads. This may cause some technical 
difficulties for practical implementation. However, in practice, due 
to a reduced order of the system during sliding mode, one of the 
gains of the sliding surface (4) can be chosen freely, i.e., 
independent of the constraint imposed by the pole-placement 
requirement. This means that the gain r, together with p and q, in 
(4) can be scaled down by a factor z 0. 

VI. Robustness & Transient Response Analysis 
As seen from (14a,b), the performance of the controller during 
sliding mode is completely insensitive to changes in the stiffness ka 
and damping ca of the absorber. In addition, one of the most 
important factors in designing an active absorber is its settling 
time, i.e., the time required for the absorber’s damping action to be 
effective. For a given primary system [m c k] ,  this settling time is 
determined by the choice of the three gains p ,  4, and r in (14a,b), 
the absorber mass, and the required suppression frequency band. In 
this proposed control scheme, the absorber’s time constant, 2, is 
dictated by the dominant poles, i.e., the dominant zeros of the 
characteristic polynomial D(s), during the adaptive process. The 
settling time is then estimated to be 4.62. 

W. Computer Simulation and Discussion 
The performance of the proposed tuning scheme is tested via 
simulation using Matlab Simulink. Parameters of the two trios are: 

..\ - 1 5 0 1 . .  
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[wc,k]=[5kg, 100Ns/m, 16OOON/ml, and [m,c,k,l=[lkg, 
lNs/m, 3200N/m]. Each of these two trios has a resonant 
frequency at o=56.57rad/s. Suppose that the active absorber is 
expected to operate over the frequency range [40rad/s, 
200rad/s]. The characteristic polynomial D(s) is designed to 
have two pairs of complex conjugate roots with their real parts 
equal to -1 and -9 when r = 402, i.e., at the lower bound of the 
required frequency band. This gives p = 1,4  = 10. The root loci 
of D(s) as r varies over the suppression band is plotted in Figure 
l(i). It is evident that the global system is guaranteed to be 
stable during adaptation, and the settling time can also be 
estimated at each operating frequency. In order to avoid control 
chattering due to finite switching speed, a boundary layer 
switching scheme is employed [6 ] .  The switching gain is set to 
K = 200, and the boundary layer has a thickness of 0.0001. The 
coupled system is excited by a cyclic load at the resonant 
frequency with an amplitude of 10N, and operates in passive 
mode steady state for 1 second. At time I = Isec, the AISM 
controller is tumed on. Figure l(ii) shows that the vibration is 
completely nullified after 1 second, and that the displacement of 
the absorber as well as the magnitude of the control force are 
considered as acceptable. 

MII. Conclusions 
A new robust adaptive tuning scheme based on integral sliding 
mode control for active vibration absorber design is presented. 
The proposed tuning algorithm, which guarantees robust 
performance to modelling uncertainty, has a fast transient 
response that can be shaped by the choice of the discontinuity 
surface gain. Current studies are focused on examining the 
effects of measurement noise, time delay, and optimal pole- 
placement algorithm for maximising the tuning range. A 
hardware implementation of an AISM absorber is in progress. 
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