1,880 research outputs found

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    OPTIMAL DESIGN AND STRESS/STRAIN ANALYSIS OF WIND TURBINE BLADE FOR OPTIMUM PERFORMANCE IN ENERGY GENERATION VIA SIMULATION APPROACH

    Get PDF
    The blade is a significant part of a wind turbine, due to its role in the conversion process of the wind energy into mechanical energy. The blade during operation is being acted upon by different forces and pressures on high humidity, which gives rise to a high rate of failure of the blade. There is a great need to study these forces and constraints on the design shape of the material blade via a simulation approach. This research focusses on the optimal design and stress/strain analysis of a wind turbine blade for sustainable power generation. This is to enable the manufacturer and end-users of the wind turbine blade to understand how the blade material withstand the forces and pressures acting on the blade during operation in the form of displacement, stress, and strain in high humidity. The design and simulation software employed in this study is Solid Works Visualize 2018. The wind turbine blade is made of AL6061 alloy material. The blade is simulated under two forces, 1 N and 5 N, with the pressure at zero degree. The result from this analysis shows the maximum stress that causes the blade to experience failure during operation, and this failure occurs at 285.377 N/m^2 and 1426.83 N/m^2, respectively. The result from the simulation analysis shows the specific area were the deformation process, and possible failure will occur on the blades. This paper also gives reasonable suggestion for reinforcement of the wind blade during the maintainer's section, which can be applied to achieve optimum performance of the wind turbine blade

    Mechanical design and fluid analysis of a vertical-axis wind turbine "TRIBINE"

    Get PDF
    Purpose of the final project is to design a wind turbine with an artistic view, choose proper wind turbine axis and comparison of them. The chosen wind turbine should be manufacturable, eco friendly and innovative. After the wind turbine blade selection, flow simulations were done by Solidworks

    State-of-the-art in development of diffuser augmented wind turbines (DAWT) for sustainable buildings

    Get PDF
    In this paper, a review of the development of Diffuser Augmented Wind Turbines (DAWT’s) into the Built Environment has been presented. DAWT’s offer a lot of potential as electricity providers in areas where it is needed, such as in the built environment. Research into DAWT’s has revealed that flow along a building significantly affects inlet conditions to the rotor due to flow separation at the leading edge. Adjusting the area ratio, length/diameter ratio as well as diffuser design can improve the performance of the free-standing DAWT significantly. Placing the turbine at the centre of a roof is found to allow the best wind conditions to the wind turbine. It was found that a turbine can be placed at a height 1.3 times the height of a small building for the best results. It has been found that vaulted roof’s encourage acceleration of air flow better than other topologies. Furthermore, a recent approach to building-integrated wind turbines involves a flow-enhancing architectural design for buildings to improve favourable inlet conditions to a DAWT

    Smart composite wind turbine blades - a pilot study

    Get PDF
    Wind energy is seen as a viable alternative energy option to meet future energy demands. The blades of wind turbines have been long recognised as the most critical component of the wind turbine system. The turbine blades interact with the wind flow to turn the wind turbine, in effect acting s a tool to extract the wind energy and turn it into electrical energy. As the wind industry continues to explore new technologies, the turbine blade is a key aspect of better wind turbine designs. Harnessing greater wind power requires larger swept areas. Increasing the length of the turbine blades increases the swept area of a wind turbine, thereby improving the production of wind energy. However, longer turbine blades significantly add to the weight of the turbine, and they also suffer from larger bending deflections due to flapwise loads. The flapwise bending deflections not only result in a lower performance of electrical power generation but also increase in material degradation due to high fatigue loads and can significantly shorten the longevity for the turbine blade. To overcome this excessive flapwise deflection, it is proposed that shape memory alloy (SMA) wires be used to return the turbine blade back to its optimal operational shape. The work presented here details the analytical and experimental work that was carried out to minimise blade flapping deflection using SMA. This study proposes a way to overcome the wind blade deflection using shape memory alloy (SMA) wires. A �finite element model has been developed for the simulation of the deflection response of a horizontal axis wind turbine blade using an SMA wire arrangement. The model was developed on the commercial finite element ABAQUSR, and focused on design and analysis, to predict the structural response. Experimental work was carried out to investigate the feasibility of the model based on a plate-like structure. An Artificial Neural Network (ANN) was used to predict the performance of the smart wind turbine blades. From this study, the model of a smart wind turbine, incorporating SMA wires, was determined to be capable of recovering from large deflections. The coefficient of performance of the smart wind turbine blade was also determined to be higher than the coefficient for a conventional turbine blade. The results showed that by increasing the number of SMA wires, the actuation provided is sufficient to recover from signifi�cant blade deflection resulting in a signifi�cant increase in the lift produced by the blade. It was determined that the coefficient of performance for turbine blades with SMA wires is 0.45 compared to 0.42 for turbine blades without SMA. These fi�ndings will be a signifi�cant achievement in the development of a smart wind turbine blade. It is expected that the use of smart wind turbine blades, incorporating SMA in their design, will not only increase the power output of the wind turbine but also prolong the lifetime of the turbine blade itself through a reduction of the bending deflections

    Correction of Errors During The Manufacture by Computer Numerical Control (CNC) of Blades for an Axial Hydrokinetic Turbine

    Get PDF
    The design and manufacture of new systems for providing electric power to non-interconnected areas is one of the challenges for engineering. There are several alternatives, including water or wind-power generation systems, where hydrokinetic turbines are highlighted. This work establishes the methodology, identification and correction of errors generated during the manufacture by machining, using CAD/CAPP/CAM techniques, for an axial hydrokinetic turbine. During the manufacturing process, the generation of an error on the edges of the blades was identified, which was attributed to problems in the design of the model since the degrees of freedom of the manufacturing system used were not considered. For the manufacture of complex surfaces in the design of models, the most extreme points of the surfaces in contact must match the tangent edges to ensure that the tools of machining can reach them with the trajectories generated from the CAM

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977
    • …
    corecore