1,314 research outputs found

    Information retrieval in P2P networks using genetic algorithm

    Full text link

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Intelligent search in social communities of smartphone users

    Get PDF
    Social communities of smartphone users have recently gained significant interest due to their wide social penetration. The applications in this domain,however, currently rely on centralized or cloud-like architectures for data sharing and searching tasks, introducing both data-disclosure and performance concerns. In this paper, we present a distributed search architecture for intelligent search of objects in a mobile social community. Our framework, coined SmartOpt, is founded on an in-situ data storage model, where captured objects remain local on smartphones and searches then take place over an intelligent multi-objective lookup structure we compute dynamically. Our MO-QRT structure optimizes several conflicting objectives, using a multi-objective evolutionary algorithm that calculates a diverse set of high quality non-dominated solutions in a single run. Then a decision-making subsystem is utilized to tune the retrieval preferences of the query user. We assess our ideas both using trace-driven experiments with mobility and social patterns derived by Microsoft’s GeoLife project, DBLP and Pics ‘n’ Trails but also using our real Android SmartP2P3 system deployed over our SmartLab4 testbed of 40+ smartphones. Our study reveals that SmartOpt yields high query recall rates of 95%, with one order of magnitude less time and two orders of magnitude less energy than its competitors

    A Two-Stage Multi-Objective Optimization of Erasure Coding in Overlay Networks

    Get PDF
    In the recent years, overlay networks have emerged as a crucial platform for deployment of various distributed applications. Many of these applications rely on data redundancy techniques, such as erasure coding, to achieve higher fault tolerance. However, erasure coding applied in large scale overlay networks entails various overheads in terms of storage, latency and data rebuilding costs. These overheads are largely attributed to the selected erasure coding scheme and the encoded chunk placement in the overlay network. This paper explores a multi-objective optimization approach for identifying appropriate erasure coding schemes and encoded chunk placement in overlay networks. The uniqueness of our approach lies in the consideration of multiple erasure coding objectives such as encoding rate and redundancy factor, with overlay network performance characteristics like storage consumption, latency and system reliability. Our approach enables a variety of tradeoff solutions with respect to these objectives to be identified in the form of a Pareto front. To solve this problem, we propose a novel two stage multiobjective evolutionary algorithm, where the first stage determines the optimal set of encoding schemes, while the second stage optimizes placement of the corresponding encoded data chunks in overlay networks of varying sizes. We study the performance of our method by generating and analyzing the Pareto optimal sets of tradeoff solutions. Experimental results demonstrate that the Pareto optimal set produced by our multi-objective approach includes and even dominates the chunk placements delivered by a related state-of-the-art weighted sum method

    Genetic algorithms for satellite scheduling problems

    Get PDF
    Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency) and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.Peer ReviewedPostprint (published version

    Information Replication Strategy in Unstructured Peer-to-Peer Networks Using Thematic Agents

    Get PDF
    • 

    corecore