9 research outputs found

    An Improved Infrared/Visible Fusion for Astronomical Images

    Get PDF
    An undecimated dual tree complex wavelet transform (UDTCWT) based fusion scheme for astronomical visible/IR images is developed. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property. Local standard deviation and distance transforms are used to extract useful information (especially small objects). Simulation results compared with the state-of-the-art fusion techniques illustrate the superiority of proposed scheme in terms of accuracy for most of the cases

    Image Fusion in Remote Sensing and Quality Evaluation of Fused Images

    Get PDF
    In remote sensing, acquired optical images of high spectral resolution have usually a lower spatial resolution than images of lower spectral resolution. This is due to physical, cost and complexity constraints. To make the most of the available imagery, many image fusion techniques have been developed to address this problem. Image fusion is an ill-posed inverse problem where an image of low spatial resolution and high spectral resolution is enhanced in spatial-resolution by using an auxiliary image of high spatial resolution and low spectral resolution. It is assumed that both images display the same scene and are properly co-registered. Thus, the problem is essentially to transfer details from the higher spatial resolution auxiliary image to the upscaled lower resolution image in a manner that minimizes the spatial and spectral distortion of the fused image. The most common image fusion problem is pansharpening, where a multispectral (MS) image is enhanced using wide-band panchromatic (PAN) image. A similar problem is the enhancement of a hyperspectral (HS) image by either a PAN image or an MS image. As there is no reference image available, the reliable quantitative evaluation of the quality of the fused image is a difficult problem. This thesis addresses the image fusion problem in three different ways and also addresses the problem of quantitative quality evaluation.Í fjarkönnun hafa myndir með háa rófsupplausn lægri rúmupplausn en myndir með lægri rófsupplausn vegna eðlisfræðilegra og kostnaðarlegra takmarkana. Til að auka upplýsingamagn slíkra mynda hafa verið þróaðar fjölmargar sambræðsluaðferðir á síðustu tveimur áratugum. Myndsambræðsla er illa framsett andhverft vandmál (e. inverse problem) þar sem rúmupplausn myndar af hárri rófsupplausn er aukin með því að nota upplýsingar frá mynd af hárri rúmupplausn og lægri rófsupplausn. Það er gert ráð fyrir að báðar myndir sýni nákvæmlega sama landsvæði. Þannig er vandamálið í eðli sínu að flytja fíngerða eiginleika myndar af hærri rúmupplausn yfir á mynd af lægri rúmupplausn sem hefur verið brúuð upp í stærð hinnar myndarinnar, án þess að skerða gæði rófsupplýsinga upphaflegu myndarinnar. Algengasta myndbræðsluvandamálið í fjarkönnun er svokölluð panskerpun (e. pansharpening) þar sem fjölrásamynd (e. multispectral image) er endurbætt í rúmi með svokallaðri víðbandsmynd (e. panchromatic image) sem hefur aðeins eina rás af hárri upplausn. Annað svipað vandamál er sambræðsla háfjölrásamyndar (e. hyperspectral image) og annaðhvort fjölrásamyndar eða víðbandsmyndar. Þar sem myndsambræðsla er andhverft vandmál er engin háupplausnar samanburðarmynd tiltæk, sem gerir mat á gæðum sambræddu myndarinnar að erfiðu vandamáli. Í þessari ritgerð eru kynntar þrjár aðferðir sem taka á myndsambræðlsu og einnig er fjallað um mat á gæðum sambræddra mynda, þá sérstaklega panskerptra mynda

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to Model Yield and Assess Growth Stages of a Broadacre Crop

    Get PDF
    Snap bean production was valued at $363 million in 2018. Moreover, the increasing need in food production, caused by the exponential increase in population, makes this crop vitally important to study. Traditionally, harvest time determination and yield prediction are performed by collecting limited number of samples. While this approach could work, it is inaccurate, labor-intensive, and based on a small sample size. The ambiguous nature of this approach furthermore leaves the grower with under-ripe and over-mature plants, decreasing the final net profit and the overall quality of the product. A more cost-effective method would be a site-specific approach that would save time and labor for farmers and growers, while providing them with exact detail to when and where to harvest and how much is to be harvested (while forecasting yield). In this study we used hyperspectral (i.e., point-based and image-based), as well as biophysical data, to identify spectral signatures and biophysical attributes that could schedule harvest and forecast yield prior to harvest. Over the past two decades, there have been immense advances in the field of yield and harvest modeling using remote sensing data. Nevertheless, there still exists a wide gap in the literature covering yield and harvest assessment as a function of time using both ground-based and unmanned aerial systems. There is a need for a study focusing on crop-specific yield and harvest assessment using a rapid, affordable system. We hypothesize that a down-sampled multispectral system, tuned with spectral features identified from hyperspectral data, could address the mentioned gaps. Moreover, we hypothesize that the airborne data will contain noise that could negatively impact the performance and the reliability of the utilized models. Thus, We address these knowledge gaps with three objectives as below: 1. Assess yield prediction of snap bean crop using spectral and biophysical data and identify discriminating spectral features via statistical and machine learning approaches. 2. Evaluate snap bean harvest maturity at both the plant growth stage and pod maturity level, by means of spectral and biophysical indicators, and identify the corresponding discriminating spectral features. 3. Assess the feasibility of using a deep learning architecture for reducing noise in the hyperspectral data. In the light of the mentioned objectives, we carried out a greenhouse study in the winter and spring of 2019, where we studied temporal change in spectra and physical attributes of snap-bean crop, from Huntington cultivar, using a handheld spectrometer in the visible- to shortwave-infrared domain (400-2500 nm). Chapter 3 of this dissertation focuses on yield assessment of the greenhouse study. Findings from this best-case scenario yield study showed that the best time to study yield is approximately 20-25 days prior to harvest that would give out the most accurate yield predictions. The proposed approach was able to explain variability as high as R2 = 0.72, with spectral features residing in absorption regions for chlorophyll, protein, lignin, and nitrogen, among others. The captured data from this study contained minimal noise, even in the detector fall-off regions. Moving the focus to harvest maturity assessment, Chapter 4 presents findings from this objective in the greenhouse environment. Our findings showed that four stages of maturity, namely vegetative growth, budding, flowering, and pod formation, are distinguishable with 79% and 78% accuracy, respectively, via the two introduced vegetation indices, as snap-bean growth index (SGI) and normalized difference snap-bean growth index (NDSI), respectively. Moreover, pod-level maturity classification showed that ready-to-harvest and not-ready-to-harvest pods can be separated with 78% accuracy with identified wavelengths residing in green, red edge, and shortwave-infrared regions. Moreover, Chapters 5 and 6 focus on transitioning the learned concepts from the mentioned greenhouse scenario to UAS domain. We transitioned from a handheld spectrometer in the visible to short-wave infrared domain (400-2500 nm) to a UAS-mounted hyperspectral imager in the visible-to-near-infrared region (400-1000 nm). Two years worth of data, at two different geographical locations, were collected in upstate New York and examined for yield modeling and harvest scheduling objectives. For analysis of the collected data, we introduced a feature selection library in Python, named “Jostar”, to identify the most discriminating wavelengths. The findings from the yield modeling UAS study show that pod weight and seed length, as two different yield indicators, can be explained with R2 as high as 0.93 and 0.98, respectively. Identified wavelengths resided in blue, green, red, and red edge regions, and 44-55 days after planting (DAP) showed to be the optimal time for yield assessment. Chapter 6, on the other hand, evaluates maturity assessment, in terms of pod classification, from the UAS perspective. Results from this study showed that the identified features resided in blue, green, red, and red-edge regions, contributing to F1 score as high as 0.91 for differentiating between ready-to-harvest vs. not ready-to-harvest. The identified features from this study is in line with those detected from the UAS yield assessment study. In order to have a parallel comparison of the greenhouse study against the UAS study, we adopted the methodology employed for UAS studies and applied it to the greenhouse studies, in Chapter 7. Since the greenhouse data were captured in the visible-to-shortwave-infrared (400-2500 nm) domain, and the UAS study data were captured in the VNIR (400-1000 nm) domain, we truncated the spectral range of the collected data from the greenhouse study to the VNIR domain. The comparison experiment between the greenhouse study and the UAS studies for yield assessment, at two harvest stages early and late, showed that spectral features in 450-470, 500-520, 650, 700-730 nm regions were repeated on days with highest coefficient of determination. Moreover, 46-48 DAP with high coefficient of determination for yield prediction were repeated in five out of six data sets (two early stages, each three data sets). On the other hand, the harvest maturity comparison between the greenhouse study and the UAS data sets showed that similar identified wavelengths reside in ∼450, ∼530, ∼715, and ∼760 nm regions, with performance metric (F1 score) of 0.78, 0.84, and 0.9 for greenhouse, 2019 UAS, and 2020 UAS data, respectively. However, the incorporated noise in the captured data from the UAS study, along with the high computational cost of the classical mathematical approach employed for denoising hyperspectral data, have inspired us to leverage the computational performance of hyperspectral denoising by assessing the feasibility of transferring the learned concepts to deep learning models. In Chapter 8, we approached hyperspectral denoising in spectral domain (1D fashion) for two types of noise, integrated noise and non-independent and non-identically distributed (non-i.i.d.) noise. We utilized Memory Networks due to their power in image denoising for hyperspectral denoising, introduced a new loss and benchmarked it against several data sets and models. The proposed model, HypeMemNet, ranked first - up to 40% in terms of signal-to-noise ratio (SNR) for resolving integrated noise, and first or second, by a small margin for resolving non-i.i.d. noise. Our findings showed that a proper receptive field and a suitable number of filters are crucial for denoising integrated noise, while parameter size was shown to be of the highest importance for non-i.i.d. noise. Results from the conducted studies provide a comprehensive understanding encompassing yield modeling, harvest scheduling, and hyperspectral denoising. Our findings bode well for transitioning from an expensive hyperspectral imager to a multispectral imager, tuned with the identified bands, as well as employing a rapid deep learning model for hyperspectral denoising

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Scattering Models in Remote Sensing: Application to SAR Despeckling and Sea Target Detection from GNSS-R Imagery

    Get PDF
    Imaging sensors are an essential tool for the observation of the Earth’ surface and the study of other celestial bodies. The capability to produce radar images of the illuminated surface is strictly related with the complex phenomenology of the radiation-matter interaction. The electromagnetic scattering theory is a well-established and well-assessed topic in electromagnetics. However, its usage in the remote sensing field is not adequately investigated and studied. This Ph.D. Thesis addresses the exploitation of electromagnetic scattering models suitable for natural surfaces in two applications of remotely sensed data, namely despeckling of synthetic aperture radar (SAR) imagery, and the detection of sea targets in delay-Doppler Maps (DDM) acquired from spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R). The first issue was addressed by conceiving, developing, implementing and validating two despeckling algorithms for SAR images. The developed algorithms introduce some a priori information about the electromagnetic behavior of the resolution cell in the despeckling chain and were conceived as a scattering-based version of pre-existing filters, namely the Probabilistic Patch-Based (PPB) and SAR-Block-Matching 3-D (SARBM3D) algorithms. The scattering behavior of the sensed surface is modeled assuming a fractal surface roughness and using the Small Perturbation Method (SPM) to describe the radar cross section (RCS) of the surface. Performances of the proposed algorithms have been assessed using both canonical test (simulated) and actual images acquired from the COSMO\SkyMed constellation. The robustness of the proposed filters against different error sources, such as the scattering behavior of the surface, surface parameters, Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step, has been evaluated via an experimental sensitivity analysis. The problem of detecting sea targets from GNSS-R data in near real-time has been investigated by analyzing the revisit time achieved by constellations of GNSS-R instruments. A statistical analysis of the global revisit time has been performed by means of mission simulation, in which three realistic scenario have been defined. Time requirements for near real-time ship detection purposes are shown to be fulfilled in multi-GNSS constellation scenarios. A four-step sea target has been developed. The detector is a Constant False Alarm Rate (CFAR) algorithm and is based on the suppression of the sea clutter contribution, modeled via the Geometrical Optics (GO) approach. Performance assessment is performed by deriving the Receiver Operating Curves (ROC) of the detector. Finally, the proposed sea target detection algorithm has been tested using actual UK TechDemoSat-1 data

    Computational Tools for the Processing and Analysis of Time-course Metabolomic Data

    Get PDF
    Modern, high-throughput techniques for the acquisition of metabolomic data, combined with an increase in computational power, have provided not only the need for, but also the means to develop and use, methods for the interpretation of large and complex datasets. This thesis investigates the methods by which pertinent information can be extracted from nontargeted metabolomic data and reviews the current state of chemometric methods. The analysis of real-world data and research questions relevant to the agri-food industry reveals several problems for which novel solutions are proposed. Three LC-MS datasets are studied: Medicago, Alopecurus and aged Beef, covering stress resistance, herbicide resistance and product misbranding. The new methods include preprocessing (batch correction, data-filtering), processing (clustering, classification) and visualisation and their use facilitated within a flexible data-to-results pipeline. The resulting software suite with a user-friendly graphical interface is presented, providing a pragmatic realisation of these methods in an easy to access workflow
    corecore