

University of Southern Queensland Faculty of Health, Engineering and Sciences

Smart Composite Wind Turbine Blades - A Pilot Study

A Dissertation Submitted by

Eris Elianddy Supeni, B.Eng.(Hons), M.Sc.(Mech. Eng.)

For the Award of

Doctor of Philosophy

2015

Abstract

Wind energy is seen as a viable alternative energy option to meet future energy demands. The blades of wind turbines have been long recognised as the most critical component of the wind turbine system. The turbine blades interact with the wind flow to turn the wind turbine, in effect acting as a tool to extract the wind energy and turn it into electrical energy.

As the wind industry continues to explore new technologies, the turbine blade is a key aspect of better wind turbine designs. Harnessing greater wind power requires larger swept areas. Increasing the length of the turbine blades increases the swept area of a wind turbine, thereby improving the production of wind energy. However, longer turbine blades significantly add to the weight of the turbine, and they also suffer from larger bending deflections due to flapwise loads. The flapwise bending deflections not only result in a lower performance of electrical power generation but also increase in material degradation due to high fatigue loads and can significantly shorten the longevity for the turbine blade.

To overcome this excessive flapwise deflection, it is proposed that shape memory alloy (SMA) wires be used to return the turbine blade back to its optimal operational shape. The work presented here details the analytical and experimental work that was carried out to minimise blade flapping deflection using SMA.

This study proposes a way to overcome the wind blade deflection using shape memory alloy (SMA) wires. A finite element model has been developed for the

Abstract

simulation of the deflection response of a horizontal axis wind turbine blade using an SMA wire arrangement. The model was developed on the commercial finite element ABAQUS[®], and focused on design and analysis, to predict the structural response. Experimental work was carried out to investigate the feasibility of the model based on a plate-like structure. An Artificial Neural Network (ANN) was used to predict the performance of the smart wind turbine blades.

From this study, the model of a smart wind turbine, incorporating SMA wires, was determined to be capable of recovering from large deflections. The coefficient of performance of the smart wind turbine blade was also determined to be higher than the coefficient for a conventional turbine blade. The results showed that by increasing the number of SMA wires, the actuation provided is sufficient to recover from significant blade deflection resulting in a significant increase in the lift produced by the blade. It was determined that the coefficient of performance for turbine blades with SMA wires is 0.45 compared to 0.42 for turbine blades without SMA. These findings will be a significant achievement in the development of a smart wind turbine blade.

It is expected that the use of smart wind turbine blades, incorporating SMA in their design, will not only increase the power output of the wind turbine but also prolong the lifetime of the turbine blade itself through a reduction of the bending deflections.

List of Publications Arising from this Study

Most of the discussion and results presented in the thesis are based on the following publications. Several passages in this thesis contain materials that have been copied verbatim, or with some adaptation, from thesis publications. All such copied materials were originally written by myself.

- (i) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Smart Structure for Small Wind Turbine Blades", *The* 4th *International Conference on Smart Materials and Nanotechnology in Engineering (SMN2013)*, Hotel Grand Chancellor Surfer Paradise, Gold Coast, Queensland, Australia, Volume 8793, pp1–10, 10–12 July 2013, Society of Photo-Optical Instrumentation Engineers (SPIE) http://dx.doi.org/10.1117/12.2027725
- (ii) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Genetic Algorithm Based for Artificial Neural Network for Predicting the Deflection of Self-Straightening Wind Turbine Blade", *The 3rd Malaysian Postgraduate Conference (MPC2013)* Sydney, New South Wales, Australia, MPC2013–27, pp233–242, 3–4 July 2013
- (iii) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Development of Smart Wind Turbine Blades", The 8th Asian-Australasian Conference on Composite Materials (AACM8), Petronas Kuala Lumpur Convention Centre,

List of Publications Arising from this Study

Malaysia (KLCC), Kuala Lumpur, Malaysia, pp199–205, 6–8 November 2012, http://eprints.usq.edu.au/id/eprint/22295

- (iv) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Design of Smart Structures for Wind Turbine Blades", *The 2nd Malaysian Postgraduate Conference (MPC2012)*, Bond University, Gold Coast, Queensland, Australia, pp20–36, 7–9 July 2012, http://eprints.usq.edu.au/21673
- (v) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Design and Analysis of a Smart Composite Beam for Small Wind Turbine Blade Construction", *The Southern Region Engineering Conference (SREC)*, USQ, Toowoomba, Australia, 1 September 2012
- (vi) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Smart Structure Wind Blade", Fibre-Reinforced Composites Development and Applications in Renewable Energy Workshop, Composites Australia, USQ Toowoomba, Queensland, Australia, 4 June 2012
- (vii) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Development of Smart Wind Turbine Blades", *Engaged Research Evening Posters*, Toowoomba, Queensland, Australia, 26 April 2012
- (viii) Supeni E.E., Epaarachchi J.A., Islam M.M. and Lau K.T., "Development of Artificial Neural Network in Predicting Performance of the Smart Wind Turbine Blade", Journal of Mechanical Engineering and Sciences (JMES), ISSN (Print): 2289-4659; e-ISSN: 2231-8380; Volume 6, pp. 734-744, June 2014

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged. The work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

ERIS ELIANDDY SUPENI, B.ENG.(HONS), M.SC.(MECH. ENG.) W0106520

Signature of Candidate

Date

ENDORSEMENT

Supervisory Team

Dr. Jayantha A. Epaarachchi Signature of Principal Supervisor

Date

Prof. Dr. Alan Kin-tak Lau Signature of Associate Supervisor Dr. Md. Mainul Islam Signature of Associate Supervisor

Date

Date

Acknowledgments

I would like to thank Dr. Jayantha Epaarachchi, who served as a supervisor of my thesis committee and as my advisor for the last three years. He has been there for me through thick and thin; we have had long conversations about school and research. I consider him a great advisor, an excellent mentor, and a caring friend. I also want to thank Dr. Md. Mainul Islam and Prof. Alan Kin-tak Lau for serving on my committee and for offering their knowledge through meetings and words of encouragement throughout my time at USQ. I thank my fellow Dr. Gayan, Dr. Hafizi, Dr. Muhamad, Dr. Zamir, Wayne, Martin, Dr. Salahudin, Anthony and CEEFC USQ Australia members for their support, and last but not least the Malaysian Government Scholarships. Not forgotten, thank God Almighty, who has given me strength and energy for my daily life. Special thanks also go to my parents, Supeni, Norhanah, late Mohd Yusoff and Mariam, who have always praised me when I was doing well and offered support and motivation when I was down. I must also thank my wife, Yusmaria, for always standing by my side and keeping me focused during times of stress and distraction. My children Nazmeen, Nazim and Nuha, who provided me with unconditional advice and love. Finally, I wish to thank a group of people whom I never met, but I have widely used their products, the ABAQUS/CAE team, MATLAB team, LATEX group, WinEdt, TeXstudio, among others, who provide free-open source software package to the community.

ERIS ELIANDDY SUPENI, B.ENG. (HONS), M.SC. (MECH. ENG.)

University of Southern Queensland

22 July 2015

Contents

Abstract	i
List of Publications Arising from this Study	iii
Acknowledgments	vi
List of Figures	xv
List of Tables	xxv
Notation	xxvii
Acronyms & Abbreviations	xxix
Chapter 1 Introduction	1
1.1 Background and Significance	3
1.2 Problem Statement	4
1.3 Objectives of the Project	6

CONTENTS viii		
1.4	Research Gap and Innovation	7
1.5	Organisation of the Thesis	9
Chapt	er 2 Literature Review	11
2.1	Introduction	11
	2.1.1 History of Wind Turbines	11
2.2	Wind Turbine Blade Geometry	15
2.3	Modern Wind Turbines	20
2.4	Identification of Parameters for Efficiency Improvements	22
2.5	Smart Materials	25
2.6	Shape Memory Alloy (SMA)	26
2.7	Characterisation of SMA for Smart Wind Turbine Blades	33
	2.7.1 Shape Memory Alloy Behaviour	35
	2.7.2 Superelastic Behaviour of SMA	35
	2.7.3 Macroscopic Behaviours of SMA	37
	2.7.4 Microscopic Behaviours of SMA	41
	2.7.5 Factors Affecting the Effectiveness of SMA	42
2.8	Design of General Mechanism for a Wind Turbine Blades with SMA	A 45
2.9	Proposed Use of SMA	48

ONTENIS	IX
2.10 Analysis of the Structural Performance of Wind Turbine Blades $$.	48
2.10.1 Aerodynamics	48
2.10.2 The Blade Element Theory (BET) $\ldots \ldots \ldots$	54
2.10.3 The Actuator Disk Theory	56
2.10.4 The Panel Code Method	61
2.11 Design Analysis	64
2.12 Wind Turbine Blade Fatigue Loads	69
2.13 Structural Analysis of a Wind Turbine Blade	71
2.13.1 Considering the Blade as a Structural Beam	71
2.13.2 Gravitational and Centrifugal Loads	74
2.13.3 Internal Beam Structure	76
2.13.4 Laminate Configuration	77
2.13.5 Wind Turbine Blade's Shell	80
2.13.6 Wind Turbine Blade Root Design	81
2.13.7 Stiffness of Wind Turbine Blade	82
2.14 Performance Analysis	83
2.15 Wind Turbine Blade Structure	86
2.16 Recovery of Wind Blade Deflection	87
2.17 Proposed Conceptual Model	89

CONT	ENTS	x
2.18	Summary of Literature Review	92
Chapt	er 3 FEA Model and ANN Model Development	93
3.1	Introduction	93
3.2	Finite Element Model Development	94
	3.2.1 FEA Modelling	96
	3.2.2 Preliminary Study of a Graded Plate	99
3.3	Types of Elements	100
	3.3.1 Continuum Shell Elements (SC8R)	100
	3.3.2 Conventional Shell Elements (S4R)	101
	3.3.3 Truss Element (T3D2) \ldots \ldots \ldots \ldots \ldots	101
3.4	Types of Interactions and Boundary Conditions	102
	3.4.1 Constraint 1	102
	3.4.2 Constraint 2	103
	3.4.3 Modelling Discretisation	103
	3.4.4 Creating Composite Layup and Defining Material Properties	s104
	3.4.5 Creating SMA and Defining Properties	105
3.5	ANN Model Development	107
3.6	Performance Criteria	113

CONT	ENTS	1 0 	xi
	3.6.1	Multi-Back Propagation (MBP)	114
	3.6.2	Non-Linear Auto-Regressive with Exogenous	
		(NARX) Input	114
3.7	Summ	nary of FEA Model and ANN	
	Develo	opment	116
Chapt	er 4 H	Experimental Setup	117
4.1	Introd	luction	117
4.2	Specir	nen Fabrication	117
	4.2.1	Preparation of the Epoxy Resin	119
4.3	Invest	igation of SMA Wires Transition Using DSC	119
4.4	Calibr	cation of SMA Wires Attached to a Plate-Like Structure	123
4.5	Deflec	tion Test for a GFRP Plate	124
4.6	Exper	imental Setup Arrangement	124
4.7	Summ	nary of the Experimental Setup	128
Chapt	er 5 I	Results and Discussion	130
-			
5.1	Introd	luction	130
5.2	Chara	acterisation of the GFRP	130
5.3	Thern	no-Mechanical Behaviour of an SMA Wire	132
5.4	Calibr	cation of an SMA Wire	133

CONTENTS

ONT	ENTS	xii
5.5	Deflection Test	136
5.6	Deflection of the Graded Beam	137
5.7	Tuning FEA for Large Deflection of the	
	Model	140
5.8	Tuning-Up ANN	142
5.9	Prediction of ANN	143
5.10	Development of ANN 1	144
	5.10.1 Predicting the Number of SMA Wires (NW) using Load	
	(L), Current (I) and Deflection (d) as the Input Vector $\ . \ .$	144
5.11	Development of ANN 2	150
	5.11.1 Predicting Current (I) using Load (L), the Number of SMA	
	Wires (NW) and Deflection (d) as the Input Vector $\ . \ . \ .$	150
5.12	Development of ANN 3	154
	5.12.1 Predicting Deflection using Load (L), the Number of SMA	
	Wires (NW) and Current (I) as the Input Vector $\ . \ . \ .$.	154
5.13	Implementing Robustness Testing	158
5.14	Specification of Specimen	159
5.15	Preliminary Study: Use of the SMA Mechanism	160
	5.15.1 Embedded SMA Wires	160
	5.15.2 Suspended SMA Wires	166

CONT	ENTS	xiii
5.16	Deflection and Load Relationship	172
5.17	SMA Wires Arrangement	175
5.18	Results of Parametric Studies	175
	5.18.1 Effect of Anchoring Heights in 300 mm plate	175
	5.18.2~ Effect of the Number of SMA Wires in the 300 mm plate .	179
	5.18.3 Effect of Heat Sleeving	181
	5.18.4 Smart Wind Blade Deflection for Stress Recovery	183
	5.18.5 Stress Recovery of SMA Wires in 1000 mm plate	183
	5.18.6 Effect of the Number of SMA Wires for Stress	
	Recovery	186
5.19	Comparison of Power Performance	188
5.20	Summary of the Results	191
Chapte	er 6 Conclusions and Further Work	193
6.1	Conclusions	193
6.2	Limitations of the Study	195
6.3	Further Work	196
Refere	nces	198
Appen	dix A Mechanical Properties of Specimens of SMA	212

CONTENTS		xiv
Appendix B	Mechanical Specification of GFRP Specimens	225
Appendix C	Test Rig Design	235
Appendix D	DC Power 1 Supply Unit	238
Appendix E	DC Power 2 Supply Unit	240
Appendix F	Kinetix Laminating/R240 High Performance	242
Appendix G	Data for ANN	245
Appendix H	Dynalloy Inc. Invoice & Test Rig Approval	250
Appendix I	Performance Coefficient M-File	253
Appendix J and 60 m	Tip deflection against current at various load at 40, 5 m	0 256
Appendix K	Effect of Heat Sleeving	260
Appendix L	Script M-file for ANN 1, ANN 2 and ANN 3	262
Appendix M	Running ANN Model Simulation	268

List of Figures

1.1	Australian Renewable Energy Target: 20 % by 2020 (ACEC 2012b)	2
1.2	Renewable capacity installed since 2001 (ACEC 2012 <i>a</i>)	2
1.3	Innovative approach of the smart structure in a wind turbine blade	10
2.1	Types of wind turbine - from left, Savonius, Darrieus and H-Rotor (Sandra et al. 2008)	14
2.2	Flatback development	16
2.3	Controlling smart blades using piezoelectric	17
2.4	Smart blade concept (Bak et al. 2007)	19
2.5	Bend-twist coupling, aileron, changing shape and microtab (Barlas & Kuik 2007)	20
2.6	Various types of mechanism for smart materials (Leo 2007)	25
2.7	Example SMA application in Variable Geometry Chevron (VGC) for Boeing 777 (Hartl & Lagoudas 2007)	30
2.8	Application of SMAs to an automatic oil-level-adjustment device for the Shinkansen bullet train (Otsuka & Kakeshita 2002)	31

LIST	IST OF FIGURES		xvi
2	.9	Corvette's heat-activated smart material (Auto 2013) $\ldots \ldots$	32
2	2.10	Actuation stress-strain of selected SMA (Lagoudas 2008) $\ . \ . \ .$	34
2	2.11	Actuation frequency diagram of different active materials (Lagoudas 2008)	34
2	2.12	(a) Stress-strain curve of SME and (b) SE	36
2	2.13	General SMA mechanism	37
2	2.14	Phase diagram of a NiTi alloy in which the phase equilibrium is between 49.5–57 % nickel by atomic weight percentage (Otsuka & Ren 2005)	38
2	2.15	SMA stress-strain (Otsuka & Ren 2005)	39
2	2.16	Martensite crystal structure (Volk & Lagoudas 2005) $\ . \ . \ . \ .$	41
2	2.17	Austenite lattice crystalline structure	42
2	2.18	Schematic mechanism diagram of SMA actuators combined with a spring (Sun et al. 2012)	47
2	2.19	Major systems and components of a horizontal-axis wind turbine (EWEA 2006)	50
2	2.20	Thick airfoil shape of A1 series family (Dahl et al. 1999) \ldots	52
2	2.21	Diagram of a wind turbine blade sectioned into individual blade elements. The rotor angular velocity is Ω ; r is the radius of the section, dr is the differential section thickness, and c is the section chord length. The lift, F_L and drag, F_D forces are found for every	
		airfoil section (Eggleston & Stoddard 1987)	54

ST C	OF FIGURES	xvii
2.22	Apparent flow velocity at radius r (Eggleston & Stoddard 1987) $% \left({{\rm{B}}_{\rm{B}}} \right)$.	55
2.23	The energy extracting stream-tube of a wind turbine (Burton	
	et al. 2011)	56
2.24	Wind turbine illustration: actuator disk model; U, mean velocity;	
	1, 2, 3 and 4 indicate locations (Eggleston & Stoddard 1987) \ldots	57
2.25	Panelling code direction (Hess & Year 1990)	62
2.26	Airfoil replaced by N line vortices (Hess & Year 1990)	63
2.27	Typical cross section of wind turbine blade (Sorensen et al. 2004)	64
2.28	Girder box showing laminate, sandwich, adhesive bonds (Sorensen	
	et al. 2004)	65
2.29	Direction of laminates (Sorensen et al. 2004)	65
2.30	Airfoil characteristics wind turbine (Pozrikidis 2009)	66
2.31	Design parameters (Eggleston & Stoddard 1987)	67
2.32	Optimum tip speed ratios for wind turbine systems (Hau 2006)	68
2.33	Wind turbine loading regime (Sutherland 1996)	69
2.34	Typical wind turbine blade cross-section (Sorensen et al. 2004)	70
2.35	Bending moment and shear force against radius in a large turbine	
	blade (Burton et al. 2001) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	72
2.36	Blade load (sketch view) (Peter & Richard 2012)	73
2.37	Inertial forces acting on a wind turbine blade (schematic view)	
	(Eapaarachchi 2002)	73

LIST (OF FIGURES x	viii
2.38	Bending moment against radius in a large turbine blade (Nolet 2011)) 74
2.39	Internal structure described in I-beam (Burton et al. 2011) $\ . \ . \ .$	76
2.40	Shearing and reinforcement of a simple frame concept (Burton	
	et al. 2011)	78
2.41	Extended framework with shear reinforcement (Burton et al. 2011)	79
2.42	Blade bending phenomenon (Burton et al. 2011)	83
2.43	Power coefficient curves for the three different wind turbine types (Sandra et al. 2008)	84
2.44	Growth of commercial wind technology (EWEA 2009)	85
2.45	Example of ply drop off in composite materials (Trethewey et al. 1990)) 86
2.46	Material specimen preparation (Cairns et al. 1997)	87
2.47	Illustration of the structural model of a three-bladed free body diagram (Larsen et al. 2004)	88
2.48	Illustration of pitch moment contributions from blade loads in the deflected location (Larsen et al. 2004)	88
2.49	Modern wind turbine blade assembly (Petersen & Davis 2011) $$	90
2.50	Conceptual design of plate-like structure (Petersen & Davis 2011)	91
2.51	A cross section of a GFRP blade. The blade stretched over a composite frame (light grey) and central spar (yellow and green) (Petersen & Davis 2011)	91
3.1	Schematic diagram of the model (side view)	98

\mathbf{LI}	LIST OF FIGURES xi		
	3.2	Suspended SMA of 1 wire and the GFRP which have undergone a	
		meshing process	98
	3.3	Graphical model representation with plies configuration orientation	101
	3.4	Differences between conventional and continuum shell elements	
		(Simulia 2012)	102
	3.5	MPC implemented between the SMA wires and the GFRP plate	
		$(end section view) \ldots \ldots$	104
	3.6	Sketching part of the plate	105
	3.7	Sketching part of the wire	106
	3.8	The orientation of the angle between the SMA wire and the GFRP	
		plate in the side view angle	106
	3.9	Biological diagram of a neuron	108
	3.10	Artificial neuron diagram	111
	3.11	Graphical representation of the MBP network	114
	3.12	Graphical representation of NARX network	115
	4.1	Photograph of specimen preparation	118
	4.2	Photograph of DSC test equipment and the SMA specimen used .	121
	4.3	DSC curve for 0.50 mm diameter NiTi	122
	4.4	Photograph of the calibration setup for SMA	123
	4.5	Experimental setup arrangement with the test rig	125

4.6	Schematic operating principle	126
4.7	Schematic diagram of SMA wires arrangement	126
4.8	Photograph of experimental setup and values reading of the power supply in series mode driven when is current is activated (insert picture)	127
4.9	Photograph of the tip deflection (a) before heating (b) after heating (section view)	127
4.10	Schematic diagram of the experimental setup	128
5.1	Tensile test setup with measurement of longitudinal and transverse strains by a contact extensometer	131
5.2	Stress-strain response as a function of temperature for the SMA wire. All tests were performed on as-received.	132
5.3	Calibration test curve	133
5.4	Calibration test and heat sleeve/non-heat sleeve test	134
5.5	Load test of 0.5 mm SMA between relaxation and contraction $~$	135
5.6	Load-deflection curves for Flexinol 90	136
5.7	Graphical model representation with part of the assembly layout .	137
5.8	Graded beam specimen representing plies drop off imitation \ldots	137
5.9	Graphical model representation with number of plies configuration (top view)	138
5.10	Deflection pattern profile for the whole graded beam	139

 $\mathbf{x}\mathbf{x}$

LIST	ΓС	OF FIGURES	xxi
5.	.11	Comparison of vertical deflection of GFRP (with EPS/without	
		EPS) between FEA and experiment	139
5.	.12	Deflection contour S4R of the GFRP plate	140
5.	.13	Deflection contour of SC8R of the GFRP plate	141
5.	.14	Schematic diagram representation for model ANN 1	144
5.	.15	Example of NARX network with 10 hidden layers and 2 delay time	
		by MATLAB	145
5.	.16	Example of MBP diagram network with 50-40 hidden layers $\ . \ .$	145
5.	.17	Best performance curve for ANN 1	146
5.	.18	The networks performance for ANN 1	147
5.	.19	Error histogram of the NARX prediction model for ANN 1	148
5.	.20	Response of NARX model for output deflection for ANN 1 by	
-	-	MATLAB [®]	149
5.	.21	The deflection output and network output for ANN 1 by MBP	149
5.	.22	Schematic diagram for model ANN 2	150
5.	.23	Best performance curve for ANN 2	151
5.	.24	Error histogram of the NARX prediction model for ANN 2	152
5.	.25	The networks performance for ANN 2	153
5.	.26	NARX prediction model for performance for ANN 2	153
5.	.27	Schematic diagram for model ANN 3	154

ST C	OF FIGURES	xxii
5.28	Best performance curve for ANN 3	155
5.29	Error histogram of the NARX prediction model for ANN 3	156
5.30	The regression analysis for ANN 3	157
5.31	Response of the NARX prediction model for performance for ANN 3	3158
5.32	Schematic ply configuration of the actual blade	159
5.33	Embedded SMA fabrication	160
5.34	Schematic diagram of embedded SMA wires	162
5.35	Photograph preliminary study setup for embedded SMA and suspended SMA	163
5.36	Heating and cooling curves of the SMA mechanism design $\ . \ . \ .$	164
5.37	Photograph of the specimen embedded SMA wires fabrication	165
5.38	Photograph showing that delamination occurred along the embed- ded SMA wires	166
5.39	Photograph of preliminary suspended SMA wires	167
5.40	Comparison of suspended SMA wires under deflection testing with different numbers of SMA wires at specific heights	168
5.41	Response time of suspended wire	169
5.42	Tips deflection with different number of SMA wires under variable load at specific height	170
5.43	Current and voltage curves at specific height	171

ST C	OF FIGURES xxiii
5.44	Simulation of smart wind blade model
5.45	Calibration of the smart wind blade model under deflection 174
5.46	Tip deflection against current at different anchoring heights 176
5.47	Tip deflection against current at various load at 30 mm height, respectively
5.48	Tip deflection against current at different number of SMA Wires . 180
5.49	Effect of heat sleeving and without heat sleeving at $s1=366.8$ g, $s2=460.1$ g, $s3=576.8$ g, $s4=716.3$ g and $s5=1016.7$ g for 2 SMA wire182
5.50	Deflection and alleviation response of the smart blade
5.51	Simulation of the smart blade under deformation and stress recovery 184
5.52	Stress of the blade under deflection for 1000 mm
5.53	Strain under deflection - the blade under deflection for 1000 $\rm mm$. 186
5.54	Voltage and current curve for 1000 mm specimen
5.55	Deflection curve for 1000 mm specimen
5.56	Voltage and current curve for 1000 mm specimen
5.57	C_{p} - λ performance curve for a modern three-blade turbine \ldots 191
J.1	Tip deflection against current at various load at 40 mm height, respectively
J.2	Tip deflection against current at various load at 50 mm height, respectively

LIST OF FIGURES		
J.3	Tip deflection against current at various load at 60 mm height,	
	respectively	259

- K.1 Effect of heat sleeving and without heat sleeving at s1=366.8 g, s2=460.1 g, s3=576.8 g, s4=716.3 g and s5=1016.7 g for 6 SMA wire260
- K.2 Effect of heat sleeving and without heat sleeving at s1=366.8 g, s2=460.1 g, s3=576.8 g, s4=716.3 g and s5=1016.7 g for 4 SMA wire261

List of Tables

2.1	Summarise of modern and historical wind turbine designs (Peter &	
	Richard 2012)	24
2.2	Analysis methods of HAWT performance	53
2.3	Theoretical Annual Specific Yield of HAWTs and VAWTs (Malcolm 2003)	85
3.1	Laminate configurations	99
3.2	Mechanical properties of SMA, GFRP, Epoxy and Core	100
4.1	Transformation temperature of SMA	122
5.1	Four parts of graded beam assembly	131
5.2	Comparison of FEA and experimental work without SMA for vali- dation	141
5.3	Prediction of the deflection with respect to the number of SMA wires using various models	146
5.4	The results of the NARX model training for ANN 1	147

LIST (DF TABLES xxvi
5.5	The results of the NARX model training for ANN 2 151
5.6	The results of the NARX model training for ANN 3 155
5.7	Plies configuration of the plate
5.8	Gradient response for suspended wire
5.9	Deflection d, reading values for 6 SMA wires at 1000 mm, 60 mm
	anchoring height
5.10	Optimised values of the curve equations presented in Equation 5.5
	$(Slootweg et al. 2003) \dots \dots$
B.1	Tensile test for part 1 : 4 plies
B.2	Tensile test for part 2 : 8 plies
B.3	Tensile test for part 3 : 12 plies

Notation

α	angle of attack, $^\circ$
θ	angle of twist, $^\circ$
v	Poison ratio
σ	stress, Pa
Γ	vortex strength
W_A	resultant velocity, ms^{-1}
r	radius of the blade section considered, m
Ω	rotational speed of the turbine, $rads^{-1}$
U_0	velocity of the wind at tip, ms^{-1}
λ	tip speed ratio
ρ	density of air, kgm^{-3}
C_p	coefficient of power
$\bigtriangleup A$	small portion area of a wind turbine blade
L_A	lift force, N
V	wind velocity, ms^{-1}
at.wt.	atomic weight
$A_{\rm s}$	austenite start, °C
A_{f}	austenite finish, °C

M_s	martensite start, °C
M_{f}	martensite finish, °C
$\mathrm{Ac}_{\mathrm{func.}}$	active functional
ε_m^y	martensite twin strain
ε^d_m	martensite detwin strain
ε_m^y	martensite twin strain
ε^d_m	martensite detwin strain
E	Young's Modulus, MPa
$E_{m,t}$	Young's Modulus twin, MPa
$E_{m,d}$	Young's Modulus detwin, MPa
Δ	percentage difference, $\%$
W	width, mm
D	depth, mm
Н	height, mm
NW	number of SMA wires
L	applied load, N
Ι	applied current, Amp
N	line of vortices
d	deflection, mm
V	voltage, V
W	power, W
P_{wt}	power extracted from the wind, kW

Acronyms and Abbreviations

ANN	artificial neural network
AuCd	Aurum Cadmium
AuCu	Aurum Copper
BET	Blade Element Theory
CAD	computer aided design
CAE	computer aided engineering
CEEFC	Centre of Excellence Engineered in Fibre Composite
CuZn	Copper Zinc
EPS	expanded polystyrene
EWEA	European Wind Energy Association
FEA	finite element analysis
GFRP	glass fibre-reinforced polymer
GUI	graphical user interface
HAWT	horizontal axis wind turbine
IGES	initial graphics exchange specification
LM	Lavenberg-Marquardt
LVDT	linear variable differential transformer
MATLAB	Matrix Laboratory
MBP	multi-back propagation
ML	machine learning

Acronyms & Abbreviations

MLP	multi-layer perceptron
MSE	mean square error
NARX	Non-linear autoregressive with Exogenous
NiTi	Nickel Titanium
NACA	National Advisory Committee for Aeronautics
Nitinol	Nickel Titanium Ordnance Laboratory
NREL	National Renewable Energy Laboratory
N/A	not applicable
PPE	personal protective equipment
PVC	Polyvinyl Chloride
R	correlation coefficient factor
SMA	shape memory alloy
SME	shape memory effect
SE	superelasticity
TSR	tip speed ratio
USQ	University of Southern Queensland
UPM	Universiti Putra Malaysia
UD	unidirectional
VAWT	vertical axis wind turbine