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Abstract

We present in this article a method to wisely replicate

information in an unstructured peer-to-peer network. We

make no assumption on the network topology. Thematic

agents move randomly on the network and estimate the level

of redundancy of the specific information they are dealing

with. They can delete or create replicas if this estimated

redundancy is too high or too low. Experiments show that

we can achieve an homogeneous distribution of information

in a distributed environment while achieving a high level of

fault tolerance.

1. Introduction

The growing need for very large databases management

systems raises indexing and querying difficulties. Building

an index allows to speed up the querying process [13] and

in general this index is larger than the database itself. Dis-

tributing the database index allows to store all these infor-

mation and to manage more volume of information. Among

other solutions, Peer-to-Peer (P2P) networks are decentral-

ized systems that can contain up to millions of nodes. In

these systems, the nodes continuously enter or leave the

networks, imposing a constant moving environment for the

hosted database that needs to adapt to these varying condi-

tions.

Living organisms have adapted to their environment

since millions of years. Recently, some algorithms have

been proposed to reproduce some mechanisms of living

and evolving organisms, this is the field of Artificial Life

(AL). These algorithms, such as genetic algorithms (GA),

are generaly used in optimization problems. They can pro-

vide sub optimal solutions for NP-hard problems in a short

time. They are suited to changing environments too. For

instance, the population simulated in GA can evolve and

adapt to a changing environment.

Ant Colony Optimization (ACO) algorithms are inspired

by the behaviour of real ants. For instance when an ant finds

a dead body alone, it picks it up and carry it until it finds

other dead corpses. Then it drops it, increasing the number

of dead bodies in its neighborhood. This local behaviour

of the ant leads to a global clustering process, that is used

to sort ant larvaes too. Ant clustering algorithms have been

proposed to cluster similar data [5, 11, 18].

In a Peer-to-Peer network, the replication of information

makes the system more robust and allows to improve the

query response rate of random-walk-like routing algorithm

[12]. We adress in this article the problem of the replica-

tion of data in an unstructured peer-to-peer network using

an ACO-like algorithm. Agents moves randomly on the net-

work carrying indexed information. They can create repli-

cas of the information they carry on nodes hosting informa-

tion with similar summary. On the other hand replicas of

this information are deleted if its summary does not corre-

spond to the one of other information hosted.

The objective is to maintain an homogoneous distribu-

tion of information replicas, so that a fixed amount of in-

formation remains reachable even if a significant amount

of node is offline. The number of replicas is bounded, the

lower and upper bounds vary with the size of the network.

Section 2 coments on previous work, section 3 presents our

approach, section 4 shows experiments and section 5 high-

lights some perspectives.

2. Related Work

A Multi Agent Sytem (MAS) [7, 19] is composed with

autonomous entities called agents that interact with each

others. Artificial ants are reactive agents inspired by the

real ants behaviour. They communicate using pheromones,

an indirect mean of communication. ACO algorithms are

fully distributed and can solves various problems such as

clustering, routing, assignment or scheduling [6].

2.1. Ant Clustering

The ant clustering problem has been studied in the last

few years. The problem is to aggregate similar objects, ini-



tially disposed at random on a 2 dimensionnal grid. Basi-

caly, ants move randomly on the grid, pick up objects sur-

rounded by heterogeneous ones, and drop them near similar

ones. This problem has been introduced in [5]. The agents

have a finite memory of size n that records the absence or

presence of objects at the ant’s n last locations. Moreover,

they have a capability to manipulate objects, the manipula-

tion (taking or dropping) of these objects being dependant

on the ant’s knowledge. In [5]’s model, manipulated ob-

jects could be either identicals or differents. [11] extends

this model to cope with a continuous similarity measure.

[18] proposed an algorithm called ACLUSTER used in an

image database. ACLUSTER avoids random moves of ants

using pheromones for communication. This algorithm can

perform a continuous clustering of a data stream, contrary

to recent similar approaches using Self-Organizing Maps

(SOM) [8] that need to perform a new training if new cate-

gories of data appear.

A clustering algorithm based on the chemical recogni-

tion mechanism of ants, called ANTCLUST, has been pro-

posed in [10]. Each data is associated with an ant and de-

fines its odor. Ant meeting is then simulated and ants with

similar odors are grouped together.

2.2. Peer-to-peer (P2P) networks

Peer-to-peer (P2P) systems can have different architec-

tures. Napster [15] for instance is a centralized P2P network

that was very popular in the early 00’. The use of a central

repository to answer queries makes this system poorly scal-

able and vulnerable to failure. Others P2P systems don’t

rely on a central server : they are decentralized, thus they

are very scalable, and fault tolerant. They are divided in two

categories.

Structured P2P networks associate network topology and

location of data. Most of them implement a Distributed

Hashtable (DHT) [14, 16, 17, 20, 2] and provide one ba-

sic operation : given a key, they map the key to a node. This

is performed by using a distributed hash function. They

use content routing to forward the key to the corresponding

node. They are very well suited to retrieve rare information

(i.e. with a low number of replicas). Their main limitation

is that it is very costly to perform ranged and approximative

queries, because hashing destroys the order on keys.

Unstructured P2P networks have no constraint between

location of data and network topology. Gnutella [3] is an

example of such working system. Query forwarding can be

achieved either by flooding [12] - consuming a lot of band-

width - or by random walk : a path is selected randomly

according to a uniform distribution. They are suited to re-

trieve highly replicated data, but have limitations for rare

information retrieval. Nowaday, most P2P systems have a

decentralized unstructured topology.

3. Contribution

We address the design of a distributed database having

self healing capacities through wise replication. To achieve

this, we perform information replication using the multi

agent system paradigm.

3.1. Architecture

Our current work focuses on indexing documents and

distributing the database index. As we need to be able to

perform approximative queries, we choose an unstructured

P2P architecture. The primary purpose of the nodes on the

network is not necessarily to manage this index database.

The nodes may have to set aside the management of the

database for a while if a user would need the resources on

this node for his own purpose. For this reason our P2P net-

work does not have super peers. The use of an unstructured

P2P architecture allows us to have a network topology as

close as possible to the physical topology and this can lead

to use less network resources.

We consider an unstructured Peer-to-Peer network of

nodes with similar computing capacities. Thus, there is

no super-peers, and the network have a random graph like

topology. Each node on the network hosts a part of the in-

dex database. Its knowledge is stored in a hashtable where

each keywords is an entry pointing toward indexed infor-

mation. This can be for instance the documents and the

positions of the keyword in these documents. As they do

not index the same documents, different nodes can have the

same keyword with different indexed information.

Moreover, nodes have a summary of the keywords they

host. This summary is implemented as a Bloom filter [1], as

in Gnutella. A Bloom filter is a data structure that answers

approximatively to set membership queries. It is made of

an array of m bits and k hash functions h1, ..., hk. When no

element has been inserted into the filter, all bits are set to 0.

When an element x is inserted into the filter, all bits given

by the k hash functions hi(x) are set to 1 with a classical

bitwise-or operation. A membership test of an element to a

set is answered by checking that all the bits given by the k
hash functions are set to 1. False positives are possible but

false negatives are not. The probability of having a positive

answer for an element not belonging to the filter, with n
being the number of elements inserted in the filter, is (1 −
(1− 1

m
)nk)k.

This summary allows to speed up query forwarding, be-

cause it is faster to query the filter than querying the whole

local database. Off course, a false positive answer may trig-

ger an unnecessary local full query. As described in [12],

replicating information greatly improves random walk effi-

ciency, and increases the system robustness. We focus in

this article in a strategy of replication on nodes with simi-



lar summary. We try to keep false positive answer rate in

Bloom filters as low as possible.

Those filters can be used to improve random-walk effi-

ciency. For instance, Exponentially Decaying Bloom Filters

(EDBF) improve query routing as described in [9]. Filters

act as routing indices [4], and drive queries toward regions

of the network hosting the searched information. In those

filters, introducing an element is performed as in a classical

Bloom filter. Querying for an element x gives the number

θ(x) of bits equal to 1. Thoses filters are then used to en-

code probabilistic routing tables, in which
θ(x)

k
is the prob-

ability to find element x among a given link in the network

(Each node maintains a filter for each neighbor he has). This

probability decays exponentially with the number of hops

(or node transitions) from the node where the element x is

stored. Nodes update their filters periodically. The filter

for one neighbor is updated with the information attenu-

ated from all other neighbors and the information without

attenuation from the local EDBF of the node. The attenu-

ation is performed by reseting each bit to 0 with a proba-

bility 1/d, where d is the decay of the filter. The aggrega-

tion of information corresponds to a bitwise-or operation.

To forward a query, the Scalable Query Routing algorithm

(SQR) [9] is used. This algorithm act as random-walk until

it finds enought information and converge to the informa-

tion searched.

We believe keeping filters occupation as low as possible

could be beneficial to improve such query forwarding algo-

rithms. Thus, an homogoneous distribution of information

might limit each local use of Bloom filter.

3.2. Agent behaviour

We argued previously that replicas have to be created on

nodes having similar summary of the information they host.

We use agents to control the number of replicas for each

data in the network. According to its local knowledge, an

agent can create or delete replicas for the information it is

carrying. Agents have a theme, which is implemented in

our system as a keyword. They have a very low probability

p to be reinitialized. This process change their theme and

allows to statistically eqally process all data.

The behaviour of the agents is depicted in algorithm 1.

Each agent carries a keyword k and the indexed information

related to this keyword. When the agent is (re)initialized on

a node Nl, it records the oldest accessed or updated key-

word and local index information that is associated. It stores

the node where it has been initialized too. The agent records

the n last nodes visited and the nodes hosting its keyword

k. It then moves randomly on the network. If the local node

has different knowledge related to the keyword k the agent

is carrying, the agent and the visited node exchange their

knowledge. Moreover, the agent forgets information about

last visited nodes and considers it has been reinitialized in

this current node (i.e. this node is recorded as Nl).

Algorithm 1: Agent behaviour

// agent initialization

Node source← currentNode();

String k← oldestKeyword(source);

Set info← indexedInfo(source,k);

int score← S(k, source);
Node current← source;

Queue visited← ∅;
// main loop

while true do

if visited.size() ≥ n then
visited.poll();

end

visited.enQueue(current);

current← randomNeighbor(current);

if current.hasKeyword(k) then

if indexedInfo(current,k)6= info then
info← indexedInfo(current,k) ∪ info;

setIndexedInfo(current,k,info);

source← current;

score← S(k, current);
visited← ∅;

else if φ(k, current) ≥ τsup then
removeIndexedInfo(current,k);

end

else if φ(k, current) ≤ τinf then
setIndexedInfo(current,k,info);

end

// new theme for the agent

if random()≤ p then
reinitialize this agent;

end

end

Each time it visits a node Nc, the agent computes a score

φ(k, Nc), given by the following equation :

φ(k,Nc) =
S(k,Nl)

S(k,Nc)
×

f(k)

α
(1)

S(k,N) is a scoring function for a node N for the key-

word k. This function measures a trade off between the

space available on the node and the degree of matching of

the keyword to the node filters. This degree of matching

is given by the function described previously that gives the

number θ(k) of bits equal to 1 for the keyword k. α is a con-

stant that tunes the replication amount to achieve. f(k) is

the frequence of last nodes visited hosting the information

carried by the agent.



The former part of the scoring function deals with the

constraint of having similar information summaries on the

same node while the other part leads to have replicas of in-

formation as far as possible from each other.

We define the replicating bound τinf and the deleting

bound τsup, with
τinf +τsup

2 = 1. If φ(k,Nc) ≤ τinf , a

replica of the index information carried by the agent is cre-

ated on the local node Nc. If φ(k, Nc) ≥ τsup, all indexed

information for the keyword k is removed from the local

node Nc, if it exists. When the system is stable (i.e. the

number of replicas created or deleted per hour is very low),

a network with m nodes should have m
100 ×α average num-

ber of information replicas.

4. Experiments

We have simulated an unstructured peer-to-peer network

with a random graph like topology. In this first experiment,

the network topology is stable : there is no connection or

node failures. Experiment settings are described in table 1.

Table 1. Experiment settings
Parameter Value

Number of nodes 400

Node degree 2 - 8

Documents per node 75

Size of filters 213 bits

Number of hash functions 32

Replicating constant 2

Bounds τinf and τsup 0.8 and 1.2
Nodes recorded 100

Number of keywords 10985

Number of ants 2000

4.1. Information replication

The number of replicas follows a normal distribution,

centered on 13, with a maximum of 24 replica for 2 infor-

mation and a minimum of 1 replica for 1 information. The

average number of replica is superior to what we expected,

as having 10 replicas leads to an average redundancy of 2.5.

With α = 2, having more replicas than 10 should produce

a destruction of some replicas. This could be explained by

the random move of agents that could miss some replicas,

therefore having only an estimation of the redundancy.

Figure 1 shows the evolution of the replication process.

Initialy, the information is not replicated and the occupation

of filters is 43.47%, corresponding to a false positive an-

swer probability of 2× 10−52. Then the number of replicas

increase to an average of 13 replicas, with a increase in fil-

ter occupation to 70.88%, corresponding to a false positive

answer probability of 1.6 × 10−5. This is still small com-

paring to the increase in term of query answer efficiency.

There is no difference in filters occupation between 9 and 13
replicas, meaning 4 replicas (in average) are created without

adding information in filters.
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Figure 1. Evolution of the number of replicas

and of the filters occupation.

Figure 2 shows that random walk performs way better in

a highly replicated environment. Half answers to queries are

obtened within 50 hops when there is 13 replicas (in aver-

age) when it takes about 1000 hops to have the same results

with no replication. In figure 3, we measure the number

of hops required to answer from 5% to 50% of queries and

make the ratio between result in unreplicated and replicated

environment.
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Figure 2. Comparison of random walk in un-

replicated and replicated environment.

Figure 3 shows that it is 22 times faster (in average) to

answer between 5 % and 50 % of queries with an average of

13 replicas per information comparatively to the case with

no replication. This shows that the distribution of replicas



is homogoneous, as wherever the query is forwarded at ran-

dom, it still finds a replica of the searched information.
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Figure 3. Ratio between random walk in un-

replicated and replicated environment (aver-

age of 13 replicas per data).

4.2. Self healing capacities

In a second experiment, we have simulated a failure for

half of the nodes in the network. Basically, we have reseted

the memory of half of the nodes of the network chosen at

random. This cuts the average number of replicas down

to 6.5. We definitely lost 0, 036% of indexed information.

The query answer efficiency just after this failure is given in

figure 2. The number of replicas then grows like in figure 1

and reaches back asymptotically 13.

Nodes stores information with similar summary. How-

ever, because the agents move randomly on the network,

information with similar summary will not necessarily be

stored on the same nodes. For instance, if information A,

B and C have similar summary, we can have a node having

replicas of A and B, another having A and C and a third

one having B and C. As very few information has been

lost, we believe our system leads to this kind of strategy for

replicas storage. However we still need to perform further

experiments to prove such behaviour.

5. Conclusion

We have introduced an agent designed to perform infor-

mation replication in an unstructured peer-to-peer network.

This can achieve an homogeneous distribution of informa-

tion replicas and features a kind-of self healing property.

Given a hard failure of the network (half nodes fail), the

lost of information is very low. Because of its fully decen-

tralized nature, our algorithm may scale very well, but we

need to test it in larger P2P networks simulations.

Further experiments are required to model a more chang-

ing environment, for instance with less nodes failures but

with higher fault frequencies. It would also be interesting

to see if our model can increase query routing efficiency of

algorithm such as SQR.
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