41 research outputs found

    光ファイバ型ひずみセンサを用いた血圧予測の実用化に向けた研究

    Get PDF
    信州大学(Shinshu university)博士(工学)この博士論文は、次の学術雑誌論文を一部に使用しています。計測自動制御学会論文集. 56(4): 189-197 (2020); doi:10.9746/sicetr.56.189. © 2020 公益社団法人 計測自動制御学会.Thesis千野 駿. 光ファイバ型ひずみセンサを用いた血圧予測の実用化に向けた研究. 信州大学, 2020, 博士論文. 博士(工学), 甲第735号, 令和02年03月20日授与.doctoral thesi

    Singlemode-Multimode-Singlemode Optical Fiber Sensor for Accurate Blood Pressure Monitoring

    Get PDF
    A dual-channel single-mode-multi-mode-single-mode (SMS) fiber optic sensor encapsulated by polydimethylsiloxane (PDMS) was proposed for the first time, for the simultaneous monitoring of the brachial and radial arteries for accurate blood pressure prediction. With the help of the machine learning algorithm Support Vector Regression (SVR), the SMS fiber sensor can continuously and accurately monitor the systolic and diastolic blood pressure. Commercial sphygmomanometers are used to calibrate the accuracy of blood pressure measurement. Compared with the single-channel system, this system can extract more pulse wave features for blood pressure prediction, such as radial artery transit time (RPTT), brachial artery transit time (BPTT), and the transit time difference between the radial artery and the brachial artery (DBRPTT). The results show that the performance of dual-channel blood pressure monitoring is more accurate than that of single-channel blood pressure monitoring in terms of the absolute value of the correlation coefficient (R) and the average value of the difference between SBP and DBP. In addition, both the single-channel and dual-channel blood pressure monitoring are in line with the Association for the Advancement of Medical Devices (AAMI), but the average deviation (DM, 0.06 mmHg) and standard deviation (SD, 1.54 mmHg) of dual-channel blood pressure monitoring are more accurate. The blood pressure monitoring system has the characteristics of low cost, high sensitivity, non-invasive and capability for remote real time monitoring, which can provide effective solution for intelligent health monitoring in the era of artificial intelligence in the future

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Flexible bond wire capacitive strain sensor for a vehicle tyre

    Get PDF
    This thesis reports a novel flexible wire bond structured capacitive sensor design that can measure the strain in the tyres stably and reliably without any influence or disturbance to the tyre material during the measurement. An industry achievable fabrication method based on the design has been also investigated and it is also believed that there is a possibility of introducing the sensor into mass production. Bond wire technology, laser machining technology and photolithography technology are adopted to fabricate the strain sensor, in which the wire bonding technology is the most significant process for this design. An array of 25 micrometer bond wires that are normally employed for electrical connections in integrated circuits is built to create an interdigitated structure and generating approximately 10pF capacitance. The array that in an approximately 8*8 mm area consists of 50 wire loops and creates 49 capacitor pairs. The aluminium wires are bonded to a flexible PCB which is specially finished to allow direct bonding to copper surface. The wire array is finally packaged and embedded in a flexible and compliant material, polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The implementations of the bond wire, the flexible PCB and PDMS embedding minimize the stiffness of the strain sensor while the PDMS can also prevent the sensor from any potential damage. When a tensile strain occurs, the wires are stretched further apart reducing the capacitance. On the contrary, the wires move closer and increase the capacitance if the strain sensor is compressed. Different from the traditional interdigital capacitor, the capacitance of the device is almost in a linear relationship with respect to the strain, which can measure the strain up to at least ±60000 micro-strain (±6%) with the resolution of 111 micro-strain (0.01%)

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Design and fabrication of optical fibre long period gratings for CO₂ sensing

    Get PDF
    This thesis investigated the repeatability of the overwrite long period grating (LPG) fabrication method and highlighted the advantage it offers in its ability to tune spectral features thus allowing the manufacture of bespoke sensors. Moreover, LPGs with periods ranging from 100 - 200 μm were written and a novel technique for mapping the transmission data was presented. This method gave a unique overview into the period mediated evolution of attenuation features, which, when designing LPGs that operate at the sensitive phase matching turning point, is invaluable. Further exploration into the overwrite method revealed that the UV irradiation duty cycle used in the fabrication of LPGs was found to influence the presence of harmonics, where a duty cycle of 25% maximised coupling to 2nd order transmission features. LPGs which possessed these additional spectral features within a small wavelength range (600 - 1000 nm) were assessed for their suitability in performing multi-parameter sensing. Ionic liquids were explored as an LPG COThis thesis investigated the repeatability of the overwrite long period grating (LPG) fabrication method and highlighted the advantage it offers in its ability to tune spectral features thus allowing the manufacture of bespoke sensors. Moreover, LPGs with periods ranging from 100 - 200 μm were written and a novel technique for mapping the transmission data was presented. This method gave a unique overview into the period mediated evolution of attenuation features, which, when designing LPGs that operate at the sensitive phase matching turning point, is invaluable. Further exploration into the overwrite method revealed that the UV irradiation duty cycle used in the fabrication of LPGs was found to influence the presence of harmonics, where a duty cycle of 25% maximised coupling to 2nd order transmission features. LPGs which possessed these additional spectral features within a small wavelength range (600 - 1000 nm) were assessed for their suitability in performing multi-parameter sensing. Ionic liquids were explored as an LPG COThis thesis investigated the repeatability of the overwrite long period grating (LPG) fabrication method and highlighted the advantage it offers in its ability to tune spectral features thus allowing the manufacture of bespoke sensors. Moreover, LPGs with periods ranging from 100 - 200 μm were written and a novel technique for mapping the transmission data was presented. This method gave a unique overview into the period mediated evolution of attenuation features, which, when designing LPGs that operate at the sensitive phase matching turning point, is invaluable. Further exploration into the overwrite method revealed that the UV irradiation duty cycle used in the fabrication of LPGs was found to influence the presence of harmonics, where a duty cycle of 25% maximised coupling to 2nd order transmission features. LPGs which possessed these additional spectral features within a small wavelength range (600 - 1000 nm) were assessed for their suitability in performing multi-parameter sensing. Ionic liquids were explored as an LPG CO₂ sensitive coating. It was shown that these materials demonstrate a refractive index change upon exposure to CO₂ which was maintained following mechanical stabilisation using a gelling agent. A coating system for applying the gelled ionic liquid to the surface of an optical fibre was developed and techniques to improve the coating deposition were explored. The sensor demonstrated an 8 nm wavelength shift in response to 20% CO₂, which was reversible by reducing the partial pressure of CO₂ for 25 min.sensitive coating. It was shown that these materials demonstrate a refractive index change upon exposure to CO₂ which was maintained following mechanical stabilisation using a gelling agent. A coating system for applying the gelled ionic liquid to the surface of an optical fibre was developed and techniques to improve the coating deposition were explored. The sensor demonstrated an 8 nm wavelength shift in response to 20% CO₂, which was reversible by reducing the partial pressure of CO₂ for 25 min. sensitive coating. It was shown that these materials demonstrate a refractive index change upon exposure to CO₂ which was maintained following mechanical stabilisation using a gelling agent. A coating system for applying the gelled ionic liquid to the surface of an optical fibre was developed and techniques to improve the coating deposition were explored. The sensor demonstrated an 8 nm wavelength shift in response to 20% CO₂, which was reversible by reducing the partial pressure of CO₂ for 25 min
    corecore