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Robust Stabilisation of T-S Fuzzy Stochastic

Descriptor Systems via Integral Sliding Modes
Jinghao Li, Qingling Zhang, Xing-Gang Yan and Sarah K. Spurgeon, Senior Member, IEEE

Abstract—This paper addresses the robust stabilisation prob-
lem for T-S fuzzy stochastic descriptor systems using an integral
sliding mode control paradigm. A classical integral sliding mode
control scheme and a non-parallel distributed compensation
(Non-PDC) integral sliding mode control scheme are presented.
It is shown that two restrictive assumptions previously adopted
developing sliding mode controllers for T-S fuzzy stochastic
systems are not required with the proposed framework. A unified
framework for sliding mode control of T-S fuzzy systems is
formulated. The proposed Non-PDC integral sliding mode con-
trol scheme encompasses existing schemes when the previously
imposed assumptions hold. Stability of the sliding motion is
analysed and the sliding mode controller is parameterised in
terms of the solutions of a set of linear matrix inequalities
(LMIs) which facilitates design. The methodology is applied to
an inverted pendulum model to validate the effectiveness of the
results presented.

Index Terms—T-S fuzzy stochastic descriptor systems, integral
sliding mode control, robust stabilisation, non-parallel distributed
compensation (Non-PDC), inverted pendulum.

I. INTRODUCTION

THE DESCRIPTOR system representation is an estab-

lished approach to fully characterize physical systems

and research on linear descriptor systems is mature [1]-[2].

Practically, many complex physical models, such as con-

strained mechanical systems, bio-economic singular systems,

robotic systems, show nonlinear features. Although the nonlin-

ear descriptor system can be linearized at a certain operating

point so that linear theory can be applied, the resulting

analysis and synthesis results are only local and may not be

satisfactory. This motivates considering the original nonlinear

descriptor system directly for the purpose of design. Recently,

detailed qualitative analysis and control methods for several

classes of singular biological system have been developed

[3]. However, for general nonlinear descriptor systems, the

methodology is laborious and it is difficult to derive global

stability conditions. In 1985, Takagi and Sugeno presented

the well-known T-S fuzzy model [4], which can represent
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exactly a nonlinear model in a compact set of the state space.

One advantage of representing a nonlinear system by a T-

S fuzzy model is that existing results on linear systems can

be utilized. Early results on stability and stabilisation are

frequently based on a common quadratic Lyapunov function

which inevitably introduces conservatism. With the objective

of decreasing this conservatism, several different classes of

non-quadratic Lyapunov functions have been explored where

piecewise Lyapunov functions [5], fuzzy Lyapunov functions

[6] and line-integral Lyapunov functions [7] are the most

typical. Parallel distributed compensation (PDC) is the classi-

cal control approach adopted for T-S fuzzy systems whereby

the controller shares the same fuzzy inference rules with the

controlled plant. However, when a non-quadratic Lyapunov

function together is used in conjunction with the PDC control

scheme, the solution to a set of bilinear matrix inequalities is

often required. In addition, conservatism will always exist. For

this reason, non-parallel distributed compensation (Non-PDC)

is proposed in [8] and combined with a non-quadratic Lya-

punov function to show the superiority of the approach when

compared to PDC. Fuzzy controller designs for T-S fuzzy

systems have been developed for both PDC and Non-PDC

where [5], [9] provide a complete review of T-S fuzzy systems.

As nonlinear descriptor systems are often encountered in the

real world, stabilisation of T-S fuzzy descriptor systems has

been considered [4]. Subsequently investigations on T-S fuzzy

descriptor systems have attracted increasing attention from

the control community [10]-[12]. Stochastic phenomena are

known to arise in many branches of science and engineering

[13]. This motivates introducing stochastic characteristics into

the model representation. In recent years, many results have

been reported on the study of T-S fuzzy stochastic descriptor

systems, including passivity and passification [14], filtering

[15], observer-based control [16] and guaranteed cost control

[17]. Notice that in practice within control systems there al-

ways exist unknown disturbances and parameter uncertainties

which increase the complexity of the system. It follows that

the design of a suitably robust control to tolerate or attenuate

disturbances is pertinent.

Sliding mode control is widely established as an effective

robust control strategy in both theoretical research and practi-

cal applications [18]-[20]. One of its superior features is the

insensitivity to parameter variations and disturbances arising

in the same channel as the control input. The essence of sliding

mode control is to design a suitably high-speed switching

control law such that the resultant closed-loop system is

attracted to a user-defined sliding surface in finite time and

remains there for all subsequent time. Increasing attention
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has been paid to the sliding mode control problem for T-

S fuzzy descriptor systems [21]-[23], stochastic descriptor

systems [24]-[25] and T-S fuzzy stochastic normal systems

(E = I) [26]-[27]. However, sliding mode control for T-S

fuzzy stochastic descriptor systems has not yet been studied

and this provides motivation for this paper. In addition, as

demonstrated in [27], there exist two restrictive assumptions

for the development of sliding mode controllers for T-S fuzzy

stochastic systems: the input matrices of each linear subsystem

of the T-S fuzzy system are forced to be equal and the product

of a parameter matrix in the sliding variable and the diffusion

matrices of each linear subsystem must be zero. Without these

two assumptions, an effective sliding mode control method for

T-S fuzzy stochastic normal system with parameter uncertain-

ties has been developed by introducing the state and input

vectors into the sliding variable [27]. However, it is difficult

to apply this method to counteract unknown disturbances

which occur in the input channel for T-S fuzzy stochastic

normal systems and the direct extension of the results to

T-S fuzzy stochastic descriptor systems is problematic. As

a consequence, removing these two assumptions completely

and designing a suitable sliding mode control scheme for a

T-S fuzzy stochastic descriptor system with unknown input

disturbances is the second motivation for this paper.

In this paper, the robust stabilisation problem for T-S fuzzy

stochastic descriptor systems is studied using an integral slid-

ing mode control approach. Firstly, two novel integral sliding

surfaces are constructed and the stability of the corresponding

sliding motion is analysed. The design parameter matrices

defining the sliding variable are obtained by solving LMIs.

A classical integral sliding mode controller and a Non-PDC

integral sliding mode controller are presented to guarantee

that motion on the prescribed sliding surface is maintained.

To show the validity of the proposed integral sliding mode

method, simulation results of an inverted pendulum system

are provided. The contributions of this paper are threefold:

1) the equality of the input matrices of each subsystem and

the restrictive assumption on the parameter matrix in the

sliding variable and the diffusion matrix of each subsystem

are no longer a requirement of the approach; 2) a series of

new sliding mode control schemes for T-S fuzzy stochastic

systems are presented; 3) descriptor redundancy and property

of fuzzy membership functions are exploited to decrease the

conservatism.

The rest of this paper is organised as follows. Section II

presents the problem description and some essential lemmas.

Section III focuses on construction of the sliding surface,

stability of the sliding motion, synthesis of a sliding mode

controller and comparisons with the existing results. Section

IV provides examples to illustrate the effectiveness of the

proposed methods and Section V concludes the paper.

Notation: The notation used throughout this paper is quite

standard. Rn represents the n-dimensional Euclidean space,

and Rm×n represents the set of all m × n real matrices.

The superscripts T and −1 denote matrix transposition and

matrix inverse respectively. The symbol (Ω,F, {Ft},P) is a

complete probability space with a filtration {Ft} satisfying

the usual conditions (i.e. it is right continuous and contains

all P-null sets) and E{·} is the expectation operator. R+

represents the set of positive real numbers. ‖ · ‖ denotes

the Euclidean norm of a vector or the induced norm of a

matrix. V ∈ C2,1 (Rn × R+;R) denotes the family of all

real-valued functions V (x, t) defined on Rn × R+ such that

they are continuously twice differentiable in x and once in

t. L1 (R+;Rn) and L2 (R+;Rn×m) respectively denote the

family of all Rn-valued measurable {Ft}-adapted process

f = {f(t)}t≥0 and n × m-matrix-valued measurable {Ft}-

adapted process g = {g(t)}t≥0 such that
∫ T

0
‖f(t)‖dt < ∞

and
∫ T

0
‖g(t)‖2dt < ∞ a.s. for every T > 0. The notation

P > 0 (P ≥ 0) implies that P is a real symmetric and positive

definite (semi-positive definite) matrix. For a symmetric matrix

A, λmin(A) and λmax(A) denote the minimum eigenvalue and

the maximum eigenvalue of matrix A, respectively. He(A)
stands for A + AT . The star ⋆ in a matrix block implies

that it can be induced by symmetric position. Matrices, if

their dimensions are not explicitly stated, are assumed to be

compatible for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following T-S fuzzy stochastic descriptor sys-

tem fixed for the probability space (Ω,F,P):

Plant Rule i: IF z1(t) is Fi1, z2(t) is Fi2, · · · , zp(t) is Fip,

THEN

Edx(t) = [Aix(t) +Bi (u(t) + w(t))] dt+ Jix(t)dω(t) (1)

where i ∈ {1, 2, · · · , r}, z1(t), z2(t), · · · , zp(t) are the

premise variables, Fi1, Fi2, · · · , Fip are the fuzzy sets, and

r is the number of IF-THEN rules. x(t) ∈ Rn is the state

vector, u(t) ∈ Rm is the input vector, w(t) ∈ Rm is the

unknown disturbance which satisfies ‖w(t)‖ ≤ w̄. ω(t) is a

one-dimensional Brownian motion defined on the probability

space (Ω,F,P). E, Ai, Bi, Ji, i = 1, 2, · · · , r are known

real matrices with proper dimensions and matrix E has the

property rank(E) = re ≤ n. Without loss of generality, it is

assumed that rank[E Ji] = rankE, i = 1, 2, · · · , r.

Based on the centre-average defuzzifier, product inference

and the singleton fuzzifier, the overall T-S fuzzy stochastic

descriptor system can be inferred as

Edx(t) =

r∑

i=1

hi (z(t)) {[Aix(t) +Bi (u(t) + w(t))] dt

+ Jix(t)dω(t)}

(2)

where z(t) = [z1(t), z2(t), · · · , zp(t)] and hi (z(t)) =∏p

j=1
Fij(zj(t))

∑
r
i=1

∏p

j=1
Fij(zj(t))

is the normalized membership function

with Fij(zj(t)) denoting the membership degrees of zj(t) in

fuzzy set Fij . For all t ≥ 0, the normalized membership func-

tion satisfies hi (z(t)) ≥ 0, i = 1, 2, · · · , r,
∑r

i=1 hi (z(t)) =
1. To ease the notation, in the sequel, A(h) and B(hh) are

respectively used to denote the single sum
∑r

i=1 hi (z(t))Ai

and double sums
∑r

i=1

∑r
j=1 hi (z(t))hj (z(t))Bij .

Some basic definitions and essential lemmas are first re-

called to facilitate development of the main results. To this
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end, the unforced T-S fuzzy stochastic descriptor system (2)

is shown as follows

Edx(t) = A(h)x(t)dt+ J(h)x(t)dω(t) (3)

Definition 1: The T-S fuzzy stochastic descriptor system (3)

is said to be asymptotically mean square stable if for any initial

condition x0 ∈ Rn, limt→∞ E{‖x(t)‖2} = 0.

Lemma 1 [13]: Let x(t) be an n-dimensional Itô process

on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dω(t)

where f(t) ∈ L1 (R+;Rn) and g(t) ∈ L2 (R+;Rn×m). Let

V ∈ C2,1 (Rn × R+;R). Then V (x(t), t) is a real-valued Itô
process with its stochastic differential given by

dV (x(t), t) = [Vt (x(t), t) +
1

2
trace

(
gT (t)Vxx (x(t), t) g(t)

)

+Vx (x(t), t) f(t)]dt+ Vx (x(t), t) g(t)dω(t)

Lemma 2 [28]: Suppose a piecewise continuous matrix

A(t) ∈ Rn×n, and a matrix X ∈ Rn×n satisfy the following

inequality

A(t)TX +XTA(t) ≤ −αI

for all t and some positive number α. Then the followings

hold:

1) A(t) is invertible,

2) ‖A−1(t)‖ ≤ a for some a > 0.

Lemma 3 (Finsler’s Lemma) [29]: Let x ∈ Rn, Ω = ΩT ∈
Rn×n, W ∈ Rm×n. The followings are equivalent:

1) xTΩx < 0, ∀ Wx = 0, x 6= 0;

2) ∃X ∈ Rn×m: Ω+XW +WTXT < 0.

It should be noted that in the sliding mode control of T-S

fuzzy descriptor systems [21]-[22] and stochastic descriptor

systems [24], the following assumptions are imposed respec-

tively:

A1: The matrices Bi, i = 1, 2, · · · , r satisfy B1 = B2 =
· · · = Br = B;

A2: There exists a matrix S such that det(SBi) 6= 0 and

SJi = 0, i = 1, 2, · · · , r.

These assumptions are restrictive and limit the applicability

of the methods. As will be shown in Section IV, the model

describing the balancing of the inverted pendulum on a cart

does not satisfy these two assumptions and in this case,

existing results [21]-[24] are not applicable. The design of

an appropriate sliding mode scheme for T-S fuzzy stochastic

descriptor systems without the two assumptions is a main

focus of this paper.

III. MAIN RESULTS

First of all, a classical integral sliding mode control scheme

is presented to remove the restrictive assumptions A1 and A2

for the T-S fuzzy stochastic descriptor system (1). A Non-

PDC integral sliding mode control scheme will then be derived

to decrease the conservatism stemming from the selection of

the coefficient matrix which defines the sliding surface in

the classical integral sliding mode control approach. Finally,

comparison with the existing sliding mode control methods is

undertaken to show the merits of the proposed method in this

paper.

A. Classical Integral Sliding Mode Control Scheme

This subsection is divided into three parts: the first part

considers construction of an appropriate sliding surface, the

second part focuses on the stability analysis of the motion,

and the final part presents the sliding mode controller design

method. First consider the construction of the sliding surface.

1) Construction of Sliding Surface: The sliding surface is

defined by s(t) = 0, where the sliding variable is constructed

as follows

s(t) = SEx(t)− SEx(0)

−

∫ t

0

S(A(h) +B(h)K1)x(τ)dτ
(4)

where K1 ∈ Rm×n is the coefficient matrix to be determined

in the sequel, and S ∈ Rm×n is the parameter matrix ensuring

the nonsingularity of SB(h). To this end, the method in [30]

can be adopted. By defining B = 1
r

∑r
i=1 Bi, it follows that

B(h) = B +HF (h̄(z(t)))G (5)

where h̄(z(t)) = [h1(z(t)), h2(z(t)), · · · , hr(z(t))], H =
1
2 [B − B1, B − B2, · · · , B − Br], F (h̄(z(t))) = diag[(1 −
2h1(z(t)))I, (1−2h2(z(t)))I, · · · , (1−2hr(z(t)))I], and G =
[I, I, · · · , I
︸ ︷︷ ︸

r

]T . Thus, the following result can be derived by the

approach in [30].

Lemma 4 [30]: If the following LMIs
[

−I ⋆
f1H −I

]

< 0,

[
Q ⋆
I f2I

]

> 0, Q < f3I,





2f1
√

λmin (BTB) ⋆ ⋆
rf2 rf1 ⋆
rf3 0 rf1



 > 0

(6)

are solvable for (Q, f1, f2, f3) with Q > 0, then there

exists parameter matrix S =
(
BTQ−1B

)−1
BTQ−1 such that

SB(h) is nonsingular.

Remark 1: More generally, matrix B can also be chosen

as the convex combination of Bi, i = 1, 2, · · · , r, that is,

B =
∑r

i=1 ξiBi with ξi ≥ 0 and
∑r

i=1 ξi = 1. From the

property of convex combinations, it follows that if just one of

the matrices Bi is nonsingular, then there must exist a set of

scalars ξi, i = 1, 2, · · · , r such that the nonsingularity of B
can be guaranteed. In this case, define

H =
1

2

[
B − rξ1B1, B − rξ2B2, · · · , B − rξrBr, 2ζI

]
,

F(h̄(z(t))) = diag[(1− 2h1(z(t)))I, (1− 2h2(z(t)))I, · · · ,

(1−2hr(z(t)))I,
1

ζ

r∑

i=1

hi(z(t))(1−rξi)Bi],G =
[
GT I

]T

where ζ = ‖
∑r

i=1 hi(z(t)) (1− rξi)Bi‖. It can be shown that

B(h) = B +HF(h̄(z(t)))G. Therefore, the result in Lemma

4 is also applicable with H , G, r replaced by H, G, r + 1,

respectively.

Remark 2: Note that when B1 = B2 = · · · = Br = B,

by choosing Q = I and without solving the LMIs (6), the

parameter matrix S can be given as S =
(
BTB

)−1
BT , since

it has been proved in [31] that this set is optimal in the sence
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that the Euclidean norm of the mismatched disturbances is

minimized.

2) Stability of the Sliding Motion: Based on (2) and (4), it

can be shown that

ds(t) = SB(h)(u(t) + w(t)−K1x(t))dt+ SJ(h)x(t)dω(t)
(7)

In the sliding phase, E{s(t)} = 0 holds. When the state

trajectories of the system (2) reach and are confined to

the sliding surface with sliding variable (4), from (7), it is

necessary to satisfy

(SB(h))(u(t) + w(t)−K1x(t)) = 0

Since SB(h) is nonsingular, the equivalent control can be

obtained as

ueq(t) = K1x(t)− w(t) (8)

By substituting (8) into the system (2), the sliding mode

dynamics are given as follows

Edx(t) = Ac(h)x(t)dt+ J(h)x(t)dω(t) (9)

where Ac(h) = A(h) +B(h)K1.

Theorem 1: If the following matrix inequalities

∆i =





∆i1 ⋆ ⋆
∆i2 −εHe(Pi) ⋆
∆i3 0 −P1



 < 0 (10)

are solvable for (P1, P2i, P3i, X,Φi, Z1, ε) , i = 1, 2, · · · , r
where P1 > 0, ε > 0, P3i = PT

3i , E+ is the

pseudoinverse of E in the Moore-Penrose sense, ∆i1 =
He (AiX +BiZ1), ∆i2 = X−Pi+ε (AiX +BiZ1), ∆i3 =
[
Ire 0

]
NTE+JiX , Pi = N

[
P1 PT

i2

Pi2 Pi3

]

NTET +

V ΦiU , orthogonal matrices M and N satisfying MEN =[
Λ 0
0 0

]

, Λ = diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre

are the singular values of matrix E, U and V are respectively

the last n − re rows and the last n − re columns of M and

N , then the sliding motion (9) is regular, impulse free and

asymptotically mean square stable. Furthermore, the coeffi-

cient matrix K1 in (4) can be expressed as K1 = Z1X
−1.

Proof: Suppose that matrix inequalities in (10) are solv-

able, pre- and post-multiplying ∆i by
[
−εI I 0

]
and its

transpose yield X is invertible. It can be shown that

P(h) = N

[
P1 P2(h)

T

P2(h) P3(h)

]

NTET + V Φ(h)U

= N

[
P1 0

P2(h) 0

] [
Λ 0
0 0

]

M

+N

[
0 0
0 Φ(h)

]

M

= N

[
P1 0

P2(h) Φ(h)

] [
Λ 0
0 I

]

M

(11)

Furthermore

(P(h))−1 = MT

[
Λ−1 0
0 I

] [
P−1
1 0
⋆ (Φ(h))−1

]

NT

(12)

where ⋆ represent terms that are unimportant within the

current analysis.

From (12), it follows that

ET (P(h))−1

= NNTETMT

[
Λ−1 0
0 I

] [
P−1
1 0
⋆ ⋆

]

NT

= N

[
Ire
0

]

P−1
1

[
Ire 0

]
NT = (P(h))−TE ≥ 0

(13)

Summing (10) for all i = 1, 2, · · · , r and using the Schur

complement Lemma, straightforward algebraic manipulation

yields [
∆4(z(t)) ⋆
∆2(h) −εHe(P (h))

]

< 0 (14)

where ∆4(z(t)) = He (A(h)X +B(h)Z1) +
XTJ(h)T (E+)TET (P(h))−1E+J(h)X .

Pre- and post-multiplying (14) by diag{X−T , (P(h))−1}
and its transpose, the following can be obtained

[
J(h)T (E+)TET (P(h))−1E+J(h) ⋆

(P(h))−1 0

]

+He(

[
X−T

ε(P(h))−1

]
[
Ac(h) −I

]
) < 0

(15)

By Finsler’s Lemma, (15) can be guaranteed by the follow-

ing inequality

yT
[

J(h)T (E+)TET (P(h))−1E+J(h) ⋆
(P(h))−1 0

]

y < 0 (16)

for any y =
[
y1 y2

]T
6= 0 satisfying

[
Ac(h) −I

]
y = 0 (17)

Substituting (17) into (16), the following can be obtained

∆̃(z(t)) = (J(h))T (E+)TET (P(h))−1(E+)J(h)

+He
(
(Ac(h))

T (P(h))−1
)
< 0

(18)

The regularity and absence of impulse in the system (9) can

now be proved. Define

M̃ =

[
Λ−1 0
0 0

]

M, M̃JiN =

[
J1i J2i
0 0

]

M̃AciN =

[
A1i A2i

A3i A4i

] (19)

Substituting (19) into (18), it follows that
[

⋆ ⋆

⋆ ∇(z(t))

]

< 0

where ∇(z(t)) = (J2(h))
TP−1

1 J2(h) +
He((A4(h))

T (Φ(h))−1).
Note that P1 > 0 and ∇(z(t)) < 0. Then by Lemma 2,

it follows that A4(h) is nonsingular and ‖(A4(h))
−1‖ ≤ ρ1

with ρ1 > 0. As a result, from [14], the sliding motion (9) is

regular and impulse free.

Using the coordinate transformation x(t) = N

[
x̃1(t)
x̃2(t)

]

,

the sliding motion (9) is equivalent to

dx̃1(t) = [(A1(h)−A2(h)(A4(h))
−1A3(h))x̃1(t)dt

+ (J1(h)− J2(h)(A4(h))
−1A3(h))x̃1(t)dω(t)]

x̃2(t) = − (A4(h))
−1A3(h)x̃1(t)
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Next, the sliding motion (9) will be shown to be asymp-

totically mean square stable. Select the Lyapunov function

candidate as follows

V (x̃1(t)) = x̃T
1 (t)P

−1
1 x̃1(t) = xT (t)ET (P(h))−1x(t) (20)

Let L be the diffusion operator associated with (20). Then

by Lemma 1, it can be shown that

dV (x̃1(t)) = xT (t)∆̃(z(t))x(t)dt

+ 2xT (P(h))−TJ(h)x(t)dω(t)
(21)

Thus, LV (x̃1(t)) = xT (t)∆̃(z(t))x(t). From (18), there

exists a positive constant ̺ such that

LV (x̃1(t)) < −̺‖x(t)‖2 (22)

According to (20)

λmin(P
−1
1 )‖x̃1(t)‖

2 ≤ V (x̃1(t)) ≤ λmax(P
−1
1 )‖x̃1(t)‖

2

(23)

Due to ‖(A4(h))
−1‖ ≤ ρ1, two positive constants ρ2 and ρ3

can be defined satisfying

ρ2‖x̃1(t)‖ ≤ ‖x̃2(t)‖ ≤ ρ3‖x̃1(t)‖

which further implies

ρ4‖x̃1(t)‖
2 ≤ ‖x(t)‖2 ≤ ρ5‖x̃1(t)‖

2 (24)

where ρ4 = ρ22 + 1 and ρ5 = ρ23 + 1.

Using Lemma 1 and (21), it can be calculated that

d
[
eǫtV (x̃1(t))

]
= ǫeǫtV (x̃1(t)) dt+ eǫtLV (x̃1(t)) dt

+ eǫtVx (x̃1(t)) Jix(t)dω(t)
(25)

Integrating and taking expectations on both sides of (25), it

follows that

eǫtE {V (x̃1(t))} = E {V (x̃1(0))}

+ E

∫ t

0

eǫτLV (x̃1(τ)) dτ

+ E

∫ t

0

eǫτ ǫV (x̃1(τ)) dτ

(26)

Substituting (22), (23) and (24) into (26), it can be established

that

E {V (x̃1(t))} ≤ e−ǫt
E {V (x̃1(0))}

+E

∫ t

0

ǫ̃e−ǫ(t−τ)‖x̃1(τ)‖
2dτ

where ǫ̃ = ǫλmax

(
P−1
1

)
− ̺ρ4.

Assign 0 < ǫ ≤ ̺ρ4

λmax(P−1

1 )
, and note (23), then

E{‖x̃1(t)‖
2} ≤ λmax(P1)E {V (x̃1(0))} e

−ǫt (27)

As t tends to ∞, (27) yields limt→∞ E{‖x̃1(t)‖
2} = 0.

By (24), it follows that limt→∞ E{‖x(t)‖2} = 0. As a

consequence, based on Definition 1, the sliding motion (9)

is asymptotically mean square stable.

Remark 3: The existence of an asymptotically mean square

stable sliding motion (9) is proved in Theorem 1 and the coef-

ficient matrix K1 in the sliding varible (4) is obtained in terms

of a set of matrix inequalities. Due to the redundancy in the

derivative coefficient matrix E, some slack matrices Pi2, Pi3,

Φi, i = 1, 2, · · · , r are introduced and the matrix ET (P(h))−1

is only dependent on the orthogonal matrix N and positive

definite matrix P1. Moreover, based on the property of fuzzy

membership functions, P1 is set to be independent of the fuzzy

membership functions to avoid the derivative of the fuzzy

membership functions appearing. Therefore, the conservatism

of the common quadratic Lyapunov function is reduced by

exploiting the properties of fuzzy membership functions and

descriptor redundancy.

3) Design of the Sliding Mode Controller: Theorem 2:

Assume that matrices S and K1 satisfy Lemma 4 and Theorem

1. The sliding mode controller

u(t) = K1x(t)− (SB(h))
−1

Qs(t)− ς
(SB(h))

T
s(t)

‖ (SB(h))
T
s(t)‖

(28)

can confine the state trajectories of the resultant closed-loop

system in a sufficiently small band around the sliding surface

with sliding variable (4) if Q is a positive definite matrix and

ς > w̄ where w̄ is defined by the upper bound on the norm

of the disturbance w(t).
Proof: Select the Lyapunov function candidate as

Ṽ (s(t)) = 1
2s

T (t)s(t). By the Itô formula, it follows that

dṼ (s(t)) = sT (t)SB(h) (u(t) + w(t)−K1x(t)) dt

+ xT (t)Υ(hh)x(t)dt

+ sT (t)SJ(h)x(t)dω(t)

= LṼ (s(t)) dt+ sT (t)SJ(h)x(t)dω(t)

where Υ(hh) = 1
2 (J(h))

TSTSJ(h).
By (28), it can be computed that

LṼ (s(t)) ≤− λmin (Q) ‖s(t)‖2 + λmax (Υ(hh)) ‖x(t)‖2

+ (w̄ − ς)
∥
∥(SB(h))T s(t)

∥
∥

(29)

To achieve the sliding mode, the following condition should

be satisfied

LṼ (s(t)) ≤ −ζ
∥
∥(SB(h))T s(t)

∥
∥ (30)

where ζ > 0. Without loss of generality, ς can be selected to

satisfy ς = ζ + w̄.

Combining (29) with (30), (30) holds if the following is

satisfied

−λmin (Q) ‖s(t)‖2 + λmax (Υ(hh)) ‖x(t)‖2 ≤ 0

which means that for ‖s(t)‖ ≥
√

λmax(Υ(hh))‖x(t)‖2

λmin(Q) , (30) is

true. Similar to [27], [32], define the following small band

around the sliding surface

B (s(t)) =

{

s(t)

∣
∣
∣
∣
∣
‖s(t)‖ ≤

√

λmax (Υ(hh)) ‖x(t)‖2

λmin (Q)

}

It can be concluded that the sliding variable remains in the

band B (s(t)) as in [27], [32]-[34]. It follows directly from

theorem 3.1 in [32] that the state trajectories of the resultant

closed-loop system are generally not kept on the sliding
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surface, but will remain in a sufficiently small bounded region

surrounding the sliding surface.

Remark 4: It should be noted that a term proportional to the

sliding variable is introduced into the sliding mode controller

(28). This removes the rigorous assumption A2 by defining

a small band around the sliding surface as in [27], [32] and

it is proved that the sliding variable is restricted to a small

neighbourhood of the sliding surface. Note that when the

assumption SJ(h) = 0 holds, by assigning Q = 0, the band

B (s(t)) is the sliding surface itself. In this case, the sliding

mode controller (28) can maintain the state trajectories of the

closed-loop system on the sliding surface.

B. Non-PDC Integral Sliding Mode Control Scheme

It should be noted that despite the tractability of the classical

integral sliding mode control scheme presented above, some

conservatism may be produced in solving matrix inequalities

for the coefficient matrix K1 since a common matrix K1 is re-

quired to stabilise all the local subsystem (E,Ai, Bi, Ji) , i =
1, 2, · · · , r. As a consequence, a Non-PDC integral sliding

mode control scheme will be proposed to further reduce this

conservatism.

The sliding surface is defined by s(t) = 0, where the sliding

variable is constructed as follows

s(t) = SEx(t)− SEx(0)

−

∫ t

0

S(A(h) +B(h)K2(h)(Y (h))−1)x(τ)dτ
(31)

Here S ∈ Rm×n is the same as that in (4) and K2i ∈ Rm×n,

Yi ∈ Rn×n, i = 1, 2, · · · , r are unknown coefficient matrices

to be designed later.

Remark 5: The sliding variable in (31) introduces the

nonlinear term K2(h)(Y (h))−1x(τ) to deal with the case

when the coefficient matrix K1 in (4) cannot be obtained

by Theorem 1. In the case that Y1 = Y2 = · · · = Yr, the

Non-PDC integral sliding mode control scheme reduces to the

PDC integral sliding mode control scheme. Furthermore, when

assumption A1 and Y1 = Y2 = · · · = Yr hold, the sliding

variable in (31) can recover the sliding variable presented in

[21], [26] or in [22] by incorporating a delay term. In fact,

when the matrix S is selected to ensure the invertibility of

SB(h), the nonlinear term K2(h)(Y (h))−1x(τ) in (31) can be

replaced by other stabilising state feedback control laws [35]-

[36] applicable for T-S fuzzy stochastic descriptor systems.

This observation is similar to that seen for nonlinear normal

systems in [37]. As a result, a new framework for the sliding

mode control of T-S fuzzy stochastic descriptor system is

proposed, even when assumptions A1 and A2 are not satisfied.

As in the previous subsection, the equivalent control law

can be obtained as

ueq(t) = K2(h)(Y (h))−1x(t)− w(t) (32)

By substituting (32) into the system (2), the sliding mode

dynamics are given by

Edx(t) = (A(h) +B(h)K2(h)(Y (h))−1)x(t)dt

+ J(h)x(t)dω(t)
(33)

To use the non-quadratic Lyapunov function, the following

assumption in [38]-[39] is enforced.

Assumption 1:
∂hi(z(t))

∂t
≥ φi (φi ≤ 0) for all i =

1, 2, · · · , r, where φi, i = 1, 2, · · · , r are scalars.

Now, the following theorem will provide a method to solve

the existence problem of sliding modes and the unknown

coefficient matrices can also be obtained.

Theorem 3: If the following matrix inequalities

P1i +X ≥ 0, i = 1, 2, · · · , r (34)

Θii < 0, i = 1, 2, · · · , r

1

r − 1
Θii +

1

2
(Θij +Θji) < 0, i, j = 1, 2, · · · , r, i 6= j

(35)

are solvable for (P1i, Yi,Φi,K2i, X, P2i, P3i, η) , i =
1, 2, · · · , r where P1i > 0, η > 0, P3i = PT

3i and

Θij =





Θij1 ⋆ ⋆
Θij2 −ηHe(Yi) ⋆
Θij3 0 −Pi1





with Θ1ij = He(AiYj + BiK2j) −
∑r

k=1 φk(EN

[
P1k +X PT

2k

P2k P3k

]

NTET ), Θ2ij =

Pi−Yi+η(AiYj+BiK2j)
T , Θ3ij =

[
Ire 0

]
NTE+JiPj ,

Pi = N

[
P1i PT

2i

P2i P3i

]

NTET + V ΦiU , orthogonal

matrices M and N satisfying MEN =

[
Λ 0
0 0

]

, Λ =

diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre are the singular

values of matrix E, U and V are respectively the last n− re
rows and the last n − re columns of M and N , then the

sliding motion (33) is regular, impulse free and asymptotically

mean square stable.

Proof: If the matrix inequalities (35) hold, then Θ(hh) <
0. Based on (34) and φi ≤ 0, pre- and post-multiplying Θ(hh)
by

[
−ηI I 0

]
and its transpose yield P(h) is invertible.

It can be verified that

P(h) = N

[
P1(h) 0
P2(h) 0

] [
Λ 0
0 0

]

M

+N

[
0 0
0 Φ(h)

] [
Λ 0
0 I

]

M

= N

[
P1(h) 0
P2(h) Φ(h)

] [
Λ 0
0 I

]

M

From the invertibility of P(h), it follows that

(P(h))−1 = MT

[
Λ−1 0
0 I

] [
(P1(h))

−1 0
⋆ (Φ(h))−1

]

NT

where ⋆ represent terms that are unimportant within the

current analysis.

Furthermore, it can be computed that

ET (P(h))−1 = (P(h))−TE

= N

[
Ire
0

]

(P1(h))
−1

[
Ire 0

]
NT ≥ 0

(36)
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Since
∂hk(z(t))

∂t
≥ φk and φk ≤ 0, it can be obtained that

−

r∑

k=1

φk(EN

[
P1k +X PT

2k

P2k P3k

]

NTET )

= −

r∑

k=1

φk(M
T

[
Λ 0
0 I

] [
P1k +X 0

0 0

] [
Λ 0
0 I

]

M)

≤ −

r∑

k=1

∂hk(z(t))

∂t
EN

[
P1k PT

2k

P2k P3k

]

NTET

−
r∑

k=1

∂hk(z(t))

∂t
EN

[
X 0
0 0

]

NTET

Note that
∑r

k=1 hk(z(t)) = 1, then
∑r

k=1
∂hk(z(t))

∂t
= 0, it

can be further shown that

−

r∑

k=1

φk(EN

[
P1k +X PT

2k

P2k P3k

]

NTET )

≤ −

r∑

k=1

∂hk(z(t))

∂t
EN

[
P1k PT

2k

P2k P3k

]

NTET

= −

r∑

k=1

∂hk(z(t))

∂t
EPk = −E

∂

∂t
(P(h))

(37)

Due to Θ(hh) < 0, by using the Schur complement lemma,

it follows from (36) and (37) that

He(

[
(Y (h))T

η(Y (h))T

]
[
A(h) +B(h)K2(h)(Y (h))−1 −I

]
)

+

[
Θ4(z(t)) ⋆
P(h) 0

]

< 0

(38)

where Θ4(z(t)) = −E ∂
∂t
(P(h)) +

(P(h))T (J(h))T (E+)TET (P(h))−1E+J(h)P(h).
By Finsler’s Lemma, (38) holds if the following is satisfied

zT
[

Θ4(z(t)) ⋆
P(h) 0

]

z < 0 (39)

for any z =
[
zT1 zT2

]T
6= 0 satisfies z2 = (A(h) +

B(h)K2(h)(Y (h))−1)z1.

Furthermore, (39) implies that

He((A(h) +B(h)K2(h)(Y (h))−1)P(h))

+ (P(h))T (J(h))T (E+)TET (P(h))−1E+J(h)P(h)

− E
∂

∂t
(P(h)) < 0

(40)

Similar to the proof of Theorem 1, the regularity and

absence of impulse of the sliding motion (33) can be proved.

Due to P(h)(P(h))−1 = I , it can be obtained that

∂

∂t
((P(h))−1) = −(P(h))−1 ∂

∂t
(P(h))(P(h))−1 (41)

Pre- and post-multiplying (40) by (P(h))−T and its trans-

pose, it follows from (41) that

Ξ(z(t)) = He((A(h) +B(h)K2(h)(Y (h))−1)T (P(h))−1)

+ (J(h))T (E+)TET (P(h))−1E+J(h)

− ET ∂

∂t
((P(h))−1) < 0

Define x(t) = N

[
x̃1(t)
x̃2(t)

]

and choose the following

Lyapunov function candidate

V (x̃1(t)) = x̃T
1 (t)(P1(h))

−1x̃1(t) = xT (t)ET (P(h))−1x(t)

Then by Lemma 1, it can be calculated that

LV (x̃1(t)) = xT (t)Ξ(z(t))x(t)

The subsequent proof can be directly obtained from that of

Theorem 1 and thus is omitted.

Remark 6: If the conditions in Theorem 3 are solvable, an

ideal sliding mode exists and a set of unknown coefficient ma-

trices K2i, Yi, i = 1, 2, · · · , r are obtained. Theorem 3 also

provides an approach to solve the state feedback stabilising

problems for a T-S fuzzy stochastic descriptor system based

on the Non-PDC scheme. Since the non-quadratic Lyapunov

function and Non-PDC scheme are used, some slack matrices

are introduced, the conditions in Theorem 3 are expected to

be less conservative than that in Theorem 1.

The sliding mode controller can be designed using the

following result.

Theorem 4: Assume that matrices S and K2i, Yi, i =
1, 2, · · · , r satisfy Lemma 4 and Theorem 3. The sliding mode

controller

u(t) = K2(h)(Y (h))−1x(t)− (SB(h))−1Qs(t)

− ς
(SB(h))T s(t)

‖(SB(h))T s(t)‖

(42)

can confine the state trajectories of the resultant closed-loop

system to a sufficiently small band around the sliding surface

with sliding variable (31) if Q is a positive definite matrix and

ς > w̄ where w̄ is defined in Theorem 2.

When the coefficient matrices Y1 = Y2 = · · · = Yr, the

sliding variable in (31) degenerates to

s(t) = SEx(t)− SEx(0)

−

∫ t

0

S(A(h) +B(h)K3(h))x(τ)dτ
(43)

Here S ∈ Rm×n is the same as that in (4) and K3i ∈ Rm×n,

i = 1, 2, · · · , r are unknown coefficient matrices to be de-

signed later.

In this case, the sliding mode dynamics are given by

Edx(t) = Ac3(hh)x(t)dt+ J(h)x(t)dω(t) (44)

where Ac3(hh) = A(h) +B(h)K3(h).
Corollary 1: If (34) and the following matrix inequalities

̥ii < 0, i = 1, 2, · · · , r

1

r − 1
̥ii +

1

2
(̥ij +̥ji) < 0, i, j = 1, 2, · · · , r, i 6= j

are solvable for (P1i, Y,Φi, Z3i, X, P2i, P3i, η) , i =
1, 2, · · · , r where P1i > 0, η > 0, P3i = PT

3i and

̥ij =





̥ij1 ⋆ ⋆
̥ij2 −ηHe(Y ) ⋆
̥ij3 0 −Pi1





with Θ1ij = He(AiY + BiZ3j) −
∑r

k=1 φk(EN

[
P1k +X PT

2k

P2k P3k

]

NTET ), Θ2ij =
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Pi−Y +η(AiY +BiZ3j)
T , Θ3ij =

[
Ire 0

]
NTE+JiPj ,

Pi = N

[
P1i PT

2i

P2i P3i

]

NTET + V ΦiU , orthogonal

matrices M and N satisfying MEN =

[
Λ 0
0 0

]

, Λ =

diag{λ1, λ2, · · · , λre} > 0, λ1, λ2, · · · , λre are the singular

values of matrix E, U and V are respectively the last n− re
rows and the last n − re columns of M and N , then the

sliding motion (44) is regular, impulse free and asymptotically

mean square stable. Furthermore, the coefficient matrix K3i

in (43) can be expressed as K3i = Z3iY
−1.

Remark 7: As pointed out in [11], a logarithmically spaced

search ε, η ∈ {10−6, 10−5, · · · , 106} is used to avoid opti-

mization technique to search for ε and η. As a result, the

conditions in Theorems 1 and 3, Corollary 1 are linear matrix

inequalities.

The sliding mode controller can also be synthesized by a

similar structure with that in Theorem 4. In this case, the PDC

integral sliding mode control scheme can be obtained.

C. Comparison with Existing Sliding Mode Control Methods

Other authors have developed sliding mode control methods

for T-S fuzzy normal systems (E = I) when each local subsys-

tem does not share the same input matrix [30], [27]. Although

such methods are effective for T-S fuzzy normal systems, some

restrictions have been observed when the methods are applied

to T-S fuzzy descriptor systems. The following discussion

clarifies the differences between this existing literature and

the method proposed in this paper.

1) Comparison with the Method in [30]:

C1 the methods in [30] and in this paper are applicable to

T-S fuzzy normal systems. The method in [30] requires

a rigorous precondition that (Ai,
1
r

∑r
i=1 Bi) is stabilis-

able. The results presented in this paper have no such

requirement;

C2 the method in [30] is based on the assumption [18]

that the system (Ai,
1
r

∑r
i=1 Bi) can be expressed in the

regular form (

[
A1i A2i

A3i A4i

]

,

[
0
B

]

) with det(B) 6= 0

by an appropriate coordinate transformation. The sliding

variables then appear as a distinct subsystem which

is dependent of the control input. This facilitates the

sliding mode design and the transformation to regular

form is straightforward for any T-S fuzzy normal system

where
∑r

i=1 Bi is full column rank. However, due to the

existence of the derivative coefficient matrix E, it can

be difficult to express the T-S fuzzy descriptor system

(E,Ai,
1
r

∑r
i=1 Bi) in regular form.

2) Comparison with the Method in [27]:

C3 Although the method in [27] provides a very effective

solution of the sliding mode control problem for T-S

fuzzy systems with parameter uncertainties, when the

system is subject to unknown matched nonlinearities

or disturbances, the method is not applicable [27]. The

method in this paper can be used;

C4 When the method in [27] is applied to T-S fuzzy descrip-

tor systems, it is required that each descriptor subsystem

Fig. 1. Inverted pendulum on a cart

(E,Ai) is impulse free in order to determine the un-

known coefficient matrices in the sliding variable. This

restriction is not needed in this paper.

IV. EXAMPLES

In this section, three examples are considered to show the

applicability and effectiveness of the results proposed in this

paper. Example 1 is used to validate statements C2 and C3 in

Subsection III-C and to show that the proposed method can

be used to stabilize a T-S fuzzy stochastic descriptor system

which does not satisfy A1 and A2. Example 2 compares the

solvability of classical, PDC and Non-PDC integral sliding

mode control schemes and also justifies the statement C4 in

Subsection III-C. Example 3 is given to verify the statement

C1 in Subsection III-C. In the simulation, the unit vector
s(t)

‖s(t)‖

is replaced by
s(t)

‖s(t)‖+0.005 as in [18].

Example 1: Consider the problem of balancing the inverted

pendulum on a cart as shown in Fig. 1, where the pivot of

the pendulum is mounted on the cart and the cart can move

in a horizontal direction. By referring to [40]-[41], the state

equation of the dynamic model is represented by

ẋ1 = x2

ẋ2 =
kmlx4 cosx1 + (M +m)mgx5

(M +m)(J +ml2)−m2l2 cos2 x1

−
ml cosx1

(M +m)(J +ml2)−m2l2 cos2 x1

(
u+mx2

2x5

)

ẋ3 = x4

ẋ4 =
−k(J +ml2)x4 −m2lgx5 cosx1

(M +m)(J +ml2)−m2l2 cos2 x1

+
J +ml2

(M +m)(J +ml2)−m2l2 cos2 x1

(
u+mx2

2x5

)

0 = l sinx1 − x5

where x1 is the angular rotation of the pendulum(measured

clockwise); x3 is the displacement of the pivot; x5 is the the

horizontal position of the pendulum centre relative to the pivot;

m is the mass of the pendulum; M is the mass of the cart;

l is the distance from the centre of gravity to the pivot; J
is the moment of inertia of the pendulum with respect to the

centre of gravity; k is a viscous damping coefficient; g is the

acceleration due to gravity; u(t) is the horizontal force exerted

on the cart.

It is well known that the viscous damping coefficient is

closely related to the shape of the cart and the air viscosity,
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Fig. 2. Time responses of the unforce system (45)

and the air viscosity varies with changes to external environ-

mental factors such as air density, wind, dryness and humidity,

temperature and so forth. These environmental factors often

feature random variation, which produces a stochastic fluctua-

tion of the damping coefficient and this motivates considering

stochastic noise in the environment within the model. Here it

is assumed that the damping coefficient is subjected to white

noise which is known as the derivative of Brownian motion.

The damping coefficient is replaced by

k −→ k + σω̇

where ω is a one dimensional Brownian motion defined on the

probability space (Ω,F,P). In addition, unknown disturbances

may arise in the control input channel. As a result, the

dynamics of the inverted pendulum on a cart are described

by

dx1 = x2dt

dx2 =
(kmlx4 cosx1 + (M +m)mgx5) dt

(M +m)(J +ml2)−m2l2 cos2 x1

−
ml cosx1

(
u+mx2

2x5 + w
)
dt− σmlx4 cosx1dω

(M +m)(J +ml2)−m2l2 cos2 x1

dx3 = x4dt

dx4 =

(
−k(J +ml2)x4 −m2lgx5 cosx1

)
dt

(M +m)(J +ml2)−m2l2 cos2 x1

+

(
J +ml2

) (
u+mx2

2x5 + w
)
dt− σ(J +ml2)x4dω

(M +m)(J +ml2)−m2l2 cos2 x1

0 = [l sinx1 − x5] dt
(45)

where w ∈ R denotes an unknown disturbance or parameter

variation. Taking M = 8kg, m = 2kg, g = 9.8m/s2, l =
0.5m, k = 0.5, σ = 0.1.

The time responses of the open-loop system (45) are shown

in Fig. 2, which shows that the unforced system (45) is

unstable and oscillatory. Although the integral sliding mode

control method in [37] may be generalized to a nonlinear

stochastic descriptor system, it is required that there exists a

nominal controller to stabilize the nominal nonlinear system.

It should be noted that it may not be straightforward to

find a nominal controller to stabilize the nonlinear stochastic

descriptor system (45). This fact is true especially for complex

nonlinear systems. In the sequel, it will be shown that it

is convenient to apply the proposed fuzzy integral sliding

mode control methods in this paper to stabilize the nonlinear

stochastic descriptor system (45).

Define x(t) =
[
x1(t) x2(t) x3(t) x4(t) x5(t)

]T

and a compact set Ω = {x(t) : |xi(t)| ≤ ξi, i = 1, 2, · · · , 5}
where ξ1 = 5π

18 and ξ2, ξ3, ξ4, ξ5 are appropriate positive

constants. By sector nonlinear approach [4], the inverted

pendulum system (45) can be represented in the compact set

Ω by the following T-S fuzzy model:

Edx(t) =

8∑

i=1

hi (x1(t)) {[Aix(t) +Bi(u(t)

+ 2x2
2(t)x5(t) + w(t))]dt+ Jix(t)dω}

(46)

where the premise variables are z1(t) = cos(x1(t)), z2(t) =
1

2−0.3 cos2(x1(t))
and z3(t) = sin(x1(t)). The membership

functions are hi(x1(t)) = tj(x1(t))vk(x1(t))µl(x1(t)), i =

l+2(k−1)+4(j−1), j, k, l = 1, 2 with t1(x1(t)) =
z1(t)−a2

a1−a2

,

v1(x1(t)) = z2(t)−b2
b1−b2

, µ1(x1(t)) = z3(t)−c2 arcsin(z3(t))
(c1−c2) arcsin(z3(t))

,

t2(x1(t)) = 1 − t1(x1(t)), v2(x1(t)) = 1 − v1(x1(t)),
µ2(x1(t)) = 1 − µ1(x1(t)), a1 = 1, a2 = cos(ξ1), b1 = 1

1.7 ,

b2 = 1
2−0.3 cos2(ξ1)

, c1 = 1, c2 = sin(ξ1)
ξ1

. The matched

disturbance is w(t) = 0.5 sin(t). The coefficient matrices in

system (46) are

E =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0









,

Ai =









0 1 0 0 0
0 0 0 0.15ajbk 58.8bk
0 0 0 1 0
0 0 0 −0.1bk −5.88ajbk

0.5cl 0 0 0 −1









,

Ji =









0 0 0 0 0
0 0 0 0.03ajbk 0
0 0 0 0 0
0 0 0 −0.02bk 0
0 0 0 0 0









, Bi =









0
−0.3ajbk

0
0.2bk
0









where i = l + 2(k − 1) + 4(j − 1), j, k, l = 1, 2.

It should be noted that the methods in [21]-[24] cannot be

applied, since B1 6= B3 and there does not exist a matrix

S such that det (SBi) 6= 0 and SJi = 0, i = 1, 2, · · · , 8.

It is noted that the regular form in [30] can not be obtained

for the T-S fuzzy stochastic descriptor system (46) Therefore

the sliding mode control method in [30] can not be applied,

which validates the statement C2. Next, a classical integral

sliding mode control scheme and a PDC integral sliding mode

control scheme will be designed.

Classical integral sliding mode control scheme: By applying

Lemma 4 and Theorem 1 with ε = 0.1, the coefficient matrices

defining the sliding variable are obtained as

S =
[
0 −4.3638 0 3.5418 0

]
,

K1 =
[
245.0219 99.0627 10.7313 37.4414 302.9810

]



SUBMIT TO IEEE TRANSACTIONS ON CYBERNETICS 10

0 10 20 30
−0.2

0

0.2

0.4

0.6

Time t(sec)

x 1(t
)(

ra
d)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−0.01

0
0.01

0 10 20 30
−2

−1

0

1

Time t(sec)

x 2(t
)(

ra
d/

s)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−5

0
5x 10

−3

0 10 20 30
−5

0

5

10

Time t(sec)

x 3(t
)(

m
)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−0.02

0
0.02

0 10 20 30
−1

0

1

2

3

Time t(sec)

x 4(t
)(

m
/s

)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−0.02

0
0.02

0 10 20 30
−0.1

0

0.1

0.2

0.3

Time t(sec)

x 5(t
)(

m
)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−5

0
5x 10

−3

0 10 20 30
−100

0

100

200

300

Time t(sec)

u(
t)

 

 

Sliding controller (48)
Nominal controller (51)
Sliding controller (54)

20 25 30
−2

0
2

Fig. 3. Time responses of the system (45) using the classical integral sliding
mode controller (48), classical nominal controller (51) and integral sliding
mode controller (54)
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Fig. 4. Time responses of the system (45) using the PDC integral sliding
mode controller (50), PDC nominal controller (52) and integral sliding mode
controller (54)

The sliding variable is given by

s(t) = − 4.3638x2(t) + 3.5418x4(t)

−

∫ t

0

8∑

i=1

hi(x1(τ))S(Ai +BiK1)x(τ)dτ
(47)

By Theorem 2, the classical integral sliding mode controller

can be obtained as follows

u(t) =− 2x2
2(t)x5(t) +K1x(t)− 2(

8∑

i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑8

i=1 hi(x1(t))SBi)
T s(t)

‖(
∑8

i=1 hi(x1(t))SBi)T s(t)‖
(48)

PDC integral sliding mode control scheme: Take η = 1,

φi = −1000, i = 1, 2, · · · , 8. By Corollary 1, the coefficient

matrices for the PDC integral sliding mode controller are

obtained as

K31 =
[
58.4573 50.0312 5.1554 11.6981 326.4954

]
,

K32 =
[
57.9005 49.5838 5.0237 11.4594 323.5178

]
,

K33 =
[
65.5225 55.8304 5.7554 13.0006 343.8131

]
,

K34 =
[
64.9000 55.3832 5.6204 12.7576 340.7738

]
,

K35 =
[
96.1546 84.5041 9.4160 22.2747 548.4739

]
,

K36 =
[
94.8990 83.4823 9.1935 21.7344 541.3294

]
,

K37 =
[
103.2430 90.4962 9.9912 23.4546 554.8338

]
,

K38 =
[
102.7955 89.6102 9.8341 23.0596 546.9059

]
.

The sliding variable is calculated as

s(t) = − 4.3638x2(t) + 3.5418x4(t)

−

∫ t

0

8∑

i=1

hi(x1(τ))S(Ai +Bi

8∑

i=1

hi(x1(τ))K3i)x(τ)dτ

(49)

By (42), the PDC integral sliding mode controller can be

obtained as

u(t) = − 2x2
2(t)x5(t) +

8∑

i=1

hi(x1(t))K3ix(t)

− 2(

8∑

i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑8

i=1 hi(x1(t))SBi)
T s(t)

‖(
∑8

i=1 hi(x1(t))SBi)T s(t)‖

(50)

Utilizing the classical integral sliding mode control scheme

(47)-(48) and the PDC integral sliding mode control scheme

(49)-(50), under the initial condition x(0) = [π6 0 0 0 0.25]T ,

the time responses of the resultant closed-loop system, and

sliding mode controller are shown in Fig. 3 and Fig. 4. It

shows that the resultant closed-loop system is asymptotically

mean square stable. It is noted that the simulation results by

the classical integral sliding mode control scheme and the PDC

integral sliding mode control scheme are similar, whereas, 8
matrix inequalities in Theorem 1 and 72 matrix inequalities

in Corollary 1 are needed to be checked to guarantee the

existence of sliding mode. Therefore, if the matrix inequalities

in Theorem 1 are solvable, the classical integral sliding mode

control scheme is more desirable from the numerical aspect.

The above simulations validate the fact that the results in

this paper can be applied to T-S fuzzy stochastic descriptor
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system that does not satisfy assumptions A1 and A2. Although

the result in this paper is proposed for the system (46), it can

be applied to the original system (45) in that the T-S fuzzy

stochastic descriptor system (46) is an exact representation of

the system (45) in the compact set Ω. The simulation results

show that the proposed sliding mode control schemes are also

applicable to the original system (45). The method proposed in

this paper uses the integral sliding mode control concept [42]

and thus it is possible to ensure the system initially starts close

to the sliding surface and remains within a bounded region of

the surface for all subsequent time.

In order to show the effect of the disturbance w(t) on the

system performance, the classical nominal controller

u(t) = −2x2
2(t)x5(t) +K1x(t) (51)

and the PDC nominal controller

u(t) = −2x2
2(t)x5(t) +

8∑

i=1

hi(x1(t))K3ix(t) (52)

are also used to control the T-S fuzzy stochastic descriptor

system (46). It is noted that when the disturbance w(t) is

absent, the nominal controllers (51) and (52) can stabilize the

T-S fuzzy stochastic descriptor system (46). The simulation

results are shown in Fig. 3 and Fig. 4. It is seen that in the

presence of the disturbance w(t), the nominal controllers (51)

and (52) can no longer stabilize the system (46). This means

that the input disturbance degrades the system performance.

Example 1 also shows that the proposed integral sliding mode

controllers exhibit much better performance than the nominal

controllers since the discontinuous term is added to reject the

bounded input disturbance.

It should be noted that although the sliding mode control

method in [27] can be generalized to control the T-S fuzzy

stochastic descriptor system, when the matched disturbance

w(t) cannot be expressed as parameter uncertainty, the sliding

mode control method [27] can not stabilize the T-S fuzzy

stochastic descriptor system (46), which coincides with state-

ment C3 in Subsection III-C. Infact, when the method in [27]

is derived for a T-S fuzzy stochastic descriptor system, the

sliding variable becomes

s(t) = SxEx(t)− SxEx(0) + Suu(t)− Suu(0)

− Sx

∫ t

0

(A(h)x(τ) +B(h)u(τ)) dτ

− Su

∫ t

0

(F (h)x(τ) +G(h)u(τ)) dτ

(53)

and the sliding mode controller is

du(t) =

(

F (h)x(t) +G(h)u(t)− η(t)S−1
u

s(t)

‖s(t)‖

)

dt (54)

η(t) = β ‖J(h)x(t)‖2

‖s(t)‖ + α + ‖SxB(h)‖ w̄, α > 0, β =
1
2λmax

(
ST
x Sx

)
.

With the parameters in Example 1, it can be calculated that

F1 = [466246.2973 118847.4115 813.1039 8110.1673
−1895.2390] , G1 = −2014.3961,

F2 = [466338.3969 118871.0948 813.4386 8112.7965
−1893.7248] , G2 = −2014.3766,

F3 = [411256.8052 104806.1379 696.6064 7032.0596
−1895.2377] , G3 = −1826.233,

F4 = [411353.0760 104830.8839 696.9483 7034.7605
−1893.7411] , G4 = −1826.2316,

F5 = [462626.9289 117925.0662 807.8164 8061.6496
−1895.2435] , G5 = −2001.3824,

F6 = [462719.8338 117948.9530 808.1522 8064.2913
−1893.7346] , G6 = −2001.3668,

F7 = [407976.5748 103970.2153 691.8141 6988.0922
−1895.2402] , G7 = −1814.4383, α = 0.1,

F8 = [408069.7028 103994.1591 692.1507 6990.7395
−1893.7303] , G8 = −1814.4232, Su = 0.0928,

Sx = [−33.8185 − 17.5846 − 0.1193 − 1.2028 − 168.6425]
By using the sliding mode control scheme (53) and (54),

the initial condition x(0) = [π6 0 0 0 0.25]T , u(0) = 0, the

time responses of the resultant closed-loop system and the

sliding mode controller are show in Fig. 3 and Fig. 4. This

shows that the sliding mode controller (54) cannot stabilize the

T-S fuzzy stochastic descriptor system (46), which validates

statement C3 in Subsection III-C. This means that the sliding

mode control method proposed in this manuscript has certain

advantages over existing methods [QGao].

Example 2: Consider the nonlinear stochastic descriptor sys-

tem described by the T-S fuzzy model (2) with the following

data

E =

[
1 0
0 0

]

,

A1 =

[
−1 1
0 a

]

, B1 =

[
0
1

]

, J1 =

[
0.5 −0.5
0 0

]

,

A2 =

[
b 0

−0.2 −1

]

, B2 =

[
2
1

]

, J2 =

[
−0.5 0.5
0 0

]

where a and b are tuning parameters. The membership func-

tions are h1(x1(t)) = 1+sin(x1(t))
2 , h1(x1(t)) = 1−sin(x1(t))

2
and the matched disturbance is w = 0.05e−t. For different

pairs (a, b) with a ∈ [−1, 3] and b ∈ [−1, 3], the solvability

of the coefficient matrix K1 using Theorem 1, coefficient

matrices K2i, Yi, i = 1, 2 using Theorem 3 and coefficient

matrices K3i, i = 1, 2 using Corollary 1 is verified. The

result shown in Fig. 5 which reveals that the Non-PDC integral

sliding mode control scheme is much less conservative than

the classical integral sliding mode control scheme and PDC

integral sliding mode control scheme.

When a = 0, b = 3, the descriptor system (E,A1) is not

impulse free. Although the sliding mode control method in

[27] can be generalized to a T-S fuzzy descriptor system, as

pointed out in statements C3 and C4 in Subsection III-C, the

method is invalid for this example since it is required that each

descriptor subsystem is impulse free and the unknown distur-

bance can be expressed by parameter uncertainty. However,

from Lemma 4, the parameter matrix S is computed as

S =
[
0.5 0.5

]

Furthermore, the matrix inequalities in (10) in Theorem 1 are

found to be infeasible. Nevertheless, using Theorem 3 with

η = 0.1 and φ1 = φ2 = −100, the following coefficient

matrices are obtained

K21 =
[
−6.1012 −4.7596

]
,
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K22 =
[
−15.9196 11.3776

]

Y1 =

[
7.5602 −0.2557
−1.7573 10.2554

]

, Y2 =

[
7.5625 −0.9032
−3.3748 19.2265

]

The Non-PDC integral sliding mode controller can be com-

puted as

u(t) =

2∑

i=1

hi(x1(t))K2i(

2∑

i=1

hi(x1(t))Yi)
−1x(t)

− 2(

2∑

i=1

hi(x1(t))SBi)
−1s(t)

− 0.1
(
∑2

i=1 hi(x1(t))SBi)
T s(t)

‖(
∑2

i=1 hi(x1(t))SBi)T s(t)‖

(55)

Using the Non-PDC integral sliding mode control scheme

(55) with the initial condition x(0) =
[
2 −3.8

]T
, the

time responses of the resulting closed-loop system and sliding

mode controller are shown in Fig. 6. They are asymptotically

mean square stable. Example 2 shows that among the proposed

integral sliding mode control schemes, the classical integral

sliding mode control scheme is the most conservative and the

Non-PDC integral sliding mode control scheme is the least

conservative. It also shows that when one of the subsystems

of the T-S fuzzy descriptor system is impulse free and the

unknown disturbace is matched, as stated in statements C3

and C4 in Subsection III-C, the sliding mode control method in

[27] cannot be generalized to the T-S fuzzy descriptor system,

but the method proposed in this paper can be used.

0 10 20 30
−0.5

0

0.5

1

Time t(sec)

x(
t)

 

 

x
1
(t)

x
2
(t)

0 10 20 30
−2

−1

0

1

Time t(sec)

u(
t)

Fig. 7. Time responses of the system (56) under the classical integral sliding
mode controller (57)

Example 3: Consider the T-S fuzzy model in the following

form

ẋ(t) =

2∑

i=1

hi (x(t)) (Aix(t) +Bi (u(t) + w(t))) (56)

where w(t) = 0.05 sin(x1(t)), the membership func-

tions are h1 (x1(t)) = 1
2 (1 + sin(x1(t))), h2 (x1(t)) =

1
2 (1− sin(x1(t))), and the coefficient matrices are given as

follows

A1 =

[
−1 1
0 0.2

]

, B1 =

[
0
1

]

,

A2 =

[
2 0

−0.2 −1

]

, B2 =

[
2
−1

]

It can be verified that the system (56) is unstable and the

method in [30] is not applicable since the pair
(
A1,

B1+B2

2

)

cannot be stabilised. This also verifies the statement C1 in

Subsection III-C. However, using the integral sliding mode

control schemes in this paper, S =
[
1 1

]
is selected

to guarantee the nonsingularity of S
∑2

i=1 hi (x(t))Bi. The

coefficient matrices in the sliding variable can be solved by

Theorems 1 and 3, Corollary 1. Since the classical integral

sliding mode control scheme is much easier to be implemented

than the Non-PDC integral sliding mode control scheme and

PDC integral sliding mode control scheme, only the classical

integral sliding mode control scheme is considered here. Using

Theorem 1 with ε = 1, it follows that

K1 =
[
−1.1678 −0.6487

]

The classical integral sliding mode controller is obtained as

u(t) = −1.1678x1(t)− 0.6487x2(t)− 0.1
s(t)

‖s(t)‖
(57)

Under the initial condition x(0) =
[
0.9 0.8

]T
, the time

responses of the resultant closed-loop system using the classi-

cal integral sliding mode controller are shown in Fig. 7. The

simulation results show that the resultant closed-loop system

is asymptotically mean square stable. Example 3 implies that

the proposed integral sliding mode control method does not

require the assumption that
(
A1,

B1+B2

2

)
and

(
A2,

B1+B2

2

)
are

stabilisable. This coincides with statement C1 in Subsection

III-C.
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V. CONCLUSION

This paper has utilized integral sliding mode techniques to

prescribe robust stability of T-S fuzzy stochastic descriptor

systems. Two restrictive assumptions previously employed in

the sliding mode control of stochastic and T-S fuzzy systems

have been removed by the proposed classical integral sliding

mode control scheme and the Non-PDC integral sliding mode

control scheme. In fact, the proposed sliding mode control

scheme can be generalized to the more general case as

explained in Remark 5. Finally, a few examples including

an inverted pendulum model were simulated to support the

theoretical results obtained in this paper.
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