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Summary

In this thesis, we study photometric stereo and combine it with multi-view

stereo to efficiently capture objects with complex geometry and materials.

Photometric stereo recovers surface shape from images taken under dif-

ferent lighting conditions. Auto-calibration photometric stereo methods

recover surface shape and lighting directions at the same time. In this the-

sis, we propose two novel auto-calibration methods. One method exploits

special ring-light configurations to resolve general Lambertian surfaces

which cannot be handled by previous methods. Another method is based

on patch factorization which takes advantage of near-object light sources

to resolve ambiguities.

For non-Lambertian surface, previous photometric stereo methods often

assume parametric or known reflectance model, which limits their wide

application. In this thesis, we propose a new multi-view photometric

stereo technique that can work for general isotropic materials. Starting

from a single viewpoint, we use a set of photometric images to identify

‘iso-depth contours’. We collect these contours from multiple viewpoints

and combine it with multi-view stereo to obtain a precise reconstruction

of the complete 3D shape. The spatially varying isotropic bidirectional re-

flectance distribution function (SVBRDF) is captured by simultaneously



inferring a set of basis BRDFs and their mixing weights at each surface

point. We validate our approach with a wide range of objects of differ-

ent materials. We show that with a single digital camera and a moving

light source, both the details of the geometry and the reflectance can be

faithfully obtained. We also show that a simplicity/quality trade-off can

be achieved by using additional hardware such as a ring-light device.
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Chapter 1

Introduction

1.1 Photometric Stereo

This dissertation studies the technique in computer vision called photometric stereo.

Photometric stereo was originally introduced by Woodham [1980] to determine

surface orientation from multiple images. The idea is that from a smooth shaded ob-

ject (Figure 1.1 (a)), we can usually perceive its shape from just the shading variation.

However, a single image often does not provide enough information to determine the

underlying shape. In order to overcome this limitation, photometric stereo holds the

viewing direction constant, while varying the direction of incident illumination be-

tween successive images. Since the imaging geometry is not changed during captur-

ing, the correspondence between image points is known. At each image point, these

corresponding pixel intensities changes as a function of the angle between the local

surface normal and incident illumination. As a result the recorded radiance values can

determine the surface orientation. Figure 1.1 (b) and (c) show the estimated surface

orientations from photometric stereo and the integrated surface from these orientations.

1



(a) (b) (c)

Figure 1.1: Photometric stereo pipeline. (a) input image (b) estimated surface orien-

tations (c) integrated 3D surface

(a) (b) (c)

Figure 1.2: Lambertian reflectance model. Lights are reflected equally in all direc-

tions. The distribution of reflected energies according to the Lambert’s model in 2D

and 3D space ((a) and (b)). (c) appearance of a Lambertian diffuse sphere.

Lambertian photometric stereo is one of the most fundamental photometric stereo

algorithms. There are three assumptions for Lambertian photometric stereo:

Lambertian reflectance model. A reflectance model describes how a surface inter-

acts with light. When light strikes a surface, it can be absorbed, reflected, scattered, or

travel along the surface and leave at some other points. Many of these effects are shown

in Figure 1.3. The Lambertian reflectance model is named after Johann Heinrich Lam-

bert, who introduced the concept of perfect diffusion in this 1760 book Photometria.

The Lambertian model reflects the incoming light equally to all directions in the up-

per hemisphere above the surface (Figure 1.2). Thus the apparent brightness of such a

surface to an observer is the same regardless of the observer’s angle of view.

2



Figure 1.3: Complex behaviours when light interacts with physical world.

(a) (b)

Figure 1.4: Camera and lighting model of photometric stereo (a) Orthographic pro-

jection (b) Correspondences between image and surface.

Orthographic camera model. The camera is assumed to be orthogonal, as illus-

trated in Figure 1.4. If the size of the object in view is small compared to the view-

ing distance, then the perspective projection can be approximated as an orthographic

projection where all the projection lines are orthogonal to the projection plane. This

projection ensures every pixel in the image have the same viewing direction to simplify

the following analysis. Consider a camera that performs an orthographic projection. It

is convenient to choose a coordinate system such that the viewing direction is aligned

with the z-axis as shown in Figure 1.4 (b). It is also convenient to assume appropriate

scaling of the image plane such that the object point Z(x, y) maps onto image point

3



Figure 1.5: Estimating normal from multiple light sources

(x0, y0) where x0 = x, y0 = y. As a result, the viewing direction v is the same for all

surface points.

Directional illumination. For a fixed light source, the incident lighting direction s is

given by the positions of the surface point and the light, as shown in Figure 1.4 (b). We

call the lighting condition directional if the incident lighting directions at all surface

points are constant. For example, sunlight is generally considered as directional. In

practice, if the light source is sufficiently far away from the object, we can approximate

the lighting condition as directional illumination.

Under these three assumptions, given three or more light sources that are not colin-

ear (Figure 1.5) and with known directions and intensities, Woodham [1980] showed

the surface normal and albedo can be resolved at each pixel by solving a least square

equation as explained in Section 2.3.1. If the lighting directions and intensities are un-

known, the problem is called uncalibrated phtometric stereo. Auto-calibration meth-

ods solve uncalibrated photometrc stereo problem by resolving both surface normals

and lighting conditions at the same time. Section 2.3.2 discusses basic auto-calibration

method (Hayakawa [1994]) that factorizes the intensity matrix I to compute surface
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normals and lighting conditions from normal matrix N and lighting matrix L.

I =













i11 . . . i1F
... . . .

...

iP l . . . iPF













=













n1x n1y n1z

...
...

...

nPx nPy nPz













×













l1x · · · lFx

l1y · · · lFy

l1z · · · lFz













= N × L

(1.1)

Recent works of photometric stereo

There are many methods have been developed to relax the three previous assump-

tions. Recent uncalibrated photometric stereo methods such as Hernández et al. [2008]

can obtain complete, detailed reconstructions of textureless shiny objects. This multi-

view photometric stereo algorithm is also based on the Lambertian reflectance assump-

tion but can tolerate isolated specular highlights. It starts from the silhouettes to re-

cover camera motion and construct the object’s visual hull. This visual hull is then

used to resolve the lighting directions. In contrast to previous Lambertian photometric

stereo methods, Hernández et al. [2008] is not limited to a single viewpoint but pro-

duces accurate reconstructions in full 3D. Figure 1.6 (c) shows the recovered shape,

the fine details on the body of the buddha are faithfully captured. Figure 1.6 (a) shows

the acquisition setup. This kind of setup is quite commonly used in photometric stereo

methods. The object is rotated on a turntable in front of a camera and a point light

source. A sequence of images is captured, while the light source changes position

between consecutive frames.

Besides Lambertian photometric stereo, photometric stereo can also be applied to

objects with non-Lambertian materials. Goldman et al. [2005] proposed to recover the

surfaces with spatially-varying BRDFs, including surfaces with both varying diffuse
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(a) (b) (c)

Figure 1.6: Multiview photometric stereo Hernández et al. [2008] (a) data acquisition

setup (b) one of the input images (c) recovered shape

Figure 1.7: Shape and Spatially-Varying BRDFs From Photometric Stereo

and specular properties. It is based on the observation that most objects are composed

of a small number of fundamental materials. This approach recovers not only the

shape but also material BRDFs and weight maps, producing compelling results for a

wide range of objects. Figure 1.7 (b) and (f) shows recovered normal and reflectance.

Since photometric stereo is so good at recovering surface details. It can also be

used to improve data acquired by other methods. For shape recovered by 3D scanners,

the geometry can often be quite noisy as shown in Figure 1.8 (a). Nehab et al. [2005]

present an algorithm that combines the 3D scanned shape and normals from photo-

metric stereo and produces a new surface that approximates both. It treats high- and

low-frequency components separately as stereo triangulation and photometric stereo

have different error-vs.-frequency characteristics. Figure 1.8 (a) shows the optimized

surface, which has much lower noise compared with 3D scanned one.

Besides 3D scanners, photometric stereo can also be used as a 2.5D ’scanner’ for
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(a) (b)

Figure 1.8: Normals acquired with photometric stereo can improve 3D scanned shape

(a). The resulted shape (b) has lower noise and much real details.

surface texture and shape. Johnson et al. [2011] developed a device consisting of a

slab of clear elastomer covered with a reflective skin. When an object presses on the

skin, the skin distorts to take on the shape of the object’s surface. Thus, the sensor non-

destructively changes the reflectance function of the object’s surface. A camera records

an image of this deformation using illumination from red, green and blue light sources

at three different positions from behind(through the elastomer slab). Figure 1.9 (a)

and (b) shows the sensor and captured image of the microscopic geometry(in this case,

human skin). The photometric stereo presented here follows data-driven approach and

build a data base with calibration objects. To reconstruct a region, the algorithm finds

the closest matching region in the set of observed data and uses its shape. Figure 1.9

(c) shows the reconstruction of human skin.

Another application of photometric stereo is material classification. Gu and Liu

[2012] uses coded illumination to directly measure discriminative features for mate-

rial classification. Optimal illumination patterns are learned from training samples,

after projecting to which, the spectral reflectance of different materials are maximally

separated. Figure 1.10 shows the LED-based multi-spectral dome for producing dis-

criminative illumination.
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(a) (b) (c)

Figure 1.9: The microgeometry capture system consists of an elastometric sensor and

a high-magnification camera (a). THe retrographics sensor replaces the BRDF of the

subject with its own (b), allowing microscopic geometry to be accurately captured (c)

(a) (b)

Figure 1.10: The microgeometry capture system consists of an elastometric sensor

and a high-magnification camera (a). The retrographics sensor replaces the BRDF of

the subject with its own (b), allowing microscopic geometry to be accurately captured

(c)

1.2 Main challenges in photometric stereo

1.2.1 Auto-calibration

As photometric stereo uses lighting information to estimate normal information, most

methods require lighting conditions as priori. However, capturing lighting conditions

is tedious. One approach is to insert several calibration objects into the scene to deter-

mine the lighting direction and intensity. For example, in Figure 1.11 a mirror sphere

is inserted into the scene during data capturing. Since the geometry of the calibration

sphere is known, the lighting direction can be computed from location of the high-
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Figure 1.11: Capturing lighting directions by inserting a metal sphere.

light. Similarly, a diffuse sphere can also be inserted to record the lighting intensity.

Although this approach is quite flexible, it has several drawbacks. First, the calibra-

tion spheres should be segmented before hand to determine their position and size in

the scene. The segmentation can be rather difficult because the sphere is highly re-

flective and mirrors the surrounding environments. Secondly, calibration objects will

project shadow and inter-reflection onto the target object and this will cause errors in

photometric stereo algorithms. Finally, due to the limited resolution of the image, the

position of the highlight might not be precise. As a result, the estimation of lighting

direction and intensity always contains noise. Besides inserting calibration objects,

another approach is to build a hardware that consists of multiple light sources and cali-

brate them only once as shown in Figure 1.10. This approach not only requires special

hardware whose cost might be quite high, but also is confined itself to laboratory usage.

As we have already seen in Section 2.3.2, Hayakawa [1994] firstly introduced an

auto-calibration method for Lambertian photometric stereo.

Hayakawa [1994] showed that surface normals can be recovered up to a general

linear transformation if lighting directions are unknown. If one can identify six lights

with equal intensity, or six normals with equal albedo, this general linear ambiguity

can be reduced to a 3D rotation ambiguity. For example, assume we know six lights

l̂i have equal intensity. Then l̂i
⊤

A⊤Al̂i = 1. Let A⊤A = B. l̂i
⊤

Bl̂i = 1 is a linear

problem. Once B is determined, we take the the SVD of B. The SVD of a symmetric
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matrix is itself symmetric: B = WDW⊤, where D is diagonal and W is orthonormal.

If we let A = D1/2W⊤, the rest of the ambiguity must be a 3D rotation.

Most of the works in uncalibrated photometric stereo follow the seminal work by

Belhumeur et al. [1999] that proved the linear ambiguity can be reduced to a general-

ized bas-reflief (GBR) ambiguity G by surface integrability:

G =













1 0 0

0 1 0

µ ν λ













(1.2)

This GBR ambiguity is fundamental: given any number of images taken from a

fixed view-point, neither a computer vision algorithm nor biological process can dis-

tinguish two objects that differ by a GBR transformation. Prior knowledge about sur-

face shape, surface albedo, light source direction, or light source intensity must be

employed to resolve this ambiguity. Figure 1.12 is an illustration of the GBR ambigu-

ity.

Since then, many works have been proposed to study and resolve this ambiguity.

Drbohlav and Chaniler [2005]; Drbohlav and Šára [2002] showed spike-specular re-

flectance can resolve the GBR ambiguity. Tan and Zickler [2009]; Tan et al. [2007]

further proved any homogenous isotropic reflectance can resolve it. The GBR ambigu-

ity can also be resolved by inter-reflections Chandraker et al. [2005] and minimizing

the entropy of surface albedos Alldrin et al. [2007].

1.2.1.1 Light source calibration

Almost all of these methods mentioned above rely on various assumptions about scene

properties such as integrable surface, non-Lambertian materials, inter-reflections, six
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Figure 1.12: Top row shows a laser scanned human head rendered as a Lambertian

surface with constant albedo. The subsequent three rows show images of heads whose

shapes have been transformed by different generalized bas-relief transformations. The

profile views of the face in the third column reveal the nature the individual transfor-

mations and the direction of the light source. From the frontal views (first column), the

true 3-d structure of the objects cannot be determined.

normals of equal albedo or small albedo entropy. 1 Hence, these methods can work for

certain types of scenes that meet their assumptions, but cannot handle other types. For

example, the gift box shown in Figure 1.13 (a) contains a few discrete planes with only

three different normal directions and no significant non-Lambertian reflection. Notice

that a plane does not provide integrable constraint as a linearly transformed plane is

1An exception is Hayakawa’s work Hayakawa [1994] that used six lights with equal intensity to

partially solve the problem.
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(a) (b)

Figure 1.13: Challenging data for uncalibrated photometric stereo. (a) is too simple

and (b) is too complicate for most of existing methods.

also integrable. Hence, all these previous methods will fail on this simple example.

Figure 1.13 (b) is another challenging data which contains many depth discontinu-

ities. Methods based on integrability must first identify these discontinuities which

is a non-trivial task. Indeed previous uncalibrated photometric stereo algorithms are

mainly evaluated with a single segmented smooth curved object. Little work has been

proposed to handle challenging data like those shown in Figure 1.13.

In Section 3.1, we propose to study uncalibrated photometric stereo by exploiting

constraints in lighting configurations such that our method can be applied to more

general data. We consider the case where a scene is illuminated by directional lights

located on a view centered cone (a). We show that with at least five lights on such a

cone, surface normal directions of a Lambertian scene can be recovered up to two kinds

of rotations, and a scaling compounded with a mirror ambiguities. These ambiguities

can be resolved if additional constraints are available, such as three lights of equal

interval, five lights of equal intensity, surface integrability, non-Lambertian reflectance

or corresponding normals from multiple viewpoints. To handle more general data,

we choose to combine constraints derived from lighting configurations to achieve an
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Euclidian reconstruction. We evaluate two possible approaches and choose the more

robust one according to experiments. Our only requirement of the scene is that two

corresponding normals can be identified from two views, a constraint which can be

easily satisfied for most inputs. We use synthetic and real data to evaluate our algorithm

and build a prototype device to demonstrate potential applications.

1.2.1.2 Light source calibration with perspective effect

The vast majority of previous works assume directional lighting and orthographic cam-

eras so that every pixel in the image shares a common directional lighting. However,

input images are often captured under nearby point light sources, and this makes the

lighting directions vary over the scene points. Such a ‘perspective’ effect of nearby

point light sources causes significant systematic errors in the normal directions under

the assumption of a directional light. In practice, it is often difficult to assume a direc-

tional lighting due to a distant light source especially when dealing with large scenes

or a limited working space.

In Section 3.2, we study photometric stereo under point light sources with intensity

fall-off and perspective cameras. We always assume the camera is calibrated and study

the photometric stereo problem under both known (calibrated) and unknown (uncali-

brated) lighting positions. We begin by showing an inherent shape-light ambiguity that

exists in the near-light photometric stereo when the light source positions are unknown.

Under unknown directional lightings, it is well understood that a surface can only be

recovered up to a linear ambiguity Hayakawa [1994]. We propose a patch-based fac-

torization method for the near-light configuration, which surprisingly leads to a linear

shape-light ambiguity that is similar to the directional lighting case. In other words,

nearby point light sources introduce little additional shape ambiguities. In addition,
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we propose two methods to resolve this shape-light ambiguity in the near-light setting.

Though the patch-based factorization is useful in analyzing the shape ambiguities,

it is difficult to select an appropriate patch size. Hence, we further study the problem

under calibrated lighting and propose a graph model based algorithm to estimate the

depth and normal direction simultaneously at each pixel. Experiments indicate our

method can significantly improve the shape reconstruction compared with methods

based on directional lighting.

1.2.2 Non-Lambertian Material

Photometric stereo is all about estimating surface normal from observations under dif-

ferent lighting conditions, so if we assume different surface reflectance model, the

surface normal will be different. In previous sections, we have assumed Lambertian

reflectance model: brightness of such a surface to an observer is the same regardless of

the observer’s angle of view. This Lambertian assumption greatly simplifies the pho-

tometric stereo algorithms. However, in real world, the reflectance model of objects

is barely Lambertian. For example, plastic toys, metal cans and wooden furnitures

etc. are all non-Lambertian. These kind of objects can only be correctly reconstructed

when their reflectance properties are precisely modelled. Early work such as Horn

et al. [1978]; Woodham [1980] made strong assumptions on the reflectance models,

typically requiring either explicit knowledge of the BRDF or simple parametric mod-

els. Thus these methods are limited to specific scenes.

Subsequent works Barsky and Petrou [2003]; Coleman Jr and Jain [1982]; Ikeuchi

[1981]; Nayar et al. [1990] are based on the observation that the reflectance of many

materials is well approximated by the sum of specular and a diffuse lobe. They often
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assume a Lambertian diffuse lobe, while not imposing a parametric form on the spec-

ular lobe. Mallick et al. [2005] assumes the color of the specular lobe differs from the

color of the diffuse lobe, so the separation of the specular and diffuse components is

allowed.

Modern approaches such as Hertzmann and Seitz [2003, 2005] place reference ob-

jects of the same material as the test object and these reference objects provide the

measurement of the BRDFs in the scene. By matching the test object’s captured re-

flectance to the reference objects, as shown in Figure 1.14 (c), the corresponding nor-

mal can be computed from the reference object with known geometry. This approach

can be applied for arbitrary BRDFs, but requires reference objects of the same mate-

rial as the test object. For spatially varying BRDFs (SVBRDF), the algorithm treats

the BRDF at each point on the test object as a linear combination of the basis BRDFs

defined by a set of reference objects.

Another approach is built upon reflectance symmetry. These methods exploit sym-

metries exhibit by many BRDFs to avoid complicated and also imprecise parametric

models.

Tan et al. [2007] resolves the GBR ambiguity if the non-Lambertian reflectance

function is isotropic and spatially invariant. The key observation is that each point on a

curved surface under directional illumination is a member of a family of points that are

in isotropic or reciprocal configurations as illustrated in Figure 1.15. The GBR can be

resolved in closed form by identifying members of these families in two or more im-

ages. This ’isotropic pairs’ will be discussed further in Chapter 4. Alldrin et al. [2008]

proposed a iterative optimization method based on these isotropic pairs to recover both

surface normal and bi-variant BRDFs. Another reflectance symmetry based method

Holroyd et al. [2008] works on anisotropic materials but requires up to thousand input
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(b)

(a) (c)

Figure 1.14: Example based photometric stereo matches test object’s reflectance mea-

surements to the reference object to find the corresponding surface normal (a). Objects

with arbitrary complex reflectance model (b) can be correctly recovered (c).

images at each viewpoint. Tan et al. Tan et al. [2011] and Chandraker et al. Chan-

draker et al. [2011] both recovered iso-contours of depth and gradient magnitude for

isotropic surfaces.

Our method also handles non-Lambertian materials. Based on Tan et al. [2011],

we use reflectance symmetry to handle materials with general isotropic reflectance

models, which consist of a very broad range of materials.

1.3 Application in appearance capture

Appearance capturing has always been a major goal of computer vision. Among many

methods developed over decades, recovering 3D shape and associated material from

2D photographic images is an efficient, cost effective way to produce accurate 3D

scans of objects. These image-based methods can compute a representation of the
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Figure 1.15: On the visible hemisphere of Gauss sphere, two normals form an

isotropic pair if they lie at the intersections of two circles centered at source direc-

tion s and view direction v. If the BRDF is isotropic the observed intensity at these

points will be equal.

3D shape from two to thousands of images taken of the same object under different

lighting conditions and allow rendering of the captured object from arbitrary view-

points and lighting. However, due to the complexity of real world objects, developing

a method that can simultaneously handle a wide range of materials and complex shape

is a challenging problem as well as capturing illumination conditions.

In this section, we will first explain three design goals of our system and show

how current reconstruction approaches reach their limits in terms of quality and per-

formance when dealing with complex and multi-material scenes. In this context, both

calibration simplicity and algorithm generalness are absolute necessities. We will see

that massive 3D reconstruction of geometry and reflectance is impractical if the captur-

ing hardware is too sophisticated or the reconstruction method is not powerful enough

to handle general scenes. In the end, we will explain how we propose to rely on re-

flectance symmetry to handle the capturing problem.
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1.3.1 Design goals

Simultaneously capturing of geometry and reflectance. Geometry and reflectance

capturing has a wide application in industry and research. Debevec et al. [2000] intro-

duced the Light Stage system to efficiently capture how an actor’s face appears when

lit from every possible lighting direction. Later the improved technique is employed

in worldwide hit movies such as Avatar. Including Debevec et al. [2000], many of

appearance capturing methods Debevec et al. [2000]; Goesele et al. [2004]; Lensch

et al. [2003]; Sato et al. [1997]; Weyrich et al. [2006] require two process steps. The

geometry of the object is estimated prior to the reflectometry and data are often cap-

tured with two separated sensors. As a result, accurate registration of the images and

the 3D model for reflectometry is required for correct reflectance estimation. This reg-

istration remains difficult in practice and the quality of reflectance measurements near

misalignment is inherently downgraded.

To overcome this limitation, we designed the system to use a single camera cap-

turing images for both geometry and reflectometry. The registration of two types of

sensors is completely avoided.

Capable of handling complex shapes and a wide range of materials. Our method

is essentially based on photometric stereo. However, our methods differ from previ-

ous photometric stereo in the following aspects. Early photometric stereo algorithms

jointly estimate local surface orientation (surface normal) with assume parametric re-

flectance models Georghiades [2003]; Goldman et al. [2005] and they can only han-

dle materials of specific analytic reflectance model. Recent methods Hernández et al.

[2008] can produce very accurate reconstructions based on robust Lambertian photo-

metric stereo, but as the object reflectance deviates from Lambertian model, the errors
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in the resulting geometry become hard to characterize. Finally, there are few attempts

made to generate full 360 degree models from 2.5D height fields captured with these

techniques Hernández et al. [2008].

Compared with previous methods, our method does not assume parametric re-

flectance models and can handle materials of general isotropic reflectance. By exploit-

ing symmetric properties of isotropic reflectance models, our method first estimates

normal azimuth angles of each view and then propagate them between multiple-views

to reconstruct the complete shape. Even if the reflectance model changes dramati-

cally on the surface, high frequency details can be faithfully recovered. However, our

method is not designed for objects with extremely low albedo, or mirror-like materials.

1.4 3D reconstruction methods

Passive methods such as stereo and multi-view stereo constructs objects base on images

taken under static environment light while active methods like photometric streo and

active rangefinding use additional lighting sources to change the lighting condition in

the images. We will see both passive and active methods rely on either simplification

of materials and shapes, or special equipment and complicate capturing procedures,

thus they have different kinds of limitations.

1.4.1 Multi-view stereo

Stereo matching takes of two or more images and recovers a 3D model by finding

corresponding pixels in the images and computes 3D depths from 2D positions. For

each of the input images, a sparse or dense depth map is assigned. It is a fundamental

problem and it is still one of the most active research areas. Over the last few years,
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a number of high-quality algorithms have been developed, and the state of the art is

improving rapidly.

The greatest challenge to most stereo algorithms comes from establishing corre-

spondence between points in different views. Successful correspondence depends on

the reflectance of objects in the scene as well as on the lighting condition, which in

real environments can be quite complex. As a result, various assumptions have been

made on the photometric properties of the scene. The most common assumption is that

the object is Lambertian: the energy radiated from a surface point does not depend on

the outgoing direction. Under this assumption, the correspondence can be easily es-

tablished by comparing the irradiance of individual images. This works well when

the object is composed mostly of matte surfaces with few specular highlights. Al-

though many works (Jin et al. [2003], Goesele et al. [2007]) have been done to address

non-Lambertian reflection, they still cannot produce high-accuracy reconstruction for

objects with high-frequency reflectance change.

1.4.2 Active rangefinding

Compared with multi-view stereo methods, active rangefinding methods greatly im-

prove the performance of reconstruction systems by actively lighting a scene using

highly reliable sensors. A variety of these rangefinding techniques have been used

from the earliest days of machine vision Besl [1988]; Curless [1999]; Hebert [2000].

One of the most popular active illumination sensors is time-of-flight laser rangefinder.

The laser rangefinder finds the distance of a surface by timing the round-trip time of

a pulse of light. So the accuracy of a time-of-flight laser scanner depends on the pre-

cision of the measurement of the time. Since the laser rangefinder can only detects
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the distance of one point in its viewing direction, the scanner must change its viewing

direction to scan different points. Many systems uses rotating mirrors to change the

view direction as mirrors are much lighter than rangefinder and can thus be rotated

faster and with greater accuracy.

Although time-of-flight range finders are capable of operating over very long dis-

tances, the accuracy of time-of-flight scanner is relatively low due to the high speed of

light and difficult of timing the round-trip time.

Triangulation range finder is another type of active illumination laser scanner. One

laser dot is emitted and it appears in two different cameras. As discussed in Sec-

tion 1.4.1, the depth of the dot can be determined by stereo algorithm. Like stereo

algorithm, triangulation range finders have a limited range of some meters, but their

accuracy is relatively high, which are the opposite of time-of-flight scanners. The ac-

curacy of triangulation range finders is on the order of tens of micrometers.

Structured light 3D scanners project a pattern of light on the object and infer the

shape of the object from the deformation of the pattern. The pattern is usually projected

by an LCD projector and a camera is mounted along with the projector but it is slightly

offset a bit. These methods make use of features with similar appearance over time to

find the correspondences in different views.

The advantage of structured light scanners is speed and precision. Compared with

laser scanners which scan one point at a time, structured light scanners scan multiple

points or the entire field of view at once. This greatly reduces the scanning time and

distortion from motion.

Based on a precise 3D reconstruction using active ranger finder, parametric re-

flectance functions can be fitted at each surface point according to the image observa-

tions, as in Lensch et al. [2003]; Sato et al. [1997]. However, these methods require
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precise registration between images and 3D shapes. Since different sensors are used

for shape and reflectance capture, this registration is difficult and often causes artefacts

in misaligned regions.

1.5 Objectives

This thesis aims at making a combination of multi-view stereo and photometric stereo

to recover shape and reflectance simultaneously with simple hardware requirement.

While shape and reflectance capturing has been intensively used in the past, we aim

to introduce a reflectance symmetry based approach to greatly simplify data capturing,

improve reconstruction accuracy and support a wide range of materials.

We show that with a single camera and a hand-held light source, it is possible to

reconstruct complex scene with isotropic SVBRDF. There are three key differences

between our method and previous methods. First, we reconstruct a complete 3D shape

rather than a single-view normal map. Second, we combine multi-view geometry and

photometric cues to avoid fragile iterative optimization of shape and reflectance. Third,

our method works with general tri-variant isotropic BRDFs while Alldrin et al. [2008]

assumed bi-variant BRDFs to simplify the optimization.
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Chapter 2

Photometric stereo

2.1 Basic radiometry

Radiometry provides a set of concepts and mathematical tools to describe light propa-

gation and reflection. The derivation of the photometric stereo algorithms is based on

radiometry and will be used throughout the rest of the thesis. In this thesis, we also

assume the transfer of radiant energy operates at the geometric optics level, where the

objects interacting with light are much larger than its wavelength, so effects like dis-

persion and interference will not be discussed. This leads to a few basic assumptions

about the behavior of light throughout the thesis.

Linearity. The combined effect of two inputs to an optical system is always equal

to the sum of the effects of each of the inputs individually.

Energy conservation. When light scatters from a surface, the scattering events can

never produce more energy than they started with.

No polarization. The polarization of the electromagnetic field is ignored, so the

only relevant property of light is its distribution by wavelength.
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No fluorescence or phosphorescence. The behavior of light at one wavelength is

completely independent of light’s behavior at other wavelengths or times.

2.1.1 Basic concepts in radiometry

There are four radiometric concepts that are central to photometric stereo: flux, irra-

diance/radiant exitance, intensity, and radiance. All of these quantities are generally

wavelength dependent, and we will not explicitly state this dependence in the remain-

der of this chapter.

Flux. Radiant flux is the total amount of energy passing through a surface or region of

space per unit time. The units are joules/second(J/s).

Irradiance and radiant exitance. Irradiance (E) is the area density of flux arriving

at a surface, and radiant exitance (M ) is the area density of flux leaving a surface. The

units are W/m2. For point light source, the amount of energy received falls off with

the squared distance from the light.

E =
Φ

4πr2
(2.1)

Lambert’s law revisited. We have already seen Lambert’s law in Section 2.3.1,

which says the amount of light arriving at a surface is proportional to the cosine of

the angle between the light direction and the surface normal. Here we will explain the

details. Consider a light source with area A and flux Φ that is illuminating a surface. If

the lighting direction is parallel to the surface normal (as on the left side of the figure),

then the area on the surface receiving light A1 is equal to A. So for points in A1, the

irradiance is

E1 =
Φ

A
. (2.2)
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Figure 2.1: Lambert’s law. As illumination is over a larger area at smaller incident

angles, irradiance (E) arriving at a surface varies according to the cosine of the angle

of incidence of illumination.

When the light is at an angle to the surface, the area on the surface reciving light is

larger. The area receiving flux, A2, is roughly A/ cos θ and the irradiance of any point

in A2 is

E2 =
Φcos θ

A
. (2.3)

The irradiance at a point is actually defined as

E =
dΦ

dA
, (2.4)

where the differential flux from the light is computed over the differential area receiv-

ing flux.

Solid angle and intensity Solid angle is the extension of two-dimensional angles in

a plane to an angle on a sphere. The total area s is the solid angle subtended by the

object on a 3D unit sphere (Figure 2.2). The units of solid angles are steradians and

the entire sphere subtends a solid angle of 4π. If we use the symbol ω to indicate the

vectors which are described by set of points on the unit sphere centered at a point p,
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Figure 2.2: Solid angle. By projecting c onto the unit sphere, the area of its projection

is the solid angle s subtended by the object c in three dimensions.

the intensity is defined as flux density per solid angle:

E =
dΦ

dω
. (2.5)

Note that intensity is used to describe the distribution of light and is only meaningful

for point light sources.

Radiance The final radiometric quantity is radiance, L. Radiance is defined as the

flux density per unit area, per uni solid angle. In terms of flux, it is

L =
dΦ

dωA⊥
, (2.6)

where A⊥ is the projected area of A on a hypothetical surface perpendicular to ω

(Figure 2.3).

Of all of these radiometric quantities, radiance is the most fundamental one. If
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Figure 2.3: Radiance L is defined as flux per unit solid angle dω per unit projected

area dA⊥

radiance is given, then all of other values can be computed in terms of integrals of

radiance over areas and directions. Another property is that radiance remains constant

along rays through empty space.

2.2 Surface reflection and BRDF

When light strikes on a surface, the surface scatters the light, reflecting some of it

back into the environment. The reflectance of a large class of objects is well modelled

by the bidirectional reflectance distribution function (BRDF). The BRDF is a four-

dimensional function fr(ωi, ωr) that defines how light is reflected at an opaque surface.

Here ωi is the negative incoming light direction and ωr is the outgoing direction. Both

ωi and ωr are defined with respect to the surface normal n as shown in Figure 2.4. The

return value of the function is the ratio of reflected radiance exiting along ωr to the

irradiance incident E(ωi) on the surface from direction ωi.
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If the direction ωi is considered as a differential cone of directions, the differential

irradiance is

dE(ωi) = Li(ωi) cos θidωi (2.7)

The constant of proportionality defines the surface’s BRDF for the particular pair

of directions ωi and ωo:

fr(ωo, ωi) =
dLo(ωo)

dE(ωi)
=

dLo(ωo)

Li(ωi) cos θidωi

. (2.8)

Physically based BRDFs obey the following two laws:

1. Reciprocity: For every pair of directions ωi and ωo, fr(ωi, ωo) = fr(ωo, ωi).

2. Energy conservation: The total energy of light reflected is less than or equal to

the energy of incident light.

∫

H2(n)

fr(ωo, ω
′) cos θ′dω′ ≤ 1. (2.9)

Now for a surface point p, if the incident radiance L̂i is given along direction ωi,

the differential outgoing radiance will have the following form:

dLo(ωo) = fr(ωo, ωi)L̂i(ωi) cos θidωi. (2.10)

To get the total radiance along direction ωo, we can integrate this equation over the

upper hemisphere H2(n) due to the incident illumination from all directions:

Lo(ωo) =

∫

H2(n)

fr(ωo, ωi)L̂i(ωi) cos θidωi. (2.11)

This reflection equation describes how an incident distribution of light at a point is
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Figure 2.4: BRDF model

transformed into an outgoing distribution, based on the reflection properties of the

surface.

Surface reflection can generally be split into four broad categories: diffuse, glossy

specular, perfect specular, and retro-reflective as shown in Figure 2.5. The BRDF

usually exhibits a mixture of these four types of reflection. The diffuse surfaces scatter

incident light in all directions equally. However, a perfect diffuse surface does not exist

in the real world. Dull chalkboards, matte paint and color calibration board (Figure 2.6)

are examples of diffuse surfaces. Glossy surfaces scatter light preferentially along the

outgoing direction. Examples include plastic or metal that shows blurry reflections of

other objects. Perfect specular surfaces like mirror scatter incident light in a single

outgoing direction. Finally, retro-reflective surfaces scatter light primarily back along

the incident direction. The moon is a good example of retro-reflective surface.

2.2.1 Lambertian reflection

We have discussed the Lambertian reflection model in Section 1.1. Lambertian reflec-

tion models a perfect diffuse surface that scatters incident light equally in all directions.

Although in the real world this reflection model is rarely seen, it is a good approxima-
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Figure 2.5: Reflection from a surface can be generally categorized by the distribution

of reflected light: (a) diffuse, (b) glossy specular, (c) perfect specular, and (d) retro-

reflective distributions.

tion to surfaces such as matte paint. The BRDF of Lambertian reflection is

fr(ωo, ωi) =
R

π
, (2.12)

where R gives the fraction of incident light scattered.

2.2.2 Microfacet models

Many surface reflection models are based on the ideas that rough surfaces can be con-

sidered as a collection of small microfacts. For these models, a mall patch on the

surface is essentially a heightfield, where the distribution of facets is described sta-

tistically. When light strikes a small area, a large number of these small facets are

illuminated, and their aggregate behavior determines the scattering.

For microfacet models, there are two main components: the distribution of facets

and a BRDF that describes how light scatters from individual microfacets. Typically,

perfect mirror reflection is assumed for the microfacets, although some models such as
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Figure 2.6: Color checker is made of special material which is very close to Lamber-

tian reflectance.

Oren-Nayar model (described in the next section) assume Lambertian BRDF.

Microfacet models consider local lighting effects between neighbor facets. Micro-

facets may be occluded by neighbor facet, may lie in the shadow of a neighboring

microfacet, or reflect more light compared with direct lighting of low-level microfacet

BRDF due to interreflection. A common simplication of microfacets structure is that

all the microfacets make up symmetric V-shaped grooves.

2.2.2.1 Oren-Nayar diffuse reflection

Oren and Nayar observed rough surfaces generally appear brighter as the illumination

direction approaches the viewing direction compared with perfect Lambertian reflec-

tion. They assumed that each individual microfacet exhibited perfect Lambertian re-

flection but describe rough surfaces as a collection of symmetric V-shaped grooves. So

the derived BRDF models the aggregate reflection of the collection of grooves:

fr(ωi, ωo) =
ρ

π
(A+Bmax(0, cos(φi − φo)) sinα tan β) (2.13)
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where

A = 1− σ2

2(σ2,+0.33)

B = 0.45σ2

σ2+0.09

α = max(θi, θo)

β = min(θi, θo).

(2.14)

2.2.2.2 Torrance-Sparrow model

Torrance and Sparrow [1967] modelled the surface as collections of perfectly smooth

mirrored microfacets. The BRDF basically consists of three terms: distribution func-

tion D(ωh) that gives the probability that a microfacet has orientation ωh, geometric

attenuation term G(ωo, ωi) that describes the fraction of microfacets that are masked

or shadowed, given direcitions ωi and ωo, and the Fresnel term Fr(ωo).

The distribution function follows a Gaussian distribution:

D(θ) =
1√
2πσ

e−
θ
2

σ2 , (2.15)

where σ is called roughness. Surface is more shiny when σ is smaller.

By assuming that the microfacets are arranged along infinitely long V-shaped grooves,

the geometric attenuation term takes into account masking and occlusion between mi-

crofacets.

sG(ωo, ωi) = min

(

1,min

(

2(n · ωh)(n · ωo)

ωo · ωh

,
2(n · ωh)(n · ωi)

ωo · ωh

))

. (2.16)

The final Fresnel Term describe the behaviour of reflection when light moving
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between media of differing refractive indices.

F (θ) = F (0) + (1− F (0))(1− cos θ)5 (2.17)

2.2.3 Measured BRDFs

Previous parametric reflection models are often not flexible enough to model the full

complexity of scattering characteristics of real surfaces. Another effective approach is

to use measured data about the reflection properties of real surfaces for realistic mate-

rials. This measured data can be used to set the parameter values for a parameterized

BRDF like the Torrance-Sparrow model. If the the approximation introduced too much

error, the accurate measured reflection data can be directly used for rendering and can

faithfully re-create the surface’s appearance.

Traditional BRDF capturing systems consist of moving camera and light source.

As the camera and the light source move in the upper hemisphere of the target material,

the incident lighting direction ωi and outgoing lighting direction ωo can be changed in

the BRDF fr(ωo, ωi) and images are taken as samples (Figure 2.7). Although this

approach can measure the BRDF accurately, it needs careful control of illumination

and environment.

A simplified capturing system uses a spherically homogeneous sample of the ma-

terial (Figure 2.8). Since a sphere contains normals of all directions, a single image

contains many BRDF samples.
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Figure 2.7: The BRDF of a target surface is measured by moving a light source and a

camera.

2.2.3.1 Isotropic reflectance model

Given a particular category of reflection, the reflectance distribution function may be

isotropic or anisotropic. Most objects are isotropic: if we choose a point on the sur-

face and rotate it around its normal axis at the point, the amount of light reflected

doesn’t change. In contrast, anisotropic materials reflect different amounts of light as

you rotate them in this way. Examples of anisotropic surfaces include brushed metal,

phonographic records, and compact disks.

Now consider a table of measured isotropic BRDF samples, where each sample

records the BRDF value for a given pair of directions defined by (θi, φi, θo, φo). This is

a natural form for measured data to be stored in. One shortcoming of this representa-

tion is that the isotropy of the BRDF isn’t reflected in the representation. For isotropic

BRDFs, rotation about the normal direction leaves the value unchanged. So

fr((θi, φi), (θo, φo)) = fr((θi, φi + δ), (θo, φo + δ)) (2.18)
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Figure 2.8: Sphere with same material can ease BRDF capturing.

for all δ values. Therefore, a better approach would be to store the samples indexed

by the two θ angles and the difference between φ directions, (θi, θo,∆φ), where ∆φ =

φi − φo, thus reflecting this structure in the data. This gives a mapping from four

directions to a three-tuple:

fr(θi, φi, θo, φo) → fr(θi, θo,∆φ). (2.19)

This representation of isotropic BRDF will be used in later chapters.

2.3 Basics of photometric stereo

2.3.1 Lambertian photometric stereo

Recall that Lambertian photometric stereo has three assumptions. First, it only han-

dles the surface of a Lambertian reflectance model that scatters incoming light in all

directions. The function value fr(ωo, ωi) of Lambertian model is a constant number
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(Equation (2.2.1)) which represents the albedo of a surface point (Section 2.2.1). The

orthographic camera model assumes that the outgoing lighting direction ωo relative to

the camera does not change across surface points. Finally, directional illumination ap-

proximates light sources at infinity, so the lighting direction and intensity are the same

at every surface point.

Under the previous three assumptions, the reflection equation at each image point

can be formulated as

Lo(ωo) =
∫

H2(n)
fr(ωo, ωi)Li(ωi) cos θidωi

= ρnsi = Ii.
(2.20)

Here for each light source i, Ii is the observed pixel intensity. si is the lighting

direction multiplied by the lighting intensity, which is a 3 × 1 vector and the same

at all surface points. Since the lighting only comes from one direction, by using the

property of the Dirac delta distribution (δ(x))

∫

f(x)δ(x− x0)dx = f(x0), (2.21)

the integration over the upper hemisphere is simplified to ρnsi. n is the surface normal

which is a 3 × 1 normalized vector and ρ represents the albedo of that surface point

and may vary across the whole surface. nsi obeys Lambert’s law, i.e. the apparent

brightness of a Lambertian surface is proportional to the cosine of the angle between

the surface normal and the direction of the incident light.

Given three (or more) light sources that are not co-linear as shown in Figure 1.5,
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we can write each equation in the matrix form (Equation (2.3.1))

I = Sρn, (2.22)

where

I =













I1

I2

I3













, S =













s⊤1

s⊤2

s⊤3













. (2.23)

If the lighting directions and intensities are pre-calibrated, we can solve for the surface

normal and albedo by multiply S−1 to I . Thus ρ = ∥S−1I∥, n = 1
ρ
S−1I

2.3.2 Lambertian photometric stereo: factorization approach

In the previous section, we have seen that per-pixel normal and albedo can be esti-

mated by solving a least squares equation under known lighting directions and inten-

sity. However, the lighting information is not always available, e.g, when estimating

geometry of buildings under different amounts of sunlight from internet images. This

photometric stereo without priori knowledge of lighting conditions is called uncali-

brated photometric stereo problem, and its solution is called autocalibration of photo-

metric stereo.

To solve the uncalibrated Lambertian photometric stereo problem, Hayakawa [1994]

firstly introduced a factorization based approach. This method first rewrites the equa-
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tions Equation (2.3.1) in into a matrix form.

I =













i11 . . . i1F
... . . .

...

iP l . . . iPF













=













n1x n1y n1z

...
...

...

nPx nPy nPz













×













l1x · · · lFx

l1y · · · lFy

l1z · · · lFz













= N × L

(2.24)

Here, (npx, npy, npz) indicates the scaled surface normal (unit surface normal mul-

tiplied with albedo) at the p-th pixel, and (lfx, lfy, lfz) is the scaled lighting direction

(unit lighting direction multiplied with its intensity) for the f -th image. Only I is

known and both N and L are unknown. The rank of both matrix N , and L are three.

By applying singular value decomposition (SVD), the matrix I can be decomposed

as:

I = UDV ⊤ = (UD1/2)(D1/2V ⊤) = N̂L̂. (2.25)

N̂ , L̂ could differ from their true values by an arbitrary 3 × 3 invertible matrix A

since N̂L̂ = N̂A−1AL̂.

Finally, the autocalibration of photometric stereo amounts to resolve the ambiguity

matrix A. Once A is estimated, the true surface normals and lighting directions can be

computed as N = N̂A−1, L = AL̂.
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Chapter 3

Auto-calibration

3.1 Ring-light photometric stereo

In the previous chapters, we have seen how auto-calibration photometric stereo algo-

rithm Hayakawa [1994] recovers the surface normals and lighting directions up to a

general linear transformation and Belhumeur et al. [1999] proved the linear ambiguity

can be reduced to a generalized bas-relief (BGR) ambiguity by surface integrability.

Since then, many works have been proposed to study and resolve this ambiguity. Dr-

bohlav and Chantler Drbohlav and Chaniler [2005]; Drbohlav and Šára [2002] showed

spike-specular reflectance can resolve the GBR ambiguity. Tan et al. Tan and Zick-

ler [2009]; Tan et al. [2007] further proved any homogenous isotropic reflectance can

resolve it. The GBR ambiguity can also be resolved by inter-reflections Chandraker

et al. [2005] and minimizing the entropy of surface albedos Alldrin et al. [2007]. All

these methods share a common limitation that depth discontinuities must be identified

before integrability can be applied to obtain a reconstruction up to the GBR ambiguity.

However, this identification of depth discontinuities is nontrivial in practice. Typically,
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a mask image is provided to separate the object from its background and the whole

object surface is assumed to be integrable. This approach cannot handle complicated

scenes like the one in Figure 1.13 (b). Furthermore, a piecewise planar scene like

Figure 1.13 (a), though consists of integrable patches, does not provide any constraint

to reduce the general linear ambiguity to the GBR ambiguity because a plane is al-

ways integrable after any linear transformation. Hence, these algorithms often require

a pre-segmented and curved smooth surface.

Different from these previous works, in this chapter, we exploit partial information

in the lighting conditions to resolve the shape ambiguity. Our method makes little as-

sumption about the scene property. Hence, our method can be applied to more general

data which cannot be handled by previous methods. Similar illumination configura-

tion has been used by Alldrin and Kriegman Alldrin et al. [2008]; Alldrin and Krieg-

man [2007b] where lighting directions are calibrated beforehand, however, Alldrin

and Kriegman [2007b] recovers only partial surface geometry and Alldrin et al. [2008]

requires more than 100 input images. In comparison, our method requires only five

images and our lighting directions are unknown.

Our method is also related to those works that combine photometric stereo and

structure-from-motion Higo et al. [2009]; Joshi and Kriegman [2007]; Lim et al. [2005].

These methods assume the surface is differentiable and are difficult to be applied to

complicated shapes like Figure 1.13 (b).

3.1.1 Ring-Light photometric stereo

Uncalibrated photometric stereo algorithms typically do not assume any prior knowl-

edge about lighting conditions. In this section, we show that if the illumination is
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partially known, i.e. directional lights lying on a view centered cone, the problem can

be significantly simplified. We first briefly review the shape ambiguity in uncalibrated

photometric stereo. Then we show that lights lying on a view centered cone signifi-

cantly reduce the ambiguity. Finally, we describe several ways to resolve the remaining

ambiguities.

3.1.1.1 Uncalibrated photometric stereo

We first briefly review the factorization based formulation of uncalibrated photometric

stereo. Suppose F images are captured for a Lambertian surface under a variant direc-

tional lighting and each image contains P pixels. Ignoring shadows, inter-reflections

and non-Lambertian effects, we can formulate the image intensity matrix I as:

I =













i11 . . . i1F
... . . .

...

iP l . . . iPF













=













n1x n1y n1z

...
...

...

nPx nPy nPz













×













l1x · · · lFx

l1y · · · lFy

l1z · · · lFz













= N × L

(3.1)

Here, (npx, npy, npz) indicates the scaled surface normal (unit surface normal multi-

plied with albedo) at the p-th pixel, and (lfx, lfy, lfz) is the scaled lighting direction

(unit lighting direction multiplied with its intensity) for the f -th image. In uncali-

brated photometric stereo, only I is known and both N and L are unknown. The rank

of both matrix N , and L are three. Applying singular value decomposition (SVD), the

matrix I can be decomposed as:

I = UDV ⊤ = (UD1/2)(D1/2V ⊤) = N̂L̂. (3.2)

N̂ , L̂ could differ from their true values by an arbitrary 3 × 3 invertible matrix A
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since N̂L̂ = N̂A−1AL̂. The autocalibration of photometric stereo amounts to resolve

the ambiguity matrix A. Once A is estimated, the true surface normals and lighting

directions can be computed as N = N̂A−1, L = AL̂.

3.1.1.2 Constraints from a ring-light

Suppose the lights are distributed on a cone centered at the viewing direction as shown

in Figure 3.1 (a). We follow the work Tan and Zickler [2009] to analyze the problem

in the projective plane where a lighting direction (lx, ly, lz) is considered as a point

(lx/lz, ly/lz). We choose a world coordinate system such that the viewing direction

is (0, 0, 1) and corresponds to the origin in the projective plane. In the projective

plane, the true lighting directions should lie on a circle centered at origin as shown in

Figure 3.1 (b). This circle can be denoted by a diagonal matrix C = diag(s2, s2,−1)

and C = S⊤CuS. Here, Cu = diag(1, 1,−1) is the unit circle and S = diag(s, s, 1)

is a uniform scaling matrix. The SVD based reconstruction Equation (3.2) recovers

lighting and normal directions up to an arbitrary invertible linear transformation A.

The estimated lights form a general conic Ĉ = A⊤CA in the projective plane as shown

in Figure 3.1 (c). Hence, we can resolve the ambiguity A by mapping Ĉ back to C. In

this subsection, we first reduce the ambiguity by mapping Ĉ to the unit circle Cu. The

remaining ambiguities are resolved in Section 3.1.1.3.

It is well known Coxeter [1989] that a conic can be computed from five points on

it. Hence, we first use five estimated lighting directions to fit the conic Ĉ which is a

3× 3 symmetric matrix. We can apply SVD again to compute a linear transformation

B that maps Ĉ to Cu, i.e.

Ĉ = UDU⊤ = (UD
1/2
1 )Cu(D

1/2
1 U⊤) = B⊤CuB.
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Figure 3.1: Ring-light photometric stereo. (a) Lighting directions lie on a view cen-

tered cone. The term ω denotes the cone opening angle. (b) In the projective plane,

these lights lie on a ring centered at origin (i.e. viewing direction). (c) When there is a

linear ambiguity, these lights lie on a general planar conic. Our algorithm resolves this

linear ambiguity by mapping lights back to their canonic positions.

Here, D
1/2
1 CuD

1/2
1 = D. Then the lighting and surface normal directions can be

updated accordingly by L̃ = BL̂, Ñ = N̂B−1. Now, the general linear ambiguity is

reduced and the estimated lights L̃ are on a view centered ring in the projective plane.

But two kinds of ambiguities remain. First, the scaling matrix S between C and Cu is

still unknown. Second, B can only be estimated up to a circle invariant transformation

P that maps Cu to Cu. In other words, there could be an ambiguity matrix P such that

B⊤CuB = B⊤P⊤CuPB. The following proposition specifies the structure of P .

Proposition 1: If a 3× 3 linear transformation P maps the unit circle Cu to itself, i.e.

P⊤CuP = Cu, then P can be decomposed as P = MnRφHtRθ, n = 1 or 2. Here, M

is a mirror transformation about y axis, Rφ, Rθ are rotations in the plane (centered at

origin), and Ht is a hyperbolic rotation, i.e.

M =













1 0 0

0 −1 0

0 0 1













Rθ =













cos θ − sin θ 0

sin θ cos θ 0

0 0 1













Ht =













1 0 0

0 cosh t sinh t

0 sinh t cosh t













.

(3.3)
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Figure 3.2: Geometric explanations of the components of the ‘ring-light ambiguity’.

The first row shows the transformations induced to lighting directions in the projective

plane. The second row illustrates the corresponding transformations to a 3D shape.

Please refer to the appendix for a proof of this proposition. By this proposition, P is

a compounded ambiguity that includes ordinary and hyperbolic rotations and a mirror

transformation.

In the next section, we will discuss these ambiguities in more detail and propose

methods to resolve them. Here we summarize these ambiguities by the following equa-

tion. The general conic Ĉ can be decomposed as:

Ĉ = B⊤CuB = B⊤P⊤CuPB

= B⊤P⊤S−⊤CS−1PB = A⊤CA
(3.4)

Here, B is known, P and S are unknown transformations. Once P, S are determined,

we can resolve the general linear ambiguity A. In the following, we refer to the com-

pounded ambiguity S−1P as the ring-light ambiguity. It is also called the ring-light

transformation depending on the context. The auto-calibration of ring-light photomet-

ric stereo amounts to estimate this compound transformation to upgrade the recon-

struction L̃, Ñ to Euclidian as: L = S−1PL̃,N = ÑP−1S.
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3.1.1.3 Ring-light ambiguities

We first briefly study each component of the ring-light ambiguity and later propose

methods to solve it. Figure 3.2 summarizes these components and their geometric

implications. The ambiguity S is a scaling in the projective plane which corresponds

to the classic bas-relief ambiguity. M flips the normal and lighting directions vertically.

It corresponds to the convex-concave ambiguity along the vertical direction. Rθ rotates

the lighting and normal directions around the origin. It preserves all origin centered

circles and could map a continuous shape to a discontinuous one. Ht is a hyperbolic

rotation that preserves the unit circle. The relative positions of points on the unit circle

are changed after a hyperbolic rotation as shown in Figure 3.2. It could also map

continuous shapes to discontinuous ones.

In the following, we show various priors that resolve these ambiguities. We first

discuss some widely used priors and later introduce three novel priors.

Integrability: Surface integrability is a widely used scene prior to resolve the ambigu-

ity in uncalibrated photometric stereo. If the scene is known to be integrable, the linear

ambiguity A can be reduced to a GBR ambiguity Belhumeur et al. [1999]. The inter-

section of the GBR transformation group with the ring-light transformation contains

only the classic bas-relief transformation. Hence, if applicable, integrability resolves

all the other components except the scaling S.

Points with Equal Albedo: Hayakawa Hayakawa [1994] showed that six general nor-

mals with the same albedo can reduce the linear ambiguity to a 3D rotation. The

intersection of the 3D rotation group with the ring-light transformation contains only

the planar rotation Rφ. Hence, this prior reduces the ring-light ambiguity to a planar

rotation.
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Lights with Equal Intensity Hayakawa’s method Hayakawa [1994] can also be ap-

plied to six general lights with equal intensity. However, since our lights lie on a view

centered cone, constraints derived this way are degenerated. Both S and a 3D rotation

cannot be resolved (explained in the next section). Hence, it reduces the ring-light

ambiguity to a planar rotation Rφ compounded with a scaling S.

Lights with Equal Interval If lights are uniformly distributed over the view centered

cone, all lighting directions are determined up to a planar rotation (about the cone

axis) and a scaling (corresponding to the unknown cone opening angle). Hence this

constraint can reduce the linear ambiguity to a planar rotation Rφ compounded with a

scaling S.

Multiple Viewpoint: Suppose a surface is observed from two different viewpoints

with known relative motion and some corresponding points can be identified among

these views. If the surface normals of both views are reconstructed up to some ambi-

guity, these corresponding points give constraints to resolve these ambiguities. In next

section, we show that two corresponding normals from two views can resolve a planar

rotation Rφ and a scaling S in both views.

Clockwise/Counter-Clockwise Lighting: M causes a vertical flipping of the esti-

mated lighting and normal directions. If the lights on the ring are turned on one by one

in clockwise or counter-clockwise, M reverses this order. Hence, M can be resolved

if the order of lighting is known beforehand.

3.1.2 A complete stratified reconstruction

We choose to combine some of the priors discussed in previous section to achieve a

Euclidian reconstruction. We favor priors on lighting configurations to handle more
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general scene. We propose two methods to reduce the linear ambiguity to a planar

rotation compounded with a scaling. In the next, we employ constraints from two

corresponding normals from two views to obtain a Euclidian reconstruction. For this

stratified reconstruction, we require observations from at least two viewpoints and five

lights of equal interval or equal intensity distributed clockwise (or counterclockwise)

on a view centered cone for each viewpoint.

3.1.2.1 Lights with equal interval

Suppose we know the order of lights (clockwise or counterclockwise). All lighting

directions are determined up to the unknown cone opening angle and a planar rota-

tion. We can assume arbitrary values of these two parameters to get pseudo lighting

directions Ľ up to a scaling S (corresponding to the cone opening angle) and a pla-

nar rotation Rφ (corresponding to the rotation about the cone axis). We can recover

normal directions up to the same ambiguity according to Ň = IĽ−1. However, as we

will see in experiments, this approach generates larger errors. Hence, we derive a more

sophisticated approach in the following.

3.1.2.2 Lights with equal intensity

We first apply the ring-light constraint described in Section 3.1.1.2 to reconstruct nor-

mal directions up to a ring-light ambiguity. Then we apply the equal lighting intensity

constraint to reduce remaining ambiguities to a mirror transformation M , a planar ro-

tation Rθ compounded with a scaling S. Afterwards, we use the known lighting order

(clockwise in our experiments) to resolve M .

After applying the ring-light constraint, the estimated lighting direction l̃ lies on

the unit circle in the projective plane and is related to the true lighting direction l by
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l = S−1P l̃. Suppose 5 lights are known to have equal intensity, we obtain

k1 = li
⊤li = l̃i

⊤P⊤S−⊤S−1P l̃i

= l̃i
⊤Rθ

⊤Ht
⊤S−2HtRθ l̃i i = 1, 2, · · · 5. (3.5)

It is easy to verify that M and Rφ are both eliminated from the equation. Here, k1 is

an unknown constant indicating the lighting intensity and i is an index of the lights.

Let F = Rθ
⊤Ht

⊤S−2HtRθ. Then Equation (3.5) is a linear equations about F , i.e.

l̃i
⊤F l̃i = k1.

Hayakawa Hayakawa [1994] used six such equations from different lighting direc-

tions to solve F . However, in our problem there are at most five independent linear

equations because of the special configuration of lights. More specifically, l̃
′ .
= HtRθ l̃

must lie on the unit circle on the projective plane, because l̃ lie on the unit circle which

is invariant under Ht and Rθ. Hence, no matter what S = diag(s, s, 1) is the expres-

sion, l̃i
⊤F l̃i = l̃

′

i
⊤S−2̃l

′

i is always a constant. In other words, S cannot be recovered

from Equation (3.5) if these lights all lie on a view centered cone. To provide an exper-

imental validation, we uniformly sample 360 lights on the unit circle. The six singular

values of all these 360 equations are 17.72, 6.70, 6.70, 0.89, 0.63, 0.00. This suggests

one degree of freedom of F cannot be determined.

Hence, we can only solve the 1D null space of F as k1F1 + k2F2. Here, F1, F2

satisfy l̃i
⊤F1̃li = 1 and l̃i

⊤F2̃li = 0 respectively, k1 is the unknown but fixed constant

and k2 can vary to generate the whole 1D null space. We substitute F = k1F1 + k2F2

into F = Rθ
⊤Ht

⊤S2HtRθ. We solve s, t, θ, k1 for any given k2 according to the

formulas provided in Appendix B. It can be verified that the solutions of t and θ are

independent of k2, while k1 and s vary according to k2. Hence, we obtain a unique

48



0 20 40 60 80 100 120 140 160 180
0.02

0.03

0.04

0.05

0.06

C
os

t 

Hypothesized φ
1
 (degree)

Cost Function

Figure 3.3: The cost as a function of the hypothesized φ1. This functions has a clear

global minimum because φ1, φ2, s1, s2 are uniquely determined in principle.

solution of Ht and Rθ but cannot determine S, and the original ring-light ambiguity is

reduced to M , S and Rφ. The result of this subsection is summarized into the following

proposition.

Proposition 2: If five lights with equal intensity can be identified, the ring-light ambi-

guity can be reduced to a mirror transformation, a planar rotation compounded with a

scaling.

3.1.2.3 Two corresponding normals in two views

We further exploit the constraints from multiple views. Suppose n1 and n2 are two

corresponding normals in different views. They are defined in their local camera coor-

dinate system and are related by the relative rotation between the two cameras, i.e.

n1 = Tn2. The relative rotation T can be computed separately, for example, by

structure-from-motion. Suppose ñ1, ñ2 are the estimated normals which are subject

to a planar rotation Rφ and scaling S. We have the following equations:

n1 ≃ S1R−φ1ñ1 n2 ≃ S2R−φ2ñ2 n1 = Tn2. (3.6)
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Here, ≃ means equal up to a scale. Hence,

ñ1 ≃ Rφ1S
−1
1 TS2R−φ2ñ2. (3.7)

Let E = Rφ1S
−1
1 TS2R−φ2. We get ñ1 ≃ Eñ2. This equation provides two indepen-

dent constraints. Hence, the four ambiguities S1, S2, Rφ1, Rφ2 can be resolved from

two corresponding normals in two views.

Equation (3.7) can be written as ñ1×Eñ2 = 0, where × is the vector cross product.

This vector equation expands to the following three equations:

s2A
(1)(φ1, φ2) +B

(1)(φ1) + s1s2C
(1)(φ2) + s1D

(1) = 0 (3.8)

s2A
(2)(φ1, φ2) +B

(2)(φ1) + s1s2C
(2)(φ2) + s1D

(2) = 0 (3.9)

s2A
(3)(φ1, φ2) +B

(3)(φ1) = 0. (3.10)

Here, D(i) are constants and A(i),B(i) and C(i) are polynomials of trigonometrical func-

tions of φ1, φ2.

A
(i)(φ1, φ2) = a

(i)
1 cosφ1cosφ2 + a

(i)
2 sinφ1cosφ2 + a

(i)
3 cosφ1sinφ2 + a

(i)
4 sinφ1sinφ2

B
(i)(φ1) = b

(i)
1 cosφ1 + b

(i)
2 sinφ1 C

(i)(φ2) = c
(i)
1 cosφ2 + c

(i)
2 sinφ2

Here, a
(i)
j , b

(i)
j and c

(i)
j are all constants. These constants are provided in Appendix C.

Given two pairs of corresponding normals, it is nontrivial to derive an analytic

solution for s1, s2, φ1 and φ2. We apply a 1D search for φ1. For each hypothesized

value of φ1, φ2 and s2 can be easily solved from Equation (3.10) of both pairs. Then

Equation (3.8) and Equation (3.9) from both pairs give totally 4 results for s1. We
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Figure 3.4: The first and the second row are the angular errors of reconstructed nor-

mal directions by using equal lighting interval and equal lighting intensity constraint

respectively. Typically, equal lighting intensity constraint generates more accurate re-

sults.

use the consistency of these four values to choose the optimal φ1 and its associated

φ2, s2, s1. In principle these four parameters are uniquely determined, so this 1D search

has a global minimum and is robust as indicated in Figure 3.3. The result of this

subsection is summarized in the following proposition.

Proposition 3: Given partial reconstructions of surface normals up to a planar rotation

and a scaling from two views, if two pairs of corresponding normals can be identified,

the reconstructions in both views can be upgraded to Euclidian.

3.1.3 Experiments

We first evaluate the two approaches to reduce the general linear ambiguity to a planar

rotation and a scaling. We use a metal sphere to record lighting directions and apply

calibrated photometric stereo to compute ground truth normal directions as a reference.

Then we try both methods on a number of examples each with the same set of input

images. The angular error in estimated normal directions of both methods are shown in
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Figure 3.5: Results for the challenging data in Figure 1. On the left are results up

to the ring-light ambiguity. In the middle is our reconstructed surface normals. For

a validation, we calibrate all incident lighting directions with a metal sphere and use

calibrated photometric stereo to compute a ground truth in the right. Our result is very

consistent to the ground truth.

Figure 3.4. The average angular errors for the three tested scenes are 5.8, 16.4 and 7.5

degrees respectively when the equal lighting interval constraint is used. These errors

are reduced to 3.0, 6.0 and 4.4 degrees if the equal lighting intensity is used. It is clear

the later generates more accurate results. Hence, in the following, we will focus on

the approach based on equal lighting intensity. The flower example has larger error in

both methods due to its strong shadowing and inter-reflection.

We apply our method to the challenging data shown in Figure 1.13. As explained

earlier, these two examples cannot be handled by previous methods because they are

either too simple (too few normals and planar surfaces) or too complicated (too many

depth discontinuities). Our method first recover a normal map up to the ring-light

ambiguity as shown in the left column of Figure 3.5. This result is then upgraded to
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Figure 3.6: Additional results. From left to right, they are one of the input images,

reconstruction up to the ring-light ambiguity and the final Euclidian reconstruction.

Some of the artifacts are due to non-Lambertian effects like shadow and highlight.

Euclidian as shown in the middle. The right is a validation computed by calibrated

photometric stereo. The difference between our results and the ground truth is small.

Some artifacts of the recovered normals on the box surface is due to the inaccuracy in

radiometric calibration. Please notice that normals in the background (a black cloth

on table to reduce inter-reflection) are very noisy which increase the average angular

error by 0.5-1 degrees in general. In practice, to handle shadows and highlights, we

use simple intensity thresholding to exclude points with non-Lambertian effects. Our

method is applied to Lambertian pixels to calibrate lighting directions. Then non-

Lambertian pixels are processed with recovered lighting directions.

An additional result is shown in Figure 3.6. From left to right, we show one of the

input image, the reconstruction up to the ring-light ambiguity and the final Euclidian

reconstruction. Some of the artifacts are due to non-Lambertian effects like shadow

and highlight which are not modeled in our method.

Next, we use a synthetic scene containing two spheres to evaluate our system un-

der various conditions. Images are synthesized at 840 × 560 resolution. The images
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Figure 3.7: Averaged angular error in the recovered normal directions as a function of

the cone opening angle and the angle between two viewpoints. In most of time, the

reconstruction error is smaller than 5 degrees.

are contaminated by Gaussian noise with zero mean and standard deviation 0.01 (pixel

values are within [0,1]). We synthesize the scene from two viewpoints and at each

viewpoint 10 lighting directions are generated on a view centered cone. Zero mean

Gaussian noise with standard deviation of 0.5 pixel is added to the true correspond-

ing pixel positions. We evaluate the reconstruction accuracy with respect to different

values of the cone opening angle ω and the angle between the two viewing directions.

The average angular error in reconstructed normal directions is shown in Figure 3.7.

In most of the cases, the reconstruction is quite good with average error smaller than 5

degrees.

3.1.3.1 A prototype device

We manufacture a prototype device for ring-light photometric stereo according to our

evaluation on synthetic data. The device is shown in Figure 3.8 (a) and consists 20 LED

bulbs that are synchronized with a video camera to capture photometric stereo image

sequences. The radius of the plate is 150 millimeters. To facilitate matching, the angle

54



(a) (b)

Figure 3.8: Shown in (a) is a prototype device. 20 LED bulbs lie on a circle with

radius of 150 millimeters centered at the viewing direction. Our method allows us to

consider the weak perspective effects of the lighting which is critical for a handheld

photometric stereo setup operating at relatively small distance. This weak perspective

effects is illustrated in (b). To ensure the opening angle of the cone is larger than 15

degrees, the distance between the camera and captured objects should be within 1.2

meters.

between two viewing directions should be less than 20 degrees. Hence, according to

Figure 3.7, the operation distance of the device should be less than 1.7 meters (cone

opening angle larger than 10 degrees) to ensure reconstruction accuracy. This device

is similar to those handheld photometric stereo setups proposed in Higo et al. [2009];

Joshi and Kriegman [2007]; Lim et al. [2005]. The advantage of our method is that our

algorithm allows us to consider the weak perspective effects of lighting as illustrated in

Figure 3.8 (b). We consider the lighting directions depend on the operation distance,

e.g. ω1 ̸= ω2. This effect is important for modeling accuracy especially when the

operation distance is relatively small. A consequence is that this device cannot be

pre-calibrated, because the incident lighting directions changes when the operation

distance changes. For example, we pre-calibrate lighting directions for an operation

distance of about 0.6 meters and apply it to the operation distance of about 0.8 meters.

This incorrect pre-calibration causes average angular error on the box scene as large as

8.5 degrees. Almost three times larger than the 3.0 degrees error when our method is
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applied.

3.1.4 Conclusion

We have presented a stratified method for ring-light photometric stereo. We have

shown that five lights on a view centered cone reduce the general linear ambiguity

to two rotations, one mirror reflection compounded with a scaling. If these lights have

equal intensity or equal interval, this compound ring-light ambiguity can be reduced

to a planar rotation plus a scaling. If two corresponding normals from two viewpoints

can be identified, Euclidian reconstruction can be obtained. Different from previous

works on uncalibrated photometric stereo, we minimize the restriction on scene prop-

erties. Hence, our method can be applied to the most general data. We also built a

prototype device to demonstrate our method. In Chapter 4 and Chapter 5, we also use

this ring-light device to simplify data capturing.
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3.2 Near-light Photometric Stereo

The photometric stereo methods we have studied so far assume directional lighting

and orthographic cameras so that every pixel in the image shares a common direc-

tional lighting. However, real world cameras are of perspective projection model and

sometimes they are very close to the object due to space limit. Furthermore, input

images are often captured under nearby point light sources and this makes the light-

ing directions vary over the scene points. While these ‘perspective’ effects of camera

model and nearby point light sources cause significant systematic errors in the normal

directions under the assumption of a directional light, these effects can actually help us

to recover the shape in another way. In this section, we study photometric stereo under

point light sources with intensity fall-off and perspective cameras. We always assume

the camera is calibrated and study the photometric stereo problem under both known

(calibrated) and unknown (uncalibrated) lighting positions. We begin by showing an

inherent shape-light ambiguity that exists in the near-light photometric stereo when

the light source positions are unknown. Under unknown directional lighting, it is well

understood that a surface can only be recovered up to a linear ambiguity Hayakawa

[1994]. We propose a patch-based factorization method for the near-light configura-

tion, which surprisingly leads to a linear shape-light ambiguity that is similar to the

directional lighting case. In other words, nearby point light sources introduce little

additional shape ambiguities. In addition, we propose two methods to resolve this

shape-light ambiguity in the near-light setting.
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3.2.1 Related works

Shape-from-shading (SfS) Horn [1989] studies a similar problem as photometric stereo

where only a single input image is available. It was observed on synthetic data Prados

and Faugeras [2003]; Tankus et al. [2003] that shape reconstruction can be significantly

improved when a perspective camera model (rather than the conventional orthographic

camera model) was used. This was further verified by experiments with real data

in Tankus et al. [2004]. Later, it was shown Prados and Faugeras [2005] that, by

considering the intensity fall-off effects of point light source, shape ambiguity in SfS

can be resolved. These works motivate us to study the problem of photometric stereo

under point light sources and perspective camera projection.

There have been several approaches that use nearby light sources. It has been

pointed out in early works by Iwahori et al. Iwahori et al. [1992, 1990], Kim and

Burger Kim and Burger [1991], and Clark Clark [1992] that the light fall-off effect due

to nearby light sources carries information about the scene depth. Unlike traditional

photometric stereo with distant lighting, the near-light photometric stereo problem be-

comes non-linear even with a Lambertian assumption. Clark later extended his method

to use nearby distributed illuminants Clark [2006]. The advantage of the light fall-off

effect for estimating depth is also used in the context of shape-from-shading Kao and

Fuh [1995]; Okatani and Deguchi [1997]; Prados and Faugeras [2005]; Samaras and

Metaxas [1999]; Wu et al. [2010].

More recently, Koppal and Narasimhan Koppal and Narasimhan [2007] showed

that depth ordering can be achieved even with uncalibrated near-field lightings. Liao et

al. Liao et al. [2007] developed a method that uses a sliding projector along the z-

direction to measure the depth using the light fall-off effect. By observing the bright-
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Figure 3.9: Perspective and light fall-off effects in near-light photometric stereo

ness changes of the scene across different projector locations, their method recovers

depth from intensity variations that obey inverse square law.

3.2.1.1 Background

Near-light photometric stereo problem explicitly accounts for the intensity fall-off and

perspective effects of the light. Scene irradiance l is a function of the distance from the

light position p to the scene point o described as

l(p, o) = E
o − p

||o − p||3 , (3.11)

where E is a scaling factor. The denominator is the product of a normalization term

and the light fall-off term, which obeys the inverse-square law. Unlike traditional far-

light setting, the near-light setting makes both the intensity and direction of the scene

irradiance l vary with the scene position as illustrated in Figure 3.9.
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3.2.2 Ambiguity in uncalibrated near-light photometric stereo

Photometric stereo algorithms are referred to as calibrated or uncalibrated when the

lighting conditions are known beforehand or not. In this section, we assume the sur-

face is Lambertian, the camera is calibrated, and all light sources have the same in-

tensity (unit intensity) but unknown positions. We propose a patch-based factorization

method, which has a global linear ambiguity in the recovered surface normal directions

and the lighting positions. This result is surprising given that similar ambiguity exists

for the uncalibrated photometric stereo under directional lighting. In other words, the

‘perspective effect’ introduces little additional shape ambiguities.

3.2.2.1 Patch-based factorization

If P Lambertian points are observed under K different directional lighting conditions,

we can formulate the photometric stereo problem as the following matrix factorization:

IP×K = NP×3L3×K .

Here, each row of the matrix I is the radiance of a point under different lighting direc-

tions, each row of N is a normal direction, and each column of L is a lighting direction.

There is a clear shape ambiguity as we can insert any invertible matrix A into this fac-

torization like

I = NL = NA−1AL = N̂L̂. (3.12)

Here, N̂ and L̂ are the ambiguous reconstructions of normal and lighting directions

respectively.

When the scene is illuminated by point light sources, each point on the surface
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has a different lighting direction and intensity, which makes the above factorization

formulation invalid. However, we can divide the image into small patches such that

the lighting conditions (directions and intensities) are consistent within a patch. We

can then apply the factorization patch by patch1. Suppose we reconstruct a lighting

direction matrix L̂
(i)

at the i-th patch up to an ambiguity matrix A(i). In the following

subsection, we will show that these ambiguities matrices A(i) are correlated and many

of them can be resolved.

3.2.2.2 Correlations of the ambiguities among patches

Let the 3D coordinates of the K point light sources be p1, p2, · · · , pK . Suppose the

centroid of the i-th patch is at the position o(i). The lighting direction (from the surface

to the light source) and intensity at this patch is

l
(i)
k =

pk − o(i)

||pk − o(i)||3 , 1 ≤ k ≤ K,

as described in Equation (3.11). The direction and length of l
(i)
k indicate the lighting

direction and intensity, respectively.

The estimated lighting conditions are related to the true configurations by a linear

ambiguity matrix A(i). Hence,

L̂
(i)

=
(

l̂
(i)

1 , l̂
(i)

2 , · · · , l̂
(i)

K

)

=

A(i)

(

p1 − o(i)

||p1 − o(i)||3 ,
p2 − o(i)

||p2 − o(i)||3 , · · · ,
pK − o(i)

||pK − o(i)||3
)

. (3.13)

1Note that the perspective effect of the camera does not matter here, because the scene radiance to

all directions are the same for Lambertian surfaces. However it does affect the integration from normal

to surfaces.
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For simplicity, we consider the following bi-linear equations:

l̂
(i)

1 ≃ A(i)(p1 − o(i)) ⇔ l̂
(i)

1 × A(i)(p1 − o(i)) = 0, (3.14)

l̂
(i)

2 ≃ A(i)(p2 − o(i)) ⇔ l̂
(i)

2 × A(i)(p2 − o(i)) = 0, (3.15)

· · ·

l̂
(i)

K ≃ A(i)(pK − o(i)) ⇔ l̂
(i)

K × A(i)(pK − o(i)) = 0. (3.16)

Here ≃ means equal up to a scale and × is the cross product of two vectors. Note

that the intensity fall-off effect in the original Equation (3.13) is not modeled in these

bilinear equations.

We can do a simple counting for the number of unknowns and the number of equa-

tions. For each patch, we obtain K vector equations which correspond to 2K inde-

pendent scalar equations. If we divide the image into N patches, we will obtain 2NK

equations. We have 3K unknowns for the lighting positions p1, · · · , pK , 3N unknowns

for the patch centroids o(1), · · · , o(N) and another 9N unknowns for A(1), · · · ,A(N).

It seems that we should have enough equations (2NK) to solve all these unknowns

(3K + 12N ). However, these equations are not all independent. In the following, we

first show there is an intrinsic linear ambiguity in these bilinear equations. In the next,

we show that if A(1) and o(1) are known, then all the other unknowns can be solved.

3.2.2.3 Intrinsic shape-lighting ambiguities

There is a global intrinsic linear ambiguity in the Eqs. (3.14)-(3.16). For any 3 × 3

invertible matrix T, and any 3× 1 vector d, we have

l̂
(i)

1 ≃ A(i)(pk − o(i)) = A(i)T−1T(pk + d − d − o(i)).
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In other words, Eqs. (3.14)-(3.16) are not enough to uniquely determine all the A(i).

The best we can get are Â
(i)
, p̂k and ô

(i)
which are related to their true values A(i), pk

and o(i) by the following equations,

Â
(i)

= A(i)T−1,

p̂k = T(pk + d),

ô
(i) = T(o(i) + d).

3.2.3 Disambiguation methods

3.2.3.1 Solution with one patch calibrated

The last subsection shows there is at least a linear ambiguity in these bilinear equations.

Here we show there is no more additional ambiguities. Suppose A(1) and o(1) are

calibrated, p1, · · · , pK can be determined from Equation (3.13). Basically, we can

solve pk from

pk − o(1)

||pk − o(1)||3 = (A(1))−1̂l
(1)

k ; 1 ≤ k ≤ K. (3.17)

Given p1, · · · , pK , we can then solve for A(i) and o(i) by minimizing the following

function:
K
∑

k=1

||̂l(i)k × A(i)(pk − o(i))||2. (3.18)

We minimize this bilinear function iteratively. We first initialize o(i) to have the same

depth as o(1), and fix it to solve A(i). We then fix A(i) to solve o(i). At each iteration, we

only need to solve a linear equation which makes the whole process converges quickly.

Note, as the camera is calibrated, there is actually only one unknown in o(i).

We can set the origin of the coordinate system at o(1). Hence, this subsection
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Figure 3.10: The light sources positions p1, p2 can be obtained by intersecting the

corresponding lighting directions at two patches o(1), o(2). The depth of o(2) is decided

by minimizing the distance between corresponding light rays.

shows that shape can be determined up to a linear ambiguity A(1) with these bilinear

Eqs. (3.14)-(3.16). Note that, it does not exclude the possibility of uniquely determin-

ing the shape from the original nonlinear Equation (3.13). A similar linear ambiguity

(i.e.., Equation (3.12)) is reported in Hayakawa [1994] for photometric stereo under

directional lighting. Please note that the ambiguity here has 9 degrees of freedom.

Under directional lighting, one only needs to know the ambiguity matrix A up to a

scaling in Equation (3.12) to get the true normal directions. On the other hand, we

need to know the exact A(1) to obtain p1, · · · , pK . This is because our solution for the

lighting positions in Equation (3.17) requires the lighting intensities to be calibrated

for determining the lighting positions according to the intensity fall offs.

64



3.2.3.2 Solution with two patches calibrated

Since it is difficult to calibrate the absolute lighting intensity, we also propose a more

practical solution here. We might instead calibrate the lighting directions at two patches,

e.g.., obtain both A(1) and A(2) up to a scaling. This can be done by inserting a metal

sphere at these patches to record their lighting directions. We might also apply any

existing autocalibration method to recover them. We can then compute the lighting

positions p1, · · · , pK by intersecting the light rays centered at o(1) and o(2) as shown

in Figure 3.10. Essentially, the lighting positions are solved by minimizing

||̂l(1)k × A(1)(pk − o(1))||2 + ||̂l(2)k × A(2)(pk − o(2))||2. (3.19)

We can still set o(1) at origin and use a 1D search for the depth of o(2) to minimize

Equation (3.19). Once the lighting positions are decided, we can apply the same itera-

tive method as in the previous subsection to obtain the complete shape.

3.2.4 Calibrated perspective photometric stereo

The previous section uses a patch-based factorization to analyze the intrinsic shape

ambiguity in the uncalibrated case, and derives two different methods to calibrate the

lighting positions. Nevertheless, patch-based factorization has its limitations. If the

patch size is too large, the directional lighting assumption within each patch is less

valid. However, when the patch size is too small, many of the patches do not have

enough shape changes for factorization (all normals within a patch must span a rank

3 linear space). In the following, we consider the problem under calibrated lighting

positions and propose a more sophisticated method for shape reconstruction.
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3.2.4.1 Light fall-off depth cue

Since the camera is calibrated, the 3D position x of a pixel can be determined from its

depth d. We can represent this position as x(d) and calculate the lighting direction and

intensity at this pixel as

lk(d) =
pk − x(d)

||pk − x(d)||3 , 1 ≤ k ≤ K.

As the camera is calibrated, the viewing direction v is known at each pixel. Now,

at each pixel, we obtain a viewing direction v and a set of lighting directions lk(d) for

a hypothesized depth d. Suppose the surface reflectance is described by a reflectance

model as I = f(l, v, n), where I is the scene radiance, l, v, n are the lighting, view-

ing and normal directions respectively. We can fit a surface normal direction n(d) as

follows,

n(d) = argmin
n

Cd(n) =
∑

k

||f(lk(d), v, n)− Ik||2. (3.20)

Here Ik is the recorded scene radiance under the k-th lighting direction, and n(d) is the

optimal surface normal direction for the hypothesized depth d.

Note that the fitting residual, i.e.., the minimum of Cd(·), measures the validity of

the hypothesized depth d. When d is close to the true depth, we should be able to find

a normal n to reduce Cd(·) to zero. This gives us a strong cue to infer the depth at each

pixel. We validate this depth cue on synthetic and real data in Figure 3.11. On the left,

we show a synthetic image of a Lambertian surface. The fitting residual is plotted as a

function of the hypothesized depth d for several pixels. The ground truth depth is also

marked in this plot. It is clear that the fitting residual has a global minimum at the true

depth value. On the right, we plot this fitting residual for some points on a real surface.
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Figure 3.11: Reconstruction error w.r.t. the hypothesized depth d. Camera is located

at d = 0, and light sources are located at around d = 110. The left and right are plots

from synthetic and real data respectively.

Though the ground truth depth is unknown, the curve has a clear global minimum.

Here we assume the real surface can be modeled by the Lambert’s model, though we

might use any parametric reflectance model such as the Cook-Torrance model Cook

and Torrance [1982] or Oren-Nayar model Oren and Nayar [1994].

3.2.4.2 Depth consistency at neighboring pixels

The novel depth cue enables us to estimate both depth and normal direction at each

pixel independently. However, the depth and normal directions of neighboring pixels

are highly correlated. Here, we exploit this relationship to facilitate the shape recon-

struction. For two neighboring pixels i, j, suppose their depths and associated 3D

positions are di, dj and xi, xj respectively. We can define a tangent vector on the object

surface as xi−xj . This tangent vector should be perpendicular to the surface normals at

i, j. Hence, the estimated normals ni, nj at these two pixels must satisfy the following
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constraints:

n⊤

i (xi − xj) = 0,

n⊤

j (xi − xj) = 0.

3.2.4.3 Graphical model for depth and normal recovery

We can formulate the depth cue and the depth consistency at neighboring pixels into a

graph optimization problem. In this graph model, each vertex represents a pixel where

we need to infer a depth d. At each pixel, there is an associated normal n(d) for every

depth value. Every pixel is connected to its four neighbors in the graph. Hence, we

can define an objective function of the following form:

∑

i

D(i, di) +
∑

(i,j)∈N

S(i, j, di, dj). (3.21)

Here, N is the set of all neighboring pixels. D(i, di) is the data cost that measures the

feasibility of assigning the depth di to the pixel i. We take the normal direction fitting

residual as this cost. In other words, D(i, di) is the minimum value of Cdi(n) at the

pixel i. S(i, j, di, dj) is the smooth cost to enforce the depth consistency at neighboring

pixels. We simply set it as

S(i, j, di, dj) = (ni + nj)
⊤(xi − xj).

ni, nj are the normal direction at i, j associated with the depth di, dj . This objec-

tive function Equation (3.21) can be optimized by the tree-reweighted belief propaga-

tion Kolmogorov [2006]; Szeliski et al. [2008]; Wainwright et al. [2005].
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(a) (b) (c) (d) (e)

Figure 3.12: Experiments on synthetic data. (a) shows one of the input image. (b) is

the ground truth normal as a reference. (c) is the normal map computed by patch-based

factorization. Each patch is subject to a different (and unknown) linear transform. (d)

shows the result from the solution with one patch calibrated (known A(1), o(1)). (e)

shows the result from the solution with two patches calibrated (known A(1), o(1) and

A(2), o(2)).

3.2.5 Experiments

We first evaluated our method for uncalibrated photometric stereo. For the method

with one patch calibrated, we only validated it on synthetic data as it is difficult to

calibrate the lighting intensity. Our results on two synthetic examples are provided in

Figure 3.12. One of the input images and the ground truth normal map are provided in

Figure 3.12 (a) and (b) respectively. Here, the x, y, z components of a normal direction

is linearly scaled to the range [0, 1] for visualization through the RGB channels. (c)

is the results of the patch-based factorization, where each patch is up to a different

ambiguity matrix A(i). (d) shows the normals corrected by our estimated A(i) according

to the known A(1), o(1) in one patch. (e) is the result corrected by the estimated A(i)

according to the known A(1),A(2) (up to a scaling) and o(1), o(2 in two patches. Our

reconstructed normals visually resemble the ground truth.

For a numeric validation, we also provided a map of angular error for these esti-

69



mated normal directions in Figure 3.13. The error maps corresponding to our solutions

with one patch and two patches calibrated are provided in Figure 3.13 (b) and (c) re-

spectively. The average angular errors were 3.7, 6.4 degrees and 3.9, 8.8 degrees for

the ‘bunny’ and ‘dragon’ data respectively. Part of this error came from the patch-

based approach (note the patch seams in Figure 3.12 (d) and (e)). The results might be

improved by making patches overlap. However, overlapping patches generally will not

enhance the correlation significantly, because there are often not enough normal sam-

ples in the overlapped seam to solve the remaining A(i) from A(1). We also compared

our method with conventional photometric stereo methods with directional lighting

assumption. We chose the lighting directions at the object center as the lighting direc-

tions of the whole picture in applying conventional methods. The corresponding error

maps are shown in Figure 3.13 (a). The average angular error here were 18.1 and 18.3

degrees for the ‘bunny’ and ‘dragon’ data respectively, which were significantly higher

than that in our methods.

We also evaluated our method with real data in Figure 3.14. One of the input image

is shown in Figure 3.14 (a). (b) is the results of the patch-based factorization, where

each patch is up to a different ambiguity matrix A(i). We applied our disambiguation

method with two patches calibrated to generate the results in (c). Once the lighting

positions are known, the graph-based method was applied to generate the results shown

in (d). This graph-based method does not suffer from the patch seams and produces

the best result.
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(a) (b) (c)

Figure 3.13: Angular errors in the recovered normal map. From left to right, they are

the errors of conventional directional lighting photometric stereo, errors in our solution

with one patch calibrated and error in our solution with two patches calibrated. The

angular error (in degrees) are visualized according to the color bar on the right.
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(a) (b) (c) (d)

Figure 3.14: Experiments on real data. (a) shows one of the input image. (b) is the

normal map generated by patch-based factorization. Each patch is subject to a differ-

ent (and unknown) linear transform. (c) shows the result from the solution with two

patches calibrated (known A(1), o(1) and A(2), o(2)). (d) is the result from our graph

model.
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3.2.6 Conclusion and discussion

We study photometric stereo with near point light sources where each surface point has

different lighting direction and intensity. We design a bilinear patch-based factoriza-

tion method which has a similar linear shape ambiguity as the conventional directional

lighting photometric stereo. For practical applications, we extend this method to work

with calibration within two patches. To overcome the difficulty in selecting an optimal

patch size, we further propose a graph-based method to solve the problem when the

lighting positions are calibrated. Our methods are tested on both synthetic and real

data and produce good results.

In experiments, we also find some limitations of our methods. The iterative mini-

mization of Equation (3.18) is sensitive to the estimation of lighting positions p1, · · · , pK .

The graph-based solution for the calibrated case generate good normal directions.

However, the resulted depth looks poor unless the distance between the light and object

is kept very small to ensure significant lighting intensity fall-off effects.
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Chapter 4

Non-Lambertian photometric stereo

In the previous chapter, we have studied auto-calibration photometric stereo with Lam-

bertian reflectance model. In this section, we will further study reflectance symmetries

and non-Lambertian photometric stereo. More specifically, we exploit reflectance sym-

metries to work on objects with spatially varying isotropic BRDF. Isotropic BRDF is

very general and sometimes too complex to be approximated by the sum of a specular

and a diffuse lobe. As a result, methods like Barsky and Petrou [2003]; Coleman Jr

and Jain [1982]; Ikeuchi [1981]; Nayar et al. [1990] fail on general isotropic BRDFs.

In this chapter, we design a robust algorithm to identify iso-depth contours from pho-

tometric stereo images with known lighting conditions. Although these iso-depth con-

tours contain only partial of the information required to recover the surface, they can

be combined with multi-view stereo to recover full geometry which will be studied in

next chapter.
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Figure 4.1: Illustration of an isotropic pair. Symmetric light source vectors are ob-

tained by reflecting s about the plane spanned by the surface normal n and viewing

direction v. The observed lighting intensities of s′ and s are the same.

4.1 Iso-depth contour estimation

Alldrin and Kriegman Alldrin and Kriegman [2007a] observed that isotropy allows

almost trivial estimation of iso-depth contours in the absence of global illumination

effects such as shadows and inter-reflections. We propose an algorithm that is more

robust in real data than the naı̈ve approach described in Alldrin and Kriegman [2007a].

Specifically, we relax the assumption about lighting and propose a method to enhance

robustness to global illumination effects.

Isotropic pair Two light source diretions s and s
′ form an isotropic pair if they satisfy

n
⊤
s = n

⊤
s
′ and v

⊤
s = v

⊤
s
′ where n is the normal of a surface patch and n is the

viewing direction (Figure 4.1).

The main consequences of isotropic pairs can be summarized as follows.

Fact 1. For any isotropic pair of light sources defined relative to the surface normal

and viewing direction, the value of an isotropic BRDF is identical.

Fact 2. For a given surface normal n and viewing direction v, the emitted radiance

E(s) from an isotropic material is symmetric about the span of n and v (barring non-

75



local illumination effects). Consider an isotropic pair of light sources s and s
′. From

Equation (2.2.3.1), it can be known E(s) = E(s′) since θo = θ′o, θi = θ′i and ∆φ = ∆φ′.

Since an isotropic pair can be form from any light source by reflecting it about the plane

spanned by n and v it follows that the emitted radiance E(s) is symmetric about the

plane spanned by n and v.

Fact 3. For a given surface normal n and and viewing direction v, consider the emitted

radiance function E(s) resulting from isotropic BRDF ρ. Then in practice, E(s) is only

symmetric about the span of n and v.

So based on the three facts above, we could recover the symmetry plane spanned by

n and v at each point on the surface by dectecting symmetry in the emitted radiance

function E(s) as measured over directional lighting that moves on a view-centered

circle. In the camera local coordinate system, where the z-axis is aligned with the

viewing direction, this plane gives the azimuth angle φg of the surface normal, which

is the angle between the x-axis and the normal’s projection in the xy-plane. We can

recover φg at each pixel as shown in Alldrin and Kriegman [2007a] by minimizing the

following objective function,

F (φg) =
N
∑

i=0

min

{

η;
E(φi)

E(r(φi, φg))
+

E(r(φi, φg))

E(φi)

}

, (4.1)

where η is a threshold to account for outliers and r(φi, φg) is a function mapping angle

φi to its reflected position about angle φg. In our experiments, we use a threshold

of η = 2.1. Figure 4.3 (a) shows the observed pixel intensities under 36 different

lighting directions on a view-centered circle. The vertical axis of the chart indicates

pixel intensities, while the horizontal axis is the range of azimuth angles. The red

symmetry axis of these observations provides a good estimation of the azimuth angle.
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(a) (b)

Figure 4.2: (a) An input image with cast shadow; (b) Fourier series fitted image;

Once azimuth angles are computed, at each pixel, we can recover an iso-depth contour

by tracing along the directions perpendicular to the xy-plane projection of the surface

normal there. For easier reference, we refer this direction of a projected surface normal

as the azimuth direction in the rest of the thesis.

Figure 4.2 (a) shows one input image of the Buddha dataset. The cast shadow of

the belly of the Buddha is removed using our fitting method. The artifacts on the belly

of the Buddha are caused by normals facing the camera. In this situation, the emitted

radiance curve should be flat and will be affected by noise. However, these artifacts

will not increase reconstruction error since the depth in this area is not changing.

Light Source Interpolation In practice, it is more convenient to capture images

with a handheld bulb, i.e. a point light source that does not lie precisely on a view-
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Figure 4.3: (a) The symmetry axis of intensity profiles tells the azimuth angle of a

pixel’s normal direction; (b) cast shadows can break this symmetry; (c) the intensity

profile of most of isotropic BRDFs in Mcmillan et al. [2003] can be well represented

by a 2-order Fourier series.

centered circle. So we compute spatially variant lighting directions at each pixel, and

interpolate the desired observations from recorded pixel intensities.

We take the average depth of an object (computed from the reconstructed sparse

3D points in Section 5.3) to estimate an approximate 3D position of each pixel. We

also calibrate the 3D positions of the light source (see the experiments section). The

lighting directions at each pixel are then computed according to the 3D positions of

that pixel and the light sources.

To allow flexible data capture, we interpolate observations under lighting directions

lying on a view-centered circle, and compute the azimuth angle from these interpolated

observations. We study this interpolation problem in the projective plane where a unit

3D direction (x, y, z) is represented by a 2D point (x/z, y/z). As shown in the left of

Figure 4.4, the original lighting directions at a pixel are represented by the red points.
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Figure 4.4: We compute a Delaunay triangulation of the original lighting directions

(red dots) in the projective plane. The desired observations (blue dots) on a view-

centered circle are generated by linear interpolation within these triangles. Left: the

circle radius d is the mean distance between the red dots and the viewpoint v. Right:

the circle radius d is set as (di + do)/2. Here, di (or do) is the largest (or smallest)

distance between v and the red dots on the inner (or outer) conic.

We compute a Delaunay triangulation of these points in the projective plane. The

desired observations – those blue dots – on a view-centered circle are generated by

linear interpolation within these triangles. The radius d of the blue circle is computed

as the mean distance between the red dots and the viewpoint v.

Global Illumination Effects To improve accuracy, we need to identify cast shad-

ows, which break the symmetry of pixel intensities. Figure 4.3 (b) shows an example

pixel with cast shadow. (This pixel is marked in red in the input image of the ‘Buddha’

example in Figure 5.7.) The original intensity profile marked by red ‘×’ is asym-

metric. Though we might use an intensity threshold to detect shadows, it is hard to

identify penumbra this way. Two samples in the penumbra are marked with red ‘⊗’

in Figure 4.3 (b). As shown in Figure 4.3 (b), the azimuth angle estimated by the

naı̈ve method in Alldrin and Kriegman [2007a] is far from the ground truth at this

point. Points in the penumbra also cause problems in the reflectance estimation in Sec-
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tion 5.4. So we identify them as ‘outliers’ by fitting a parametric model to the observed

intensity profiles. Consider a Lambertian point with surface normal n = (nx, ny, nz)

and albedo ρ. Its intensity should be ρrnx cos θ + ρrny sin θ− ρznz when the lighting

direction is (r cos θ, r sin θ,−z). This motivates us to fit a truncated Fourier series

A0 +
∑

k

Ak cos kθ +
∑

k

Bk sin kθ

to an intensity profile. We evaluate the fitting error on synthetic data generated ac-

cording to the MERL BRDF database Mcmillan et al. [2003]. For each BRDF in the

database, we uniformly sample ninety normals along a longitude on the visible upper

hemisphere, and render them under a light moving on a view-centered circle. Fig-

ure 4.3 (c) plots the normalized RMSE (root-mean-square error) of all materials with

different orders of Fourier series. For most materials, an intensity profile can be well

represented by a second order (i.e. 1 ≤ k ≤ 2) Fourier series with normalized RMSE

less than 5%. So we always apply RANSAC to fit a second order Fourier series to each

observed intensity profile, and estimate the azimuth angle according to the symmetry

of the fitted curve. As shown by the green vertical line in Figure 4.3 (b), our estimated

azimuth angle is closer to the ground truth. In fact, this fitting also makes our method

less sensitive to specular inter-reflections, which are outliers above the fitted curve.

Tracing Contours Once an azimuth angle is computed at each pixel, we proceed

to generate iso-depth contours. Starting from every pixel, we iteratively trace along the

two directions perpendicular to the azimuth direction with a step of 0.1 pixel. Specifi-

cally, suppose the estimated azimuth angle is θ at a pixel x. We trace along the two 2D

directions d+ = (cos(θ+π/2), sin(θ+π/2)) and d− = (cos(θ−π/2), sin(θ−π/2))

to x+ = x + 0.1d+ and x− = x + 0.1d−. We then replace d+ and d− according to the
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azimuth angles of x+ and x− respectively and continue to trace. We stop tracing when

the maximum number of iterations is reached (500 in our experiments). Pixels on one

traced curve should have the same distance to the image plane. To avoid tracing across

discontinuous surface points, we use the method described in the ‘NPR camera’ Raskar

et al. [2004] to identify discontinuities. Further, we define a confidence measure for

these traced contours as the inverse of the maximum curvature along them. Intuitively,

smoother contours with relatively small curvature are more reliable.

4.2 Experiment

We evaluated our algorithm on real data with two hardware setups. Both setups used

a PointGrey Grasshopper camera, which captures linear images at 1200× 900 resolu-

tion. The first setup used a handheld bulb as light source to ensure data capture flexi-

bility. The second one used blinking LED lights synchronized with the video camera

to speedup capture.

Handheld System Consisting of just a video camera and a handheld light source,

this system is compact and portable. At each viewpoint, we moved a handheld bulb

to capture a short video clip (about two minutes), and then uniformly sampled about

100 images with different lighting directions. The light source positions and intensities

were recorded with calibration spheres.

Ring-Light System To facilitate data capture, we built a simple device shown in

Figure 4.5. 72 LEDs were uniformly distributed on two concentric circles of diameter

400 and 600 millimeters respectively. A video camera was mounted at the center of

these circles, facing the direction perpendicular to the board 1. The camera was syn-

1The camera was mounted manually. It might not exactly sit on the circle center. Its direction
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Figure 4.5: The hardware setup. Left: our device consists of a video camera and

two circles of LED lights. Right: we need to calibrate one parameter θ0 to determine

lighting positions.

chronized with the LED lights such that at each video frame, there was only one light

turned on.

We pre-calibrated the intensities and positions of these LEDs. Since they are uni-

formly distributed and the circle radiuses are known, we only need to calibrate one

parameter θ0 to determine their positions. Here, θ0 is the reference angle of the first

LED light as shown in Figure 4.5. To calibrate the rotation angle θ0, we first capture

the diffuse board at some slanted positions (indicated as blue lines in Figure 4.6) and

compute the azimuth angle of the normal direction of the board. The computed angle

should be θ0 + α, where α is the true azimuth angle. α is known, since the 3D po-

sition of the board is known from its calibration pattern. Hence, we can obtain θ0 by

subtracting α from the estimated values.

Real-world light sources like LEDs are not ideal point-light sources. Their inten-

might also be slightly off. We ignored these two factors as they introduce little errors according to our

experiments.
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Figure 4.6: Top view of the calibration setup. We capture a diffuse board at several

known positions (black lines) to calibrate camera vignetting and light intensity. Some

additional boards (blue lines) are used to calibrate the angle θ0.

sities toward different directions are different, and thus the intensity distribution of

each LED needs calibration. We calibrated intensity distribution by capturing a diffuse

board roughly parallel to the image plane at multiple depths as shown in Figure 4.6.

The black lines indicate the positions of this board viewed from top-down. A check

board calibration pattern is printed at the four corners of the board, such that its 3D po-

sition can be computed with the method described in Zhang [2000]. Assume the board

is Lambertian with unit albedo. At each point, the observed pixel intensity should be

I = n⊤lV . Here l, n are the local lighting and normal directions, and V is the light

intensity. Hence, we can capture V at each point on the board as I/n⊤l. We linearly in-

terpolate these captured values to obtain the result in a continuous 3D volume. During

our experiments, we always divide an observed pixel intensity by the lighting intensity

at its 3D position.

Since we considered LEDs to be point light sources. Hence, at a general surface

point, the local lighting directions will form two conics in the projective plane as il-

lustrated on the right of Figure 4.4. When computing azimuth angles, we performed

a Delaunay triangulation based interpolation as introduced in Section 4.1. We chose a
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circle with diameter d = (di + do)/2 to interpolate the required observations. Here, di

(or do) is the largest (or smallest) distance between v and the original lighting directions

– the red dots – in the inner (or outer) conic.

4.2.1 Errors in iso-depth contours

We evaluated the accuracy of our obtained iso-depth contours with the ‘Cat’ example

under both capture setups. Figure 4.7 shows the average depth error as a function

of the contour length. The depth error was measured as the difference between the

maximum and minimum ‘ground truth’ depths along an iso-depth contour. The red

and green curves are the result from the handheld and ring-light systems respectively.

The handheld system had larger error, since we only calibrated the overall light source

intensity there, while we calibrated the light intensity distribution for the ring-light

system. The error of the ring-light system will become larger as shown by the cyan

curve, if we only calibrate the overall intensity of each LED. Typically, the depth

error increased linearly with the length of iso-depth contours. Though shorter contours

had less depth fluctuation, longer ones required less iterations of depth propagation to

cover the whole surface, and hence, accumulated less error. In our experiments, we

always used iso-depth contours of 50-pixel length, which often had about 0.6 and 0.3

millimeter depth changes for the handheld and ring-light system respectively.

4.2.2 Number of images at each viewpoint

We also evaluate the accuracy of the captured shape and BRDF (produced by our algo-

rithm described in the next chapter) with different number of input images from each

viewpoint. We only perform this evaluation with the ring-light system for simplicity in

84



20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

length of contours (pixels)
de

pt
h 

er
ro

r 
(m

m
)

 

 

ringlight system (without light
intensity distribution)
ringlight system
handheld system

Figure 4.7: Average depth error of all iso-depth contours of the ‘Cat’ example. This

error increases linearly with contour length.
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Figure 4.8: Mean shape error of the ‘Buddha’ example. This error does not change

significantly with different number of LEDs.

data capture.

We first evaluated the shape accuracy on the ‘Buddha’ example shown in Figure

7 of the main paper. Figure 4.8 shows the mean shape reconstruction error (in mil-

limeters) as a function of the number of LEDs in each viewpoint. We always chose

equal number of uniformly distributed lights on both the outer and inner circles. Since

our Fourier series fitting requires at least 5 LEDs from each viewpoint, we begin the

plot from 10 lights (5 on each circle). We found the mean shape error did not change

significantly for different number of LEDs.

We also evaluated the reflectance accuracy with different number of LEDs. We
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creases with more LEDs.

first measured the BRDF of a green paint after applying it to a sphere of known shape,

and capturing the BRDF from images with calibrated directional lighting. We took

this measurement as ‘ground truth’ and compared our result with it. This experiment

is evaluated with another painted figurine shown on the right of Figure 4.9. The left

of Figure 4.9 shows the relative root mean square error (RMSE) of our result with

different number of LEDs from each viewpoint. We computed the RMSE by

Erms =

(

∑

θh,θd,φ

(f(θh, θd, φ)− f̂(θh, θd, φ))
2

f(θh, θd, φ)2

) 1

2

Here, f(·), f̂(·) are the ‘ground truth’ and recovered BRDFs respectively. This error

converges to about 8.5% when about 30 LEDs are used. So in our experiments, we

always used 30 LEDs for the ring-light system.

4.3 Conclusion

We have presented a robust algorithm to identify iso-depth contours from images under

ring-light conditions. Global illumination effects such as cast shadows and specular
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inter-reflections are treated as outliers. Lighting conditions are pre-calibrated and we

have shown that 30 images are sufficient to produce accurate iso-depth contours. In

the next chapter, we will combine these iso-depth contours and multi-view stereo to

recover complete object shape and spatially variant BRDF.
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Chapter 5

Appearance capture by multi-view

photometric stereo

Appearance capture methods recover both 3D shape and surface reflectance of objects,

allowing photorealistic rendering of the captured objects from arbitrary viewpoints

and lighting conditions. This capture is an important and challenging problem with

many applications such as graphics and reverse engineering. Typically, appearance

capture is performed with sophisticated hardware setups such as the light stage of

Ghosh et al. Ghosh et al. [2009] and the coaxial lights of Holroyd et al. Holroyd et al.

[2010]. Though these methods achieve highly accurate results, the data capture setup

is expensive and complicated. We design a method with simple setup so that it can be

used more widely. As shown in the previous chapter, our simplest setup only contains

a digital camera and a handheld moving light source. Compared with Holroyd et al.

[2010], our method achieves lower but still useful accuracy (0.3 millimeters vs. 50

microns). This lightweight solution provides a practical step towards enabling casual

users the ability to perform appearance capture.
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The appearance of opaque objects is well represented by a bi-directional reflectance

distribution function (BRDF). Most previous methods on simultaneous shape and BRDF

capture, e.g. Goldman et al. [2005]; Hernández et al. [2008], assumed specific para-

metric BRDF models. Their performance degrades when the real objects have different

reflectance from the assumed model.

In the previous chapter, we exploit reflectance symmetries to work on objects with

general spatially varying isotropic BRDF to identity ‘iso-depth contours’, i.e. pix-

els with the same distance to the image plane, from photometric stereo images. In

this chapter, we collect iso-depth contours from multiple viewpoints to reconstruct the

complete 3D shape. Specifically, we first apply structure-from-motion Hartley and Zis-

serman [2003] to reconstruct a sparse set of 3D points. We then propagate the depths

of these 3D points along iso-depth contours. Each propagation generates additional 3D

points, whose depths can be further propagated. A surprisingly small number of 3D

points (about two hundred) can be propagated to reconstruct the complete 3D shape

(about two hundred thousand points). Once the shape is fixed, we use the same set of

input images to infer the spatially varying reflectance. We assume the BRDF at each

surface point is a linear combination of a few basis isotropic BRDFs which are repre-

sented by 3D discrete tables to handle general material. The basis BRDFs and mixing

weights at each point are iteratively estimated by the ACLS method Lawrence et al.

[2006].

5.1 Related work

Image-based modeling. These methods reconstruct a 3D shape and a ‘texture map’ to

model objects from images. Furukawa and Ponce [2010]; Lhuillier and Quan [2005]
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are two recent representative methods. Texture color at each surface point is decided

according to its image projections. However, a texture map is often insufficient to

represent general non-Lambertian materials.

Shape scanning and reflectance fitting. To obtain precise 3D shape, laser scan-

ners and structured-light patterns were used in Levoy et al. [2000]; Rusinkiewicz et al.

[2002]; Zhang et al. [2004]. Based on a precise 3D reconstruction, parametric re-

flectance functions can be fitted at each surface point according to the image obser-

vations, as in Lensch et al. [2003]; Sato et al. [1997].These methods require precise

registration between images and 3D shapes. Since different sensors are used for shape

and reflectance capture, this registration is difficult and often causes artifacts in mis-

aligned regions. Some methods Aliaga and Xu [2008]; Nehab et al. [2005] combine

reflectance recovered from photometric stereo and shape recovered from structured-

light, where registration is relatively simple. However, they need to capture images

under both structured-light and varying directional light at each viewpoint, which is

tedious and requires a more complicated setup than ours.

Photometric appearance capture. Our method belongs to photometric approaches

that capture both shape and reflectance from the same set of images. Most of previ-

ous methods, e.g. Goldman et al. [2005]; Hernández et al. [2008]; Lim et al. [2005],

assumed specific parametric BRDF models such as Lambert’s or Ward’s model Ward

[1992]. The performance of these methods degrades when the real objects have differ-

ent reflectance from the assumed model.

Some other methods employed a sophisticated hardware setup to achieve high qual-

ity results. Ma et al. Ma et al. [2007] and Ghosh et al. Ghosh et al. [2009] used a light

stage where the intensity of each LED on the stage was precisely controlled. Holroyd

et al. Holroyd et al. [2010] required specialized coaxial lights. This requirement of
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expensive and complicated hardware limits their wide application. Recently, a few

algorithms Alldrin et al. [2008]; Holroyd et al. [2008] were proposed for appearance

capture by exploiting various reflectance symmetries that are valid for a broader class

of objects. However, Holroyd et al. [2008] required up to a thousand input images at

each viewpoint and Alldrin et al. [2008] relied on fragile optimization. Tan et al. Tan

et al. [2011] and Chandraker et al. Chandraker et al. [2011] both recovered iso-contours

of depth and gradient magnitude for isotropic surfaces. Additional user interactions or

boundary conditions are required to recover the 3D shape.

The work closest to our method is Alldrin et al. [2008]. Both methods are built

upon reflectance symmetry embedded in ‘isotropic pairs’ introduced in Tan et al.

[2007]. There are three key differences between our method and Alldrin et al. [2008].

First, we reconstruct a complete 3D shape rather than a single-view normal map. Sec-

ond, we combine multi-view geometry and photometric cues to avoid fragile iterative

optimization of shape and reflectance. Third, our method works with general tri-variant

isotropic BRDFs while Alldrin et al. [2008] assumed bi-variant BRDFs to simplify the

optimization.

BRDF acquisition. Our work is also related to BRDF acquisition methods such

as Dong et al. [2010]; Ren et al. [2011]. These methods are only applicable to near-

flat surfaces where the surface normals are known beforehand. Our method can be

considered as a generalization of these methods to non-planar surfaces.

5.2 System pipeline

We provide an block diagram of our system in Figure 5.1. We capture images from

multiple viewpoints. At each viewpoint, we capture photometric stereo images with
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Figure 5.1: System pipeline. We recover iso-depth contours from photometric stereo

images and recover a sparse 3D point cloud by structure-from-motion. In the figure

showing iso-depth contours, the gray intensity encodes the estimated azimuth angles,

and the colored curves are iso-depth contours. We then propagate the depths of these

3D points along the iso-depth contours to recover the complete 3D shape. Once the

shape is fixed, we estimate the spatially varying BRDF from the original input images.

a moving light source, which can be simply a handheld bulb. We design a robust

algorithm to identify iso-depth contours from these images (Chapter 4). Further, we

apply structure-from-motion Hartley and Zisserman [2003] to images from different

viewpoints to reconstruct a sparse set of 3D points. We then derive a complete 3D

shape by propagating the depths of these points along the dense iso-depth contours.

This initial shape is further refined according to the method described in Nehab et al.

[2005]. Once the shape is fixed, we estimate a set of basis isotropic BRDFs and their

mixing weights at each surface point by the ACLS method Lawrence et al. [2006] to

model the surface reflectance.
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Figure 5.2: We propagate the depth of x to the iso-depth contour segment Ci that passes

through its projection in the i-th view. This propagation generates new 3D points, e.g.

y1, y2, whose depths in other images can also be propagated along their corresponding

iso-depth contours Cj1, Cj2.

5.3 Shape reconstruction: multi-view depth propaga-

tion

A standard structure-from-motion algorithm such as Lhuillier and Quan [2005]; Snavely

et al. [2006] can reconstruct a set of sparse 3D points on the object. We capture ex-

periment objects on a turntable with a checkboard pattern to ensure sufficient feature

matching for textureless examples. Since structure-from-motion algorithms could be

affected by moving highlights, we compute a median image at each viewpoint by tak-

ing the median intensity of each pixel and use these images for feature matching. Re-

constructed 3D points are combined with the traced iso-depth contours to recover the

complete 3D shape.

Depth Propagation As illustrated in Figure 5.2, given a reconstructed 3D point x,

we project it to all images where it is visible. Suppose an iso-depth contour Ci goes

through its projection in the i-th image. We perform a depth propagation to assign the

depth of x to all pixels on Ci. (If the depth of a pixel on Ci is already known, we keep it
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unchanged.) This propagation generates new 3D points, whose depths in other images

can also be propagated. We begin with a sparse set of 3D points P reconstructed by

structure-from-motion. Depth propagation with P in all images generates a large set

of 3D points P ′. We then replace P by P ′ and apply depth propagation iteratively. We

keep iterating until P ′ is empty.

Direct application of the algorithm described above will generate poor results.

There are a few important issues which must be addressed for robust 3D reconstruc-

tion.

Point Sorting We sort all points in P according to the confidence of their asso-

ciated iso-depth contours. Note that if a point is visible in K different views, it is

repeated K times in P and each repetition is associated with an iso-depth contour in

one view. At each iteration, we only select half of the points in P of high confidence

for depth propagation. We then remove those selected points, and insert P ′ into the

sorted set P for the next iteration.

Visibility Check We should not propagate the depth of a 3D point in an image

where it is invisible. However, the visibility information is missing for 3D points

generated by propagation. So we apply a consistency check when propagating the

depth of a 3D point x to a contour C. We check pixels on C one by one, starting from

the projection of x to the two ends of C. If a pixel p fails the check, we truncate C

at p, and only assign the depth of x to pixels on the truncated contour. If the updated

contour is too short (less than 5 pixels in our implementation), we do not propagate.

To evaluate consistency at a pixel p, we assign it the depth of x to determine its

3D position. We then use the surface normal of x to select L (L = 7 in our imple-

mentation) most front parallel views where x is visible. We assume p is visible in all

these L images and check the consistency of the azimuth angles at its projections. The
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azimuth angles at corresponding pixels in two different views uniquely decide a 3D

normal direction 1. If different combinations of these L views all lead to consistent 3D

normals (the angle between any two normals is within T degrees), we consider p as

consistent. Otherwise, we discard the view that is most different from the mean view

angle and check consistency with the remaining L − 1 views iteratively. We consider

p consistent, if it is consistent over at least 3 views. Otherwise, it is inconsistent. For

each consistent 3D point, we set its normal as the mean of all consistent normals. In

our implementation, we begin with T = 3, and relax it by 1.3 times whenever P ′ is

empty until T > 15.

We note the number of consistent views for each 3D point when inserting it to

the set P ′. Points are first sorted by the number of consistent views in descending

order. Those with the same number of consistent views are sorted by the confidence of

contours.

Shape Optimization After depth propagation, we have a set of 3D points, each

with a normal direction estimated. We apply the Poisson surface reconstruction Kazh-

dan et al. [2006] to these points to obtain a triangulated surface. This surface is further

optimized according to Nehab et al. [2005] by fusing the 3D point positions and their

normal directions.

Figure 5.3 shows the reconstructed shape at different stages. Shown on the left are

3D points obtained from multi-view stereo. In the middle are the 3D points (with nor-

mal directions) obtained by depth propagation. On the right is the result after Poisson

surface reconstruction. The final optimized shape is at Figure 5.3 (d). Note the face

becomes clearly smoother after optimization.

1An azimuth angle in one view (with the camera center) decides a plane where the normal must lie

in. Intersecting two such planes determines the 3D normal direction.
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(a) (b) (c) (d)

Figure 5.3: (a) initially reconstructed 3D points; (b) 3D points obtained by depth prop-

agation; (c) initial shape after Poisson surface reconstruction; (d) final result.

5.4 Reflectance capture

We assume the surface reflectance can be represented by a linear combination of sev-

eral (K=2) basis isotropic BRDFs. Once the 3D shape is reconstructed, we follow

Lawrence et al. [2006] to estimate the basis BRDFs and their mixing weights at each

point on the surface. We consider the general tri-variant isotropic BRDF, which is a

function of θh, θd, φ as shown in Figure 5.4. We discretize θh, θd and φ into 90, 2 and 5

bins respectively all in the interval [0, π/2]. Please refer to Romeiro and Zickler [2010]

for a justification of choosing this interval. Hence, a BRDF is represented as a 900× 1

vector by concatenating its values at these bins.

We build an N ×M observation matrix V, and factorize it into a matrix of mixing

weights W and a matrix of basis BRDFs H as,

VN×M = WN×KHK×M .

M = 900 is the dimension of a BRDF. N is the number of 3D points. Each row
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Figure 5.4: Definition of θh, θd and φ.

of V represents the observed BRDF of a surface point. In constructing the matrix V,

we avoid pixels observed from slanted viewing directions (the angle between viewing

direction and surface normal is larger than 40 degrees in our implementation), where

a small shape reconstruction error can cause a big change in their projected image

positions. V contains missing elements because of incomplete observation. We apply

the Alternating Constrained Least Squares (ACLS) algorithm Lawrence et al. [2006]

to iteratively compute the rows of W and columns of H.

To further improve reflectance capture accuracy, we first compute H from a sub-

set of precisely reconstructed 3D points, whose reconstructed normals from different

combinations of azimuth angles are consistent within 1.5 degrees. We then fix H and

compute W at all surface points.

Figure 5.5 visualizes the BRDF mixture weights and the basis BRDFs. The red and

green channels are the normalized mixture weight of the first and second basis BRDFs.

Each basis BRDF is applied to render a sphere under front lighting and viewing direc-

tions. Most of our examples consist of a shiny and a less shiny basis BRDFs. This can

be seen clearly from the ‘Cup’ and ‘Frog’ examples.
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Figure 5.5: The normalized BRDF mixture weights are visualized in the different color

channels. The corresponding basis BRDFs are used to render a sphere on the right.

5.5 Experiment

We use the same two hardware setups described in Section 4.2: a handheld moving

light bulb and a ring-light device. We captured images viewpoint by viewpoint. This

process can be speeded up by an automatic turntable. But we used an LP player to

simplify the setup. After capturing images at one viewpoint, we manually rotated the

LP player to capture the next viewpoint.

In our experiments, the 3D points obtained from the structure-from-motion algo-

rithm were often noisy. We only kept points with reprojection error less than 0.5 pixels.

Typically, about 200 initial points were obtained for each example. Our system can also

easily incorporate manual intervention in the form of matched feature points to handle

textureless regions. To provide a ‘ground truth’ validation, all experimental objects

were scanned using a Rexcan III industrial scanner, which is accurate to 10 microns.
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Figure 5.6: Results from the handheld system. (a) one of the input images, (b) the

recovered shape rendered with uniform diffuse shading. (c) a rendering with the re-

covered reflectance model from the same viewpoint and lighting condition as the im-

age in (a). (d) the color-coded shape error (in millimeters) compared to laser-scanned

‘ground truth’.

Our results were registered with the scanned shapes using the iterative closest point

(ICP) algorithm Besl and McKay [1992].

5.5.1 Handheld system

An example is provided in Figure 5.6. Figure 5.6 (a) shows a sample input image. This

example was captured from 10 viewpoints, which allow us to reconstruct part of its sur-

face. To better visualize the recovered shape, we render it with uniform diffuse shading

in (b). Most of the geometry details are successfully captured. (c) is a rendering ac-

cording to the captured reflectance from the same viewpoint and lighting condition

as the input image in (a). To provide a quantitative evaluation on shape capture, we

visualize the shape reconstruction error (measured in millimeters) in (d). The larger

errors at the surface boundary are due to insufficient and slanted observations. Overall,

the median (or mean) shape errors are 0.62 and 0.53 (or 0.96 and 0.79) millimeters

for the ’Cat’ and ’Teapot2’. Here, the object diameters are 100 and 250 millimeters
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respectively.

5.5.2 Ring-light system

An example, an polished wooden ‘Buddha’, is provided in the first row of Figure 5.7.

This example has focused and strong highlight. The object diameter is 120 millimeters.

We captured it from 41 different viewpoints. This example contains many discontinu-

ities at clothes folds and large concavities at the shoulder. These shape details were

faithfully captured, as shown in the rendering in (b) and (c). The median (or mean)

shape error was 0.36 (or 0.57) millimeters in this example. Most of the large shape

errors appeared at concave carvings with strong inter-reflection.

Another four examples, ‘Cup’, ‘Frog’, ‘Cat’ and ‘Teapot’ are included in Fig-

ure 5.7. Their diameters are 120, 90, 140 and 120 millimeters respectively. Our ex-

amples cover a wide range of different material. The rusted metal ‘Cup’ has quickly

change reflectance over its surface. The painted ‘Frog’ also has significant spatial

BRDF changes. We captured 30, 34, 35 and 30 viewpoints for the ‘Cup’, ‘Frog’, ‘Cat’

and ‘Teapot’ examples respectively. Our method consistently performed well on all

of them. Their median (or mean) shape reconstruction error was 0.29, 0.25, 0.24 and

0.24 (or 0.5 , 0.47, 0.53 and 0.66) millimeters respectively. The ‘Teapot’ example had

relatively larger error at one side, mainly due to the imprecise structure-from-motion

reconstruction caused by erroneous feature matching.

5.5.3 Comparison with existing methods

We compared our results with those obtained from Alldrin et al. [2008]. and Hernández

et al. [2008]. We used the same code as the authors. The iterative shape and reflectance
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Figure 5.7: Results from the ring-light system. From left to right, these figures are

arranged in the same way as Figure 5.6.
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(a) (b) (c) (d)

Figure 5.8: Results according to Alldrin et al. [2008]. (a) the color coded normal map

estimated. (b) the shape computed from the estimated normal according to Wu and

Tang [2006]. (c) a rendering under novel illumination. (d) the color coded shape error

(in millimeters).

Figure 5.9: Results according to Hernández et al. [2008].
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optimization in Alldrin et al. [2008] is complicated and slow. It took over 40 hours to

compute the results of one viewpoint with 72 input images at resolution of 200× 350.

Figure 5.8 shows the results from Alldrin et al. [2008]. (a) is a color coded normal

map where the x, y, z components of a normal direction are linearly encoded in the

RGB channels, e.g. (x + 1)/2 → R. Shown in (b) is a surface computed from the

recovered normal map according to Wu and Tang [2006]. (c) is a rendering from novel

lighting direction according to the estimated normal and reflectance. We can see clear

artifacts in all these images. (d) is the color coded shape error (in millimeters). Notice

the error range is from 0 to 5. The median (and mean) shape error is 2.38 (and 2.85)

millimeters. The median (and mean) angular error of normal directions is 13.1 (and

17.6) degrees. Figure 5.9 shows the results from Hernández et al. [2008] which is

designed for Lambertian surfaces, where most of the shape details are smoothed out.

5.6 Re-rendering

To provide an intuitive evaluation of our results, we rendered all examples under novel

lighting and viewpoint and compared them with captured photographs in Figure 5.10

and Figure 5.11. Note these images were not used in our shape and reflectance capture

system. The first two rows are results from the handheld system, while the others

come from the ring-light system. From top to bottom, the median (or mean) intensity

differences for each example were 4.8 6.9 8.3, 5.0, 2.6, 5.7 and 6.0 (or 7.3 12.2 12.5,

6.8, 4.0, 10.8 and 9.5) intensity levels with pixel values between [0,255] respectively.

Figure 5.12 further shows rendering of the captured object under novel environment

lighting.
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Figure 5.10: Results from handheld system. Left: reference real photographs. Right:

rendering under novel viewpoint and lighting condition.

Figure 5.11: Results from the ring-light system. Left: reference real photographs.

Right: rendering under novel viewpoint and lighting condition.
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Figure 5.12: Rendering under environment lighting.
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5.6.1 Runtime efficiency

Our implementation was not optimized for speed. We did all experiments on a com-

puter with 24GB RAM and a 8-core 3.0GHz CPU. At each viewpoint, our matlab code

computed azimuth angles in 1 minute, and traced iso-depth contours in 1.5 minutes.

Depth propagation took 16 minutes (for 40 viewpoints), and the final shape optimiza-

tion took 1 minute. It took about 15 minutes to compute the basis BRDFs from 5,000

samples with ACLS. Our output mesh typically had about two million points with av-

erage spatial distance 0.095 millimeters. It took another 45 minutes to compute their

BRDF mixing weights. Much of the involved process including azimuth angle compu-

tation, iso-depth contour tracing, and BRDF mixing weight computation can be easily

parallelized.

5.7 Discussion

We propose a method to capture both shape and reflectance of real objects with spa-

tially variant isotropic reflectance. Our method requires a simple hardware setup and is

able to capture 3D shapes accurate to 0.3 millimeters and reflectance with 9% relative

RMSE error.

Our method has a few limitations. First, our method cannot model anisotropic

material. It also cannot handle translucent objects and mirror surfaces. Second, al-

though our method is robust to cast shadows and strong specular inter-reflections with

Fourier series fitting, it suffers from diffuse inter-reflections. To resolve this problem,

we could replace LEDs by projectors and apply the method in Nayar et al. [2006]

to separate inter-reflection. However, it would significantly complicate the hardware

setup. Alternatively, we might iteratively estimate the shape and inter-reflection. Last,
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our ring-light capture setup contains only two circles of LEDs. Hence, we only capture

the BRDF of a point with two different θd values. (Note that θd is the angle between

viewing and lighting directions as shown in Figure 5.4.) Hence, during reflectance

capturing, we can only discretize θd to two levels, and cannot capture Fresnel effects

faithfully. Note this limitation does not apply to the handheld setup. We could increase

the number of circles of LED lights, or fit parametric Fresnel terms Schlick [1994] to

solve this problem.
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Chapter 6

Conclusions

In this thesis, we have proposed several solutions in order to solve difficult photometric

stereo problems such as auto-calibration and non-Lambertian surfaces.

For uncalibrated photometric stereo, we have proposed a ring-light configuration to

handle general Lambertian scenes. We have shown that five lights on a view centered

cone can reduce the general linear ambiguity to two rotations, one mirror reflection

compounded with a scaling. If these lights have equal intensity or equal interval, this

compound ring-light ambiguity can be reduced to a planar rotation plus a scaling. If

two corresponding normals from two viewpoints can be identified, Euclidian recon-

struction can be obtained.

In real-world, light source is often so close to the target object that it violates di-

rectional lighting assumption used in many photometric stereo methods. We also pro-

posed an auto-calibration method which exploits near point light sources and designed

a bilinear patch-based factorization method which has a similar linear shape ambiguity

as the conventional directional lighting photometric stereo. Our methods are tested on

both synthetic and real data and produce good results.
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For non-Lambertian surfaces, we proposed a method to capture both shape and

reflectance of real objects with spatially variant isotropic reflectance. We have demon-

strated that reflectance symmetry are very powerful and robust in surface estimation.

Combined with existing multi-view stereo algorithm, the reconstruction of full object

is accurate to 0.3 millimeters. By assuming the BRDF at each surface point is a linear

combination of a few basis isotropic BRDFs, the basis BRDFs and mixing weights can

be recovered with 9% relative RMSE error. The captured shape and material can be

easily used in many applications such as photo-realistic rendering.

Future work The main challenge of our appearance capturing algorithm is the mix

of photometric stereo and multi-view stereo. Although reflectance symmetries recov-

ers accurate surface azimuth angles robustly, to recover the full surface normal it still

lacks information which can only be obtained from multi-view stereo. As a result,

correspondence error is introduced into photometric stereo which previously does not

have. Our method does not explicitly address this problem. We believe future algo-

rithms can take point correspondences into consideration and optimize them together

with reflectance symmetry.
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Appendix A: Proof of Proposition 1

Proposition 1: If a 3× 3 linear transformation P maps the unit circle Cu to itself, i.e.

P⊤CuP = Cu, then P can be decomposed as P = MnRφHtRθ,n = 1 or 2.

Proof: Our proof is based on the following two lemmas:

Lemma 1: If a conic C is mapped to another conic C ′ by a projective transformation

P , then P maps the interior/exterior of C to the interior/exterior of C ′.

Lemma 2: Suppose A and A′ are two points on two different conics C and C ′. B,B′

lies inside of C,C ′ respectively. Then there are precisely two projective transforma-

tions which map C to C ′, A to A′, and B to B′.

In the following, for a general linear transformation P that maps Cu to Cu, we

assume the pre-images of (1, 0, 1) and (0, 0, 1) are A and B respectively. We explicitly

derive two transformations P1, P2, P1 ̸= P2, with the form MnRφHtRθ that maps A,B

to (1, 0, 1) and (0, 0, 1) respectively. Then according to Lemma 2, we know Proposition

1 is true.

According to the Lemma 1, B is a point within Cu. So we can denote B as

(rcosθ, rsinθ, 1), where 0 < r < 1. It is easy to verify that HtRπ/2−θ maps the

point B to the origin. Here, t is uniquely decided by r = −sinh(t)/cosh(t). It

is also easy to verify that HtRπ/2−θ maps A to another point A′ on the circle. We

can denote A′ as (cosφ, sinφ, 1). Then a rotation R−φ will maps A′ to the point
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(1, 0, 1) and keep the origin invariant. As a result, we get the following transformation

P1 = R−φHtRπ/2−θ, that maps B to (0, 0, 1) and A to (1, 0, 1). Note that, we can

defineP2 = MR−φHtRπ/2−θ. P2 should also maps B to origin and A to (1, 0, 1). Fur-

ther, P1 ̸= P2. Hence, according to Lemma 2, they are the only two transformations

that map A,B to (1, 0, 1) and (0, 0, 1) respectively.
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Appendix B: Determine t, s from F

θ can be directly computed from F , θ = arctan (−F13/F23)

k1can be solved from equation (a2 − b2 − c2)k2
1 − (a+ 3c)k1 − 2 = 0

where a = 1
2
(F11 + F22) +

3
2
F33 b = 1

2
(F11 + F22 − F33) c = 2F23

cos θ
= −2F13

sin θ

s−2 = 1
2
(k1(F11 + F22 − F33) + 1)

t = 1
2
arcsinh

(

2k1F23

cos θ(s−2+1)

)

= 1
2
arccosh

(

k1(F11+F22+F33)−s−2

s−2+1

)
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Appendix C: Constants in Equation

3.8–3.10

T = {tij}3×3

a
(1)
1 = −t21n21n13 − t22n22n13 a

(2)
1 = +t11n21n13 + t12n22n13

a
(1)
2 = +t11n21n13 + t12n22n13 a

(2)
2 = +t21n21n13 + t22n22n13

a
(1)
3 = −t22n21n13 + t21n22n13 a

(2)
3 = +t12n21n13 − t11n22n13

a
(1)
4 = +t12n21n13 − t11n22n13 a

(2)
4 = +t22n21n13 − t21n22n13

a
(3)
1 = +t21n21n11 + t22n22n11 − t11n21n12 − t12n22n12

a
(3)
2 = −t11n21n11 − t12n22n11 − t21n21n12 − t22n22n12

a
(3)
3 = +t22n21n11 − t21n22n11 − t12n21n12 + t11n22n12

a
(3)
4 = −t12n21n11 + t11n22n11 − t22n21n12 + t21n22n12

b
(1)
1 = −t23n23n13 b

(1)
2 = +t13n23n13 b

(2)
1 = +t13n23n13 b

(2)
2 = +t23n23n13

b
(3)
1 = +t23n23n11 − t13n23n12 b

(3)
2 = −t13n23n11 − t23n23n12

c
(1)
1 = +t31n21n12 + t32n22n12 c

(2)
1 = −t31n21n11 − t32n22n11

c
(1)
2 = +t32n21n12 − t31n22n12 c

(2)
2 = −t32n21n11 + t31n22n11

c
(3)
1 = c

(3)
2 = D(3) = 0 D(1) = +t33n23n12 D(2) = −t33n23n11

(1)
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