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Abstract - This paper treats the attitude stabilization 

problem for satellite using only one MSGMW (Magnetically 

Suspended Gimbaled Momentum Wheel). To start, the coupled 

dynamic model of satellite and MSGMW is defined and 

simplified based on the fact that the attitude errors are small 

during the mission mode that the MSGMW services. In order to 

improve the dynamic performance, reduce the steady state error 

and avoid the chattering phenomenon, a modified integral 

chattering-free sliding mode controller with a nonlinear integral 

function and a saturation function is introduced. Lyapunov 

theory is employed to prove the convergence characteristic 

outside the boundary layer and the terminal convergence 

characteristic inside the boundary layer. A numerical simulation 

example is employed to show the effectiveness and suitability of 

the proposed controller.  

Index Terms - Attitude Stabilization, MSGMW, MNISMC, 

Integral Sliding Mode Control 

 

I. INTRODUCTION 

Three-axis stabilized satellites are widely used for Earth 

observation, communication and navigation missions. A 

common attitude control architecture consists of a momentum 

wheel for pitch stabilization and thrusters for roll and yaw 

stabilization. The MSGMW, with its angular momentum 

aligned along the pitch axis, can also provide control torques 

along the other two axes, like a Double Gimbal Control 

Moment Gyro but the gimbal angles are limited in a small 

range. Once the satellite establishes an initial attitude after the 

damping phase, the errors are usually very small, and a 

MSGMW can be used to stabilize all the three axes thus 

reducing fuel consumption, increase the service life of the 

satellite and enhance the attitude precision for roll and yaw 

axis. 

The use of MSGMW for spacecraft attitude control has 

been the subject of different studies [1]~[6]. A robust 

controller is proposed for attitude stabilization using a 2-DOF 

method and applied to a Sun observation mission [2]. 

MSGMW is used to cope with the perturbations induced by 

scanning actuators in Ref. [3]. The non-linearities and on-orbit 

stability problems for MSGMW are studied in Ref. [4] and [5] 

respectively. A stabilization controller is designed in Ref. [6] 

under the condition that the pitch attitude information is 

missing. 

All the above studies design a controller and prove the 

stability based on classic control theory, however, the external 

disturbances and the uncertainties of the main angular 

momentum are not considered. SMC (Sliding Mode 

Controller) has shown to be a promising approach displaying 

strong robustness in the case of parameter uncertainties and 

perturbations. In order to avoid chattering and terminal 

convergence issues-the main drawbacks of a traditional SMC, 

saturation functions, integral sliding mode control, and 

terminal sliding mode control have been proposed. Reference 

[7] generally summarizes the development and the 

characteristics of SMC, as well as its possible modifications. 

The attitude stabilization and maneuvering problems are 

studied using various SMCs in Ref. [8]~[15] showing the 

proper robustness for space applications, where in particular 

Ref.[13] and [14] use terminal sliding mode theory to solve 

the final convergence problem and Ref. [15] combines sliding 

mode theory and adaptive theory to study the saturation 

problem during the attitude control process. The ISMC 

(Integral Sliding Mode Control) is firstly proposed by Chern 

[6] and can compensate the uncertainties in the system, 

remove the steady state error and enhance the robustness 

[17~19]. Some ISMC application problems are studied in Ref. 

[20~23] which show the promising results. 

This paper will tackle the satellite attitude stabilization 

problem using only one MSGMW as actuator and a Modified 

Nonlinear Integral Sliding Mode Controller (MNISMC) is 

designed based on the theory in Ref. [24]. 

The rest of the paper is structured as follows. Sections II 

defines the coupled nonlinear dynamic model and introduces 

some simplifications based on small angular displacements. 

The control strategy is presented in Section III, while the 

MNISMC is defined in Section IV. A numerical example is 

given in Section V and Section VI concludes the whole paper. 

 
II MODELING AND SIMPLIFICATION  

A satellite is orbiting the Earth on a circular orbit and it is 

in an Earth-pointing three axis-stabilization mode as shown in 

Figure 1. The orbit frame is selected to be attitude reference 

frame which is defined as: z axis is in the nadir direction, y 

axis is in the negative orbit normal direction and x axis 



completes the right hand orthogonal system. The attitude 

angles of the satellite, yaw  , pitch  , roll  , are defined 

as the three Euler angles when the orbit frame rotates to the 

body frame by a 3-2-1 rotation sequence. The MSGMW is 

mounted as follows: the rotating direction of the rotor aligns 

with –y axis of the orbit frame and the wheel gimbals by small 

angles (no more than 2 degrees) in x and z axis and the 

gimballing angles are defined as   in x axis and   in z 

axis. The angular velocity of the body frame, namely the 

satellite angular velocity, with respect to the inertial frame, is 

defined as 
Bω , and the relative angular velocity of MSGMW 

with respect to the satellite body frame is defined as 
rω . Then 

the absolute angular velocity of MSGMW is: = +W B rω ω ω . 

The attitude kinematics equations of satellite and MSGMW 

are given in satellite body frame by: 
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According to the moment of momentum theorem, the 

coupled dynamic equation of satellite and MSGMW is given 

by 
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HH
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where, 
BH  is the angular momentum of satellite, 

WH  the 

angular momentum of MSGMW, 
dT  is the vector of external 

disturbance torques, 
ST , 

WT  
are the internal torques from 

MSGMW towards satellite and from satellite towards 

MSGMW respectively such that: 
W S= T T . 

In the satellite body frame, the momentums can be 

expressed in vector form as: 
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where, WSB
 

is the rotation matrix from rotor frame to 

satellite body frame. Substituting (3) into (2) yields 
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where,  B ω  is the adjoint matrix of vector 
Bω  defined as 

follows: 
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Fig. 1 Satellite Attitude and Movement of MSGMW 
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Since we are assuming that the attitude angles are all 

small, the kinemics equations can be simplified as: 

 

T
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 (5) 

Furthermore, assuming that both satellite and MSGMW 

are symmetric, then 

 
 
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S x y z
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diag I I I

diag J J J

   
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I

J
, (6) 

Substituting (5) and (6) into the kinematics and dynamics 

equations and simplifying the results yields the final 

simplified dynamics model. It is important to remark that the 

simplification process is reasonable and widely used in 

previous studies and engineering practice [1~6]. 
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where, y yH J   is the main angular momentum of 

MSGMW. 

 

III. CONTROL STRATEGY ANALYSIS 

From (7) it can be seen that the pitch axis is decoupled 

from the other two axes and hence it can be analyzed 

independently. We will there focus our analysis and discussion 

on the yaw and roll axis. Since the gimbal angles of MSGMW 

are also coupled as shown in (7), we need to introduce two 

virtual control variables Tcx , Tcz, as: 

 
0

0
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. (8) 

So, the dynamics model becomes: 

 
0

0

x y y cx dx
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The effectiveness of the virtual control variables Tcx, Tcz 

relies on tracking the desired gimbal angles integrated from 

Tcx, Tcz according to (8).  

In order to simplify the calculation procedure of desired 

gimbal angles of MSGMW, and considering the fact that 

x yJ H , the second-order terms in (8) can be ignored. So 

the desired gimbal angles will be calculated by: 
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It is very important to notice that the control bandwidth 

of MSGMW is generally above 10 KHz, which is 

considerably larger than that of the satellite attitude control 
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Fig. 2 Control Process Block Diagram 

loop – usually no more than 20 Hz. So we can take the gimbal 

tracking process as a gain that the MSGMW can track the 

desired angles immediately and accurately. As a result, the 

attitude control law can be designed independently. 
 

IV CONTROL LAW DESIGN 

Since the pitch is a SISO second-order integral loop and 

hence it is very easy to design the controller, so the main task 

of this paper is to design a robust controller for the other two 

axes.  

Select the state vectors as 
T

1 [ ] x , 
T

2 [ ] x , 

then the system state equation becomes: 
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where the real attitude angle and angular rate are measured by 

inertial sensors and gyros respectively. The first and second 

terms in the second equation of (11) represent the system 

dynamics while the third term is the control. The external 

disturbances are represented by the fourth term. 

The attitude error is given by: 

 
T

1 1r e e 
     e x x . (12) 

Before finalizing the controller design, the following 

assumptions are given: 

Assumption 1: There is a feedback error H  between 

the real momentum 
yH  and the measured one ˆ

yH , but the 

error is bounded as 

 ˆ
y y HH H   , (13) 

so, the induced error of matrix C  and K  is bounded as 

follows  
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then, the maximum eigenvalues of C  and K  are given by 
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Assumption 2: The disturbance is also bounded as 

 dd . (16) 

A Modified Nonlinear Integral Sliding Mode Function 

In order to enhance the performance of a traditional 

sliding mode controller, a modified nonlinear integral sliding 

mode function is introduced 

 
( )

( ) ( )
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



s e e σ e

σ e g e
, (17) 

where, 
T[ ]s s s , pk , 

Ik  are both positive 

constant and 
T( ) [ ( ) ( )]g e g e g e , the nonlinear function 

( )g   is defined as 

 ( ) sin( 2 )g
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.
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From (18), ( )g   has following characteristics: 

( ) 0g    
if and only if 0  ; when   , then ( )g   is 

a strictly monotone increasing function; when   , ( )g   

is saturated by   which is positive a constant. 

A curve of ( )g 
 

when 1   is given by Fig. 3. It is 

apparent that when  
 

the integral item in (17) will be 

slowed down by the saturation characteristic which would 

result in an improvement of the dynamic performance of the 

closed-loop system. 

B Control Law Design and Analysis 

The control law is given by Theorem 1 and the 

convergence of the proposed sliding function is proved by 

Theorem 2 as follows. 

 

 
Fig. 3 Integral saturation function ( )g   
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Theorem 1: For the system described by (11), if a sliding 

mode function is selected by (17) and the control law is 

designed with an exponential approaching law: 

 
1 2 1

ˆ ( , , )sat( , )c c s rt k   t t c x x s s Mx , (19) 

where,   
is the bounded value of the saturation function, 

and the equivalent control law 
ĉt  is given by 

 1 2
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and the switching gain matrix is 
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K C
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the system will then converge exponentially to sliding 

mode. 

Proof: The control law can be written as (22) when the 

system is outside the bounds. 

 1 2
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A Lyapunov function is selected as: 
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the time derivative of 
1V  is  
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It is very important to notice that the relation 

1 1max,


K
Kx x  is used above. So from (24), the system will 

reach the bounds exponentially. □ 

Define the sum of uncertain items in (11) as 
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Theorem 2 will prove that the system will converge to 

zero once inside the bounds. 

Theorem 2: For the system (11), the control law is given 

by Theorem 1, the attitude error will converge to zero 

lim ( ) 0
t

t


e  if the uncertain sum 
1 2( , , )tζ x x  is a constant or 

ultimate constant disturbance, namely lim ( )i i
t

t l
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constant, 1,2i  . 

Proof: The control law will be rewritten as (26) once the 

system reaches the bounds. 
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where, p  is Laplace operator and from Final-Value Theorem 
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So, when t  , ( ) 0is t  , namely 
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Another candidate Lyapunov function is  
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where the new function ( )G   is defined as 
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( )G  >0 if 0   and ( ) 0G    if and only if 0  . 

The derivative of ( )G   with respect to   is as same as(18). 

So 
2V  is a Lyapunov function and its time derivative is given 

by 
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which means that when t  , then ( ) 0is t  , so 
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according to (31). □ 

 
V. NUMERICAL SIMULATION 

In order to demonstrate the effectiveness and feasibility 

of the control law for the system, a numerical simulation is 

performed. The orbit angular velocity is 0 0.0011   and the 

inertial parameters of satellite are x zI I 2300kg m . The 

inertial parameters of MSGMW is given by 
20.02kg mx zJ J  , 

20.04kg myJ  , the rotating speed is 

given by 12000 2000rpm  , the maximum gimbal angle 

of MSGMW are 2.5° along both axes, and the nominal 

momentum of the MSGMW is 
0 25Nmsy yH J    which 

is used in the feedback control law in the roll and yaw axes. 

The real angular momentum is defined as `

025 4sin( )yH t  Nms. 

The control parameters in (19) are 10Pk  , 2Ik  , 

4H  , 0.001d  , 40sk  , 0.00005  , 0.5  , 

0.0006  .  

The initial attitude state and the disturbance torques are 



given by 
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In order to show the performance of the proposed 

MNISMC is better than the traditional ISMC, two numerical 

examples using MNISMC and traditional ISMC respectively 

are conducted simultaneously, where the system and control 

parameters are all same in two examples with the only 

difference that e  is used directly in the ISMC method 

instead of the nonlinear function ( )g e in the integral term of 

the MNISMC controller. 

 

  
(a) MNISMC (b) ISMC 

Fig. 4 Satellite attitude angles 

  
(a) MNISMC (b) ISMC 

Fig. 5  MSGMW gimbal angles 

  
(a) MNISMC (b) ISMC 

Fig. 6 Control torques 
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The simulation results are shown as Fig. 4 ~ Fig. 6. All 

the (a) parts in the figures are the results of the example using 

MNISMC and (b) parts are the ones using ISMC. 

By using MNISMC, from Fig. 4(a), the attitude angles 

are converged in 40s without large overshooting phenomenon 

which is no more than 0.1°in yaw channel. As for ISMC, the 

attitude angles are converged in 30s which is quicker than 

MNISMC, but the overshooting phenomenon is considerable 

in roll channel at the initial moment and reaches 0.2° in yaw 

channel. From the above analysis, the MNISMC has improved 

the performance of the attitude control system with the cost of 

increasing the convergence time. It is very important to note 

that the final state converges to zero and there is no chattering 

phenomenon by taking advantages of the modification of the 

controller and the bound layer of the sliding function. 

Fig. 5 gives the change process of deflection angles of 

MSGMW under both cases. In the MNISMC case, the 

deflection angles are no more than 0.5°. As for ISMC case, 

the maximum deflection angle increases to 0.6°. So the fast 

convergence process of ISMC is obtained by aggravating the 

movement of MSGMW which can also be seen in Fig. 6 

which illustrates the control torques. From Fig. 6, the 

saturation arises in the ISMC case, but there is no saturation 

phenomenon in the MNISMC case. 

By this token, under the same system and control 

parameters, the MNISMC method can reduce the 

overshooting, improve the control torque output and avoid the 

saturation with the price of long convergence time. 

 

VI CONCLUSIONS 

The attitude stabilization problem for satellite using only 

one MSGMW is studied in this paper. The coupled dynamic 

model of satellite and MSGMW is established firstly and 

simplified according to engineering practices. A modified 

nonlinear integral sliding mode control has been employed for 

the satellite attitude stabilization problem involving the 

momentum uncertainty and external disturbance by using only 

one MSGMW. This control method can improve the dynamic 

performance, reduce the steady state error and avoid the 

chattering phenomenon. The convergence characteristics are 

demonstrated by Lyapunov theory. A numerical simulation 

example is employed to show the effectiveness and superiority 

the proposed controller with respect to the traditional 

integrated sliding mode controller. 
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