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Abstract 

  

As animal behaviour theory has developed over the past 70 years, much attention has 

gone toward social information use. Social cues in a variety of forms can be critically important 

in finding food and mates, in defending territories, and in avoiding predators. A wide variety of 

prey species are capable of learning from social information regarding predation threats, but little 

attention has gone toward factors that influence the acquisition of such information, how it 

compares to other learning mechanisms, or how prey learn socially about the absence of risk. 

Herein, I present research with fathead minnows, Pimephales promelas, where I first showed that 

learned fear responses were similar between social learning and individual learning, but socially-

acquired information was more persuasive and had an overriding effect on previously learned 

safety. Using repeated exposures to general predation cues that lacked specific information about 

the predator’s identity, I induced uncertainty in naïve individuals (observers) or in 

knowledgeable individuals (models) within a social pairing. Repeated exposure to risk, 

regardless of uncertainty, promoted a high-risk phenotype that was characterized by propensity 

to freeze, stereotypic route-tracing, and neophobia – a phenomenon where animals show 

generalized fear responses toward novel stimuli. Attempting to weaken this phenotype, I paired 

high-risk individuals with models that were experienced with an odour as safe, but a single 

conditioning with one ‘safety model’ had little effect. Instead, interacting with high-risk 

individuals caused models to indirectly acquire the high-risk phenotype. Hence, this social 

transfer of information caused models to behave fearfully, making them poor demonstrators of 

safety. To counteract this, I used groups of calm models, or multiple, individual calm models in 

succession. Both strategies weakened fear in observers, as well as socially-transferred fear in 

models, but surprisingly this effect was much stronger among individuals exposed to risk in 

isolation, despite their tendency for stronger neophobia initially. While our basic knowledge of 

social systems has grown substantially in recent years, rarely has it been applied to human issues. 

My work bridges animal behaviour theory and human psychology, arguing that our 

understanding of predation-related fear and the information transfer in social animals can prove 

fruitful in understanding post-traumatic stress and behavioural therapy for its recovery.   
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Chapter 1: Introduction to predation risk and social learning1 

 

1.1. The threat of predation and the defences of prey 

The threat of predation is one of the strongest selective forces shaping the ecology of 

animal life (Lima & Dill 1990; Sih 1987). Antipredator defences in all forms evolve because 

they provide prey species with survival and reproductive benefits (Edmunds 1974). In particular, 

the ability of prey to respond to predation risk at the individual level (phenotypic plasticity) is 

critically important for fitness (DeWitt, Sih & Wilson 1998; Miner et al. 2005). In response to 

risk, some individuals modify their morphology (e.g., body size or depth, armour thickness, tail 

depth) to decrease the likelihood of a predator attack or to increase their chances of survival 

during attacks (e.g., Relyea 2001; Trussell 1996). Some species alter life-history traits such as 

their age or size at sexual maturation (e.g., Abrams & Rowe 1996; Crowl & Covich 1990), and 

the onset of habitat shifts (e.g., during metamorphosis) in a way that decreases predation risk at a 

particular life stage (Chivers et al. 2001a; Sih & Moore 1993). However, behavioural responses 

appear to be the most plastic and widespread antipredator strategies among animals, whether 

being aggression, fleeing, or hiding (Fordyce 2006; Lima 1998). Such behavioural modifications 

are generally faster to enact than alternatives, and thus the first line of antipredator defence.  

A prerequisite for implementing behavioural defences is the ability to distinguish 

between what is actually a predation threat and what is not (Blumstein & Bouskila 1996; Brown, 

Poirier & Adrian 2004). Although prey can often avert predation by avoiding risky habitats or 

activity at risky times, they often cannot be confined to those safe niches that typically are 

associated with no or little food gain (Lima & Bednekoff 1999b). Thus, while the energetic cost 

                                                           
1Some of the content of this chapter is published in the following book chapter, with sections removed or rephrased 

for brevity. Several other sections have also been added and have not been published. 

  

Crane AL, Ferrari MCO. (2013) Social learning of predator recognition: advances and future directions. In: 

Social Learning Theory: Phylogenetic Considerations Across Animal, Plant and Microbial Taxa (Clark 

ed.). Nova Science Publisher NY, USA. Pp. 53-82. 
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of antipredator behaviour may be lower than other types of defences (e.g. morphological 

defences), the time devoted to antipredator behaviour decreases the time available for other 

fitness-enhancing activities, such as foraging, mate courting, and territory defence (Blumstein, 

Daniel & Springett 2004a; Koch, Lynch & Rochette 2007; Orrock et al. 2008). Therefore, it is 

critical for prey to collect information about their environment and correctly distinguish between 

situations of risk and safety, adjusting their behaviours to maximize resource gain while 

minimizing their risk of being attacked (Ferrari, Sih & Chivers 2009; Lima & Dill 1990). 

Helfman (1989) demonstrated that prey adjust the intensity of their antipredator responses to 

match the level of threat posed by the predator. Damselfish, Stegastes planifrons, displayed 

increased avoidance behaviour when a predator was closer. Since Helfman’s (1989) study, the 

optimization (i.e., cost-benefit trade-off) of predator avoidance vs. normal activity has been 

consistently demonstrated across taxa, and is now dogma in predation ecology, generally being 

referred to as ‘threat sensitivity’ (e.g., Bishop & Brown 1992; Chivers et al. 2001b; Ferrari et al. 

2005).  

 

1.2. Fear effects 

An underlying link among all animals, at least during early life periods, is a persistent 

threat of an immediate and potentially violent death, which causes fear (Zanette & Clinchy 

2017). The scientific literature often uses the term ‘fright’ (Pfeiffer 1962) in place of fear, or 

instead uses more specific statements to avoid anthropomorphizing. However, the use of these 

terms is now widely accepted due to the universality of the behavioural, physiological, and 

neurobiological effects of fear among animal species, including humans (Clinchy et al. 2011; 

Clinchy, Sheriff & Zanette 2013). Hereafter, I will use these terms interchangeably.  

Research demonstrates that fear can have severe and long-lasting effects on animal 

ecology, especially when risk levels are high (Zanette & Clinchy 2017). For example, one 

behavioural outcome of living in a high-risk environment is neophobia – a phenomenon where 

prey show generalized fear toward novel stimuli. Neophobia can also be viewed as a lack of 

learning that risk is absent (Chivers et al. 2014; Greenberg & Mettke-Hofmann 2001). The 

concept of neophobia was initially developed in a foraging context, whereby populations of birds 

and mammals from different environments differed in their willingness to sample novel food 
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(reviewed in Gentsch, Lichtsteiner & Feer 1981; Greenberg & Mettke-Hofmann 2001; Voelkl, 

Schrauf & Huber 2006).  

The Dangerous Niche Hypothesis posits that neophobia is an adaptive trait because extra 

caution protects prey from potential risk (Greenberg & Mettke-Hofmann 2001). According to 

this hypothesis, prey should exhibit greater caution in riskier habitats. Thus, when the likelihood 

of facing novel predators is high, neophobia can help prey survive encounters with predators, 

even when they have no prior experience (Benard & Fordyce 2003; Ferrari et al. 2015b; Ferrari 

et al. 2015c). Neophobia should be especially beneficial under highly variable predation risk if it 

can be suppressed during low-risk periods (Brown et al. 2013). This plasticity is important 

because neophobia must also incur costs, or else it would be a universal trait. Ferrari et al. 

(unpublished data) documented costs of neophobia in a predator-free environment where 

neophobic damselfish, Pomacanthus chrysurus, were poorer competitors than non-neophobic 

individuals. Similarly, in a study on laboratory rats, Rattus norvegicus, neophobic individuals 

experienced a 20% increase in stress-related mortality (Cavigelli & McClintock 2003). Clearly, a 

high level of vigilance has an energetic cost and reduces time doing other fitness-related 

activities. While this is preferable to being consumed, neophobia can become maladaptive when 

the chances of being consumed are low, as in safe environments. Hence, it is not surprising that 

neophobia appears plastic in its expression, where riskier environments lead to both stronger and 

longer avoidance responses toward novel cues (Brown et al. 2014; Brown et al. 2013). 

 

1.3. Uncertainty 

Prey face a pervasive challenge of making appropriate decisions based on their current 

environment, the probable actions of others (e.g., predators and conspecifics), and the 

consequences of their available options (Dall 2010; Dall & Johnstone 2002). However, a 

fundamental aspect of the risk landscape is high spatial and temporal variability, with predators 

coming and going on a moment-to-moment, daily, lunar, or seasonal basis (Ferrari et al. 2010a; 

Sih 1992). Hence, the past knowledge of prey may not be valid at a new point in time, at new 

locations, or after using a less reliable mode of risk detection (e.g., indirect vs. direct, or 

olfactory vs. visual in some systems) (Giraldeau, Valone & Templeton 2002; Hickman, Stone & 

Mathis 2004; Laland & Williams 1998). This unpredictability leads to ‘uncertainty’, defined by 

Dall (2010) as “the moment-by-moment degree to which events are determined by factors that 
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are out of an animal’s control or immediate experience”. Uncertainty poses a major problem for 

prey because they may under- or over-respond to a stimulus (i.e., at an incorrect intensity), 

switch to another type of response, or even completely fail to respond, all of which potentially 

harming fitness (Ferrari, Crane & Chivers 2016). This uncertainty drives prey to adopt a ‘play it 

safe’ strategy and usually over-respond to predation threats in the absence of perfect information 

(Bouskila & Blumstein 1992), as predicted by Error Management Theory (Johnson et al. 2013). 

However, a model put forth by McNamara et al. (2012) predicts that prey should under-estimate 

risk when faced with uncertainty. I suspect that this is indeed the case in low risk environments, 

but not in situations where prey have learned that their environment is highly dangerous.  

 

1.4. Learning about predation risk 

Prey encounter a variety of stimuli (tactile, auditory, visual, or chemical) that can indicate 

predation risk, either before, during, or after an attack (Chivers & Smith 1998; Endler 1986). 

Some species innately recognize visual stimuli from predators, such as eye-like circles (Janzen, 

Hallwachs & Burns 2010). Other predation-related cues include chemical stimuli that are directly 

released by the predator such as their odour (a ‘kairomone’), diet cues, or cues from injured prey 

(Mathis & Crane 2017), in addition to cues that indirectly indicate the presence of a predator 

(e.g., predator habitat cues or the time of day when predators are active). Some aquatic species 

avoid predator odour without having prior experience with the predator, while also being capable 

of learning new predation-related information (e.g., Berejikian, Tezak & LaRae 2003; Epp & 

Gabor 2008; Gall & Mathis 2010; Vilhunen & Hirvonen 2003). Many other species lack innate 

recognition of predator odour and must rely more heavily on learning to recognize these cues as 

dangerous (Berejikian et al. 2003; Brown & Chivers 2005; Ferrari, Wisenden & Chivers 2010b). 

Typically, only a one-time experience is sufficient for predator-related information to be learned. 

This contrasts with the multiple training sessions that are often required in other contexts like 

foraging (e.g., Crane & Mathis 2011; Reader, Kendal & Laland 2003). It is not surprising to find 

such efficient learning when individuals deal with predators, due to the unforgiving nature of 

predation. Most studies have focused on learning to recognize novel predators based on either 

their odour or visual appearance, and Wisenden (2008) demonstrated that fish can learn to 

recognize an auditory cue as threatening.  
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Like any other communication system, learning has benefits and costs. In the context of 

predator-related information, prey must learn about predators to respond appropriately upon 

encounter, and then to survive and reproduce. However, collecting this information incurs costs 

such as travelling, sampling, sensory alertness (vigilance), and cognitive-processing costs. For 

instance, collecting direct, first hand, information can also be time consuming, and fatal, but it 

may also reduce uncertainty about predation risk (Arai et al. 2007; Griffin & Boyce 2009; Griffin 

& Haythorpe 2011; Rieucau & Giraldeau 2011). Many prey species are known to learn about 

predators via the risky behaviour of inspection (Brown & Godin 1999; FitzGibbon 1994; Godin 

& Crossman 1994; Magurran 1986) or when making behavioural displays toward predators to 

deter them (e.g., mobbing in birds) (Lorenz 1931; Ostreiher 2003). A few studies have 

demonstrated learning from witnessing a predator attack (Arai et al. 2007; Griffin 2009; Griffin 

& Haythorpe 2011). Berger et al. (2001) reported that moose, Alces alces, increased vigilance 

and responded to auditory cues from wolves, Canis lupus, after witnessing the predator kill their 

offspring, although the degree of individual learning is unknown in these studies when social 

cues were also available.  

 

1.5. Social learning 

Much attention has gone to the way that prey animals can learn from second-hand 

information. Through direct teaching by more experienced individuals, or via ‘eavesdropping’ on 

publicly-available information, naïve animals, including young, can quickly learn to find and 

capture food, how to choose mates, and how to successfully identify predator threats (Galef & 

Giraldeau 2001; Shier & Owings 2007; White 2004). Learning indirectly from social information 

allows prey to collect potentially life-saving information with minimal exposure and costs. 

However, one potential drawback is that the acquired information may sometimes be inaccurate, 

irrelevant, or in the worst case, erroneous (Danchin et al. 2004; Giraldeau et al. 2002; Laland & 

Williams 1998; Mineka & Cook 1986; Rendell et al. 2010).  

Group-living animals, and those living in close aggregations, have ample opportunity to 

acquire knowledge or skills from observing others (Hoppitt & Laland 2013), even across species 

when living in sympatry (Conover 1987; Ferrari & Chivers 2008; Mathis, Chivers & Smith 

1996). In the context of predation risk, social learning is frequently observed in mammals, birds, 

fishes, as well as in gregarious amphibians (e.g., Ferrari, Messier & Chivers 2007). While this 
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mode of learning was initially thought to be limited to highly social species, there is now 

evidence that social learning of predation risk can occur in non-social species (Coolen, Dangles 

& Casas 2005; Crane, Mathis & McGrane 2012; Wilkinson et al. 2010; Wong et al. 2005), 

revealing that they, too, pay attention to the fearful behaviour of surrounding conspecifics. 

In predation ecology, a social learning event involves an observer learning to recognize a 

specific habitat or species as a threat, or learning to display specific behaviours, from a model 

(Dugatkin 2009). These models are often referred to as ‘tutors’ or ‘demonstrators’, but I 

generally prefer to use the term ‘model’ to remove any innuendo that the individual is 

purposefully signalling the observer. Although fear reactions provide social information to 

nearby individuals, the purpose of such reactions is often to escape threats, rather than notifying 

others. The cues emitted by the model can be visual, auditory, chemical, or tactile. However, the 

vast majority of studies have allowed the observer and model to fully interact, thus allowing for 

multi-modal cue use and preventing the identification of the specific cue that triggered social 

learning (Ward & Mehner 2010).  

For the successful transmission of predator-related information to occur, the model 

obviously must convey the dangerous nature of the situation (Kelley et al. 2003; Krause 1993; 

Mineka & Cook 1986). Moreover, the intensity of the observer’s learned response positively 

correlates with that of the model (Ferrari et al. 2005; Griffin & Evans 2003; Mineka & Cook 

1993; Vieth, Curio & Ernst 1980), representing threat-sensitivity in a social learning context. 

This allows observers not only to label novel predators as risky, but also to distinguish whether 

they represent a high vs. low threat. While the intensity of the responses from the observer and 

their model are correlated, the observer’s learned response may be slightly weaker than that of 

the model, perhaps due to the perception of lesser risk by observers that are not directly exposed 

to the predator, or due to information degradation (Curio 1988).  

 

Defining social cues 

Griffin (2008) defined social learning broadly as “instances in which the behaviour of a 

demonstrator, or its by-products, modifies the subsequent behaviour of an observer”. Thus, 

learning from public information constitutes as social learning even when the model plays no 

active role in the teaching process (Danchin et al. 2004). Moreover, cues that are released by an 

injured model during a predation event, such as damage-released chemical cues, fit this 
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definition. Prey that detect these cues often learn to associate predation risk with the sight or 

odour of a predator, which will elicit antipredator responses in future encounters (Brown & 

Chivers 2005; Ferrari et al. 2010b). Some experts view this mode of learning as a form of social 

learning because the cues are technically social cues, being released by companion individuals 

(Brown & Laland 2003; Griffin 2004). We might even ask, does the model need to be alive for 

social learning to occur? Kruuk (1976) showed that gulls, Larus argentatus and Larus fuscus, 

can learn to display increased vigilance towards a mounted owl when a dead gull was put in 

close proximity. Damaged-released chemical cues differ from other social cues in that they are 

not controlled and modified by the model according to its interpretation of risk, and hence, these 

cues cannot be transmitted dishonestly (Brown & Chivers 2005; Ferrari et al. 2010b). For these 

reasons, I tend to consider damage-released chemical cues to be non-social cues. Going forward, 

herein, I will use the term ‘social learning’ to refer only to learning via observing the behaviour 

of models, as their behavioural cues can be voluntarily modulated. 

 

Voluntarily-released social cues 

Many species use alarm vocalizations to warn others of eminent danger (e.g., Blumstein 

1999; Templeton, Greene & Davis 2005), whereas numerous others learn about risk by visually 

observing fear reactions in models. In a classic study by Curio (1978), blackbirds, Turdus 

merula, learned to mob a novel predator by observing a conspecific model mobbing it. Similarly, 

Mineka et al. (1984) showed that rhesus monkeys, Macaca mulatta, watching a conspecific 

display ‘alarm’ behaviour in the presence of a snake learned to subsequently respond to the 

predator with an alarm response. It was not until the 1990s that researchers began investigating 

social learning of predation risk in ‘lower’ vertebrates. That decade was rich in literature on 

social learning in fishes (e.g., Brown & Laland 2003; Mathis et al. 1996; Suboski et al. 1990). To 

date, all studies on social learning of risk in fishes have involved species that are considered 

social, forming tight shoals or schools, and possessing group evasion behaviours.  

The experimental demonstration of social learning of predation risk involves a standard 

methodological approach (Fig. 1.1) (Mathis et al. 1996). First, during what is generally referred 

to as the ‘conditioning phase’, a predator-naïve individual (the observer) is paired with a 

predator-experienced individual (the model). Together the pair is exposed to a predator stimulus 

where the experienced model reacts, giving the naïve observer an opportunity to learn. However, 
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to demonstrate that the observer did in fact learn a new response after observing the model, the 

observer must display the response to the conditioned stimulus in the absence of the model. This 

takes place in the ‘testing phase’ (Mathis et al. 1996). Because one advantage of social learning 

is its potential to spread quickly throughout a population (Hoppitt & Laland 2013), a few 

researchers have explored how a predation-related piece of information can spread through a 

chain of transmission where naïve observers become experienced models for new, naïve 

observers. Cook et al. (1985) showed that in macaques, M. mulatta, information could propagate 

through a chain of two individuals, but the intensity of the response was not maintained through 

the learning chain. Suboski et al. (1990) showed that zebrafish, Danio rerio, could maintain 

learning through a chain of three individuals, and Curio et al. (1978) showed that information 

could be socially transmitted through a chain of seven blackbirds, T. merula.  

 

 

Figure 1.1. Experimental demonstration of social learning of predator-recognition [modified from Mathis et al. 

(1996)]. This standard methodology involves a conditioning phase where naïve individuals are paired with 

experienced individuals, where social information about risk can be transferred (bold arrow). Subsequently, 

observers are tested in the absence of the model to confirm whether they learned the information.  

 

1.6. Learning safety 

Learning about predators is not limited to risk, also extending to safety where a stimulus 

is learned as nonthreatening instead of dangerous or neutral. The learning of safety can occur via 
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repeated exposures to a stimulus (e.g., the odour or sight of a novel individual) in the absence of 

negative consequences (Ferrari & Chivers 2011). When such experience prevents a subsequent 

association between the stimulus and risk, psychologists refer to this as ‘latent inhibition’ 

(Acquistapace, Hazlett & Gherardi 2003; Lubow 1973). For example, when damselfish, 

Pomacentrus moluccensis, were repeatedly exposed (six times) to a novel odour, they failed to 

learn it as risky during a subsequent pairing with damage-released conspecific cues (Mitchell et 

al. 2011). Latent inhibition has been demonstrated in several aquatic species (e.g., Acquistapace 

et al. 2003; Ferrari & Chivers 2006b, 2011). While the research on social learning is ripe with 

examples of learning of risk, little is known about the ability of animals to socially acquire 

information about the safety of novel species or habitats (see details in Chapter 2).  

 

1.7. Study species and ‘Schreckstoff’  

The fathead minnow (Pimephales promelas; family Cyprinidae) is a fish species of small 

size (<10 cm) and one of the most common fishes in North America, being widely distributed 

from Mexico to Canada’s Northwest Territories, occupying ponds, lakes, and rivers (Page & 

Burr 1997). Fathead minnows are prey to many predator species, including other fish, birds, and 

aquatic invertebrates (Warren, Burr & Tomelleri 2014). Although many fish species are social, 

the fathead minnow has been one of the most studied, along with zebrafish, D. rerio, and 

guppies, Poecilia reticulata. Fathead minnows (hereafter, minnows) spend the majority of their 

time engaged in social interactions, living in large social groups referred to as ‘shoals’ in fishes 

(Pitcher 1986). They also can make synchronized movements when avoiding danger (Chivers, 

Brown & Smith 1995; personal observations). During the reproductive season, males display 

social competition for mates by defending territories, and then the males defend the fertilized 

eggs from predators, including conspecifics (Martinovic-Weigelt et al. 2012; McMillan & Smith 

1974).  

For decades, minnows have been a classic model for understanding fear reactions. Like 

numerous fish species, they have cells in their skin that contain a substance that was originally 

described by von Frisch (1938, 1941) as ‘Schreckstoff’, meaning ‘fright stuff’ (Stensmyr & 

Maderspacher 2012). Unexpectedly, von Frisch discovered the substance when studying whether 

fish could hear. Later research would show that indeed they can (e.g., Popper & Fay 1973). In 

von Frisch’s research, he began to label individual fish by severing a tail nerve which 
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discoloured the tail fin. However, he noticed that releasing one of these individuals into their 

original social group caused the entire group to be reluctant to approach it. He supposed that fear 

had spread quickly throughout the entire population.  

We now know much more about the mechanisms underlying von Frisch’s observations 

almost a century ago. When minnow skin is physically damaged by a predator, the Schreckstoff 

is released and reliably indicates that a predator has attacked (Ferrari et al. 2010b; Mathis & 

Smith 1992). Nearby conspecifics (and in some cases sympatric heterospecifics) that detect the 

substance via olfaction will innately recognize risk in their environment (Ferrari et al. 2010b; 

Pollock & Chivers 2003) and respond rapidly with overt antipredator behaviours such as 

dashing, freezing, increased shelter use, increased shoaling, and overall reductions in activity 

(Smith 1992). Moreover, predators that consume minnows will release the substance as diet cues 

(Mathis & Smith 1993), eliciting the same responses. Many other aquatic species, including 

invertebrates, respond to such cues in similar fashion (i.e., alarm reactions) (Ferrari et al. 2010b). 

Hereafter, I refer to these cues generally as ‘alarm cues’ (sensu: Chivers, Brown & Ferrari 2012). 

There is evidence that alarm cues evolved either for the benefit of warning kin (e.g., 

Gerlach et al. 2001), disrupting predation events via the attraction of predators (e.g., Mathis, 

Chivers & Smith 1995), or for protection against pathogens, parasites, or ultraviolet radiation 

(Chivers et al. 2007), where the alarm response evolved secondarily. At the same time, there has 

been much curiosity surrounding the chemistry of alarm cues. In minnows and zebrafish, D. 

rerio, purine-N-oxides elicit the alarm response (Brown et al. 2000; Parra, Adrian & Gerlai 

2009), whereas compounds lacking the nitrogen functional group do not. In catfish, Ictalurus 

punctatus, synthetic hypoxanthine-3-N-oxide elicits responses that match the intensity of those 

toward conspecific skin extract (Brown et al. 2003), whereas another compound (pyridine-N-

oxide) possessing a N-oxide functional group elicits a weaker response. More recent work on 

skin extracts from zebrafish has revealed that their alarm substance is a chemical mixture that 

includes glycosaminoglycan chondroitin (Mathuru et al. 2012). Ecological evidence 

demonstrates that the chemistry of the alarm substance must be highly variable across species, as 

animals typically do not respond to the alarm cues of other species unless being congeneric, and 

then responding with a decreasing intensity as the phylogenetic distance with the donor increases 

(Commens-Carson & Mathis 2007; Mirza & Chivers 2001; Mitchell, Cowman & McCormick 
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2012). This variation across species likely allows prey to avoid costly responses toward alarm 

cues from other species that are irrelevant.  

Like other species, when minnows detect alarm cues in conjunction with the sight or 

odour of a novel predator, they learn the predator cues as a threat (Ferrari et al. 2010b). Indeed, 

across species, this ‘alarm-cue learning paradigm’ has been most studied in minnows, being 

substantially moved forward by the work of R.J.F. Smith and colleagues (e.g., Chivers & Smith 

1995; Mathis, Chivers & Smith 1993; Smith 1992). In addition to alarm-cue learning, minnows 

demonstrate social learning via observing fearful conspecifics (Ferrari et al. 2005; Mathis et al. 

1996). Both forms of learning can occur after only a single conditioning and can increase 

survival in a predation context (Manassa & McCormick 2013; Mirza & Chivers 2000). 

 

1.8. Research objectives  

A few studies have looked into factors that affect the efficacy of social learning, such as 

specific traits of the model, or group composition (e.g., size and observer-to-model ratio) (Ferrari 

& Chivers 2008; Kavaliers, Colwell & Choleris 2005; Mathiron, Crane & Ferrari 2015). 

However, little is known about the effect of uncertainty on social learning, or how extrinsic 

factors (e.g., environmental conditions such as high- vs. low-risk environments) affect learning 

outcomes. My overall objective, herein, was to assess factors that potentially play a role in the 

transfer of social information about risk and safety. More specifically, I explored three over-

arching questions: 

How do individual and social-learning mechanisms compare when current 

information is new vs. when current information conflicts with prior information? In Chapter 

2, I compare the intensity of learned antipredator responses between alarm-cue and social-

learning mechanisms in different contexts. Some minnows were conditioned to recognize an 

odour as safe before testing whether the two risk-learning mechanisms would override the 

previous information, thus exploring what minnows learn in a conflicting situation. Other 

minnows had no prior experience with the odour as safe, and thus did not experience conflicting 

information. These minnows were naïve to the odour when given the opportunity to learn it as a 

threat via the two mechanisms, allowing me to compare their learning outcomes. In an 

experiment presented in Chapter 4, I reversed the information about risk and safety by testing 

whether social information about safety could override the previous learning of risk. Chapters 5 
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and 6 also assess how minnows manage conflicting situations about risk and safety in the context 

of social learning. 

Are social models less reliable when they exhibit uncertainty about risk, and likewise, 

does uncertainty for observers make social models more influential? In the experiment 

presented in Chapter 3, I attempted to manipulate the reliability of models by making them 

uncertain about what cues were threatening. I then explored how observers reacted to these 

unreliable responses, and whether they could learn from these models about specific threats. In 

reversed fashion, Chapter 4 explores how uncertainty about risk in observers affects social-

learning outcomes when their models are knowledgeable about a cue. The experiments in 

Chapters 5 and 6 also assess learning by observers that are uncertain about risk, with Chapter 5 

involving observers and models that were both uncertain about risk. 

Does a group of social models influence the acquisition of fear and a subsequent 

learning of safety? In Chapters 5 and 6, I sought to determine whether interacting with more 

than one model would facilitate social learning. Specifically, I wanted to know if fearful 

observers could learn safety from groups of models, either together in time or in succession. I 

also tested whether social isolation vs. social companionship plays a role in fear acquisition and 

safety learning. These experiments involved a few variations in models: whether they were 

experienced with safety or risk, how many were present, and for how long. In Chapter 6, I assess 

how these pairings affected both the observers and models within each pairing. 

 

1.9. Anticipated significance  

Animal behaviour theory has developed substantially since Tinbergen published his book 

on social behaviour (1953), with a tremendous amount of research exploring the social lives of 

animals – from acoustic communication in marmots (Blumstein 2007) to chemical 

communication in insects (Wilson 1965), interference competition in birds (Minot & Perrins 

1986), and social learning in fishes (Mathis et al. 1996). While most early work focused on 

understanding which species are capable of social learning and how such information is 

transferred among group members, much of the present research, including social network 

theory, aims to understand factors that affect the origin, quantity, content, and reliability of 

information transfer. Herein, I present a case where the field of animal behaviour, and 

specifically social learning theory, can inform and provide insights into factors affecting fear 
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severity in humans and the potential for overcoming such fear, with specific attention on post-

traumatic stress (see Chapter 7). In my view, the field of animal behaviour is a crucial source of 

information to anyone interested in understanding factors that modulate the social transfer of risk 

or safety-related information. Yet, applications of social learning theory outside of animal 

ecology, and specifically to human psychology, are relatively rare, as animal models informing 

human psychology are often viewed as unconvincing.  

 

1.10. Ethical statement 

The following studies were approved by the University of Saskatchewan’s University 

Committee on Animal Care and Supply (protocol # 20130079). I collected all fish under a 

Saskatchewan Ministry of Environment Special Collection Permit. Fish currently either remain 

in laboratory stock colonies (protocol # 20160074) or have been humanely euthanized with an 

overdose of tricaine methanesulfonate (MS-222). 
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Chapter 2: Social learning of conflicting information2 

 

2.1. Introduction 

There are a few basic ways for prey to learn about predation risk, and we might expect 

prey to learn better (and/or have less uncertainty) from some learning modalities or types of cues 

compared to others. For instance, visual cues from models can be highly accurate in space and 

time and usually provide information about the target of the response (e.g., the model mobbing a 

predator) (Jacobs 2002), but they also require the observer to recognize that a model has changed 

its normal behaviour, which may be difficult in complex habitats or at night. Auditory cues do 

not allow this directionality; hearing a mobbing call does not provide information on the target of 

the call. In contrast, chemical cues are available all the time and can travel long distances if 

moved by air or water, but they may be less reliable in space and time if they persist long after 

predation occurs and if currents render their origin inaccurate, creating situations where the 

pairing of cues might even be completely fortuitous (Ferrari et al. 2010b; Mathis & Crane 2017).  

A number of theoretical models have investigated the occurrence of individual vs. social 

learning in the context of foraging or mate choice (Beauchamp 2000; Galef & Laland 2005; 

Laland 2004; Rendell et al. 2010). These producer/scrounger type games have led to insights into 

factors driving the dynamics of social learning and the limitations associated with each context. 

Observers should not copy the behaviour of others indiscriminately, and the direction of learning 

                                                           
2 Most of the content of this chapter comes from the following publication. Changes have been made to avoid 

redundancy with other chapters and for consistency among chapters. 

  

Crane AL, Ferrari MCO. (2015) Minnows trust conspecifics more than themselves when faced with conflicting 

information about predation risk. Animal Behaviour 100: 184-190. 

 

Portions of the introduction have been modified from:  

 

Crane AL, Ferrari MCO. (2013) Social learning of predator recognition: advances and future directions. In: 

Social Learning Theory: Phylogenetic Considerations Across Animal, Plant and Microbial Taxa (Clark 

ed.). Nova Science Publisher NY, USA. Pp. 53-82. 
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should allow for the most accurate and beneficial information to be transmitted to the observers. 

For instance, in guppies, P. reticulata, young females copy the mate choice of older females, 

while older females are not affected by the choice of younger females (Dugatkin & Godin 1992; 

Dugatkin & Godin 1993). Deciding who to copy or which copying strategy (e.g., random, 

frequency-dependent, maximize pay-off) to employ has received some attention. However, the 

outcome of these models may differ for the transmission of predation-related information 

because responding to non-threatening cues is much less costly than failing to respond to risky 

ones.  

In the context of predation, only a few comparisons have been made among different 

learning modalities. Studies by Curio et al. (1978) and Vieth et al. (1980) showed that 

blackbirds, T. merula, can learn to become wary of a mounted predator either by hearing the 

mobbing calls of conspecifics (auditory cues only) or by hearing the mobbing calls while also 

seeing a conspecific near the predator (auditory and visual cues). The addition of the visual cues 

did not seem to increase wariness, indicating that the two cues were likely redundant and non-

additive. The authors then attempted to condition the observers to become wary of mounted 

predators that were previously learned as safe (see Chapter 1). When these non-responsive 

individuals observed the mounted predator paired with mobbing calls (auditory cues only), they 

failed to subsequently increase their wariness towards the mount. However, they learned to 

increase wariness after receiving both auditory and visual cues of conspecifics.  

In another example, macaques, M. mulatta, were pre-exposed to a novel snake, either 

alone vs. paired with a non-fearful conspecific (Mineka & Cook 1986). In both cases, the 

observers learned not to behave fearfully towards the snake. When both groups were then 

exposed to a conspecific model displaying a fear response toward the snake, the monkeys that 

were pre-exposed to the snake alone immediately learned to fear the snakes, whereas the 

monkeys that were previously paired with non-fearful conspecifics did not. Thus, it appears that 

social cues are persuasive enough to override individual learning, but prior social learning is 

more difficult to reverse.  

 

2.2. Objectives 

In this study, I sought to compare social learning via a live conspecific model vs. 

individual learning from alarm cues, and in a situation where information about risk conflicted 
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with past information about safety. I first gave minnows the opportunity to learn a novel odour as 

safe from repeated exposure to the odour without negative consequences (Fig. 2.1). I then gave 

minnows a conflicting situation, providing them with new information that indicated the odour 

was risky via either the alarm-cue or social-learning mechanism. This dilemma forced minnows 

to make a decision based on the value of their previously learned information (the cue was safe) 

and that of the new information (the cue is risky). After this conflicting phase, minnows were 

individually exposed to the odour alone, and their antipredator behaviour was measured (2×2×2 

design; Fig. 2.1). A control group received background exposures to water, rather than to the 

predator odour, allowing me to compare the intensity of the learned response via the two 

mechanisms in the absence of conflicting information. I expected that social learning and alarm-

cue learning would result in similar intensities of learned responses because the predator 

experience of social models occurred via alarm-cue learning. However, the intensity of responses 

could also be slightly less via social-learning than alarm-cue learning since the intensity of the 

response weakens over a transmission chain (Curio 1988; Suboski et al. 1990).  

 

 

Figure 2.1. Experimental design testing whether individual and social information about risk overrides prior 

individual knowledge of safety. First, observer (O) minnows had the opportunity to learn an odour as safe before 

being conditioned to fear the odour, either individually with alarm cues (AC) or socially with an experienced 

conspecific model (M). Observers were tested alone 1 d later to determine whether their fear persisted. 
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2.3. Methods 

Fish collection and maintenance 

Using Gee’s inverted traps, minnows (unsexed with total length ranging 30–65 mm) were 

collected in August 2013 from Feedlot Pond, located on the University of Saskatchewan campus, 

in central Saskatchewan. Minnows from Feedlot Pond are exposed to a variety of predators, 

including birds and beetles, but they are naïve to fish predators (e.g., Chivers & Smith 1994; 

Mathis et al. 1993). Extensive trapping over the past 25 years has revealed no fish predators at 

this site, and no studies on minnows from this population have found innate recognition of fish 

odours as a threat.  

After collection, minnows were transported to the R.J.F. Smith Centre for Aquatic 

Ecology and the Aquatic Predation and Environmental Change Laboratory at the University of 

Saskatchewan. These facilities have flow-through water delivered from incoming municipal 

water that passes through laboratory filtration systems (particulate and carbon filters). This 

‘system’ water is delivered to tanks (either 76-l aquaria with gravel substrate or 950–2460-l 

pools) that are equipped with outflow pipes, aeration, and lighting (15:9 h light:dark cycle). 

Minnows were fed flake food (Nutrafin Max) every morning and received a 30% water change 

daily.  

 

Obtaining minnow alarm cues and novel odour 

I used standard procedures for making alarm cues (Crane et al. 2011; Ferrari & Chivers 

2006a), sacrificing five individuals with a blow to the head, in accordance with the Canadian 

Council on Animal Care. I then removed skin from each side of the body and used a 

homogenizer (Polytron PT-2500E) to mix the skin into solution, which I diluted in system water 

to reach a standard and ecologically relevant concentration (1 cm2 / 40 l) that is known to 

represent a high level of threat and elicit a fear response when 5 ml is injected into a 37-l tank 

(Ferrari, Capitania-Kwok & Chivers 2006a; Wisenden 2008). The injected solution would 

initially be concentrated at the location of the injection, and over time would become diluted in 

the tank’s water, eventually reaching a concentration of 1 mm2 of skin in 2800 L. After being 

homogenized and diluted, the alarm-cue solution was frozen at -20°C in 100-ml aliquots until 

being thawed before use.  
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To obtain a novel odour for this experiment, I collected northern pike, Esox lucius, from 

Pike Lake, SK, using a seine. Although pike are not innately recognized as predators by 

minnows from Feedlot Pond, northern pike (hereafter, pike) are one of the primary native 

predators of minnows in the region such as at Pike Lake (Page & Burr 1997). The collected pike 

(n=2) were housed in 76-l aquaria that were wrapped in opaque polyethylene sheeting to ensure 

visual isolation from surrounding tanks. Prior to stimulus collection, each pike was fed two 

swordtail, Xiphophorus hellerii (30–40 mm total length) to facilitate the evacuation of any 

minnow diet cues (Ferrari, Messier & Chivers 2006b; Mathis & Smith 1993). After 4 d, pike 

were placed individually into 37-l tanks with clean water, but filled with a volume of water that 

was proportional to the size of the pike (50 ml/g of fish). After 24 h without water filtration, pike 

were removed and the water was frozen at -20°C in 600-ml aliquots.  

 

Phase 1: Prior exposure to safety 

All minnows had acclimated to the laboratory for >2 months and were behaving calmly 

before being used in the experiment. First, they were moved into 37-l testing aquaria with gravel 

substrate and a shelter object (a 10×10 cm ceramic tile with 2-cm plastic legs). The front surface 

of each tank was covered with a plastic film (5% visual light transmission) that, coupled with 

overhead tank lighting, provided a clear view of each fish while minimizing visual cues from my 

presence. The side and rear surfaces of experimental tanks were covered with opaque 

polyethylene sheeting to block visual stimuli from surrounding tanks. Each tank was equipped 

with an injection hose (a 150-cm piece of tubing attached parallel to the air stone), through 

which stimuli could be gently injected into the tank with a syringe and then flushed with tank 

water that had been withdrawn just prior to the injection (Ferrari et al. 2006a; Ferrari et al. 

2006b).  

Minnows were given 24 h to acclimate to experimental tanks before their first exposure. 

Over the next 3 d, minnows were exposed to 20 ml of either pike odour or system water (water, 

hereafter) twice a day (six exposures total; Fig. 2.1). In previous studies with fishes, six prior 

exposures were enough to ensure the learning of safety (Ferrari & Chivers 2006b; Mitchell et al. 

2011). In this experiment, these exposures occurred in the morning (0800–1000 h) and afternoon 

(1300–1600 h), with a full water flush being conducted 1 h following each injection. 
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Phase 2: Fear conditioning with different cues 

After the sixth prior exposure (and the subsequent water change), the shelters were 

removed from the tanks in preparation for the social conditioning phase. The absence of shelters 

is thought to facilitate shoaling rather than agonistic behaviours among fish. In half of the tanks, 

a model was added. As a procedural control, I dipped a net in the tanks not receiving a model. 

Models were always slightly larger than observers (size difference <10 mm total length), so that I 

could distinguish between them. Models had been conditioned 5 h earlier, with an exposure to 20 

ml of pike odour paired with 5 ml of alarm cues. Over the next 18–24 h, observers had the 

opportunity to fully interact with these conditioned models before I injected 20 ml of pike odour, 

giving observers the opportunity to learn from the models that pike odour was dangerous. I 

reasoned that a full interaction with models would be the most influential to observers, and I did 

not intend to assess the relative importance of specific cue types (e.g., visual vs. chemical vs. 

tactile) or a specific behaviour (e.g., freezing vs. dashing). For the alarm-cue learning group, I 

injected 20 ml of pike odour paired with 5 ml of alarm cues. All tanks received a water change 

and had shelters returned 1–4 h following conditioning, at which point I removed the models 

with a net. To control for procedural disturbance, I once again moved a net in the other tanks for 

10 s. 

 

Phase 3: Testing the intensity of fear 

Testing took place 1 d following risk conditioning. I chose to feed minnows 1 h before 

testing, because hunger can weaken responses to predation risk (Brown & Smith 1996; Whitham 

& Mathis 2000). First, I waited to begin a trial until fish were moving, and then assessed their 

reductions in activity (i.e., their typical antipredator response) (Smith 1992). Holding a tally 

denominator and a multiple digital timer, I measured the behaviour of each individual during an 

8-min baseline pre-stimulus period. The number of lines crossed on a grid (6.3×6.3 cm) by the 

midpoint of the minnow’s body was quantified as a measure of distance moved, along with the 

time spent under shelter (centre of the body) and the time spent foraging, where minnows angled 

(~45°) their heads downward to search the gravel. Following this pre-stimulus period, either 20 

ml of pike odour or water was added via the injection hose, and the response variables were 

recorded again during an 8-min post-stimulus period to assess the change in behaviour due to the 

odour. Observations were conducted blind to the background and conditioning treatments, and 
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the order of testing was randomized across treatments. Each day, following the end of the trials, 

minnows were moved into a new housing tank, while experimental tanks were cleaned for 

another round of trials. No fish was tested more than once. Sample sizes were 20–32 per group.  

 

Statistical Analyses 

Data on baseline behaviour were analyzed together (lines crossed, time under shelter, and 

time spent foraging) using a 2-way MANOVA with the prior exposure treatment (safety or no 

safety) and the conditioning type (alarm cue or social cue) as factors. To assess behavioural 

responses to the testing cue (pike odour or water), data from pre- and post-stimulus behaviours 

were computed as changes in behaviour (post – pre) for time under shelter and time spent 

foraging, whereas data for lines crossed varied greatly among individuals, so I used a 

proportional change [(post – pre)/pre] to better standardize the response among individuals. 

Again, I analyzed the three response variables (proportional change in lines crossed, change in 

time under shelter and change in time spent foraging). The full-factorial 3-way MANOVA 

design included the prior exposure treatment (safety or no safety), the conditioning type (alarm 

cue or social cue) and the testing treatment (pike odour or water). Because MANOVA 

assumptions were not fully met, I used Pillai’s Trace for its robustness to non-normality and 

covariance heterogeneity (Olson 1976), which occurred for some treatment groups for some 

response variables. I used post-hoc 2-way MANOVAs to interpret significant interactions by 

splitting the data, first by conditioning type and again by the prior exposure treatment. Because 

data were tested twice in post-hoc analyses, I used Bonferroni corrections dividing alpha by the 

number of comparisons (α/2 where α=0.05). All analyses were conducted in SPSS 23. 

 

2.4. Results 

 Social learning of risk overrides individually learned safety 

Baseline activity during the pre-stimulus period did not differ among treatments (all main 

effects and interactions: p>0.3). When analyzing behavioural changes, I found a significant 3-

way interaction where responses to testing cues depended on a combination of the prior exposure 

treatment and the conditioning type (prior exposure × conditioning type × testing cue: p=0.009; 

Table 2.1a, Fig. 2.2). Post-hoc analyses revealed that alarm-cue learning was inhibited by prior 

exposure to pike odour (prior exposure × testing cue: α=0.025, p<0.001; Table 2.1b), and thus 
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minnows had learned safety via latent inhibition. However, the individually-learned safety was 

overridden by social learning of risk (prior exposure × testing cue: α=0.025, p=0.79; Table 2.1c, 

Fig. 2.2).  

 

Table 2.1. Results of alarm-cue vs. social learning: statistical test output for behaviour in response to prior 

exposure (odour vs. water), conditioning type (alarm-cue or social learning mechanism), and the testing cue (the 

odour or water). Significant terms of interest are in bold type. 

    F df p 

a) overall 3-way MANOVA 
  

 
prior exposure 4.84 3, 190 =0.003 

 conditioning type 0.92 3, 190 =0.43 

 testing cue 35.28 3, 190 <0.001 

 
prior exposure × conditioning type 5.07 3, 190 =0.002 

 prior exposure × testing cue 6.47 3, 190 <0.001 

 conditioning × testing cue 2.04 3, 190 =0.11 

 
prior exposure × conditioning type × testing cue 3.95 3, 190 =0.009 

  b) post-hoc 2-way MANOVA for alarm-cue conditioned observers  

 
prior exposure 11.30 3, 94 <0.001 

 testing cue 16.86 3, 94 <0.001 

 
prior exposure × testing cue 11.54 3, 94 <0.001 

  c) post-hoc 2-way MANOVA socially-conditioned observers  

 
prior exposure 0.20 3, 94 =0.90 

 
testing cue 19.35 3, 94 <0.001 

  prior exposure × testing cue 0.36 3, 94 =0.79 

  d) post-hoc 2-way MANOVA for no conflicting information  

 
conditioning type 1.29 3, 95 =0.28 

 testing cue 33.79 3, 95 <0.001 

 
conditioning type × testing cue 2.10 3, 95 =0.11 

  e) post-hoc 2-way MANOVA for conflicting information  

 
conditioning type 4.85 3, 93 =0.004 

 
testing cue 6.10 3, 93 =0.001 

  conditioning type × testing cue 4.52 3, 93 =0.005 
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Figure 2.2. Mean (±SE) proportional change in (a) the number of lines crossed, (b) time spent under shelter, and 

(c) time spent foraging by minnows with prior exposure (6×) to predator odour or water that were subsequently 

conditioned with alarm cues or social cues and tested with predator odour (dark bars) or water (white bars). 

 

Social and alarm-cue learning are similar in intensity 

In the absence of conflicting information, alarm-cue learning tended to have a stronger 

influence in terms of lines crossed (Fig. 2a). However, the overall intensity of fear did not differ 
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significantly between the alarm-cue and social-learning mechanisms (conditioning type: 

α=0.025, p=0.28; conditioning type × testing cue: α=0.025, p=0.11; Table 2.1d).  

 

2.5. Discussion 

Here, I considered alarm-cue learning to be a form of individual learning in the sense that 

it occurred without the presence of social companions. In the absence of conflicting information, 

learned fear responses were fairly similar in intensity between the social and individual 

mechanisms, with a nonsignificant tendency for social learning to be slightly weaker, as has been 

observed in studies on transmission chains (Curio 1988; Suboski et al. 1990). However, 

individual learning via other mechanisms could lead to different outcomes. For instance, learning 

about predation risk by directly escaping a predator attack should provide prey with multiple 

cues, and presumably more certainty about risk (Brown & Smith 1998; Suboski & Templeton 

1989). However, Vilhunen et al. (2005) found that Arctic charr, Salvelinus alpinus, that were 

chased by a predator and had witnessed attacks learned to respond to the predator’s odour at the 

same intensity as those that learned socially without the predator’s presence. Overall, there have 

been few tests of learning from direct exposure to predators, and I am not aware of any studies 

on learning after injury from a predator attack. This form of individual learning would 

presumably be more persuasive and would override prior expectations about safety. Such tests 

have ethical challenges but could increase our understanding of learning mechanisms and their 

role in conflicting situations.   

As documented in other fish species, minnows in this study learned safety from repeated 

exposure to an unknown odour in the absence of negative consequences. This learned safety was 

demonstrated via latent inhibition (see Chapter 1), affirming that information about risk does not 

universally override learned safety. However, minnows that interacted with fearful models 

ignored their prior assessment of safety, showing a learned fear response to the odour. Thus, 

social cues appear more persuasive than individual information when conflicting with past 

information about safety, similar to previous studies (Mineka & Cook 1993; Vieth et al. 1980).   

In this study, minnows serving as models were always larger than observer minnows, 

indicating that models were older and had more experience with predators. Whether learned 

responses from smaller models differ from those of larger models would be interesting to test. 

Because adult minnows are unlikely to ‘outgrow’ the gape of many predators, both sizes should 
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be vulnerable to the same predators, so smaller models should be as reliable as larger individuals. 

However, in other species, growth and life-stage development presumably play important roles, 

and perhaps more so in situations where the cost of being wrong is relatively small (e.g., learning 

locations of food: Duffy, Pike & Laland 2009). In contrast, the high cost of being wrong about 

predation could dictate that the reliability of social information is less important, and thus 

learned responses about risk are conservative in a broad sense. 

My comparison of social and alarm-cue learning involved two inherent confounding 

factors. By definition, social learning requires the presence of another individual, while 

individual learning does not. However, the isolated nature of the individual-learning treatment 

likely promoted fear (see Chapter 5) rather than the retention of learned safety, as occurred here. 

Another inherent confound was the availability of different types of information. Interacting with 

fearful models should provide multi-modal information (Seyfarth et al. 2010) such as visual and 

tactile cues, as well as non-injury chemical cues that are generally referred to as ‘disturbance 

cues’ (Johnston & Johnson 2000; Vavrek et al. 2008) which are released in the urine or diffused 

across the gills in some aquatic species (Wisenden 2000). Disturbance cues alone, however, do 

not appear to mediate predator-recognition learning (Ferrari et al. 2008; Vilhunen et al. 2005). In 

contrast to fully interacting with multiple cues from a fearful model, alarm-cue learning involves 

the availability of only chemical cues. This difference could well be the driving factor that made 

social learning more persuasive in this study. Whether the opportunity for social learning of 

safety can override individually learned risk is explored in Chapter 4.  
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Chapter 3: Unreliable models and socially-transferred neophobia3 

 

3.1. Introduction  

Social information varies in reliability (i.e., the probability of being correct) (Traub 

1994). Indiscriminate social learning may be prevalent when reliability cannot be externally 

assessed, but in other cases, social learning outcomes may depend on the reliability of the 

information (Dugatkin & Godin 1993). For instance, in marmots, Marmota flaviventris, 

observers discriminate between reliable and unreliable models that display alarm calls when 

predators are present (reliable cues) but also when predators are absent (unreliable cues) 

(Blumstein, Verneyre & Daniel 2004b). When exposed to unreliable cues, observers became 

uncertain about predation risk, and reacted by assessing threats independently, thus decreasing 

their time spent foraging. Reliability of models likely varies according to several factors. For 

instance, related individuals might perform antipredator responses that are more appropriate than 

those of genetically distinct individuals. Moreover, if observers pay more attention to closely 

related models, they should have greater potential to learn from them, as was found in deer mice, 

Peromyscus maniculatus, that learn from relatives about biting flies, Stomoxys calcitrans 

(Kavaliers et al. 2005). Phenotypic traits (e.g., size or dominance status) may also promote 

                                                           
3 Most of the content of this chapter comes from the following publication. Changes have been made to avoid 

redundancy with other chapters and for consistency among chapters. 

 

Crane AL, Mathiron AGE, Ferrari MCO. (2015) Social learning in a high-risk environment: incomplete 

disregard for the 'minnow that cried pike' results in culturally-transmitted neophobia. Proceedings of the 

Royal Society: Biological Sciences 282: 20150934. 

 

A small portion of the introduction was modified from:  

 

Crane AL, Ferrari MCO. (2013) Social learning of predator recognition: advances and future directions. In: 

Social Learning Theory: Phylogenetic Considerations Across Animal, Plant and Microbial Taxa (Clark 

ed.). Nova Science Publisher NY, USA. Pp. 53-82.  
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directional social learning. The study by Kavaliers et al. (2005) also provided evidence that 

subordinate observers learned better than dominant individuals. In damselfish, Acanthochromis 

polyacanthus, juvenile observers learn better from adult individuals than from other juveniles 

(Karplus, Katzenstein & Goren 2006). Perhaps, when prey undergo extensive changes in 

predators throughout their life history, similar-sized individuals would best facilitate social 

learning of predation risk because these individuals would share the same predators, but to my 

knowledge this has not been reported.  

The reliability of information should also be affected by its timing. For instance, in 

grackles, Quiscalus lugubris, the order of social and predator cues did not affect the learning 

outcome, as long as the cues had some temporal overlap (Griffin & Galef 2005), and in mynahs, 

Acridotheres tristis, a lack of overlap led to a complete failure in learning (Griffin 2009). Korpi 

and Wisenden (2001) showed that when predator cues and alarm cues were presented 5 min 

apart, successful learning of the predator still occurred. The latent nature of the chemicals in the 

water may explain why learning still occurred after 5 min. However, this latency may potentially 

lead to fortuitous pairings, which could render the learned information unreliable. In addition to 

the timing of the cues, the specific type of cue may also contribute to its reliability. Perhaps a cue 

that lacks specificity will lead to failed learning. For instance, the disturbance cues released upon 

encountering perturbation without any physical damage elicit fright behaviour in nearby 

conspecifics but do not convey any information regarding the cause of the disturbance, a 

predator or otherwise (Bryer, Mirza & Chivers 2001; Vavrek et al. 2008; Wisenden 2000). This 

may explain why studies have documented failure to learn from disturbance cues (Ferrari et al. 

2008; Vilhunen et al. 2005). In contrast, alarm cues reliably indicate that a predator has either 

injured or killed a conspecific, and thus should be more reliable than disturbance cues at 

expressing a predation threat. However, alarm cues alone (i.e., in the absence of predator cues) 

still provide no information about the identity of the predator. As such, I consider alarm cues 

alone as being ‘general predation cues’ (sensu: Sih et al. 2010). When prey are exposed to alarm 

cues repeatedly, they know that attacks have occurred but they remain uncertain about the 

causes, often becoming neophobic, responding to all perturbations rather than only dangerous 

ones (e.g., Brown et al. 2013). Thus, these uncertain, neophobic individuals may be viewed by 

observers as being less reliable in a way that is colliqualiy known as ‘crying wolf’. 
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3.2. Objectives 

I predicted that, like other species, minnows exposed repeatedly to alarm cues would 

become neophobic. My main objective, however, was to explore whether naïve observers would 

distinguish between an informed response of models (a ‘reliable’ response) towards known risky 

cues vs. an uninformed, neophobic response (an ‘unreliable’ response). If there are subtle 

differences between informed and uninformed responses, observers might recognize unreliable 

models and either (1) spend more time assessing the potential threat, like marmots, M. 

flaviventris (Blumstein et al. 2004b), (2) respond as they would to an informed response if 

unable to judge reliability, or (3) they might tend to ignore unreliable responses. To test this, I 

paired predator-naïve observers with individuals that could potentially model either an informed 

or uninformed fear response depending on whether they were exposed to a known odour or a 

novel odour. Hence, these models (hereafter, ‘high-risk models’) were experienced with a 

specific predator odour, while also being repeatedly exposed to alarm cues alone to induce 

neophobia (Fig 3.1). Then, during a conditioning phase, I paired observers with these models and 

exposed the pair to either the predator odour known by the model or to a novel odour, giving the 

naïve observer an opportunity to learn from either the model’s experienced or neophobic 

response. The third phase of the experiment consisted of testing the observers on their own to 

determine whether they had acquired fear from either of the two types of responses. To confirm 

that my social-learning methodology was sound, I also tested social learning of risk under 

normal, low-risk conditions (2×2×2 design; Fig 3.1). 
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Figure 3.1. Experimental design where naïve observers were conditioned with experienced models from either a 

high- or low-risk background. All models (M) were experienced with the predator odour as a threat via an alarm 

cue (AC) pairing, but high-risk models were exposed repeatedly to alarm cues, instead of water, to elicit uncertain 

responses toward a novel odour. Models were then paired with observers (O) during a conditioning phase where 

observers had the opportunity to learn from the responses of models to a known odour or a novel odour. 

Observers were tested 1 d later to determine whether they had learned. 

 

3.3. Methods 

 Experimental cues 

These experiments involved the use of two novel odours for which I used pike and lake 

sturgeon, Acipenser fulvescens (hereafter, sturgeon). For this experiment, these fishes (n=2 per 

species) were loaned to me from other research laboratories at the University of Saskatchewan. 

Each individual was temporarily starved (4 d) prior to their odour being collected to prevent the 

odour from containing diet information (Diana 1979). Collection of odours occurred as in 

Chapter 2 except a weaker concentration was used (100 ml of water per g of fish). After odour 

collection, all individuals were returned to their holding tanks and immediately fed. Alarm cues 

were prepared as in Chapter 2. 

 

 Phase 1: Background experience for observers and models 

All observers were maintained in a low-risk environment during the background phase 

(76-l housing tanks, ~50 fish per tank). They were not given any predator experience and thus 

remained naïve to each of the collected odours. Minnows that would serve as models, however, 
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were moved into experimental tanks (see Chapter 2 for tank details) in groups of four. After 1 d 

of acclimation, 5 ml of alarm cues were injected repeatedly into tanks to elicit a neophobic 

response that could be interpreted by observers as unreliable, whereas the low-risk control 

models were repeatedly exposed to water (Fig. 3.1). The cues were injected three times per day 

for 4 d, once in the morning (0800–1100 h), at midday (1100–1400 h), and in the afternoon 

(1400–1700 h) with a minimum of 2 h between each exposure. There was one exception to this 

treatment routine; on the morning of day 4, all models were exposed to 5 ml of alarm cues paired 

with an additional 20 ml of a novel odour, giving them the opportunity to learn the odour as a 

predator odour. Hence, models from both risk regimes would display experienced responses 

toward a known odour that could be interpreted by observers as a reliable response (Fig. 3.1). A 

full water flush was performed 1 h following the last exposure each day. Because I was 

concerned about the potential for innate differences in responses toward the pike and sturgeon 

odours due to differences in evolutionary history or some other intrinsic factor, I randomized 

which odour served as the predator odour during the background phase. Half of the exposures 

involved pike as the predator and half involved sturgeon.  

 

Phase 2: Social conditioning trials 

Each observer was randomly assigned to a single model from either the high- or low-risk 

backgrounds (Fig. 3.1). To distinguish between models and observes, I again employed a small 

size difference (<10 mm total length). However, in this chapter and subsequent chapters, models 

were larger than observers in approximately half of the trials and reversed in the others. In this 

study, the members of each observer-model pair were moved individually into experimental 

tanks and allowed to acclimate together for 24 h. No shelter object was provided during this 

period to prevent shelter competition and facilitate shoaling between the pair. After the 24-h 

period, I injected 20 ml of either the predator odour (the same odour used in phase 1) or a novel 

odour (the other odour).  

I conducted behavioural observations on both the observers and the models during the 

social conditionings, as described in Chapter 2. One deviation, however, was that the presence of 

more than one fish allowed me to quantify shoaling behaviour. Every 15 s, a score of 1 (no 

shoaling) was given when the fish were more than a body length apart or a score of 2 (shoaling) 

when within a body length of each other. Increases in shoaling are a well-documented 
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antipredator response of minnows (Pfeiffer 1962; Smith 1992). The model was removed 1 h after 

the end of each trial, a shelter was added to the tank, and a full water flush was conducted. 

Observations did not occur for all conditionings, as sample sizes were large (n=46–50 per 

treatment group, where k=8 for lines crossed with observers and models measured individually 

vs. k=4 for their paired shoaling values). Each minnow was only used once, as either a model or 

an observer. 

 

 Phase 3: Testing fear in observers 

Observers acclimated alone for ≥16 h before testing. During this phase, observers were 

tested for their responses to 20 ml of either the conditioning odour (i.e., the odour they 

experienced in the presence of the model) or to the novel odour (the other odour, to which they 

were still naïve). I measured response variables as in Chapter 2, but foraging time was highly 

variable and not included in the analyses. Sample sizes were 22–27 per experimental group 

(k=8). 

 

Statistical analyses 

I assessed differences in pre-stimulus lines crossed using a 4-way repeated-measures 

ANOVA, testing for the effects of the models’ risk treatment (low vs. high), conditioning odour 

(predator vs. novel) and fish role (model vs. observer, as repeated-measures in the same tank 

replicate), while also introducing odour species (pike vs. sturgeon) as a blocked factor to test for 

potential bias. For pre-stimulus shoaling index, only one value was obtained from each pair of 

fish (observer + model). Hence, a 3-way ANOVA was performed, testing the effects of the risk 

treatment, conditioning odour, and odour species. Because the treatments had no effects on pre-

stimulus behaviour (p>0.1 for all terms and interactions for both response variables), I computed 

a change in response for each variable, as in Chapter 2. I then performed a 4-way repeated 

measures ANOVA on the change in lines crossed, and a 3-way ANOVA on the change in 

shoaling index. For data collected during the testing phase, the response variables (activity and 

shelter use) could be analyzed together with a multivariate approach. Again, I assessed 

differences in pre-stimulus behaviour (4-way MANOVA), testing the effect of risk (low vs. 

high), conditioning odour (predator vs. novel), testing odour (conditioning vs. novel), and odour 

species as factors. Again, pre-stimulus values did not differ significantly among treatments 
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(p>0.1 for all terms), and I analyzed the change in behaviour (4-way MANOVA). When overall 

tests revealed significant interactions, data were split for post-hoc analyses, with specific tests 

varying as presented below. Again, I used α=0.05 and conducted analyses in SPSS 23, as well as 

hereafter. 

 

3.4. Results 

Information from high-risk models is partially ignored 

During the conditioning period, significant interactions occurred between the risk 

treatment and the conditioning odour (p<0.001), and the risk treatment and fish role (p=0.034; 

Table 3.1a; Fig. 3.2). There also was no effect of odour species (p=0.62; not depicted), indicating 

that minnows had no bias toward the pike or sturgeon odours. High-risk models responded more 

strongly than their observers when exposed to both odours (p<0.001; Fig.3.2). However, there 

was no effect of cue (p=0.26) and no interaction between the two factors (p=0.38; Table 3.1b; 

Fig. 3.2), revealing that models did not discriminate between the predator odour and the novel 

odour, and observers did not discriminate between the responses of models. In contrast, with the 

low-risk treatment, I found a significant effect of the conditioning odour (p<0.001), no effect of 

fish role (p=0.07) and no interaction between the two factors (p=0.14; Table 3.1c; Fig. 3.2). 

Hence, both observers and models responded strongly to the predator odour while not responding 

to the novel odour under the low-risk conditions. Similarly, shoaling index was affected by a 

significant interaction between the risk treatment and the conditioning odour (p<0.001; Table 

3.2; Fig. 3.3). When models came from the low-risk background, the model and observer shoaled 

more in response to the predator odour compared to the novel odour (t93=4.4, p<0.001), whereas 

shoaling did not differ in response to the predator and novel odours when models were from the 

high-risk background (t97=1.4, p=0.16; Fig. 3.3). Again, species did not affect responses (p=0.17; 

Table 3.2; not depicted), indicating no bias. 
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Table 3.1. Results for the number of lines crossed for observers and models during conditioning: statistical test 

output, testing for the effects of the risk treatment (low vs. high risk for models), the conditioning odour (predator 

vs. novel), the fish role (model vs. observer, as repeated measures), and the species used for the odour (pike vs. 

sturgeon). Significant terms of interest are in bold type.  

      F df p 

a) overall RM-ANOVA 
  

 
Within subjects 

  

  
role 22.38 1, 187 <0.001 

  
role × risk 4.58 1, 187 =0.034 

  
role × conditioning odour 0.28 1, 187 =0.60 

  
role × odour species 0.01 1, 187 =0.93 

  
role × risk × conditioning odour 2.85 1, 187 =0.09 

 
Between subjects 

  

 
 risk <0.01 1, 187 =0.96 

 
 conditioning odour 12.62 1, 187 <0.001 

 
 odour species 0.24 1, 187 =0.62 

 
 risk × conditioning odour 26.67 1, 187 <0.001 

b) post-hoc RM-ANOVA for pairings with high-risk models  

 
Within subjects 

  

  
role 25.92 1, 96 <0.001 

  
role × conditioning odour 0.78 1, 96 =0.38 

  
role × odour species 0.46 1, 96 =0.50 

 
Between subjects 

  

 
 conditioning odour 1.29 1, 96 =0.26 

    odour species 0.01 1, 96 =0.92 

c) post-hoc RM-ANOVA for pairings with low-risk models 

 
Within subjects 

  

  
role 3.40 1, 90 =0.07 

  
role × conditioning odour 2.23 1, 90 =0.14 

  
role × odour species 0.59 1, 90 =0.44 

 
Between subjects 

  

 
 conditioning odour 37.78 1, 90 <0.001 

 
 odour species 0.69 1, 90 =0.41 
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Figure 3.2. Mean (±SE) change in the number of lines crossed by low- and high-risk models and their naïve 

observers during conditioning when exposed to either predator odour (dark bars) or novel odour (light bars). 

 

Table 3.2. Results for shoaling of observer-model pairs during conditioning: statistical test output, testing the 

effects of the risk treatment (low vs. high risk for models), the conditioning odour (predator vs. novel), and the 

species used for the odour (pike vs. sturgeon). Significant terms of interest are in bold type. 

  F df p 

risk 0.04 1, 187 =0.84 

conditioning odour 4.66 1, 187 =0.034 

odour species 1.89 1, 187 =0.17 

risk × conditioning odour 16.77 1, 187 <0.001 
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Figure 3.3. Mean (±SE) change in shoaling index for pairs of minnows (experienced model + naïve observer) 

exposed to either the predator odour (dark bars) or a novel odour (light bars) during conditioning. Models were 

from low or high-risk background. 

 

Socially-transferred fear 

During testing, a significant interaction between the risk treatment, the conditioning 

odour, and the testing odour occurred (p=0.047; Table 3.3a; Fig. 3.4), and again, species had no 

effect (p=0.77; not depicted). For observers conditioned with low-risk models, a significant 

interaction between the conditioning and testing odours (p<0.001; Table 3.3b) revealed that 

observers conditioned with knowledgeable models showed a strong antipredator response only to 

the predator odour, whereas the others did not acquire learned fright responses. Thus, social 

learning of risk from low-risk models was confirmed, as in Chapter 2 and other previous studies 

(e.g., Mathis et al. 1996; Mineka & Cook 1993). However, the response pattern was quite 

different for observers paired with high-risk models. I found no effect of the conditioning odour 

(p=0.60), testing odour (p=0.34), or an interaction between the two factors (p=0.88; Table 3.3c; 

Fig. 3.4), indicating that observers responded similarly to the conditioning and novel odours 

regardless of whether their model reacted to a known predator or a novel odour.  
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Table 3.3. Results of learning from high- and low-risk models: statistical test output for behavioural responses 

during the testing phase, assessing the effects of risk (low vs. high risk models), the conditioning odour (predator 

vs. novel), the testing odour (conditioning vs. novel), and the species used for the conditioning odour (pike vs. 

sturgeon). Significant terms of interest are in bold type. 

    F df p 

a) overall MANOVA 
  

 
risk 1.37 2, 189 =0.26 

 
conditioning odour 1.63 2, 189 =0.20 

 
testing odour 2.36 2, 189 =0.10 

 
species 0.26 2, 189 =0.77 

 
risk × conditioning odour 5.56 2, 189 =0.005 

 
risk × testing odour 3.01 2, 189 =0.052 

 
conditioning odour × testing odour 3.87 2, 189 =0.023 

 
risk × conditioning odour × testing odour 3.11 2, 189 =0.047 

b) post-hoc MANOVA for pairings with low-risk models 

 
conditioning odour 7.60 2, 93 =0.001 

 
testing odour 6.11 2, 93 =0.003 

 
species 0.85 2, 93 =0.43 

 
conditioning odour × testing odour 8.70 2, 93 <0.001 

c) post-hoc MANOVA for pairings with high-risk models 

 
conditioning odour 0.51 2, 94 =0.60 

 
testing odour 1.10 2, 94 =0.34 

 
species 0.06 2, 94 =0.94 

  conditioning odour × testing odour 0.13 2, 94 =0.88 
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Figure 3.4. Mean (±SE) change in the number of lines crossed (a) and time under shelter (b) for observers 

during testing when exposed to their conditioning odour (dark bars), or to a novel odour (light bars) that was 

opposite of that experienced during conditioning. A prior social conditioning consisted of interacting with a 

model from either low or high background risk while being exposed to either the odour known as a predator by 

the model (predator-odour conditioned) or a novel odour (novel-odour conditioned).  

 

3.5. Discussion 

Fundamental to my results was the finding that repeated exposure to alarm cues induced 

neophobia in minnows, as had been reported in other species. When exposed to a novel odour, 

high-risk minnows exhibited decreased activity and increased shoaling behaviour, matching the 

levels of their experienced risk responses. Individuals that were paired with these models 
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responded similarly after observing experienced vs. neophobic responses, indicating that 

observers did not view neophobic responses as being less reliable, at least in the short term. A 

more striking and unpredicted outcome, however, was that observers displayed fear responses 

toward a novel odour during testing, matching their conditioned responses (seen most clearly in 

Fig. 3.4a). How could this happen? Observers were not exposed to any stimuli known to cause 

the emergence of neophobic responses. One explanation could be that simply observing a 

model’s fright response toward an odour caused neophobia in observers. Previous studies on 

social learning in fishes (e.g., Ferrari et al. 2005; Manassa et al. 2013; Mathis et al. 1996) used 

alternative controls (typically testing with water instead) and did not test for such an outcome. 

However, in this study, my results for observers paired with low-risk models demonstrate that 

simply observing a one-time fright response does not induce neophobia (Fig. 3.4). A more 

plausible explanation is that high-risk models consistently displayed fearful behaviours (i.e., not 

only in response to the novel odour), and this state of generalized fear was socially transferred to 

observers. This hypothesis is supported by the fact that some symptoms of stress in other species 

are socially transmitted (e.g., Dietz et al. 2011; McAdie & Keeling 2002). Regardless of the 

specific mechanism, neophobia was unequivocally acquired by observers via social interaction. 

While numerous studies have demonstrated the social transfer of specific information about 

predation risk, this was the first study to document the social transfer of generalized fear.  

The acquisition of socially-transferred neophobia suggests that the responses of observers 

to the conditioning odour may have simply been a neophobic response, rather than a specific 

learned response. However, I cannot disregard the possibility that minnows learned to recognize 

the specific threat while also becoming neophobic. Whether minnows can learn from high-risk 

models should receive further attention. A study by Mitchell et al. (2016) addressed this question 

in tadpoles, L. sylvaticus. Individuals from a high-risk background initially showed similar 

intensities of fear in response to a conditioned predator odour vs. a novel odour. However, 

several days later, the neophobia had waned, but the learned response to the conditioning odour 

persisted (see Brown et al. 2015a for work on the waning of neophobia). 

During the conditioning phase, observers tended to respond more weakly than models, as 

described in previous studies on social transmission (Cook et al. 1985; Curio 1988; Suboski et al. 

1990). The weaker responses may reflect a short lag-time between the model’s response and the 

observer’s assimilation of that information, or it may reflect uncertainty about socially 
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information. However, this ‘dilution’ pattern was roughly twice as pronounced among observers 

paired with high-risk models, perhaps suggesting that observers viewed all responses from high-

risk models as being unreliable, and thus devalued their responses. However, the nature of the 

experimental design prevented determining whether observers detected unreliability in models or 

simply their higher level of background risk (i.e., high-risk models had both more uncertainty 

and higher risk than low-risk models). Thus, an alternative explanation for the more pronounced 

difference between high-risk models and their observers is the habituation of observers to 

consistent, fearful behaviour of models. This potential mechanism is consistent with the Risk 

Allocation Hypothesis (Ferrari et al. 2009; Lima & Bednekoff 1999b). In this hypothesis, the 

levels of vigilance and foraging behaviour depend on the level of risk and the proportion of time 

that predators are present. One key prediction is that prey faced with high-frequency risk will 

decrease their threat responses to fulfill other necessary activities such as foraging. More support 

for risk allocation as the underlying mechanism here comes from qualitatively comparing the 

behaviour of low- vs. high-risk models. The weaker response (~50% less) of high-risk models to 

the predator odour may be due to a cost-benefit trade-off between antipredator responses and 

foraging, whereas low-risk models had no such trade-off. Until this study, all work on social 

learning had occurred in a relatively risk-free environment. However, with the emergence of 

neophobia and socially-transferred neophobia, further study should explore the benefits and costs 

of learning specific information vs. being neophobic under different levels of environmental risk.  
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Chapter 4: Uncertainty in social learning of risk and safety4 

 

4.1. Introduction  

Theoretical models have explored how optimal behaviour is affected by an individual’s 

uncertainty, primarily in the context of foraging (Stephens & Krebs 1986). One fundamental 

prediction is that uncertainty can be minimized by sampling the environment (e.g., foraging 

patches) and gathering information (e.g., prey availability and type). Sih (1992) was the first to 

explore uncertainty in the context of predation risk, manipulating levels of uncertainty with the 

experimental addition and removal of predators over time. More recently, several studies have 

induced uncertainty by exposing prey to general predation cues in the absence of specific 

information (e.g., Brown et al. 2014; Meuthen et al. 2016). One such example was a study by 

Ferrari et al. (2015a) where uncertainty about a predator’s identity was induced in tadpoles, 

Lithobates sylvaticus, but with consistent information about the timing of the uncertain threat 

(morning or evening). Individuals that experienced risk during the morning displayed neophobic 

responses only during the morning, and vice versa, suggesting their uncertainty was confined to 

the time frame of the background risk.  

Only a few studies have explored how background risk affects learning outcomes. In one 

example, Chivers et al. (2014) explored individual learning in damselfish, Pomacentrus 

chrysurus, maintained under different levels of risk. In low-risk conditions, fish learned an odour 

as nonthreatening, which blocked the subsequent learning that the odour was dangerous during a 

one-time alarm-cue conditioning (i.e., latent inhibition occurred). However, individuals 

maintained under high-risk conditions became neophobic and failed to learn the odour as non-

                                                           
4 The content of this chapter is published in the following publication. Changes have been made to avoid redundancy 

with other chapters and for consistency among chapters. 

 

Crane AL, Ferrari MCO. (2016) Uncertainty in risky environments: a high-risk phenotype interferes with social 

learning about risk and safety. Animal Behaviour 119: 49-57. 
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threatening, presumably because the cost of incorrectly learning an odour as safe in a high-risk 

environment is higher. In the context of my research, this study raised some interesting 

questions. Would the opportunity to learn safety be more persuasive if background risk had 

already ceased? Would it be more persuasive if socially mediated? And, in light of Chapter 3, is 

neophobia caused simply by exposure to high risk, or is uncertainty about risk a prerequisite? 

This latter question has been explored in an experiment with tadpoles, L. sylvaticus. When 

individuals were repeatedly exposed only to alarm cues, they became neophobic, but those that 

were repeatedly given specific information about the identity of the predator species did not, 

despite the overall risk level being the same (Ferrari et al. unpublished data). 

 

4.2. Objectives 

The objective of this experiment was to test how uncertainty in observers affects their 

ability to learn socially about risk or safety. Again, I reasoned that a background environment 

lacking specific information about risk would cause uncertainty manifested as neophobia, and 

here, I manipulated uncertainty while keeping the risk level constant. Observer minnows were 

first maintained under one of three background regimes: (1) certain risk about a specific odour 

(hereafter, odourA), (2) uncertain risk, or (3) a no-risk control treatment (Fig. 4.1). At the same 

time, individuals that would serve as models were given experience with odourA as being either 

risky or safe. Then, during conditioning, observers and models were paired and exposed to 

odourA, giving the observer an opportunity to learn from the model about risk or safety. The next 

day, in the absence of models, I assessed the baseline behaviour of observers to test for the 

acquisition of persistent fear behaviours, as hypothesised for high-risk individuals in Chapter 3. I 

then exposed observers to either the conditioning odourA or a novel odourB to determine whether 

they learned from the experienced model and whether they were neophobic (3×2×2 design; Fig. 

4.1).  

I predicted that uncertainty would promote neophobic responses that would be absent 

when observers were certain about the odour as a treat. I also expected that uncertain observers 

would be influenced by ‘safe models’ and learn the odour as a lesser threat, whereas safe models 

would have little-to-no effect on observers that were certain about risk (i.e., a one-time social 

assessment of safety would not override prior individual learning of risk). Likewise, I predicted 

that the behaviour of observers that were certain about risk would be unaffected by interacting 
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with a ‘risk model’ because the social information would be consistent with their prior individual 

experience. However, the demonstration of an experienced fright response from models might 

facilitate the correct identification of risk in uncertain observers, thus reducing their neophobia.  

 

 

 

 

Figure 4.1. Experimental design where high risk observers were conditioned with models to recognize an odour 

as dangerous. Observers (O) had background experience with a high-risk environment in the form of repeated 

exposure to alarm cues (AC), paired either with (certain) or without (uncertain) the predator’s odour, or they had 

neither (no-risk control). Then, observers were exposed to the predator’s odour while being paired with models 

(M) that were experienced with the predator odour as being (a) safe via previous exposure to the odour without 

negative consequences, or as (b) risky via previous exposure to the odour with alarm cues. Finally, observers 

were tested for fear toward the predator odour vs. a novel odour.  

a) 

b) 
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4.3. Methods 

Phase 1: Background regimes for observers and models 

Minnows that would serve as naïve observers were moved into experimental tanks for 

background exposures, as in previous chapters. The certain-risk treatment consisted of exposures 

to 5 ml of alarm cues paired with 20 ml of odourA, which was either pike or sturgeon odour (half 

of the replicates with each). For the uncertain-risk treatment, 5 ml of alarm cues were paired with 

20 ml of water, and a no-risk control treatment consisted of 25-ml injections of water (Fig. 4.1). 

The background regimes were conducted as in Chapter 3. Other experimental tanks contained 

minnows that would serve as models, receiving background exposures on the same schedule as 

observers. Half of the models were experienced with odourA as a predator via exposure to 5 ml 

of alarm cues paired with 20 ml of odourA (i.e., risk models), whereas the other half learned 

odourA as being safe (i.e., safety models) from repeated exposure to 20 ml of odourA paired with 

5 ml of water rather than alarm cues, thus inducing learned safety as in Chapter 2. I used an 

equal number of exposures (12 times) to that of observers, so that models would have the same 

amount of experience.  

 

Phase 2: Social conditioning of risk and safety 

Observers were paired with either safety models or risk models (Fig. 4.1) and together 

each pair was moved into a new experimental tank as in the previous chapters. Each pair had 40 

h to acclimate before being exposed to a 20-ml injection of the conditioning odourA, which 

always matched the species (pike or sturgeon) used during the background phase. Following the 

conditioning period (2–4 h later), the model was removed, a shelter was added to the tank, and a 

full water flush occurred. Behavioural observations were not conducted during this phase, and 

each individual was used only once. 

 

Phase 3: Testing fear in observers 

Observers acclimated alone for 16–20 h before being tested for their responses to either 

20 ml of conditioning odourA (i.e., the odour they experienced in the presence of the model) or to 

novel odourB (the novel odour) (Fig. 4.1). In addition to lines crossed, time spent under shelter, 

and time spent foraging, I measured the time spent freezing (centre of body not changing 
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position for >2s). Other details were as in previous chapters. Sample sizes were 29–35 per 

experimental group (k=12).  

 

Statistical analysis 

I analyzed the four response variables for the baseline data using a 2-way MANOVA, 

testing for the effects of the background-risk treatment (certain risk, uncertain risk, or no risk) 

and the social treatment (conditioning with risk models or safety models). Due to differences in 

pre-stimulus data (see below), I analyzed behavioural changes using a 4-way repeated-measures 

MANOVA. Thus, I was interested in time × factor interactions, depicted graphically by 

differences in slopes between the pre- and post-stimulus data. In a full-factorial model, I included 

the background risk treatment, the social treatment, the testing odour (conditioning odour or 

novel odour) and the odour species (pike vs. sturgeon) as fixed factors. As in Chapter 3, the 

odour species did not significantly affect the responses (time × species: F4,351=1.94, p=0.10), and 

I decided to remove this factor from the model to yield a simpler 3-way repeated-measures 

MANOVA. The data were split for post-hoc tests, which were 2-way repeated-measures 

MANOVAs. 

 

4.4. Results 

Background risk affects baseline behaviour 

Pre-stimulus baseline behaviour was significantly affected by the background-risk 

treatment (p<0.001; Table 4.1a; Fig. 4.2), but there was no effect of the social treatment (p=0.85; 

Table 4.1a) nor an interaction between the two factors (p=0.11; Table 4.1a). Univariate output 

revealed significant differences among background treatments in time spent foraging (p<0.001; 

Table 4.1b; Fig. 4.2a), with both uncertain and certain individuals spending less time foraging 

than control individuals (Tukey HSD: uncertain vs. control: p<0.001; certain vs. control: 

p=0.004; uncertain vs. certain: p=0.28). There were also non-significant tendencies for both 

high-risk treatments to spend more time freezing (p=0.055; Fig. 4.2c) and oddly to cross more 

lines (p=0.069), compared to the no-risk control. In addition to these responses, I noticed several 

instances of rapid swimming in circular loops near the walls of the tank. I quantified this 

behaviour as repeatedly crossing more than four lines in a clockwise or counter clockwise pattern 

in less than 1 s. Although frequencies were low (only 16 of 378 observations total), no instances 
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of this behaviour occurred in the control treatment, and an overall χ2 test revealed this behaviour 

varied significantly among the treatments (χ2
2=9.21, p=0.01; not depicted). Group comparisons 

to control showed that looping was more common in both the certain (χ2
1=9.61, α=0.017, 

p=0.002) and uncertain (χ2
1=5.76, α=0.017, p=0.016) treatments, which were statistically similar 

(χ2
1=1.00, α=0.017, p=0.32).  

 

Table 4.1. Results for the influence of uncertainty and risk on baseline behaviour: statistical test output for 

behavioural responses, the risk treatment (no risk, certain risk, uncertain risk) and the social treatment (risk 

models vs. safe models). Significant terms of interest are in bold type.  

    F df p 

a) overall MANOVA for baseline behaviour 
  

 
risk treatment 5.02 8, 740 <0.001 

 
social treatment 0.34 4, 369 =0.85 

 
risk treatment × social treatment 1.65 8, 740 =0.11 

b) univariate ANOVA on baseline foraging 

 
risk treatment 11.10 2, 372 <0.001 

 
social treatment 1.13 1, 372 =0.29 

 
risk treatment × social treatment 1.03 2, 372 =0.36 

c) univariate ANOVA on time spent freezing 

 
risk treatment 2.93 2, 372 =0.055 

 
social treatment 0.02 1, 372 =0.88 

  risk treatment × social treatment 0.56 2, 372 =0.57 

d) univariate ANOVA on lines crossed 

 
risk treatment 2.67 2, 372 =0.069 

 
social treatment 0.61 1, 372 =0.81 

 
risk treatment × social treatment 4.99 2, 372 =0.007 

e) univariate ANOVA on time under shelter 

 
risk treatment 1.95 2, 372 =0.15 

 
social treatment 0.23 1, 372 =0.63 

  risk treatment × social treatment 4.17 2, 372 =0.016 
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Figure 4.2. Mean (±SE) pre-stimulus (a) time spent foraging, (b) time spent freezing, and (c) number of lines 

crossed for minnows with prior background experience consisting of either no risk, certain risk (repeated 

exposure to alarm cues paired with an odour), or uncertain risk (repeated exposure to alarm cues alone). 

Minnows also received a social conditioning of risk or safety, which was nonsignificant and not depicted here for 

ease of main-effect interpretation. Letters above bars represent significant univariate differences.  
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Observers’ learned responses and socially-transferred fear 

The analysis on behavioural changes revealed that responses depended on a combination 

of the background-risk treatment and the social conditioning treatment (time × risk treatment × 

social treatment: p<0.001; Figs. 4.3 and Table 4.2a). Post-hoc testing revealed that minnows 

conditioned with risk-experienced models exhibited a fright response to both odours across all 

background treatments (time: p<0.001; Figs. 4.3, panels a4–6 and b4–6; Table 4.2b). However, 

individuals conditioned with safe models differed according to the background-risk treatment 

(time × risk: p<0.001; Figs. 4.3, panels a1–3 and b1–3; Table 4.2c), with minnows from the certain 

and uncertain risk treatments exhibiting similar fright responses to both the conditioning and 

novel odours, whereas the no-risk group responded to neither.  
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Table 4.2. Results for the influence of uncertainty on social learning of risk and safety: statistical test output for 

behavioural responses, testing the effects of time (pre vs. post as repeated-measures), the background risk 

treatment (no risk, certain risk, uncertain risk), the social treatment (risk models vs. safety models), and the 

testing odour (conditioning odour vs. novel odour). Significant time × factor interactions of interest are in bold 

type. Note: degrees of freedom differ from those of baseline responses due to the addition of the testing odour as 

a factor. 

      F df p 

a) overall 3-way RM MANOVA   

 Within subjects   

  time 136.45 4, 363 <0.001 

  time × risk treatment 6.27 8, 728 <0.001 

  time × social treatment 1.23 4, 363 =0.30 

  time × testing odour 3.48 4, 363 =0.008 

  time × risk treatment × social treatment 3.22 8, 728 <0.001 

  time × risk treatment × testing odour 1.11 8, 728 =0.35 

  time × social treatment × testing odour 1.01 4, 363 =0.40 

  time × risk treatment × social treatment × testing odour 0.43 8, 728 =0.90 

 Between subjects   

 
 risk treatment 8.04 8, 728 <0.001 

 
 social treatment 0.07 4, 363 =0.99 

 
 testing odour 4.40 4, 363 =0.002 

  risk treatment × social treatment 1.39 8, 728 =0.20 

  risk treatment × social treatment 1.04 8, 728 =0.40 

  social treatment × testing odour 0.81 4, 363 =0.52 

 
 risk treatment × social treatment × testing odour 0.34 8, 728 =0.92 

b) post-hoc 2-way RM MANOVA for observers with risk models  

 Within subjects   

  time 72.24 4, 187 <0.001 

  time × risk treatment 1.60 8, 376 =0.12 

  time × testing odour 1.14 4, 187 =0.34 

  time × risk treatment × testing odour 0.71 8, 376 =0.69 

 Between subjects   

 
 risk treatment 4.69 8, 376 <0.001 

  testing odour 1.84 4, 187 =0.12 

 
 risk treatment × testing odour 0.52 8, 376 =0.84 

c) post-hoc 2-way RM MANOVA for observers with safety models  

 Within subjects   

  time 65.31 4, 173 <0.001 

  time × risk treatment 7.57 8, 348 <0.001 

  time × testing odour 3.36 4, 173 <0.001 

  time × risk treatment × testing odour 0.77 8, 348 =0.63 

 Between subjects   

 
 risk treatment 5.19 8, 348 <0.001 

  testing odour 3.59 4, 173 =0.008 

    risk treatment × testing odour 1.03 8, 348 =0.42 
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Additionally, post-hoc testing on data from minnows conditioned with social safety 

revealed an interaction between time and the testing odour (p<0.001; Table 4.1c). This 

interaction indicated that individuals from the certain-risk treatment showed significantly 

stronger fright toward the novel odour vs. the odour their model knew as safe. However, 

univariate output indicated this effect was statistically significant for only one response variable 

(time spent freezing: F1,176=11.7, p=0.001; Fig. 4.3a). 

 

Figure 4.3. Mean (±SE) (a) time spent freezing and (b) number of lines crossed for minnows before (pre) and 

after (post) exposure to either the odour used in their prior social conditioning (black circles) or a novel odour 

(white circles). Social conditionings consisted of the opportunity to interact with a conspecific model that was 

experienced with an odour as being either safe or risky. Background experience for minnows was either no risk, 

certain risk via repeated exposure to alarm cues paired with an odour, or uncertain risk via repeated exposure to 

alarm cues alone. Note: not depicted here are time spent foraging with a pattern similar to lines crossed, and time 

spent under shelter with the reversed pattern. 

 

4.5. Discussion 

The central finding of my results was that minnows exposed to high risk exhibited an 

overall pattern of significantly altered baseline behaviours. These minnows reduced foraging and 
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had a tendency to spend more time freezing, while also tending to cross more lines, sometimes in 

a rapid route-tracing pattern, which is a known stereotypy in fishes (Casamitjana 2004; 

Kristiansen et al. 2004), as well as in other species in captivity under stressful conditions. In 

addition to fearful baseline behaviours, exposure to high risk induced neophobia. Collectively, I 

refer to these altered behaviours as the ‘high-risk phenotype’. Counter to my expectations, 

however, minnows from both the uncertain- and certain-risk treatments displayed this phenotype. 

I predicted that repeated exposure to risk from a specific odour would cause only that odour to be 

interpreted as threatening, and thus minnows that were certain about the predator’s identity 

would not become neophobic. However, guppies, P. reticulata, from a high-risk population have 

consistently demonstrated neophobia (Brown et al. 2013) despite being knowledgeable about 

their natural predators (Magurran & Seghers 1990). My study provides more evidence that 

uncertainty may not necessarily be prerequisite for the development of neophobia. One 

explanation for neophobia among knowledgeable minnows is that the level of risk interacts with 

certainty, where individuals that are certain will only display neophobia after a threshold of risk 

has been reached. However, another possibility is that while minnows were knowledgeable about 

the identity of the predator, they remained uncertain about when or from where attacks occur.  

The observations of route-tracing (hereafter, pacing) during the pre-stimulus period were 

also unexpected, and in hindsight, I think I defined this behaviour far too conservatively. High-

risk individuals spent much of their time pacing, although rarely in the circular pattern that I was 

quantifying. This behaviour was mixed with bouts of time freezing, which resulted in a tendency 

to cross more lines in a shorter amount of active time. Why did I not find this pattern in Chapter 

3 though? One difference is that in that chapter I tested observers that were never exposed to risk 

directly. Although they acquired socially-transmitted neophobia, they apparently did not acquire 

the broader range of high-risk behaviours. In Chapter 3, I also recorded data on high-risk models 

that were exposed directly to risk, but again, I did not observe such pacing behaviour during 

conditioning trials. I hypothesize that because the models were being tested alongside their 

observers, they engaged in shoaling behaviour rather than pacing. 

The fact that repeated conditionings in the certain-risk treatment (odour + alarm cue) 

elicited a high-risk phenotype revealed that my social-conditioning treatment was confounded. 

Because risk-experienced models were conditioned in the same way (repeatedly), they too would 

have displayed the high-risk phenotype. Hence, risk models presumably differed from safety 
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models in two ways: (1) reacting with fright toward the known odour at the time of the injection 

and (2) exhibiting the high-risk phenotype throughout the 40-h period of pairing with observers. 

Thus, the subsequent behaviour of observers paired with risk models can only be attributed to 

interacting with the models and not to the specific conditioning event. This is a somewhat 

irrelevant point, however, because I found no evidence that fear demonstration had any effect on 

observers. A one-time observation of an experienced fright response did not decrease uncertainty 

in observers. Instead, to induce such an outcome, multiple conditionings with experienced 

models from low-risk backgrounds would likely be required. 

As expected, control minnows paired with risk models learned to exhibit fright responses 

to the conditioning odour, whereas those paired with safety models did not. This would indicate 

that control minnows learned the predator odour from experienced models if not for the fact that 

they also exhibited socially-transferred neophobia. Hence, as in Chapter 3, observers that 

interacted with risk models may have simply been neophobic rather than learning the specific 

odour as a predator, and again I cannot discount the possibility of both specific learning and 

neophobia. However, qualitatively comparing these studies revealed an intriguing discrepancy, 

where socially-transferred neophobia appeared more intense in this study (~50% stronger in this 

study; see Fig. 3.4 for comparison). Unfortunately, I can only speculate on the reason for 

different intensities between the studies. Models were conditioned differently, but in both studies 

models received the same total number of risk exposures over the same duration of time. A more 

obvious difference is the longer length of time that observers interacted with models (24 h more 

in this study). This suggests that spending more time with neophobic companions increases 

socially-transferred neophobia, at least initially, until neophobia begins to wane.  

A primary goal of this experiment was to assess the effect of safety demonstration on 

observers following individually-learned fear. My work presented in Chapter 2 showed that a 

one-time opportunity to learn risk socially can override multiple individual experiences with 

safety. Here, however, I found a small influence for a reversed pattern, with one of four response 

variables (time spent freezing) significantly affected by safety demonstration, and surprisingly 

only for individuals in the certain treatment, perhaps indicating that known fear is easier to 

override than fear of the unknown. In hindsight, the absence of a strong overall effect of safety 

demonstration is not surprising given that information was being transferred in a 

contradirectional fashion, not just from model to observer. Hence, the potential transfer of safety 
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to the observer was overridden by the transfer of risk from observer to model, making them poor 

demonstrators of safety. Like before, perhaps safety demonstration would be more influential 

after multiple conditionings. These studies, taken together, provide evidence that when 

conflicting information about risk comes from social vs. individual modalities, social 

information about risk, whether new or prior, will be the prevailing influence (see Chapter 7 for 

applications to human fear-psychology).  
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Chapter 5: Calm social groups and socially-reinforced fear5 

 

5.1. Introduction  

Within social groups, a higher number of knowledgeable models would presumably 

increase the chances for observers to acquire their knowledge. We see this pattern in the context 

of task performance, where an increased number of models correlates with more accurate and 

efficient responses (e.g., Sugita 1980). Likewise, the social transfer of foraging information is 

enhanced by the presence of more knowledgeable individuals (Giraldeau, Caraco & Valone 

1994). For example, Reebs (2000) found that the ‘following’ behaviour of observers undertaking 

a risky foraging task was stronger when the model-to-observer ratio was higher (5:7 vs. 1:11). 

Only, a few studies, however, have investigated the role of group size on social learning of 

predation risk, and with diverging conclusions. Consistent with predictions (see: Brown & 

Laland 2002; Giraldeau, Krebs & Davies 1997), Ferrari and Chivers (2008) reported that 

tadpoles, L. sylvaticus, conditioned with a higher model-to-observer ratio (5:2) responded to a 

predator with a greater fright intensity than tadpoles conditioned with a lower model-to-observer 

ratio (2:5). In a study by Mathiron et al. (2015), the intensity of socially-learned risk was similar 

between groups of two or four individuals. The authors hypothesized that the potential for 

enhanced learning from more individuals was counter-balanced by the dilution of risk in a larger 

group (i.e., safety in groups: Roberts 1996), and thus the social cue would have been weaker. 

However, Vilhunen et al. (2005) showed that charr, S. alpinus, learned to recognize a predator 

only when the model-to-observer ratio was low (4:16 vs. 10:10 and 16:4). The authors speculated 

that groups with a higher proportion of experienced individuals shoaled more tightly, and fish in 

                                                           
5 The content of this chapter comes from the following manuscript in press. Changes have been made to avoid 

redundancy with other chapters and for consistency among chapters. 

 

Crane AL, Ferrari MCO. (in press). Learning of safety by a social fish: applications for studying post-traumatic 

stress in humans. Animal Behaviour. 
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tighter shoals would show weaker fright responses, whereas loose shoals would force models to 

display more conspicuous antipredator behaviours. While counter-intuitive, this potential 

mechanism deserves to be tested in other systems.  

 

5.2 Objectives 

In contrast to the role of group size in learning about risk, I am not aware of any studies 

that have explored such in the context of learning about safety. My goal in this experiment was 

to use calm conspecific models to weaken the high-risk phenotype that minnows acquire in high-

risk environments. I sought to prioritize information transfer from the calm model to the 

neophobic observer, while minimizing the information transfer from the observer to the model. 

First, I induced the high-risk phenotype in observers via repeated exposures to alarm cues, while 

manipulating the social context (alone vs. in group) to determine whether group size alters the 

intensity of the acquired, high-risk phenotype and its potential weakening via the learning of 

safety (Fig. 5.1). Subsequently, I manipulated the number of safe models (zero, one or five) that 

were paired with the observer. My work in the previous chapters led me to hypothesize that the 

presence of more calm models would limit fear transfer from observers to models, which would 

thus promote a weakening of fear in observers. I also reasoned that, as in some other species, risk 

in isolation would lead to higher levels of the high-risk phenotype (e.g., Seetharaman et al. 

2016), which I expected would be more difficult to override with calm models. Finally, I used 

control treatments involving ‘un-calm’ models to assess whether the mere pairing with 

conspecifics (companionship) facilitated safety transfer, or if calm models were necessary for 

this to occur (2×3×2 design; see Fig. 5.1 for the calm-model treatments). 
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Figure 5.1. Experimental phases for risk-exposed individuals. Observer (O) minnows first experienced risk from 

repeated exposure to alarm cues (AC), either in isolation or in a group of 4 fish. Then, observers had a 5-day 

conditioning period with the opportunity to interact with calm models (M), either zero, one, or five models. 

Observers were tested alone, being exposed to a novel odour to determine whether models weakened the high-risk 

traits of observers. Control treatments involving un-calm models (identical 2×3 design) were conducted but are 

not depicted here.  

 

5.3. Methods 

Phase 1: Background regimes for high-risk individuals 

In the initial phase of the experiment, minnows that would serve as high-risk individuals 

were repeatedly exposed to alarm cues as in previous chapters, except that minnows were either 

isolated or in a group of four individuals (Fig. 5.1). After the 4-d risk exposure, individual 

minnows were transferred to new tanks for their conditioning phase with models. My work in 

previous chapters showed that minnows do not acquire a high-risk phenotype in the absence of 

risk.  

 

Phase 2: Post-risk conditioning with models 

During this phase, the high-risk individuals shared experimental tanks with zero, one or 

five conspecific models. I chose these numbers based on previous work by Reebs (2000) and 

Ferrari and Chivers (2008), both revealing that five experienced models were significantly more 

convincing for observers. For half of the conditionings, the models were calm individuals, 

having acclimatized to the laboratory for several weeks without risk exposure (Fig. 5.1). The 
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other half involved ‘un-calm’ models (i.e., individuals that had been exposed to the same high-

risk background regime). For both groups, models and observers were allowed to fully interact 

for 5 d, giving observers the opportunity to learn from models about their new tank environment. 

I chose a time frame of 5 d because some preliminary observations indicated that neophobic 

responses could start to naturally wane in a safe environment after two weeks. I hypothesized 

that a 5-d period might allow me to detect a socially-weakened high-risk phenotype without the 

waning of the phenotype in the other treatments. After the conditioning period, all models were 

removed with a net. Fish in the 0-model treatment were also equally disturbed with a net to 

control for this procedural confound. 

 

Phase 3: Testing for a weakened high-risk phenotype 

To determine whether the high-risk phenotype had been weakened, I tested observers 

alone 1 d later, as in previous chapters. While moderate swimming is typically found in this 

species in the absence of risk (Chivers & Smith 1993; Ferrari et al. 2005; Mathis et al. 1993), my 

work in Chapter 4 demonstrated that minnows from high-risk backgrounds display pacing 

behaviour. Thus, I expected that highly anxious fish would cross more lines during the baseline 

period. I did not feed minnows the day of testing because I did not want to interfere with route-

tracing, and thus, I did not measure foraging activity. Following the pre-stimulus period, I 

injected 20 ml of a novel odour, allowing me to assess the neophobic responses of minnows. 

Sturgeon odour was used as the novel odour, as in previous chapters where minnows raised in 

low-risk environments did not show a fright response to sturgeon odour. Sample sizes were 22–

24 per group (k=10 rather than 12 because the 0-model treatment did not include a calm or 

uncalm model). 

 

Statistical analysis 

I conducted separate analyses for the calm and un-calm model treatments because the 

factors were not fully crossed due to the 0-model treatment having neither calm nor un-calm 

models. For each group, I analyzed response variables together using 2-way MANOVAs, where 

the number of models (0, 1, or 5) and the observers’ risk-acquisition context (group or isolated) 

were fixed factors. I first analyzed the pre-stimulus data alone to gauge baseline behaviour, with 

post-hoc MANOVAs comparing specific groups (0 vs. 1 and 0 vs. 5 models). I then assessed 
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neophobia using a repeated-measures approach, assessing a change between the pre- and post-

stimulus injection periods. Again, I concluded on neophobic responses using time (pre- vs. post-

stimulus period) by factor interactions, depicted graphically by differences in slopes. Significant 

interactions between factors were interpreted by splitting the data by the background treatment 

and conducting post-hoc 1-way repeated-measures MANOVAs, comparing 0 vs. 1 and 0 vs. 5 

models. For multiple comparisons, I used Bonferroni corrections to adjust alpha by the number 

of comparisons (α/2 in this case).  

 

5.4. Results 

Risk acquisition context affects safety information transfer  

Regardless of risk acquisition context, the baseline behaviour of observers was 

significantly affected overall by the number of calm models (number: p<0.001; Table 5.1a), with 

both one and five models having a calming effect (zero vs. one: α=0.025, p<0.001, Table 5.1b; 

zero vs. five: α=0.025, p=0.001, Table 5.1c; Fig. 5.2a and 5.2b). However, neophobic responses 

were context-dependent (time × background × number: p=0.002; Table S1d; Fig. 5.2a and 5.2b); 

observers that had experienced risk in a group showed a nonsignificant tendency for weakened 

neophobia after interacting with five calm models (zero vs. five: α=0.025, p=0.034; Table 5.1e; 

Fig. 5.2a), whereas the presence of only one calm model had no influence (zero vs. one: 

α=0.025, p=0.72; Table 5.1f; Fig. 5.2a). In contrast, minnows responded differently after 

experiencing risk in isolation. Their neophobic responses were substantially reduced by 

interacting with five calm models (zero vs. five: α=0.025, p<0.001; Table 5.1g; Fig. 5.2b), and 

even with only one calm model (zero vs. one: α=0.025, both p<0.001; Table 5.1h; Fig. 5.2b1,2), 

despite their tendency for increased neophobia (Fig. 5.2a1,2 vs. Fig. 5.2b1,2). 
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Table 5.1. Results of interacting with calm models: statistical test output for baseline responses and neophobia 

(pre vs. post as repeated-measures) across background-risk treatments (group or isolation) and the number of 

calm models (zero, one, or five) during conditioning. Significant terms of interest are in bold type. 

   F   df   p  

a) overall 2-way MANOVA for baseline behaviour   
  background 1.63  2, 129  =0.20  

  number 8.26  4, 260  <0.001  

  background × number 1.49  4, 260  =0.21   

b) post-hoc 2-way MANOVA for baseline behaviour: 0 vs. 5 calm models   

  background 2.59  2, 85  =0.081  

  number 15.11  2, 85  <0.001  

  background × number 0.75  2, 85  =0.48   

c) post-hoc 2-way MANOVA for baseline behaviour: 0 vs. 1 clam model   
  background 1.43  2, 87  =0.24  

  number 7.05  2, 87  =0.001  

  background × number 1.95  2, 87  =0.15   

d) overall 2-way RM MANOVA for neophobia   

 Within subjects  
     

  time 93.09  2, 129  <0.001  

  time × background 0.43  2, 129  =0.96  

  time × number 6.68  4, 260  <0.001  

  time × background × number 4.32  4, 260  =0.002  

 Between subjects  
     

 
 background 2.90  2, 129  =0.059  

 
 number 9.83  4, 260  <0.001  

    background × number 3.09   4, 260   =0.016   
e) post-hoc 1-way RM MANOVA for neophobia: group background, 0 vs. 5 calm models 

 Within subjects  
     

  time 32.91  2, 41  <0.001  
  time × number 3.68  2, 41  =0.034  

 Between subjects  
     

 
 number 8.30  2, 41  =0.001  

f) post-hoc 1-way RM MANOVA for neophobia: group background: 0 vs. 1 calm models 

 Within subjects  
     

  time 42.82  2, 43  <0.001  

  time × number 0.34  2, 43  =0.72  

 Between subjects  
     

    number 0.17   2, 43   =0.84   
g) post-hoc 1-way RM MANOVA for neophobia: isolated background, 0 vs. 5 models 

 Within subjects  
     

  time 42.48  2, 43  <0.001  

  time × number 12.33  2, 43  <0.001  

 Between subjects  
     

 
 number 12.24  2, 43  <0.001  

h) post-hoc 1-way RM MANOVA for neophobia: isolated background, 0 vs. 1 models 

 Within subjects  
     

  time 30.63  2, 43  <0.001  

  time × number 9.41  2, 43  <0.001  

 Between subjects  
     

    number 11.64   2, 43   <0.001   
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Figure 5.2. Mean (± SE) time spent freezing (upper panels) and number of lines crossed (lower panels) by 

observer minnows when tested alone, before (pre) and after (post) exposure to a novel odour. All observers had 

prior experience with a high-risk regime (repeated exposure to alarm cues) in either a group or in isolation. 

Then, for 5 d, observers interacted with zero, one, or five models. Models were initially either calm (via no risk 

exposures; panels a and b) or un-calm (via repeated exposures to risk; panels c and d). Steeper slopes (upwards 

for freezing, downwards for line crossed) represent stronger fearful responses to the novel odour. 
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Failed safety transfer via un-calm models 

 I found no influence of un-calm models on the observers’ baseline behaviour or their 

neophobic responses (number and time × number: both p>0.40; Table 5.2; Fig. 5.2c and 5.2d). 

Hence, the simple pairing with other fish (companionship) did not alter the high-risk phenotype. 

Instead, calm models were necessary for the weakening from the high-risk phenotype. However, 

observers paired with un-calm models displayed less intense neophobia following risk exposure 

in a group compared to in isolation (time × background: p=0.029; Table 5.2c vs. 5.2d), again 

revealing that risk exposure in isolation led to more intense neophobia than risk exposure in a 

group. 

 

Table 5.2. Results of interacting with un-calm models: statistical test output for baseline responses and 

neophobia (pre vs. post as repeated-measures) across background-risk treatments (group or isolation) and the 

number of un-calm models (zero, one, or five) during conditioning. Significant terms of interest are in bold type. 

      F   df   p   

a) overall 2-way MANOVA for baseline behaviour   

  
background 1.99  2, 132  =0.14  

  number 0.99  4, 266  =0.41  

  background × number 0.57  4, 266  =0.68   

b) overall 2-way RM MANOVA for neophobia  

 
Within subjects  

     

  
time 164.96  2, 132  <0.001  

  
time × background 3.64  2, 132  =0.029  

  
time × number 0.49  4, 266  =0.74  

  time × background × number 0.97  4, 266  =0.43  

 
Between subjects  

     

 
 background 3.12  2, 132  =0.048  

 
 number 0.82  4, 266  =0.52  

    background × number 0.41   4, 266   =0.80   

 

5.5. Discussion 

The study provides more evidence that social information is persuasive for minnows 

when assessing environmental risk. The presence of social models weakened the high-risk 
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phenotype, but only under some circumstances. Foremost, the social models had to be calm to 

have any weakening effect (i.e., the mere presence of other individuals was not enough to 

weaken the high-risk phenotype). After interacting with five calm models, minnows that had 

previously experienced risk in a group showed only a modest weakening of the high-risk 

phenotype, whereas one calm model had no effect, presumably because the model indirectly 

acquired neophobia and stopped behaving calmly, as occurred in Chapters 3 and 4. What was 

striking, however, was that although minnows tended to display stronger neophobia after 

experiencing risk in isolation, the presence of even only one calm model significantly reduced 

those behaviours, as did the presence of five calm models. Thus, experiencing risk in a group 

appears to socially reinforce fear, making the learning of safety more difficult.  

Socially-reinforced behaviours have been well studied in many contexts (Bandura & 

Walters 1977). For example, in competitive interactions, winning contests can cause dominant 

behaviour in future contests, and vice versa (e.g., in fish: Baenninger 1970). In monkeys, 

repeatedly observing rewards being given to conspecifics motivates observers to subsequently 

deliver or withhold rewards to others (Chang, Winecoff & Platt 2011). Social reinforcement has 

also received a fair bit of attention in work on social learning of predation risk. Research with 

mammals has involved as many as 20 social sessions (Huebner et al. 1979), with up to 15 

sessions in work on fishes (Brown & Laland 2002), although much less attention has been given 

to other taxa. However, I am aware of only one study that attempted to override socially-

reinforced behaviours. That was the aforementioned study by Mineka and Cook (1986) where 

socially-reinforced safety prevented monkeys, M. mulata, from learning fear. Another study in 

rats, R. norvegicus, assessed how social reinforcement of a threat (a shock) was affected by an 

isolated background environment (Angermeier 1960). Previously isolated individuals were not 

persuaded by the social information unless they could fully interact with models. Observer rats 

that received only visual cues did not learn the threat, suggesting that they were unfamiliar with 

the meaning of those social cues following their isolated rearing from birth. That study contrasts 

with my present findings, where previously isolated individuals were more persuaded by models, 

although I used wild-caught individuals with social experience in their natural environment. 

Overall, social reinforcement appears to infix behavioural antipredator decisions (see Chapter 7 

for applications to human fear-psychology). 
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Chapter 6: Replacing models affects fear and its social transmission6 

  

6.1. Introduction  

 In research on animal behaviour, much work has focused on the benefits of groups. 

Across taxa, examples abound in the contexts of foraging (Beauchamp 1998; Monaghan & 

Metcalfe 1985), competition (Maruhashi, Saito & Agetsuma 1998; Ryti & Case 1992), and 

predator vigilance and defence (Lima & Bednekoff 1999a; Magurran 1990). As mentioned in the 

previous chapter, a few studies have explored the influence of groups on learning about 

predation risk (Ferrari & Chivers 2008; Manassa et al. 2014; Mathiron et al. 2015; Vilhunen et 

al. 2005). Within the group, observers will often sample information from group members, one 

individual at a time, often based on neighbour distance (Couzin et al. 2005; Strandburg-Peshkin 

et al. 2013). However, in this context, all previous studies have assessed group information 

transfer in situations where all group members were together at one point in time, and thus not 

assessing how each piece of social information influenced an initially naïve observer. As seen in 

Chapters 4 and 5, attempting to override high-risk phenotypes in observers with safety-

conditioned models in a one-on-one interaction poses a challenge due to the contradirectional 

transfer of risk information from the observer to the model. Whether separate encounters with 

individual models might weaken fear in observers over time, similar to encounters within a 

group, remains unclear. In such a scenario, the absence of information transfer among calm 

models could make them more susceptible to socially-transferred fear from observers.   

 

                                                           
6 The content of this chapter comes from the following manuscript that remains in preparation and has not yet been 

submitted for publication. Changes have been made to avoid redundancy with other chapters and for consistency 

among chapters.  

 

Crane AL, Bairos-Novak KR, Sacco LH, Ferrari MCO. (in preparation). Replacement models experience less 

secondarily-acquired fear and promote fear recovery.  
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6.2 Objectives 

My goal in this study was to assess the impact of the removal and subsequent 

replacement of a model on the weakening of the high-risk phenotype in observers. I also sought 

to closely monitor how models were affected by observers, and thus, I tested both the observers 

and the models, including those that were replaced (Fig. 6.1). I hypothesized that, as occurred in 

the previous chapters, models would acquire the high-risk phenotype from observers, hence 

becoming poorer models for demonstrating safety and for facilitating the weakening of the high-

risk phenotype of observers. However, I expected that after model replacement, the new calm 

model would better demonstrate safety to high-risk observers, compared to previously affected 

models. Therefore, the periodic replacement of models should reduce fear in observers, and 

likewise, new replacement models should experience less socially-transferred fear compared to 

the models they replaced. Alternatively, the change from a familiar model to a new model could 

be so stressful that it prevents any weakening of the high-risk phenotype in observers.  

 

 

Figure 6.1. Experimental design testing whether replacement models alleviate fear in high-risk observers. 

Observers (O) experienced risk (AC = alarm cue) in a group, and then had 9 d to interact with calm models (M), 

except in the ‘unpaired’ control group where observers and models were separated. The replacement group 

differed from the consistent group by experiencing the removal and replacement of the model every 3 d. Testing 

with novel odour occurred 1 d later for observers, whereas all models were tested 1 d after their removal from the 

observer’s tank. 
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6.3. Methods 

Phase 1: Background regime for high-risk individuals 

Minnows were housed in experimental tanks throughout the experiment, as in previous 

chapters. In the first phase of the experiment, minnows that would serve as high-risk observers 

were repeatedly exposed to alarm cues in groups of four (Fig. 6.1). I chose to expose fish in 

groups based on the results of Chapter 5 showing that the acquisition of fear in groups (i.e., 

socially-reinforced fear) was more difficult to override compared to fear in isolation. Other 

details were as in previous chapters. 

 

Phase 2: Post-risk pairings with models 

During a 9-d period, two groups of high-risk observers were individually paired with a 

single calm model (defined as in Chapter 5). As a control group, other high-risk observers were 

kept individually in tanks separate from their low-risk ‘models’ (the ‘unpaired’ group) (Fig. 6.1), 

allowing me to assess whether observers and models simply changed their responses over time, 

rather than due to the model-observer pairing. However, keeping these ‘unpaired’ observers 

isolated during 9-d period would have been an additional stressor on this treatment group (see 

Chapter 5), so I chose to add another high-risk individual (a non-focal fish) to interact with the 

‘unpaired’ observers. Hence, I controlled for the presence of another fish, and thus, ‘unpaired’ 

observers were only unpaired in regard to the calm models. Likewise, in a separate tank, each 

model in the ‘unpaired’ treatment was paired with another calm individual, again to avoid a 

confounding stressor from isolation. In contrast, when observers were paired with calm models, 

the model either remained in the tank for the full 9 d (a consistent pairing), or the model was 

removed and replaced by a new low-risk model every 3 d (replacement pairings) (Fig. 6.1). 

Models were always removed gently with a net. To control for this disturbance across the 

treatment groups, I handled the other models (and the non-focal fish for unpaired observers) 

identical to the replacement models every 3 d, but instead of removing models as in the 

replacement pairings, they were immediately put back into the same tank. I chose a 3-d period 

because it allowed me to complete the testing phase within that 2-week time frame where I 

expected neophobia to persist in intensity. A 1–2 d pairing with replacement models was also 

considered, but I was concerned that a shorter period would be more stressful to models and 
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prevent them from behaving calmly. At the end of the 9-d period, all models were moved 

individually into their own tanks, while observers remained in the same tank for testing.  

 

Phase 3: Testing for a weakened high-risk phenotype 

Observers and models were tested 1 d following the end of the social conditioning period, 

allowing me to assess their behaviour separately without the influence of one another. Behaviour 

was recorded as in previous chapters, except in this study, I focused more on pacing behaviour 

by measuring the time spent pacing (swimming >3 cm/s in a route-tracing pattern of any shape), 

defined more broadly than in Chapter 4. Again, I did not feed minnows prior to trials on the day 

of testing. After the pre-stimulus period, I injected 20 ml of a novel odour (sturgeon) and 

assessed any neophobic response. Sample sizes were 18–32 per group (a design involving three 

model treatments × two statuses plus the two groups of replaced models in the replacement-

model treatment; Fig. 6.1).  

 

Statistical analysis 

I analyzed the behaviour of the observers and the final models on day 9 separately. I used 

1-way MANOVAs with the treatment (unpaired, consistent, or replacement) as a fixed factor. 

First, I analyzed the pre-stimulus data alone to gauge baseline behaviour, with post-hoc 

MANOVAs comparing specific groups (consistent vs. unpaired and replacement vs. unpaired). I 

then assessed neophobic responses by using repeated-measures MANOVAs with treatment as a 

fixed factor and time (pre- vs. post-stimulus period) as the within-subjects factor. Finally, I used 

this same overall approach to assess the behaviour of replacement models from each 

conditioning period (days 1–3, days 4–6, days 7–9). Alpha was adjusted for multiple 

comparisons as in previous chapters.  

 

6.4. Results 

A weakened high-risk phenotype via replacement models 

Baseline behaviour significantly differed among the treatments (p=0.003, Table 6.1a, Fig. 

6.2a and 6.2c). Compared to the high-risk unpaired (control) fish, observers were calmer (i.e., 

more similar to controls) following replacement pairings (replacement vs. unpaired: α=0.025, 

p=0.003, Table 6.1c), but not following a consistent pairing with the same model (consistent vs. 
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unpaired: α=0.025, p=0.27, Table 6.1b). Neophobic responses also differed across treatments 

(p=0.004, Table 6.1d, Fig. 6.2a and 6.2c). Consistently-paired observers displayed neophobia at 

an even higher level than the unpaired (control) observers (α=0.025, p=0.017, Table 6.1e), 

although this outcome was influenced by many of the unpaired observers continuing to display 

pacing behaviour after the injection of the novel odour (Fig. 6.2c). In contrast, observers paired 

with replacement models, compared to unpaired observers, showed overall calmer behaviour 

during both stimulus periods (overall main effect: α=0.025, p=0.001, Table 6.1f; interaction: 

α=0.025, p=0.71, Table 6.1f). 
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Table 6.1. Results for high-risk observers interacting with models: statistical test output for baseline responses 

and neophobia (pre vs. post as repeated-measures) across modelling treatments (unpaired, consistent pairings, or 

replacement pairings). Significant terms of interest are in bold type. 

      F   df   p   

a) overall MANOVA for baseline behaviour   

  treatment 4.13  4, 152  =0.003  

b) post-hoc MANOVA for baseline behaviour: unpaired vs. consistent  

  treatment 1.35  2, 44  =0.27  

c) post-hoc MANOVA for baseline behaviour: unpaired vs. replacement  

  treatment 6.59  2, 58  =0.003   

d) overall RM-MANOVA for neophobia   

 
Within subjects  

     

  
time 43.31  2, 75  <0.001  

  time × treatment 3.99  4, 152  =0.004  

 
Between subjects  

     

 
 treatment 4.26  4, 152  =0.003  

e) post-hoc RM MANOVA for neophobia: unpaired vs. consistent 

 
Within subjects  

     

  
time 28.41  2, 44  <0.001 

 
  time × treatment 4.49  2, 44  =0.017 

 

 
Between subjects  

     

 
 treatment 0.10  2, 44  =0.91 

 
f) post-hoc RM MANOVA for neophobia: unpaired vs. replacement 

 
Within subjects  

     

  
time 20.40  2, 58  <0.001 

 

  
time × treatment 0.35  2, 58  =0.71 

 

 
Between subjects  

     
    treatment 8.12   2, 58   =0.001   

 

  



 

67 

  

 

Figure 6.2. Mean (± SE) time spent freezing (a and b) and time spent pacing (c and d) when tested alone, before 

(pre) and after (post) exposure to a novel odour. Steeper slopes (upward for time spent freezing and downward 

for time spent pacing) represent stronger behavioural changes in response to the odour. Observers had prior 

experience with a high-risk regime. Then, during a 9-d conditioning phase, high-risk observers were paired with 

calm models: either consistently, with the model replaced every 3 d (replacement), or where the observer and 

model were not paired (unpaired). Testing of observers and models occurred 1 d following the conditioning 

period. 

 

Socially-transmitted effects on models 

As expected, models were influenced by their treatment (baseline: p=0.029, Table 6.2a; 

neophobia: p=0.017, Table 6.2d; Figs. 6.2b and 6.2d). At the end of the 9-d treatment period, the 

final replacement models behaved similarly to the low-risk unpaired (control) models 
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(replacement vs. unpaired: baseline: α=0.025, p=0.66, Table 6.2c; neophobia: α=0.025, p=0.77, 

Table 6.2f), whereas the consistently paired models acquired socially-transferred fear (consistent 

vs. unpaired: baseline: α=0.025, p=0.017, Table 6.2b; neophobia: α=0.025, p=0.006, Table 6.2e). 

However, replacement models behaved differently depending on the timing of their pairing with 

observers (baseline: p<0.001, Table 6.3a; neophobia: p=0.001, Table 6.3d, Fig. 6.3a and 6.3b), 

becoming calmer over time. Compared to the first model, the second model was significantly 

calmer (d 4–6 vs. d 1–3: baseline: α=0.025, p=0.005, Table 6.3b; neophobia: α=0.025, p=0.021, 

Table 6.3e), and the final model appeared to continue this trend, although not significantly (d 7–9 

vs. d 4–6: baseline: α=0.025, p=0.70, Table 6.3c; neophobia: α=0.025, p=0.18; Table 6.3f).  
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Table 6.2. Results for models following pairings with observers: statistical test output for baseline responses and 

neophobia (pre vs. post as repeated-measures) across modelling treatments (unpaired, consistent pairings, or 

replacement pairings). Significant terms of interest are in bold type. 

      F   df   p   

a) overall MANOVA for baseline behaviour   

  treatment 2.78  4, 152  =0.029  

b) post-hoc MANOVA for baseline behaviour: unpaired vs. consistent  

  treatment 4.45  2, 44  =0.017  

c) post-hoc MANOVA for baseline behaviour: unpaired vs. replacement  

  treatment 0.43  2, 58  =0.66   

d) overall RM-MANOVA for neophobia   

 
Within subjects  

     

  
time 34.93  2, 75  <0.001  

  time × treatment 3.10  4, 152  =0.017  

 
Between subjects  

     

 
 treatment 3.34  4, 152  =0.012  

e) post-hoc RM MANOVA for neophobia: unpaired vs. consistent 

 
Within subjects  

     

  
time 23.99  2, 44  <0.001 

 
  time × treatment 5.87  2, 44  =0.006 

 

 
Between subjects  

     

 
 treatment 5.20  2, 44  =0.009 

 
f) post-hoc RM MANOVA for neophobia: unpaired vs. replacement 

 
Within subjects  

     

  
time 23.59  2, 58  <0.001 

 

  
time × treatment 0.27  2, 58  =0.77 

 

 
Between subjects  

     
    treatment 0.34   2, 58   =0.71   
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Table 6.3. Results for replacement models: statistical test output for baseline responses and neophobia (pre vs. 

post as repeated-measures) for models paired with observers during days 1–3, 4–6, or 7–9. Significant terms of 

interest are in bold type. 

      F   df   p   

a) overall MANOVA for baseline behaviour   

  period 5.28  4, 186  <0.001  

b) post-hoc MANOVA for baseline behaviour: days 1-3 vs. days 4-6  

  period 5.90  2, 61  =0.005  

c) post-hoc MANOVA for baseline behaviour: days 4-6 vs. days 7-9  

  period 0.35  2, 61  =0.70   

d) overall RM-MANOVA for neophobia   

 
Within subjects  

     

  
time 61.69  2, 92  <0.001  

  time × period 4.83  4, 186  =0.001  

 
Between subjects  

     

 
 period 7.68  4, 186  <0.001  

e) post-hoc RM MANOVA for neophobia: days 1-3 vs. days 4-6 

 
Within subjects  

     

  
time 50.79  2, 61  <0.001 

 
  time × period 4.13  2, 61  =0.021 

 

 
Between subjects  

     

 
 period 7.67  2, 61  =0.001 

 
f) post-hoc RM MANOVA for neophobia: days 4-6 vs. days 7-9 

 
Within subjects  

     

  
time 29.69  2, 61  <0.001 

 

  
time × period 1.77  2, 61  =0.18 

 

 
Between subjects  

     
    period 1.35   2, 61   =0.27   
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Figure 6.3. Baseline and neophobic behaviour of replacement models after interacting with observers at different 

time periods. Mean (± SE) time spent freezing and time spent pacing when tested individually both before (pre) 

and after (post) exposure to a novel odour. Replacement models were paired with high-risk observers either days 

1–3, 4–6, or 7–9 following the observers’ risk exposure. All models were tested 1 d after their removal from the 

observers’ tanks. Steeper slopes (upward for time spent pacing and downward for time spent freezing) represent 

stronger behavioural changes in response to the odour. 

 

6.5. Discussion 

This study provides further evidence that social experiences with calm models can 

weaken the high-risk phenotype. Moreover, this study demonstrated that such experiences can 

minimize the social transfer of fear. I found that replacing models experiencing socially-

transferred fear with new calm models significantly weakened the high-risk phenotype in 

observers. While the first model experienced a high level of socially-transferred fear, subsequent 

models experienced significantly less. Thus, new replacement models were better demonstrators 

of safety and more likely to influence observers. It was the second model (i.e., first replacement 

model) that made the largest impact, with the final model furthering this effect. In contrast, the 

high-risk phenotype of observers was unaffected when paired consistently with one model. Thus, 

social information coming from multiple models (3 vs. 1 in this case), even in succession and not 

together, was convincing to observers that their new environment was safe. This is consistent 

with Chapter 5 and most previous studies assessing observer-to-model ratios (e.g., Ferrari & 

Chivers 2008; Reebs 2000).  
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As in Chapter 4, socially-transferred fear was stronger in intensity than in Chapter 3 

where the social pairing occurred for a shorter duration of time (48 h less than in this 

experiment). However, the intensity of the high-risk phenotype was again weaker when socially-

transferred vs. being directly acquired, especially in terms of freezing (see Fig. 6.2a vs. Fig. 

6.2b). Although I did not directly compare models and observers because models were moved 

into new tanks whereas observers were not, this confounding factor (a stressful disturbance) 

should have affected models more than observers in terms of promoting fear behaviours. Thus, I 

can conclude that socially-transferred fear in this study was indeed less intense than directly-

acquired fear, as was also documented in Chapters 3 and 4 (see the following chapter for 

applications to human fear-psychology).   
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Chapter 7: Discussion and applications to fear recovery7 

 

7.1. Summary of findings in a cognitive ecology framework 

In this thesis, I explored factors that potentially influence learning about risk and safety in 

minnows. I found that two mechanisms – alarm-cue learning and social learning – can have 

similar learning outcomes. However, when new information conflicted with prior information, 

social information about risk was more persuasive, completely overriding previous information 

about safety (Chapter 2). Conversely, previously-learned risk was difficult to override via the 

opportunity to learn safety, presumably because an incorrect response to risk is much more 

costly than an incorrect response to safety. In Chapter 4, I found little evidence that safety 

demonstration by an experienced model could influence fear in an observer in a one-on-one 

setting. However, in Chapters 5 and 6, I showed that the presence of multiple models, when 

behaving calmly, could override fear in observers, but this influence was lessened when 

previously learned fear had been socially reinforced.   

I induced uncertainty about risk by exposing individuals repeatedly to general predation 

cues without any specific information. Indeed, this caused minnows to display neophobic 

behaviour. However, individuals that were provided with information about a specific threat 

within a high-risk environment also displayed neophobia, and at a fairly similar intensity 

(Chapter 4). Individuals that were repeatedly exposed to risk, regardless of whether they had 

specific information, displayed increased baseline fear behaviours in addition to neophobia, 

which I have collectively referred to as the ‘high-risk phenotype’. This phenotype was even more 

intense when minnows experienced risk in isolation. I also found no evidence that uncertain 

individuals were more influenced by experienced models. These outcomes, taken together, 

                                                           
7 A portion of this chapter comes from a manuscript currently in press:  

 

Crane AL, Ferrari MCO (in press). Learning of safety by a social fish: applications for studying post-traumatic 

stress in humans. Animal Behaviour. 



 

74 

  

indicate that the high level of risk, rather than uncertainty, was the fundamental driver of 

behaviour in my experiments. 

When given an opportunity to learn a specific threat from neophobic models, observer 

minnows did not learn correctly, instead acquiring the high-risk phenotype from models 

(Chapters 3 and 4). Hence, a potential mechanism for the failed learning of safety in Chapter 4 is 

that, despite being experienced with safety, models became poor demonstrators of such because 

they acquired socially-transferred fear from observers. Hence, in this social learning framework, 

the observer and model influence each other in a contradirectional transfer of information, with 

the naive observer having an opportunity to learn safety from an experienced model, but instead 

the model learning risk from the observer. In Chapter 5, I found that a large group of models was 

necessary to counteract the social transfer of fear from observer to model, which allowed models 

to influence observers to behave as though the environment was now safe. Likewise, in Chapter 

6, I found that when a model had experienced socially-transferred fear, its removal and 

replacement with a new unaffected model was influential in weakening the high-risk phenotype 

of the observer.  

I conducted these studies to better understand social learning of risk and safety, but from 

my early work came a goal of applying my results to a human problem – the acquisition of post-

traumatic stress (PTS) and behavioural therapy. Indeed, the social environment appears critical 

for the susceptibility and recovery of PTS (Charuvastra & Cloitre 2008). In this chapter, I make 

the case that non-human animals, and specifically prey fishes, can be valuable in furthering our 

understanding the ‘social ecology’ of PTS in humans, hopefully stimulating new ideas for 

recovery strategies. 

 

7.2. Animal models for human post-traumatic stress 

Like other animal species, humans exposed to danger can develop long-term alterations 

in the neurobiological responses to stress, resulting in severe psychological problems (Garbarino 

& Kostelny 1996; Kaysen, Resick & Wise 2003; Nutt 2000). For instance, combat veterans and 

victims of sexual assault often experience post-traumatic stress (PTS), whereby they exhibit 

intense symptoms of emotional distress, social withdrawal, nervousness, hypervigilance, and fear 

of the unexpected, among other effects (Charuvastra & Cloitre 2008). These symptoms can be 

debilitating, providing no benefit in low-risk environments, such as when returning home from 
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combat. However, from an evolutionary perspective, these traits may be exactly the optimal 

response in high-risk environments, where extra caution toward unordinary events, and increased 

preparedness for danger, can increase survival (Cantor 2009). This has led some experts to no 

longer refer to PTS as a disorder (PTSD). 

Performing controlled, randomized experiments on humans to understand PTS source-

therapy interactions (i.e., how symptoms acquired in different ways affect the outcomes of 

different therapies) is generally not ethically viable. However, animal models allow researchers 

to test such questions, but the main drawback of animal models is that they are often limited in 

how well they represent humans (Borghans & Homberg 2015; Goswami et al. 2013). Three basic 

criteria must be met for animal models to be considered valid in terms of human applications. 

The model must reproduce symptoms that parallel those seen in humans (‘face validity’) and 

predict the treatment outcomes seen in humans (‘predictive validity’) (Belzung & Lemoine 

2011). There must also be confidence that tests of the model are measuring the intended response 

(‘construct validity’), in this case, a fear response (Maximino, de Brito & Gouveia Jr 2010). 

Studies using animal models typically induce PTS-like symptoms using one of two basic 

methods, either via exposure to painful stressors or to predation risk (Goswami et al. 2013). 

Unlike exposure to painful stressors, such as shock or simulated drowning, exposure to predation 

risk is more ecologically relevant and has shown several advantages in modelling the human 

disorder (Goswami et al. 2013). There is extensive evidence that predation-risk methods yield 

high face validity for PTS symptoms across animal taxa (Clinchy et al. 2011; Clinchy et al. 2013; 

Goswami et al. 2013). Behavioural changes in animals exposed to risk (e.g., avoidance 

behaviour, reduced activity, aggression, hypervigilance, neophobia) often parallel those of PTS 

sufferers. The classic example of severe and long-lasting PTS-like behaviours was demonstrated 

in rats, R. norvegicus, following exposure to a predator, Felis catus (Adamec & Shallow 1993).  

Another strength of predation-risk models is high construct validity (Cantor 2009; 

Clinchy et al. 2011; Clinchy et al. 2013) due to the phylogenetic conservation of the fear neural 

pathways involved with PTS. Indeed, prey exposed to predation risk display neurological and 

hormonal changes (e.g., Barcellos et al. 2007; Egan et al. 2009) that are similar to those in 

humans, which is how construct validity is typically judged (Siegmund & Wotjak 2006). As for 

the predictive validity of animal PTS models, studies have targeted reduced anxiety via fear 

conditioning (e.g., in mice, Mus musculus) (Golub et al. 2009), or exposure to anxiolytic drugs 
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(e.g., in fishes, including minnows: Cachat et al. 2010; Maximino et al. 2014; Rehnberg et al. 

1989; Richendrfer et al. 2012; Wong et al. 2010). 

 

7.3. Prey fishes as PTS models 

All animal models have limitations. However, long-term psychological stress can cause 

chronic effects considered directly comparable to those in humans, even for far less cognitively 

advanced species (Clinchy et al. 2013). Indeed, fishes have already shown a moderate degree of 

face validity for a PTS model based upon the PTS-specific criteria of Yehuda and Antelman 

(1993) that I outline here: (1) There is substantial variability in who acquires PTS and its 

severity, and likewise, there is rich literature on inter-individual variability in fear reactions in 

fishes and other non-human animals (e.g., Bell & Sih 2007; Brown et al. 2015a). (2) In humans, 

the behavioural changes associated with PTS can be expressed in a bidirectional fashion, as has 

been found for fish (e.g., see Chapters 4–6 where activity increased in the form of pacing and 

decreased in the form of freezing). (3) The intensity of symptoms should be ‘dose dependent’, 

meaning that exposure to higher levels of risk causes intensified symptoms, as has again been 

demonstrated in fishes (Brown et al. 2014; Brown et al. 2015a; Brown et al. 2015b). (4) These 

behavioural changes often persist for many years in humans. In fishes, little work has examined 

the longevity of the high-risk phenotype, but Brown et al. (2015a) demonstrated its persistence 

for a few weeks in cichlids, Amatitlania nigrofasciata. Another study with this species indicated 

that repeated exposures to alarm cues (12 times) caused neophobia to persist only for three 

weeks (Joyce et al. 2016). The study by Brown et al. (2015a), however, revealed that further 

increasing the level of risk will cause even longer retention. Other species and longer durations 

should be tested, and the length of duration relative to lifespan may be a consideration for animal 

models. (5) Brief exposures to risk (e.g., a one-time sexual assault) can induce PTS. In fishes, 

this criterion has yet to be explored, so studies assessing fear after surviving an actual predator 

attack would be valuable, here, if ethically viable. 

Using fish as human models has aided research on cardiovascular metabolism (Chico, 

Ingham & Crossman 2008), genetic disease (Lieschke & Currie 2007), cancer (Amatruda et al. 

2002), and behavioural neuroscience (Blaser, Chadwick & McGinnis 2010; Stewart et al. 2012). 

In addition, fish models show predictive validity for PTS pharmaceutical treatment (Caramillo et 

al. 2015; Gerlai 2011; Maximino et al. 2014; Richendrfer et al. 2012; Stewart et al. 2014). The 



 

77 

  

use of fish as PTS models can provide some advantages relative to other animal models. For 

instance with fish, researchers can consistently induce PTS-like symptoms using their alarm 

cues, which is more ethically satisfying than other methods, such as causing physical pain to the 

animals (Braithwaite & Boulcott 2007; Sneddon 2011). Moreover, the abundance of small prey 

fishes allows for multi-factorial and manipulative experiments that can increase our 

understanding of source-treatment interactions with statistical reliability from large sample sizes. 

Like others (Borghans & Homberg 2015), I posit that the best way to obtain the optimal 

reflection of PTS is by combining what we learn from multiple animal models.  

 

7.4. Secondary trauma 

Unfortunately for people living or working with PTS sufferers, their symptoms can be 

vicariously transmitted. This phenomenon, while receiving much less attention than the direct 

acquisition of PTS, has been described as ‘secondary traumatic stress’, ‘vicarious 

traumatization’, ‘burnout’, and ‘compassion fatigue’ (Canfield 2005; Elwood et al. 2011). While 

these terms have slightly different defining criteria, their similarity has led to using the term 

‘secondary trauma’ to encompass this overall phenomenon (Elwood et al. 2011; Whitfield & 

Kanter 2014). As of the late 1990s, evidence for secondary trauma was scarce, and there was 

debate surrounding whether it was actually a real issue. Today, difficulties still remain in 

determining whether secondary trauma results from interaction with the direct-trauma sufferer or 

simply from the stressful nature of their own lives (Sabin-Farrell & Turpin 2003). However, a 

substantial amount of literature has documented secondary trauma in recent years (Canfield 

2005; Knight 2010). Examples are widespread among professional and non-professional 

interactions, including therapists (Canfield 2005), clinicians working with victims of terrorism 

(Bauwens & Tosone 2010), nurse examiners (Maier 2011), Holocaust survivors (Baranowsky et 

al. 1998), family members of war veterans (Arzi, Solomon & Dekel 2000), war journalists 

(Feinstein, Owen & Blair 2002), and individuals that frequently view trauma-related media 

content (Holman, Garfin & Silver 2014). While data are limited within different therapeutic 

fields, a comparison study across fields found evidence that social workers developed the highest 

levels of secondary trauma, whereas psychologists experienced the lowest levels (Manning-

Jones, de Terte & Stephens 2016). My work with minnows indicates that prey fishes are well 

suited for addressing questions about secondary trauma. Much like secondary trauma in humans, 
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the high-risk phenotype in minnows can be indirectly acquired simply by interacting with 

individuals that already display the phenotype (Chapters 3-6 and Fig. 7.1). My results in Chapter 

3 were the first causal evidence for this phenomenon in any species, adding to the face validity of 

prey fishes for modelling PTS.  

 

 

Figure 7.1.  Linking social learning theory to fear recovery in humans. In minnows (a), a high-risk observer has 

the opportunity to learn safety from a conspecific model, but also conveys to the model that the environment is 

dangerous. Because social information about fear can override safety in a one-on-one setting, models can 

acquire high-risk behaviours from observers without being exposed to risk directly. In humans (b), a behavioural 

therapist may work with a PTS sufferer (Monson et al. 2006) to help alleviate their symptoms. Often these 

therapists experience symptoms of secondary trauma (Sabin-Farrell & Turpin 2003).  

 

In humans, the severity of secondary trauma correlates with the time spent interacting 

with the direct trauma victim (e.g., in therapists: Cohen et al. 2004; Killian 2008), and likewise, I 

found evidence for this association in minnows (Chapter 3 vs. 4 and 6). The research community 

still knows little, however, about how secondary trauma compares to direct trauma, or factors 

affecting the persistence of acquired symptoms (Arzi et al. 2000; Baranowsky et al. 1998). A 

review of secondary trauma among trauma clinicians found that low-level symptoms were 

common, and not restricted only to trauma-focused therapies, but ‘clinically significant’ levels of 
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secondary trauma were rare (Elwood et al. 2011). In Chapters 3, 4, and 6, I found similar results, 

where socially-transferred fear occurred at lower levels than that displayed by individuals 

directly exposed to alarm cues. However, a few studies in humans indicate, that in some rare 

cases, the symptoms of secondary trauma can actually be more severe than direct-trauma 

symptoms (Arzi et al. 2000; Feinstein, Audet & Waknine 2014). For example, Feinstein et al. 

(2014) found that war journalist who photographed violent events in person had lower levels of 

PTS than the journalist who conducted the image processing. Interestingly, the frequency of 

viewing the images had a stronger effect than the viewing duration. In contrast, factors thought 

to prevent secondary trauma are age, experience, and emotional independence (Arzi et al. 2000; 

Knight 2010), although these are not always correlated with the severity of symptoms (Levin et 

al. 2011). Other studies indicate that having background social support, such as working closely 

with a supervisor or working in teams, helps to prevent secondary trauma (Coles, Dartnall & 

Astbury 2013; Killian 2008; Williams, Helm & Clemens 2012), as does the lack of trauma 

exposure during early life (Williams et al. 2012).  

 

7.5. PTS growth and therapy 

Post-traumatic growth is the process of overcoming trauma-related symptoms (Samios, 

Rodzik & Abel 2012). The term ‘resilience’ (Yehuda et al. 2006) is also frequently used for 

such. For some PTS sufferers, medication (e.g., anxiolytics and antidepressants) can alleviate 

their symptoms (Mohamed & Rosenheck 2008; Sharpless & Barber 2011), as in fishes 

(Caramillo et al. 2015). The primary anxiolytics used to treat PTS are benzodiazepines, or 

‘benzos’, including clomipramine (Anafranil), diazepam (Valium), chlordiazepoxide (Librium), 

and alprazolam (Xanax), whereas selective-serotonin reuptake inhibitors, such as sertraline 

(Zoloft) and fluoxetine (Prozac), are commonly prescribed antidepressants. In contrast, various 

psychotherapies are also used to treat PTS. One form of psychotherapy is eye-movement 

desensitization and reprocessing, which is a growing therapeutic method where the patient 

optically focuses on a moving stimulus during trauma-memory recall (Shapiro 1989). However, 

there has been some controversy as to whether the eye movements have any benefit vs. the 

trauma recall alone (Davidson & Parker 2001; Lee & Cuijpers 2013). In more traditional 

behavioural therapy, patients may simply focus on their present environment (present-focused 

therapy) (Bisson et al. 2007; Classen et al. 2001; Foy et al. 2002; Monson et al. 2006; Rizvi, 
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Vogt & Resick 2009; Sharpless & Barber 2011). This can occur in a one-on-one setting or 

alongside other patients in a group (Classen et al. 2001; Foy et al. 2002). In Chapter 3, I 

attempted to use a one-time safety conditioning in a one-on-one setting to reduce the high-risk 

phenotype, finding some evidence that fear was reduced toward the conditioned stimulus but not 

toward novel stimuli. In contrast, ‘prolonged exposure’ is a trauma-focused therapy in humans 

where patients must recall trauma memories over numerous sessions until they eventually 

become desensitized to the memories (McLean, Asnaani & Foa 2015), consistent with the Risk 

Allocation Hypothesis (Ferrari et al. 2009; Lima & Bednekoff 1999b). However, in Chapter 3, I 

also attempted to weaken the high-risk phenotype via fear conditioning (exposure to risk from an 

experienced model), but to no avail with only a one-time exposure. 

Although only a few studies have assessed the effectiveness of group therapy (Bisson et 

al. 2007), it appears largely beneficial to sufferers of PTS when acquired in isolation (e.g., 

physical or sexual abuse) (Bradley & Follingstad 2003; Classen et al. 2001; Resick et al. 1988). 

However, for patients with PTS that was acquired in groups (common in military conflicts), the 

effects have been only modest, despite often having less severe symptoms than victims of 

isolated trauma. In one study on combat veterans, the dropout rate was nearly half 

(Schottenbauer et al. 2008), which is a common occurrence in these studies, but participants that 

continued therapy did show weakened symptoms (Schnurr et al. 2003). In another study, group 

therapy reduced PTS symptoms, but other defensive behaviours remained unaffected (Britvić, 

Radelić & Urlić 2006). However, these anecdotal patterns may be driven by confounding factors. 

For instance, studies on single-trauma victims generally involve women who may be more 

comfortable with a therapist or have more social attachment (see: O'Connor & Elklit 2008) 

relative to group-trauma victims – primarily men exposed to combat.  

Another type of therapy is “modelling”, where patients have opportunities to learn by 

imitating the actions of other individuals (the models) (Jaffe & Carlson 1972; Swney 2013). A 

behavioural change or skill develops by observing the model exhibit the desired behaviour. 

Again, this type of therapy can occur in a one-on-one situation or within a group of models. 

However, I am not aware of any current evidence that supports modelling as an effective therapy 

for PTS, but whether the lack of evidence is due to the therapy’s ineffectiveness or simply a lack 

of study remains unclear. Because social withdrawal is a typical symptom of PTS, sufferers may 

be unlikely to spend much time with a calm group of people, whereas individuals that live with 
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the PTS sufferers (e.g., spouses) may not serve as ‘calm models’ because they have become 

secondarily traumatized (e.g., Arzi et al. 2000). There is evidence in humans, however, that 

specific phenotypes – general levels of anxiety and social withdrawal – are reduced via 

modelling therapy (Jaffe & Carlson 1972; O'connor 1972; Swney 2013). 

My results in Chapter 5 demonstrated that group modelling weakened the high-risk 

phenotype for observers but was more persuasive for those that had experienced background risk 

in isolation, rather than in a group, despite the tendency for isolated individuals to be more 

fearful initially. Experiencing risk in a group appeared to reinforce fear and override the calm 

model. These findings are in line with anecdotal comparisons of group vs. isolated trauma in 

humans (mentioned above), and thus, the social reinforcement of fear appears to limit the 

effectiveness of treatment in humans and in minnows. Moreover, in my study, I used both sexes 

in each treatment, and thus sex was not a confounding factor, unlike the human anecdotes. 

However, group therapy for humans involves other symptomatic individuals alongside a 

therapist (Bober & Regehr 2006), whereas in my study the members of each group of models 

were either all calm or all un-calm. Hence, the recovery of human patients in groups of 

symptomatic individuals may be limited by the social reinforcement of fear, whereas therapists 

working in these groups could experience intensified secondary trauma by being out-numbered 

by traumatized individuals (Canfield 2005; Samios et al. 2012).  

In Chapter 6, I modelled outcomes for fearful observers when their models were replaced 

after experiencing socially-transferred fear. In humans, changing therapists can be a stressful 

event for patients, especially when the change is unplanned (Bostic, Shadid & Blotcky 1996).  

It can cause tension and expressions of anger, loss, and resentment in patients (Dinnen & Bell 

1972). In the psychological literature, some attention has gone toward what has been referred to 

as ‘substitute therapists’ or ‘replacement therapists’. Dinnen and Bell (1972) assessed patients 

with epilepsy, and found that replacement therapists did not hinder the progress of patients. For 

overcoming alcoholism, the rotation of therapists has been essential, attributed to increased 

therapeutic relationships for patients (Krampe et al. 2004). However, in both cases the patients’ 

symptoms are not socially transferred, and thus, replacement therapy for fear recovery should 

work differently. I am not aware of any human studies on such, but in my work with minnows 

(Chapter 6), I found evidence that periodic replacement of a therapist would be beneficial in 

helping a patient overcome fear. 
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In the context of recovery from secondary trauma, therapists experiencing such 

symptoms are recommended to first cease their interaction with the patient, and allow a new 

therapist to counsel the trauma victim. The next step is to adopt self-care strategies such as 

exercising, eating and sleeping regularly, taking more personal time, and undergoing stress 

management training (Osofsky, Putnam & Lederman 2008). However, little is known regarding 

the success of these strategies for actually alleviating secondary trauma (Bober & Regehr 2006; 

Motta 2008). In fact, a recent review of the literature on the efficacy of interventions to help 

mental health workers with secondary trauma found that no randomized experimental studies 

have been conducted (Bercier & Maynard 2015). The authors viewed the observational studies as 

being plagued by small sample sizes due to low participant recruitment and high drop-out rates. 

The authors proceeded to highlight the need for more rigorous research, underscoring that we 

should not assume that therapy for PTS sufferers will work in the same way for alleviating 

secondary trauma (Bercier & Maynard 2015).  

Again, my work on socially-transferred fear in minnows suggests they could be a good 

model for assessing recovery from secondary trauma. I did not test such in this thesis, but I did 

explore how the removal and replacement of models could affect their own fear behaviours 

(Chapter 6). My results indicate that a therapist experiencing secondary trauma could become 

ineffective if they are unable to mask their symptoms. Although the initial model experienced 

socially-transferred fear, their removal resulted in a shortened interaction time with the directly 

exposed individual. In humans, a shorter interaction correlates with faster recovery from 

secondary trauma (e.g., Cohen et al. 2004; Killian 2008). In fishes, we know that higher 

intensities of the high-risk phenotype persist longer than lower intensities, at lease when acquired 

directly by individuals from similar social backgrounds (e.g., Brown et al. 2014; Brown et al. 

2015a; Brown et al. 2015b). This presumably holds true for indirect acquisition as well. Hence, 

the replacement of therapists experiencing secondary trauma could be beneficial to the therapists 

involved, in addition to their patients. Often, however, a therapist may feel compelled to continue 

their interactions with a patient after experiencing secondary trauma, attempting to hide their 

symptoms (Osofsky et al. 2008). My data suggest that such a decision could be harmful to the 

therapist and their patient in the long-term, but the impact of masking secondary trauma is a 

topic of future interest. 
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7.6. Other potential applications 

My primary focus was to apply my work to post-traumatic stress; however, there is a 

parallel between social learning in high-risk environments and another topic in human 

psychology. ‘Helicopter parenting’ is a behaviour where parents ‘hover’ over their children 

regardless of whether this oversight is actually needed (Locke, Campbell & Kavanagh 2012). 

This phenomenon has received a substantial amount of media attention, yet there has been little 

research on the topic, and the literature is mostly speculative (Ungar 2009). Some psychologists 

think that helicopter parents are so overprotective that their children do not learn the natural 

consequences of actions (Locke et al. 2012). Some children will become overly anxious, accept 

that everything is dangerous, and withdraw, and others will not be able to filter out irrelevant 

information (Ungar 2009). In Ungar’s (2009) view, overprotecting children in low-risk 

environments (e.g., stable, well-resourced homes) is what causes the negative consequences. He 

adds that “the level of protection should match the level of actual risk”. The current state of the 

literature is biased toward middle-class North Americans, even though they are unlikely to suffer 

from extreme risk (Hoffman 2010). Hence, our view of helicopter parenting may not reflect 

different ethnic backgrounds or social groups. Future research on vertical transmission (parent to 

offspring) of the high-risk phenotype in fishes under different background environments could be 

an innovative approach for exploring outcomes of helicopter parenting. 

Behavioural problems related to fear are also commonly seen in companion animals like 

domestic dogs and cats (Marder 1991). In dogs, for example, aggressiveness, separation 

(isolation) anxiety, and generalized anxiety are common (Talegón & Delgado 2011). Generalized 

anxiety is often seen in abused individuals (McMillan et al. 2015), those living in shelters (Tod, 

Brander & Waran 2005), and those with working roles such as guarding, contraband detection, 

and medical alert – all roles where fear recovery is critically important (Rooney, Clark & Casey 

2016). Standard medications are often used to reduce anxiety (Marder 1991), as is artificial 

selection for individuals with fewer fear problems (Rooney et al. 2016). Although human therapy 

for dogs is common (e.g., Coppola, Grandin & Enns 2006), as is using dogs in therapy for 

humans (e.g., Altschuler 1999), I am not aware of any studies that intentionally use intraspecific 

social therapy for dogs or other companion animals. However, some studies on dogs have used a 

conspecific chemical cue (‘dog-appeasing pheromone’ secreted during lactation) to reduce 

anxiety behaviours such as vigilance and pacing (Kim et al. 2010; Tod et al. 2005). Rooney et al. 
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(2016) argued that future research on fear recovery in dogs should explore new methods 

involving social learning, stressing that the influence of calm conspecific models needs to be 

evaluated. 

 

7.7. Future directions  

The way uncertainty affects social learning processes remains a fundamental question. I 

explored uncertainty via the lack of information about a predator’s identity, but incomplete 

information regarding when or where attacks occur also deserves attention. At least in minnows, 

assessing uncertainty when induced by repeated exposures to risk poses a challenge for 

researchers, due to the acquisition of the high-risk phenotype and its social transmission. How 

much, if any, of these outcomes should be attributed to uncertainty? Perhaps lower threat levels, 

fewer risk exposures, or more time between exposures would facilitate a phenotype of 

uncertainty in response to novel cues without inducing a consistent fearful state. Determining 

how social information is incorporated into fear responses over a longer time scale could be 

valuable. For instance, when uncertain individuals learn socially, do they retain their learned 

responses for the same duration of time as those with complete information? Evidence for such a 

pattern exists in tadpoles, L. sylvaticus, in a non-social context (Ferrari & Chivers 2013).   

 More attention should also go to the reinforcement of social learning via multiple 

conditionings, particularly in the context of conflicting information between prior and current 

situations (e.g., how many individual experiences of safety are required to prevent subsequent 

social learning of risk? how many social experiences with safety are required to override one 

instance of socially-learned risk?). Moreover, some traits of observers and models have received 

little attention, such as age, dominance status, or social familiarity. With regards to age 

differences, for instance, does learning from a different-sized model cause uncertainty for 

observers, weaken learned responses, or even prevent learning? The outcome likely depends on 

whether different-sized models have different predator threats, and whether observers recognize 

such information. In my social learning experiments, observers and models fully interreacted, so 

determining how specific types of information (e.g., tactile, visual, chemical cues) were used is 

unknown. Social learning of risk in minnows is known to occur via visual cues in the absence of 

other information (Ferrari et al. 2005), whereas the release of non-injury chemical cues from 

models does not invoke learning in some species (Ferrari et al. 2008) but has yet to be tested in 
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minnows. The way specific cue types affect the social transfer of generalized fear should be 

explored, as should whether minnows release any auditory cues or alarm calls when frightened. 

Across the board, more work is needed to understand the duration of the socially learned 

response, which has rarely been tested more than a few days after conditioning (see Mineka & 

Cook 1993 for an exception). 

While not a focus of this thesis, research on social learning of predators may become 

increasingly important in a world that is rapidly changing. Physical alterations to habitats, in 

addition to biotic homogenization, can result in prey species encountering new predator species. 

The social transmission of predator-related information will likely play an important role in the 

evolutionary future of many prey species. Will a high-risk phenotype benefit species that 

experience new threats, despite the energetic costs of vigilance and reduced time spent on other 

fitness-related activities? These costs are preferable to being consumed, but if the chances of 

being consumed are low, as in safe environments, a high-risk phenotype becomes maladaptive. A 

few studies have found higher survival among neophobic individuals when novel predators were 

present (Benard & Fordyce 2003; Ferrari et al. 2015b). However, these studies revealed that 

neophobic behaviour can be an evolutionary trap when individuals contend with invasive 

predators that use hunting strategies unlike those of their native predators. From an evolutionary 

perspective, a plastic high-risk phenotype is an adaptive trait for success in risky environments 

(Brown et al. 2013). It helps animals survive their initial encounters with novel predators and 

facilitates the retention of information that is learned during the encounter (Mitchell et al. 2016). 

Inducing or reducing the high-risk phenotype may become increasingly useful for species 

management (e.g., enhancing food production), as well as for conservation efforts that rear and 

release animals to replenish natural populations.  

Finally, I have proposed that my thesis work has applications to PTS in humans. 

However, clearly more work is needed to validate the use of prey fishes as a PTS model. Little is 

known regarding two criteria: (1) Can a one-time event induce PTS-like symptoms? Answering 

this question might involve individuals that survive an actual predator attack, or alternatively, for 

fishes, a one-time exposure to a concentration of alarm cues well higher than is ecologically 

relevant might work in similar fashion. Moreover, can a one-time event re-trigger PTS-like 

symptoms after waning? Indeed, another criterion for PTS validity is (2) the waning time of the 

symptoms. In prey fishes, we known that the high-risk phenotype can last for several days, but 
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can researchers drive its longevity further, and for a duration that is comparable to humans when 

accounting for differences in lifespan? 

Feedback from psychologists on this potential application will be valuable in targeting 

future work to address gaps in our understanding of PTS. From my perspective, there are several 

interesting avenues for investigation that deserve attention: (1) Can socially-transferred fear be 

more intense than fear from a direct event? My work herein showed that socially-transferred fear 

was weaker, as have most observational studies on humans. One recent exception however, was 

the journalists that processed war photos (Feinstein et al. 2014). It would be interesting to test 

minnows that are repeatedly exposed to multiple, new high-risk models. (2) Because the 

therapist is the leader of the therapist-patient pair, research should explore how the 

dominance/subordinate status of observers affects social transfer of the high-risk phenotype. (3) 

My work herein involved a fish species that is social. However, many fish species are asocial, 

and thus, they might not be good models for understanding social influences on fear. In contrast, 

there are other fish species that are considered even more social than minnows. Research 

exploring the social transmission of fear across fish species with different levels of sociality is 

needed. (4) There is some evidence in humans that the frequency of frightening stimuli is more 

influential in driving PTS symptoms than the duration of the frightening stimuli. Prey fishes can 

be an ideal model for experimentally testing such mechanisms. (5) Additional work on fear and 

safety conditioning should be conducted, but with multiple conditionings. Prolonged-exposure 

therapy could also be modelled in this way. (6) How parents with the high-risk phenotype affect 

their naïve offspring should be tested in prey fishes with parental care, and over generations.   

The scientific community still has little non-correlational evidence for how various 

underlying factors affect the acquisition of PTS, treatment success, the reoccurrence of 

symptoms, or how medications and behavioural therapy interact. The same can be said for 

secondary trauma. I believe that a minnow model can help us to address such issues, hopefully 

providing us with beneficial ideas for recovery, while also increasing our understanding of the 

cross-taxa dynamics of social learning. 
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