2,240 research outputs found

    Human brain evolution and the "Neuroevolutionary Time-depth Principle:" Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder.

    Get PDF
    The DSM-III, DSM-IV, DSM-IV-TR and ICD-10 have judiciously minimized discussion of etiologies to distance clinical psychiatry from Freudian psychoanalysis. With this goal mostly achieved, discussion of etiological factors should be reintroduced into the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). A research agenda for the DSM-V advocated the "development of a pathophysiologically based classification system". The author critically reviews the neuroevolutionary literature on stress-induced and fear circuitry disorders and related amygdala-driven, species-atypical fear behaviors of clinical severity in adult humans. Over 30 empirically testable/falsifiable predictions are presented. It is noted that in DSM-IV-TR and ICD-10, the classification of stress and fear circuitry disorders is neither mode-of-acquisition-based nor brain-evolution-based. For example, snake phobia (innate) and dog phobia (overconsolidational) are clustered together. Similarly, research on blood-injection-injury-type-specific phobia clusters two fears different in their innateness: 1) an arguably ontogenetic memory-trace-overconsolidation-based fear (hospital phobia) and 2) a hardwired (innate) fear of the sight of one's blood or a sharp object penetrating one's skin. Genetic architecture-charting of fear-circuitry-related traits has been challenging. Various, non-phenotype-based architectures can serve as targets for research. In this article, the author will propose one such alternative genetic architecture. This article was inspired by the following: A) Nesse's "Smoke-Detector Principle", B) the increasing suspicion that the "smooth" rather than "lumpy" distribution of complex psychiatric phenotypes (including fear-circuitry disorders) may in some cases be accounted for by oligogenic (and not necessarily polygenic) transmission, and C) insights from the initial sequence of the chimpanzee genome and comparison with the human genome by the Chimpanzee Sequencing and Analysis Consortium published in late 2005. Neuroevolutionary insights relevant to fear circuitry symptoms that primarily emerge overconsolidationally (especially Combat related Posttraumatic Stress Disorder) are presented. Also introduced is a human-evolution-based principle for clustering innate fear traits. The "Neuroevolutionary Time-depth Principle" of innate fears proposed in this article may be useful in the development of a neuroevolution-based taxonomic re-clustering of stress-triggered and fear-circuitry disorders in DSM-V. Four broad clusters of evolved fear circuits are proposed based on their time-depths: 1) Mesozoic (mammalian-wide) circuits hardwired by wild-type alleles driven to fixation by Mesozoic selective sweeps; 2) Cenozoic (simian-wide) circuits relevant to many specific phobias; 3) mid Paleolithic and upper Paleolithic (Homo sapiens-specific) circuits (arguably resulting mostly from mate-choice-driven stabilizing selection); 4) Neolithic circuits (arguably mostly related to stabilizing selection driven by gene-culture co-evolution). More importantly, the author presents evolutionary perspectives on warzone-related PTSD, Combat-Stress Reaction, Combat-related Stress, Operational-Stress, and other deployment-stress-induced symptoms. The Neuroevolutionary Time-depth Principle presented in this article may help explain the dissimilar stress-resilience levels following different types of acute threat to survival of oneself or one's progency (aka DSM-III and DSM-V PTSD Criterion-A events). PTSD rates following exposure to lethal inter-group violence (combat, warzone exposure or intentionally caused disasters such as terrorism) are usually 5-10 times higher than rates following large-scale natural disasters such as forest fires, floods, hurricanes, volcanic eruptions, and earthquakes. The author predicts that both intentionally-caused large-scale bioevent-disasters, as well as natural bioevents such as SARS and avian flu pandemics will be an exception and are likely to be followed by PTSD rates approaching those that follow warzone exposure. During bioevents, Amygdala-driven and locus-coeruleus-driven epidemic pseudosomatic symptoms may be an order of magnitude more common than infection-caused cytokine-driven symptoms. Implications for the red cross and FEMA are discussed. It is also argued that hospital phobia as well as dog phobia, bird phobia and bat phobia require re-taxonomization in DSM-V in a new "overconsolidational disorders" category anchored around PTSD. The overconsolidational spectrum category may be conceptualized as straddling the fear circuitry spectrum disorders and the affective spectrum disorders categories, and may be a category for which Pitman's secondary prevention propranolol regimen may be specifically indicated as a "morning after pill" intervention. Predictions are presented regarding obsessive-compulsive disorder (OCD) (e.g., female-pattern hoarding vs. male-pattern hoarding) and "culture-bound" acute anxiety symptoms (taijin-kyofusho, koro, shuk yang, shook yong, suo yang, rok-joo, jinjinia-bemar, karoshi, gwarosa, Voodoo death). Also discussed are insights relevant to pseudoneurological symptoms and to the forthcoming Dissociative-Conversive disorders category in DSM-V, including what the author terms fright-triggered acute pseudo-localized symptoms (i.e., pseudoparalysis, pseudocerebellar imbalance, psychogenic blindness, pseudoseizures, and epidemic sociogenic illness). Speculations based on studies of the human abnormal-spindle-like, microcephaly-associated (ASPM) gene, the microcephaly primary autosomal recessive (MCPH) gene, and the forkhead box p2 (FOXP2) gene are made and incorporated into what is termed "The pre-FOXP2 Hypothesis of Blood-Injection-Injury Phobia." Finally, the author argues for a non-reductionistic fusion of "distal (evolutionary) neurobiology" with clinical "proximal neurobiology," utilizing neurological heuristics. It is noted that the value of re-clustering fear traits based on behavioral ethology, human-phylogenomics-derived endophenotypes and on ontogenomics (gene-environment interactions) can be confirmed or disconfirmed using epidemiological or twin studies and psychiatric genomics

    Social learning of predation risk and safety: fish behaviour as a model for fear recovery

    Get PDF
    As animal behaviour theory has developed over the past 70 years, much attention has gone toward social information use. Social cues in a variety of forms can be critically important in finding food and mates, in defending territories, and in avoiding predators. A wide variety of prey species are capable of learning from social information regarding predation threats, but little attention has gone toward factors that influence the acquisition of such information, how it compares to other learning mechanisms, or how prey learn socially about the absence of risk. Herein, I present research with fathead minnows, Pimephales promelas, where I first showed that learned fear responses were similar between social learning and individual learning, but socially-acquired information was more persuasive and had an overriding effect on previously learned safety. Using repeated exposures to general predation cues that lacked specific information about the predator’s identity, I induced uncertainty in naïve individuals (observers) or in knowledgeable individuals (models) within a social pairing. Repeated exposure to risk, regardless of uncertainty, promoted a high-risk phenotype that was characterized by propensity to freeze, stereotypic route-tracing, and neophobia – a phenomenon where animals show generalized fear responses toward novel stimuli. Attempting to weaken this phenotype, I paired high-risk individuals with models that were experienced with an odour as safe, but a single conditioning with one ‘safety model’ had little effect. Instead, interacting with high-risk individuals caused models to indirectly acquire the high-risk phenotype. Hence, this social transfer of information caused models to behave fearfully, making them poor demonstrators of safety. To counteract this, I used groups of calm models, or multiple, individual calm models in succession. Both strategies weakened fear in observers, as well as socially-transferred fear in models, but surprisingly this effect was much stronger among individuals exposed to risk in isolation, despite their tendency for stronger neophobia initially. While our basic knowledge of social systems has grown substantially in recent years, rarely has it been applied to human issues. My work bridges animal behaviour theory and human psychology, arguing that our understanding of predation-related fear and the information transfer in social animals can prove fruitful in understanding post-traumatic stress and behavioural therapy for its recovery

    The Southeast in Context: An Assessment of the Trauma Associated With Agriculture

    Get PDF
    Hunter-gatherer tradition prevailed as the dominant subsistence pattern for most of human history. Between 9,000 and 13,000 years ago peoples in the Levant, New World, and Asia began the domestication and cultivation of wild flora and fauna, creating a subsistence pattern that subsequently spread to neighboring regions (Abbo et al. 2010; Bellwood 2009; Purugganan & Fuller 2009; Richerson et al. 2001). The influence of this agricultural transition on human populations is manifested in various forms in the human skeleton, many of which have received intensive study: dental caries, degenerative joint disease, decreased stature, and increased birth rates (Bridges 1991; Larson 1997, 2006; Tayles et al. 2000). However, few studies have focused on the fracture trauma associated with agriculture. As early as 1976, Steinbock noted a slight decrease in the number of fractures that populations in the southern U.S. exhibited as they moved from a hunter-gatherer lifestyle to floodplain agriculture. More recently, Domett and Tayles (2006) examined changes in fracture patterns through time in prehistoric rice agriculturalists in Thailand, hypothesizing that increased intensification of agricultural activities was responsible for increased rates of long bone fracture

    Entanglement is a costly life-history stage in large whales

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 7 (2017): 92–106, doi:10.1002/ece3.2615.Individuals store energy to balance deficits in natural cycles; however, unnatural events can also lead to unbalanced energy budgets. Entanglement in fishing gear is one example of an unnatural but relatively common circumstance that imposes energetic demands of a similar order of magnitude and duration of life-history events such as migration and pregnancy in large whales. We present two complementary bioenergetic approaches to estimate the energy associated with entanglement in North Atlantic right whales, and compare these estimates to the natural energetic life history of individual whales. Differences in measured blubber thicknesses and estimated blubber volumes between normal and entangled, emaciated whales indicate between 7.4 × 1010 J and 1.2 × 1011 J of energy are consumed during the course to death of a lethal entanglement. Increased thrust power requirements to overcome drag forces suggest that when entangled, whales require 3.95 × 109 to 4.08 × 1010 J more energy to swim. Individuals who died from their entanglements performed significantly more work (energy expenditure × time) than those that survived; entanglement duration is therefore critical in determining whales’ survival. Significant sublethal energetic impacts also occur, especially in reproductive females. Drag from fishing gear contributes up to 8% of the 4-year female reproductive energy budget, delaying time of energetic equilibrium (to restore energy lost by a particular entanglement) for reproduction by months to years. In certain populations, chronic entanglement in fishing gear can be viewed as a costly unnatural life-history stage, rather than a rare or short-term incident.Cooperative Institute for the North Atlantic Region (CINAR) Grant Number: NA14OAR4320158; Herrington-Fitch Family Foundation; M.S. Worthington Foundation; North Pond Foundation; Natural Sciences and Engineering Research Council of Canada; MIT Martin Family for Sustainability Fellowshi

    Entanglement is a costly life history stage in large whales

    Get PDF
    Data and figures associated with the project. See ReadMe for data descriptionIndividuals store energy to balance deficits in natural cycles; however, unnatural events can also lead to unbalanced energy budgets. Entanglement in fishing gear is one example of an unnatural but relatively common circumstance that imposes energetic demands of a similar order of magnitude and duration of life history events such as migration and pregnancy in large whales. We present two complementary bioenergetic approaches to estimate the energy associated with entanglement in North Atlantic right whales, and compare these estimates to the natural energetic life history of each individual whale.This work was supported by grants from the Herrington-Fitch Family Foundation, the M.S. Worthington Foundation, the North Pond Foundation, and the Cooperative Institute for the North Atlantic Region [CINAR; NA14OAR4320158] to MJM and JvdH. JvdH was supported by a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada, and an MIT Martin Family for Sustainability Fellowship

    A hybrid model to evaluate human error probability (HEP) in a pharmaceutical plant

    Get PDF
    The aim of the present research is to propose a hybrid model to evaluate Human Error Probability (HEP) called Logit Human Reliability (LHR). The new approach is based on logit normal distribution, Nuclear Action Reliability Assessment (NARA), and Performance Shaping Factors (PSFs) relationship. The present paper analyzed some shortcomings related to literature approaches, especially the limitations of the working time. We estimated PSFs after 8 hours (work standard) during emergency conditions. Therefore, the correlation between the advantages of these three methodologies allows proposing a HEP analysis during accident scenario and emergencies. The proposed approach considers internal and external factors that affect the operator's ability. LHR has been applied in a pharmaceutical accident scenario, considering 24 hours of working time (more than 8 working hours)

    2012 Abstract Book

    Get PDF
    • 

    corecore