78 research outputs found

    A programmable, multi-format photonic transceiver platform enabling flexible optical networks

    Get PDF
    Development of programmable photonic devices for future flexible optical networks is ongoing. To this end, an innovative, multi-format QAM transmitter design is presented. It comprises a segmented-electrode InP IQ-MZM to be fabricated in InP, which can be directly driven by low-power CMOS logic. Arbitrary optical QAM format generation is made possible using only binary electrical signals, without the need for high-performance DACs and high-swing linear drivers. The concept enables a host of Tx-side DSP functionality, including the spectral shaping needed for Nyquist-WDM system concepts. In addition, we report on the development of an optical channel MUX/DEMUX, based on arrays of microresonator filters with reconfigurable bandwidths and center wavelengths. The device is intended for operation with multi-format flexible transceivers, enabling Dense (D)WDM superchannel aggregation and arbitrary spectral slicing in the context of a flexible grid environment

    Microcomb-driven silicon photonic systems

    Get PDF
    Microcombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology1-4. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner5-7, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator microcomb source to drive complementary metal-oxide-semiconductor SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Bidirectional wavelength-division multiplexing transmission over installed fibre using a simplified optical coherent access transceiver

    Get PDF
    High-speed broadband services require optical fibres in access networks, in which multiple subscribers are connected to service providers, to satisfy the continuously growing bandwidth demand. The primitive signaling scheme used in access networks enables the use of low-cost equipment but diminishes the bandwidth available to end-users. Thus, current technology will be unable to support future broadband demands. Coherent communication systems offer significantly improved power- and bandwidth-efficiency, but require fundamental simplifications to become economically viable for access networks. Here, we demonstrate a promising simplified coherent receiver exhibiting a robust performance against polarisation fluctuations over an installed fibre network. It enables the realisation of high-order modulation formats and offers high sensitivities, achieving a four-fold increase in the supported number of subscribers and approximately doubling the transmission distance compared to the recently standardized access technology. The proposed solution indicates that digital coherent technology can be feasible and transform the access networks, enabling ubiquitous new services and applications with uncontended, multi-gigabits/user broadband connections.This work was supported by the EPSRC Programme Grant UNLOC EP/J017582/1, and EP/J008842/1. Dr. Domaniç Lavery thanks the Royal Academy of Engineering under the Research Fellowships scheme for funding his fellowship. We also wish to acknowledge Dr. Will Yang and the EPSRC National Dark Fibre Infrastructure Service (NDFIS) NS/A000021/1 for providing access to the Aurora2 dark fibre network. We would like to thank Arın Lavery for his contribution to Fig.1

    Design of zigbee transceiver for IEEE 802.15.4 using matlab/simulink

    Get PDF
    ZigBee technology was developed for a wireless personal area networks (PAN), aimed at control and military applications with low data rate and low power consumption. This thesis is mainly focusing on development of Matlab/Simulink model for ZigBee transceiver at physical layer using IEEE 802.15.4. ZigBee is a low-cost, low-power, wireless mesh networking standard. First, the low cost allows the technology to be widely deployed in wireless control and monitoring applications. Second, the low power-usage allows longer life with smaller batteries. Third, the mesh networking provides high reliability and more extensive range. The work presented here is to show how we can implement ZigBee transceiver with its specifications by using Matlab/simulink, without using complex mathematical blocks. A ZigBee chip can tested and prepared by shifting the whole work from matlab environment to cadance environment. This can be done by HDL languages like Verilog HDL. Here, Minimum Shift Keying (MSK) modulation technique is described, an analysis of which shows that the theoretical maximum bandwidth efficiency of MSK is 2 bits/s/Hz which is same as for Quadrature Phase Shift Keying (QPSK) and Offset Quadrature Phase Shift Keying (Offset QPSK). The implementation clearly confirms the viability of theoritical approach. Results show that OQPSK modulation with half sine pulse shaping is perfectly employed ZigBee technology

    Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation

    Get PDF
    abstract: The demand for the higher data rate in the wireless telecommunication is increasing rapidly. Providing higher data rate in cellular telecommunication systems is limited because of the limited physical resources such as telecommunication frequency channels. Besides, interference with the other users and self-interference signal in the receiver are the other challenges in increasing the bandwidth of the wireless telecommunication system. Full duplex wireless communication transmits and receives at the same time and the same frequency which was assumed impossible in the conventional wireless communication systems. Full duplex wireless communication, compared to the conventional wireless communication, doubles the channel efficiency and bandwidth. In addition, full duplex wireless communication system simplifies the reusing of the radio resources in small cells to eliminate the backhaul problem and simplifies the management of the spectrum. Finally, the full duplex telecommunication system reduces the costs of future wireless communication systems. The main challenge in the full duplex wireless is the self-interference signal at the receiver which is very large compared to the receiver noise floor and it degrades the receiver performance significantly. In this dissertation, different techniques for the antenna interface and self-interference cancellation are proposed for the wireless full duplex transceiver. These techniques are designed and implemented on CMOS technology. The measurement results show that the full duplex wireless is possible for the short range and cellular wireless communication systems.Dissertation/ThesisDoctoral Dissertation Engineering 201

    Terabit-Rate Transmission Using Optical Frequency Comb Sources

    Get PDF
    Energy-efficient Tbit/s optical interconnects are key elements for future communication systems. Three novel optical frequency comb sources are investigated, which have the potential of being integrated in chip-scale Tbit/s transmitters. Such frequency combs provide a large number of carriers. The equidistance of the comb lines helps to minimize spectral guard bands. For each type of comb source, coherent data transmission experiments show the potential for Tbit/s data transmission rates
    corecore