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An undecimated dual tree complex wavelet transform (UDTCWT) based fusion scheme for astronomical visible/IR images is
developed. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property.
Local standard deviation and distance transforms are used to extract useful information (especially small objects). Simulation
results compared with the state-of-the-art fusion techniques illustrate the superiority of proposed scheme in terms of accuracy for
most of the cases.

1. Introduction

Thevisible light astronomydue to reflection, refraction, inter-
ference, and diffraction enables scientists to unearth many of
nature’s secrets; however, brightness of stars creates a haze
in the sky. On the other hand, the infrared (IR) astronomy
enables us to peer through the veil of interstellar dust and
see objects at extreme cosmological distances. IR images have
good radiometric resolution whereas visible images provide
detailed information. In this regard, various image fusion
techniques have been developed to combine the complemen-
tary information present in both images. These techniques
can be grouped into wavelet, statistical decomposition, and
compressive sensing.

The wavelet transform based fusion schemes generally
decompose the visible and IR images into different base
and detail layers, to combine the useful information. In [1],
contourlet transform fusion is used to separate foreground
and background information; however, the separation is not
always accurate, which causes loss in target information. In
[2], nonsubsampled contourlet transform, local energy, and
fuzzy logic based fusion claims better subjective visual effects;
however, merger and description of necessary components of
IR and visible images in fusion model require improvements
especially in case of noisy images. In [3], wavelet transform

and fuzzy logic based scheme utilizes dissimilarity measure
to assign weights; however, some artifacts are also introduced
in the fused image. Contrast enhancement (using ratio of
local and global divergence of IR image) based fusion lacks
color consistency [4]. In adaptive intensity hue saturation
method [5], the amount of spatial details injected into each
band of multispectral image is appropriately determined
by the weighting matrix, which is defined on the basis of
the edges present in panchromatic and multispectral bands.
The scheme preserves the spatial details; however, it is
unable to control the spectral distortion sufficiently [6]. In
[7], gradient-domain approach based on mapping contrast
defines the structure tensor matrix onto a low-dimensional
gradient field. However, the scheme effects the natural output
colours. In [8], wavelet transform and segmentation based
fusion scheme is developed to enhance targets in low contrast.
However, the fusion performance is dependent on segmen-
tation quality and large segmentation errors can occur for
cosmological images (especially when one feature is split into
multiple regions).

Statistical fusion schemes split the images into multiple
subspaces using different matrix decomposition techniques.
𝐾-means and singular value decomposition based scheme
suffers from computational complexity [9]. In [10], spatial
and spectral fusion model uses sparse matrix factorization
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to fuse images with different spatial and spectral properties.
The scheme combines the spectral information from sensors
having low spatial but high spectral resolution with the
spatial information from sensors having high spatial but low
spectral resolution. Although the scheme produces better
fused results with well preserved spectral and spatial prop-
erties, its issues include spectral dictionary learning process
and computational complexity. In [11], an internal generative
mechanism based fusion algorithm first decomposes source
image into a coarse layer and a detail layer by simulating the
mechanism of human visual system for perceiving images.
Then the detail layer is fused using pulse coupled neural net-
work, and the coarse layer is fused by using the spectral resid-
ual based saliencymethod.The scheme is time inefficient and
yields weak fusion performance. In [12], independent com-
ponents analysis based IR and visible image fusion scheme
uses kurtosis information of the independent components
analysis based coefficients. However, further work is required
for determining fusion rules of primary features.

Compressive sensing based fusion schemes exploit the
sparsity of data using different dictionaries. Adjustable com-
pressive measurement based fusion scheme suffers from
empirical adjustment of different parameters [13]. In [14], a
compressive sensing approach preserves data (such as edges,
lines, and contours); however, design of appropriate sparse
transform and optimal deterministic measurement matrix is
an issue. In [15], a compressive sensing based image fusion
scheme (for infrared and visible images) first compresses the
sensing data by random projection and then obtains sparse
coefficients on compressed samples by sparse representation.
The fusion coefficients are finally combined with the fusion
impact factor and the fused image is reconstructed from the
combined sparse coefficients. However, the scheme is ineffi-
cient and prone to noise effects. In [16], a nonnegative sparse
representation based scheme is used to extract the features
of source images. Some methods are developed to detect the
salient features (which include the target and contours) in the
IR image and texture features in visible image. Although the
scheme performs better for noisy images, the sparseness of
the image is controlled implicitly.

In a nutshell, the above-mentioned state-of-the-art fusion
techniques suffer from limited accuracy, high computational
complexity, or nonrobustness. To overcome these issues, a
UDTCWT based visible/IR image fusion scheme for astro-
nomical images is developed. The UDTCWT reduces noise
effects and improves object classification due to its inherited
shift invariance property. Local standard deviation alongwith
distance transforms is used to extract useful information
(especially small objects). Simulation results illustrate the
superiority of proposed scheme in terms of accuracy, formost
of the cases.

2. Proposed Method

Let 𝐼𝑘 be the input source IR (𝑘 = 1) and visible (𝑘 =

2) registered images (with dimensions 𝑀 × 𝑁). The local
standard deviation 𝐿̃𝑘 for estimating local variations of 𝐼𝑘 is

𝐿̃𝑘 (𝑚, 𝑛)

=
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The local standard deviation measures the randomness of
pixels in a local area where the high values indicate presence
of astrobodies and the low value values correspond to
smooth/blank space (without any object or astrobody).

The image 𝐿𝑘 is obtained by thresholding 𝐿̃𝑘 to remove
the pixel containing large variations: that is,

𝐿𝑘 (𝑚, 𝑛)

=

{

{

{

𝐿̃𝑘 (𝑚, 𝑛) , 𝐿̃𝑘 (𝑚, 𝑛) < 𝐿̃𝑘 + 𝜁𝑘 Var [𝐿̃𝑘] ,

0; otherwise,

(3)

where 𝜁𝑘 ∈ [0.1, 1.2] is a controlling parameter and 𝐿̃𝑘

and Var[𝐿̃𝑘] are mean and variance of 𝐿̃𝑘, respectively. The
gray distance image 𝐼𝐷 (to classify different points which are
present inside/outside any shape/object) is computed using
𝐿𝑘 and mask 𝐿mask as

𝐷𝑘

Distance Transform
←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 (𝐿𝑘, 𝐿mask) . (4)

The distance transform (used to eliminate oversegmentation
and short sightedness) measures the overall distance of the
pixel from other bright pixels. For instance, a pixel closer to
a cluster of stars (objects) tends to be part of the segmented
mask and vice versa.

Let 𝐸𝑘 be the binary image obtained from the distance
image𝐷𝑘: that is,

𝐸𝑘 (𝑚, 𝑛) =

{

{

{

1, 𝐷𝑘 (𝑚, 𝑛) > 𝜆𝑘𝐷𝑘,

0, otherwise,
(5)

where 𝐷𝑘 denotes mean image and 𝜆𝑘 > 300 is a positive
constant. The 𝐸𝑘 image segments the foreground from back-
ground regions. The connected components image 𝐶𝑘 (to
segment different binary patterns) with structure element 𝜙
(a 3 × 3matrix of all ones) is

𝐶𝑘

Connected Component
←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀

Labeling
(𝐸𝑘, 𝜙) . (6)

Let 𝑎𝑞𝑘(𝑚, 𝑛) and 𝑝𝑞𝑘(𝑚, 𝑛) represent area and perimeter of
the 𝑞th connected component placed at (𝑚, 𝑛)th location,
respectively; a binary segmented image 𝑆𝑘 is constructed as

𝑆𝑘 (𝑚, 𝑛) =

{{

{{

{

1, 𝑎𝑞𝑘 (𝑚, 𝑛) > 𝛽,

𝑝𝑞𝑘 (𝑚, 𝑛)

𝑎𝑞 (𝑚, 𝑛)
< 𝛾,

0, otherwise,
(7)
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Figure 1: Flow diagram.

where 𝛽 ≥ 10 and 𝛾 ≤ 1.5 are thresholding parameters.
UDTCWT is applied on the source images 𝐼𝑘 to obtain
coefficient matrix 𝐼𝑘

𝑈

of dimensions 𝑀 × 𝑁 × 𝐿 (where
𝑙 = 1, 2, . . . , 𝐿 represents wavelet coefficients). The decom-
position obtained using UDTCWT not only eliminates
noise/unwanted artifacts, but also is effective in preserving
the useful information present in the input images (due to
its undecimated property). The binary coefficient matrix 𝐼𝑈
is obtained by assigning nonzero values at pixel locations
where visible image provides more information than the
IR image. This binary thresholding ensures that the fused
image contains the significant/important information of both
source images (as the higher value of UDTCWT corresponds
to presence of significant/important information):

𝐼𝑈 (𝑚, 𝑛, 𝑙) =

{

{
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󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨
,

0, otherwise.
(8)

A binary fuse map ̇𝐼𝐹 is computed as

̇𝐼𝐹 (𝑚, 𝑛, 𝑙) = 𝐼𝑈 (𝑚, 𝑛, 𝑙) ⊕ 𝑆1 (𝑚, 𝑛) ⊕ 𝑆2 (𝑚, 𝑛) , (9)

where ⊕ represents 𝑂𝑅 operation. Let

𝐼𝐹 (𝑚, 𝑛, 𝑙) =

{

{

{

𝐼2
𝑈
(𝑚, 𝑛, 𝑙) , if ̇𝐼𝐹 (𝑚, 𝑛, 𝑙) = 1,

𝐼1
𝑈
(𝑚, 𝑛, 𝑙) , otherwise.

(10)

The final fused image 𝐹 is obtained by computing the inverse
UDTCWT of fused coefficients 𝐼𝐹. Figure 1 shows the flow
diagram of proposed technique.

3. Results and Discussion

To verify the significance of the proposed technique, simu-
lations are performed on various visible/IR datasets. Quan-
titative analysis is performed using 𝑄𝑜 (luminance/contrast



4 Advances in Astronomy

(a) (b) (c)

(d) (e) (f)

Figure 2: Andromeda galaxy (M31): (a) visible image, (b) IR image, (c) local variance image, (d) distance image, (e) IR segmented image,
and (f) visual segmented image.

distortion), 𝑄MI (mutual information), 𝑄𝑤 (weighted quality
index), 𝑄𝑒 (edge dependent quality index), 𝑄𝑆 (structural
similarity index measure), 𝑄𝐵 (human perception inspired
metric), 𝑄𝑋 (edge transform metric), and 𝑄𝑍 (image feature
metric) [17–22].

The𝑄𝑜metric [17, 18] is designed throughmodality image
distortion as combination of loss of correlation, luminance
distortion, and contrast distortion. The 𝑄

MI metric [17]
represents the orientation preservation and edge strength
values. It models the perceptual loss of information in fused
results in terms of how well the strength and orientation
values of pixels in source images are represented in fused
image. It deals with the problem of objective evaluation
of dynamic, multisensor image fusion, based on gradient
information preservation between the inputs and the fused
images. It also takes into account additional scene and object

motion information present in multisensor sequences. The
𝑄
𝑤 metric [17] is defined by assigning more weight to those

windows, where saliency of the input image is high. It
corresponds to the areas that are likely to be perceptually
important parts of the underlying scene. The 𝑄𝑒 index [17]
takes into account aspects of the human visual system, where
it expresses the contribution of the edge information of the
source images to the fused images. The 𝑄

𝑆 measure [19]
is the similarity between two images and is designed to
improve traditional measures of mean square error and peak
signal to noise ratio, which are inconsistent with human eye
perception. The 𝑄𝐵 metric [20] evaluates the performance of
image fusion for night vision applications, using a perceptual
quality evaluation method based on human visual system
models. Image quality of fused image is assessed by contrast
sensitivity function and contrast preservation map. The 𝑄𝑋
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Figure 3:Andromeda galaxy (M31): (a) RP [25] fusion, (b)DTCWT[26] fusion, (c)NSCT [27] fusion, (d)MSVD[28] fusion, (e) Ellmauthaler
et al. [8] fusion, and (f) proposed fusion.

metric [21] assesses the pixel-level fusion performance and
reflects the quality of visual information obtained from the
fusion of input images. The𝑄𝑍metric [22] evaluates the per-
formance of the combinative pixel-level image fusion, based
on an image feature measurement (i.e., phase congruency
and its moments), and provides an absolute measurement
of image features. By comparing the local cross-correlation
of corresponding feature maps of input images and fused
output, the quality of the fused result is assessed without a
reference image.

These qualitymetrics [17–22] workwell for noisy, blurred,
and distorted images, using multiscale transformation, arith-
metic, statistical, and compressive sensing based schemes
formultiexposure,multiresolution, andmultimodal environ-
ments.These are also useful for remote and airborne sensing,
military, and industrial engineering related applications. The
normalized range of these measures is between 0 and 1

where high values imply better fusion metric for each quality
measure.

Figure 2(a) shows Andromeda galaxy (M31) JPEG IR
image taken by Spitzer space telescope [23] while Figure 2(b)
shows the corresponding visible image taken using 12.5󸀠󸀠
Ritchey Chretien Cassegrain (at F6) and ST10XME [24].
Figures 2(c)–2(f) are the outputs of local variance, distance
transform, and segmentation steps.

Figure 3 shows the fusion results obtained by ratio pyra-
mid (RP) [25], dual tree complex wavelet transform (DTCWT)
[26], nonsubsampled contourlet transform (NSCT) [27],
multiresolution singular value decomposition (MSVD) [28],
Ellmauthaler et al. [8], and proposed schemes. By visual com-
parison, it can be noticed that the proposed scheme provides
better fusion results, especially the preservation of back-
ground intensity value as compared to existing state-of-the-
art schemes.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4: Jupiter’s moon: (a) IR image, (b) visible image, (c) RP [25] fusion, (d) DTCWT [26] fusion, (e) NSCT [27] fusion, (f) MSVD [28]
fusion, (g) Ellmauthaler et al. [8] fusion, and (h) proposed fusion.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5: Nabula (M16): (a) IR image, (b) visible image, (c) RP [25] fusion, (d) DTCWT [26] fusion, (e) NSCT [27] fusion, (f) MSVD [28]
fusion, (g) Ellmauthaler et al. [8] fusion, and (h) proposed fusion.
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Table 1: Quantitative comparison.

Dataset Technique 𝑄
𝑜

𝑄
𝑒

𝑄
𝑤

𝑄
𝑆

𝑄
MI

𝑄
𝐵

𝑄
𝑋

𝑄
𝑍

Andromeda galaxy (M31)

Proposed 0.8220 0.8319 0.7707 0.4804 0.6461 0.3487 0.6612 0.4615
Ellmauthaler et al. [8] 0.7179 0.8444 0.7345 0.3647 0.6350 0.2229 0.5610 0.3387

MSVD [28] 0.6452 0.6946 0.6243 0.4148 0.4535 0.4432 0.0045 0.2675
NSCT [27] 0.6259 0.6003 0.5576 0.2641 0.4606 0.1777 0.3432 0.2689

DTCWT [26] 0.7085 0.8134 0.6573 0.3113 0.5436 0.1682 0.2682 0.2290
RP [25] 0.4706 0.5416 0.5102 0.2514 0.3970 0.5282 0.2075 0.2026

Jupiter’s moon

Proposed 0.7927 0.7255 0.7814 0.4622 0.7566 0.3433 0.6725 0.5617
Ellmauthaler et al. [8] 0.2832 0.6477 0.6343 0.4230 0.7398 0.1768 0.5672 0.5614

MSVD [28] 0.4780 0.4970 0.5217 0.5243 0.5292 0.4599 0.0065 0.4923
NSCT [27] 0.4155 0.4083 0.4631 0.5279 0.5212 0.2672 0.5001 0.6139

DTCWT [26] 0.4571 0.5932 0.5851 0.3476 0.5973 0.1805 0.4785 0.4844
RP [25] 0.3467 0.3989 0.4022 0.4749 0.3919 0.4825 0.0183 0.3634

Nabula (M16)

Proposed 0.7399 0.4896 0.8461 0.8587 0.8645 0.7646 0.7553 0.5652
Ellmauthaler et al. [8] 0.7318 0.4230 0.8446 0.8494 0.8563 0.5736 0.5424 0.5494

MSVD [28] 0.4918 0.4120 0.6466 0.6704 0.6539 0.5598 0.0051 0.4331
NSCT [27] 0.5204 0.2980 0.6037 0.5899 0.6013 0.4916 0.3953 0.5058

DTCWT [26] 0.6736 0.3608 0.8023 0.8225 0.8125 0.4477 0.4631 0.5079
RP [25] 0.5885 0.3099 0.6834 0.6818 0.6934 0.6597 0.1708 0.4639

Figures 4(a) and 4(b) show visible and IR Jupiter’s moon
JPEG images taken by new Horizons spacecraft using mul-
tispectral visible imaging camera and linear Etalon imaging
spectral array [29]. The fusion results obtained by RP [25],
DTCWT [26], NSCT [27], MSVD [28], Ellmauthaler et al.
[8], and proposed schemes are shown in Figures 4(c)–4(h),
respectively. Note that only the proposed scheme is able to
accurately preserve both the moon texture (from IR image)
and other stars (from visible image) in the fused image.

Figures 5(a) and 5(b) show visible and IR Nabula (M16)
JPEG images taken by Hubble space telescope [30]. The
fusion results obtained by RP [25], DTCWT [26], NSCT [27],
MSVD [28], Ellmauthaler et al. [8], and proposed schemes
are shown in Figures 5(c)–5(h), respectively.The fused image
using proposed scheme highlights the IR information more
accurately as compared to existing state-of-the-art schemes.

Table 1 shows the quantitative comparison of existing
and proposed schemes (where the bold values indicate best
results). It can be observed that the results obtained using
proposed schemes are significantly better inmost of the cases/
measures as compared to existing state-of-the-art schemes.

4. Conclusion

A fusion scheme for astronomical visible/IR images based on
UDTCWT, local standard deviation, and distance transform
is proposed. The use of UDTCWT is helpful in retaining
useful details of the image. The local standard deviation
variation measures presence or absence of small objects. The
distance transform activates the effects of proximity in the
segmentation process and eliminates effects of oversegmen-
tation in addition to short sightedness. The scheme reduces
noise artifacts and efficiently extracts the useful information
(especially small objects). Simulation results on different
visible/IR images verify the effectiveness of proposed scheme.
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