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Abstract—In the recent years, overlay networks have emerged
as a crucial platform for deployment of various distributed appli-
cations. Many of these applications rely on data redundancy tech-
niques, such as erasure coding, to achieve higher fault tolerance.
However, erasure coding applied in large scale overlay networks
entails various overheads in terms of storage, latency and data
rebuilding costs. These overheads are largely attributed to the
selected erasure coding scheme and the encoded chunk placement
in the overlay network. This paper explores a multi-objective
optimization approach for identifying appropriate erasure coding
schemes and encoded chunk placement in overlay networks. The
uniqueness of our approach lies in the consideration of multiple
erasure coding objectives such as encoding rate and redundancy
factor, with overlay network performance characteristics like
storage consumption, latency and system reliability. Our ap-
proach enables a variety of tradeoff solutions with respect to
these objectives to be identified in the form of a Pareto front.
To solve this problem, we propose a novel two stage multi-
objective evolutionary algorithm, where the first stage determines
the optimal set of encoding schemes, while the second stage
optimizes placement of the corresponding encoded data chunks
in overlay networks of varying sizes. We study the performance
of our method by generating and analyzing the Pareto optimal
sets of tradeoff solutions. Experimental results demonstrate that
the Pareto optimal set produced by our multi-objective approach
includes and even dominates the chunk placements delivered by
a related state-of-the-art weighted sum method.

Keywords—Erasure coding, peer-to-peer, overlay network,

multi-objective optimization, Pareto optimal set.

I. INTRODUCTION

Overlay networks [2] [18] [16] recently emerged as a
crucial platform for deployment of distributed applications,
such as file sharing, content distribution, or real-time com-
munication systems. An overlay composed of hosting ma-
chines, however, is not as efficient as the dedicated servers
and suffers from a resource handicap in terms of storage
and bandwidth constraints. Moreover, the non-uniformity of
the overlay topology, composed of heterogeneous hosts as
overlay nodes, can induce various reliability issues, typically
resolved by using data redundancy-based techniques. One such
technique is replication [8], where a data item is replicated
over N overlay nodes at a rate R < N. While concept of
replication allows increased system scalability and reliability
at the cost of creating multiple copies of a single item that can
induce huge storage costs.

Another alternative redundancy technique for distributed
applications in overlay networks is erasure coding [19]. Ini-
tially used for secured information dispersal [10], erasure
coding has been nowadays adopted to enhance fault tolerance

without incurring high storage overheads, as in the case of
replication. In general, an appropriate erasure coding mecha-
nism applied to a data item of size S is split it into m equally
sized chunks, further encoded into n chunks of size b each [1].
The original data item can be then reconstructed from any m
out of n chunks, where 1 < m < n. For example, in a (16, 64)
encoding scheme, the data item of size .S is initially split into
m = 16 chunks of equal size. The initial 16 chunks are then
used to create additional 48 chunks, such that any 16 out of 64
chunks can be used to retrieve the original data item. Hence,
an erasure code with (16, 64) encoding scheme can survive the
loss of 48 chunks denoted by its fault tolerance level k& = 48.

Regardless of the benefits over replication, erasure coding
imposes performance overheads in terms of finding the ap-
propriate encoding scheme (m,n) for data items of varying
sizes. On one hand, adding more data redundancy to erasure
codes enhances the fault tolerance incurring increased storage
cost. On the other hand, minimizing redundancy increases
the encoding rate in terms of the processing time. Moreover,
reducing redundancy increases the data rebuilding cost when
the number of lost chunks is approaching the fault tolerance
level. Another relevant issue is the systematic placement of
the n encoded chunks in the overlay network, since the
selection of specific encoding scheme affects its performance
characteristics. Increasing the value of n for a specific m in
an erasure coding enhances the overlay network reliability at
the cost of a high storage consumption at each node in the
overlay network. Similarly, a higher value of n induces higher
latencies in read and write operations over a data item in the
overlay network.

To overcome these barriers, we address in this paper two
important optimization problems for storing data items of vary-
ing sizes in overlay networks: (1) identifying the appropriate
(m,n) encoding scheme for a data item and (2) selecting
the optimized placement for n encoded chunks in the overlay
network.

To achieve these goals, we designed a corresponding two-
stage optimization approach for erasure coded-based storage
for data items of varying sizes in peer-to-peer (P2P) overlay
networks. The first stage focuses on identifying the appropriate
encoding scheme by considering three erasure coding objec-
tives: encoding rate, redundancy factor and rebuilding cost.
The second stage selects the optimal chunk placements for the
encoded chunks by considering latency, storage consumption
and reliability performance characteristics. The central aspect
of our method is the use of a multi-objective optimization
algorithm that approximates the Pareto optimal set in the three
dimensional space of tradeoff encoding scheme and chunk
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placement solutions in each stage. We performed an extensive
series of experiments to study the benefits of applying our two-
stage erasure coded-based multi-objective approach in large
overlay networks of varying sizes. Producing and visualizing
the Pareto set of tradeoff solutions with a good variety and
distribution gives decision makers the flexibility of choosing
the “best” encoding scheme and chunk placement that satisfies
their storage, reliability or latency requirements with varying
fault tolerance levels. Experimental results demonstrate that the
Pareto optimal set produced by our multi-objective approach
includes and even dominates the chunk placements delivered
by a related state-of-the-art weighted sum method [17].

The paper is organized as follows. Section II summarizes
the related work. Section III explains the architectural model
and formulates the erasure coding objectives in overlay net-
works. Section IV presents the two stage multi-objective opti-
mization approach for encoding scheme and chunk placement
optimization for data items in overlay networks. Section V pro-
vides implementation details of the simulated overlay network
and optimization algorithms. Section VI presents experimental
results and Section VII concludes the paper.

II. RELATED WORK

Recently, erasure codes [4], [7], [9] are increasingly
adopted as an alternate to replication, primarily owing to lower
storage cost and finer control over redundancy level.

Hakim et al. [20] provide a comparative analysis between
erasure coded and replication-based systems. They determine
the availability and durability gains in an erasure-resilient sys-
tem using reduced bandwidth and storage, while maintaining
similar mean time to failure as in replication systems.

With respect to overlay systems, George et al. [13] study
erasure coding in P2P backup systems, focusing on perfor-
mance objectives in terms of network utilization, CPU cost,
storage overhead and fault tolerance. This study also puts
forward the effect of varying encoding schemes (m, n) on the
performance objectives.

Although a large number of research has been conducted in
erasure coding and some of the corresponding benefits over the
replication based overlay systems have been identified, there
is no study that focuses on the selection of the appropriate
encoding scheme and coded chunk placement in a large scale
P2P system. Moreover, due to the varying and conflicting
nature of the performance objectives involved in the erasure
coded systems, the problem of identifying an appropriate
encoding scheme and mapping is aggravated even more.

Recently, Maomeng et al. [17] studied the systematic
placement of erasure coded chunks in a multi-Cloud storage
system optimizing the fault tolerance, vendor lock-in and ac-
cess latency using a non-linear programming model. Although
this method reports interesting results, it uses a weighted
sum optimization method that has limited applicability in
large scale environments where setting the proper weights
to objectives becomes unclear. Combining tradeoff objectives
of different and conflicting nature in a single objective is
unnatural resulting in unclear discrepancies between the set
of weights and the identified solutions.

To the best of our knowledge, there exist no work that
approached the erasure coded-based placement of data items
in overlay networks using an evolutionary multi-objective
optimization method that approximates the Pareto optimal set
of encoding schemes and chunk placement solutions.

III. MODEL

We present in this section the architectural model of our
multi-objective erasure coded storage in overlay networks,
together with the corresponding parameter notations and con-
flicting objective functions.

A. Architectural Background

Our architecture is based upon a structured P2P network
overlay. Unlike the unstructured networks, the structured over-
lay networks use a distributed hash table (DHT) for searching
of stored data items. For this purpose, DHTs maintain a unique
hashing in terms of (key, value) pairs enabling joined peer
nodes to retrieve data associated to a key.

In this model, the peer nodes and correlated data items,
together with the corresponding erasure coded chunks, are
represented as a logical tree. The root of this tree is represented
by the root peer node, which handles the process of storing
or retrieving the data items, while the lower child level peer
nodes hold the individual erasure coded chunks. In case of
storage, the root peer node applies the erasure coding with a
randomly selected (m,n) scheme, such that any m out of n
chunks are required to reconstruct the data item, ¥V m € [2,n).
Consequently, the data chunks are forwarded to the random
child peer nodes for storage, such that each distinct peer node
has a unique individual chunk of a data item. The peer node
representing the root of the logical tree may hold a chunk of
the data item depending upon the random placement of chunks.

An essential characteristic of the structured peer-to-peer
overlay is that the ownership of the stored data item is shared
among all the peer nodes storing the corresponding chunks.
Hence, the data retrieval initiated by any peer node in the
network overlay proceeds by accessing the minimum number
of chunks m required to reconstruct the original data item from
the closest peers in the logical tree. The updates or repairs of
lost data chunks can also be initiated through any peer node in
the network, which is then propagated to the child peer nodes
of the logical tree storing the chunks of the data item.

However, inducting an erasure coding-based storage with
an (m,n) encoding scheme into a P2P-based overlay system
affects the overall performance with respect to the peer nodes
where the n chunks are placed. The performance measures
are analyzed based on the chunk placing and consider various
characteristic objectives, such as storage, reliability, latency, or
data rebuilding costs. To properly measure the overall system
performance, it is important to identify the objectives which
are directly correlated to the selection of encoding (m,n)
scheme and the objectives affecting the performance of P2P
overlay system based on the distinctive data chunks placing.
To this end, we divide our model in two distinctive stages:
(1) optimization of the performance objectives affected by
varying erasure coding parameters such as m and n, and (2)
optimization of the performance objectives affected by the
encoded chunk placement over the P2P overlay system.
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Fig. 1: Multi-objective erasure coding storage architecture in
overlay networks.

B. Architectural Model

We present the architectural representation of our model
in Figure 1, where the peer node denoted by a dashed circle
receives a data item for storage. The circled peer node be-
comes the root of the logical tree, applies an erasure coding
mechanism with a random (m,n) scheme on the data item
and computes n data chunks. The n chunks are forwarded to
the randomly selected child peer nodes in the overlay. The
performance metrics of the overlay system are monitored over
the storage life-cycle of the data item by initiating operations
over the data item chunks such as read and write requests
from any peer node, the availability of the individual peer
nodes, the uptime interval of each peer node, and so on. The
information feeder collects performance monitoring, which is
further supplied to the optimization engine. The optimization
engine is divided in two distinctive stages specifically tailored
for our model, discussed in detail in Section IV:

1)  The first optimization stage computes the Pareto set
of encoding schemes for the instantiated data item;

2)  The second optimization stage computes the Pareto
set of chunks placements starting from the Pareto set
of encoding schemes produced in the first stage.

Once, the placement solution set is computed, a decision
making module (manual or automated) chooses an appropriate
solution representing the encoding scheme and the chunk
placement for the data item. The optimized encoding scheme
and the chunk placement is further propagated to the root peer
node within the dotted circle shown in Figure 1. Based on
the selected solution, the root peer node applies the newly
selected encoding scheme and chunk placement identified by
the optimization algorithm resulting in a new logical tree.

C. Erasure Coding Parameters in a P2P Overlay Network

The proper definition of the erasure coding parameters
essential for correct modeling of its application over the P2P
overlay network is defined.

a) Storage peer nodes: We denote by N the number
of unique storage peer nodes, physically located at different
geographical locations. We base our overlay network upon the
assumption that any peer node may join and leave the network
at any time.

b) Disk capacity: We denote by ﬁ the disk storage
capacity vector, where EC; represents disk capacity of the
it" peer node in the P2P network. In an overlay network, the
attached N peer nodes differ in storage characteristics and
hence, the number of data items or encoded chunks to be stored
depends on the available disk storage at each peer node.

c) Width: We denote by n the width of an erasure
coded system, representing the configured number of encoded
chunks generated during data item encoding. As the width
of an erasure coded system increases, more peer nodes are
required in the overlay network. A width factor of n < NV
results in some peer nodes not having any chunk of a data item
stored, while n > N requires attaching more peer nodes or
some peer nodes storing more than one chunk. For simplicity,
we assume in this paper that n < N, where every peer node
stores individual chunks of the same data item.

d) Threshold: We denote by m the number of chunks
required to reconstruct the original data item that defines the
threshold in an erasure coded system, which is a subset of
the width (jm| < |n|). As the threshold m increases, so does
the rebuilding cost in terms of recovery of lost or corrupted
chunks corresponding to a data item.

e) Fault tolerance level: We denote by k the fault
tolerance level in an erasure coded system, defined as the
difference between the width and the threshold (k = n — m),
where |k| < |n|. Failing to retrieve k4 1 chunks results in the
loss of the stored data item.

D. Performance Objectives

We identify in this section the objectives affecting the
performance of our P2P overlay network (similar to overlay
network objectives in [8]), and model them with respect to
the involved erasure coding metrics. The important notations
used in this section are listed in Table I.

1) Encoding: represents the amount of processing time re-
quired to encode a data item into n chunks by applying specific
erasure coding algorithms, achieved at a cost associated to the
encoding rate FR. The decrease in encoding rate for a data
item increases the replication rate of erasure coding and the
storage cost. Moreover, a large-sized data item has a higher
encoding time making the encoding rate a relevant objective.
For every data item of size S, m data blocks must be read to
encode it into n data blocks. Hence, we model the encoding
rate as in Equation 1, assuming the width factor n to be less
than the number of available peer nodes N (n < N):

m2‘

S-n

ER= ,Vme2,n). (1

2) Data redundancy: is described in terms of the repli-
cation factor in an erasure coded system, enhancing its fault
tolerance at an extra storage cost owing to the size of the
data item. As the threshold m approaches 1 (m — 1), the
width—threshold % approaches n, which in turn increases



TABLE I: Notation summary.

Notation Semantic
N Number of peer nodes in overlay network
M Number of stored data items
S Size of a data item
n Number of encoded chunks
m Minimum number of chunks for reconstructing a data item
b Size of each encoded chunk
’ﬁ | Overlay network disk storage capacity
ER Encoding rate
RF Redundancy factor
RC Rebuilding cost
SC Storage consumption
SA System reliability
L Latency

the redundancy with enhanced fault tolerance and increased
storage overhead. Hence, every data item of size S with m
data blocks encoded into n blocks of size b increases the
redundancy by factor . Considering the involved parameters,
the redundancy factor denoted by RF' can be represented as
in Equation 2:

S .

n
3) Rebuilding cost: in an erasure coded system is defined
as a rate at which corrupted or lost chunks, due to the failure of
individual peer nodes in the overlay system, can be recovered.
This cost factor is directly proportional to the threshold m.
Hence, the minimum number of chunks required to reconstruct
the original data holds the information corresponding to lost
ones. As the threshold m approaches n (m — n), the
rebuilding cost RC' increases, as modeled in Equation 3:

=

N u(0)—di(3)’
Zi:l Naouwn (1)

m -

where u:(¢) and d:(i) are the uptime and the downtime
of the peer node 7, and Ng,y, iS number of down times
per peer node. The numerator in Equation 3 represents m
chunks distributed over the total disk capacity |EC| and the
denominator represents the total time to failure of all reparable
peer nodes in the overlay network.

4) Storage consumption: in a P2P network is bound by
an upper limit preventing the storage of data items chunks
of varying sizes beyond the existing disk storage capacity
at individual peer nodes. In an erasure coded system where
every peer node does not store chunks of every data item,
the objective is to minimize the storage consumption at each
individual peer node. We estimate the storage consumption
SC objective for a data item over a P2P network with N peer
nodes by adding size of n chunks and dividing it by total disk
capacity of peer nodes where the n chunks are placed:

N M n 1_-E b
scz;z;;(m)f 4
i=1 j=1I=

where E : [1, N]x[1, M]x[1,n] — [0, 1] is a boolean function
defined as follows:
B {0, ™" chunk of data item j is stored on node i; 5)

1, otherwise,

and b; is the size of the chunks of the data item j and EC is
the storage disk capacity at peer node +.

5) System reliability: in a structured P2P network overlay
assumes that peer nodes with unique inherent characteristics
have the ability to join or leave the network at any time. This
feature corresponds to the tendency of individual nodes to fail
in large scale systems. In our model, reliability of stored data
item chunks is expressed through the failure of k£ out of n peer
nodes hosting the unique chunks of data item. Therefore, the
system reliability S A maximization is achieved by minimizing
failure of k£ or more peer nodes hosting n chunks, as defined
in Equation 6:

N M n

SA:HHHE.F(k,n), (6)

i=1j=11=1

where FE is defined in Equation 5 and F'(k,n) represents the
probability of failure of £ or more peer nodes out of n peer
nodes following the binomial distribution! [11]:

k—1
n . .
F(k,n)= cat- M0 7
(k.n) g@af ! @)
where a and f are the availability and failure probability of
the ™" peer node.

6) Latency: for a data item with n encoded chunks over the
P2P network can be particularly high, as performing the read
and write requests initiated by the peer nodes in the overlay
network pertaining to a data item requires processing of n
chunks instead of one sequential data item. Furthermore, it is
essential to utilize high bandwidth channels to avoid peer nodes
with low bandwidth network connections for chunk storage
and retrieval. In order to model latency L, it is imperative to
consider the total number of read and write requests for a data
item chunk of size b made by every peer node in the overlay
network, and divide it by the minimum bandwidth across the
network path of source peer node requesting the chunk and
destination peer node storing the chunk:

N M n
L= 3030 (= By gt (R + W (i),

i=1 j=1 I=1
3

where E is defined in Equation 5, H(j,1) is the i*" peer node
hosting an encoded chunk [ of the data item j, R(7,j) are the
number of read requests from peer node ¢ for any chunk of
data item j, W (i, ) are the number of write requests from
peer node ¢ for any chunk of data item j, and B(i, H(j,1))
is the minimum bandwidth from the peer node i to the peer
node hosting the chunk [ of the data item j.

E. Optimization Objectives

While previous research primarily focused on optimizing a
single objective, the performance of an erasure coded system
in an overlay network depends on multiple objectives. In such
cases, the optimization of one objective leads to a degraded
performance of the others. Hence, we define in our model the
conflicts between the objectives discussed in Section III-D.

Uhttp://www.ewp.rpi.edu/hartford/~ernesto/S2008/SMRE/Papers/
Kuo-Zuo-koon.pdf



1) Encoding — redundancy — rebuilding: The first three
conflicting objectives, encoding rate, redundancy factor, and
rebuilding cost, directly correspond to the chosen (m,n) erasure
coding scheme with minimal overlay characteristics. On one
hand, as the threshold factor m approaches the width factor n
(m — n), the encoding rate increases, while the redundancy
factor decreases and viceversa. On the other hand, the rebuild-
ing cost is directly proportional to threshold factor m, which
is in direct conflict with the redundancy factor.

2) Storage — latency — reliability: The second conflict
corresponds to the storage, reliability and latency objectives.
As the width n increases with respect to the threshold m,
more chunks are required to be stored adding to the storage
consumption of the system with enhanced reliability. Further-
more, in the case of latency and reliability conflict, the higher
width n means an increase in the read and write costs with
respect to storing and propagating data item chunk updates
over geographically distributed peer locations.

IV. TwWO-STAGE MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization involves the identification of
one or several solutions that optimize specific objective func-
tions within given constraints. In the case when the op-
timization involves several conflicting objectives, typically
results in a set of alternate tradeoff solutions. The real-
life multi-objective optimization problems usually have high
complexity and involve multiple ¢ > 2 objective functions
fi (2, f2(2),..., f, (T) to be minimized or maximized,
where @ = (x1,x2,...,x,) is a vector over a set of decision
variables within a search space X (? € X). Furthermore,
a solution 17{ is said to dominate another solution 9?5 if it
is better with respect to at least one objective: f; (:z:_1>) <
fi (@3),Vi € [1,p], and 3j € [1, p] such that f; (z7) < f; (73).
The set of non-dominated solutions called Pareto optimal set
in the search space X represents tradeoff values between the
objective functions. The Pareto optimal set defines the Pareto
front of a infinite points of tradeoff solutions.

In this work, we use the NSGA-II [3] multi-objective opti-
mization algorithm to compute the optimal tradeoffs between
our target objectives in two optimization stages: the first stage
optimizes the encoding scheme with the encoding rate, data
redundancy, rebuilding cost as objectives, while the second
stage optimizes the encoded chunk placement in the overlay
network with storage, reliability and latency conflicts.

A. Stage-1: Encoding Scheme Optimization

Algorithm 1 describes the step-wise representation of the
first stage optimization process, which identifies the Pareto
optimal set of (m,n) encoding schemes, modeled based on
the encoding rate, data redundancy, and rebuilding cost as
objective functions. The search space of this optimization is
bounded by considering two decision variables: the width n
constrained in the range n € [3, N) and the threshold m in
the range m € [2,n). The decision vector 2’ containing the
two variables is represented as a single individual within the
population pool. As with any other evolutionary algorithm,
the input parameters are the maximal number of individual
evaluations Eval,,., and the population size P. Additionally,
the number of peer nodes N is also required by our model.

Algorithm 1: Encoding scheme optimization algorithm.

Input : N; // Number of peer nodes
Input : Evalyaz; // Maximal number of evaluations
Input : P; // Population size
1 Ewval < 0; // Initialize number of evaluations
2 X « 0 // Create empty population set
3 while Eval < |P| do
4 m <« rand(2,n); // Generate random threshold
5 n <« rand(3, N); // Generate random width
6 < (m,n); // Generate encoding scheme individual
7 (? ER, RF, RC) < evaluate_encoding_scheme (?)
8 X « XU (7 ER, RF, RC); // Add individual
9 Eval < Eval + 1
10 end
1 while Eval < Eval,,q. do
12 @ « crossover(X); // Crossover 2 random individuals
13 Z <« mutation (7), // Mutate new individual
14 (m,n, ER, RF, RC) <+ evaluate_encoding_scheme (7)
15 X + XU (m,n, ER, RF, RC); // Add new individual
16 Eval < Eval +1
17 end

18 X, + sort(X);
19 return pareto_set(X,);

// Non-dominated sorting
// Return Pareto optimal set

We initiate the optimization process by creating an empty
population set, where the candidate individuals are stored
(line 2). After initialization, we fill the population set with
randomly generated (m,n) encoding schemes, evaluations
based on the three objective functions (lines 3 — 10). If the
maximum number of evaluations is higher than the population
size, we select two random individuals for crossover creating
a new child solution (line 12), as described in Section V-B.
Afterwards, we apply a mutation operator on the created
solution with a certain probability (line 13) and merge the
newly generated encoding scheme 7, which is evaluated
(line 7) with the population set within the defined constraints
(line 15). We repeat this process until the maximal number of
evaluations is reached, and eliminate in each iteration the lower
quality solutions from the population to improve its quality by
accommodating the better newly identified solutions (lines 11
— 17). Finally, we sort all solutions in the population set based
on dominance (line 18) and the return the Pareto optimal set of
encoding schemes (line 19). As all the attained non-dominated
solutions are used as input in the next optimization stage, no
decision making is required.

B. Stage-2: Chunk Placement Optimization

The second stage of the optimization process corresponds
to the identification of the optimal trade-off placement solu-
tions for n encoded chunks in an overlay network with IV peer
nodes by simultaneously minimizing the storage consumption,
system reliability and latency. In this stage, the decision vari-
ables i/ are represented by the peer nodes where the n encoded
chunks can be placed. The i*® component of the solution vector

contains the peer node where the i*" encoded chunk is
mapped with the corresponding encoding scheme.

Algorithm 2 takes as input the Pareto optimal set of
encoding schemes obtained in the first stage and the set of [V
peer nodes in the overlay network. The algorithm then spawns
multiple separate optimization tasks, each corresponding to a
separate encoding scheme (line 2). Similar as in the first stage,
we start all these optimization processes by creating an empty
population set Y (line 4), randomly filled with individual



Algorithm 2: Chunk placement optimization algorithm.

Input : EncodingSchemes;
Input : N;

Input : Evalymaz;

Input : Population;

// Encoding schemes

// Number of peer nodes

// Maximum number of evaluations
// Population size

1 Z « 0 // Create empty population set
2 while ¢ < |EncodingSchemes| do

3 FEwval < 0; // Initialize number of evaluations
4 Y « 0; // Create empty population set
5 while Eval < |population| do

6 Y <+ rand(chunk_place(n)); // Place random chunk
7 (m,n,SC,SA, L) + evaluate_chunk_placement (7)

8 Y eYU(?,m,n,SC, SA,L); // Add individual
9 FEval <+ Eval +1

10 end

11 while Fval < Eval,,q. do

12 <+ crossover(Y); // Crossover 2 individuals
13 Y «— mutation(Y); // Mutate new individual
14 (m,n,SC,SA, L) < evaluate_chunk_placement (7)

15 Y «~YU(m,n,SC,SA,L); // Add individual
16 Ewval < Eval +1

17 end

18 Ys + sort(Y); // Non-dominated sort
19 Z <+ Z U pareto_set(Ys) ; // Add Pareto optimal set
20 end

// Non-dominated sort
// Return Pareto optimal set

21 Zg + sort(Z);
22 return pareto_set(Zs);

evaluated chunk placements 7 (lines 6 — 8). Afterwards,
as long as the maximal number of evaluations Eval,,q; is
not reached, we generate new solutions using the crossover
and mutation operators, evaluated and added to the solution
set (lines 11 — 16). We present the implementation of the
crossover and mutation operations in Section V-B. When the
maximal number of evaluations is reached, we perform a non-
domination sort to identify the set of Pareto optimal solutions
Y. The optimal solutions from every separate optimization
process are then merged into a single population set Z
(line 22). Finally, we sort the aggregated population set Z
based on dominance and present the final Pareto set, containing
the encoding scheme and chunk placement, to the decision
making entity (lines 21 — 22).

V. IMPLEMENTATION

In this section, we discuss the the essential implementation
details of our model with respect to the P2P based overlay
network and the multi-objective optimization algorithms.

A. Overlay Network

We simulated the peer-to-peer based overlay network sys-
tem on top of Hive2Hive?, which is a well known Java-
based structured P2P file synchronization and sharing library
with DHT support. Since Hive2Hive supports only replication
policy, we performed changes to support erasure coding, where
every peer node receiving a data item initially applies a random
(m,n) scheme and distributes the n chunks to a random set of
peer nodes. We further assume every peer node in the overlay
network to have a specific storage disk capacity with a fixed
number of stored data items of varying size, provisioning the
current storage consumption at each peer node. We also defined
a scheme to allow every peer node leave and join the network
after a random time interval, which is a common scenario
in large scale P2P networks. This allowed us to estimate the

Zhttp://hive2hive.com/

TABLE II: Simulation setup.

Parameters
Storage disk capacity
Minimum bandwidth

Peer node uptime

Range
1GB to 10GB
128 kbit s~ to 1000 kbits™*
20 % to 80 %

uptime of a peer node, as well as its failure frequency, thus
enabling the approximation of individual availability of each
peer node in the overlay network.

We also implemented a policy to enable every peer node in
the overlay system make at least m read and n write requests
for chunks of a corresponding data item, where an ‘" peer
node making a request to j'' peer node receiving a request
has the minimum bandwidth along the network path. The
minimum bandwidth model provides our simulation with a
real networked system-based scenario, where the size of any
network packets to be transferred between two peer nodes is
determined by dividing the size of the stored data item by the
minimum bandwidth along the path of the source peer node
to the destination. We collect this information with respect to
our simulated P2P-based erasure coded storage model for the
data item and feed it into our optimization algorithms.

B. Optimization Framework

We perform the optimization of the multiple conflicting
objectives (Section III-E) modeled as part of the information
collected from the simulated overlay system (Section V-A) us-
ing the NSGA-II [3] multi-objective optimization algorithm. To
instantiate NSGA-II in our optimization module, we used the
JjMetal [5] object-oriented Java framework for multi-objective
optimization problems.

We implemented particular modifications in the jMetal
framework to deal with the specific characteristics of our
model. More concretely, we developed new crossover and
mutation operators to enable the second optimization stage,
as the standard crossover operators of jMetal do not guarantee
the correctness of the new solution. For example, a crossover
between two placement individuals with a width of n = 10
may produce a child with an incorrect number of chunks
that will induce a mismatched placement. For this reason,
we extended the jMetal to support partially-mapped crossover
operations [6]. This crossover operator randomly selects two
cut points on both parent individuals. For creating the child
placement, the sub-mapping between the two cut points in
the first parent replaces the corresponding sub-mapping in the
second parent. Afterwards, the inverse replacement is applied
outside of the cut-off points, thus eliminating duplicates in the
mapping.

Furthermore, we modified the mutation operators included
in jMetal by implementing simple bit swap mutation [12] to
introduce random perturbations into the search process and
diversity in the homogeneous populations. This operator works
by simply switching the values between two randomly selected
points in the individual.

VI. EXPERIMENTAL RESULTS

In this section, we first present our experimental setup
and further analyze the results of our optimization approach
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Fig. 2: Pareto front representation of the two stages optimization in a 50 peer nodes overlay network.

including comparison with the related work.

A. Experimental Setup

We simulated a P2P storage system, extended to encompass
the minimum network bandwidth model and the individual
peer availability in P2P networks. In terms of bandwidth
and peer node availability, we based our simulation on a
recent study enclosing various measurements of real-world P2P
networks [15]. Based on this study, we simulated minimum
bandwidth between peer nodes in the overlay network using
random uniform distribution within the range as listed in
Table II. Similarly, we simulated the uptime of each peer node
using a random uniform distribution within the range specified
in Table II. The uptime range is based on the assumption
that the joining and leaving of peer nodes in a large scale
P2P networks is a common scenario. We understand that
the overlay network simulation with defined model involves
inefficacies to that of real world overlay networks. However,
in lack of access to the large overlay systems as used in our
experimental setup, simulation is the only alternative.

We simulated a structured P2P overlay network with 50,
100 and 200 peer nodes similar to [8] to analyze the scalability
of our approach with increasing peer nodes. We presented the
implementation details of the overlay network in Section V-A.
We conducted our experiments over a single data item, how-
ever, the experiments using our approach can be extended to
incorporate multiple data items too. Our preliminary analysis
on the problem size and the specifics of the model allowed
us to identify the optimized input parameters for the NSGA-II
algorithm. We selected a population size of 500 individuals
and 1000 separate evaluations for each case of N = 50,
N = 100 and N = 200 peer nodes in the overlay network

for the execution of both optimization stages. We configured
both algorithms to use the crossover operator with a probability
of 90% and the mutation operator with a probability of %

We studied in each experiment the tradeoff between the
conflicting objectives at both optimization stages, along with
the change in each objective for the various encoding schemes
in the final Pareto optimal set.

B. Result Analysis

Figure 2a and 2b shows the representation of the Pareto
front of the two optimization stages over a P2P overlay
network with 50 peer nodes. The axis ranges in both figures
are normalized in percentage with respect to the minimum
and maximum values obtained over the complete execution.
We clearly observe that our approach obtains a number of
non-dominated solutions. We obtained similar Pareto fronts
for 100 and 200 peer nodes but unable to present them
here due to space limitations. Analyzing the Pareto front
produced during the first stage, we observe that the solutions
are uniformly spread and their convergence is also good. The
Pareto front obtained after the second stage shows a good
convergence towards lower latency and storage, while offering
higher reliability. The spread of the solutions, however, is not
uniform and some outliers are present.

To analyze the variety of obtained solutions, we filtered
a representative subset of them with encoding schemes(m,n)
having varying fault-tolerance level k& with increasing width n
as shown in Figures 3a and 3b for a P2P overlay network with
50 nodes. The x-axis represents the selected (m,n) encoding
schemes with specific chunk placements and the y-axis the
optimization percentage in each objective. We computed this
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Fig. 3: Objectives optimization percentage for 50, 100 and 200 peer nodes.

percentage by first normalizing the objectives within their
value intervals in the Pareto front, and then computing their
optimized percentage with respect to the overall network
such that their aggregated value amounts 100%. The higher
percentage in the y-axis represents higher quality values for the
objectives. One interesting observation in this solution subset is
the varying fault tolerance level k£ = n—m, with the minimum
value of 1 represented by the (2, 3) encoding scheme, and the
maximum value of 24 corresponding to the (15, 39) encoding
scheme.

We can draw an important observation with respect to the
conflicting objectives at both optimization stages. In the first
stage (Figure 3a), the increase in aggregated percentage of
the encoding rate and rebuilding cost results in a decrease
in the redundancy percentage. This behavior is due to the

conflicting characteristic of the redundancy objective towards
the encoding rate and rebuilding cost. Similarly in the second
stage (Figure 3b), an increase in the aggregated percentage of
the storage consumption and latency results in a decrease in
system reliability.

Second observation is with respect to the optimization of
erasure coding and overlay network performance objectives at
distinct stages. In the second stage (Figure 3b), the encoding
schemes with maximized system reliability yields minimized
redundancy factor for the corresponding optimized encoding
schemes (Figure 3a). However, in general, increasing data
redundancy, modeled in this paper as redundancy factor, en-
hances system reliability. This justifies the two stage optimiza-
tion approach as presented in this paper. Further, supported
by identifying that increasing fault-tolerance level k£ of an



erasure coding system resulted by maximizing redundancy
factor need not necessarily reflect enhanced reliability. The
argument owes to the chunk placements over peer nodes
with varying individual availability in the overlay network as
regarded in second stage of the optimization approach.

Another observation with respect to the selection of the
appropriate solution in an overlay with 50 peer nodes (Fig-
ure 3b) we can draw from the P2P network characteristics.
For P2P networks suffering from constant peer node failures,
a solution with a (2, 3) encoding scheme guarantees a higher
system reliability of up to 50%. However, in order to offer
higher fault tolerance while maintaining a similar reliability of
49.4%, a solution with (6,13) and (7,22) encoding schemes
can be chosen.

Similarly, if the P2P network suffers from high latency,
a (2,3) encoding scheme with optimized placement from the
solution subset of 50 peer nodes can be chosen. With respect
to storage consumption, if the peer nodes suffer from a lack
of storage disk capacity, the solutions with the (17,40) and
(15,39) encoding schemes can be chosen.

For a limited number of optimal trade-off solutions, using a
manual decision making strategy is sufficient. For large overlay
networks, however, an automated decision making module,
such as in [14], can be applied to select the appropriate trade-
off solution. The process of automated decision making is a
separate research field and it is out of the scope of this work.

Similar observations, as provided above for a 50 peer nodes
solution subset, can be drawn for 100 peer nodes(Figure 3c
and 3d) and 200 peer nodes(Figure 3e and 3f).

C. Related Work Comparison

We compare our work with one important related work [17]
used in the Triones system that employs a weighted opti-
mization technique by assigning weights to each objective
such that their aggregated sum is 1. Since the objectives
considered in [17] are different than ours, we adapted it to be
comparable to our work. Since the Triones experimental results
are limited to two objectives, we customized its approach
assuming storage consumption and latency as one objective
and the system reliability as the second.

We performed the comparative analysis over an overlay
network with 50 peer nodes for the chunk placement optimiza-
tion objectives only in two scenarios. In the first scenario, we
assumed that the system reliability has a weight of 50%, while
the storage consumption and latency have an equal aggregated
weight of 50%. We executed the weighted sum optimization al-
gorithm multiple times with varying ratios between the storage
consumption and the latency weights and sorted the obtained
solutions based on dominance. While the Triones approach
identified only two distinctive solutions listed in Table III, our
chunk placement optimization approach computed almost 500
separate trade-off solutions, including the two identified by
Triones. In the second scenario, we assumed three pairs of
varying weights for the aggregated storage consumption and
latency as first objective and system reliability as the second:
(95%,5%), (75%,25%) and (60%,40%),

Table IV shows that both methods identified three solutions
with the encoding schemes (27,28), (30,31) and (34, 37) for

TABLE III: Weighted sum optimization with similar weights.

Encoding Scheme Storage + Latency Reliability
(2,3) (7.257 4 42.742) = 50 % 50 %
(3,10) (28.321 4+ 21.678) = 50 % 50 %

TABLE IV: Weighted sum optimization with varying weights.

Encoding Scheme Storage + Latency Reliability
(27,28) (46.25 + 48.64) = 94.89 % 5.10 %
(30, 31) (46.13 4+ 48.77) = 94.9 % 5.09 %
(34, 37) (48.13 4+ 46.70) = 94.83 % 5.16 %
(16,17) (27.24 4+ 47.94) = 75.18 % 24.82 %
(15,23) (35.91 + 23.85) = 59.76 % 40.24 %

the first set (95%, 5%) of optimization weights. For the sec-
ond set (75%,25%), one solution with the (16,17) encoding
scheme is identified as optimal. Finally for the third set
(60%,40%) of optimization weights, one solution with the
(15,23) encoding scheme is represented in the sets provided
by both methods. Similar to the first scenario, our method
has identified hundreds of more different tradeoff solutions,
in part provided in Figure 3. Considering these results, our
approach provides much wider range of Pareto tradeoff so-
lutions compared to the fraction of solutions obtained by
the Triones weighted sum method. Moreover, our optimized
encoding schemes and placement solutions dominate the com-
pared approach in terms of varying fault tolerance levels.

D. Overhead analysis

One overhead of our optimization approach is higher
execution time complexity of the evolutionary NSGA-II-based
algorithm [8]. Table V shows an increase in execution time
for our optimization algorithms with varying peer nodes in
the overlay network. The execution time can be minimized
for the second chunk placement optimization stage by par-
allelizing the chunk placement optimization of the different
encoding schemes obtained in the first optimization stage
(i.e. parallelizing the outer while loop between lines 2 —
20 in Algorithm 2). However, as the focus of our work is
to determine and analyze the quality of different encoding
schemes and chunk placements for erasure coding in overlay
networks, we leave its parallelization for future work.

VII. CONCLUSION

Finding the optimal erasure encoding scheme and encoded
chunks placement is one of the key problems in overlay-
based erasure coded storage. This paper proposes a novel
two stage multi-objective optimization approach for identi-
fying the appropriate encoding schemes and the optimized
placement of encoded chunks in an overlay network. One of
the key strengths of our approach is to distinguish between
the erasure coding factors such as encoding rate, redundancy
factor and rebuilding cost, which influence the selection of
the encoding scheme. Furthermore, it considers other essential
overlay factors, such as storage consumption, latency and
system reliability affecting the encoded chunks placement.
In addition, we view the performance factors as objectives
instead of constraints, allowing our approach to search for
solutions that optimize the categorical erasure coding and
overlay objectives in two distinct stages. Specifically, we apply



TABLE V: Execution time of the optimization algorithm.

Number of Overlay Nodes Time in milliseconds
50 509.696
100 1866.579
200 7230.608

the evolutionary NSGA-II algorithm at each stage to obtain
high quality solutions in terms of optimized encoding schemes
and corresponding encoded chunk placement. We performed
an extensive set of experiments covering multiple overlay net-
work scenarios with varying sizes and studied the optimization
results in terms of the variety of the obtained tradeoff solutions.
Finally, the Pareto optimal sets of encoding schemes and
chunk placements produced by our method include and even
dominate the fraction solutions delivered by a related weighted
sum optimization method.
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