1,786 research outputs found

    Simulation-Oriented Methodology for Distortion Minimisation during Laser Beam Welding

    Get PDF
    Distortion is one of the drawbacks of any welding process, most of the time needed to be suppressed. One doubtful factor that could affect welding deformation is the shape of the liquid melt pool, which can be modified via variation of process parameters. The aim of this work was to numerically study the dynamics of the weld pool and its geometrical influence on welding distortion during laser beam welding. To achieve such a goal, a promising novel process simulation model, employed in investigating the keyhole and weld pool dynamics, has successfully been invented. The model incorporated all distinctive behaviours of the laser beam welding process. Moreover, identification of the correlation between the weld pool geometry and welding distortion as well as, eventually, weld pool shapes that favour distortion minimisation has also been simulatively demonstrated

    Simulation-Oriented Methodology for Distortion Minimisation during Laser Beam Welding

    Get PDF
    Distortion is one of the drawbacks of any welding process, most of the time needed to be suppressed. One doubtful factor that could affect welding deformation is the shape of the liquid melt pool, which can be modified via variation of process parameters. The aim of this work was to numerically study the dynamics of the weld pool and its geometrical influence on welding distortion during laser beam welding. To achieve such a goal, a promising novel process simulation model, employed in investigating the keyhole and weld pool dynamics, has successfully been invented. The model incorporated all distinctive behaviours of the laser beam welding process. Moreover, identification of the correlation between the weld pool geometry and welding distortion as well as, eventually, weld pool shapes that favour distortion minimisation has also been simulatively demonstrated

    Laser welding of dissimilar carbon steel to stainless steel 316L

    Get PDF
    Laser welding of metals and alloys is extensively used in industry due to its advantages of controlled heating, narrow weld bead, low heat affected zone (HAZ) and its ability to weld a wide range of metals and dissimilar metals. Laser welding of dissimilar metals such as carbon steels and stainless steel is still a challenging task, particularly due to the formation of brittle phases in the weld, martensitic formation in the HAZ and solidification cracking in the fusion zone. These issues can significantly deteriorate the strength of the welded joint. The aim of this work is to investigate the fundamental phenomena that occur inside the dissimilar weld zone and their effect on weld quality. In order to establish the key process variables, an initial study concentrated on the effect of different laser process parameters on dissimilar weld quality. In the second part of the work, a comprehensive study was performed to understand and subsequently control the alloying composition in laser dissimilar welding of austenitic stainless steel and low carbon steel. A dissimilar weld that is predominantly austenitic and homogeneous was obtained by controlling the melt pool dynamics through specific point energy and beam alignment. The significance of dilution and alloying elements on joint strength was established. A coupled CFD and FEM numerical model was developed to assist in understanding the melt pool dynamics and transportation processes of alloying elements. The model has been validated by a series of laser welding experiments using various levels of specific point energy. The laser welding characteristics in terms of geometric dimensions, surface morphology, alloying concentration, and dilution, were compared, and it is concluded that the specific point energy and laser beam position are the key parameters that can be controlled to obtain a weld bead with characteristics most suitable for industrial applications. In the third part of the work, a comparative study was performed to understand the significance of cooling rate, and alloying composition on the microstructure and phase structure of the dissimilar weld zone. Results show that the HAZ within the high carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A new heat treatment strategy was proposed based on the results of the numerical simulation, and it is shown to control the brittle phase formation in HAZ of high carbon steel. A series of experiments was performed to verify the developed thermo-metallurgical FEA model and a good qualitative agreement of the predicted martensitic phase distribution is shown to exist. Although this work is presented in the context of dissimilar laser welding of mild steel to stainless steel, the concept is applicable to any dissimilar fusion welding process

    Simulação numérica de deformações e tensões em soldadura

    Get PDF
    Welding is one of the best known methods in the industry for joining a wide variety of materials. This process inevitably creates stresses and strains in the components due to the high energy intensity released by the heat source. Nowadays it is almost mandatory to quantify these changes in the parts that go through the welding process. This is the only way to comply with strict quality parameters ensuring that the part fulfils the assigned function. It is very common to use experimental methods to do this analysis. However, the use of computational methods in welding process simulation was being increasing significantly. Numerical simulation, based on the Finite Element Method, appears to make it easier for engineers to predict and analyse complex phenomena. In this work two numerical simulation models of the welding process by laser were developed on Dual-Phase 600 steel plates. Two types of joints were tested: butt and in T. The deformations and stresses caused were quantified using the Simufact software.A soldadura é dos métodos mais conhecidos na indústria para unir uma grande variedade de materiais. Este processo cria inevitavelmente tensões e deformações nos componentes devido à alta intensidade de energia libertada pela fonte de calor. Nos dias que correm torna-se quase obrigatório quantificar estas alterações nas peças que passam pelo processo de soldadura. Só assim é possível cumprir rigorosos parâmetros de qualidade, garantindo que a peça cumpre a função atribuída. É muito comum recorrer a métodos experimentais para fazer esta análise. No entanto, o uso de métodos computacionais em simulação de processos de soldadura tem crescido significativamente. A simulação numérica, baseada no Método de Elementos Finitos, surge para facilitar aos engenheiros a prevenção e análise de fenómenos complexos. No presente trabalho foram desenvolvidos dois modelos de simulação numérica do processo de soldadura através de laser em chapas de Dual-Phase 600. Foram testados 2 tipos de juntas: topo a topo e em T. As deformações e tensões causadas pelo processo foram quantificadas com recurso ao software Simufact.Mestrado em Engenharia Mecânic

    Numerical Modelling and Simulation of Metal Processing

    Get PDF
    This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials

    Interlocking effect on residual stress and distortion of Laser-Welded A304 steel plates

    Get PDF
    openLaser welding is widely used in industries for the assembly of various products such as ships, automobiles, trains, and bridges. Residual stress and welding distortion often result in dimensional inaccuracies during assembly and increased construction costs. Therefore, predicting and reducing welding distortion is crucial for improving the quality of welded structures. This research focuses on the analysis of residual stress and distortion in two laser-welded A304 steel pieces. Standard and Interlocking welding methods were employed for the joints. Electron microscopy was used to examine the microstructure. Mechanical behavior was assessed through tensile testing, microhardness measurement, residual stress, and distortion analysis. Residual stress in different welding zones was measured using X-ray diffraction. The results indicated that the metal's microstructure in the weld is austenitic with skeletal ferrite in some areas. The microhardness of the standard weld metal increases by approximately 22% compared to the base metal, attributed to the formation of a skeletal ferrite phase in the weld metal while this value is 11% for the Interlocking one. The yield and tensile strength of the interlocking-welded sample increased by about 8% and 1.2%, respectively, compared to the standard-welded sample. Distortion results showed a 12.6% and 10.5% change in the angle for Standard welding and Interlocking welding compared to the baseline. Additionally, changes in height for Standard and Interlocking welding were approximately 5.2% and 28.9%, respectively, compared to the baseline.Laser welding is widely used in industries for the assembly of various products such as ships, automobiles, trains, and bridges. Residual stress and welding distortion often result in dimensional inaccuracies during assembly and increased construction costs. Therefore, predicting and reducing welding distortion is crucial for improving the quality of welded structures. This research focuses on the analysis of residual stress and distortion in two laser-welded A304 steel pieces. Standard and Interlocking welding methods were employed for the joints. Electron microscopy was used to examine the microstructure. Mechanical behavior was assessed through tensile testing, microhardness measurement, residual stress, and distortion analysis. Residual stress in different welding zones was measured using X-ray diffraction. The results indicated that the metal's microstructure in the weld is austenitic with skeletal ferrite in some areas. The microhardness of the standard weld metal increases by approximately 22% compared to the base metal, attributed to the formation of a skeletal ferrite phase in the weld metal while this value is 11% for the Interlocking one. The yield and tensile strength of the interlocking-welded sample increased by about 8% and 1.2%, respectively, compared to the standard-welded sample. Distortion results showed a 12.6% and 10.5% change in the angle for Standard welding and Interlocking welding compared to the baseline. Additionally, changes in height for Standard and Interlocking welding were approximately 5.2% and 28.9%, respectively, compared to the baseline

    Evaluation numérique des contraintes résiduelles appliquée à l'acier DP600 soudé par laser de haute puissance Nd (YAG)

    Get PDF
    Les études sur les procédés de soudage et sur la fiabilité des structures assemblées apparaissent actuellement comme un domaine de recherche actif, ouvert et complexe, car elles nécessitent de combiner de nombreuses connaissances dans différents domaines de la physique, de la mécanique et des procédés. La distribution des contraintes résiduelles joue un rôle important dans la vie des structures en favorisant la rupture par fatigue ou par fissuration. Ainsi, une meilleure compréhension des contraintes résiduelles évite l'utilisation de facteurs de sécurité plus élevés et, par conséquent permet de mieux optimiser le cycle de vie des structures soudées. A travers ce travail de thèse, nous nous sommes intéressés au soudage par laser d un acier dual phase DP600, soudé en configuration par recouvrement, dont l application est l utilisation dans le domaine automobile. Cette thèse présente deux volets : un volet expérimental et un volet numérique.L étude expérimentale nous a permis d une part d appréhender les conséquences métallurgiques et mécaniques du procédé laser sur l acier DP600 et d autre part d utiliser et de valider les résultats numériques des modèles développés. L étude numérique a eu pour objectif de prédire l histoire thermique, métallurgique et l évolution des caractéristiques mécaniques des tôles soudées par faisceau laser. Nous avons développé, sur un code de calcul par élémentsfinis Abaqus, trois modèles numériques. Le modèle thermomécanique, nous a permis de simuler la distribution spatio-temporelle de la température. Dans ce cas, le chargement appliqué est dépendant des paramètres du procédé etdes caractéristiques du faisceau laser et est associé à des conditions aux limites. Pour le modèle mécanique, nous avonsconsidéré un comportement élasto-plastique avec un chargement thermique transitoire, résultat du modèle thermique.Le deuxième modèle thermo-métallurgique nous a permis de simuler les phénomènes d austénisation pendant la phase de chauffage (modèle de Waeckel) et de prendre en compte les fractions volumiques des phases martensitiques générées par les transformations de phases austénite martensite lors du refroidissement (modèle de Koistinen-Marburger). Enfin, dans la dernière partie de simulation, nous avons réalisé le couplage thermo-metallo-mécanique. Les résultats obtenus dans la partie précédente, ont été implémentés dans deux modèles mécaniques : le modèle mécanique classique et le modèle mécanique avec prise en compte de la déformation liée aux effets de dilatation métallurgique. Cet effet a été intégré à travers le coefficient de dilatation thermique des phases ferritiques et martensitiques et des fractions volumiques obtenues à partir du modèle thermo-métallurgique. Les résultats ont montré que la répartition des contraintes résiduelles dans la zone de fusion et dans la zone affectée thermiquement sous l effet de la déformation thermo-métallurgique donne des valeurs supérieures à celles estimées par le modèle élasto-plastique classique.Studies on welding processes and the reliability of assembled structures currently appear as an area of active research, open and complex as they need to combine knowledge in many different fields of physics, mechanics and processes. The distribution of residual stress plays an important role in the life of welded structures by promoting fatigue failure or cracking. Thus, a better understanding of residual stress avoids the use of higher safety factors and therefore helps to optimize the life cycle of welded structures. Through this work, we are interested in laser welding of steel DP600 dual phase welded overlap configuration, the application is the use in the automotive field. This thesis has two components: an experimental and a numerical part. The experimental study allowed us, firstly to understand the metallurgical and mechanical effects of laser welding on steel DP600 and secondly to use and validate the numerical results of the developed models. The numerical study aimed to predict the thermal history, and metallurgical changes in mechanical properties of laser beam welded sheets. We have developed three numerical models by using a finite element code inside Abaqus. The thermomechanical model allowed us to simulate the temporal and spatial distribution of temperature. In this case, the applied load is dependent on the processing parameters and characteristics of the laser beam and is associated with boundary conditions. For the mechanical model, we considered an elastoplastic behavior with a transient thermal loading result of the thermal model. The second thermo-metallurgical m odel allowed us to simulate the phenomena austenitizing during the heating phase (Waeckel model) and take into account the volume fraction of martensitic phase transformations generated by the austenite-martensite transformation during cooling (Koistinen-Marburger model). Finally, in the last part of simulation, we have achieved the metallothermo- mechanical coupling. The results obtained in the previous section have been implemented in two mechanical models: the classical mechanics model and the mechanical model taking intoaccount the deformation due to the effects of metallurgical expansion. This effect has been built through the coefficient ofthermal expansion of ferritic and martensitic phases and volume fractions obtained from the thermo-metallurgical model. The results showed that the distribution of residual stresses in the fusion zone and the heat affected as a result of the eformation thermometallurgical field gives values higher than those estimated by the classical elastic-plastic model.RENNES-INSA (352382210) / SudocSudocFranceF

    On the incorporation of a micromechanical material model into the inherent strain method - application to the modeling of selective laser melting

    Get PDF
    When developing reliable and useful models for selective laser melting processes of large parts, various simplifications are necessary to achieve computationally efficient simulations. Due to the complex processes taking place during the manufacturing of such parts, especially the material and heat source models influence the simulation results. If accurate predictions of residual stresses and deformation are desired, both complete temperature history and mechanical behavior have to be included in a thermomechanical model. In this article, we combine a multiscale approach using the inherent strain method with a newly developed phase transformation model. With the help of this model, which is based on energy densities and energy minimization, the three states of the material, namely, powder, molten, and resolidified material, are explicitly incorporated into the thermomechanically fully coupled finite-element-based process model of the micromechanically motivated laser heat source model and the simplified layer hatch model

    Impulse-Based Manufacturing Technologies

    Get PDF
    In impulse-based manufacturing technologies, the energy required to form, join or cut components acts on the workpiece in a very short time and suddenly accelerates workpiece areas to very high velocities. The correspondingly high strain rates, together with inertia effects, affect the behavior of many materials, resulting in technological benefits such as improved formability, reduced localizing and springback, extended possibilities to produce high-quality multi material joints and burr-free cutting. This Special Issue of JMMP presents the current research findings, which focus on exploiting the full potential of these processes by providing a deeper understanding of the technology and the material behavior and detailed knowledge about the sophisticated process and equipment design. The range of processes that are considered covers electromagnetic forming, electrohydraulic forming, adiabatic cutting, forming by vaporizing foil actuators and other impulse-based manufacturing technologies. Papers show significant improvements in the aforementioned processes with regard to: Processes analysis; Measurement technique; Technology development; Materials and modelling; Tools and equipment; Industrial implementation
    • …
    corecore