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Preface

This Book is a compendium of the results of my research activities

carried out within the Ph.D. degree in Information Technology and Elec-

trical Engineering at the University of Naples �Federico II�. The main

research topics are related to the remote sensing �eld using, in particular,

synthetic aperture radar (SAR) and Global Navigation Satellite System-

Re�ectometry (GNSS-R) data. The research activities started from the

idea that remote sensing applications and techniques could greatly bene-

�t from a proper modeling of the complex scattering phenomena involved

in remote sensing technologies. Starting from this general statement, two

research topics were identi�ed and investigated leading to the results pre-

sented in this Book. The �rst one concerns SAR despeckling, i.e., the

problem of reducing speckle noise e�ects in SAR imagery to improve the

readability and the understanding of SAR products. It has been my pri-

mary research topic studied during the Ph.D. course, and, consequently,

the most investigated and assessed. The main result related to this topic is

the development of two despeckling algorithms based on the exploitation of

a priori information about the scattering behavior of the illuminated sur-

face. The proposed algorithms represent a modi�ed version of pre-existing

techniques to account for the a priori scattering information. The exploita-
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tion of such information allows for a signi�cant performance enhancement

with respect to the original �lters in terms of both speckle reduction in

homogeneous areas and details preservation in presence of non-negligible

topography.

The second topic of research has been conducted during a four-month

stay at the Polytechnic University of Catalonia in collaboration with the

Passive Remote Sensing Group led by Adriano Camps. It comprises the

development, implementation, and validation of a sea target detection al-

gorithm using GNSS-R observables. Notwithstanding the poor spatial res-

olution, GNSS-R instruments have been shown to be capable to detect sea

targets from spaceborne platforms and to provide a useful help to other

well-assessed remote sensing technologies, primarily optical satellites and

SAR systems, owing to the low revisit time exhibited by constellations of

potential future GNSS-R satellites.

All algorithms proposed in this Ph.D. Thesis have been implemented

in MATLAB R2016a and are provided in the attached DVD, along with

some sample data.

In order to let the reader understand the concepts, ideas and techniques

developed within my research activities and presented in this Book, some

preliminary chapters about basic concepts of electromagnetism and remote

sensing have been inserted. For more details about the treated topics, the

reader is referred to the quoted literature.

Alessio Di Simone

University of Naples �Federico II�

February 2017



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of this Ph.D. Thesis . . . . . . . . . . . . . . . 8

2 Electromagnetic Scattering: Theory and Models 11

2.1 Integral Formulation of Electromagnetic Scattering . . . . . 13

2.2 Small-Perturbation Method . . . . . . . . . . . . . . . . . . 15

2.2.1 Surface Model . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Scattering Model . . . . . . . . . . . . . . . . . . . . 18

2.3 Kirchho� Approximation . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Geometrical Optics . . . . . . . . . . . . . . . . . . . 23

3 Synthetic Aperture Radar 27

3.1 Basic Principles of Radar . . . . . . . . . . . . . . . . . . . 29

3.2 Real Aperture Radar . . . . . . . . . . . . . . . . . . . . . . 31

III



3.3 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . 34

3.3.1 Stripmap Transfer Function . . . . . . . . . . . . . . 36

3.3.2 Geometric Distortions . . . . . . . . . . . . . . . . . 42

3.3.3 SAR Signal Statistics . . . . . . . . . . . . . . . . . . 49

4 Global Navigation Satellite System-Re�ectometry 57

4.1 Global Navigation Satellite System . . . . . . . . . . . . . . 57

4.1.1 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.2 GLONASS . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Galileo . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.4 BeiDou-2/Compass . . . . . . . . . . . . . . . . . . . 68

4.2 Remote Sensing Using GNSS Signals of Opportunity . . . . 69

4.2.1 GNSS Radio Occultation . . . . . . . . . . . . . . . 70

4.2.2 GNSS-Re�ectometry . . . . . . . . . . . . . . . . . . 72

5 SAR Despeckling Based on Scattering Models 79

5.1 State of the Art in SAR Despeckling . . . . . . . . . . . . . 80

5.2 SAR Block Matching 3-D Algorithm . . . . . . . . . . . . . 83

5.2.1 Dealing With SAR Speckle Noise . . . . . . . . . . . 84

5.2.2 Strengths and Weaknesses . . . . . . . . . . . . . . . 87

5.3 Probabilistic Patch-Based Algorithm . . . . . . . . . . . . . 88

5.4 Scattering-Based Despeckling . . . . . . . . . . . . . . . . . 90

5.4.1 Estimation of the a Priori Scattering Information . . 91

5.4.2 SB-SARBM3D . . . . . . . . . . . . . . . . . . . . . 93

5.4.3 SB-PPB . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Canonical Study Cases . . . . . . . . . . . . . . . . . 105

5.5.2 Actual Cases . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Sensitivity Analysis of SB-SARBM3D and SB-PPB . . . . . 116

5.6.1 Sensitivity Against the Scattering Behavior of the

Surface . . . . . . . . . . . . . . . . . . . . . . . . . 123

IV



5.6.2 Sensitivity Against Surface Parameters . . . . . . . . 130

5.6.3 Sensitivity Against the DEM Resolution . . . . . . . 133

5.6.4 Sensitivity Against the DEM Coregistration . . . . . 138

6 Sea Target Detection from Spaceborne GNSS-R Imagery 143

6.1 Revisit Time . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Sea Target Detection . . . . . . . . . . . . . . . . . . . . . . 158

6.2.1 Proposed Sea Target Detection Algorithm . . . . . . 159

6.2.2 Performance Assessment . . . . . . . . . . . . . . . . 164

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 168

7 Conclusions 177

7.1 SAR Despeckling . . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Future Research Lines . . . . . . . . . . . . . . . . . 184

7.2 Sea Target Detection Using Spaceborne GNSS-R data . . . 185

7.2.1 Future Research Lines . . . . . . . . . . . . . . . . . 186

Bibliography 189

V



This page intentionally left blank.



List of Acronyms

The following acronyms are used throughout this text.

2-D Two-Dimensional

3-D Three-Dimensional

AIS Automatic Identi�cation System

AWGN Additive White Gaussian Noise

CDMA Code Division Multiple Access

CFAR Constant False Alarm Rate

DDM Delay-Doppler Map

DEM Digital Elevation Model

EM Electromagnetic

ENL Equivalent number of looks

fBm fractional Brownian motion

FDMA Frequency Division Multiple Access

VII



GNSS Global Navigation Satellite System

GNSS-R GNSS-Re�ectometry

GO Geometrical Optics

IEM Integral Equation Method

KA Kirchho� Approximation

LEO Low Earth Orbit

LFSR Linear Feedback Shift Registers

LSF Least Square Fitting

MAP Maximum a Posteriori

NLM non-local means

NRCS Normalized Radar Cross Section

pdf probability density function

PO Physical Optics

PPB Probabilistic Patch-Based

PPS Precise Positioning Service

PRF Pulse Repetition Frequency

PRN Pseudo-Random Noise

PSF Point Spread Function

RAR Real Aperture Radar

RCS Radar Cross Section

VIII



RNSS Radio Navigation Satellite Service

RO Radio Occultation

ROC Receiver Operating Characteristic

SAR Synthetic Aperture Radar

SARBM3D SAR Block-Matching 3-D

SB Scattering-Based

SNR Signal-to-Noise Ratio

SPM Small-Perturbation Method

SPS Standard Positioning Service

TDS-1 TechDemoSat-1

UDWT Undecimated Discrete Wavelet Transform

WAF Woodward Ambiguity Function

WMLE Weighted Maximum Likelihood Estimation

WT Wavelet Transform

IX



This page intentionally left blank.



List of Tables

4.1 GPS navigation signals . . . . . . . . . . . . . . . . . . . . . 62

4.2 GLONASS navigation signals . . . . . . . . . . . . . . . . . 65

4.3 Galileo navigation signals . . . . . . . . . . . . . . . . . . . 67

5.1 Performance parameters for the sinusoidal DEM . . . . . . . 109

5.2 Performance parameters for the cone DEM . . . . . . . . . 113

5.3 Performance parameters for the mixed DEM . . . . . . . . . 113

5.4 Performance parameters for the actual image of a natural

scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Performance parameters for the SPM scattering model . . . 125

5.6 Performance parameters for the cosϑ scattering model . . . 125

5.7 Performance parameters for the cos2 ϑ scattering model . . 130

5.8 Performance parameters for the cos4 ϑ scattering model . . 130

6.1 Advantages and drawbacks of SAR, Optical and GNSS-R

systems for sea target detection . . . . . . . . . . . . . . . . 149

6.2 Orbital parameters for GPS, Galileo, GLONASS, and BeiDou-

2 GNSSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Orbital parameters for the considered scenarios . . . . . . . 157

6.4 UK TDS-I Parameters . . . . . . . . . . . . . . . . . . . . . 170

XI



This page intentionally left blank.



List of Figures

2.1 Cartesian and polar reference systems relevant to the scat-

tering surface. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Working principle of a radar system. The EM wave emit-

ted from the radar antenna propagates into the surrounding

medium, is re�ected from the target, and comes back to the

receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Side-looking viewing geometry of an imaging radar system. 35

3.3 SAR geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Foreshortening compression and dilatation e�ect. Foreslope

cells are compressed; backslope cells are dilated. . . . . . . . 45

3.5 Foreshortening e�ect on SAR images . . . . . . . . . . . . . 46

3.6 Layover e�ect. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Layover e�ect. Inversion between the top and bottom of the

valley is clearly visible. . . . . . . . . . . . . . . . . . . . . . 47

3.8 Shadowing e�ect. Dark regions are not illuminated and the

shadow extends over other areas. . . . . . . . . . . . . . . . 48

3.9 Shadowing e�ect on a real SAR image of the Gran Canon

du Verdon, Cote D'Azur (France). . . . . . . . . . . . . . . 49

XIII



4.1 Radio Navigation Satellite Service band distribution. ARNS

is the acronym for Aeronautical Ratio Navigation Service.

This band is dedicated to safety-of-life services (i.e., civil

aviation). RNSS is the acronym for Radio Navigation Satel-

lite Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Geometry of a GNSS RO event. The navigation signal

transmitted from the GNSS station propagates into the at-

mosphere and is bent as it travels due to the changes in

the refractive index of the Earth's atmosphere (solid line).

The signal source is hidden behind Earth and there is no

line-of-sight (dashed line) between transmitter and receiver. 72

4.3 Illustration of GNSS-R basic principle. Signals coming from

GNSS stations are re�ected by the Earth's surface and ac-

quired by the GNSS-R receiver. . . . . . . . . . . . . . . . . 73

5.1 Block-scheme of the 2-pass SARBM3D �lter. . . . . . . . . 83

5.2 Nonlocal block-matching 3-D in SARBM3D. Inspired to Fig.

2 of [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Surface NRCS dependencies (see Eq. 2.15): (a) incidence

angle vs. dielectric constant assuming T = 10−4 m, H =

0.8 and σc = 10−2 S/m; (b) incidence angle vs. electrical

conductivity assuming T = 10−4 m, H = 0.8 and εr = 10;

(c) incidence angle vs. Hurst coe�cient assuming T = 10−4

m, εr = 10 and σc = 10−2 S/m; (d) incidence angle vs.

topothesy assuming εr = 10, H = 0.8 and σc = 10−2 S/

m. All graphs are in logarithmic scale on z-axis; electrical

conductivity and topothesy axes are in log scale, too. . . . . 92

5.4 Block scheme of the scattering-based SARBM3D algorithm. 95

XIV



5.5 Flowchart of the proposed SB-PPB �lter. Iterations are

adaptively performed only on �at areas, identi�ed through

a binary classi�cation method based on the local incidence

angle map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 (a) 512× 512 simulated single-look SAR image in presence

of a sinusoidal topography, microscopic roughness of fractal

parameters H = 0.8 and T = 10−4 m, and electromag-

netic parameters εr = 4 and σc = 10−2 S/m; (b) 512-look

reference image; (c) local incidence angle map; (d) PPB

nonit.; (e) PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-

SARBM3D; (i) weight map in the range 0-1. . . . . . . . . . 110

5.7 (a) 512×512 simulated single-look SAR image in presence of

a conical topography with microscopic roughness of fractal

parameters H = 0.8 and T = 10−4 m, and electromag-

netic parameters εr = 4 and σc = 10−2 S/m; (b) 512-look

reference image; (c) local incidence angle map; (d) PPB

nonit.; (e) PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-

SARBM3D; (i) weight map in the range 0-1. . . . . . . . . . 111

XV



5.8 (a) 512× 512 simulated single-look SAR image in presence

of a fBm topography of fractal parameters H = 0.8 and

T = 10−4 m, and electromagnetic parameters εr = 4 and

σc = 10−2 S/m (right) and patches of di�erent electromag-

netic parameters - in particular, the brightest square sim-

ulates damp soil (εr = 10, σc = 10−2 S/m), the middle

gray-level squares dry soil (εr = 4, σc = 10−3 S/m) and the

darkest one sea (εr = 80, σc = 4 S/m); (b) 512-look refer-

ence image; (c) local incidence angle map; (d) SARBM3D;

(e) PPB nonit.; (f) PPB 4-it.; (g) SB-SARBM3D; (h) SB-

PPB; (i) weight map in the range 0-1. White box indicates

the region where the ENL is computed; ES evaluation is per-

formed in the red marked area consisting of 240 horizontal

pro�les. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 (a) 2000 × 2000 subset of a COSMO-SkyMed single-look

stripmap SAR image of the Vesuvius volcano close to Naples

(Italy); (b) reference image obtained via a temporal multi-

look of 42 SAR images. The black box indicates the area

selected for coe�cient of variation computation; (c) local

incidence angle in azimuth-slant range derived from a DEM

obtained with a Lidar system; (d) PPB nonit.; (e) PPB 4-it.;

(f) SARBM3D; (g) SB-PPB; (h) SB-SARBM3D; (i) weight

map in the range 0-1; . . . . . . . . . . . . . . . . . . . . . . 117

5.10 500× 500 zoom of the Vesuvius crater: (a) Noisy; (b) refer-

ence; (c) SARBM3D. Red box indicates some artifacts re-

moved or attenuated in SB-SARBM3D. (d) SB-SARBM3D;

(e) PPB with four iterations; (f) SB-PPB. Green boxes in-

dicate some features better preserved thanks to the a priori

scattering information; white box indicates the region where

the ENL is computed. . . . . . . . . . . . . . . . . . . . . . 118

XVI



5.11 500× 700 zoom of a �at region at the foot of the Vesuvius:

(a) Noisy; (b) reference; (c) SARBM3D. Red boxes indicate

some artifacts removed or attenuated in SB-SARBM3D. (d)

SB-SARBM3D; (e) PPB with four iterations; (f) SB-PPB. . 119

5.12 (a) 1000 × 1000 subset of a COSMO-SkyMed single-look

stripmap SAR image of the Vesuvius volcano close to Naples

(Italy) and relevant to a partly urbanized area; (b) image

obtained via a temporal multilook of 42 SAR images. (c)

Local incidence angle in azimuth-slant range derived from

a DEM obtained with a Lidar system. (d) PPB nonit.; (e)

PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-SARBM3D.

(i) Weight map in the range 0-1. Red marked area is zoomed

in Fig. 5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.13 Zoom of the red marked area in Fig. 5.12(b). (a) Single-

look; (b) 42-look image; (c) PPB 4-it.; (d) SARBM3D; (e)

SB-SARBM3D; (f) SB-PPB. Di�erences between the single

and the multilook images are red circled. . . . . . . . . . . . 121

5.14 (a) Fractal DEM with fractal parametersH = 0.8, T = 10−5

m in the azimuth-slant range coordinate system; resolution

is 2.58 m and 2.29 m in azimuth and slant-range respec-

tively; (b) local incidence angle map in the azimuth-slant

range coordinate system. . . . . . . . . . . . . . . . . . . . . 125

5.15 (a) 512 × 512 single-look SAR image corresponding to the

scene in Fig. 5.14(a) with electromagnetic parameters εr =

4 and σc = 10−2 S/m; (b) reference image obtained by av-

eraging 512 single-look sample images; (c) SB-PPB with a

priori scattering information estimated from the local inci-

dence angle in Fig. 5.14(b) and assuming the right values

for the surface parameters; (d) PPB with four iterations; (e)

SB-SARBM3D; (f) SARBM3D. . . . . . . . . . . . . . . . . 126

XVII



5.16 (a) Simulated and despeckled SAR images relevant to the

DEM in Fig. 5.15(a) and assuming the cosϑ scattering

model. (a) Noisy; (b) reference SAR image; (c) SB-PPB;

(d) PPB; (e) SB-SARBM3D; (f) SARBM3D. . . . . . . . . 127

5.17 (a) Simulated and despeckled SAR images relevant to the

DEM in Fig. 5.15(a) and assuming the cos2 ϑ scattering

model. (a) Noisy; (b) reference SAR image; (c) SB-PPB;

(d) PPB; (e) SB-SARBM3D; (f) SARBM3D. . . . . . . . . 128

5.18 (a) Simulated and despeckled SAR images relevant to the

DEM in Fig. 5.15(a) and assuming the cos4 ϑ scattering

model. (a) Noisy; (b) reference SAR image; (c) SB-PPB;

(d) PPB; (e) SB-SARBM3D; (f) SARBM3D. . . . . . . . . 129

5.19 Sensitivity of SB-PPB against the Hurst Coe�cient. Clock-

wise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.133

5.20 Sensitivity of SB-SARBM3D against the Hurst Coe�cient.

Clockwise from top-left: SNR; VoR; Coe�cient of Variation;

MSSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.21 Sensitivity of SB-PPB against the relative dielectric con-

stant. Clockwise from top-left: SNR; VoR; Coe�cient of

Variation; MSSIM. . . . . . . . . . . . . . . . . . . . . . . . 134

5.22 Sensitivity of SB-SARBM3D against the relative dielectric

constant. Clockwise from top-left: SNR; VoR; Coe�cient

of Variation; MSSIM. . . . . . . . . . . . . . . . . . . . . . . 135

5.23 Sensitivity of SB-PPB against the electrical conductivity.

Clockwise from top-left: SNR; VoR; Coe�cient of Variation;

MSSIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.24 Sensitivity of SB-SARBM3D against the electrical conduc-

tivity. Clockwise from top-left: SNR; VoR; Coe�cient of

Variation; MSSIM. . . . . . . . . . . . . . . . . . . . . . . . 136

XVIII



5.25 Sensitivity of SB-SARBM3D against the Topothesy. Clock-

wise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.136

5.26 (a) SB-PPB and (b) SB-SARBM3D with a priori scattering

information estimated from the local incidence angle map in

Fig. 5.15(b) �ltered with a 512× 512 moving average �lter

and assuming the right values for the surface parameters. . 138

5.27 Sensitivity of SB-PPB against the DEM resolution loss.

Clockwise from top-left: SNR; VoR; Coe�cient of Varia-

tion; MSSIM. The highest resolution ensures the best per-

formance; with very low-resolution DEMs, SB-PPB tends

to PPB (dashed lines). . . . . . . . . . . . . . . . . . . . . . 139

5.28 Sensitivity of SB-SARBM3D against the DEM resolution

loss. Clockwise from top-left: SNR; VoR; Coe�cient of

Variation; MSSIM. The highest resolution ensures the best

performance; SARBM3D (dashed lines). . . . . . . . . . . . 139

5.29 Sensitivity of SB-PPB against coregistration errors (in pix-

els) between the local incidence angle map and the SAR im-

age for di�erent DEM resolutions. Clockwise from top-left:

SNR; VoR; Coe�cient of Variation; MSSIM. Low-resolution

DEMs provide smooth a priori scattering information. Con-

sequently, the lower the DEM resolution, the stronger the

sensitivity of SB-PPB against coregistration displacements. 141

5.30 Sensitivity of SB-SARBM3D against coregistration errors

(in pixels) between the local incidence angle map and the

SAR image for di�erent DEM resolutions. Clockwise from

top-left: SNR; VoR; Coe�cient of Variation; MSSIM. Low-

resolution DEMs provide smooth a priori scattering infor-

mation. Consequently, the lower the DEM resolution, the

stronger the sensitivity of SB-SARBM3D against coregis-

tration displacements. . . . . . . . . . . . . . . . . . . . . . 142

XIX



6.1 2015 worldwide maritime tra�c density map. The density

is evaluated as the number of ships per grid cell per day.

Taken from www.marinetra�c.com. . . . . . . . . . . . . . . 148

6.2 (a) Mean, (b) Median, and (c) standard deviation of the

revisit time in hours vs. number of receiving channels con-

sidering one (black line), eight (magenta line), sixteen (blue

line), twenty-four (green line), and thirty-two (red line) satel-

lites. Only GPS stations are tracked. . . . . . . . . . . . . . 154

6.3 (a) Mean, (b) Median, and (c) standard deviation of the

revisit time in hours vs. number of receiving channels con-

sidering one (black line), eight (magenta line), sixteen (blue

line), twenty-four (green line), and thirty-two (red line) satel-

lites. GPS and Galileo stations are tracked. . . . . . . . . . 155

6.4 (a) Mean, (b) Median, and (c) standard deviation of the

revisit time in hours vs. number of receiving channels con-

sidering one (black line), eight (magenta line), sixteen (blue

line), twenty-four (green line), and thirty-two (red line) satel-

lites. GPS, Galileo, GLONASS, and BeiDou-2 stations are

tracked. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Mean revisit time as a function of the number of receiving

channels in scenario 1 (solid lines) and scenario 3 (dash-

dotted lines) using one (black lines), sixteen (blue lines),

and thirty-two (red lines) satellites. . . . . . . . . . . . . . . 157

6.6 Overall �owchart of the proposed sea target detection algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 Flowchart of the pre-processing step. . . . . . . . . . . . . . 161

6.8 Flowchart of the pre-screening step. . . . . . . . . . . . . . . 162

6.9 Flowchart of the selection step. . . . . . . . . . . . . . . . . 163

6.10 Flowchart of the geolocation step. . . . . . . . . . . . . . . . 164

XX

www.marinetraffic.com


6.11 ROC of the detector. For any �xed PFA, the detection rate

increases with the SNR. The tradeo� between probability

of detection and probability of false alarms is evident: an

improvement of the detection rate can be achieved at a cost

of an increased probability of false alarms. . . . . . . . . . . 167

6.12 Threshold vs. PFA. For PFA close to zero (PFA < 0.5),

the threshold increases with increasing standard deviation

of noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.13 The Hibernia oil rig is situated on the Hibernia oil�eld in the

North Atlantic Ocean, 315 km o� St. John's, Newfoundland

at 46.75°N, 48.78°W. . . . . . . . . . . . . . . . . . . . . . . 171

6.14 (a) TDS-1 DDM acquired on April 1, 2015 at 00:19:37 UTC.

Nominal specular point at 46.83°N, 47.53°W. The visible

bright feature is the Hibernia platform situated at about

95 km o� the specular point. (b) Simulated sea clutter

contribution. (c) Di�erence map. (d) Pre-screening; (e)

Selection. The Hibernia platform is detected on the right.

A sea ice sheet is detected on the left and validated using

NSIDC data. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.15 (a) TDS-1 DDM acquired on April 1, 2015 at 00:19:49 UTC.

Nominal specular point at 47.47°N, 47.84°W. The visible

bright feature is a sea ice sheet. (b) Simulated sea clutter

contribution. (c) Di�erence map. (d) Pre-screening; (e)

Selection. The detected target is a sea ice sheet validated

using NSIDC data. . . . . . . . . . . . . . . . . . . . . . . . 173

6.16 Image representation of the NSIDC sea ice concentrations

data used for validation of sea ice sheets detection. The red

point indicates the target detected by the algorithm. . . . . 174

XXI



6.17 (a) TDS-1 DDM acquired on February 28, 2015 at 16:18:32

UTC. Nominal specular point at 27.45°N, 89.45°W. (b) Sim-

ulated sea clutter contribution. (c) Di�erence map. (d)

Pre-screening; (e) Selection. . . . . . . . . . . . . . . . . . . 175

6.18 (a) TDS-1 DDM acquired on February 28, 2015 at 16:18:33

UTC. Nominal specular point at 27.40°N, 89.47°W. (b) Sim-

ulated sea clutter contribution. (c) Di�erence map. (d)

Pre-screening; (e) Selection. . . . . . . . . . . . . . . . . . . 176

XXII



Chapter 1
Introduction

Remote sensing represents a fundamental tool for Earth observation

and monitoring and for the study and analysis of other celestial bodies.

In its broadest de�nition, remote sensing is the acquisition of information

at a distance. However, this extensive de�nition must be re�ned in order

to better focus on the topics treated in this Ph.D. Thesis and exclude

some concepts, methodologies and technologies that could be reasonably

included in wider de�nitions, such as sensing the Earth's magnetic �eld or

atmosphere or the temperature of the human body. In this Ph.D. Thesis,

the following focused de�nition by J. B. Campbell will be used [1]:

�Remote sensing is the practice of deriving information about the Earth's

land and water surfaces using images acquired from an overhead perspec-

tive, using electromagnetic radiation in one or more regions of the electro-

magnetic spectrum, re�ected or emitted from the Earth's surface.�

Within this de�nition, remote sensing stands for the set of procedures and

methodologies aimed at gathering Earth's surface information by means

of irradiation and acquisition of Electromagnetic (EM) waves. The fre-

1
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quency range adopted impacts hardware as well as the acquirable informa-

tion and, consequently, applications of the remote sensing systems. Radar

remote sensing typically uses microwave and millimeter wave propagation,

whereas optical sensors rely on light propagation; �nally, the lidar remote

sensing is based on the emission and re�ection of laser pulses in near in-

frared, visible, and ultraviolet regions of the EM spectrum. Whatever the

source, remote sensing is strictly related to the EM wave propagation and

re�ection/scattering from natural or man-made surfaces and, therefore, to

the complex phenomenology of the radiation-matter interactions. How-

ever, EM theory provides analytical solutions only in few canonical cases,

in which a closed-form expression for the scattered �eld is derived in a

deterministic framework. When dealing with remote sensing data, these

cases very rarely represent an adequate model. For instance, for scattering

evaluation purposes, large ice sheets and very calm sea can be modeled as

in�nite planes. In most cases, the re�ecting interface has to be modeled as

a random rough surface, thus causing random variations of the acquired

signal. In such cases, the actual signal measurements cannot be predicted

and relevant information about the illuminated surface is gathered from

signal statistics.

1.1 Motivations

Imaging sensors are an essential tool for the observation of the Earth's

surface and the study of other celestial bodies. The capability to pro-

duce radar images of the illuminated surface is strictly related with the

complex phenomenology of the radiation-matter interaction. The electro-

magnetic scattering theory is a well-established and well-assessed topic in

electromagnetics; however, its usage in the remote sensing �eld is not ad-

equately investigated and studied. The motivations for this Ph.D. Thesis

arose from the idea of applying scattering models in remote sensing data
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and exploiting a priori information about the scattering behavior of the

illuminated surface to improve performance of existing algorithms and to

allow for novel applications. In particular two main topics were identi�ed,

investigated and discussed in this Ph.D. Thesis:

I. Synthetic Aperture Radar (SAR) despeckling.

SAR data represent an essential tool for monitoring Earth resources and

analyzing both urban and natural areas. As the very recent ESA Sentinel

mission shows, SAR systems and sensors play a key role in understanding,

controlling, and preserving our surrounding environment. However, SAR

image readability and information retrieval procedures are dramatically

a�ected by speckle, the multiplicative noise typical of coherent acquisition

systems, like SAR. Consequently, analysis and understanding of a single-

look SAR image are often a di�cult task even for SAR-expert users [2]. In

the last decades, with the introduction of increasingly powerful hardware

and software resources, huge e�orts have been made in the despeckling

�eld, aimed at the reduction of speckle e�ects to increase the readability

of SAR data and, consequently, the potential users. Numerous kinds of ap-

proaches and methods facing the despeckling problem have been proposed

so far, as it can be appreciated from the surveys in [3], [4], [5]. The �rst

technique is the so-called spatial multilook, simply based on an incoherent

averaging of neighboring pixels within a �xed window. Despite its simplic-

ity, this technique is the best (in terms of mean-squared error) in the case

of homogeneous SAR images, i.e., SAR images of surfaces with constant

geometrical and electromagnetic parameters. Unluckily, in most cases, a

homogeneous SAR image is not of practical interest, and it is of really rare

occurrence. Typically, SAR images depict a very inhomogeneous scenario,

i.e., regions characterized by spatial variations of at least one of the nu-

merous parameters in�uencing SAR image formation (dielectric constant,
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electrical conductivity, microscopic and macroscopic roughness). Depend-

ing on these parameters variations, SAR images present several features

like edges � typically associated with changes of the electromagnetic pa-

rameters of the surface � textures and patterns � typically associated

with changes of the geometric parameters of the surface � homogeneous

regions, and so on. The huge amount of information carried by these

features makes their preservation of key importance in despeckling.

Seeking inspiration from the huge literature about denoising of signals

a�ected by the Additive White Gaussian Noise (AWGN) has been, for a

long time, the most followed approach in the development of despeckling

algorithms for SAR images: as a matter of fact, numerous both old and

recent techniques used the homomorphic approach, taking the logarithm

of the data [6], [7], [8]. Despite their simplicity and analytical tractability,

the homomorphic approach causes a severe distortion of the dynamics,

as well as of the fundamental properties of the SAR data. In fact, the

log-transformed speckle noise is neither Gaussian nor zero-mean so that

AWGN denoising methods would not provide reliable results unless these

noise peculiarities are properly taken into account. As soon as speckle

statistical descriptions and models became available in literature [9], [10]

and the denoising community became more aware about the peculiarities

of SAR images [11], e.g., spatial nonstationarity, more advanced techniques

were conceived and developed [12], [13], [14], [15], [16], [17], [18], [19], [20].

As an alternative to the previous techniques, all operating in the native

data domain, i.e., the spatial one, the 1990s saw the rapid di�usion of the

wavelet-based denoising techniques [8], [21], [22], [23], [24]. This approach

allows for both huge noise reduction and detail preservation, owing to the

sparse representation of the signal in the transformed domain. Wavelet

transform ensures a very accurate separation between signal and noise,

also with richly detailed images, so that excellent and promising results

are provided by wavelet-based approaches.
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More recently, the non-local means (NLM) approach, �rst introduced

in [25], has been developed, and it represents a candidate breakthrough in

the despeckling community. The basic idea is to provide an estimate of the

clean image via a proper averaging of similar pixels or patches, i.e., blocks

of close pixels. The main contribution is to introduce, in a very basic way,

some physical concepts by means of an intensity-based similarity criterion

rather than of a pure geometrical one. NLM techniques are actually of

great interest, owing to their edge preservation and speckle reduction ca-

pabilities [24], [25], [26]. The nonlocal �lter proposed in [25], optimal for

AWGN, was generalized to SAR imagery and speckle noise by Deledalle

et al. in [26], introducing a distance suitable for the Nakagami�Rayleigh

distribution typical of SAR speckle noise. An improved version of the �l-

ter in [26] suitable for both polarimetric and interferometric SAR data has

been published very recently [27].

Despite their peculiarities, all of the aforementioned approaches su�er

a general lack of physically based concepts: despeckling is considered as a

pure statistical estimation problem, without taking into account the phys-

ical phenomenology inherent to the SAR image acquisition process. How-

ever, electromagnetic scattering phenomena play a key role in the SAR

image formation process: as a matter of fact, SAR data can be modeled as

the re�ectivity pattern of the illuminated scene �ltered by the SAR system

[28], [29], as it will be discussed further in this Ph.D. Thesis. The past and

current representation-based approaches in denoising SAR images could be

substituted by the more meaningful and promising object-based approach,

in which the similarity criterion is evaluated on the object properties rather

than on those ones relevant to its representation through the sensor. How-

ever, an object-based approach cannot be performed without taking into

account the physics behind the data acquisition and the related phenom-

ena, which, in the SAR case, are essentially represented by scattering. In

the meantime, the availability of both closed-form scattering models and
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a more accurate knowledge of all the parameters and phenomena involved

in electromagnetic scattering from natural surfaces call for the introduc-

tion of scattering concepts in the despeckling chain in order to obtain a

signi�cant improvement of the state of the art.

In this Ph.D. Thesis, we describe the novel idea of despeckling based on

scattering phenomena hidden behind SAR image formation. This general

idea is applied to two well-known state-of-the-art despeckling algorithms -

namely the SAR Block-Matching 3-D (SARBM3D) and the Probabilistic

Patch-Based (PPB) �lters proposed in [24] and [26], respectively - by em-

ploying a scattering-based similarity criterion. In particular, an EM scat-

tering model suitable to natural surfaces has been selected, and then, the

original �lters have been modi�ed in order to account for the a priori in-

formation about the EM behavior of the scattering cell. The new �lters

have been called Scattering-Based (SB)-PPB and SB-SARBM3D. The

proposed approach requires the knowledge of the scene topography. As

discussed more in detail in this Ph.D. Thesis, this does not signi�cantly

limit the applicability of the proposed methods since accurate Digital El-

evation Model (DEM)s are by now easily available for most part of the

world.

II. Sea target detection from GNSS-Re�ectometry (GNSS-R) imagery.

The monitoring of inhomogeneous features on the sea surface, such as

ice sheets and ships, impacts hydrological, biological, chemical and geo-

logical processes at and near the Earth's surface. Ice sheet mapping plays

a key role in numerous applications, such as climate changes analysis and

maritime security. Despite their high accuracy, in-situ measurements only

provide local information and a coverage limited to the Northern Hemi-

sphere midlatitudes [30]. In order to address accurate ice sheet mapping

at a global scale, spaceborne measurements from satellite constellations
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come into play. Detection and monitoring of ships is important in mar-

itime tra�c control, illegal activities prevention, environment and pollution

control, and naval warfare [31]. Despite the comprehensive information �

name, speed, course, etc. � purchasable, the Automatic Identi�cation Sys-

tem (AIS) protocol allows for sea tra�c control within a limited area o�

the coastal line [31]. Remote sensing provides an unquestionable support

in sea and ice monitoring, thanks to the global coverage. In particular,

during the last three decades, SAR and optical data have been exten-

sively exploited in the sea target detection �eld [31], [32], [33], [34] with an

increased interest after the launch of recent missions, such as RADARSAT-

2, COSMO-SkyMed, and the EU Copernicus system. Despite their high

spatial resolution, SAR and optical satellites o�er a temporal resolution,

i.e., revisit time, on the order of days that a�ects the exploitation of such

systems for near real-time sea monitoring. Indeed, it is noteworthy that

a temporal resolution on the order of hours or less is required for ship

detection [35]; the World Meteorological Organization indicates a revisit

time of the order of hours for sea-ice cover concerning the Global Numer-

ical Weather Prediction, climate monitoring and ocean applications [36].

GNSS-R is a recently remote sensing approach mainly exploited for sea

state estimation [37], [38]. Due to its low cost, low power consumption,

low size, and low weight, GNSS-R instruments can be launched in constel-

lation formation at a relative low cost, ful�lling the temporal requirements

for near real-time ship and ice monitoring as shown further in this Ph.D.

Thesis.

Thanks to the short revisit time and high global coverage of potential

future GNSS-R constellations, the sea target detection problem is expected

to bene�t from GNSS-R imagery. However, these very recent topics have

not been properly and deeply investigated yet, and very few works focusing

especially on the assessment and feasibility of ship detection from GNSS-R

observables can be found in the related literature [39], [40], [41], [42], [43].
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The main contributions to sea target detection using GNSS-R data

described in this Ph.D. Thesis are as follows:

� Numerical analysis of the revisit time provided by constellations of

GNSS-R instruments by means of realistic simulated missions;

� Derivation and implementation of a sea target detection algorithm

from spaceborne GNSS-R Delay-Doppler Map (DDM)s;

� Validation of the algorithm using actual GNSS-R data.

1.2 Organization of this Ph.D. Thesis

This Ph.D. Thesis is essentially divided in two parts: the �rst part

includes Chapters 2 to 4 and aims at providing the reader with the ba-

sic notions and preliminary concepts about electromagnetism and remote

sensing to guarantee a full understanding of the Book even to non-expert

readers. However, the reader is referred to the excellent books quoted

throughout the text for more details. Due to the broad extent of these

topics, the above-mentioned chapters deal exclusively with the concepts

and technologies related with the research activities described in the sec-

ond part of this Ph.D. Thesis, comprising Chapters 5 to 7. In particular,

this Ph.D. Thesis is organized as follows.

Chapter 2 is devoted to preliminary concepts about the phenomenology

of electromagnetic scattering from natural rough surfaces. Notwithstand-

ing several scattering models have been developed and studied so far, only

the scattering and surface models exploited in the second part of this Ph.D.

Thesis are presented and described. In particular, the Small-Perturbation

Method (SPM) and Geometrical Optics (GO) approaches are discussed

assuming a fractal and normally distributed surface, respectively. These

models are exploited in Chapters 5 and 6, respectively.
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Chapter 3 provides a brief description of the SAR basic principles and

characteristics. The radar concept is presented and the Real Aperture

Radar (RAR) system to acquire Two-Dimensional (2-D) images of the

surface re�ectivity is brie�y described to introduce the underlying princi-

ples exploited in the SAR technology to reach a superior spatial resolution.

The geometric distortions typical of SAR systems are described to make

the reader aware about the main di�culties in SAR imagery interpretation.

The Chapter concludes with the derivation of the SAR impulse response

and the related SAR image model that links the SAR focused data to the

2-D re�ectivity of the sensed surface.

Chapter 4 describes the emerging remote sensing tools using Global

Navigation Satellite System (GNSS) signals of opportunity. It introduces

the GNSS technology for navigation services and provides a brief descrip-

tion of the main current GNSS constellations providing services at a global

scale, namely the US GPS, the Russian GLONASS, the European Galileo,

and the Chinese BeiDou-2. GNSS Radio Occultation (RO) and GNSS-R

remote sensing technologies based on GNSS signals are describes as well,

with a particular focus on the GNSS-R methodology and observables,

namely the DDM, used further in this Ph.D. Thesis.

Chapter 5 presents two novel despeckling algorithms for SAR imagery

based on the exploitation of a priori information about the scattering be-

havior of the illuminated surface. The proposed algorithms, named SB-

PPB and SB-SARBM3D, represent a modi�ed version of the original PPB

and SARBM3D �lters, in which the a priori scattering information is ac-

counted for. The original �lters are brie�y described in order to let the

reader understand the proposed changes, which represent the core of the

Chapter. The results obtained with both simulated and actual SAR im-

ages are shown and commented as well. The Chapter concludes with an

experimental sensitivity analysis aimed at a quantitative evaluation of the

robustness of the proposed despeckling �lters against diverse error sources.



10 Chapter 1. Introduction

Chapter 6 discusses a novel application of GNSS-R data in the ocean

monitoring �eld, i.e., sea target detection. The Chapter analyzes the most

di�use remote sensing tools used for sea target detection purposes, de-

scribing their main advantages and drawbacks. GNSS-R is then demon-

strated to be a valid opportunity in this �eld, owing to the very low revisit

time that can be achieved by constellations of GNSS-R instruments. A

sea target detection algorithm for spaceborne GNSS-R DDMs is then pre-

sented and described. Its e�ectiveness is demonstrated with actual UK

TechDemoSat-1 (TDS-1) data and some relevant results are shown and

commented.

Finally, Chapter 7 concludes this Ph.D. Thesis with a brief summary

of the obtained results as well as some future research lines related to the

presented topics.



Chapter 2
Electromagnetic Scattering:

Theory and Models

Electromagnetic scattering from random rough surfaces has been sub-

ject of intensive study in the last two centuries, with the �rst works by

J. W. Strutt Rayleigh on the light re�ection and dispersion from ran-

domly distributed particles [44]. The extremely complex phenomenology

of wave-matter interaction justi�es the huge e�orts conducted by physi-

cists and engineers to provide a comprehensive understanding of the EM

wave scattering from random rough surfaces. The theory of EM scattering

is strictly related to the Maxwell equations and its main aim is to develop

methodologies and approaches to solve them. The di�erent approaches to

the problem can be categorized into analytical models, empirical models

and a combination of them. Empirical models provide closed-form formu-

las based on measurements. These models are commonly used wherein a

theoretical solution of Maxwell equations does not exist and numerical al-

gorithms cannot be easily applied. However, they provide accurate results

only in the context where they are derived. A theoretical derivation of

11
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the solution of the EM scattering problem can be addressed only in a very

limited number of canonical cases, i.e., cases not physically reproducible

or representing an approximation of the reality. Analytical models allow

for a rigorous expression of the scattered �eld to be used for objective

and measurable assessments, by using well-known and well-assessed math-

ematical tools. The hard mathematical tractability leads to nonclosed-

form solutions in most of application scenarios, such as remote sensing,

where the problem of modeling the EM �eld scattered from natural sur-

faces or man-made objects is of great interest. Indeed, the understanding

of the relationship between the incident and scattered �elds via closed-

form analytical formulas allows for an easier inference about the surface

parameters of interest via inversion techniques. To improve the mathe-

matical tractability of the solution and provide a closed-form formula of

the scattered �eld, asymptotic methods come into play. These methods are

based on some restrictive hypotheses aimed at recovering the mathematical

tractability of the problem and the derivation of a closed-form expression.

Each asymptotic method holds under the appropriate surface roughness

regime and illumination conditions and is characterized by validity limits

dictated by the assumptions made. The Kirchho� Approximation (KA),

the SPM, and the Integral Equation Method (IEM) are well-known and

well-assessed asymptotic methods used in the remote sensing �eld. The

KA and the SPM represent early approaches to scattering which are still

much used, whereas the IEM represents a newer approach which has a

larger domain of validity. By introducing further hypotheses, the GO and

Physical Optics (PO) solutions are derived from the KA. These methods

have been found to be the most common in the literature and many other

methods are based or have much in common with these approaches. A

huge literature related to the EM scattering from random rough surface

exists. The reader is referred to [45], [46], [47], [48], [49], [50], [51], [52]. In

this Chapter, we focus on the scattering models used in this Ph.D. Thesis,
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namely the SPM and the GO. In particular, the SPM scattering model

will be used to model the scattering behavior of the resolution cell in the

proposed scattering-based despeckling algorithms; the GO solution will be

exploited in the sea target detection algorithm to describe the forward scat-

tering from sea surface in the GNSS-R DDM. The Chapter is organized

as follows: Section 2.1 brie�y introduces and describes the fundamental

equations related to the EM scattering from a dielectric interface. In Sec-

tion 2.2, a brief presentation of the SPM is given; in Section 2.3, the KA

approach and the GO solution are described. The Normalized Radar Cross

Section (NRCS) is provided as a closed-form function of the surface and

EM incident �eld parameters for both cases.

2.1 Integral Formulation of Electromagnetic Scat-

tering

A monochromatic, linearly polarized incident plane wave is considered.

Consequently, the electric and magnetic �eld incident on the random rough

surface can be written as follows:

Ei(r) = p̂Ep exp
(
−jki · r

)
= p̂Eip (2.1)

Hi(r) =
1

ζ
k̂i ×Ei(r) (2.2)

where ki = k̂ik is the wave vector, p̂ is the unit polarization vector, Ep is

the electrical �eld amplitude, and ζ =
√
µ/ε is the intrinsic impedance of

the medium. We focus on surfaces with random surface pro�les (i.e., not

periodic surfaces) separating two regions, each one �lled with homogeneous

media. The geometry of the scattering problem is shown in Fig. 2.1,

where a Cartesian (O, x, y, z) and a polar (O, r, ϑ, φ) reference systems are

introduced. The z = 0 plane is chosen as the surface mean-plane and the
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y−axis is chosen perpendicular to the incidence plane. Consequently, the

incident EM �eld is uniquely described by the incidence angle ϑi.

It can be shown that the far zone scattered �eld, Es, can be written in

terms of the tangential surface �elds in the medium above the separating

surface as (Stratton-Chu integral) [47]:

Es (r) = −jk exp (−jkr)
4πr

(
I − k̂sk̂s

)
·
∫
S

{
k̂s ×

[
n̂×E

(
r′
)]

+ ζ
[
n̂×H

(
r′
)]}

exp
(
jks · r′

)
dS′ (2.3)

where n̂ stands for the unit normal vector to the surface,

ks = kk̂s = k (sinϑs cosφsx̂ + sinϑs sinφsŷ + cosϑsẑ) = ksxx̂+ksyŷ+kszẑ

(2.4)

and the unit vector k̂s de�nes the observation direction. To compute

the scattered �eld, the tangential surface �elds in Eq. 2.3 need to be

evaluated. As shown in [53], the tangential surface �elds in the medium

above the scattering dielectric surface can be expressed via the following

integral equations:

n̂×E = 2n̂×Ei − 2

4π
n̂

×
∫
jkζ

(
n̂′ ×H′

)
G1 −

(
n̂′ ×E′

)
×∆′G1 −

(
n̂′ ·E′

)
∆′G1 dS

′ (2.5)

n̂×H = 2n̂×Hi +
2

4π
n̂

×
∫
jk

ζ

(
n̂′ ×E′

)
G1 −

(
n̂′ ×H′

)
×∆′G1 −

(
n̂′ ·H′

)
∆′G1 dS

′ (2.6)

where n̂′ is the unit normal vector to the surface; n̂×E and n̂×H are the
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tangential �elds on the rough surface in the medium above the separating

interface; G1 and G2 are the Green's functions in the same medium. It

is noteworthy that Eqs. 2.5 and 2.6 provide an exact expression of the

tangential �elds on the separating interface. By substituting Eqs. 2.5

and 2.6 in Eq. 2.3, the analytic expression of the scattered �eld can be

derived. Once the scattered �eld is computed, the NRCS can be derived.

The NRCS of an extended surface is de�ned as follows:

σ0
pq =

4πR2
0〈|Esq |

2〉
As|Eip|

2 (2.7)

where Esq is the q-component of the �eld backscattered in the far-�eld

region by the area As of the surface illuminated by the plane wave in Eq.

2.1; R0 is the distance from its center to the receiver; p and q stand for h

or v (horizontal or vertical polarization).

However, the integral equations 2.5 and 2.5 cannot in general be solved

analytically and an analytical solution to the general scattering problem

encounters several di�culties. Therefore approximations are required to

obtain closed-form analytical solutions to the scattering problem. To pro-

vide a closed-form solution to the integral equations 2.5 and 2.5 and, then,

compute the NRCS, a surface model is required as well. Depending on

the surface model used, di�erent expressions of the NRCS can be derived.

Analytic models used within this Ph.D. Thesis are able to handle a variety

of natural surfaces: bare and moderately vegetated soils, as well as ocean

surfaces. The approximated methods and surface models used within this

Ph.D. Thesis are discussed in the next sections.

2.2 Small-Perturbation Method

In this Section, the SPM is brie�y described. In particular, the surface

model used within the SPM framework is presented in Section 2.2.1, while
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Figure 2.1. Cartesian and polar reference systems relevant to the scattering
surface.

the SPM and the related NRCS are described in Section 2.2.2.

2.2.1 Surface Model

Many surface models have been presented in the scienti�c literature -

deterministic, stochastic, empirical - each with its advantages and draw-

backs. Among these, the most accepted and suitable model for natural

surfaces is the fractal one. Indeed, there is an increasing experimental

evidence that the fractal geometry represents the most appropriate math-

ematical environment to describe the shape of natural surfaces [54], [55],

[56]. One of the reasons for this success is the ability of fractal mod-

els to properly account for the statistical scale-invariance properties (in

particular, self-a�nity) of natural surfaces. Thus, it is well known that

natural surfaces show fractal behavior varying both in space and in scale.

Otherwise stated, natural surfaces exhibit di�erent roughness in di�erent

locations and at di�erent observation scales [57], [58], [59]. Furthermore,

fractal approaches provide a description of the surface with a minimum

number of independent parameters [45]. In particular, we consider here
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a (topological) 2-D fractional Brownian motion (fBm) stochastic process

z(x, y) de�ned as follows [45]:

Pr
{
z(x, y)−z(x′, y′) < ζ

}
=

1√
2πT (1−H)τHd

∫ ζ

−∞
exp

(
− ζ2

2T 2(1−H)τ2H
d

)
dζ

(2.8)

where Pr{} stands for �probability�, ζ is the considered height increment,

z(x, y) is the surface elevation,

τd =
√

(x− x′)2 + (y − y′)2 (2.9)

is the distance between the two considered points of coordinates (x, y) and

(x′, y′), and

� H: Hurst coe�cient (0 < H < 1) related to the fractal dimension

D = 3−H;

� T : topothesy [m], i.e., the distance over which chords joining points

on the surface have a surface-slope mean-square deviation equal to

unity.

Fractal geometry is the mathematical abstraction of fractal physics: it

exhibits properties (for instance, self-a�nity) on all scales and does not

allow the derivative operation at any point. Surface fractal corrugations

possess power spectra that diverge in the low-frequency regime (infrared

catastrophe) and exhibit non-stationary correlation functions. Usage of

mathematical fractals to model natural surfaces would make any scatter-

ing computation completely intractable. However, natural surfaces are

observed, sensed, measured, and represented via instruments that are, for

their intrinsic nature, band-limited. In other words, no actual natural

surface holds property 2.8 at any scale, and some properties of fBm math-

ematical surfaces may be relaxed. Accordingly, mathematical fractals may
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be band-limited, thus generating the physical fractals that hold most of

the properties needed to manage them in the electromagnetic scattering

theory. The range of scales of interest for a scattering problem is limited

on one side by the �nite linear size of the illuminated surface, and on the

other side by the fact that surface variations on scales much smaller than

the incident wavelength λ do not a�ect the scattered �eld. An e�cient

approach of surface modeling relies on considering surfaces that satisfy

property 2.8 only in a limited range of τd [45]. That is why these surfaces

are also referred to as band-limited fBm or physical fBm, as de�ned in [45].

2.2.2 Scattering Model

The second step is the choice of the electromagnetic method, i.e., the

scattering model. The SPM scattering model provides a simple expression

for the NRCS and shows a range of validity adequate to SAR applica-

tions. Thus, this method allows a very simple relation between fractals

parameters and backscattered �eld.

Within the SPM approach, the NRCS of a stationary isotropic random

rough surface can be expressed as follows [47]:

σ0
pq = 2π8k4 cos4 ϑ|βpq|2W (2k sinϑ) (2.10)

where k is the wavenumber of the incident �eld, and βpq is a function

of both the complex dielectric constant εr of the surface and the local

incidence angle ϑ [60]:

βhh =
cosϑ−

√
εr − sin2 ϑ

cosϑ+
√
εr − sin2 ϑ

,

βvv =
(
εr − 1

) sin2 ϑ− εr
(
1 + sin2 ϑ

)[
εr cosϑ+

√
εr − sin2 ϑ

]2 ,
βhv = βvh = 0,

(2.11)
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W (κ) is the spectrum of the stationary isotropic surface, de�ned as:

W (κ) =
σ2

2π

∫ +∞

0
J0(κτ)C(τ)τ dτ, (2.12)

where σ is the surface's height standard deviation, J0(κτ) is the zero-

order Bessel function of the �rst kind, and C(τ) is the surface normalized

autocorrelation function.

The power-density spectrum of the 2-D fBm exhibits an appropriate

power-law behavior [45]

W (κ) = S0κ
−αS (2.13)

characterized by two spectral parameters - the spectral amplitude, S0 mea-

sured in [m2−2H ], and the spectral slope, αS - that depend on the fractal

parameters introduced in the space domain, namely the Hurst coe�cient

and topothesy:

S0 = 22H+1Γ2(1 +H) sin(πH)T 2(1−H),

αS = 2 + 2H,
(2.14)

where Γ(·) is the gamma function. Considering a monostatic radar and

assuming that the surface can be described as a physical fBm, the SPM-

derived NRCS is [61]

σ0
pq = 2π8k4 cos4 ϑ|βpq|2

S0

(2k sinϑ)(2+2H)
. (2.15)

2.3 Kirchho� Approximation

In this Section, the Kirchho� approach, also known as the tangent

plane approximation, is described. It was one of the �rst methods applied

to model the EM scattering from rough surfaces. In section 2.3.1, the
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GO approximation is brie�y described as one of the well-assessed methods

to compute the radiation integral in Eq. 2.3 and obtain a closed-form

expression of the scattered �eld. We will present results for the case of

a surface which can be characterized as a Gaussian random process. For

more details about of the Kirchho� method, the reader is referred to [46],

[47], and [50].

KA provides an estimate of the scattered �eld tangent to the sepa-

rating interface in terms of the incident one. In particular, the scattered

tangential �eld at any point of the surface is evaluated by locally approx-

imating the surface with its tangent plane (for this reason, the KA is also

known as tangent plane approximation). The total �eld at each point of

the surface is approximated with the �eld that would be present on an

in�nitely extended plane tangent at that point on the surface. The re�ec-

tion is therefore considered to be locally specular, and the local incidence

angle is evaluated with reference to the local tangential plane; hence, for

random rough surfaces, the tangential plane changes randomly over the

surface according to the local normal n̂.

In order to apply the KA, it is required that the surface has a su�ciently

large radius of curvature relative to the wavelength of the incident �eld in

each point. Thus, under the tangent-plane approximation, the total �eld

at a point on the surface is assumed equal to the incident �eld plus the

�eld re�ected by an in�nite plane tangent to the surface at that point.

By applying KA, the surface integrals in Eqs. 2.5 and 2.6 are no

longer necessary, since the tangential �elds are evaluated with reference

to the locally tangent planes and the Fresnel re�ection coe�cients come

into play relating directly the scattered and incident �elds over the plane

discontinuity. A dramatic simpli�cation of Eq. 2.3 is then provided.

To proceed further, let us introduce a local incident-�eld-polarization
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reference system
(
ĥl, v̂l, k̂i

)
for any surface point:ĥl =

n̂× k̂i

|n̂× k̂i|
,

v̂l = k̂i × ĥl

(2.16)

To take advantage of the local tangent plane approximation and apply the

Fresnel re�ection coe�cients to compute the scattered �eld, the EM inci-

dent �eld is decomposed into its perpendicular and parallel components:

Ei =
[(
p̂ · v̂l

)
v̂l +

(
p̂ · ĥl

)
ĥl

]
Ep exp

(
−jki · r′

)
Hi =

1

ζ
k̂i ×Ei =

[
−
(
p̂ · v̂l

)
ĥl +

(
p̂ · ĥl

)
v̂l

]Ep
ζ

exp
(
−jki · r′

)
.

(2.17)

Natural surfaces are of interest in this work; therefore, it is considered

propagation in free space, and incidence on a homogeneous medium whose

complex relative permittivity is εr and whose permeability coincides with

that of the free space. In this case, the Fresnel re�ection coe�cients read

as:

Rh =
cosϑ−

√
εr − sin2 ϑ

cosϑ+
√
εr − sin2 ϑ

,

Rv =
εr cosϑ−

√
εr − sin2 ϑ

εr cosϑ+
√
εr − sin2 ϑ

.

(2.18)

By considering re�ection over an in�nite plane tangent to the surface,

the tangent scattered �eld is proportional to the incident one via the Fres-

nel re�ection coe�cients:

n̂×
(
Es · ĥl

)
ĥl = Rhn̂×

(
Ei · ĥl

)
ĥl,

n̂×
(
Es · v̂l

)
v̂l = Rvn̂×

(
Ei · v̂l

)
v̂l.

(2.19)
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Hence, in the KA framework, the total tangential surface �elds are [47]:

n̂×E
(
r′
)

= n̂×Ei
(
r′
)

+ n̂×Es
(
r′
)

=
[(
p̂ · v̂l

)(
n̂× v̂l

)(
1 +Rv

)
+
(
p̂ · ĥl

)(
n̂× ĥl

)(
1 +Rh

)]
× Ep exp

(
−jki · r′

)
,

(2.20)

n̂×H
(
r′
)

= n̂×Hi
(
r′
)

+ n̂×Hs
(
r′
)

=
[(
p̂ · ĥl

)(
n̂× v̂l

)(
1−Rh

)
−
(
p̂ · v̂l

)(
n̂× ĥl

)(
1−Rv

)]
× Ep

ζ
exp

(
−jki · r′

)
.

(2.21)

In the far-�eld zone, the EM scattered �eld can be expressed as:

Es (r) = −jk exp (−jkr)
4πr

Ep
(
I − k̂sk̂s

)
·
∫
As

Fp (α, β) exp
[
−j (ki − ks) · r′

]
dA′, (2.22)

where r = [x, y, z (x, y)], As = XY is the illuminated area S projected

onto the (x, y) plane, α and β stand for the surface local slopes, i.e.:

α ,
∂z

∂x
,

β ,
∂z

∂y
,

(2.23)
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and [45]

Fp (α, β) =
{

(p̂ · v̂l)
[
k̂s × (n̂× v̂l)

]
(1 +Rv) +

(
p̂ · ĥl

)[
k̂s ×

(
n̂× ĥl

)]
(1 +Rv) +

[(
p̂ · ĥl

)
(n̂× v̂l) (1−Rh)

− (p̂ · v̂l)
(
n̂× ĥl

)
(1−Rv)

]}√
1 + α2 + β2.

(2.24)

Equation 2.22 represents the scattered �eld formulated under the KA.

As it stands, the expression is a complicated function of the surface

function and its partial derivatives. No analytic solution can be obtained

from Eq. 2.22 without additional simplifying assumptions. Two approaches

have been developed to proceed further at this point and provide an ana-

lytical formulation of the integral in Eq. 2.22, namely GO and PO. Both

approaches assume simplifying hypothesis about the surface roughness [47].

For surfaces with a large (with respect to the wavelength) standard devi-

ation of surface heights, an asymptotic expansion of the integral in Eq.

2.22 can be used. This is the approach followed in GO, also referred to

as stationary-phase approximation, whose validity is in the so-called high-

frequency regime. On the contrary, for surfaces with small slopes and a

medium or small standard deviation of surface heights, a series expansion

of the function Fp (α, β) is used. This is the method followed in the PO.

For the surfaces of interest in this work (sea water), the GO approxima-

tion comes into play and we will focus on it, disregarding the PO approach,

deeply described in the related literature [47].

2.3.1 Geometrical Optics

As stated in the previous section, the GO solution to the scattering

problem comes from the KA approach with the further assumption of

height variations small compared to the wavelength. In this case, the
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Fp (α, β) function can be assumed slowly-varying w.r.t. the phase factor

exp [−j (ki − ks) · r′] and the integral in Eq. 2.22 can be evaluated by

means of the stationary-phase approximation. Under the stationary-phase

approximation the local tangent plane on a surface point can be consid-

ered in�nite and, as consequence, any point of the surface re-irradiate the

incident energy only in the specular direction. This means that the EM

energy incident on a rough surface is scattered only along directions for

which there are specular points on the surface, i.e., di�raction, shadow-

ing and multiple scattering e�ects are not taken into account. The phase

factor can be rephrased as follows:

Q , (ks − ki) · r = q · r = qxx+ qyy + qzz, (2.25)

where
qx = k (sinϑs cosφs − sinϑi cosφi) ,

qy = k (sinϑs sinφs − sinϑi sinφi) ,

qz = k (cosϑs + cosϑi)

(2.26)

are the components of the scattering vector q. In the stationary-phase

approximation, only those points in which the phase is stationary - the

so-called stationary-phase points - contribute to the scattering integral in

Eq. 2.22. In these points, the phase factor Q exhibits null derivatives:

∂Q

∂x
= 0 = qx + qz

∂z

∂x
,

∂Q

∂y
= 0 = qy + qz

∂z

∂y
.

(2.27)

As a consequence, in a stationary point, the surface local slopes read as:

α = −qx
qz
,

β = −qy
qz
.

(2.28)
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Therefore, the scattered �eld can be expressed as:

Es (r) = −jk exp (−jkr)
4πr

Ep
(
I − k̂sk̂s

)
· Fp (α, β)

∫
As

exp
[
−j (ki − ks) · r′

]
dA′, (2.29)

since the terms n̂ × E and n̂ ×H are now constant over the integration

domain. At this point, in order to evaluate the scattered �eld in a closed-

form expression, the surface height function z(x, y) has to be provided.

Thus, the dependence of the scattered �eld upon the separating interface

is in r′ inside the integral in Eq. 2.29. However, for a random rough

surface, the scattered �eld is a random variable at any point in the upper

medium. To compute the scattering coe�cient for di�erent polarization

states, the ensemble average of |Es (r)|2 is required:

〈
∣∣Es (r)

∣∣2〉 =

∣∣∣∣ jk4πr
EpFp

∣∣∣∣2 ∫ ∫ 〈exp
[
−j (ki − ks) ·

(
r− r′

)]
〉 dAdA′.

(2.30)

To proceed further, a stochastic characterization of the surface height func-

tion is needed. By assuming the surface roughness as a stationary and

isotropic Gaussian random process, with zero mean, variance σ2 , and cor-

relation coe�cient ρ, and in the assumption that the standard deviation

of surface heights is large - that is, (qzσ)2 large -, a closed-form of the

scattered power 〈|Es (r)|2〉 can be derived [47]:

〈|Es (r)|2〉 =

∣∣∣∣ jk4πr
EpFp

∣∣∣∣2 2πAs|q|2

q4
zσ

2|ρ′′(0)|
exp

[
−

q2
x + q2

y

2q2
zσ

2|ρ′′(0)|

]
(2.31)

where ρ′′(0) is the second derivatives of ρ evaluated at the origin and

σ2|ρ′′(0)| corresponds to the mean-squared slope of the surface. The scat-
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tering coe�cient can then be evaluated as follows:

σ0 =
k|q||Uqp|2

2q4
zσ

2|ρ′′(0)|
exp

[
−

q2
x + q2

y

2q2
zσ

2|ρ′′(0)|

]
. (2.32)

where

Uqp =
1

Ep
q̂ · k̂s ×

[
(n̂×E)− ζk̂s × (n̂×H)

]
. (2.33)

This equation represents the NRCS of a 2-D normally distributed zero-

mean isotropic rough surface under the GO approach. Within this frame-

work, a purely incoherent scattering is present due to the assumed large

surface roughness. With decreasing (qzσ)2, a coherent component begins

to appear in the scattered energy. To examine such situation, the PO

approximation - not treated in this Ph.D. Thesis - needs to be explored.



Chapter 3
Synthetic Aperture Radar

In this Chapter, the fundamental principles of radar and SAR are in-

troduced and described. The intent is to give the reader a fundamental

understanding of these concepts and to identify the major issues in SAR

data analysis and imagery interpretation. Numerous books dealing with

SAR systems, SAR data acquisition and processing, and SAR applications

exist in literature. Some excellent books are [2], [29], [62], [63], [64], [65],

[66], and [67].

During its forty year history, SAR has revealed as a fundamental tool

for the understanding of the Earth and other celestial bodies. As an ac-

tive microwave sensor, it allows for a continuous monitoring, analysis and

study of geophysical parameters and characteristics of the sensed surface

in all weather conditions. From such information, electrical and structural

properties of the surface (and subsurface) can be inferred via a proper data

modelization and analysis. Furthermore, as discussed further in this Chap-

ter, the peculiar SAR processing permits the retrieval of information with

a spatial resolution independent from the platform altitude. Recognition of

the key bene�ts for global monitoring of Earth's resources has led national

space agencies, intergovernmental organization, and private companies to

27
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deploy a series of SAR systems in the last decades. The Canadian Space

Agency launched the next-generation commercial radar satellite, named

RADARSAT-2, in December 2007. The main payload is a C-band SAR

with multiple polarization modes, including a fully-polarimetric mode. It

was designed to o�er a wide variety of applications, such as marine surveil-

lance, environmental monitoring, disaster and resource management and

mapping. COSMO-SkyMed is a four-satellite constellation supported by

the Italian Space Agency and equipped with a X-band SAR. The �rst

satellite of the COSMO-SkyMed constellation was launched on June 2007

and the constellation is fully operational since mid 2010. The TerraSAR-

X mission, supported by the German Aerospace Center, was launched in

June 2007 and operational since January 2008. A high-resolution X-band

SAR system is mounted on board and it is capable to acquire single or

dual polarization and even full polarimetric data with a revisit time of

about 2 days at 95% probability to any point on Earth. The mission was

completed with the launch of the second satellite, TanDEM-X, to form a

twin constellation aimed at providing a high-resolution global DEM of the

Earth's land surface. The very recent Sentinel mission by the European

Space Agency witnesses the great interest among the European Commu-

nities in developing and supporting Earth observation missions by means

of SAR remote sensing. Within the Sentinel �eet, Sentinel-1 is a constel-

lation of two satellites orbiting 180° apart and mounting a C-band SAR

built on the heritage of previous SAR systems, such as ERS-1, ERS-2 and

Envisat. However, SAR imagery interpretation is a challenging task, and

the analysis of SAR data is still a prerogative of SAR expert users. Indeed,

as explained further in this Chapter, due to the peculiar image acquisition

geometry and process, SAR images are greatly a�ected by geometric and

radiometric distortions, and speckle noise that impair data analysis, image

readability and information extraction by non-SAR expert users.

The Chapter is organized as follows: Section 3.1 introduces the funda-
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mental concepts of the radar working principle that are needed to under-

stand the following. Section 3.2 focuses on imaging radars, known as RAR,

i.e., radar systems designed to provide a range-azimuth (or range-Doppler)

image of the surface re�ectivity. The chirp modulation is introduced and

explained as a waveform design choice to improve the spatial resolution in

the range direction. The synthetic aperture concept for the improvement

of the azimuth resolution is described in Section 3.3. The SAR process-

ing and a SAR image model are provided in the stripmap con�guration.

Geometric distortions and speckle are treated as well.

3.1 Basic Principles of Radar

The word radar identi�es a well-known system whose meaning is clear

to most people. However, this word is an acronym standing for RAdio

Detection And Ranging and concisely describes the primary functions of

such a system, i.e., target detection and target distance determination by

exploiting the EM radiation-matter interaction.

A radar is an electrical system that emits radiofrequency EM waves

toward a region of interest and receives the EM energy re�ected from ob-

jects possibly present in that region. The physical phenomenon exploited

to detect targets in the region of interest is the re�ection of EM waves at

an impedance discontinuity due for instance to the presence of an object

in that region. The working principle of a radar system is shown in Fig.

3.1. The signal transmitted by the radar antenna propagates through the

environment surrounding the radar system to the target. The EM wave

incident on the target induces electrical currents on it and reradiates EM

energy into the environment. Similarly, many other re�ections come from

other surfaces on the ground and in the atmosphere and contribute to

the so-called clutter. A portion of the re�ected signal propagates back to

the radar and is captured by the receiver antenna. The received echo is
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processed by the radar receiver that has to reveal the target, if present.
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Figure 3.1. Working principle of a radar system. The EM wave emitted
from the radar antenna propagates into the surrounding medium, is re�ected
from the target, and comes back to the receiver.

The range, R, to a detected target can be computed by measuring the

time, ∆T , it takes the EM wave to propagate to that target and back at

the speed of light. Since the distance the EM wave has to travel to the

target and back to the radar is 2R,

R =
c∆T

2
, (3.1)

where c is the speed of light (c ≈ 3× 108 m/s). The target echo co-exists

with other signal sources - such as EM interference, intentional counter-

measures (jamming), echoes from the environment (clutter) and thermal

noise - that a�ect detectability of the target. The received echo is a coher-

ent summation of all these contributions.

Radar systems have evolved tremendously since their early days when
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their functions were limited to target detection and ranging. Indeed, mod-

ern radars are sophisticated computer systems that, besides the above-

mentioned functions, allow for target tracking, identi�cation, imaging, and

classi�cation while contrasting strong unwanted echoes such as clutter and

jamming. Consequently, the range of application of such modern systems

is wide as the traditional military and civilian tracking of aircraft and ve-

hicles to 2-D and Three-Dimensional (3-D) imaging, collision avoidance,

Earth resources monitoring, and many others. In the next sections, a deep

insight into imaging radars is provided.

3.2 Real Aperture Radar

An imaging radar is a radar system whose primary function is to pro-

vide a 2-D or 3-D image of the underlying surface (and subsurface). The

radar is typically mounted on a moving platform, such as an aircraft or

spacecraft. The image characteristics depend on the radar operating fre-

quency, due the dependence of the penetration depth δ in the medium on

the transmitted EM wave frequency as follows:

δ =
1√

µfπσc
, (3.2)

where f is the radar operating frequency, µ and σc are the magnetic perme-

ability, and the electrical conductivity of the medium, respectively. From

Eq. 3.2, the penetration depth of the EM incident wave is a decreasing

function of its frequency.

Imaging sensors can be classi�ed as active and passive systems: the for-

mer make use of a transmitter module to provide an image of the sensed

surface at the desired frequency and measure the energy re�ected from the

surface; the latter detect the radiation naturally emitted or re�ected from

the surface. For passive systems, such as radiometers and imaging cameras,
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Sun is the primary energy source for the re�ected energy, thus limiting the

imaging capabilities of the Sun-re�ected radiation at daytime. Passive sen-

sors usually operate at very high frequencies and measure natural surface

emissions in the visible, infrared and thermal regions of the EM spectrum.

Clouds, fog and rain can limit the applicability of passive sensors as well.

On the other hand, active systems, such as scatterometers, altimeters,

SAR, operate at lower frequencies, between approximately 1 and 30 GHz

[68], and provide light- and weather-independent imaging capabilities - a

fundamental prerequisite for a global and continuous monitoring - due to

the presence of a speci�c illumination source, that makes active systems

typically more complex and power-hungry compared to passive sensors.

Imaging active systems are mostly implemented as radar systems operat-

ing at microwaves [69], i.e., in the portion of EM spectrum from 300 MHz

to 300 GHz [29]. They are usually referred to as RAR [29].

The spatial resolution, de�ned as the minimum distance at which two

di�erent objects are detected by the system as separated, is one of the

most important parameters characterizing an imaging system, and impacts

the image interpretation capability as well as the accuracy and resolution

of information retrieval procedures. In the �eld of remote sensing imag-

ing, spatial resolution is typically split in two terms: range resolution, or

across-track resolution, and azimuth resolution, or along-track resolution.

Assuming a radar transmitting an ideal rectangular pulse of duration τ ,

the Rayleigh range resolution ∆r reads as:

∆r =
cτ

2
. (3.3)

From Eq. 3.3, the shorter the transmitted pulse, the better the range

resolution. Very short pulse durations (τ ≈ 10−8 ÷ 10−7 s) are needed to

reach a resolution on the order of magnitude of meters. However, reducing

the pulse duration to improve the range resolution is not always advisable,

since it greatly a�ects the Signal-to-Noise Ratio (SNR) also, and then the
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detectability of the target. As a consequence, an higher power peak is

needed for shorter pulses to keep a constant SNR value.

A possible alternative to improve the range resolution is via a proper

waveform design of the transmitted pulse. To this aim, Eq. 3.3 can be

rewritten as:

∆r =
c

2∆f
, (3.4)

where the pulse bandwidth ∆f ≈ 1/τ for an ideal rectangular pulse. A

way to improve the range resolution without reducing the pulse duration

is to increase the pulse bandwidth via a proper modulation scheme. A

typical waveform implemented in the �eld of radar imaging is the chirp

pulse, de�ned as follows:

f1(t) = exp

[
j

(
ωt+

αct
2

2

)]
rect

[
t

τ

]
, (3.5)

where ω = 2πf is the angular frequency, rect[t/τ ] is a rectangular pulse of

duration τ , and αc is the chirp rate related to the pulse bandwidth:

∆f ≈ αcτ

2π
. (3.6)

By substituting Eq. 3.6 in Eq. 3.4, the range resolution can be linked to

the chirp rate as follows:

∆r ≈ πc

αcτ
(3.7)

Equation 3.7 represents the range resolution of an imaging radar imple-

menting the chirp pulse concept. Assuming a pulse duration of 1 µs, a

chirp rate αc = 1015 (corresponding to a bandwidth ∆f ≈ 160 MHz) is

required for a range resolution of 1 m.

While the range resolution depends on the signal characteristics, namely
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the signal bandwidth, the azimuth resolution is strictly related to the an-

tenna system. Indeed, the azimuth extension of the resolution cell, i.e.,

the azimuth resolution, is the antenna footprint X, de�ned as the surface

portion illuminated by the antenna pattern. Therefore, for a side-looking

RAR (see Fig. 3.2), the azimuth resolution ∆x is:

∆x ≡ X ∼= R∆ϑ =
h

cosϑ0
∆ϑ, (3.8)

whereR is the slant range of the scene center, ∆ϑ is the antenna beamwidth

in the azimuth direction, h is the platform altitude, and ϑ0 is the radar

look angle. Assuming a 2° antenna beamwidth operating at an altitude of

800 km with a radar look angle of 30°, an azimuth resolution of more than

30 km is obtained. To improve the azimuth resolution, a longer antenna

in the along-track direction is required. However, microwave spaceborne

radars would require antenna dimensions between several hundred meters

to some kilometers to achieve azimuth resolution on the order of magni-

tude of meters [29]. Indeed, the azimuth resolution is the main limitation

of RAR systems in the �eld of microwave radar imaging. To achieve a bet-

ter resolution with feasible antenna sizes, the synthetic aperture concept

comes into play.

3.3 Synthetic Aperture Radar

A SAR is a coherent radar imaging system based on the synthetic aper-

ture or synthetic antenna concept, �rst conceived by Wiley [70]. Within

this approach, a very long antenna is synthesized by moving a shorter

one along a convenient path, usually the �ight path. The recorded re-

ceived echoes undergo a proper processing in which both the phase and

amplitude of the echo samples must be used to simulate the long antenna.

This data processing, typically performed digitally, is an essential step in

the SAR data acquisition and image formation processes and allows for
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Figure 3.2. Side-looking viewing geometry of an imaging radar system.
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a dramatic improvement of the along-track resolution up to meters, thus

making the SAR a fundamental tool in the observation and monitoring of

the Earth's [71] and other planets' [72] surface.

A SAR system can operate in three operating modes: strimap, spotlight

and scanSAR. In the most common stripmap con�guration, the antenna

beam is kept at a �xed angle with respect to the �ight direction and the

antenna footprint covers a strip on the sensed surface as the system moves.

A stripmap image is then limited in the range direction and unlimited in

the azimuth one. The spotlight mode allows for a signi�cant increase of

the azimuth resolution. In this con�guration, the antenna beam is steered

along the platform path to cover a limited area on the ground. The better

azimuth resolution is due to the longer synthetic aperture allowed by the

radar antenna steering and is traded o� by a limited image in the along-

track direction. Finally, the scanSAR mode allows for an extension of

the acquired image in the across-track direction. In this con�guration,

the synthetic aperture is divided in orthogonal sub-apertures, each one

pointed at a di�erent look angle. The system switches cyclically the beam

among the di�erent angles, thus covering a larger area w.r.t. the stripmap

mode. However, the shorter synthetic aperture causes a loss in the azimuth

resolution. To avoid range-doppler ambiguities, a shared characteristic of

the above-mentioned operating modes is the side-looking viewing geometry,

in which the radar antenna is aimed to the left or right of the �ight path

and typically perpendicular to the �ight direction.

In the following Section, we focus on the derivation of the transfer

function and image model in the standard stripmap mode.

3.3.1 Stripmap Transfer Function

The SAR stripmap transfer function is derived assuming the basic ge-

ometry con�guration shown in Fig. 3.2, where the cylindrical coordinates

(x, r, θ) are referred to as azimuth, slant range (o simply range) and look
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angle, respectively. The x-axis is chosen coincident with the platform tra-

jectory, assumed as a straight line, and oriented as the velocity vector.

The r-axis points toward the Earth and is aligned with the radar antenna;

r stands even for the minimum distance between the sensor and the tar-

get. Finally, θ is the polar angle in the plane orthogonal to the x-axis and

containing the r-axis.

Range

In the assumed cylindrical coordinate system, the chirp signal f1 (see

3.5) re�ected from a target T ≡ (0, r, θ) and received on board is given by:

f1

(
t− 2r

c

)
= exp

[
jω

(
t− 2r

c

)
+ j

αc
2

(
t− 2r

c

)2]
rect

[
t− 2r/c

τ

]
. (3.9)

After the heterodyne operation and the following formal change of vari-

ables:

r → r

cτ/2

r′ → ct/2

cτ/2
,

(3.10)

the received signal is:

f(r′) = exp

[
−jωτr + j

αcτ
2

2
(r′ − r)2

]
rect[r′ − r]. (3.11)

The matched �lter used to further process the signal f(r′) is de�ned as

follows:

g(r′) , exp

[
−j αcτ

2

2
r′2
]

rect[r′]. (3.12)
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Then, the received signal f(r′) undergoes a convolution with the �lter

g(r′). The output signal is:

f̂(r′) = f⊗g(r′) = exp(−jωτr)
∫

exp

[
j
αcτ

2

2
(r′−r−u)

]
exp

[
−j αcτ

2

2
u2

]
· rect[r′ − r − u] rect[u] du. (3.13)

The convolution in Eq. 3.13, even if usually implemented via fast Fourier

transform (FFT) codes, can be analytically computed as shown in [29].

After some manipulations and assuming |r′ − r| � 1, the signal f̂(r′) can

be written as follows:

f̂(r′) = exp(−jωτr) sinc

[
αcτ

2 r
′ − r
2

]
= exp(−jωτr) sinc

[
π

∆r
(r′ − r)

]
,

(3.14)

where

∆r =
1

τ∆f
(3.15)

is the 3 decibel (dB) range resolution, i.e., the 3 dB width of the point

target response, the so-called Point Spread Function (PSF).

In non-normalized units the spread function reads as:

f̂(r′) = exp

(
−j 4π

λ
r

)
sinc

[
π

∆r
(r′ − r)

]
, (3.16)

where

∆r =
c

2∆f
. (3.17)

The range resolution in Eq. 3.17 represents the minimum distance

between two point targets of equal spread function amplitude that are

detected as separate entities. Consequently, Eq. 3.17 is usually referred to
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as the nominal range resolution and it does not adequately describe the

actual range resolution when one target dominates.

In presence of a continuous distribution of scatterers, the processed

echo can be written as a superposition of PSFs, each one weighted by the

re�ectivity pattern γ(r) proportional to the ratio between the backscattered

and incident �eld and related to the Radar Cross Section (RCS) of the

target. In this case, Eq. 3.14 becomes:

γ̂(r′) =

∫
γ(r)f̂(r′ − r) dr =

∫
γ(r) exp(−jωτr) sinc

[
π

∆r
(r′ − r)

]
dr.

(3.18)

Azimuth

For a RAR, the ability to resolve targets in the azimuth direction is

strictly related to the radar antenna beamwidth. Thus, two separated tar-

gets can be resolved only if they are not present in the antenna beamwidth

simultaneously. Consequently, the azimuth resolution is equal to the an-

tenna footprint and it is given by:

∆x ≈ r λ
La

(3.19)

where r is the slant range of the target, λ is the radar EM wavelength and

La is the e�ective antenna length in the azimuth direction. The obtained

resolution is on the order of magnitude of kilometers and does not match

most imaging applications requirements. To overcome this limitation, the

SAR concept comes into play. The synthesis is addressed by coherently

combining the received echoes recorded along the �ight path.

Let us suppose the radar transmitting pulses at equally spaced positions

Sn ≡ (x′ = n′d, r = 0) toward a point target located at T ≡ (0, r, θ), where

d is the distance covered by the platform between two consecutive pulses.
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The radar antenna footprint X identi�es the number of echoes received

by the target as a function of the Pulse Repetition Frequency (PRF) and

the platform velocity. Assuming the point target illuminated by 2N + 1

pulses and an isotropic antenna within its beamwidth, the signal re�ected

from the target and received by the antenna can be written as (after the

heterodyne process):

f(n′d) = exp

(
−jω2R

c

)
≈ exp

[
−jw2r

c
− j 2π

λr
(n′d)2

]
(3.20)

where n′ = −N, ..., N , and

R =
√
r2 + (n′d)2 ≈ r +

(n′d)2

2r
(3.21)

is the sensor-target distance. By introducing the following azimuth refer-

ence function:

g(n′d) , exp

[
j

2π

λr
(n′d)2

]
, n′ = −N, ..., N, (3.22)

the synthetic aperture processing is addressed as the convolution of the

2N + 1 echoes (recorded on board) received by the radar antenna and the

azimuth reference function:

f̂(n′d) =

N∑
k=n′−N

exp

[
−j 2πd2

λr
k2

]
exp

[
+j

2πd2

λr
(n′ − k)2

]
. (3.23)

As for the range case, the convolution in Eq. 3.23 can be treated analyti-

cally and leads to [29]
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f̂(x′) ≈
sin

(
2πX

La
x′
)

X

d
sin

(
2πd

La
x′
) (3.24)

where x′ = n′d/X is the normalized discrete azimuth abscissa of the sensor

and the amplitude factor 2N = X/d is ignored. Equation 3.24 represents

the azimuth counterpart of Eq. 3.14 and describes the power spreading

of the target response (i.e., the PSF) in the azimuth direction. Close to

the target, i.e., for x ≈ 0, the PSF exhibits a sinc pattern in the azimuth

direction as well:

f̂(x′) ≈ sinc

(
2πX

La
x′
)

= sinc

(
π

∆x
x′
)

(3.25)

where

∆x =
La
2X

(3.26)

is the 3 dB normalized resolution in the azimuth direction. In nonnormal-

ized units:

∆x =
La
2

(3.27)

It is noteworthy that: 1) the azimuth resolution does not depend on the

platform height. This is due to the fact that the higher the platform al-

titude, the longer the synthetic antenna, and then the larger the number

of acquired target echoes. 2) the smaller the antenna, the better the reso-

lution. This surprising result is explained by the longer antenna footprint

and synthetic antenna with a smaller real antenna.

Similarly to the range processing, the processed signal in the case of

distributed targets can be modeled as follows:

γ̂(n′d) =

∫
γ(x)f̂(n′d− x) dx =

∫
γ(x) sinc

[
π

∆x
(n′d− x)

]
dx. (3.28)
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A continuous version γ̂(x′) of the signal γ̂(n′d) in Eq. 3.28 can be

reconstructed via sampling interpolation, since its bandwidth is limited by

the sinc function and equals 1/∆x:

γ̂(x′) =
∑

γ̂(n′d) sinc

[
π

∆x
(x− n′d)

]
=

∫
γ(x) sinc

[
π

∆x
(x′ − x)

]
dx.

(3.29)

Finally, the overall SAR image model can be obtained by combining

Eqs. 3.18 and 3.29:

γ̂(x′, r′) =

∫ ∫
γ(x, r) sinc

[
π

∆x
(x′ − x)

]
sinc

[
π

∆r
(r′ − r)

]
dxdr, (3.30)

where γ(·, ·) stands for the 2-D re�ectivity pattern of the illuminated scene

also including the phase factor exp(−jωτr) of Eq. 3.18.

3.3.2 Geometric Distortions

At �rst glance, a SAR image may seem to closely resemble an optical

image. Closer inspection, however, reveals striking di�erences which can

be used, given knowledge of how radar interacts with ground features, to

provide a wide spectrum of information about the targets. The most obvi-

ous di�erence from an optical image is the geometric distortion produced

by the radar look angle and the height or slope of the target. Thus, the

most striking feature in SAR images is the peculiar geometry in range di-

rection. This e�ect is caused by the SAR imaging principle: measuring

signal travel time and not angles as optical systems do. The time delay

between the radar echoes received from two di�erent points determines

their distance in the image. In other words, the slant-range distortion oc-

curs because the radar is measuring the distance to features in slant-range

rather than the true horizontal distance along the ground. This results
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in a varying image scale, moving from near to far range. The presence of

geometric distortions, also referred to as slant-range distortions intrinsic

to the range imaging mode limits use of SAR images computed in the nat-

ural coordinates (i.e., slant range and azimuth) in many applications (i.e.,

geology studies, glaciology, land resource analysis, etc.) [73].

To clarify this point let us consider the SAR geometry in the plane

orthogonal to the azimuth direction, with the antenna pointing to one side

of the �ight track as usual (see Fig. 3.3).

Figure 3.3. SAR geometry.

It is evident that a constant resolution ∆r in the slant range direction

does not correspond to a similarly constant resolution, ∆y, on the ground

range. In particular, we have for the geometry of Fig. 3.3:

∆y =
∆r

sinϑ
(3.31)

where the variation of the local incidence angle ϑ from near to far range

leads to a decrease of the ground range resolution ∆y.

Let us relax the planarity assumption and consider the e�ect of a sur-



44 Chapter 3. Synthetic Aperture Radar

face slope α in the range direction. In this case, the resolution on the

ground depends on the local incidence angle ϑ = ϑ0 − α. Foreshortening,
layover and shadowing represent the geometric distortions typical of SAR

images and depend on local slope of the surface. Each of these e�ects cor-

responds to a di�erent relationship between the surface slope α, and the

radar look angle ϑ0.

Foreshortening

Foreshortening is present when −ϑ0 < α < ϑ0 and corresponds to a

dilation or compression of the resolution cell on the ground with respect

to the planar case of Fig. 3.3, depending on the conditions 0 < α < ϑ0

or −ϑ0 < α < 0, respectively. Foreshortening occurs when the radar

beam reaches the base of a tall feature tilted towards the radar (e.g. a

mountain) before it reaches the top (Fig. 3.4). Because the radar measures

distance in slant-range, the slope (from point A to point B) will appear

compressed and the length of the slope will be represented incorrectly

(A' to B') at the image plane. Points A, B and C are equally spaced

when vertically projected on the ground (as it is done in conventional

cartography). However, the distance between A' and B' is considerably

shortened as compared to B' - C', because the top of the mountain is

relatively close to the SAR sensor.

Foreshortening is a dominant e�ect in SAR images of mountainous ar-

eas. Especially in the case of steep-looking spaceborne sensors, the across-

track slant-range di�erences between two points located on foreslopes of

mountains are smaller than they would be in �at areas. This e�ect results

in an across-track compression of the radiometric information backscat-

tered from foreslope areas which may be compensated during the geocod-

ing process if a DEM of the surface is available. Foreshortening is obvious

in mountaineous areas, where the mountains seem to �lean� towards the

sensor (see Fig. 3.5). It is worth noting that shortening e�ects are still
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present on ellipsoid corrected data and in presence of very small slopes as

well.

rSlant range A′B′ C ′

Surface line A
B

C

Figure 3.4. Foreshortening compression and dilatation e�ect. Foreslope
cells are compressed; backslope cells are dilated.

Layover

Layover occurs when the local range-slope of the surface is larger than

the radar look angle, i.e., when α > ϑ0. In this case, the echo signal

coming from the top of the mountain reaches the radar receiver before the

signal re�ected from the basis (see Fig. 3.6). Therefore, layover consists

of an inversion between the top and bottom of the valley. In other words,

the ordering of surface elements on the radar image is the reverse of the

ordering on the ground: peaks of hill or mountains with a steep slope

commute with their bases in the slant range, thus causing an extremely

severe image distortion. A particular case is represented by the situation

α = ϑ0 corresponding to the compression of the area with this slope into

a single pixel.
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(a) Foreshortened image (b) Non foreshortened image
(Ortho-image)

Figure 3.5. Foreshortening e�ect on SAR images

Generally, layover zones appear as bright features on the image due

to the low incidence angle since they face radar illumination. Ambiguity

occurs between targets in the valley and in the foreland of the mountain,

in case they have the same slant-range distance. For steep incidence angles

this might also include targets on the backslope. An image is a�ected by

layover only if very high slopes are present or if the radar look angle is

su�ciently small.

Geocoding cannot resolve the ambiguities due to the representation of

several points on the ground by one single point on the image; these zones

also appear bright on the geocoded image.

Figure 3.7 shows two SAR images acquired over a mountainous zone

close to Udine (Italy) by ERS-1 and Landsat-5, respectively. The e�ect

of layover is visible in the whole SAR image, in particular on the two

mountains that are on the right of the lake. The height of the upper one

(Mt. San Simeone) is about 1000 m above the valley bottom (1220 m),

while the height of the lower one (Mt. Brancot) is 1015 m.
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rB′ A′ C ′

Surface line A

B

C

Figure 3.6. Layover e�ect.

Figure 3.7. Layover e�ect. Inversion between the top and bottom of the
valley is clearly visible.
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Shadowing

Shadowing occurs when α ≤ ϑ0 − π/2. This is a necessary condition

for appearance of shadow, whose e�ect can extend over other areas with

no constraint on the slope. In this case, the region does not produce

any backscattered signal, and no signi�cant contribution to the image is

generated by these areas (Fig. 3.8).

A slope away from the radar illumination with an angle that is steeper

than the sensor depression angle provokes radar shadows. It should be also

noted that the radar shadows of two objects of the same height are longer

in the far range than in the near range.

Shadow regions appear as dark (zero signal) with any changes due solely

to system noise, sidelobes, and other e�ects normally of small importance.

The multitemporal (Sep. 13-19-25, 1991) SAR image depicted in Fig.

3.9 (right) has been acquired over the Cote D'Azur area (France). The

Gran Canon du Verdon visible in the central part of the image has a

very steep gorge that descends swiftly to the valley bottom, causing radar

shadow. This is shown by the dark zones in the central part of the image.

A map of the area is depicted in Fig. 3.9 (left).

Shadow

Figure 3.8. Shadowing e�ect. Dark regions are not illuminated and the
shadow extends over other areas.
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Figure 3.9. Shadowing e�ect on a real SAR image of the Gran Canon du
Verdon, Cote D'Azur (France).

3.3.3 SAR Signal Statistics

Due to the complex mechanisms at the basis of the EM radiation/

matter interaction and, then, SAR image formation, SAR data cannot

be modeled exclusively in a deterministic framework and randomness of

the received signal has to be accounted for. Indeed, the signal scattered

from the illuminated surface depends upon numerous geometrical and elec-

tromagnetic parameters of the sensed surface, such as relative dielectric

constant, electrical conductivity, local incidence angle (i.e., macroscopic

roughness), and microscopic roughness. As a matter of fact, while knowl-

edge of the electromagnetic characteristics of the surface can be easily

addressed for instance by knowing the surface type, the roughness of the

scene can only be described in a statistical framework, thus causing SAR

data to be a random process. A SAR resolution cell is typically large com-

pared with the wavelength of the incident EM �eld. Since the operating

frequency is typically on the order of GHz, this characteristic applies even

to the recent very high-resolution SAR sensors, such as TerraSAR-X and

COSMO-SkyMed, whose spatial resolution is up to 1 m in the spotlight
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mode. Furthermore, roughness and inhomogeneities of the surface cause

the presence of a large number of scatterers within the resolution cell. The

phase of each single term is related to the sensor-scatterer distance normal-

ized to the radar wavelength and, therefore, large variations of the phase of

the contributions are due to the large resolution cell w.r.t. the wavelength

of the incident �eld. The received signal is the coherent superposition

of the contributions from the single scatterers within the resolution cell

and, consequently, experiences large �uctuations - the so-called fading -

due to the large variations of the phase of each single term. The coherent

SAR image acquisition processing makes fading appear as grainy noise:

the so-called speckle. Speckle can then be interpreted as an interference

phenomenon between the di�erent contributions within the resolution cell,

in which the main source of the noise-like behavior of the observed data is

the distribution of the phase terms.

Assuming that no dominant scatterer is present within the resolution

cell and that all the scatterers are statistically independent, the received

signal reads as:

V1 + jV2 =

N∑
i=1

Vi exp(jφi) =

N∑
i=1

Vi cosφi + j

N∑
i=1

Vi sinφi (3.32)

where N stands for the number of scatterers within the resolution cell,

V1 and V2 represent the real and imaginary parts of the received echo,

and Vi and φi are the amplitude and phase of the contribution of the

i−th scatterer. Since the resolution cell is large compared to the radar

wavelength, N is large and V1 and V2 can be assumed zero-mean normally

distributed as a consequence of the central limit theorem. Accordingly, the

probability density function (pdf) of V1 and V2 are:
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p(V1) =
1√

2πσ2
V

exp

(
− V 2

1

2σ2
V

)

p(V2) =
1√

2πσ2
V

exp

(
− V 2

2

2σ2
V

)
,

(3.33)

with variance σ2
V [47]. Let us assume V1 and V2 to be uncorrelated, i.e.,

E[V1V2] = E[V1]E[V2] = 0, and, then, independent, being normally dis-

tributed. Consequently, the joint pdf is given by:

p(V1, V2) =
1

2πσ2
V

exp

(
−V

2
1 + V 2

2

2σ2
V

)
(3.34)

In polar coordinates, we get [29]:

p(V, φ) =
V

2πσ2
V

exp

[
− V 2

2σ2
V

]
(3.35)

where V =
√
V 2

1 + V 2
2 is the amplitude of returned echo. By integrat-

ing Eq. 3.35 over V and φ, we get the following pdfs for the phase and

amplitude of the received signal, respectively:

p(φ) =

∫ +∞

0
p(V, φ) dV =

1

2π
, φ ∈ [0, 2π] (3.36)

p(V ) =

∫ 2π

0
p(V, φ) dφ =

V

σ2
V

exp

(
− V 2

2σ2
V

)
, V ≥ 0 (3.37)

As a result, the amplitude of the signal is Rayleigh distributed in (0,+∞)

and the phase is uniformly distributed in (0, 2π). The signal power is

W = V 2 and, therefore, exponentially distributed:

p(W ) =
1

2σ2
V

exp

(
− W

2σ2
V

)
(3.38)
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The Rayleigh and exponential distributions are of key importance in han-

dling SAR data and are completely characterized by a single parameter,

namely σV , carrying all the information about the scene. No information

is carried out by phase signal, whose distribution is independent from the

illuminated scene. Phase becomes relevant when dealing with interfero-

metric and polarimetric SAR data or when high-performance imaging of

deterministic (man-made) targets is of interest [2]. However, this simple

model is adequate for homogeneous SAR data, i.e., SAR images acquired

over a scene characterized by homogeneous parameters. In this case, the

hypothesis about the absence of a dominant scatterer is valid and then V1

and V2 can be properly modeled as normal random variables. Indeed, the

consistency of this speckle model with observed data is supported by nu-

merous studies [74], [75]. However, this statistical description of SAR data

is adequate in a very limited number of cases or speci�c applications, such

as agricultural �elds, untextured regions, low-resolution sea clutter. In

most cases, the illuminated scene exhibits signi�cant inhomogeneities and

more involved statistical models are required. Typical models used to de-

scribe both SAR image amplitude and intensity (i.e., amplitude squared) of

realistic scenarios are the K, Weibull, and log-normal distributions. These

pdfs are characterized by two degrees of freedom, and, therefore, are more

powerful in �tting real SAR data of inhomogeneous scenes. Their success

in statistical modeling of even very high-resolution SAR data is related to

the good compromise between law complexity and �tting capabilities they

can o�er. The log-normal distribution has been successfully applied to

model high-resolution data [76], [77], [78], and land clutter over built-up

areas [79], [80]. The works in [81], [82], [83] demonstrate the capability

of the Weibull distribution to �t a wide range of ocean measurements at

di�erent resolutions. The Weibull distribution has also been applied to

model sea-ice [84], weather [85] and land [81], [86], [87] clutter.

The log-normal distribution is given by:
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p(x) =
1

x
√

2πσ2
x

exp

[
−(log x− νx)2

2σ2
x

]
(3.39)

where νx and σ
2
x stand for the mean and variance of log x. The log-normal

distribution assigns zero probability to the observable equal to zero. Con-

sequently, this model provides poor performance in �tting single-look in-

tensity speckle. However, it usually provides a better match to amplitude

pdfs, especially in regions of strong spatial variation such as built-up areas

[79], [80].

The Weibull distribution is given by:

p(x) =
cxc−1

bc
exp

[
−
(
x

b

)c]
(3.40)

where b is a scaling parameter, and c controls the shape. With c = 2, the

Weibull distribution becomes a Rayleigh pdf. Despite its higher generality

compared with the Rayleigh distribution, it cannot represent multilook

speckle adequately.

The Product Model

To overcome the general limitations of the previous speckle models

and to ensure better �tting capabilities without losing physical meanings,

the product model comes into play. It has been widely demonstrated

that speckle formation is strictly related with the superposition of two

unrelated processes that can be encapsulated in a product model [88]. In

its simplest form, this speckle model combines an underlying RCS σ, with

an uncorrelated multiplicative speckle contribution n so the observed SAR

intensity can be expressed as:

I = nσ. (3.41)
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For L-look SAR intensity data, the pdf of speckle noise is:

p(n) =
LLnL−1

Γ(L)
exp(−Ln). (3.42)

This model is at the basis of most reconstruction �lters and despeckling

algorithms aimed at estimating the underlying RCS of the illuminated

surface from noisy samples. It is noteworthy that, in order to exploit this

model, it is necessary that the speckle noise �uctuations are on a much

smaller scale than RCS.

In order to derive a statistical model for SAR data, a model describing

the RCS �uctuations is required. For an assigned pdf of the RCS p(σ), the

pdf of the observed intensity reads as:

p(I) =

∫ +∞

0
p(I|σ)p(σ) dσ =

LLIL−1

Γ(L)

∫ +∞

0

1

σL
exp

[
−LI
σ

]
p(σ) dσ.

(3.43)

The importance of the product model lies in the separation of the

SAR data in two distinct contributions: a noise term, namely speckle, ac-

counting for the random distribution of the scatterers within the resolution

cell; an electromagnetic term, namely the RCS, depending on the physical

properties of the surface.

RCS �uctuations are typically described by means of the gamma pdf,

since it is the only distribution yielding to a closed-form analytic distribu-

tion for the SAR intensity. Therefore:

p(σ) =

(
ν

µσ

)ν σν−1

Γ(ν)
exp

[
−νσ
µσ

]
, (3.44)

where ν is an order parameter and µσ is the mean RCS. A theoretical

derivation of such a model based on the assumption of a random number

of scatterers in the resolution cell is presented in[89].

Finally, by combining the speckle and RCS pdfs, the distribution of
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L-look intensity SAR data can be derived from Eq. 3.43 [90]:

p(I) =
2

Γ(L)Γ(ν)

(
Lν

µI

)(L+ν)/2

I(L+ν−2)/2Kν−L

[
2

(
νLI

µI

)1/2]
, (3.45)

where Kν−L(·) is the modi�ed Bessel function of order ν − L. As ν →∞,

Eq. 3.45 tends to the gamma distribution.

The pdf of the amplitude (A =
√
I) is K-distributed as well:

p(A) =
4

Γ(L)Γ(ν)

(
Lν

µI

)(L+ν)/2

A(L+ν−1)/2Kν−L

[
2A

(
νLI

µI

)1/2]
. (3.46)

In the radar �eld, the K distribution has been extensively exploited in

modeling both sea [88], [89], [91] and land [92], [93], [94] clutter.
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Chapter 4
Global Navigation Satellite

System-Re�ectometry

In this Chapter, the GNSS-R technique for the remote sensing of the

Earth's surface is described. The Chapter is organized as follows: in Sec-

tion 4.1, the basic principles of the navigation services are introduced and

the main GNSS developed or under development are brie�y described.

Navigation signals and messages adopted to address the navigation ser-

vices and exploited in GNSS-based remote sensing applications are pre-

sented and discussed. Section 4.2 is devoted to the currently most im-

portant remote sensing technologies using GNSS signals of opportunity,

namely GNSS-RO and GNSS-R.

4.1 Global Navigation Satellite System

GNSS denotes a positioning system developed from the second half of

the twentieth century and primary designed to provide users located on

or near the Earth's surface with the capability of determining their posi-

57
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tion. A GNSS is essentially based on a constellation of satellites orbiting

around the Earth and transmitting navigation signals used by the users to

locate themselves in real-time. To address this task, GNSS satellites are

equipped with atomic clocks used to allow the user's receiver to compute

the position of the transmitting satellite via the broadcasting of signals

containing time information of the transmission. Range estimations are

performed by measuring time or phase di�erence based on the correlation

of two signals, namely the received satellite signal and a locally generated

replica. By the knowledge of the position of at least four satellites, the

user determines his/her position (and eventually further information, such

as velocity and attitude) via triangulation.

Figure 4.1 shows the spectral allocation of the major GNSS naviga-

tion signals as established by the International Telecommunications Union

(ITU) at the World Radio Communication Conferences in 2000 and 2003

[95]. GNSS services have been assigned to the Radio Navigation Satellite

Service (RNSS), that makes use of the L-band and involves, for instance,

television, radio, cell-phone, and radar satellite broadcasting services. The

innovation of GNSS, including the GPS, is the use of a high-frequency

Pseudo-Random Noise (PRN) code sequence as ranging signal.

Such systems are currently exploited in a wide range of applications,

such as �eet management, search and rescue, wildlife tracking, vehicle

guidance or leisure interactive maps, and many others. Currently, the

most popular and widely used GNSS is the American GPS, fully opera-

tional since more than two decades. However, it is not the only GNSS

in full use, since the GLONASS constellation, the Russian counterpart of

GPS, is fully operational since 2010. The European Galileo will reach full

operational capabilities in 2019, while the Chinese BeiDou-2 is scheduled

to be completely operational on a global scale in 2020. When all the cur-

rently planned GNSSs will be fully deployed, users of multi-constellation

receivers will bene�t from more than 120 satellites, with a signi�cant im-



4.1 Global Navigation Satellite System 59

provement of positioning performance, especially in the so-called urban

canyons [96]. The wide availability of such signals has made GNSS a valu-

able source of signals of opportunity for Earth remote sensing, as discussed

further in this Chapter.

Figure 4.1. Radio Navigation Satellite Service band distribution. ARNS
is the acronym for Aeronautical Ratio Navigation Service. This band is
dedicated to safety-of-life services (i.e., civil aviation). RNSS is the acronym
for Radio Navigation Satellite Service.

4.1.1 GPS

The GPS, also known as Navstar GPS or simply Navstar, is the US

GNSS under the responsibility of the Joint Program O�ce (JPO), directed

by the US Department of Defense. Despite its �rst use for military pur-

poses, the US Congress promoted its extension to civilian use as well. The

GPS project was launched in 1973 to overcome the shortcomings of early

navigation systems, such as its immediate predecessor, namely the Navy
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Navigation Satellite System (NNSS), also called Transit system, conceived

in the late 1950s and developed in the 1960s by the US military [97]. The

main objectives of GPS were the real-time determination of position and

velocity (i.e., navigation), and the precise coordination of time (i.e., time

transfer).

The current GPS constellation consists of 24 operational satellites de-

ployed in six evenly-spaced planes with an inclination of 55° and with four

satellites per plane. The orbital altitude is about 20,200 km above the

Earth's surface with a period of approximately 12 sidereal hours. The

constellation is completed with several further satellites active for replen-

ishment. The full space segment provides global coverage with four to eight

simultaneously accessible satellites above 15° elevation at any instant.

For point positioning and timing purposes, GPS provides two service

levels: the Standard Positioning Service (SPS), freely available to all kinds

of users on a continuous and worldwide basis, and the Precise Positioning

Service (PPS), whose access is restricted to authorized users only, such

as US armed forces, US federal agencies, and some other selected govern-

ments.

GPS provides a very high accuracy in both positioning - up to 13 m

horizontally, and 22 m vertically - and velocity - up to a fraction of a

meter per second - thanks to the precise control of all signal components

with atomic clocks, producing the fundamental frequency f0 = 10.23 MHz.

From this frequency, two signals, named L1 and L2, are coherently derived

by multiplying the fundamental frequency by 154 and 120, respectively,

yielding

L1 = 1575.42MHz,

L2 = 1227.60MHz.
(4.1)

These frequencies allow for a strong reduction of the main error source,

i.e., the ionospheric refraction. To estimate the pseudo-ranges from each
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satellite to the receiver, two PRN codes are introduced and modulated

onto the two carriers in Eq. 4.1. The �rst sequence is the coarse/acquisi-

tion (C/A) code, which is accessible to civilian users and de�ne the SPS.

It is currently superimposed upon the L1 signal only to deny full system

accuracy to non-military users. The PPS is based on the second code,

named precision (P) code. The P-code is modulated on both carriers L1

and L2 and is now encrypted to the Y-code to make it accessible to au-

thorized users only. Each e�ective bit of the PRN code sequence is called

a chip. Besides the PRN codes, further information regarding the satellite

status, clock bias, and ephemerides is modulated onto the carriers. The

PPS mode ensures a better precision in range measurements as compared

to SPS owing to the tenfold smaller chip length of the P-code compared to

the C/A-code. This also allows for a major robustness of the PPS against

spoo�ng and jamming, thanks to the slower repeating PRN code. Be-

sides the L1 and L2 signals, other navigation signals have been designed

and implemented to address speci�c applications. The carriers L3 and L4

have been used for the development of nuclear detection systems. The L5

civil signal has been conceived and designed to meet the requirements of

safety-of-life applications and to provide better autocorrelation and cross-

correlation properties for enhanced navigation performance. The military

M-code allows for a higher robustness against jamming, higher transmit-

ted power, and higher security thanks to new cryptography schemes. All

navigation signals emitted are right-hand circularly polarized. The main

characteristics of the GPS navigation signals are listed in Table 4.1.

GPS uses a Code Division Multiple Access (CDMA) as channel access

method. Consequently, GPS satellites share the same carrier frequencies

and each station employs a unique PRN spreading code that modulates

the carrier and is used in the receiver to separate the navigation signals

transmitted from di�erent satellites. Since its full operational capability,

GPS has been providing three ranging code signals modulated onto two
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Table 4.1. GPS navigation signals

Link Factor Frequency Wavelength ITU allocated Frequency
(·f0) [MHz] [cm] bandwidth [MHz] band

L1 154 1575.42 19.0 24.0 ARNS/RNSS
L2 120 1227.60 24.4 24.0 RNSS
L5 115 1176.45 25.5 24.0 ARNS/RNSS

carrier frequencies:

sL1(t) = a1cP (t)d(t) cos(2πf1t) + a2cC/A(t)d(t) sin(2πf1t),

sL2(t) = a3cP (t)d(t) cos(2πf2t),
(4.2)

where cP (t) denotes the precision code, cC/A(t) is the coarse/acquisition

code, and d(t) represents the navigation message. The factor ai represents

the signal component power, and fi is the carrier frequency.

The C/A code is modulated onto the L1 carrier and consists of 1023

chips with a duration of 1 ms; therefore, the frequency of this code is 1.023

megachips per second (Mcps). The main advantage of the C/A code is the

fast signal acquisition owing to its relatively short duration. However, the

maximum crosscorrelation level between two C/A-codes is about -24 dB,

making this code susceptible to interference.

The more sophisticated P-code is generated by XOR-addition of two

auxiliary codes, X1 and X2, generated by short cycling at 4092 and 4093

the output of four 12-bit Linear Feedback Shift Registers (LFSR). Thus,

the strength of the P-code lies in its full duration of about 266.41 days that

makes it very di�cult to acquire if no a priori information is available.

4.1.2 GLONASS

The abbreviation GLONASS stands for the Russian �Global'naya Nav-

igatsionnaya Sputnikovaya Sistema,� translated in English in Global Nav-

igation Satellite System. The history of GLONASS dates back to the mid
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1970s, when the GLONASS project, supported by the Union of Soviet So-

cialist Republics (USSR), started from the previously developed Doppler

satellite system Tsikada. As de�ned by the Coordination Scienti�c In-

formation Center in 2002, the main objective of GLONASS is to provide

an �unlimited number of air, marine, and any other type of users with

allweather three-dimensional positioning, velocity measuring and timing

anywhere in the world or near-Earth space�. Despite originally developed

as a military system operated by the Russian military forces, in 1988 a free

of charge di�usion of GLONASS signals was o�ered [98], and in Septem-

ber 1993 GLONASS was o�cially declared operational. However, the full

constellation was completed in January 1996.

The full GLONASS constellation consists of 24 satellites - 21 active

and 3 spares - in three 64.8°-inclined orbital planes and in circular orbits

with an altitude of about 19,100 km, and a period of about 11 hours

[98]. Each orbit contains eight equally spaced satellites. This constellation

guarantees that at least �ve satellites are visible at a time on 99% of the

Earth's surface [99].

Similar to GPS, GLONASS provides two operating services: a free of

charge standard-accuracy service available to any user and a high-accuracy

service for military use. Within the former service, the horizontal accuracy

is between 13 m and 100 m, the vertical accuracy between 22 m and 156

m with a 95% probability, and the velocity accuracy is about 15 cm/s [97].

Two navigation signals are associated to the above-mentioned services:

the standard-accuracy ranging code, namely the C/A-code (also referred to

as the S-code), and the high-accuracy ranging code, i.e., the P-code. Two

L-band subbands, G1 and G2, are used to carry the navigation signals:

the C/A signal is modulated onto the G1 carrier frequency only, whereas

the P-code is modulated onto both carriers.

The new-generation GLONASS-K satellites provide a third carrier fre-

quency, namely G3, together with a new civil (C/A2) and military (P2)
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ranging codes. This update increases the reliability and accuracy of the

GLONASS system and will especially be useful for safety-of-life applica-

tions [100]. The carrier frequencies of the navigation signals are listed in

Table 4.2.

In order to allow the receiver to separate signals coming from di�erent

stations, GLONASS implements the Frequency Division Multiple Access

(FDMA) technique, that ensures a high robustness against narrowband

interference, and a low crosscorrelation of about -48 dB between di�erent

signals. However, extra-bandwidths are required to realize FDMA. In

the near future, a possible switch to CDMA might be implemented in

the GLONASS system [97]. Common PRN code sequences are shared by

the entire GLONASS constellation, since identi�cation of the transmitting

source is addressed by means of FDMA.

All navigation signals are right-handed circularly polarized. The fol-

lowing unique carrier frequencies are used for all satellites:

f1k = f1 + k∆f1 = 1602.0000 + 0.5625k [MHz]

f2k = f2 + k∆f2 = 1246.0000 + 0.4375k [MHz]

f3k = f3 + k∆f3 = 1204.7040 + 0.4230k [MHz],

(4.3)

where k di�erentiates the frequency channels, and ∆fi stands for the fre-

quency increment between two adjacent channels. To reduce interference

with radio astronomy frequency bands, 12 channels (k = 1, 2, ..., 12) have

been assigned to GLONASS satellites.

The C/A code is generated through a 9-bit LFSR and it is 511 chips

long with a chipping rate of 0.511 Mcps; therefore the code period is 1

ms. The maximum cross-correlation between two signals modulated onto

adjacent carriers is about -48 dB. The P-code, generated via a 25-bit LFSR,

has a rate of 5.11 Mcps with a duration of 1 s and has not been o�cially

published. However, its decryption was demonstrated in the past, since it

is not encrypted [97].
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Table 4.2. GLONASS navigation signals

Link Factor Frequency Increment Wavelength Frequency
(·f1) [MHz] [MHz] [cm] band

G1 1 1602.00 0.5625 18.7 ARNS/RNSS
G2 7/9 1246.00 0.4375 24.1 RNSS
G3 94/125 1204.70 0.4230 24.9 ARNS/RNSS

4.1.3 Galileo

The Galileo constellation is the European Union's (EU) e�ort to de-

velop both an alternative and a complementary to the other pre-existent

GNSSs, GPS and GLONASS. A satellite-based navigation system has been

a key research topic within the European Space Agency (ESA) since the

1980s, when a time division multiple access system was analyzed. How-

ever, only in 1994 the very �rst navigation system, named EGNOS, was

developed with the objective of improving the previous GNSSs (i.e., GPS

and GLONASS). In 1999, EGNOS became part of the Galileo project, con-

ceived to be an open, global system independent from the other satellite-

based navigation systems, while ensuring interoperability, and compatibil-

ity with them. To this aim, an agreement was signed in 2004 between EU

and US to design and implement a common signal structure. The �rst

Galileo satellite was launched in December 2005 and transmitted test sig-

nals shortly afterward [101]. Operational Galileo satellites launches began

in 2011, and the system completion is currently scheduled for 2020.

The Galileo project has been conceived within a service-oriented frame-

work, and four di�erent service levels have been de�ned on the basis of

user, application and operational needs [97]. Among them, the open ser-

vice, providing free of charge navigation signals to any user, and the pub-

lic regulated service, designed to provide support in situations of crises or

malfunctioning. In the open service, six unencrypted signals are modu-

lated onto three di�erent carrier frequencies to provide a competitive and
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complementary navigation service compared to other GNSSs. The usage

of several carrier renders the Galileo communications more robust towards

EM interference sources, and, on the other hand, requires additional band-

width resources. Compatibility and interoperability with other GNSSs are

ensured by the partial overlap of frequency bands.

Concerning the space segment, the Galileo full satellite constellation

will consist of 30 satellites - 27 operational and 3 spare - equally distributed

in three nearly circular 56°-inclined orbital planes at an altitude of about

23,222 km. In nominal operating conditions, the Galileo system ensures a

minimum of six satellites to be accessible simultaneously to every user on

the Earth's surface.

The carrier frequencies are derived from the fundamental frequency

f0 = 10.23 MHz, which is coherently generated from the onboard atomic

clocks. The complete list of carriers used for navigation service is presented

in Table 4.3. For navigation purposes, signals are generated within the

L-band to ensure compatibility with GPS and GLONASS, although other

alternatives, such as C-band, were investigated for next-generation Galileo.

In particular, the frequency band E1 spans from about 1559 MHz up to

1591 MHz, thus including the GPS L1 frequency band. In addition, the

frequency bands E5a and E1 have been chosen in common to GPS (Galileo

E5a coincides with GPS L5 and are used as synonym), while E5b overlays

with GLONASS G3 to increase interoperability. The frequency bands

listed in Table 4.3 are shared with several other services and users, such

as military systems, primary radar, and radio amateurs.

Several navigation messages and PRN codes have been de�ned to meet

the requirements of the di�erent services provided by the Galileo system.

In particular, 10 navigation signals have been de�ned in the frequency

bands E5a, E5b, E6, and E1; furthermore, ranging codes are categorized

into three types: the free of charge and publicly available open-access rang-

ing code, the ranging codes encrypted with commercial encryption, and the
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Table 4.3. Galileo navigation signals

Link Factor Frequency Wavelength ITU allocated Frequency
(·f0) [MHz] [cm] bandwidth [MHz] band

E1 154 1575.420 19.0 32.0 ARNS/RNSS
E6 125 1278.750 23.4 40.9 RNSS
E5 116.5 1191.795 25.2 51.2 ARNS/RNSS
E5a 115 1176.450 25.5 24.0 ARNS/RNSS
E5b 118 1207.140 24.8 24.0 ARNS/RNSS

ranging codes encrypted with governmental encryption. However, the ac-

cess to the carrier frequency E6 and E1 is controlled. Dataless signals,

consisting of PRN sequences only, have been introduced as pilot signal to

improve tracking performance.

Similar to GPS, a CDMA approach is used for radio accesses manage-

ment and separation of the di�erent signal sources at the receiver. Conse-

quently, a unique frequency is shared by all satellites.

In contrast with GPS and GLONASS, Galileo provides two di�erent

ways for PRN sequence generation: the former is the classical generation

via LFSR, the latter is based on the construction and storage of optimized

codes on board. LFSR-generated codes are derived from the combination

(XOR-addition) of two short-cycled LFSR sequences, namely a long high-

frequent primary code and a short low-frequent secondary code. The chip

length of the secondary code coincides with the code length of the primary

code. Therefore, the code length of the combined code sequence Nt is given

by:

Nt = NpNs (4.4)

where Np and Ns stand for the length of the primary and secondary codes,

respectively. This approach increases the robustness of the signal, while

the short repetitive cycle allows for a fast acquisition procedure.



68 Chapter 4. Global Navigation Satellite System-Reflectometry

4.1.4 BeiDou-2/Compass

The BeiDou-2, also named BeiDou Navigation Satellite System, and

formerly known as Compass, is a GNSS currently under development by

China within the BeiDou project. The idea of a satellite-based navigation

system was conceived in the early 1980s, and in 1993, China started devel-

oping the BeiDou system, designed to be a navigation system independent

from US GPS and Russian GLONASS [97]. The BeiDou system consists

of two separate but cooperating constellations: 1) BeiDou-1, completed in

2003 and designed to o�er navigation services on a regional scale limited to

China and neighboring regions including India, Malaysia and Philippines;

2) BeiDou-2, conceived as global navigation system based on the previous

BeiDou-1 and planned to be fully operational in 2020.

BeiDou-1 comprises a constellation of four (three operating and one

backup) satellites and served as an experimental test to validate navigation

services on a regional scale. The main feature of this system is the usage

of satellites orbiting in geostationary orbits, in contrast with other GNSSs.

This con�guration allows for a lower constellation size owing to the higher

satellite altitude, but limits the coverage area to regions accessible by the

spaceborne platform.

After the successful completion of the BeiDou-1 constellation, China

began the second step of the BeiDou project, namely the global navi-

gation system BeiDou-2, which became operational in December 2011.

The full constellation, currently under development, is scheduled to be

completed in 2020 and will consist of 35 satellites, including �ve geosta-

tionary orbit satellites for backward compatibility with BeiDou-1, and 30

non-geostationary satellites - 27 in medium Earth orbit and 3 in inclined

geosynchronous orbit [102].

The 27 MEO satellites - 24 operational and 3 spare - will be evenly

distributed in three orbital planes with an inclination of 55° at an altitude

of 21,500 km. The satellites in geosynchronous orbit are planned to have
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the same con�guration, but for the altitude of 35,785 km.

As other GNSSs, BeiDou-2 will o�er two levels of service: a global

open service to accomplish civilian navigation services to general users at

no cost and designed to provide position accuracy of 10 m and velocity

accuracy of 0.2 m/s [97]; a more accurate licensed service restricted to the

Chinese government and military with a location accuracy of 10 cm [103].

When fully operational, BeiDou-2 will share four bands with Galileo,

namely E1, E2, E5B, and E6, to ensure interoperability with the Euro-

pean GNSS and simplify the receiver design. On the other hand, these

systems will face a major inter-system interference, especially within E1

and E2 bands, used for Galileo's open service [104]. Ranging codes will

be broadcast using CDMA techniques with a signal structure similar to

Galileo or GPS. However, very little has been o�cially announced about

the signals, whose characteristics have been object of study by independent

researchers, especially after the launch of the Compass-M1 satellite aimed

at signal testing operations [105]. The signals transmitted by Compass-M1

have been detected as a coherent combination of two quadrature signals.

The two signal components exhibit di�erent code lengths: the shorter code

is probably to be designed for the open service, whereas the longer codes

are likely to accomplish the restricted service. In [106] and [107] short

codes were completely decoded, allowing for the development of a hard-

ware Compass receiver [108].

4.2 Remote Sensing Using GNSS Signals of Op-

portunity

Besides navigation services, GNSS signals and receivers have been op-

portunistically adopted as a remote sensing tool for observation and mon-

itoring of Earth and other celestial bodies. Up to now, two main demon-

strated applications of remote sensing from GNSS are atmospheric sensing
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via RO and re�ectometry via bistatic radar. Both of these applications

are covered in more detail in the next sections.

4.2.1 GNSS Radio Occultation

GNSS RO refers to the technology and methodology developed in the

last �ve decades to infer physical properties of the atmosphere - temper-

ature, density, and water content - from measurements of signals trans-

mitted by occulted GNSS stations [109]. An occultation occurs when the

celestial body of interest interposes itself between the observer and the

signal source (another celestial body, transmitter), occulting (or hidding)

the latter. Even if signals at various wavelengths can in general be used to

implement remote sensing based on occultation techniques, RO refers to

the case of radio signals, i.e., signals at a frequency f ∈ [0, 300] GHz. RO

techniques exploit the occultation event to infer the atmospheric structure

of the celestial body of interest. The physical mechanism involved in these

techniques is the distortion of the signal coming from the occulted source

due to the presence of the atmosphere surrounding the middle object.

History of RO techniques dates back to 1960s, when the atmospheres

and ionospheres of Mercury, Venus and Mars were sounded within Mariner

V and Voyager space missions [110], [111]. In the 1980s, the possibility

to pro�le the Earth's atmosphere at a relative low cost by means of RO

techniques was allowed by the launch of the �rst emerging GNSS con-

stellations [112]. Various studies have demonstrated that GPS-based RO

measurements exhibit unique properties - self-calibration, high vertical res-

olution (< 1 km), all-weather sensing capabilities - as compared to other

competitive remote sensing approaches [113], [114].

The RO concept using GNSS transmitters is pictorially shown in Fig.

4.2. A GNSS station outside the ionosphere transmits radio signals for

its native navigation applications. The signal travels through the Earth's

atmosphere and reaches a receiver mounted on board a Low Earth Or-
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bit (LEO) spacecraft without line-of-sight (dashed line in the �gure), i.e.

hidden by the Earth. Indeed, along its path, the signal wavefront is bent by

changes of the refractive index of the atmosphere. The LEO satellite tracks

the GNSS station as it sets or rises through the Earth's atmosphere. By

measuring and recording the change of the received radio signal character-

istics, primarily the time delay, over the period of an occultation event, the

behavior of the refractive index can be reconstructed as a function of time,

and, then, inverted in vertical pro�les by accounting for the movements

of the transmitting and receiving satellites. Since the refractive index is

directly related to electron density in the ionosphere, further atmospheric

parameters, such as air density, temperature, pressure, and humidity, can

be estimated [115], [116].

GNSS satellites are particularly suitable for the RO approach, since

phase and amplitude of the GNSS navigation signals can be measured

with extremely high precision. The conventional approach to retrieve at-

mospheric parameters from GNSS RO measurements is a two-step proce-

dure: �rst, the bending angle pro�le is derived from the phase delay and

SNR measurements as a function of the ray impact parameter; second, the

bending angle pro�le is used to retrieve the refractive index and then the

atmospheric parameters of interest. To this aim, a GO approximation is

used to model the GNSS signal propagation.

The �rst constellation dedicated primarily to RO was FORMOSAT-

3/COSMIC, launched in April 2006 and consisting of six microsatellites.

The follow-on FORMOSAT-7/COSMIC-2 mission will launch a six-satellite

constellation into low-inclination orbits in 2017, and another six-satellite

constellation into high-inclination orbits in 2020. The GNSS RO payload

will be able to track GPS, GLONASS and Galileo satellites at the same

time, thus providing up to 12,000 pro�les per day with both constellations

for mesoscale weather forecasting, such as tropical cyclones, thunderstorms

etc. For more in-depth details about the GNSS radio occultation technique
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in Earth and planetary sciences, the reader is referred to [110], [111], [117],

[118].

Figure 4.2. Geometry of a GNSS RO event. The navigation signal trans-
mitted from the GNSS station propagates into the atmosphere and is bent
as it travels due to the changes in the refractive index of the Earth's atmo-
sphere (solid line). The signal source is hidden behind Earth and there is no
line-of-sight (dashed line) between transmitter and receiver.

4.2.2 GNSS-Re�ectometry

The acronym GNSS-R denotes a very recent remote sensing technique,

whose full name clearly explain the basic working principle: the navigation

signals transmitted by GNSS satellites are exploited for remote sensing

purposes by taking advantage of the re�ection of the GNSS signals on the
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Earth's surface (Fig. 4.3). Basically, a GNSS-R system is a bistatic radar,

i.e., a radar system in which transmitter and receiver are not colocated.

Furthermore, it is commonly considered a passive system, in the sense

that, for remote sensing purposes, GNSS satellites, even though they are

an active source, exist a priori and then, are often considered as part of

the environment.

Figure 4.3. Illustration of GNSS-R basic principle. Signals coming from
GNSS stations are re�ected by the Earth's surface and acquired by the
GNSS-R receiver.

Usage of Earth-re�ected GNSS signals was �rst proposed for ocean

remote sensing. In [119] Hall and Cordey applied GNSS-R concepts for

ocean surface analysis; later, it was proposed as an alternative solution for

ocean mesoscale altimetry by Martin-Neira in [120], and by Garrison et

al. in [121] for ocean surface roughness. However, the �rst detection of

GPS signals from a spacecraft was achieved by Lowe et al. via the acqui-

sition of calibrated data from the SIR-C radar experiment on board the

US Space Shuttle [122]. In the past decade, other GNSS-R remote sensing

applications were conceived and demonstrated. Among them, retrieval of

sea surface roughness represents one of the most investigated potentiality

of GNSS-R-based bistatic radars [109], [117], [123], [124]. Interest for this
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application lies in the possibility to derive wind speed and direction on

the sea surface, useful for near-surface meteorological conditions forecast-

ing [124]. Other areas of pressing need were investigated as well: sea ice

sensing was shown to be possible by Komjathy et al. in [125]; altimetry

measurements were acquired in numerous aircraft campaings [126], [127];

feasibility of near-surface soil moisture content estimation for agriculture

and urban planning applications was demonstrated by Katzberg et al., at

NASA Langley Research Center in [128]. Currently, GNSS-R applications

include most of the applications of competitive active remote sensing in-

struments, such as ocean, land and cryosphere remote sensing [109], [129].

GNSS-R data can be used to retrieve geophysical parameters of the

re�ecting surface by exploiting the nature of the radiation-matter interac-

tion, strictly related to the geometric and electromagnetic parameters of

the surface. Indeed, the characteristics of the re�ected GNSS signals can

provide useful information about the re�ecting surface. However, to fully

address this objective, two main steps need to be addressed: 1) the received

signal structure has to be related to the surface parameters of interest via

a proper modeling of the scattering phenomenology involved in the data

acquisition process. This step provides a mathematical description of the

received signal waveform to be used in the second step; 2) the acquisition

process has to be described in order to provide useful observables to be

used in the retrieval algorithms.

Concerning the �rst step, the electromagnetic scattering problem has

been deeply treated in Chapter 2 of this Ph.D. Thesis. Despite its limita-

tions, the most widely used scattering model to describe sea surface bistatic

scattering is the GO approximation under the KA approach [37]. It de-

scribes the EM scattering from a rough surface modeled as a 2-D stochastic

Gaussian process and provides quite accurate results in the computation

of the quasi-specular scattering cross-polar component. Hence, it is par-

ticularly suitable to model the forward scattering typical in the bistatic
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GNSS con�guration.

As explained in Chapter 2, within the GO framework, the illuminated

surface is decomposed in a set of elementary facets, whose size is much

larger than the EM wavelength. Each facet is approximated as the plane

locally tangent to the surface, and therefore, re�ects the incident EM wave

in the specular direction only, contributing to the scattered energy propor-

tionally to the probability to produce a specular re�ection to the receiver.

The total scattered EM �eld is the coherent sum (integral) of all these con-

tributions over the illuminated surface. In [37], Zavorotny and Voronovich

adopted the GO approach to model the re�ection on the sea surface of the

GPS signal. The received signal is modeled as follows:

u(r, t) =

∫
D(r)a

[
t− R0 +R

c

]
g(r, t) dr, (4.5)

where the reference system is centered on the specular reection point, R0

and R are the distances from a given surface's point to the transmitter

and receiver respectively, D(r) is the antenna pattern value evaluated at

the surface's point denoted by r, and

g(r, t) = −Rp
exp(−2πjfL1t)

4πjR0R
exp[jK(R0 +R)]

|q|2

qz
, (4.6)

where Rp is the polarization-dependent re�ection coe�cient (Eq. 2.18), qz

is the vertical component of the scattering vector q = (q⊥, qz) de�ned in

Eq. 2.26.

GNSS-R Observable: the Delay-Doppler Map

Once the scattering mechanisms are accounted for, and the received

signal has been properly modeled, the second step, consisting in modeling

the acquisition process, comes into play. The output of the acquisition

process is the so-called observable, namely a measurable entity (scalar val-
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ues, arrays,...) from which geophysical information can be derived. So far,

numerous types of GNSS-R observables have been de�ned and used in the

literature; a thorough list can be found in [130], [131]. However, the DDM

represents the primary and one of the most used observable, from which

the other observables can be derived [130].

Since GNSS is not primarily designed for remote sensing applications,

the received Earth-re�ected signal exhibits a very low power, well below

the (speckle plus thermal) noise level. Therefore, the main aim of the ac-

quisition procedure is to increase the quality (SNR) of the signal. To this

aim, the DDM observable takes advantage of the autocorrelation proper-

ties of the navigation signals of GNSSs based on CDMA. This is done by

correlating the received signal with a local replica of the PRN code. By

spanning the delay and doppler shift over a 2-D domain, a map of the re-

�ected power in the delay-Doppler domain, the so-called DDM is obtained.

It can be modeled as follows:

Y (∆τ,∆fD) = Tc

∫
D(r)χ(∆τ,∆fD)g(r, t0) d2r, (4.7)

where ∆τ and ∆fD stand for the delay lag and Doppler shift w.r.t the

signal re�ected at the specular point, Tc is the coherent integration time,

and χ(∆τ,∆fD) denotes the autocorrelation function of the PRN sequence

code, even referred to as Woodward Ambiguity Function (WAF). The

WAF of the GPS C/A code can be approximated as the factorization of

a delay lag-dependent and a Doppler shift-dependent functions, i.e., as

follows:

χ(∆τ,∆fD) ≈ Λ(∆τ)S(∆fD), (4.8)

where Λ(·) is a triangular function, and S(·) is a sinc function. Equation 4.7
models a single-snapshot DDM, i.e., the DDM obtained by correlating the

coherently acquired signal. Consequently, the output map is still greatly

a�ected by noise and an additional averaging process is required. To this
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aim, an incoherent integration of single-snapshot DDMs is performed over

a quite long time interval. The subsequent averaged DDM can be expressed

in terms of the pdf of the surface local slopes:

|Y (∆τ,∆fD)|2 = T 2
c

∫ ∫ |Rp|2

4πR0(r)R(r)
D(r)Λ2(∆τ)S2(∆fD)

× |q|
4(r)

q4
z(r)

p

(
−q⊥
qz

)
d2r, (4.9)

Equations 4.7 and 4.9 are commonly known as Z-V model [37].

From a practical point of view, owing to its low computational com-

plexity, the complex DDM is computed directly on board as follows:

Y (τ, fD) =

∫ Tc

0
s(t)a(t+ τ) exp[−j2π(fPRN + fD)t] dt, (4.10)

where s(·) is the received signal, a(·) is the local replica of the PRN code

at frequency fPRN , τ and fD represent the delay-Doppler point where the

DDM is evaluated. The incoherently-averaged power DDM is computed

as the average of N successive power DDMs:

|Y (τ, fD)|2 =
1

N

N∑
n=1

|Y (τ, fD)|2, (4.11)

where the incoherent integration time is Ti = NTc.

An interpretation of the DDM observable follows. Each Earth's surface

point corresponds to a point in the delay-Doppler domain determined by

the delay lag and Doppler shift of the signal coming from that surface point

w.r.t. the signal coming from the specular point. The reverse is not true,

since a point in the delay-Doppler domain corresponds to the intersection

points between the iso-delay and iso-Doppler lines, namely two points (if

intersections exist) or no point (if no intersection exists). Therefore, the
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DDM consists of two separate regions: a forbidden region, i.e., the portion

of the delay-Doppler domain not corresponding to any geographical coun-

terpart; an allowed region, called glistening zone, in which each pixel can

be interpreted as the energy scattered from two points inside this region.

In other words, the DDM is a 2-D function that can be regarded as the

distribution of the scattered power over the glistening zone. The size of

the glistening zone, i.e., the region contributing to the scattered energy, is

strictly related to the surface roughness: a perfectly smooth surface (for

instance very calm sea) totally re�ects the incident EM wave in the specu-

lar direction and a coherent scattering mechanism is present; consequently,

in the GNSS-R con�guration, only the specular point contributes to the

received signal and the DDM presents an unique bright point. Generally

speaking, the rougher the surface, the wider its radiation pattern (the more

signi�cant the incoherent scattering contribution), the wider the glistening

zone.



Chapter 5
SAR Despeckling Based on

Scattering Models

In this Chapter, the SAR despeckling approach based on the use of scat-

tering models is introduced and described. The proposed approach relies

on the exploitation of a priori information concerning the scattering behav-

ior of the surface to reduce speckle e�ects in SAR imagery. The proposed

algorithms, named SB-PPB and SB-SARBM3D, represent a modi�cation

of the original despeckling algorithms, namely PPB and SARBM3D, in

which physical issues related to the electromagnetic properties of the sur-

face come into play.

The Chapter is organized as follows: in Section 5.1, recent and classical

approaches to the despeckling problem are brie�y presented and discussed;

in Sections 5.2 and 5.3, the original SARBM3D and PPB despeckling al-

gorithms are deeply described and discussed; the proposed SB-SARBM3D

and SB-PPB �lters are introduced and described in Section 5.4.2 and Sec-

tion 5.4.3, respectively; the �lters performance is assessed on both synthetic

noisy and actual SAR images in Section 5.5; the results of an experimental

79
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sensitivity analysis of both SB-PPB and SB-SARBM3D are pointed out

and discussed in Section 5.6.

5.1 State of the Art in SAR Despeckling

SAR images are a�ected by speckle, which prevents their use in au-

tomatic tools for information extraction, and renders their interpretation

challenging even for human experts. Often, this problem is contrasted by

resorting to some forms of multilook, with the remarkable side e�ect of los-

ing spatial resolution. A more appealing alternative is to resort to signal

processing, looking for SAR despeckling techniques that suppress speckle

in homogeneous areas without losing resolution and without impairing the

image features of interest. Several techniques have been proposed to tackle

this issue [4]. The �rst approaches known in the literature are local spa-

tial �lters [13], [15], [16], which take into account the non-stationarity of

the image by adapting the �lter to the local statistics within a �xed-size

sliding window. Speci�cally, most of these �lters adopt a test to discrimi-

nate homogeneous from heterogeneous areas based on the local coe�cient

of variation, which is a simple and robust index of textural content. In

this way, a good balance between smoothing and edge preservation can be

achieved. These techniques have the merit of simplicity, but, in general,

are characterized by a limited despeckling power.

In order to better take into account the characteristics of the scene

�uctuations, a Maximum a Posteriori (MAP) approach is followed in [18],

modeling both the scene and the speckle through a Gamma distribution.

Improved versions of these �lters have been proposed in [132], using the

local coe�cient of variation combined with a ratio edge detector [17] not

only to inhibit smoothing near edges, but also to enhance the edges them-

selves. In [19], instead, a new model is proposed which better �ts SAR

data in textured areas, and a more appropriate strategy is used to handle
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edges and strong scatterers. Still in the context of MAP formulation, a

di�erent texture modelization, based on Gauss-Markov Random Fields, is

proposed in [133], together with an ad hoc strategy to detect and preserve

strong scatterers and borders between regions of uniform backscattering.

More sophisticated methods rely on the use of transforms, which pro-

vide a manageable sparse representation of the signal. Several algorithms

based on Wavelet Transform (WT) followed by coe�cient shrinkage have

been proposed. In particular, by using redundant WT [134], [135], they

are also able to avoid annoying artifacts such as Gibbs-like ringing in uni-

form areas and near edges. In this context, a central issue is the adoption

of non-linear shrinkage for the wavelet coe�cients. Even though deter-

ministic shrinkage represents a simple and e�ective solution, especially in

its adaptive version [134], better results can be expected from statistical

shrinkage, and its use in the context of MAP approaches has led to a great

variety of �lters. Also in this case, results can be improved by taking into

account the spatial heterogeneity, as done for example in [136], or in [22],

where the local texture energy is used to classify wavelet coe�cients and

adapt the �ltering strategy. More recent techniques take advantage of bidi-

mensional transforms better �t to represent edges, like bandelets [137] and

curvelets [138]. Instead of using a �xed transform, an alternative approach

is to build an adaptive dictionary from the image itself, as done in [139],

[140], [141].

Recently, the nonlocal approach [25] has gained much popularity in

this �eld, proving very e�ective for various SAR imaging modalities [5].

The basic idea is to take advantage of image self-similarity. Each target

pixel is reconstructed through the weighted average of those pixels that are

deemed to be more similar to it. These may be located anywhere in the

image, not necessarily close to the target. The central issue, therefore, is

to �nd a suitable measure of similarity, typically patch-based, to �nd these

optimal predictors. The basic idea of the nonlocal approach is very intu-
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itive, but it represented a total breakthrough in the denoising community:

similarity is no more intended in a pure and exclusive geometrical sense.

The geometric Euclidean distance was substituted by the more meaningful

intensity distance aimed at averaging only those objects sharing the same

physical properties, i.e., the re�ectivity. In other words, only those pixels

presenting similar amplitude values are averaged, irrespective of their ge-

ometric distance. The more similar two pixels are, the greater the weight

assigned to them in the average process. The Euclidean intensity distance

�rst proposed by Buades et al. in [25] was designed and derived in the

assumption of AWGN. This distance was recently modi�ed by Deledalle

et al. in [26] to account for the special characteristics of SAR speckle noise,

as discussed further in this Chapter. Interestingly, a rough form of nonlo-

cal �ltering was already present in the well-known sigma �lter for additive

signal-independent noise [142], later improved in [75], [133], [143] to deal

with speckle noise in SAR imagery. In recent years, a number of nonlocal

techniques have been proposed for SAR despeckling, e.g., [24], [26], [27],

[144]. The most popular among them are arguably PPB [26], character-

ized by an excellent speckle suppression ability, and SARBM3D [24], which

ensures a very good preservation of �ne image features. Up to now, NLM

represents one of the most widespread, accurate, and promising approaches

to SAR imagery despeckling [4], [5], [24], [26], [145]. These patch-based

nonlocal algorithms very often show better results w.r.t. other methods

[4], [5], [24], [26], [145], although they present some limitations and di�-

culties in very speci�c cases, especially for small non-repetitive features,

due to the failure of the patch-matching step. A detailed description of

the PPB �lter, on which the proposed SB-PPB �lter is based, is reported

in the following.
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Figure 5.1. Block-scheme of the 2-pass SARBM3D �lter.

5.2 SAR Block Matching 3-D Algorithm

The SARBM3D algorithm, originally developed in [24] by Parrilli et al.,

is a SAR-oriented version of the previous BM3D �lter proposed by Dabov

et al. in [146] and designed for denoising images corrupted by AWGN.

In the BM3D framework, the nonlocal approach is combined with wavelet

shrinkage and Wiener �ltering in a two-step process as shown in Fig. 5.1.

In the �rst stage, an hard-thresholding in the wavelet domain is used

to provide a basic estimate of the clean image and image statistics used in

the second stage, where the actual denoising takes place through empirical

Wiener �ltering in the transform domain. The processing �ow is as follows.

The �rst stage comprises the following three passes:

1. Grouping: image patches (block of pixels) are collected in 3-D groups

with a similarity criterion based on a minimum Euclidean distance

between pixel intensity values.

2. Collaborative �ltering: an hard-thresholding in the wavelet domain,

followed by inverse WT, is applied to each 3-D group.

3. Aggregation: every block is positioned in its original position in the

image domain and contributes to the image statistics estimation with

a proper weight.
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Figure 5.2. Nonlocal block-matching 3-D in SARBM3D. Inspired to Fig.
2 of [5].

In the grouping step the nonlocal principle comes heavily into action.

For each target block, the most similar blocks in the neighborhood are

located, and collected in a 3-D stack for the subsequent �ltering steps (see

Fig. 5.2). This nonlocal approach, based on collecting multiple instances

of a block in a 3-D stack, is aimed at exploiting the inherent self-similarity

exhibited by both radar and optical images to mimic a true statistical

�ltering based on the stationarity of the signal.

The second step performs the same stages with the di�erences high-

lighted in the following:

1. Grouping: the metric used to collect similar blocks is based on the

clean image estimation addressed in the �rst step.

2. Collaborative �ltering: all the 3-D blocks undergo Discrete Cosine

Transform/WT, Wiener �ltering, and inverse transform.

3. Aggregation: the same as in step one.

5.2.1 Dealing With SAR Speckle Noise

SARBM3D departs from its AWGN counterpart under two respects:

1) the use of a block similarity measure tailored to speckle statistics; 2)
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the use of undecimated WT and Wiener �ltering in place of ordinary WT

and hard thresholding in the �rst pass.

Following the usual multiplicative noise model, the observed signal is

expressed as

z(s) = x(s)n(s) (5.1)

where the spatial location is indicated by a single letter for compactness,

z(s) and x(s) are the observed and clean signal intensities, and the speckle

samples n(s) are independent and identically distributed Gamma random

variables. Accordingly, x̂1(s) and x̂2(s) are the intensities estimated in the

�rst and second pass.

Nonlocal �ltering relies heavily on a suitable measure of similarity. The

problem of determining such a measure, depending on noise statistics, has

been studied in several papers [147], [148], [149]. A widespread approach,

well supported by experimental evidence, is to de�ne the similarity between

two noisy observations as the likelihood that they come from the same

underlying signal before being corrupted by noise, i.e.,

p[a(s), a(t)|x(s) = x(t)] (5.2)

where, following [26], we use signal amplitudes a(s) = z(s), rather than in-

tensities, and p indicates a probability density function. Assuming AWGN,

this approach leads to the Euclidean distance as a measure of dissimilarity.

With L-look SAR images, however, it leads to a di�erent distance

d1[a(Bs), a(Bt)] = (2L− 1)
∑
k

log

[
a(s+ k)

a(t+ k)
+
a(t+ k)

a(s+ k)

]
(5.3)

where Bs indicates a block centered in s, a(Bs) the corresponding am-

plitudes, and k scans the block pixels. This distance has been used with

success in several nonlocal despeckling techniques. Besides having solid
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statistical bases, using the ratio of samples rather than their di�erence

makes full sense for multiplicative noise, as it makes the distance indepen-

dent of the average signal level. When other estimates of the signal are

available, coming for example from other sensors [150], the distance can

be modi�ed to take into account this side information. This is the case

of the second pass of SARBM3D, where the �rst-pass pilot estimate is

already available and the distance is therefore modi�ed accordingly. The

other major innovation introduced in SARBM3D concerns the �rst-pass

�ltering step aimed at providing the pilot image. As already said, a good

pilot is essential for the success of the �nal despeckling step, especially

when the original image is very noisy, as is the case of single-look SAR

images. Hence, it makes full sense replacing hard and soft wavelet thresh-

olding with Wiener �ltering, which is theoretically optimal. To perform

well, however, the latter needs reliable estimates of statistics. When this

is not the case, a simpler but more robust thresholding may still be prefer-

able. To address this issue, SARBM3D resorts to Undecimated Discrete

Wavelet Transform (UDWT) rather than critically sampled WT. Without

decimation, a large number of samples (though more correlated) become

available in each subband to estimate the variance of wavelet coe�cients,

allowing the correct functioning of the Wiener �lter. The price to pay is an

increase in computation time and memory usage, which is more acceptable

as technology progresses.

In [24], the multiplicative noise model is �rst of all converted in an

additive signal-dependent noise model

z(s) = x(s)n(s) = x(s) + x(s)[n(s)− 1] = x(s) + v(s) (5.4)

Then, resorting to some reasonable simpli�cations, the �ltered wavelet
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coe�cients are computed as [24]

X̂1(i) = max

(
0,

〈
Z2
〉
SB(i)

− σ2
u

1+σ2
u

〈
z2
〉
G

〈Z2〉SB(i)

)
Z(i) (5.5)

where 〈·〉SB(i) and 〈·〉G stand for the average over the sub-band compris-

ing the i-th coe�cient and the whole group, respectively; σ2
u is a known

parameter depending on the speckle format and the number of looks [151];

capital letters indicate wavelet coe�cients. In 5.5 all quantities within the

crochets can be estimated reliably by sample averages [24], either over the

UDWT subband the coe�cient belongs to 〈·〉SB, or over the whole 3-D

stack 〈·〉. Inverse transform provides eventually the �ltered image.

5.2.2 Strengths and Weaknesses

We now focus on the advantages and drawbacks of SARBM3D, only

partially highlighted in the above description. Its major strength is cer-

tainly the ability to preserve image details, like man-made structures, tex-

tures, region boundaries, etc. This is due to the nonlocal approach. Since

details represent rare �anomalies� as opposed to the larger homogeneous

areas, it is only by collecting multiple similar patches in a large area that

one can gather enough information to perform a reliable estimation. This

information is then exploited very e�ectively in SARBM3D by means of a

number of sophisticated tools, such as UDWT, Wiener �ltering, and the

aggregation of multiple estimates. The strengths of SARBM3D, however,

are also its weaknesses. Since it preserves very well image structures, it

tends to preserve also random patterns originated by speckle in homoge-

neous areas. Therefore, the speckle suppression in homogeneous areas is

not as strong as happens with some competing techniques, e.g., PPB. On

the other hand, speckle suppression and detail preservation are inherently

contrasting requirements. Interestingly, the reinforcement of random pat-
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terns gives rise to despeckling artifacts only occasionally. This important

property must be credited to the UDWT/Wiener suite in the �rst pass

which produces a pilot image free of the typical wavelet-basis artifacts. In

fact, replacing UDWT with WT, as done in FANS [144] to reduce complex-

ity, originates a number of annoying artifacts. It is therefore reasonable

to expect that improving further the pilot, by using some available side

information, will entail signi�cant bene�ts on the �nal �ltered image.

5.3 Probabilistic Patch-Based Algorithm

In their original work, Deledalle et al. [26] proposed a probabilistic

approach for �lter weight evaluation based on the Weighted Maximum

Likelihood Estimation (WMLE). The image denoising problem consists of

�nding the best estimate of the parameter of the parametric noise distri-

bution p(As|σs), with As being the amplitude sample located in s and σs

being a space-varying unknown parameter, assumed to be the re�ectivity,

i.e., the NRCS, of the scene at pixel s (so that the noise-free amplitude A∗s

is the square root of σs). In [26], it was shown that, if the pixel amplitudes

are modeled as independent and identically distributed according to the

Nakagami�Rayleigh distribution [11], in agreement with the usual multi-

plicative speckle noise description, then the WMLE of σs can be expressed

as

σ̂WMLE
s =

∑
t∈Ωws,tA

2
t∑

t∈Ωws,t
(5.6)

where Ω is a (large) window centered at s (search window) and the weight

ws,t ∈ [0, 1] depends on the target pixel s and the test pixel t; it can

be also seen as a measure of the similarity between the two pixels. The

de�nition of the weights is the key-point of the NLM techniques, as they

are directly related to the accuracy of the algorithm. In order to take

into account the neighborhood of the pixel under study, in [26], the patch
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concept is introduced, and the weight is evaluated as the probability that

the two patches ∆s and ∆t, centered at s and t, respectively, share the

same parameters

wnon−it.PPBs,t , p(σ∆s = σ∆t|A)
1
h (5.7)

where h > 0 is a �lter parameter setting the weight decay and the super-

script �non-it. PPB� stands for non-iterative PPB. In order to re�ne the

weights, Deledalle et al. [26] proposed also an iterative scheme in which

the re�ectivity estimation at step i− 1, σ̂i−1, is used as a kind of a priori

knowledge at step i

wit.PPB,is,t , p(σ∆s = σ∆t|A, σ̂i−1)
1
h (5.8)

with the obvious meaning of the superscript �it. PPB�. In addition, using

again the Nakagami�Rayleigh distribution for modeling the speckle noise

and the Kullback�Leibler divergence for modeling the a priori knowledge,

the following weight expression can be derived [26]:

wit.PPB,is,t = exp

[
−
∑
k

(
1

h̃
ln

(
As,k
At,k

+
At,k
As,k

)
+

L

Tfil

|σ̂i−1
s,k − σ̂

i−1
t,k |

2

σ̂i−1
s,k σ̂

i−1
t,k

)]
(5.9)

where L stands for the equivalent number of looks, h̃ = h/(2L− 1), Tfil is

a �lter parameter dictating the decay of the Kullback�Leibler divergence,

and k is an index that identi�es the pixels within patches ∆s and ∆t, so

that, for instance, As,k is the amplitude of the k−th pixel of the patch

∆s. The logarithmic term in Eq. 5.9 weights in an optimal way (in the

framework of an WMLE approach) the observed amplitude image samples

via a distance suitable for SAR data, whereas the second term takes into

account the previous estimate in an iterative scheme and is aimed at avoid-

ing �ltering samples drawn from di�erent distributions. For Tfil →∞, we
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have the non-iterative version of the algorithm, for which

wnon−it.PPBs,k = exp

[
−
∑
k

(
1

h̃
ln

(
As,k
At,k

+
At,k
As,k

))]
. (5.10)

Since a complete description of the PPB �lter goes outside the scope of

this Ph.D. Thesis, the reader is referred to [26] for more details.

5.4 Scattering-Based Despeckling

Most state-of-the-art techniques are based on statistical and/or geo-

metrical concepts and approaches, with limited physical insight [3], [4].

Even well-known and well-assessed despeckling techniques ([13], [15], [16])

do not take into any account the physical mechanisms and phenomena in-

volved in SAR image formation. Nonetheless, electromagnetic scattering

plays a key role in SAR imagery acquisition process: a SAR image can

be modeled as the re�ectivity pattern of the illuminated scene �ltered by

the SAR system [28], [29]. Scattering phenomena are also responsible of

the speckle noise that a�ects every coherent acquisition system like SAR

sensors. By explicitly taking into account the electromagnetic phenomena

of interest for SAR image formation, notably, the scattering mechanisms,

a physical-based approach to despeckling can be pursued. This kind of

approach has the potential to provide more reliable and artifact-free SAR

images and eventually more informative SAR products, readable also by

non-expert SAR users. A �rst attempt in this direction, only applicable

to polarimetric SAR data, can be found in [152]. In this Ph.D. Thesis,

the exploitation of scattering models within the despeckling processing

chain is investigated and discussed. Two scattering-based despeckling al-

gorithms, namely SB-SARBM3D and SB-PPB have been conceived, im-

plemented and tested. The proposed �lters rely on the introduction of a

priori information about the electromagnetic energy backscattered from
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the resolution cell. To this aim, we focus on natural surfaces, that are

modeled via the fractal geometry as described in Chapter 2. In partic-

ular, as anticipated in Chapter 2, the illuminated surface roughness is

modeled as a 2-D fBm stochastic process and its scattering behavior is

described through the SPM model. Therefore, the surface NRCS is repre-

sented by Eq. 2.15 and is estimated and injected as a priori information

in the proposed despeckling algorithms. The ways such a priori infor-

mation is introduced in the despeckling chain represent the core part of

the proposed algorithms and are discussed in Section 5.4.2 and Section

5.4.3. It is noticeable that the proposed surface and scattering models

correctly describe single-bounce phenomena occurring on natural surfaces

and scenarios (rocks, geomorphologic relief, bare, or little vegetated soil).

Multiple-bounce and volume-scattering phenomena � mainly inherent to

man-made and vegetated areas � are not taken into account. The next

Section discusses the estimation of the surface NRCS.

5.4.1 Estimation of the a Priori Scattering Information

The estimation of the surface NRCS as described in 2.15 requires the

knowledge/estimation of a number of surface parameters, such as com-

plex dielectric constant, local incidence angle, microscopic roughness, and

topothesy. Even though it is not reasonable to know in advance this in-

formation (which would make useless the SAR image itself), an accurate

estimation of the surface NRCS is still possible. To this aim, a sensitivity

analysis of the scattering behavior of the surface against both electromag-

netic and geometric surface parameters is performed. Figure 5.3 shows the

dependency of the surface NRCS, evaluated through 2.15, against the local

incidence angle, the relative dielectric constant, the electrical conductiv-

ity, the Hurst coe�cient and the topothesy. All the graphs show that the

major contribution to SAR image formation is due to the topography, i.e.,

to the local incidence angle. In particular, it is important to note that
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also the microscopic roughness, i.e., Hurst coe�cient and topothesy, have

a minor in�uence on SAR image intensity w.r.t. the macroscopic one.

(a) (b)

(c) (d)

Figure 5.3. Surface NRCS dependencies (see Eq. 2.15): (a) incidence angle
vs. dielectric constant assuming T = 10−4 m, H = 0.8 and σc = 10−2 S/
m; (b) incidence angle vs. electrical conductivity assuming T = 10−4 m,
H = 0.8 and εr = 10; (c) incidence angle vs. Hurst coe�cient assuming
T = 10−4 m, εr = 10 and σc = 10−2 S/m; (d) incidence angle vs. topothesy
assuming εr = 10, H = 0.8 and σc = 10−2 S/m. All graphs are in logarithmic
scale on z-axis; electrical conductivity and topothesy axes are in log scale,
too.

The local incidence angle can be estimated from a DEM of the sensed

surface, if available. The estimate reads as [28]

ϑ = cos−1

(
α sinϑ0 + cosϑ0√

α2 + β2 + 1

)
(5.11)

where ϑ0 is the radar look angle (i.e., the incidence angle over an horizontal

surface), and α and β are the range and azimuth slopes, respectively.
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The ability to retrieve the incidence angle is a key ingredient of our

proposal. In fact, the SPM NRCS depends heavily on this parameter and

much less on other ones, such as the relative dielectric constant, electrical

conductivity, and topothesy. Therefore, a good estimate of the NRCS can

be obtained even based on this only information. To this end, the local in-

cidence angle map has to be projected into the SAR system geometry and

coregistered to the noisy SAR image. The microscopic roughness, instead,

can be estimated from the SAR image via the algorithm developed by Di

Martino et al. [28] once assumed that the same value of H holds at both

macroscopic and microscopic scales. This latter is a rather strong assump-

tion, but again, the sensitivity analysis shows that errors on the value of

H do not appreciably a�ect scattering evaluation if a signi�cant topog-

raphy is present. In conclusion, the NRCS can be estimated based only

on the scene DEM, and the approximation is quite accurate where surface

scattering is the dominant scattering component, namely, in natural areas

with gentle topography or homogeneous �at regions. It is noteworthy to

underline that accurate DEMs are by now easily available for most part of

the world, often free of charge. In fact, the Shuttle Radar Topography Mis-

sion [153] provided a DEM of the entire Earth (with the exception of polar

areas), freely available at [154]. In addition, Lidar data providing very

high resolution DEMs are becoming more and more widespread, especially

in the most developed countries.

5.4.2 SB-SARBM3D

As described in Section 5.2, the �rst step of SARBM3D aims at es-

timating the local statistics of image intensity, which are used to drive

the actual despeckling process performed in the second step. The quality

of such estimates impacts heavily on the �lter performance in terms of

both speckle rejection and detail preservation. In this Ph.D. Thesis, we

improve the estimation quality by using some prior information available
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on the sensed surface, interpreted through suitable scattering models, as

discussed in Section 5.4. As a result, �ltering performance improves signif-

icantly wherever the proposed scattering model is applicable, and notably

in natural areas with gentle topography. In the following, the adopted

scattering model and the proposed scattering-based version of SARBM3D

are described in detail.

The previous Section provided insight into how the available informa-

tion on the scene DEM can be converted, through appropriate scattering

models, into an estimate, σ̂0, of the image NRCS. Our aim is to combine

this information with the �rst-step estimate x̂1,SARBM3D of SARBM3D to

form a better pilot image for the second pass to work on, according to the

relation

x̂1,SB−SARBM3D = f(x̂1,SARBM3D, σ̂
0). (5.12)

The problem becomes, therefore, the design of the most suitable combina-

tion function f(·, ·). To this end, it is worth reminding that the available

prior information allows for an accurate description of the signal backscat-

tered from natural areas with gentle topography or homogeneous �at re-

gions, where surface scattering is the dominant phenomenon. On the con-

trary, the description is not reliable in correspondence to non-topographic

edges, and in the presence of particular scattering phenomena, such as

multiple bounce and volume scattering, typical of vegetated and urban

areas. On the other hand, SARBM3D, even in the �rst step, guarantees

mostly complementary properties. Edges, man-made regions and �ne de-

tails are estimated faithfully, while limited speckle suppression is observed

in homogeneous areas, together with some �ltering artifacts due to block

matching. Based on these observations, we de�ne the function f(·, ·) so as
to perform a simple weighted averaging of the two quantities (normalized

to their mean values), with weights w(s) that adapt pixel-wise to the local
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Figure 5.4. Block scheme of the scattering-based SARBM3D algorithm.

image content:

x̂1,SB−SARBM3D(s) = w(s)x̂1,SARBM3D(s) + (1− w(s))σ̂0(s). (5.13)

Accordingly, the block scheme of Fig. 5.1 is modi�ed as shown in

Fig. 5.4. As both Eq. 5.13 and the block scheme in Fig. 5.4 reveal,

the proposed modi�cation of SARBM3D is still applicable to both single

and multilook SAR data, since the a priori scattering information is not

a�ected by the number of looks of the SAR image. Consequently, the SB-

SARBM3D �lter inherits the applicability of the SARBM3D �lter to both

single and multilook SAR data. The weight w varies in the range 0−1 adap-

tively across the image, combining in a suitable way the two contributes:

large weights give more importance to the �rst-step SARBM3D estimate,

x̂1,SARBM3D, while prior knowledge on scattering becomes dominant with

small weights. Therefore, for what was previously stated, the weight is

designed to be close to one in correspondence of non-topography-related

edges and urban areas (if present), and close to zero in natural areas with

gentle topography or homogeneous �at regions. Therefore, to de�ne a sen-
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sible weight map, one has to identify beforehand non-topographic edges

and man-made structures. To this aim, we apply to the input single-look

SAR image the detectors proposed by Lopes et al. [17], [155] which iden-

tify relevant image features, such as edges, lines and point scatterers. To

take into account the multiplicative nature of speckle, these detectors op-

erate on local intensity ratios, rather than on the gradients considered in

additive-noise contexts. Moreover, to reduce the e�ects of speckle, ratios

are not computed between single-pixel values, but rather between averages

taken over suitable windows in the neighborhood of the target pixel (the

reader is referred to [17] and [155] for a more detailed description). In this

Ph.D. Thesis, we use the very same windows de�ned in [155] for detect-

ing edges, lines and strong scatterers. Even so, the output detection map

appears to be quite noisy, with many false alarms and missed detections.

To improve reliability we could enlarge the reference windows, but this

would entail an unacceptable loss of spatial resolution. Instead, we resort

here to the virtual multilooking technique introduced in [156] based itself

on nonlocal estimation. For each patch of the single-look SAR image, a

number of similar patches are collected over a large neighborhood, using

block matching with the distance measure of Eq. 5.3. These are averaged

together, with no loss of spatial resolution, to obtain a much cleaner patch

to which the detectors of [155] are eventually applied. The output ratio

map rI takes values in the range 0− 1, as explained in [156], and provides

reliable information on the image details. In order to reduce false alarms in

the presence of topography (i.e., to separate non-topographic edges from

those caused by terrain topography), we apply the same detector to the

local incidence angle map, obviously without any virtual multilooking, ob-

taining a further ratio map rθ in the range 0 − 1. This step allows us

to correctly identify non-topographic edges, man-made structures and ho-

mogeneous areas by evaluating the similarity between the two obtained

maps rI and rθ: similar values re�ect gentle topography or homogeneous
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�at regions; dissimilar values re�ect the presence of non-topographic edges

and/or man-made structures. Accordingly, the output weight map w is

de�ned based on the similarity between rI and rθ:

w(s) = 1−min

(
rI(s)

rθ(s)
,
rθ(s)

rI(s)

)
(5.14)

5.4.3 SB-PPB

Following the approach in [26], the nonlocal �lter output is computed

according to 5.6, and the �lter weights are de�ned as the probability that

the NRCSs of the two patches ∆s and ∆t are equal given an appropriate

a priori knowledge. In particular, we introduce the scattering behavior of

the resolution cell as an a priori knowledge. Accordingly, the following

�lter weight de�nition is proposed:

wnon−it.SB−PPBs,t , p(σ∆s = σ∆t |A, σ̂SPM )
1
h (5.15)

with σ∆s and σ∆t being the NRCS in the selected (∆s) and test (∆t)

patch and A being the amplitude SAR signal; σ̂SPM takes into account

the a priori information about the signal backscattered from the scene,

and h is a parameter controlling the weight decay. By proceeding in a way

similar to that of [26], we have

wnon−it.SB−PPBs,t = exp

[
−2L− 1

h

∑
k

ln

(
As,k
At,k

+
At,k
As,k

)
+

1

h

∑
k

ln p(σs,k = σt,k|σ̂SPM )

]
. (5.16)

Therefore, to properly take into account scattering, a description of the

a priori probability p(σs,k = σt,k|σ̂SPM ) is required. To this aim, we use

the approach proposed in [26], thus modeling the a priori term via the



98 Chapter 5. SAR Despeckling Based on Scattering Models

symmetric version of the Kullback�Leibler divergence [26]

p(σs,k = σt,k|σ̂SPM )

∝ exp

{
− 1

Tfil

∫ [
p
(
σ|σ̂SPMs,k

)
− p

(
σ|σ̂SPMt,k

)]
ln
p
(
σ|σ̂SPMs,k

)
p
(
σ|σ̂SPMt,k

)dσ}

∝ exp

(
−L
|σ̂SPMs,k − σ̂SPMt,k |2

σ̂SPMs,k σ̂SPMt,k

)
.

(5.17)

As a consequence

wnon−it.SB−PPBs,t = exp

[
−
∑
k

(
1

h̃
ln

(
As,k
At,k

+
At,k
As,k

)

+
L

Tfil

|σ̂SPMs,k − σ̂SPMt,k |2

σ̂SPMs,k σ̂SPMt,k

)]
(5.18)

Therefore

wnon−it.SB−PPBs,t = wnon−it.PPBs,t · exp

(
−
∑
k

L

Tfil

|σ̂SPMs,k − σ̂SPMt,k |2

σ̂SPMs,k σ̂SPMt,k

)
.

(5.19)

Note that this equation is formally identical to 5.9, provided that the σ

estimation at previous step σ̂i−1 is replaced by the σ value computed by

the scattering model σ̂SPM . It is also worth noticing that 5.18 reduces to

5.10, i.e., to usual non-iterative PPB, for �at areas, because in this case

σ̂SPMs,k = σ̂SPMt,k , so that wnon−it.SB−PPBs,t = wnon−it.PPBs,t . Evaluation of

5.18 via the expression in Eq. 2.15 requires the availability of a DEM of

the sensed surface, so that the local incidence angle can be computed, and

knowledge of the terrain complex relative dielectric constant, Hurst pa-

rameter, and spectral parameter. However, if the underlying topography

is signi�cant, the backscattered signal and, hence, SAR intensity variations
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are mostly due to the topographic content of the sensed surface, due to

the major in�uence of the local incidence angle on the NRCS w.r.t. the re-

maining parameters (see the sensitivity analysis reported in Section 5.4.1).

Accordingly, we can reasonably assume that S0 is constant in the search

window, so that it cancels out in 5.18; in addition, dependence on εr can

be neglected, and a standard value can be used in Eq. 2.15, so that we

can assume

σ̂SPMp = σ̂SPM (ϑp) ∝ |β(ϑp)|2
cos4 ϑp

(sinϑp)2+2H
(5.20)

where ϑp is the local incidence angle evaluated in the location p. With

regard to the Hurst coe�cient H, it can be estimated from the SAR im-

age via the algorithm by Di Martino et al. [28], if one assumes that the

same value of H holds at both macroscopic and microscopic scales. This

is a rather strong assumption, but again, the sensitivity analysis in Sec-

tion 5.4.1 shows that errors on the value of H do not appreciably a�ect

scattering evaluation if a signi�cant topography is present. Accordingly, in

conclusion, evaluation of the weight 5.18 only requires availability of the

scene DEM. In addition, as already mentioned, a uniform standard value

of εr is assumed. However, this does not mean that the proposed �lter

is not applicable to di�erent scenarios, where the scattering model is not

accurate or εr is space-varying. In fact, together with the new distance

term based on scattering, the weight used by our algorithm still retains

the PPB distance term based on intensity (see 5.10 and 5.18), owing to

which SB-PPB can be expected to work well also in regions in which the

employed scattering model is not accurate. Further help with this regard

is expected to be provided by the adoption of an adaptive scheme, as de-

scribed in the following. The aforementioned expectations are con�rmed

by the experimental results of Section 5.5.
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Adaptive Scheme

In order to �ll the lack of a proper nonuniform a priori knowledge in the

initial estimate, Deledalle et al. proposed also an iterative scheme within

the PPB �lter [26], with re�ned weights given by 5.9 (see Section 5.3).

Iterations ensure a better preservation of edges and texture. It is then

meaningful to discuss the use of this iterative scheme also for the proposed

SB-PPB �lter. It is noteworthy that, whenever topography represents the

main contribution to the backscattering variations over the scene, an iter-

ative scheme of the proposed technique does not provide relevant improve-

ments since gray-level variations of the SAR image are already properly

taken into account by the a priori knowledge about the local incidence

angle (see Section 5.5 for an experimental veri�cation). Nevertheless, in

case of scenes presenting gentle topography and SAR image intensity vari-

ations not related to topography (i.e., related to variations of scene elec-

tromagnetic parameters, microscopic roughness or scattering phenomena

not described by the proposed one, e.g., volume scattering typical of veg-

etated areas and double bounce, layover, and shadowing typical of urban

areas), iterations can provide better edge and feature preservation capabil-

ities w.r.t. the non-iterative version. In a realistic scenario, distinguishing

the main source of the SAR intensity variations may not be an easy task.

However, if a DEM of the sensed surface is available, it is possible to es-

tablish if the local topography is signi�cant or not. Following this idea, a

simple �at�non�at binary classi�cation-based adaptive iterative scheme

of the proposed �lter is proposed in this Ph.D. Thesis, based on the it-

erative PPB �lter presented in [26]. Iterations are adaptively performed

only in those regions characterized by a �at topography as explained in

the next Section.
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Filter Rationale

The rationale of the proposed adaptive SB-PPB �lter is presented in

the following. From the DEM of the sensed scene, the local incidence

angle map can be easily computed from 5.11. In order to insert the a

priori knowledge in the proposed �lter, the local incidence angle map has

to be projected into the SAR system geometry and coregistered to the

noisy SAR image. This step is by now standard in SAR processing, and

it can be easily performed by most of the available commercial software

tools. The local incidence angle map is then divided in �xed-size blocks:

each block undergoes a binary �at�non�at classi�cation process. A block

is classi�ed as �at if the standard deviation of the local incidence angle is

less than a �xed threshold. SAR image blocks corresponding to non�at

regions undergo the non-iterative scheme of the proposed �lter, i.e., �lter

weights de�ned by 5.18 are used. This corresponds to applying the PPB

�lter as introduced in [26] with a proper initial estimate provided by 5.20,

in which the incidence angle computed via 5.11 is inserted. Conversely,

in SAR image blocks corresponding to �at regions, the iterative scheme

is employed, in order to re�ne weights in regions with non topography-

related SAR intensity variations, such as edges, man-made features, etc.,

and improve the edge and feature preservation capability of the �lter. In

this case, after the �rst iteration, the a priori knowledge about topography

is no more used, and it is substituted by the previous intensity estimate,

exactly as in [26], i.e., the weights de�ned in 5.9 are used. The �owchart

of the algorithm is shown in Fig. 5.5.

Finally, it is worth noticing that, apart from the H estimation and

coregistration steps, whose computing time requirements are analyzed in

the following sections, the adaptive SB-PPB �lter has a complexity com-

parable to that of the PPB �lter, the execution time depending on the

�atness of the analyzed surface. In particular, the adaptive scheme allows

for time saving in non�at regions w.r.t. the iterative PPB, avoiding further
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iterations.

5.5 Experimental Results

Due to the lack of speckle-free SAR images, assessing the performance

of despeckling algorithms is a di�cult task. For this reason, numerous

no-reference measures have been introduced to objectively evaluate the

quality and accuracy of despeckling algorithms without resorting to refer-

ence images. Speckle rejection is easily measured through the Equivalent

number of looks (ENL), computed in homogeneous areas of the image, but

detail preservation is typically evaluated only qualitatively through visual

inspection. However, on one hand, no-reference measures do not provide a

complete understanding of the algorithm behavior and, on the other hand,

actual SAR images are not useful to analyze algorithm performances in

some meaningful canonical situations. Quantitative measures, however,

can be obtained through simulation. To this end, a common approach is

to inject speckle on optical images, but these simulated SAR images di�er

profoundly from the real-world ones, leading to measures that may have

little sense. To solve these problems, a benchmarking framework for de-

speckling was recently proposed in [145], where a physical-based SAR raw

signal and image simulator [157] is used to generate realistic SAR images.

For some selected canonical scenes, an arbitrary number of single-look re-

alizations can be generated, allowing one to obtain a virtually speckle-free

reference by temporal multilooking. We will follow this approach, here,

and consider three relevant scenes, computing for each one several objec-

tive measures of performance. These simulated scenes enable the numerical

comparison between di�erent techniques, providing solid insight into the

main advantages and disadvantages of each one. Therefore, we will use

them in the next Section to analyze the improvements granted over the

original SARBM3D and PPB �lters by the proposed scattering-based ver-
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Figure 5.5. Flowchart of the proposed SB-PPB �lter. Iterations are adap-
tively performed only on �at areas, identi�ed through a binary classi�cation
method based on the local incidence angle map.
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sions. Regarding the PPB �lter, both the non-iterative and 4-iterative

versions are used for comparison. Then, in the last part of the Section,

we will analyze performance using real-world SAR images. In this case,

apart from some basic numerical measures, we will rely mostly on visual

inspection to assess despeckling quality.

Default �lter parameters de�ned in [24] and [26] are used for PPB and

SARBM3D, respectively. For the proposed SB-PPB �lter we use the same

values of the parameters used for PPB, apart from the Tfil parameter

that, only in the �rst iteration, assumes a di�erent values in order to

take into account the di�erent kind of a priori information. In this case,

best results are obtained setting it equal to 1.3. Whenever iterations are

performed, the default PPB value for Tfil is used. The binary classi�cation

is performed subdividing the image in distinct blocks of 256 × 256 pixels

size and evaluating the standard deviation of the local incidence angle map:

a region is classi�ed as �at if the standard deviation of the incidence angle

is su�ciently low. We empirically set a threshold of 2°. Furthermore, a

search window size of 21 × 21 and a patch size of 7× 7 are used both for

the SB-PPB and PPB �lters, while a search window size of 39×39 is used

for the SARBM3D �lter.

Performance evaluation is carried out by computing some of the objec-

tive measures proposed in [145]. In particular, besides the well-known

ENL, the mean of intensity (MoI) accounts for possible biases in the

output, the variance of ratio (VoR) gives indication on under- and over-

smoothing phenomena, edge smearing (ES) and correlation index (Cx)

provide information on the preservation of edges and textures, respec-

tively, while the SNR, and the mean structure-similarity index (MSSIM)

are well-known global measures of distortion (the reader is referred to [145]

and [158] for the de�nition and detailed description of these performance

parameters). Since each parameter is intended to evaluate performance

w.r.t. speci�c aspects of the algorithm or the scene, in each experiment
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a subset of the aforementioned parameters is used, as explicitly indicated

both in the text and in the Tables. Finally, in order to provide information

about the computational load of the proposed algorithms, the runtime is

computed. All experiments have been carried out on a 3 GHz dual-core

workstation equipped with a 8 GB RAM.

5.5.1 Canonical Study Cases

In order to test the proposed scattering-based despeckling algorithms

in di�erent scenarios, three suitable scenes are de�ned, and the corre-

sponding SAR images are generated by means of the SARAS simulator

[157]. The �rst one is a sinusoidal DEM, with constant geometrical and

electromagnetic parameters (Fig. 5.6). The second scenario (Fig. 5.7) is

characterized by a cone-shaped DEM with an aperture angle of 160°.

In order to test the e�ectiveness of the adaptive procedure of SB-PPB

and the weight evaluation in SB-SARBM3D, the proposed algorithms are

also applied to a more realistic scenario in which both topography- and

non-topography-induced SAR intensity variations are present. This mixed

scene is considered in the third case characterized by a fractal DEM with

constant parameters on the right-side, and four square patches with �at

DEM and di�erent electromagnetic parameters on the left-side (Fig. 5.8).

For the entire simulated dataset, the following parameter values have

been used: H = 0.8, T = 10−4 m, εr = 4, σc = 10−2 S/m. The four �at

patches of the mixed scenario, instead, have electromagnetic parameters

(clockwise from top-left): εr = 10, σc = 10−2 S/m; εr = 4, σc = 10−3 S/m;

εr = 4, σc = 10−3 S/m; εr = 80, σc = 4 S/m, the second and the third

patches sharing the same electromagnetic parameters. The fBm DEM

presents the same fractal parameters values also at macroscopic scales.

The parameters of the SARAS simulator are set so as to generate images

with the same characteristics as those acquired by the COSMO-SkyMed

sensor [159]. Consistently with the proposed theoretical approach, the
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backscattered signal has been simulated using the SPM option of SARAS.

Performance evaluation is carried out computing proper metrics in each

case. In particular, MoI, VoR, SNR, and MSSIM are evaluated in all cases;

the ENL is properly evaluated in the cone and mixed cases, while the

coe�cient of variation Cx is computed in the fractal and sinusoidal cases

to evaluate the textural preservation capability of the despeckling �lters.

Finally, the edge smearing parameter is evaluated in the mixed scenario

since sharp edges occur in this case.

All test images have a size of 512× 512 pixels, and for each scene 512

independent single-look realizations are generated. By averaging them, a

512-look image is obtained, which is almost speckle-free and represents

therefore a good basis to compute full-reference quality measures.

Experimental results are depicted in Figs. 5.6-5.8, in which it is shown

the single-look SAR image (a), the 512-look reference (b), the local inci-

dence angle (c), the despeckled images using non-iterative PPB (d), PPB

with four iterations (e), SARBM3D (f), SB-PPB (g), SB-SARBM3D (h),

and the SB-SARBM3D weight map (i).

The proposed algorithms rely on the prior scattering information evalu-

ated via Eq. 2.15 from the local incidence angle map and used for the �rst-

step estimate in SB-SARBM3D (see Eq. 5.13) and for the �lter weights

computation in SB-PPB (see Eq. 5.18).

Finally, it is worth underlining that, although the scattering model in

Eq. 2.15 is able to take into account also non-topographic inhomogeneities

of the sensed surface, such as changes of the dielectric constant or the

microscopic roughness, this information is not taken into account in the

proposed scattering-based �lters. In this way, we simulate a more realistic

con�guration characterized by the lack of prior knowledge on such parame-

ters. To summarize, for the entire simulated dataset, the a priori scattering

information is estimated from the local incidence angle map and assuming

the following parameter values: H = 0.8, T = 10−4 m, εr = 4, σc = 10−2
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S/m. Then, the inhomogeneities of the relative dielectric constant in the

mixed scenario are not accounted for in the proposed despeckling �lters.

In presence of a continuously varying SAR image intensity, as in the

sinusoidal and cone cases, SARBM3D exhibits some clear artifacts [see

Figs. 5.6(f) and 5.7(f)] that greatly a�ect the output image quality. The

prior information about scattering reduces dramatically these artifacts [see

Figs. 5.6(h) and 5.7(h)], improving signi�cantly the image quality. In fact,

these artifacts are due to random speckle patterns in the input image that

are reinforced by nonlocal �ltering. Of course, no such patterns exist in

the local incidence angle map. Consequently, the scattering contribution

in Eq. 5.13 prevails in the �rst-pass estimate, since the homogeneity of

geometrical and electromagnetic parameters, and the absence of man-made

structures, give rise to a weight map [Fig. 5.6(i)] with values uniformly

close to zero. The objective performance indicators reported in Table 5.1

con�rm these considerations. The proposed SB-SARBM3D �lter improves

signi�cantly w.r.t. the original version in terms of VoR and SNR (more

than 3 dB in the �rst scenario), while very close values are observed for

Cx, which makes sense given the absence of texture, and MSSIM, which is

little a�ected by local artifacts.

The slow-varying topography justi�es the similarity in the performances

of the proposed SB-PPB technique [Fig. 5.6(g)] and the PPB �lter [Fig.

5.6(d)-(e)], as shown both visually and quantitatively (see Table 5.1), in

preserving the continuous spatial variation of the SAR image intensity.

The absence of rapid variations in the image ensures an extremely fast

convergence of PPB, i.e. iterations do not provide a signi�cant improve-

ment w.r.t. the non-iterative PPB.

In the more realistic mixed scene, both topography- and non-topography-

related variations in SAR intensity are present. This scene was designed

to evaluate the behavior of the proposed algorithms in di�erent situa-

tions, such as homogeneous areas, edges and topography. As expected,
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SARBM3D provides a very good edge and texture preservation [see Fig.

5.8(f)] thanks to the nonlocal approach, while visible artifacts appear,

again, in the homogeneous areas, especially in regions close to the edges.

In these areas, the DEM-based prior information allows for a much better

speckle suppression, increasing the ENL from about 300 for SARBM3D

to over 1900 for SB-SARBM3D (see Table 5.3). Because of the assumed

lack of information about the variations of electromagnetic parameters, the

scattering-based contribution in SB-SARBM3D does not �see� the edges

in the left side of the image. This might potentially cause a signi�cant

edge smearing. However, these edges are well captured by the ratio edge

detector operating on the input SAR image, leading to large values of the

weight in correspondence of the edges [see Fig. 5.8(i)]. Therefore, the �rst-

step estimate of SARBM3D greatly contributes to the �rst-step estimate

of SB-SARBM3D in correspondence of the edges, leading to a similar ES

value (see Table 5.3). The SNR �gure con�rms the overall improvement

of the proposed �lter w.r.t. SARBM3D, thanks to the a priori scattering

information.

The knowledge of the underlying topography is responsible for a huge

improvement of the despeckling capability of the PPB �lter, as Fig. 5.8(d)

and Fig. 5.8(g) show, also considering its iterative version [Fig. 5.8(e)]. As

shown in Table 5.3, thanks to the a priori knowledge of the local incidence

angle map, the proposed SB-PPB �lter provides better results, in terms

of SNR, w.r.t. the original PPB �lter and SARBM3D as well. It provides

also a preservation of the textural content of the sensed scene that is better

w.r.t. the non-iterative PPB and comparable to the SARBM3D, as demon-

strated by the coe�cient of variation and the structural similarity index.

This scenario clari�es the key role of the adaptive scheme proposed in the

SB-PPB algorithm in retrieving the edge preservation capabilities ensured

by iterations. In the left part, where non-topography-induced intensity

variations are present, the lack of a priori knowledge about electromag-
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Table 5.1. Performance parameters for the sinusoidal DEM

MoI VoR SNR Cx MSSIM Runtime
(s)

Reference 1.000 0.997 ∞ 0.860 1.000 -
Noisy 1.000 - -3.693 1.572 0.970 -
PPB nonit. 0.998 0.819 17.192 0.848 0.999 14.04
PPB 4-it. 0.999 0.820 16.921 0.852 0.999 54.60
SARBM3D 0.985 0.858 16.045 0.862 0.999 136.65
SB-PPB 0.998 0.823 17.286 0.849 1.000 15.13
SB-SARBM3D 0.986 0.993 19.155 0.852 1.000 512.76

netic parameters variations makes the edges to be largely smoothed if no

iterations would occur in the SB-PPB �lter: in this case, iterations are

needed to enhance edge preservation capability. To this aim, the proposed

adaptive scheme introduces iterations in a smart and adaptive way only in

those regions where non-topography-related SAR intensity variations are

present. In this case, the adaptive scheme performs iterations only in the

left part of the image [Fig. 5.8(g)], thus greatly reducing the execution

time w.r.t. a pure iterative scheme, in which iterations are performed on

the whole image. The adaptive scheme allows the SB-PPB to outperform

the non-iterative PPB in terms of edge preservation, thus providing results

similar to the iterative PPB (see the ES parameter in Table 5.3). In par-

ticular, the adaptive SB-PPB ensures the same detail preservation as the

non-iterative SB-PPB in the non-�at region (see the Cx parameter) and a

comparable edge preservation as the iterative SB-PPB in the �at one (see

the ES parameter).

5.5.2 Actual Cases

The proposed algorithms have also been applied to two subsets of an

actual single-look stripmap COSMO-SkyMed SAR image acquired over

the Vesuvius-Mt. Somma complex close to Naples, Italy, on August 3,

2011. The �rst image is 2000 × 2000 pixels and is relevant to a natural
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6. (a) 512×512 simulated single-look SAR image in presence of a
sinusoidal topography, microscopic roughness of fractal parameters H = 0.8
and T = 10−4 m, and electromagnetic parameters εr = 4 and σc = 10−2

S/m; (b) 512-look reference image; (c) local incidence angle map; (d) PPB
nonit.; (e) PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-SARBM3D; (i)
weight map in the range 0-1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7. (a) 512×512 simulated single-look SAR image in presence of a
conical topography with microscopic roughness of fractal parametersH = 0.8
and T = 10−4 m, and electromagnetic parameters εr = 4 and σc = 10−2

S/m; (b) 512-look reference image; (c) local incidence angle map; (d) PPB
nonit.; (e) PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-SARBM3D; (i)
weight map in the range 0-1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8. (a) 512 × 512 simulated single-look SAR image in presence
of a fBm topography of fractal parameters H = 0.8 and T = 10−4 m,
and electromagnetic parameters εr = 4 and σc = 10−2 S/m (right) and
patches of di�erent electromagnetic parameters - in particular, the brightest
square simulates damp soil (εr = 10, σc = 10−2 S/m), the middle gray-level
squares dry soil (εr = 4, σc = 10−3 S/m) and the darkest one sea (εr = 80,
σc = 4 S/m); (b) 512-look reference image; (c) local incidence angle map;
(d) SARBM3D; (e) PPB nonit.; (f) PPB 4-it.; (g) SB-SARBM3D; (h) SB-
PPB; (i) weight map in the range 0-1. White box indicates the region where
the ENL is computed; ES evaluation is performed in the red marked area
consisting of 240 horizontal pro�les.
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Table 5.2. Performance parameters for the cone DEM

MoI VoR SNR ENL MSSIM Runtime
(s)

Reference 1.000 0.856 ∞ 47713.988 1.000 -
Noisy 0.903 - -7.343 1.012 0.980 -
PPB nonit. 0.902 0.830 7.542 176.143 0.998 51.07
PPB 4-it. 0.903 0.829 7.671 173.390 0.998 206.77
SARBM3D 0.889 0.888 7.609 442.865 0.998 529.47
SB-PPB 0.903 0.832 7.695 171.473 0.998 86.40
SB-SARBM3D 0.891 1.012 7.942 1562.597 0.998 1681.47

Table 5.3. Performance parameters for the mixed DEM

MoI VoR SNR Cx ES MSSIM ENL Runtime
(s)

Reference 1.000 1.003 ∞ 1.899 0.000 1.000 503.79 -
Noisy 0.997 - -1.874 2.777 0.025 0.965 0.98 -
PPB nonit. 0.966 1.104 4.583 0.861 0.291 0.989 180.82 14.28
PPB 4-it. 0.979 0.943 6.365 1.569 0.092 0.993 178.78 55.69
SARBM3D 0.967 0.724 6.919 1.778 0.060 0.995 319.91 134.52
SB-PPB 0.978 0.817 7.457 1.625 0.101 0.995 176.06 31.65
SB-SARBM3D 0.963 0.892 7.813 1.390 0.075 0.996 1901.47 464.14
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area with some sparse man-made objects [Fig. 5.9(a)]; the second subset

is 1000 × 1000 pixels and is relevant to a partly urbanized area at the

foot of the Vesuvius mountain [Fig. 5.12(a)]. The radar look-angle is 44°,

while the pixel spacing is 2.07 m and 1.17 m in azimuth and slant range,

respectively; the operating frequency is 9.6 GHz.

For what concerns the natural scenario, a 42-look SAR image obtained

via temporal multilook is used as reference [Fig. 5.9(b)], while the mixed

scenario in Fig. 5.12 deserves a speci�c comment. Indeed, due to the

fast temporal changes characterizing an urban scenario (mainly due to

the presence of vehicles) and the high resolution of the COSMO-SkyMed

sensor, some di�erences - likely not related to speckle - between the single-

look and the 42-look images are present, as in the red circles in the zoomed

region in Fig. 5.13(a),(b). Consequently, the 42-look image is not a suitable

reference image and no synthetic parameters are evaluated for this scenario.

Indeed, only a visual inspection is conducted for the quality assessment of

the �lters.

The local incidence angle maps [Fig. 5.9(c) and Fig. 5.12(c)] are ob-

tained from a DEM acquired with a Lidar system. The DEM employed is

publicly available at no cost at the Naples (Italy) local authority website

[160].

Figure 5.9(d)-(f) and Fig. 5.12(d)-(f) show the PPB nonit., PPB with

four iterations, and SARBM3D, respectively; the proposed �lters outputs

for the natural and urban scenarios are shown in Fig. 5.9(g)-(h) and Fig.

5.12(g)-(h), respectively; Figures 5.9(i) and 5.12(i) show the weight maps

relevant to the SB-SARBM3D algorithm.

The Hurst exponent has been evaluated through the algorithm pro-

posed by Di Martino in [28]. In order to evaluate the texture preservation

capability for the natural scenario, the coe�cient of variation is computed

on a uniformly textured region of the Mt. Somma [black box in Fig.

5.9(b)].
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For what concerns the natural scenario, despite the absence of non-

topographic edges, the image presents some brilliant points to be preserved.

As the weight map shows, the proposed ratio detector correctly identi�es

most of them, penalizing the scattering model with a high weight. Due to

the strong topography and geometric distortion (layover and shadowing),

the ratio detector provides some false alarms identifying also topographic

edges in correspondence of the crater and the Mt. Somma ripples.

Despite an overall similarity between the SARBM3D and its scattering-

based version outputs, zooms in Fig. 5.10 and Fig. 5.11 show the better

reliability of SB-SARBM3D result especially in terms of removal of the

artifacts that a�ect the SARBM3D �lter. In particular, the SARBM3D

despeckled image presents repetitive horizontal and vertical structures not

present in the reference that could signi�cantly a�ect a correct data in-

terpretation. The a priori scattering information allows for a signi�cant

reduction of these artifacts. Unfortunately, synthetic parameters are not

yet able to reward artifacts removal. A better smoothing is reached by the

SB-SARBM3D �lter, as witnessed by the VoR parameter in Table 5.4.

Finally, the SB-SARBM3D �lter presents better speckle reduction in

homogeneous areas as shown by the higher ENL computed in the white

box of Fig. 5.10(a).

The a priori knowledge on the scattering behavior of the resolution cell

allows a better speckle rejection in SB-PPB w.r.t. PPB without losing

details. Hence, as shown in the two subsets in Fig. 5.10 and Fig. 5.11,

the PPB �lter provides an oversmoothed image, in which many features

and details are strongly attenuated. A simple visual inspection clari�es

the bene�ts derived from an accurate modelization of the electromagnetic

properties of the illuminated surface. A good texture preservation of SB-

PPB, as well as the oversmoothing performed by PPB, is con�rmed by the

Cx parameter in Table 5.4.

The suburban scenario depicted in Fig. 5.12 shows the behavior of
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the proposed despeckling algorithms in a partly man-made scenario in

which, together with the single-bounce di�usion, other scattering phenom-

ena - not taken into account within the proposed scattering model - occur,

such as multiple-bounce scattering. Reasonably, in such a scenario, the

SB-SARBM3D �lter assigns a major weight to the SARBM3D �rst-step

estimate, except the natural area in the right-up corner, as the weight map

in Fig. 5.12(i) shows. Consequently, SB-SARBM3D inherits most of the

detail preservation capability of SARBM3D in the urban area [see Fig.

5.13(h)], in which the proposed scattering model is not adequate.

Even in this case, SB-PPB provides a more detailed image w.r.t. the

original PPB �lter, as clearly visible in the zoomed area in Fig. 5.13(f).

In conclusion, this scenario preannounces some robustness properties

of the proposed scattering-based �lters against the scattering behavior of

the illuminated surface. A deeper sensitivity analysis is conducted in the

next Section.

A last remark about computational complexity of SB-SARBM3D is in

order. Due to the additional steps of weights evaluation, DEM projection

and Hurst coe�cient evaluation, the proposed SB-SARBM3D presents a

computational load larger than the original SARBM3D �lter. In partic-

ular, for all the experiments run, the proposed SB-SARBM3D requires

about four times the computational time of SARBM3D. The increase of

computational time is mainly due to the weight evaluation phase.

5.6 Sensitivity Analysis of SB-SARBM3D and SB-

PPB

In this Section, a comprehensive experimental sensitivity analysis of

the proposed scattering-based despeckling algorithms is carried out and

the main results are presented and discussed. First, in Section 5.6.1, the

in�uence of the scattering behavior of the surface is analyzed by applying
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9. (a) 2000 × 2000 subset of a COSMO-SkyMed single-look
stripmap SAR image of the Vesuvius volcano close to Naples (Italy); (b)
reference image obtained via a temporal multilook of 42 SAR images. The
black box indicates the area selected for coe�cient of variation computa-
tion; (c) local incidence angle in azimuth-slant range derived from a DEM
obtained with a Lidar system; (d) PPB nonit.; (e) PPB 4-it.; (f) SARBM3D;
(g) SB-PPB; (h) SB-SARBM3D; (i) weight map in the range 0-1;
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10. 500×500 zoom of the Vesuvius crater: (a) Noisy; (b) reference;
(c) SARBM3D. Red box indicates some artifacts removed or attenuated in
SB-SARBM3D. (d) SB-SARBM3D; (e) PPB with four iterations; (f) SB-
PPB. Green boxes indicate some features better preserved thanks to the a
priori scattering information; white box indicates the region where the ENL
is computed.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11. 500 × 700 zoom of a �at region at the foot of the Vesuvius:
(a) Noisy; (b) reference; (c) SARBM3D. Red boxes indicate some artifacts
removed or attenuated in SB-SARBM3D. (d) SB-SARBM3D; (e) PPB with
four iterations; (f) SB-PPB.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.12. (a) 1000 × 1000 subset of a COSMO-SkyMed single-look
stripmap SAR image of the Vesuvius volcano close to Naples (Italy) and
relevant to a partly urbanized area; (b) image obtained via a temporal mul-
tilook of 42 SAR images. (c) Local incidence angle in azimuth-slant range
derived from a DEM obtained with a Lidar system. (d) PPB nonit.; (e)
PPB 4-it.; (f) SARBM3D; (g) SB-PPB; (h) SB-SARBM3D. (i) Weight map
in the range 0-1. Red marked area is zoomed in Fig. 5.13.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13. Zoom of the red marked area in Fig. 5.12(b). (a) Single-look;
(b) 42-look image; (c) PPB 4-it.; (d) SARBM3D; (e) SB-SARBM3D; (f)
SB-PPB. Di�erences between the single and the multilook images are red
circled.
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Table 5.4. Performance parameters for the actual image of a natural scene

MoI VoR SNR Cx ES MSSIM ENL Runtime
(s)

Reference 1.000 1.312 ∞ 1.054 0.000 1.000 19.70 -
Noisy 1.000 - -1.470 1.795 0.600 0.962 0.93 -
PPB nonit. 0.980 1.077 4.437 0.784 0.455 0.991 66.29 204.24
PPB 4-it. 0.984 1.026 5.747 0.902 0.357 0.991 66.02 839.98
SARBM3D 0.970 0.607 5.131 1.052 0.293 0.989 52.18 2082.85
SB-PPB 0.997 0.728 3.861 1.075 0.555 0.989 66.63 264.26
SB-SARBM3D 0.973 0.818 5.139 0.958 0.237 0.991 72.44 8597.62

SB-SARBM3D and SB-PPB to SAR images simulated via di�erent scat-

tering models. Section 5.6.2 deals with the in�uence of surface parameters

on the despeckling capability of the �lters. To this aim, the proposed de-

speckling algorithms are applied to a single-look SAR image with di�erent

values for the input surface parameters. Then, the role of the spatial reso-

lution of the DEM is investigated and evaluated by applying the algorithms

with a priori scattering information estimated from DEMs with di�erent

resolutions. Finally, the role of coregistration errors between the DEM and

the SAR image is analyzed for di�erent DEM resolutions. For the entire

sensitivity analysis, the scene topography is simulated via the 2-D fBm

surface of fractal parameters H = 0.8 and T = 10−5 m and electromag-

netic parameters εr = 4 and σc = 10−2 S/m shown in Fig. 5.14(a), while

in Fig. 5.14(b) the corresponding local incidence angle map is depicted.

Otherwise stated, all the surface parameters, namely, ϑ, H, T , εr, and σc

are assumed to be known in the �lters. SAR images are simulated via the

SARAS simulator described in [157] with the COSMO-SkyMed sensor pa-

rameters [159]. The scattering behavior of the surface is simulated via the

SPM option of SARAS, unless otherwise stated. The simulated single-look

SAR image corresponding to the DEM in Fig. 5.14(a) is displayed in Fig.

5.15(a). The despeckling capabilities of the �lters are quantitatively evalu-

ated computing both no-reference and full-reference synthetic parameters.
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In particular, the VoR, Cx, SNR, and MSSIM parameters are computed.

Concerning SNR and MSSIM, the graphs reported in the following show

both the absolute value and the relative value normalized to the maximum.

For full-reference measures computation, reference (i.e., speckle-free) SAR

images are computed via average of 512 sample single-look images. In

order to quantitatively establish the quality of the despeckling algorithm,

the reader is referred to the reference image measures in Tables 5.5-5.8.

The reference image corresponding to the SAR image in Fig. 5.15(a) and

to the DEM in Fig. 5.14(a) is shown in Fig. 5.15(b). For a better under-

standing of the key role of the a priori scattering information, the SB-PPB

and SB-SARBM3D �lters are also compared with original PPB with four

iterations and SARBM3D.

The Tfil parameter of SB-PPB and the corresponding parameter of

PPB (named T in the original paper [26]) have been optimized in terms

of SNR for the SAR image in Fig. 5.15(a). In particular, Tfil equals 0.31

and 0.06 in SB-PPB and PPB, respectively.

5.6.1 Sensitivity Against the Scattering Behavior of the

Surface

Several models concerning with single-bounce surface scattering have

been developed so far. Depending on the surface model used, they can be

categorized in �classical models� � in which the surface height is assumed

to be normally distributed � and in �fractal models� � in which the fractal

geometry is used. For more details the reader is referred to Chapter 2

of this Ph.D. Thesis and [45]-[49]. It is noteworthy that the accuracy

of the scattering-based despeckling algorithms depends on the scattering

behavior of the scene. For instance, the accuracy of the pilot image in

SB-SARBM3D strictly depends on the accuracy of the SPM scattering

model. In particular, one may reasonably expect that the more accurate

the SPM model, the better the results. In order to assess the robustness
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of the SB-SARBM3D �lter against the scattering behavior of the surface,

the algorithms are applied to SAR images of the fractal scene previously

described simulated assuming di�erent scattering models. In particular,

besides the SPM model, the cosϑ, cos2 ϑ and cos4 ϑ scattering models are

used for simulation purposes. Single-look SAR images are shown in Figs.

5.15-5.18, while synthetic performance parameters are reported in Tables

5.5-5.8.

Coherently with the theoretical framework developed in Sections 5.4.2

and 5.4.3, the most accurate results are obtained if the scattering behavior

of the surface is correctly described by the SPM model [Fig. 5.15(a)-

(f)]. If this is not the case, the more isotropic the scattering, the worse

the results. For the considered scattering models, the worst results in

terms of SNR are provided with the cosϑ scattering model, while with

the cos2 ϑ and cos4 ϑ models intermediate results are obtained. The poor

performance in the cosϑ case in terms of SNR can be partially due to the

inadequacy of the Lambertian model to describe the scattering mechanisms

at microwaves frequencies [45], [73], [161]. Nevertheless, we consider it

for its widespread use in some speci�c applications of SAR imagery, e.g.,

shape from shading [162], [163], [164], [165]. However, a good texture

preservation is provided by the scattering-based algorithms whatever the

scattering model, as witnessed by the coe�cient of variation in Tables 5.5-

5.8. Indeed, the exploitation of the a priori scattering information provides

better results - a better pilot image in SB-SARBM3D w.r.t. SARBM3D

- even if the SPM model is not accurate, as shown by the performance

improvement over the original �lters. However, SB-SARBM3D exhibits a

more signi�cant sensitivity against the scattering behavior of the surface

w.r.t. SB-PPB. In order to improve performance of SB-PPB, a suitable

value for the Tfil parameter is needed, due to its link with the scattering

distance decay. This is con�rmed by the performance of the PPB �lter,

whose despeckling capabilities depend on the used scattering model also.
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Figure 5.14. (a) Fractal DEM with fractal parameters H = 0.8, T = 10−5

m in the azimuth-slant range coordinate system; resolution is 2.58 m and
2.29 m in azimuth and slant-range respectively; (b) local incidence angle
map in the azimuth-slant range coordinate system.

Table 5.5. Performance parameters for the SPM scattering model

SNR VoR Cx MSSIM

Reference ∞ 0.98 0.67 1.000
PPB 3.47 0.95 0.51 0.993
SARBM3D 4.84 0.76 0.57 0.990
SB-PPB 5.67 0.78 0.57 0.996
SB-SARBM3D 6.80 0.81 0.55 1.000

Table 5.6. Performance parameters for the cosϑ scattering model

SNR VoR Cx MSSIM

Reference ∞ 1.01 0.15 1.000
PPB 0.68 0.84 0.12 0.999
SARBM3D 1.31 0.89 0.11 1.000
SB-PPB -0.084 0.75 0.18 0.999
SB-SARBM3D 0.93 0.77 0.17 1.000
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15. (a) 512 × 512 single-look SAR image corresponding to the
scene in Fig. 5.14(a) with electromagnetic parameters εr = 4 and σc =
10−2 S/m; (b) reference image obtained by averaging 512 single-look sample
images; (c) SB-PPB with a priori scattering information estimated from the
local incidence angle in Fig. 5.14(b) and assuming the right values for the
surface parameters; (d) PPB with four iterations; (e) SB-SARBM3D; (f)
SARBM3D.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16. (a) Simulated and despeckled SAR images relevant to the
DEM in Fig. 5.15(a) and assuming the cosϑ scattering model. (a) Noisy;
(b) reference SAR image; (c) SB-PPB; (d) PPB; (e) SB-SARBM3D; (f)
SARBM3D.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17. (a) Simulated and despeckled SAR images relevant to the
DEM in Fig. 5.15(a) and assuming the cos2 ϑ scattering model. (a) Noisy;
(b) reference SAR image; (c) SB-PPB; (d) PPB; (e) SB-SARBM3D; (f)
SARBM3D.



5.6 Sensitivity Analysis of SB-SARBM3D and SB-PPB 129

(a) (b)

(c) (d)

(e) (f)

Figure 5.18. (a) Simulated and despeckled SAR images relevant to the
DEM in Fig. 5.15(a) and assuming the cos4 ϑ scattering model. (a) Noisy;
(b) reference SAR image; (c) SB-PPB; (d) PPB; (e) SB-SARBM3D; (f)
SARBM3D.



130 Chapter 5. SAR Despeckling Based on Scattering Models

Table 5.7. Performance parameters for the cos2 ϑ scattering model

SNR VoR Cx MSSIM

Reference ∞ 1.02 0.21 1.000
PPB 1.29 0.87 0.14 0.998
SARBM3D 1.84 0.90 0.14 1.000
SB-PPB 1.17 0.76 0.20 0.999
SB-SARBM3D 2.19 0.78 0.19 1.000

Table 5.8. Performance parameters for the cos4 ϑ scattering model

SNR VoR Cx MSSIM

Reference ∞ 1.01 0.26 1.000
PPB 1.98 0.87 0.18 0.998
SARBM3D 2.62 0.89 0.19 1.000
SB-PPB 2.90 0.76 0.25 0.999
SB-SARBM3D 4.02 0.78 0.25 1.000

5.6.2 Sensitivity Against Surface Parameters

The SPM model presented in Section 2.2, suitable for bare soil natural

surfaces, properly accounts for both electromagnetic and geometrical char-

acteristics of the surface [45]. As a consequence, the estimation of the a

priori scattering information (see Eq. 2.15) requires, at least in principle,

the knowledge (or estimation) of numerous parameters, namely the local

incidence angle ϑ, the Hurst coe�cient H, the topothesy T , the relative

dielectric constant εr, and the electrical conductivity σc. It is notewor-

thy that an accurate knowledge of all these parameters is not available, at

least where SAR data are of interest. However, as demonstrated in Sec-

tion 5.4.1, a scattering-based approach for the despeckling problem is still

applicable since the scattering mechanisms do not exhibit the same sen-

sitivity to the di�erent surface parameters. In particular, the sensitivity

analysis conducted in Section 5.4.1 shows that the local incidence angle

has the major in�uence on the energy backscattered from the surface. A

key role is also played by the Hurst coe�cient, while the remaining pa-
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rameters exhibit a minor in�uence. Consequently, a reliable estimation of

the a priori scattering information is still possible by assuming the avail-

ability of the local incidence angle map, i.e., a DEM of the underlying

topography is required. For what concerns the Hurst coe�cient, the angle-

independent [166] method in [28] for the retrieval of the Hurst coe�cient

from a single-look SAR image is used; concerning the remaining param-

eters, typical values for most bare soil surfaces are used in the proposed

�lters. However, the proposed scattering-based algorithms are able to take

into account the knowledge of whatever surface parameter. For example,

in [167] a method to retrieve the soil surface parameters from polarimetric

SAR data is presented; in [61], a general framework for surface parameters

estimation from backscattered data is discussed.

In this Section, the sensitivity of SB-PPB and SB-SARBM3D against

surface parameters is evaluated by means of an experimental analysis. In

particular, the robustness of the proposed algorithms w.r.t. errors in the

Hurst coe�cient, relative dielectric constant, and the conductivity is as-

sessed. It is noteworthy that, despite the in�uence on the backscattering

coe�cient, the topothesy simpli�es in the SB-PPB �lter weight evalua-

tion (see Section 5.4.3). Consequently, a sensitivity analysis against the

topothesy is conducted for the SB-SARBM3D algorithm only. To this aim,

the algorithms are applied to the single-look SAR image in Fig. 5.15(c)

relevant to the DEM shown in Fig. 5.15(a) in azimuth-slant range and

the backscattering coe�cient is estimated by using di�erent values of the

surface parameters. An accurate knowledge of the local incidence angle

shown in Fig. 5.15(b), whose key role is investigated further in this Ph.D.

Thesis, is assumed for the a priori scattering information estimation.

To assess the sensitivity of SB-SARBM3D and SB-PPB against inac-

curacy in the Hurst coe�cient estimation/knowledge, the algorithms are

applied to the single-look SAR image in Fig. 5.15(c) with di�erent values

of the input parameter H in the range [0, 1]. The performance parameters
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of the despeckled images against H are depicted in Fig. 5.19 and Fig. 5.20

for SB-PPB and SB-SARBM3D, respectively. They show a non-negligible

in�uence of the Hurst coe�cient on the �lter performance, thus con�rming

its non-negligible in�uence on the backscattered energy from the surface

(see Section 5.4.1). In particular, in this scenario, a performance degrada-

tion up to 20% and 22% is experienced with SB-PPB and SB-SARBM3D

respectively, in correspondence of very gross errors on H estimation. How-

ever, with typical values of actual natural surfaces (0.6 ≤ H ≤ 0.9) [73], a

smaller degradation (up to 2% and 8% respectively) is experienced. High

H values provide less smoothing and a better texture preservation, as

witnessed by the VoR and the Cx parameters. Thus, the higher H, the

higher the surface NRCS dynamic, the stronger the decay of the scattering

distance in SB-PPB, and lower the weight in SB-SARBM3D. Best perfor-

mance of SB-PPB in terms of SNR are ensured with H = 0.8, i.e., if an

accurate knowledge/estimation of H is available.

It is noticeable that the non-negligible in�uence of the H parameter is

faced via a proper estimation procedure [28]. However, owing to the a priori

scattering information, the scattering-based �lters provide better results

w.r.t. the original ones for every value of H (performance parameters of

PPB and SARBM3D are reported in Table 5.5).

Figures 5.21-5.24 show the sensitivity of SB-PPB and SB-SARBM3D

against the relative dielectric constant and the electrical conductivity, re-

spectively. In Fig. 5.25, the sensitivity of SB-SARBM3D against the

topothesy is shown. The minor in�uence of these parameters on the en-

ergy backscattered from the surface re�ects itself in the robustness of the

proposed despeckling �lters, whose performances are negligibly a�ected

by an accurate knowledge of their actual values. Therefore, for such pa-

rameters, reference values can be used without incurring in a signi�cant

performance degradation, if an estimation/knowledge of these parameters

is not available. For example, typical values for dry soil and damp soil at
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the microwaves are εr = 4, σc = 10−2 S/m and εr = 10, σc = 10−3 S/m,

respectively. This allows the applicability of the algorithms even if an

estimation/knowledge of the electromagnetic parameters is not available.

Figure 5.19. Sensitivity of SB-PPB against the Hurst Coe�cient. Clock-
wise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.

5.6.3 Sensitivity Against the DEM Resolution

In order to apply the proposed �lters, a DEM of the scene is required.

As previously stated, the ratio maps rI and rϑ are aimed at properly

weigh the pilot image provided by the original SARBM3D �lter and the

a priori scattering information by distinguishing topography-related and

non-topography-related SAR intensity variations. It is noticeable that

the higher the resolution of the DEM, the higher the probability to cor-

rectly detect topographic features. In this Section, the robustness of SB-

SARBM3D and SB-PPB against the DEM spatial resolution is analyzed by

applying the algorithms to the single-look SAR image shown in Fig. 5.15(c)

with the a priori scattering information evaluated from DEMs with di�er-
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Figure 5.20. Sensitivity of SB-SARBM3D against the Hurst Coe�cient.
Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.

Figure 5.21. Sensitivity of SB-PPB against the relative dielectric constant.
Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.
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Figure 5.22. Sensitivity of SB-SARBM3D against the relative dielectric
constant. Clockwise from top-left: SNR; VoR; Coe�cient of Variation;
MSSIM.

Figure 5.23. Sensitivity of SB-PPB against the electrical conductivity.
Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.
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Figure 5.24. Sensitivity of SB-SARBM3D against the electrical conductiv-
ity. Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.

Figure 5.25. Sensitivity of SB-SARBM3D against the Topothesy. Clock-
wise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM.
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ent resolutions. The highest-resolution DEM used [Fig. 5.15(a)] shares

the same spatial resolution of the simulated SAR image in Fig. 5.15(c),

i.e., 2.58 m in azimuth and 2.29 m in slant-range. The spatial resolution

of the DEM in Fig. 5.15(a) is then reduced with an increasing power of

two up to 512, which corresponds to a spatial resolution of about 1300

m in azimuth and 1170 m in slant-range. A gross DEM with a similar

resolution is provided by the Global 30 Arc-Second Elevation (GTOPO30)

DEM [168], while DEMs with very high-resolution up to 1 m are provided

by Lidar systems.

The highest-resolution DEM ensures the best performance as shown

in Figs. 5.27 and 5.28, providing a SNR improvement of more than 60%

and 40% with SB-PPB and SB-SARBM3D respectively, over the origi-

nal �lters. A high-resolution DEM allows a signi�cant speckle rejection

without losing �ne details, thanks to the richly detailed a priori scattering

information. Lowering the resolution of the DEM causes a smoother a

priori scattering information, as well as a smoother despeckled image, and

a signi�cant detail loss is visible with the lowest resolutions (Fig. 5.26), as

witnessed by the VoR increasing with the DEM spatial spacing. With suf-

�ciently low resolution, the a priori scattering information provides worse

results than the original �lters. In the considered scenario, with a res-

olution loss greater than 16, corresponding to a resolution of about 40

m in azimuth and 35 m in slant-range, the SB-PPB provides an overall

worse result than PPB. With a further increasing of the resolution loss,

the a priori scattering information becomes more and more homogeneous;

consequently, SB-PPB tends to PPB. Concerning SB-SARBM3D, the a

priori scattering information allows for performance improvements over the

original SARBM3D up to a resolution loss of four, corresponding to a res-

olution of about 10 m in azimuth and 9 m in slant-range in the considered

scenario. With lower resolutions, the absence of non-topographic features

prevents the assignment of a high weight to the pilot image provided by
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the SARBM3D; consequently, an increasingly smoothed pilot image is es-

timated due to the high weight assigned to the a priori scattering term.

Therefore, a smoother despeckled image is obtained with lowering DEM

resolutions.

(a) (b)

Figure 5.26. (a) SB-PPB and (b) SB-SARBM3D with a priori scattering
information estimated from the local incidence angle map in Fig. 5.15(b)
�ltered with a 512×512 moving average �lter and assuming the right values
for the surface parameters.

5.6.4 Sensitivity Against the DEM Coregistration

In this latter Section, the sensitivity of the proposed algorithms against

coregistration accuracy between the DEM and the SAR image is assessed.

To provide a comprehensive understanding of the analysis, the sensitivity

of the algorithms is evaluated for di�erent DEM resolutions. For each DEM

resolution, coregistration errors between the DEM and the SAR image are

simulated via an increasing displacement of the local incidence angle map

in Fig. 5.15(b) w.r.t. the SAR image in Fig. 5.15(c). Although possible

coregistration errors can occur both in azimuth and range directions, in

this work, for the sake of simplicity, only errors along the range axis are

considered. Similar comments apply to (translation/rotation) errors in

other directions.
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Figure 5.27. Sensitivity of SB-PPB against the DEM resolution loss.
Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM. The
highest resolution ensures the best performance; with very low-resolution
DEMs, SB-PPB tends to PPB (dashed lines).

Figure 5.28. Sensitivity of SB-SARBM3D against the DEM resolution loss.
Clockwise from top-left: SNR; VoR; Coe�cient of Variation; MSSIM. The
highest resolution ensures the best performance; SARBM3D (dashed lines).
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The performance parameters shown in Figs. 5.29 and 5.30 indicate

that the lower the DEM resolution, the stronger the robustness of the pro-

posed scattering-based �lters against coregistration displacements. Conse-

quently, a particular attention to the coregistration step should be paid in

presence of a high-resolution DEM. In this case, a signi�cant performance

degradation can be experienced if the coregistration step is not accurate.

This is due to the signi�cant spatial high-frequency content of the a pri-

ori scattering information in the case of high-resolution DEMs. On the

contrary, the more homogeneous scattering information estimated from

low-resolution DEMs causes a higher robustness of the performance even

in presence of gross coregistration errors. However, with high-resolution

DEMs, better performance is provided at the cost of a precise coregis-

tration step. As shown in Fig. 5.30, an accurate coregistration step can

compensate a low-resolution of the DEM, since in presence of a su�ciently

high displacement, a high-resolution DEM may provide worse results than

a �ne-coregistered low-resolution one. Indeed, an homogeneous a priori

information is invariant to translation. However, for a �xed mismatch,

the higher the DEM resolution, the better the despeckling performance of

SB-PPB. This occurs for SB-SARBM3D up to a resolution loss of 16. In

conclusion, the highest-resolution DEM should be used, unless robustness

of the �lter is of interest. In the latter case, a signi�cant smoothing (reso-

lution loss not smaller than 16) of the DEM can be useful to provide less

sensitivity against coregistration displacements.
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Figure 5.29. Sensitivity of SB-PPB against coregistration errors (in pix-
els) between the local incidence angle map and the SAR image for di�er-
ent DEM resolutions. Clockwise from top-left: SNR; VoR; Coe�cient of
Variation; MSSIM. Low-resolution DEMs provide smooth a priori scattering
information. Consequently, the lower the DEM resolution, the stronger the
sensitivity of SB-PPB against coregistration displacements.
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Figure 5.30. Sensitivity of SB-SARBM3D against coregistration errors
(in pixels) between the local incidence angle map and the SAR image for
di�erent DEM resolutions. Clockwise from top-left: SNR; VoR; Coe�cient of
Variation; MSSIM. Low-resolution DEMs provide smooth a priori scattering
information. Consequently, the lower the DEM resolution, the stronger the
sensitivity of SB-SARBM3D against coregistration displacements.



Chapter 6
Sea Target Detection from

Spaceborne GNSS-R Imagery

Sea target monitoring is of key importance in the �eld of global moni-

toring of environment, maritime security and surveillance. Accurate mon-

itoring, continuous mapping and large-scale analysis of sea surface, sea

ice sheets, and ship tra�c are essential for activities as diverse as engi-

neering, safety, travel, agriculture, recreation, and commerce. Real-time

maritime surveillance and ship monitoring are relevant in a wide range of

applications, such as clandestine activities contrast, naval warfare, traf-

�c surveillance, oil discharge and sea pollution monitoring [31], [169]. In

particular, in recent years, because of the decrease in �shery resources in

the world, ship detection has become much more important for e�ective

and e�cient ship monitoring to prohibit illegal �shing activities in time.

During the last years, sea surface monitoring has experienced a growing

interest [31], [169].

Ice sheet mapping is fundamental in analyzing climate dynamics and

evaluating human-induced climate changes. Currently, most of such in-

143
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formation is gathered with very high accuracy by means of ground-based

stations and networks. Despite the high accuracy provided and the well-

assessed technology, in-situ measurements only provide local information.

The spatial coverage provided by ground-based networks is generally lim-

ited to low elevation regions of the Northern Hemisphere midlatitudes and

to snow course in mountainous regions [30]. In order to address accurate

ice sheet mapping on a global scale, space-borne measurements from satel-

lite constellations come into play. Detailed daily mappings of polar ice

coverage derived from remote sensors are now publicly available on the

web site of the US National Snow and Ice Data Center (NSIDC) [170].

Concerning international trades, more than 80% of the global trade and

almost 90% of freight trade external to the European Union are seaborne

[171], [172]. The civilian seaborne tra�c transports more than 400 mil-

lion passengers in European ports each year [171]. The large density of

worldwide maritime tra�c in 2015 is shown in Fig. 6.1. AIS is commonly

used for coastal-tra�c monitoring and it provides a comphrehensive infor-

mation on the ship tra�c, such as position, velocity, route and a unique

reference, such as the International Maritime Organization (IMO) num-

ber. However, coastal AIS are limited in their coverage, thus covering up

to 40 km o� the coast [31]. To overcome this limitation, very recently, the

AIS technology has been mounted onboard of spaceborne platforms, such

as the SatAIS launched in 2011 by the German Aerospace Centre or the

planned UK NovaSAR-S to be launched in the next years [171]. However,

the main drawback of the AIS protocol in the �eld of maritime security

and surveillance is the need for collaborating ships and ships equipped with

correctly operating AIS facilities onboard. Remote sensing imagery gives

the possibility to overcome these limits, thus allowing for the detection and

tracking of non-cooperative ships and small ships without an AIS system

on board [173].

During the last three decades, remote sensing has acquired an increas-



145

ing appeal in the international scienti�c community owing to its wide po-

tentialities. An increasing number of applications has been conceived and

developed after the launch of new high-resolution sensors. Among them,

optical and SAR systems have been intensively exploited in the ship detec-

tion �eld. An extensive literature on sea target detection and classi�cation

from optical and SAR data exists [31], [33], [34], [169]; a comprehensive

state-of-the-art review report about ship detection from SAR data can

be found in [32]. Although a comprehensive information, such as unique

code, position, course, and speed can be acquired about the target state by

means of AIS technology, the International Maritime Organization's Inter-

national Convention for the Safety of Life at Sea only requires AIS to be �t-

ted aboard international voyaging ships with gross tonnage of 300 or more,

and all passenger ships regardless of size [32]. Therefore, detection of small

ships and ships in open sea is currently a compelling application of remote

sensing systems. Owing to their all-day, and all-weather imaging capabili-

ties, SAR systems represent the most exploited remote sensing technology

for ship detection, arousing even more interest after the launch of the new-

generation high-resolution sensors, such as TerraSAR-X, RADARSAT-2,

and the Sentinel-1 and COSMO-SkyMed constellations. Very accurate

detection rate and positioning are currently addressed by most existing

state-of-the-art ship detection techniques. However, the time resolution,

i.e., revisit time, of SAR and optical sensors represents the main limitation

for ship/ice sheet detection applications. With a limited number of satel-

lites, the revisit cycle is quite long and cannot meet the requirements for

real-time sea target monitoring [33], [35]. A time resolution on the order

of hours is required for ship detection [35]. The World Meteorological Or-

ganization indicates a revisit time on the order of hours for sea-ice cover

concerning the Global Numerical Weather Prediction, climate monitoring

and ocean applications [36].

A revisit time on the order of days is provided by current optical and



146 Chapter 6. Sea Target Detection from Spaceborne GNSS-R Imagery

SAR sensors but the COSMO-SkyMed constellation that ensures a revisit

time up to 12 hours. However, the End of Life of COSMO-SkyMed is

expected to be at the end of 2017 [159]. On the contrary, a temporal res-

olution on the order of hours is required for ship detection [35]. Another

limitation for continuous sea mapping is related to the high spatial res-

olution typical of the new generation of satellites, which can prevent the

exploitation of SAR and optical data to perform a real-time mapping due

to the large amount of data to be processed. GNSS-R represents a rela-

tively new remote sensing technology, �rstly discussed in the early 1990s

for mesoscale altimetry applications [119]. It is based on the acquisition

and processing of GNSS signals of opportunity scattered from the Earth's

surface. So far, one of the main applications of GNSS-R is the sea state

estimation and monitoring, and several approaches and techniques to esti-

mate the local wind speed from GNSS-R observables have been developed

in the very last years [37], [123], [174]. Other very recent applications

of the GNSS-R technology concern the surface scattering coe�cient re-

trieval [175], [176], ocean topography [177], oil slick detection [38], [178],

and tsunami detection [179], [180]. Due to the absence of a transmitter

module, GNSS-R payloads can be mounted on nano- or small-satellites - as

the recently launched 3Cat-2 satellite by UPC [181] - with the potentiality

to be grouped in wide constellations. Consequently, as shown later in this

Chapter, spaceborne GNSS-R systems gives the chance to dramatically

reduce the revisit time with respect to other remote sensing technologies,

such as SAR and optical satellites, thus ful�lling the time resolution re-

quirements for real-time maritime tra�c surveillance and ship detection.

A partial list of advantages and drawbacks of the aforementioned remote

sensing technologies for sea target detection purposes is presented in Table

6.1.

GNSS signals re�ected from ice were correctly identi�ed and measured

using the UK Disaster Monitoring Constellation (DMC) experiment on
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February 4, 2005 over the Kuskowkwim Bay Alaska [182], [183]. Earth-

re�ected GPS L-band signals exploited by GNSS-R systems deeply pen-

etrate in ice, allowing for analysis of snowpack internal structures and

characteristics, such as thickness and accumulation rates [184]. In con-

trast with the typical Ku- and C-bands used in ice sheets analysis from

SAR data, the low-frequency GNSS signals can penetrate up to 100 m in

the ice, allowing for ice investigation on the millennium scale [184].

As already mentioned in Chapter 1, very few works dealing with the

ship detection from GNSS-R observables can be found in literature [39],

[40], [41], [42], [43]. In [39] the possibility to detect ships from GNSS re-

�ected signals is analyzed by means of an experimental airborne mission.

GNSS raw data instead of DDM is used in this work. In [40] the intrigu-

ing chance to detect sea targets from DDMs acquired in a backscattering

con�guration is sketched. However, some limiting hypothesis are required

due to the particular geometric con�guration between target, transmitter

and receiver. In [41] the feasibility of sea target detection from space-

borne GNSS-R DDMs is demonstrated for di�erent target sizes and sea

state conditions. A spatial �lter based on steerable antenna beams is pro-

posed to solve for the mapping ambiguity. The work in [42] introduces

a new method for ship detection from GPS-R correlation power spectra.

However, few details are provided about the ship detection algorithm and

the algorithm validation. Finally, the feasibility of detection of station-

ary ground targets from a GPS-Forward Scatter Radar system is analyzed

and validated by means of an experimental mission and a Constant False

Alarm Rate (CFAR) algorithm. Several ideas and hints, such as backscat-

tering con�guration, sea clutter compensation and CFAR approaches, have

been proposed so far in the literature to perform sea target detection from

GNSS-R observables; however, an organic and systematic proposal and

validation of a sea target detection algorithm from DDMs represents the

current main gap of the state of the art.
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The revisit time achievable with spaceborne GNSS-R systems is anal-

ysed and presented by means of software simulations. The Satellite Tool

Kit (STK®) software is used for simulating the orbit information in three

di�erent scenarios. The revisit time is then evaluated as a function of the

number of satellites and channels and guideline graphs are provided and

discussed. Furthermore, a sea target detection algorithm from spaceborne

GNSS-R observables is presented, described and validated with actual UK

TDS-1 data. The performance of the technique is assessed through the

Receiver Operating Characteristic (ROC) curves.

To summarize, the main contributions presented in this Chapter are as

follows:

� Numerical analysis of the revisit time provided by GNSS-R constel-

lations by means of realistic simulated missions (Section 6.1).

� Derivation and implementation of a sea target detection algorithm

from spaceborne GNSS-R DDMs (Section 6.2).

� Validation of the algorithm using actual GNSS-R data (Section 6.3).

Figure 6.1. 2015 worldwide maritime tra�c density map. The density
is evaluated as the number of ships per grid cell per day. Taken from
www.marinetra�c.com.

www.marinetraffic.com
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Table 6.1. Advantages and drawbacks of SAR, Optical and GNSS-R systems for
sea target detection

Pros Cons

SAR Independence on weather and light

conditions.

Active systems (huge cost and size)

Potential exploitation of multi-

polarization, multi-frequency data.

Sensitivity to speckle and sea state,

with increasing frequency [185].

Very high spatial resolution (up to

1 m).

Di�cult visual interpretation.

Relatively long (for ship detection

purposes) coherent integration time

(up to 1 s).

High revisit timea.

Optical Very high spatial resolution (up to

0.5 m).

Sensitivity to sea clutter.

Relatively cheap. Unavailable during night and

cloudy days.

Suited to hyperspectral imaging. High revisit timea.

Easy to interpret (no expert user

needed).

The large amount of data prevent

the use in real time.

GNSS-R Worldwide coverage on nearly real

time.

Low spatial resolution (on the order

of km).

Compact, low-power, light-weight

and cheap.

Not yet extensively studied and as-

sessed.

Independence on weather and light

conditions.

Sensitivity to speckle.

Ability of counter the attack of anti-

radiation missiles.

Exploitation of pre-existing trans-

mitters.

Very low revisit time.

a TerraSAR-X: 11 days [186]. COSMO-SkyMed: up to 12 hours (4.5 hours on average);

End of Life expected at the end of 2017 [159]. Sentinel-1: 1-3 days [187]. SPOT: 1-3

days (in cloud-free condition) [188]. LANDSAT: 16 days [189]. Sentinel-2: 5 days

[190]. Required update time for ship detection on the order of hours [35].
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6.1 Revisit Time

The major limit for the practical application of both SAR and opti-

cal imagery in the �eld of maritime surveillance comes from the relatively

high revisit time as shown in Table 6.1. Currently, the COSMO-SkyMed

constellation can provide a revisit time up to 12 hours on average [159],

which is still not enough to guarantee a continuous monitoring of sea sur-

faces. Real-time operations in sea tra�c control requires a revisit time on

the order of few hours [35]. Owing to low weight, low size and low power

consumption, GNSS-R can be launched in constellation formations at a

relative low cost. This allows GNSS-R o�ering a revisit time su�ciently

low for real-time ship monitoring purposes.

In contrast to other remote sensing approaches and systems, GNSS-R

o�ers a signi�cant �exibility in terms of costs, weight and performance,

as well as a much faster mission design phase. Revisit time requirements

for nearly real-time maritime surveillance can be much easily ful�lled with

GNSS-R small satellites and several constellations can be put into orbit at

contained costs. The very recent NASA Cyclone GNSS (CYGNSS) mission

devoted to hurricane forecasting consists of eight small satellites and will

provide frequent and accurate measurements of ocean surface winds with a

revisit time of 2.8 hours (median) and 7.2 hours (mean) over the full ±35◦

using only four parallel measurements [191].

Many variables in�uence the revisit time of a GNSS-R system. Some of

them, such as the glistening zone size and the specular re�ection point po-

sition, cannot be determined deterministically without a complete knowl-

edge of the actual sea state and of the transmitter/receiver geometry. This

will invoke for a statistical modeling of the revisit time, since some in�u-

encing parameters need to be statistically described. Alternatively, time

resolution of such systems can be analyzed by means of mission simulation

studies. Under appropriate hypotheses primarily regarding the duration
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of the time period simulated, some statistical descriptors can be inferred

from the numeric simulation as well.

In this Ph.D. Thesis, we follow the second approach. The revisit time

provided by GNSS-R systems is evaluated by means of the commercial

software STK. In this simulation study, the dependency of the revisit time

of GNSS-R constellations on the number of satellites, and the parallel

channels is considered. In particular, three di�erent scenarios have been

analyzed. In each scenario, (up to) four eight-satellite constellations of

GNSS-R instruments on a 98°-inclined equatorial circular orbit at 500 km

altitude have been considered; each GNSS-R satellite is equipped with

(up to) 16 parallel tracking channels acquiring signals from the GPS only

(Scenario 1), GPS and Galileo (Scenario 2), GPS, Galileo, GLONASS, and

BeiDou-2 (Scenario 3). Such constellations provide a global coverage to al-

low for sea target detection at high latitudes and can be implemented based

on small satellite platforms, such as 3Cat-2 [181], [192]. Table 6.2 lists the

main orbital parameters for the four considered GNSS constellations, while

Table 6.3 lists the main parameters of the three considered scenarios. The

revisit time has been evaluated by simulating four-days missions with a

time step of 120 seconds, successively interpolated to 60 seconds in Mat-

lab. Earth's surface has been divided in a regular grid in Lat-Lon with

a one-degree spacing in both latitude and longitude, corresponding to a

120 × 120 km2 cell at the Equator and a 120 × 40 km2 cell at 70 N. The

specular point position is evaluated from the transmitter and receiver po-

sitions by means of the Newton-Raphson method, where the WGS-84 is

used to model Earth's surface [181], [192]. The revisit time achieved in the

three considered scenarios is shown in Fig. 6.2-Fig. 6.4 respectively, where

(a) the average, (b) the median, and (c) the standard deviation of the

revisit time computed in the covered areas are shown as a function of the

following variables: the number of tracking channels (1 to 16) mounted on

board GNSS-R instruments; the number of GNSS-R satellites (1, 8, 16, 24,
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32) considered. Using few GNSS-R satellites leads to time resolution not

far from that provided by the most recent SAR and optical missions (see

Table 6.1), especially in the case of only few parallel tracking channels (see

Fig. 6.2). In order to lower the revisit time, two solutions are achievable,

namely increasing the GNSS-R constellation size, and/or increasing the

number of receiving channels per receiver. A minimum mean revisit time

of 5 hours and 36 minutes can be achieved in scenario 1 when using 32

GNSS-R satellites equipped with 16 receiving channels. In both solutions,

a reduction of the revisit time is achieved by a higher number of glisten-

ing zones simultaneously tracked. The fundamental di�erence between the

two solutions lies in the revisit time improvement allowed. Indeed, re-

garding the �rst solution, any desired time resolution can be achieved, at

least in principle, by considering a su�ciently large GNSS-R constellation

size. However, the improvement of the revisit time allowed by additional

GNSS-R satellites diminishes as the constellation size increases, as shown

in Fig. 6.2 in which a relative improvement of about 42% and 23% is ex-

perienced in the average revisit time when passing from 8 to 16 GNSS-R

satellites and from 24 to 32 GNSS-R satellites, respectively. On the other

side, the limited number of GNSS stations accessible by the GNSS-R satel-

lite at the same time leads to a limited improvement of the revisit time

by increasing the number of parallel measurements. In other words, a

further increase of a su�ciently high number of parallel tracking channels

would not imply the acquisition of new Earth-re�ected signals. As a result,

the revisit time exhibits a plateau as a function of the number of parallel

measurements for any �xed GNSS-R constellation size and scenario. For

instance, in scenario 1, in which only the GPS stations can be tracked, the

revisit time does not exhibit any further signi�cant improvement when us-

ing more than six receiving channels (see Fig. 6.2). If further reductions of

the revisit time are required/desirable, the capability to track more GNSS

transmitters instead of the introduction of further parallel channels should
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Table 6.2. Orbital parameters for GPS, Galileo, GLONASS, and BeiDou-2
GNSSs

GPS Galileo GLONASS BeiDou-2

Number of orbital planes 6 3 3 3
Number of Satellites 24 27 24 35 (5 GEO)
Satellite Altitude [km] 20,180 23,222 19,100 21,150
Orbit inclination [degree] 55° 56° 64.8° 55.5°

be taken into account in the design phase of the GNSS-R. Indeed, the

higher the e�ciency in the exploitation of the parallel channels. In sce-

nario 2, the possibility to track also Galileo satellites leads to a minimum

mean revisit time of 3 hours and 13 minutes with an improvement of 42%

w.r.t. scenario 1; up to 8 GNSS transmitters are accessed on average at

the same time. The higher number of GNSS transmitters accessible si-

multaneously allows for a more homogeneity of the revisit time as well,

as shown in Fig. 6.3(c). Even lower revisit time can be achieved on av-

erage by tracking GPS, Galileo, GLONASS, and BeiDou-2 as in scenario

3, in which a minimum mean revisit time of 2 hours and 13 minutes is

achieved with an improvement of about 60% with respect scenario 1. In

this scenario, no further lowering of the revisit time is experienced when

using more than 12 receiving channels. However, the bene�ts of tracking

multiple GNSSs are appreciable in the case of a su�ciently high number

of tracking channels, as shown in Fig. 6.5 in which the average revisit time

in scenario 1 (solid lines) and 3 (dash-dotted lines) is shown as a function

of the receiving channels for one (black), sixteen (blue), and thirty-two

(red) satellites. The graph also reveals that revisit time can be lowered

even with a smaller constellation size by tracking more GNSSs (see the red

solid line and the blue dash-dotted one). Finally, it is interesting to note

that all the mentioned solutions can also address a higher homogeneity of

the revisit time in the coverage area as con�rmed by the statistics of the

revisit time shown in Fig. 6.2-Fig. 6.4.
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(a)

(b)

(c)

Figure 6.2. (a) Mean, (b) Median, and (c) standard deviation of the revisit
time in hours vs. number of receiving channels considering one (black line),
eight (magenta line), sixteen (blue line), twenty-four (green line), and thirty-
two (red line) satellites. Only GPS stations are tracked.
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(a)

(b)

(c)

Figure 6.3. (a) Mean, (b) Median, and (c) standard deviation of the revisit
time in hours vs. number of receiving channels considering one (black line),
eight (magenta line), sixteen (blue line), twenty-four (green line), and thirty-
two (red line) satellites. GPS and Galileo stations are tracked.
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(a)

(b)

(c)

Figure 6.4. (a) Mean, (b) Median, and (c) standard deviation of the revisit
time in hours vs. number of receiving channels considering one (black line),
eight (magenta line), sixteen (blue line), twenty-four (green line), and thirty-
two (red line) satellites. GPS, Galileo, GLONASS, and BeiDou-2 stations
are tracked.
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Table 6.3. Orbital parameters for the considered scenarios

Scenario 1 Scenario 2 Scenario 3

Altitude [km] 500 500 500
Inclination [degree] 98° 98° 98°
Orbit type Circular Circular Circular
Number of satellites 32 32 32
Number of parallel channels 16 16 16
GNSS systems tracked GPS GPS, Galileo GPS, Galileo,

GLONASS, BeiDou-2

Figure 6.5. Mean revisit time as a function of the number of receiving
channels in scenario 1 (solid lines) and scenario 3 (dash-dotted lines) using
one (black lines), sixteen (blue lines), and thirty-two (red lines) satellites.



158 Chapter 6. Sea Target Detection from Spaceborne GNSS-R Imagery

6.2 Sea Target Detection

In this Section, a constant false alarm rate (CFAR) sea target detec-

tion system from spaceborne GNSS-R imagery is derived and described.

Performance are provided via the ROC of the algorithm. Generally, ship

detection algorithms from remote sensing data share a common four-step

scheme: land masking, pre-processing, pre-screening, and selection [32].

Land masking is aimed at canceling out the land contributions in the im-

age, in order to focus the algorithm to sea surface only. This step is very

important since ship detectors can produce numerous false alarms in land

areas [31], [32]. However, this is a standard preliminary stage typically ac-

complished by applying a land mask derived from shoreline database [31],

[193] and we do not focus on this step. The pre-processing step is aimed

at making the detection stages easier. Typically, this stage is carried out

by emphasizing the target-to-background ratio by means of targets and/or

scene features, e.g., speckle �ltering in SAR-based detectors [169], [194].

The pre-processing step can also include calibration and geolocation of the

data [31], [32]. As a result, an enhanced image is then derived from the

original one. Targets candidates are selected in the pre-screening stage by

hard thresholding the pre-processed image. The threshold can be �xed

over all the image or adaptively evaluated (CFAR approach). In the latter

case, sea clutter characteristics are accounted for in order to adaptively

estimate the local threshold. Threshold has to be designed by taking into

account the tradeo� false alarms-detected targets, i.e., the ROC of the

detector. If targets are associated to high (low) value of the enhanced

image, a high (low) threshold produces low false alarms, but also a low

detection rate; vice versa, a low (high) threshold provides a high detection

rate and numerous false alarms as well. The last selection stage aims at

reducing the false alarms (or ambiguities as in the SAR case) produced

in the pre-screening step, thus improving the overall performance of the
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detector. Target features (size, shape) are commonly accounted for in the

�nal target candidates' selection. A detailed description of the proposed

sea target detector follows.

6.2.1 Proposed Sea Target Detection Algorithm

A detailed description of the proposed sea target detection follows. It

consists of four steps: pre-processing, pre-screening, selection and geoloca-

tion. An overall �owchart of the detector is shown in Fig. 6.6.

Pre-processing

Pre-screening

Selection

Geolocation

Figure 6.6. Overall �owchart of the proposed sea target detection algo-
rithm.

Pre-processing

The backscattering con�guration typical of SAR sensors makes sea sur-

faces backscattered energy weaker than that scattered by complex-shaped

man-made objects, like ships [195]. Dihedral structures, typical of ships,
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cause a signi�cant amount of energy backscattered to the sensor, while

quite �at sea surfaces are characterized by a weak backscattering [171].

This causes ships to be represented as brilliant points in a dark back-

ground in the SAR imagery. Similar comments deserve the ship detection

from optical data, in which the greater energy re�ected by the ship w.r.t.

water is related to its materials. Quite �at surfaces and targets, e.g., ships

and ice sheets, are expected to appear as bright features or points in the

DDM as they cause most of energy to be scattered in the specular di-

rection. Therefore, the signal coming from quite �at surfaces is expected

to be strong enough for target detection purposes and consistent without

the power spreading in the delay-Doppler domain. Very recently, the ap-

pearance of coherent scattering phenomena in DDMs of sea ice sheets has

been demonstrated [183]. The coherent scattering component represents

the dominant contribution and makes the sea ice sheet appear as a bright

feature in the DDM.

The bistatic con�guration typical of GNSS-R systems makes the sea

clutter a non-negligible contribution in the DDMs, so that a clutter com-

pensation step is a desirable step to enhance the presence of potential tar-

gets over the sea. In this work, the pre-processing step consists of a clutter

estimation and cancelation stage by means of DDM simulation. The main

aim of this step is to cancel out the sea clutter contribution within the

glistening zone in order to bring the target out of the background. In this

Ph.D. Thesis, the P2EPS (PAU/PARIS End to end Performance Simula-

tor) tool has been used for simulation purposes [196], while the simulated

DDM has been obtained by Least Square Fitting (LSF) with the measured

one. The LSF step is performed assuming an unknown elevation angle, i.e.,

angle γ in Fig. 3 in [197]. Although there are others unknown parameters,

such as αR and αT as de�ned in Fig. 3 in [197], we disregarded their role

and performed the LSF w.r.t. γ only. This choice leads also to a simpli�ed

LSF step since only one parameter has to be tuned. To ensure an un-
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biased clutter compensation, the measured DDM is compensated for the

thermal noise power as well. The noise power is estimated as the mean

value of the pixels in the forbidden zone, i.e., the area of the Delay-Doppler

domain not corresponding to any physical area. Indeed, in this area, no

signal coming from neither sea or targets is measured, and the thermal

noise is the only contribution. Noise power-compensated DDM and the

simulated one are then normalized to their peak; the pre-processed image

is then de�ned as the pixel-wise di�erence between the normalized actual

and simulated DDMs. The output of this stage is a di�erence map of the

glistening zone in which the horseshoe pattern, i.e., sea clutter, typical of

spaceborne DDM over the sea, has been canceled out. A �owchart of the

pre-processing step is shown in Fig. 6.7.

Measured
DDM

Wind speed
retrieval

DDM simulation

Simulated
DDM

Di�erence map
evaluation

Di�erence
map

Figure 6.7. Flowchart of the pre-processing step.

Pre-screening

In the pre-screening stage, bright features in the di�erence map are

associated to possible targets; therefore, a hard-thresholding is applied to

the di�erence map to provide the target candidates. In order to account
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for clutter inhomogeneity and thermal noise, a CFAR approach is used

at this stage. The pixel under test is then compared with a threshold

adaptively evaluated by means of a sliding-moving window as explained

in more details in Section 6.2.2. A �owchart of the pre-screening step is

shown in Fig. 6.8.

Di�erence
map

Window selection
Noise power
estimation

Local threshold
evaluation

Di�erence map
thresholding

Target
candidates

map

Figure 6.8. Flowchart of the pre-screening step.

Selection

In the selection stage, isolated targets, i.e., single-pixel targets, are

supposed to be likely false alarms caused by noise. Hence, isolated bright

pixels are likely to be spike noise randomly exceeding the local threshold.

In support of this assumption, the power spreading e�ect caused by the

PSF function comes into play. In presence of large features on the sea

surface (large ships, sea ice sheets), the PSF spreads the received power

on neighboring pixels, thus increasing their correlation. In presence of

noise only, it is more unlikely to observe neighboring pixels exceeding the

threshold and, then, single-pixel targets appear. Isolated, i.e., single-pixel,

targets are removed from the pre-screened candidates map by means of
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a morphological operation. False alarms caused by small-to-medium isles,

airplanes, speckle noise, are still possible. A �owchart of the selection stage

is shown in Fig. 6.9.

Target
candidates

map

Single-pixel
targets removal

Selected
targets map

Figure 6.9. Flowchart of the selection step.

Geo-location

In the geolocation stage, the geographic location of the detected targets

in the delay-Doppler domain are identi�ed. In order to �nd the geographic

coordinates of the detected targets, the observation geometry should be re-

constructed in the geographic reference frame, i.e., the positions and veloc-

ities of transmitter, receiver, and the specular re�ection points are needed.

Those data are available from the auxiliary of spaceborne GNSS-R mission,

e.g., TDS-1 case from MERRByS website (http://www.merrbys.co.uk/).

Once the observation geometry is reconstructed, the positions in the delay-

Doppler domain can be linked to the position in the geographic coordinate

system. One consideration in the geolocation process is ambiguity of bi-

static re�ection geometry. In fact, a single position in delay-Doppler do-

main corresponds to two di�erent points in the spatial domain (see Fig. 1

in [198]). It means that the detected targets from DDM can be assigned

to two di�erent geographic locations. To solve the ambiguity, the multi-

beam method has been proposed [38], [178], [199]. However, the multi-

beam (or beam steering) method is not suitable for small (nano-, cube-)

satellite platforms because of the system complexity and the power, size,

and weight constraints. In the �xed single beam case, the multiple over-

http://www.merrbys.co.uk/
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passes can be used. A false location can be �ltered out from the DDMs

acquired from multiple overpasses on the target area. This multi-shot and

multi-pass process also increases the accuracy of geolocation. For the other

method, the auxiliary images from the other type of sensors can be used

to overcome the ambiguity problem. A �owchart of the geolocation stage

is shown in Fig. 6.10.

Selected
targets map

DD-SRF-Lat/Lon
transformation

Geolocated
targets map

Figure 6.10. Flowchart of the geolocation step.

6.2.2 Performance Assessment

The performance of the proposed algorithm is theoretically assessed by

evaluating the ROCs of the detector. These curves allow a fair performance

assessment since they are not based on speci�c thresholds values. To this

aim, the following hypothesis testing is considered for any pixel inside the

glistening zone: H1 : y = s+ c+ n,

H0 : y = c+ n,
(6.1)

where y is the pixel intensity of the incoherently averaged DDM, s is

the target signal intensity, c stands for the sea clutter, and n represents the

thermal noise. Supposing the thermal noise to be modeled as a normally-

distributed random variable in the coherently-averaged DDM, the noise

term n in Eq. 6.1 follows a chi-squared distribution in the incoherently-

averaged DDM, i.e., n ∼ χ2(k), k being the number of incoherently-

averaged DDMs, i.e., the ratio between the incoherent and coherent in-

tegration times, respectively; typical GNSS-R systems, such as TDS-1,
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CYGNSS, performs a 1 ms coherent acquisition and 1 s incoherent averag-

ing [129], [200] so that in practical cases, k � 1 can be assumed. Recalling

the central limit theorem, a normally distribution can be assigned to the

noise term in Eq. 6.1, i.e., n ∼ N(µn, σn). The noise power compensation

reads as

y′ = y − µn, (6.2)

and the hypothesis testing becomesH1 : y′ = s+ c+ n, n ∼ N(0, σn),

H0 : y′ = c+ n,
(6.3)

the thermal noise being a zero-mean normally-distributed random vari-

able at this stage. The pre-processing step is aimed at removing the sea

clutter contribution in the hypothesis testing in Eq. 6.3, i.e., the new ob-

servable is the di�erence map d = y′ − ĉ, where ĉ is the estimated sea

clutter. To simplify the mathematical derivation of the ROCs, we assume

a perfect sea clutter suppression, i.e., ĉ = c; consequently, the hypothesis

testing reads as H1 : d = s+ n, n ∼ N(0, σn),

H0 : d = n.
(6.4)

In the pre-screening stage, a CFAR detector is applied, i.e., an adaptive

threshold T is estimated in the neighboring of the pixel under test, once

assigned a probability of false alarms PFA. The probability PFA can be

written as follows:

PFA = Pr (d > T |H0) = Q

(
T

σn

)
, (6.5)
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where Q(·) denotes the Q-function de�ned as:

Q(x) =
1√
2π

∫ +∞

x
exp

(
− u2

2

)
du. (6.6)

Consequently, the local threshold reads as:

T = σnQ
−1 (PFA) (6.7)

where Q−1 (·) stands for the inverse Q-function de�ned in 6.6. In order

to compute the local threshold, the noise standard deviation needs to be

estimated. In order to account for di�erent error source in the di�erence

map, such as residual sea clutter, speckle noise, imperfect coregistration,

etc., the σn parameter is adaptively evaluated through the image, i.e., a

CFAR approach is applied. In particular, σn is estimated within a K ×K
window centered in the pixel under test. Once σn has been estimated,

the local threshold is then evaluated from Eq. 6.7. However, the σn

estimation deserves a speci�c comment. To take into account potential

extended targets and the spreading e�ects of the PSF in the delay-Doppler

domain, a L × L guard window (L < K) centered in the pixel under test

is considered and not used for the σn estimation. Therefore, the guard

window size in�uences the size of detectable targets, and its value has to

be chosen as the maximum between one and the ratio between the target

maximum size and the mean spatial resolution of the GNSS-R system. To

avoid missing targets due to the PSF energy spreading e�ect, this value

has to be incremented in both delay and Doppler directions of a number

of pixels equal to the ratio between the length of the PSF and the delay-

Doppler resolutions of the sensor, where the PSF lengths in delay and

Doppler are τc (1 + τc/Ti) and 1/Ti respectively, τc and Ti being the chip

length and integration time respectively. The probability of detection PD

is by de�nition:



6.2 Sea Target Detection 167

Figure 6.11. ROC of the detector. For any �xed PFA, the detection rate
increases with the SNR. The tradeo� between probability of detection and
probability of false alarms is evident: an improvement of the detection rate
can be achieved at a cost of an increased probability of false alarms.

PD = Pr (d > T |H1) , (6.8)

and can be related to the probability of false alarms and the SNR to provide

the ROC curve of the detector. For the proposed detector, the ROC reads

as:

PD = Q
(
Q−1 (PFA)− SNR

)
, (6.9)

where SNR = s/σn is the signal-to-noise ratio. The ROC curve of the

detector is shown in Fig. 6.11 for di�erent values of the SNR. The tradeo�

between probability of detection and probability of false alarms is evident:

an improvement of the detection rate can be achieved at a cost of an

increased probability of false alarms. In Fig. 6.12 the threshold is shown

as a function of the PFA for di�erent values of σn as stated in Eq. 6.7.
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Figure 6.12. Threshold vs. PFA. For PFA close to zero (PFA < 0.5), the
threshold increases with increasing standard deviation of noise.

6.3 Experimental Results

In this Section, the proposed sea target detection algorithm is tested

with actual UK TDS-1 DDMs and some preliminary results are shown. Or-

bital and sensor parameters are listed in Table 6.4. In the pre-processing

step, the LSF step is performed on unknown scene parameters, namely

the incidence angle in the UK TDS-1 data. Remaining orbital and sensor

parameters, as well as wind speed, are taken from ancillary data. The

di�culties to �nd a proper ground-truth regarding historical ship position

and routes free of charge, together with the di�culty to visually assess

the presence of ship targets within GNSS-R observables, have been par-

tially compensated by applying and testing the detector on actual DDM

data acquired close to o�shore oil and gas platforms. Such platforms are

static man-made objects, whose location is available for free in many cases.

Therefore, they represent suitable sea targets to test the proposed detector

in open seas scenarios.

The oil platform considered here is the Hibernia Platform (Fig. 6.13),
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located on the Hibernia oil�eld in the North Atlantic Ocean, 315 km o� St.

John's, Newfoundland at 46.75°N, 48.78°W [201]. For the local threshold

evaluation, a probability of false alarms equal to 0.01 has been considered.

The �rst TDS-1 dataset used to test the algorithm, shown in Fig. 6.14(a)

was acquired on April 1, 2015, at 00:19:37 UTC; the nominal specular point

is at 46.83°N, 47.53°W. The Hibernia platform is 95 km o� the specular

point and is visible as an extended bright feature in the measured DDM

due to the PSF. The pre-processing step (Fig. 6.14(c)) suppresses the sea

clutter estimated in the simulated DDM in Fig. 6.14(b)); the Hibernia

oil rig emerges from sea clutter and appears like a quite bright extended

feature in Fig. 6.14(c) due to the PSF. In the pre-screening stage the

oil rig is correctly detected; other two sea targets are detected as well: a

single-pixel target and an extended target. The isolated target is rejected

as noise in the successive selection stage (Fig. 6.14(e)), while the extended

target is relevant to a region with a sea-ice concentration greater than

zero, as reported in the NSIDC sea-ice concentration map relevant to the

same day (Fig. 6.16) [202]. Detection of the same region is shown in Fig.

6.15. The actual DDM shown in Fig. 6.15(a) was acquired on April 1,

2015 at 00:19:49 UTC, i.e., 13 seconds after the previous actual case. The

nominal specular is at 47.47°N, 47.84°W, and the sea ice sheet is visible

as an extended target at about 1.34 C/A chips and 500 Hz in the delay-

Doppler domain in both the measured DDM and the di�erence map in

Fig. 6.15(c). The pre-screening stage correctly detects the target (Fig.

6.15(d)); an isolated target is removed in the selection stage since it is

likely to be due to noise as previously explained (Fig. 6.15(f)).

In the second study case, the proposed sea target detector is applied

to two consecutive DDMs acquired in the Gulf of Mexico on February 28,

2015 at 16:18:33 UTC [Fig. 6.17(a)] and 16:18:32 UTC [Fig. 6.18(a)] re-

spectively. The nominal specular points, at 27.40°N, 89.47°W and 27.45°N,

89.45°W respectively, are about 180 km o� the New Orleans, LA, coast, so
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Table 6.4. UK TDS-I Parameters

Parameter Value

Receiver altitude 640 km
Delay resolution 244.39 ns
Doppler resolution 500 Hz
Sampling frequency 16.37 MHz
Coherent integration time 1 ms
Incoherent integration time 1 s

that no signi�cant contributions from land areas are expected in the consid-

ered dataset. The estimated sea clutter contribution in the delay-Doppler

domain is shown in Fig. 6.17(b) and Fig. 6.18(b) and it is subtracted from

the measured DDMs in the di�erence maps shown in Fig. 6.17(c) and Fig.

6.18(c). The pre-screening stage detects four (Fig. 6.17(d)) and three (Fig.

6.18(d)) target candidates respectively; two of which are rejected in the

selection stage as shown in the selected target maps in Fig. 6.17(e) and

Fig. 6.18(e). Gulf of Mexico is a major source of oil and gas in the United

States [203]; indeed, the area is occupied by more than 200 of oil and gas

platforms [204] and a huge maritime tra�c takes place every day in the

area [172]. Consequently, the detected targets are presumably actual sea

targets (ships, oil platforms). The detection of a target on both DDMs in

quite the same position reinforces this chance.
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Figure 6.13. The Hibernia oil rig is situated on the Hibernia oil�eld in
the North Atlantic Ocean, 315 km o� St. John's, Newfoundland at 46.75°N,
48.78°W.
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(a) (b)

(c) (d)

(e)

Figure 6.14. (a) TDS-1 DDM acquired on April 1, 2015 at 00:19:37 UTC.
Nominal specular point at 46.83°N, 47.53°W. The visible bright feature is
the Hibernia platform situated at about 95 km o� the specular point. (b)
Simulated sea clutter contribution. (c) Di�erence map. (d) Pre-screening;
(e) Selection. The Hibernia platform is detected on the right. A sea ice sheet
is detected on the left and validated using NSIDC data.
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(a) (b)

(c) (d)

(e)

Figure 6.15. (a) TDS-1 DDM acquired on April 1, 2015 at 00:19:49 UTC.
Nominal specular point at 47.47°N, 47.84°W. The visible bright feature is a
sea ice sheet. (b) Simulated sea clutter contribution. (c) Di�erence map. (d)
Pre-screening; (e) Selection. The detected target is a sea ice sheet validated
using NSIDC data.
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Figure 6.16. Image representation of the NSIDC sea ice concentrations
data used for validation of sea ice sheets detection. The red point indicates
the target detected by the algorithm.
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(a) (b)

(c) (d)

(e)

Figure 6.17. (a) TDS-1 DDM acquired on February 28, 2015 at 16:18:32
UTC. Nominal specular point at 27.45°N, 89.45°W. (b) Simulated sea clutter
contribution. (c) Di�erence map. (d) Pre-screening; (e) Selection.
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(a) (b)

(c) (d)

(e)

Figure 6.18. (a) TDS-1 DDM acquired on February 28, 2015 at 16:18:33
UTC. Nominal specular point at 27.40°N, 89.47°W. (b) Simulated sea clutter
contribution. (c) Di�erence map. (d) Pre-screening; (e) Selection.



Chapter 7
Conclusions

This Ph.D. Thesis has studied the introduction of EM scattering con-

cepts and models in remote sensing data in order to increase performance

of state-of-the-art despeckling algorithms and allow for new applications

of GNSS-R data. In particular, the exploitation of well-known scattering

models has been investigated in two di�erent applications:

� SAR Despeckling;

� Sea target detection and positioning using spaceborne GNSS-R DDM.

To allow for a more fruitful and deeper understanding of the concepts,

ideas and models presented and discussed in the text, this Ph.D. Thesis has

been divided into two parts: the �rst one, comprising Chapters 2 to 4, is

an introductory part, providing the theoretical background to understand

the techniques developed and described in the second part of this Ph.D.

Thesis, including Chapters 5 and 6. In particular, Chapter 2 introduces

the reader to the EM scattering models used further in the text, namely

the SPM for fractal surfaces, and the GO model for normally-distributed

surfaces. The chapter is aimed at deriving the NRCS for both scattering

models as a closed-form function of the surface parameters.

177



178 Chapter 7. Conclusions

Chapters 3 and 4 are devoted to present the remote sensing fundamen-

tals exploited in the techniques developed in this Ph.D. Thesis. In partic-

ular, Chapter 3 has described the basic working principle of radar and the

radar imaging system based on RAR. The core of the chapter discusses

the SAR tool and how chirped waveforms and the synthetic aperture prin-

ciple allow for a signi�cant improvement of the spatial resolutions typical

of RAR systems.

The exploitation of GNSS signals re�ected from the Earth's surface

for remote sensing applications is discussed in Chapter 4. First, the main

GNSSs for global navigation services currently fully operational or under

development have been presented and the navigation signals characteristics

emphasized. Then, the possibility to acquire Earth-re�ected GNSS signals

to infer information on geophysical parameters has been explained, and

the most di�use GNSS-based remote sensing techniques, namely GNSS-

RO and GNSS-R described.

The second part of this Ph.D. Thesis is described in the following sec-

tions.

7.1 SAR Despeckling

SAR despeckling is still a di�cult task, even with single-polarized data.

In this Ph.D. Thesis, the despeckling problem (Chapter 5) is treated in a

physical framework via the introduction of scattering models in the �lter-

ing process. This is accomplished by introducing a priori information on

the scattering mechanisms of the illuminated surface in the �lter deriva-

tion. Two scattering-based despeckling algorithms have been conceived

and implemented to apply to single-polarization SAR data. As suggested

by their name (SB-PPB and SB-SARBM3D), they represent a modi�ed

version of pre-existing �lters, namely PPB and SARBM3D, respectively.

Despite being primarily designed for SAR images of natural scenes, some
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peculiarities of the original �lters are exploited to enlarge their application

to man-made scenarios as well. The a priori scattering information comes

into play in slightly di�erent ways within the two algorithms; however, in

both cases, it aims at providing an estimation of the NRCS of the underly-

ing natural surface by a proper modelization of both the surface roughness

and its scattering behavior. To this aim, the surface roughness of natural

surfaces has been modeled as a 2-D fBm stochastic process, while scatter-

ing phenomena have been modeled via an SPM formulation suitable for

fractal surfaces. The NRCS estimation process starts from the considera-

tion that in a natural scenario, topography, i.e., macroscopic roughness, if

present, is the dominant contribution, whereas, other surface parameters

play a minor rule, as emphasized in the sensitivity analysis conducted in

Section 5.4.1. This permits a quite accurate estimation (for the consid-

ered purposes) of the NRCS of natural surfaces assuming the knowledge

of the local incidence angle, which in turns requires a DEM of the under-

lying surface to be available. The way the a priori scattering information

is exploited within the proposed algorithms is brie�y summarized in the

following.

As related to SB-PPB, starting from the PPB �lter proposed in [26], it

has been derived a new patch similarity measure introducing a fractal scat-

tering model suitable for natural surfaces for the weight de�nition. Due to

the strong dependence of the scattered �eld on the local incidence angle,

the proposed distance reduces to a proper nonlinear distance in incidence

angle. Owing to the scattering distance term, it has been shown that

the SB-PPB performs better than the original PPB �lter, even in cases in

which scattering from the surface is not accurately described by the fractal

scattering model employed. The proposed technique requires an a priori

knowledge of the underlying topography, i.e., a DEM in the azimuth�slant

range geometry of the SAR sensor coregistered with the noisy SAR image

is required. The Hurst exponent describing the soil roughness can be easily
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estimated through the approach proposed in [28]. The proposed �lter is

originally designed for non-�at natural surfaces, i.e., for SAR images in

which the intensity variations are mostly due to the topography. How-

ever, in order to deal also with �at regions and non-topography-induced

backscattering variations, it has been implemented an iterative scheme

that, in a smart and adaptive way, performs iterations only in �at regions

in which the noniterative procedure does not provide a good reliability in

terms of edge preservation if compared to the state of the art. To this aim,

we have proposed a simple �at�non-�at binary classi�cation method in or-

der to discriminate topography-related from non-topography-related SAR

intensity variations. The proposed binary classi�cation technique is based

on the DEM, and therefore, it does not require additional information.

The adaptive scheme extends the applicability of the �lter to di�erent sce-

narios in which the single-bounce scattering is not the dominant scattering

phenomenon, such as vegetated areas or suburban areas.

The modi�ed version of the SARBM3D, originally presented in [24], the

so-called SB-SARBM3D �lter, improves the �rst-step estimate of SARBM3D

by taking into account prior information about electromagnetic scattering

of the sensed surface. Estimates provided by the �rst step of SARBM3D

and by the assumed scattering model present complementary properties.

In fact, SARBM3D provides good edge and detail preservation, while intro-

ducing visible artifacts in homogeneous and �at regions. Conversely, the

scattering model with the assumed prior knowledge describes quite well

the response of electromagnetically homogeneous natural areas, while it is

inaccurate in describing scattering from nontopographic edges and man-

made structures, unless additional information is available. Consequently,

the new �rst step estimation is obtained by combining the prior scattering

information and the �rst-step SARBM3D estimate with adaptive weights,

related to the local reliability of the two terms. In particular, the weight

map is computed using the ratio edge and line detectors developed in [155].
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The �lter weight evaluation is designed to assign a major weight to the a

priori scattering information in regions with topography-related SAR in-

tensity variations and, conversely, to assign a major weight to SARBM3D

in regions with non-topograpy-related SAR intensity variations.

The e�ectiveness of the proposed �lters and their capability to reduce

speckle e�ects have been tested in an extensive experimental part, using

both simulated and actual SAR images. Original �lters are considered for

comparison purposes.

The proposed SB-PPB �lter exhibits objective performances compa-

rable or superior to competing techniques on simulated single-look SAR

images and satisfactory subjective quality on the actual SAR image con-

sidered. It is also noteworthy that the proposed algorithm �converges� to

the iterative PPB in the presence of totally �at topography. The pro-

posed adaptive scheme provides promising results especially in those cases

in which topography is the main source of SAR intensity variations. With

SAR images of non-�at surfaces, the proposed algorithm outperforms both

the noniterative and iterative PPB �lters, both in terms of speckle reduc-

tion and detail preservation, owing to the a priori topographic knowledge.

The new SB-SARBM3D �lter exhibits promising results especially in

homogeneous �at and gently sloped areas, providing a better speckle sup-

pression than the original �lter with the same good preservation of details.

In addition, the robustness of the proposed SB despeckling algorithms

against di�erent errour source has been evaluated by means of an experi-

mental analysis. This is motivated by the fact that the a priori scattering

information, modeled via the SPM model suitable for natural bare soil

surfaces, requires, at least in principle, numerous surface parameters to be

known/estimated. Although several retrieval algorithms exist in literature,

an accurate knowledge of all the required surface parameters is not realis-

tic. However, due the major contribution of the local incidence angle to the

backscattered energy, a su�ciently accurate estimation (for the considered
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purposes) of the a priori scattering information is still possible if a DEM

of the underlying topography is available. In particular, the in�uence of

the following features on the �lter performance is analyzed and discussed:

� scattering model;

� surface parameters errors apart from the local incidence angle;

� DEM resolution;

� errors in the coregistration step.

Concerning the �rst issue, di�erent scattering models have been used

to simulate the scattering behavior of the surface. Besides the SPM scat-

tering model used in the �lters, the cos θ, cos2 θ and cos4 θ models have

been used. Best performance is ensured wherein the scattering behavior of

the surface is well-described by the SPM model, whereas the cos θ model

causes the worst performance; in more general terms, the more accurate the

SPM model, the better the performance of the proposed �lters. Therefore,

intermediate results are provided with the cos2 θ and cos4 θ models. How-

ever, both �lters outperform the original ones for most scattering models

considered.

The sensitivity analysis against surface parameters suggests that the

huge knowledge required to estimate the a priori scattering information,

modeled via the SPM model suitable for natural bare soil surfaces does

not limit the applicability of the �lter. Most of surface parameters, namely

topothesy, relative dielectric constant and conductivity, in�uence very lit-

tle the energy backscattered from the surface, at least in presence of a sig-

ni�cant topography. Consequently, an accurate knowledge is not strictly

required for such parameters, and reference values can be used.

Among the surface parameters, the Hurst coe�cient has non-negligible

in�uence on the �lter performance, providing a signi�cant performance
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degradation in the case of gross estimation errors. However, in the ana-

lyzed case, the proposed �lters provide better results than original �lters

regardless of the estimation error. Indeed, the Hurst coe�cient can be

estimated via the algorithm proposed in [28]. If not the case, a reference

value can be used. For typical values of H corresponding to actual nat-

ural surfaces (0.6 ≤ H ≤ 0.9) [73], a negligible performance degradation

is experienced. The very minor in�uence of the electromagnetic surface

parameters pointed out in this Ph.D. Thesis suggests the use of reference

values.

The DEM resolution plays a key role on the despeckling capabilities

of SB-PPB, especially concerning the detail preservation capability. Good

performance is ensured by DEM with spatial resolution comparable with

the SAR image, thanks to the very detailed a priori information. There-

fore, the �ner the topography details, the better the details preservation

capability of the �lter. With decreasing DEM resolution, a dramatic per-

formance drop is experienced. With low-resolution DEMs, a signi�cant

performance drop is experienced: in presence of a signi�cantly gross DEM,

worse performance than SARBM3D may be provided by SB-SARBM3D;

SB-PPB tends to the original PPB, the a priori scattering information

tending to the homogeneous a priori information exploited in the PPB �l-

ter. For DEM resolutions up to a few times the SAR image resolution (16

for SB-PPB, four for SB-SARBM3D), the a priori scattering information

ensures better performance than the homogeneous one.

The DEM resolution plays a key role even in the robustness of the

�lters against coregistration mismatches between the SAR image and the

DEM. Thus, a high-resolution DEM, even if providing a richly detailed

a priori scattering information, causes a signi�cant performance drop in

presence of coregistration errors, unless the topography is gentle enough.

On the contrary, low-resolution DEMs (resolution loss w.r.t. SAR image

not less than 32) allow a high robustness (relative variations of SNR up
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to 13%) of the �lter performance against errors in the coregistration step,

thanks to the smoother a priori information.

7.1.1 Future Research Lines

SB despeckling is a novel idea and there is much room for further

investigations and analyses in terms of both theoretical studies and exper-

imental results. A major issue for further research is the ability to take

into account peculiar scattering mechanisms from both natural and urban

areas. At the same time, the research in this �eld would bene�t from

better tools for the numerical assessment of performance, including, for

example, a quantitative measure of despeckling artifacts. In addition, the

proposed SB approach can be easily applied to other despeckling �lters.

The research in this �eld would also bene�t from a scattering model selec-

tion algorithm for a suitable �lter model-selection step. Furthermore, an

approach similar to the one presented here for the scene topography may

be used to take into account some additional a priori information about the

sensed scene, in order to move a step further toward a more meaningful

physical-based and object-oriented despeckling approach. Last, but not

least, the possibility to estimate the local incidence angle map, needed by

the �lter, from a single SAR image would be useful not only in the proposed

despeckling approach since the a priori knowledge could be estimated from

the image itself without requiring extra information, but it would be also

relevant per se since it could be useful in a number of applications, such

as DEM generation and re�nement. A DEM re�nement procedure from

SAR data will allow for the exploitation of higher-resolution topographic

information, thus leading to a non-negligible performance improvement of

the SB despeckling algorithms.
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7.2 Sea Target Detection Using Spaceborne GNSS-

R data

In Chapter 6, a feasibility study of real-time sea target detection from

GNSS-R observables has been assessed. Owing to low cost and low size,

small-satellite GNSS-R constellations can be developed at a much lower

cost compared with competitive remote sensing techniques, giving the

chance for a near real-time worldwide sea tra�c monitoring and control.

An experimental study of the revisit time provided by GNSS-R constella-

tions has been conducted by means of mission simulations and analysis.

This experimental study aims at providing some practical guidelines for

the mission design, by analyzing the most relevant adjustable parame-

ters in�uencing the time resolution and providing synthetic numerical re-

sults on realistic test missions. Three di�erent scenarios have been de�ned

and simulated in order to evaluate some �rst-order statistics of the revisit

time, namely average, median and standard deviation. It has been shown

that, even if single GNSS-R systems can provide time resolution similar

to other remote sensing technologies, such as SAR and optical systems,

the strength of GNSS-R systems lies in the actual chance to group them

in cooperative formations, which can o�er revisit times as low as 2 hours

or even lower. The actual revisit time depends upon numerous param-

eters, such as the number of satellites, the number of parallel tracking

channels, global coverage, and the GNSS stations tracked. Increasing the

number of tracked signals allows for a limited improvement in the revisit

time, this plateau lowering with increasing GNSS transmitters that can po-

tentially be tracked. Increasing the constellation size represents the only

method to reach an arbitrarily low revisit time. This potentiality paves

the way to a spread array of Earth observation applications with strict

revisit time requirements. One of the most interesting for its key role in

worldwide economic and social activities, i.e., sea target detection, has
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been explored, theoretically assessed and also experimentally validated us-

ing UK TDS-1 data. The target detector consists of four processing stages:

in the pre-processing stage the sea clutter contribution is estimated in the

delay-Doppler domain by means of a least square approach via the P2EPS

tool [196]; the sea clutter term is then subtracted from the actual DDM

to form the target enhanced image. A CFAR thresholding is applied to

provide the target candidates map in the pre-screening step. The selection

stage reduces the false alarms rate by rejecting isolated detected targets.

The ROC curves of the detector have been derived for the performance as-

sessment. The validation of the proposed algorithm using actual GNSS-R

imagery represents another contribution of this Ph.D. Thesis. The di�cul-

ties to exploit a proper ground-truth information about location of ships

has been circumvented by testing the detector on an oil platform owing to

the exploitation of ground truth about its location at no cost. Two UK

TDS-1 DDMs acquired on the North Atlantic have been used to assess the

capability of the algorithm to detect the Hibernia oil platform. Another

case study has been de�ned in the Gulf of Mexico, due to its key role in

worldwide sea trades. This feasibility study is essential to understand the

role of upcoming GNSS-R constellations in the framework of sea target

detection and feature mapping and could promote innovative solutions in

the integration of remotely sensed data acquired by di�erent sources.

7.2.1 Future Research Lines

A valid guideline for future research in the sea target detection from

GNSS-R observables comes from the exploitation of DDM deconvolution

methods in order to take advantage from the application of target detector

to deconvolved GNSS-R data, e.g., the bistatic scattering coe�cient. False

alarms caused by noise or fast-moving targets, such as airplanes, can be

reduced by multiple-images approaches, for example by further process-

ing target maps related to consecutively acquired DDMs. Target location
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ambiguity is expected to bene�t from this multi-look approach as well

by analyzing the two candidate target tracks in a geographic coordinate

system. The future spaceborne GNSS-R missions, such as CYGNSS, and

GEROS, are expected to allow for an additional performance assessment

of the proposed algorithm and an evaluation of its competitiveness in the

�eld of sea target detection from remote sensing imagery.
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