136 research outputs found

    Inherent Two-Way Ambiguity in 2D Projective Reconstruction from Three Uncalibrated 1D Images

    Get PDF
    International audienceIt is shown that there always exists a two-way ambiguity for 2D projective reconstruction from three uncalibrated 1D views independent of the number of point correspondences. It is also shown that the two distinct projective reconstructions are exactly related by a quadratic transformation with the three camera centers as the fundamental points. The unique reconstruction exists only for the case where the three camera centers are aligned. The theoretical results are demonstrated on numerical examples

    Accelerated volumetric reconstruction from uncalibrated camera views

    Get PDF
    While both work with images, computer graphics and computer vision are inverse problems. Computer graphics starts traditionally with input geometric models and produces image sequences. Computer vision starts with input image sequences and produces geometric models. In the last few years, there has been a convergence of research to bridge the gap between the two fields. This convergence has produced a new field called Image-based Rendering and Modeling (IBMR). IBMR represents the effort of using the geometric information recovered from real images to generate new images with the hope that the synthesized ones appear photorealistic, as well as reducing the time spent on model creation. In this dissertation, the capturing, geometric and photometric aspects of an IBMR system are studied. A versatile framework was developed that enables the reconstruction of scenes from images acquired with a handheld digital camera. The proposed system targets applications in areas such as Computer Gaming and Virtual Reality, from a lowcost perspective. In the spirit of IBMR, the human operator is allowed to provide the high-level information, while underlying algorithms are used to perform low-level computational work. Conforming to the latest architecture trends, we propose a streaming voxel carving method, allowing a fast GPU-based processing on commodity hardware

    Concentric mosaic(s), planar motion and 1D cameras

    Get PDF
    International audienceGeneral SFM methods give poor results for images captured by constrained motions such as planar motion of concentric mosaics (CM). In this paper, we propose new SFM algorithms for both images captured by CM and composite mosaic images from CM. We first introduce 1D affine camera model for completing 1D camera models. Then we show that a 2D image captured by CM can be decoupled into two 1D images: one 1D projective and one 1D affine; a composite mosaic image can by rebinned into a calibrated 1D panorama projective camera. Finally we describe subspace reconstruction methods and demonstrate both in theory and experiments the advantage of the decomposition method over the general SFM methods by incorporating the constrained motion into the earliest stage of motion analysis

    Photometric stereo with applications in material classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    3D Non-Rigid Reconstruction with Prior Shape Constraints

    Get PDF
    3D non-rigid shape recovery from a single uncalibrated camera is a challenging, under-constrained problem in computer vision. Although tremendous progress has been achieved towards solving the problem, two main limitations still exist in most previous solutions. First, current methods focus on non-incremental solutions, that is, the algorithms require collection of all the measurement data before the reconstruction takes place. This methodology is inherently unsuitable for applications requiring real-time solutions. At the same time, most of the existing approaches assume that 3D shapes can be accurately modelled in a linear subspace. These methods are simple and have been proven effective for reconstructions of objects with relatively small deformations, but have considerable limitations when the deformations are large or complex. The non-linear deformations are often observed in highly flexible objects for which the use of the linear model is impractical. Note that specific types of shape variation might be governed by only a small number of parameters and therefore can be well-represented in a low dimensional manifold. The methods proposed in this thesis aim to estimate the non-rigid shapes and the corresponding camera trajectories, based on both the observations and the prior learned manifold. Firstly, an incremental approach is proposed for estimating the deformable objects. An important advantage of this method is the ability to reconstruct the 3D shape from a newly observed image and update the parameters in 3D shape space. However, this recursive method assumes the deformable shapes only have small variations from a mean shape, thus is still not feasible for objects subject to large scale deformations. To address this problem, a series of approaches are proposed, all based on non-linear manifold learning techniques. Such manifold is used as a shape prior, with the reconstructed shapes constrained to lie within the manifold. Those non-linear manifold based approaches significantly improve the quality of reconstructed results and are well-adapted to different types of shapes undergoing significant and complex deformations. Throughout the thesis, methods are validated quantitatively on 2D points sequences projected from the 3D motion capture data for a ground truth comparison, and are qualitatively demonstrated on real example of 2D video sequences. Comparisons are made for the proposed methods against several state-of-the-art techniques, with results shown for a variety of challenging deformable objects. Extensive experiments also demonstrate the robustness of the proposed algorithms with respect to measurement noise and missing data

    Multiple View Geometry For Video Analysis And Post-production

    Get PDF
    Multiple view geometry is the foundation of an important class of computer vision techniques for simultaneous recovery of camera motion and scene structure from a set of images. There are numerous important applications in this area. Examples include video post-production, scene reconstruction, registration, surveillance, tracking, and segmentation. In video post-production, which is the topic being addressed in this dissertation, computer analysis of the motion of the camera can replace the currently used manual methods for correctly aligning an artificially inserted object in a scene. However, existing single view methods typically require multiple vanishing points, and therefore would fail when only one vanishing point is available. In addition, current multiple view techniques, making use of either epipolar geometry or trifocal tensor, do not exploit fully the properties of constant or known camera motion. Finally, there does not exist a general solution to the problem of synchronization of N video sequences of distinct general scenes captured by cameras undergoing similar ego-motions, which is the necessary step for video post-production among different input videos. This dissertation proposes several advancements that overcome these limitations. These advancements are used to develop an efficient framework for video analysis and post-production in multiple cameras. In the first part of the dissertation, the novel inter-image constraints are introduced that are particularly useful for scenes where minimal information is available. This result extends the current state-of-the-art in single view geometry techniques to situations where only one vanishing point is available. The property of constant or known camera motion is also described in this dissertation for applications such as calibration of a network of cameras in video surveillance systems, and Euclidean reconstruction from turn-table image sequences in the presence of zoom and focus. We then propose a new framework for the estimation and alignment of camera motions, including both simple (panning, tracking and zooming) and complex (e.g. hand-held) camera motions. Accuracy of these results is demonstrated by applying our approach to video post-production applications such as video cut-and-paste and shadow synthesis. As realistic image-based rendering problems, these applications require extreme accuracy in the estimation of camera geometry, the position and the orientation of the light source, and the photometric properties of the resulting cast shadows. In each case, the theoretical results are fully supported and illustrated by both numerical simulations and thorough experimentation on real data

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions

    Photometric stereo and appearance capture

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Methods for Structure from Motion

    Get PDF

    Euclidean reconstruction of natural underwater scenes using optic imagery sequence

    Get PDF
    The development of maritime applications require monitoring, studying and preserving of detailed and close observation on the underwater seafloor and objects. Stereo vision offers advanced technologies to build 3D models from 2D still overlapping images in a relatively inexpensive way. However, while image stereo matching is a necessary step in 3D reconstruction procedure, even the most robust dense matching techniques are not guaranteed to work for underwater images due to the challenging aquatic environment. In this thesis, in addition to a detailed introduction and research on the key components of building 3D models from optic images, a robust modified quasi-dense matching algorithm based on correspondence propagation and adaptive least square matching for underwater images is proposed and applied to some typical underwater image datasets. The experiments demonstrate the robustness and good performance of the proposed matching approach
    corecore