114 research outputs found

    A Computational Framework for Host-Pathogen Protein-Protein Interactions

    Get PDF
    Infectious diseases cause millions of illnesses and deaths every year, and raise great health concerns world widely. How to monitor and cure the infectious diseases has become a prevalent and intractable problem. Since the host-pathogen interactions are considered as the key infection processes at the molecular level for infectious diseases, there have been a large amount of researches focusing on the host-pathogen interactions towards the understanding of infection mechanisms and the development of novel therapeutic solutions. For years, the continuously development of technologies in biology has benefitted the wet lab-based experiments, such as small-scale biochemical, biophysical and genetic experiments and large-scale methods (for example yeast-two-hybrid analysis and cryogenic electron microscopy approach). As a result of past decades of efforts, there has been an exploded accumulation of biological data, which includes multi omics data, for example, the genomics data and proteomics data. Thus, an initiative review of omics data has been conducted in Chapter 2, which has exclusively demonstrated the recent update of ‘omics’ study, particularly focusing on proteomics and genomics. With the high-throughput technologies, the increasing amount of ‘omics’ data, including genomics and proteomics, has even further boosted. An upsurge of interest for data analytics in bioinformatics comes as no surprise to the researchers from a variety of disciplines. Specifically, the astonishing rate at which genomics and proteomics data are generated leads the researchers into the realm of ‘Big Data’ research. Chapter 2 is thus developed to providing an update of the omics background and the state-of-the-art developments in the omics area, with a focus on genomics data, from the perspective of big data analytics..

    Going viral : an integrated view on virological data analysis from basic research to clinical applications

    Get PDF
    Viruses are of considerable interest for several fields of life science research. The genomic richness of these entities, their environmen- tal abundance, as well as their high adaptability and, potentially, pathogenicity make treatment of viral diseases challenging. This thesis proposes three novel contributions to antiviral research that each concern analysis procedures of high-throughput experimen- tal genomics data. First, a sensitive approach for detecting viral genomes and transcripts in sequencing data of human cancers is presented that improves upon prior approaches by allowing de- tection of viral nucleotide sequences that consist of human-viral homologs or are diverged from known reference sequences. Sec- ond, a computational method for inferring physical protein contacts from experimental protein complex purification assays is put for- ward that allows statistically meaningful integration of multiple data sets and is able to infer protein contacts of transiently binding protein classes such as kinases and molecular chaperones. Third, an investigation of minute changes in viral genomic populations upon treatment of patients with the mutagen ribavirin is presented that first characterizes the mutagenic effect of this drug on the hepatitis C virus based on deep sequencing data.Viren sind von beträchtlichem Interesse für die biowissenschaftliche Forschung. Der genetische Reichtum, die hohe Vielfalt, wie auch die Anpassungsfähigkeit und mögliche Pathogenität dieser Organismen erschwert die Behandlung von viralen Erkrankungen. Diese Promotionsschrift enthält drei neuartige Beiträge zur antiviralen Forschung welche die Analyse von experimentellen Hochdurchsatzdaten der Genomik betreffen: erstens, ein sensitiver Ansatz zur Entdeckung viraler Genome und Transkripte in Sequenzdaten humaner Karzinome, der die Identifikation von viralen Nukleotidsequenzen ermöglicht, die von Referenzgenomen ab- weichen oder homolog zu humanen Faktoren sind. Zweitens, eine computergestützte Methode um physische Proteinkontakte von experimentellen Proteinkomplex-Purifikationsdaten abzuleiten welche die statistische Integration von mehreren Datensätzen erlaubt um insbesondere Proteinkontakte von flüchtig interagierenden Proteinklassen wie etwa Kinasen und Chaperonen aus den Daten ableiten zu können. Drittens, eine Untersuchung von kleinsten Änderungen viraler Genompopulationen während der Behandlung von Patienten mit dem Mutagen ribavirin die zum ersten Mal die mutagene Wirkung dieses Medikaments auf das Hepatitis C Virus mittels Tiefensequenzdaten nachweist

    COMPUTATIONAL FRAMEWORKS FOR THE IDENTIFICATION OF SOMATIC AND GERMLINE VARIANTS CONTRIBUTING TO CANCER PREDISPOSITION AND DEVELOPMENT

    Get PDF
    The most recent cancer classification from NIH includes ~200 types of tumor that originates from several tissue types (http://www.cancer.gov/types). Although macroscopic and microscopic characteristics varies significantly across subtypes, the starting point of every cancer is believed to be a single cell that acquires DNA somatic alterations that increases its fitness over the surrounding cells and makes it behave abnormally and proliferate uncontrollably. Somatic mutations are the consequence of many possible defective processes such as replication deficiencies, exposure to carcinogens, or DNA repair machinery faults. Mutation development is a random and mostly natural process that frequently happens in every cell of an individual. Only the acquisition of a series of subtype-specific alterations, including also larger aberrations such as translocations or deletions, can lead to the development of the disease and this is a long process for the majority of adult tumor types. However, genetic predisposition for certain cancer types is epidemiologically well established. In fact, several cancer predisposing genes where identified in the last 30 years with various technologies but they characterize only a small fraction of familial cases. This work will therefore cover two main steps of cancer genetics and genomics: the identification of the genes that somatically changes the behavior of a normal human cell to a cancer cell and the genetic variants that increase risk of cancer development. The use of publicly available datasets is common to all the three results sections that compose this work. In particular, we took advantage of several whole exome sequencing databases (WES) for the identification of both driver mutations and driver variants. In particular, the use of WES in cancer predisposition analysis represents one of the few attempts of performing such analysis on genome-wide sequencing germline data

    The application of genomic technologies to cancer and companion diagnostics.

    Get PDF
    This thesis describes work undertaken by the author between 1996 and 2014. Genomics is the study of the genome, although it is also often used as a catchall phrase and applied to the transcriptome (study of RNAs) and methylome (study of DNA methylation). As cancer is a disease of the genome the rapid advances in genomic technology, specifically microarrays and next generation sequencing, are creating a wave of change in our understanding of its molecular pathology. Molecular pathology and personalised medicine are being driven by discoveries in genomics, and genomics is being driven by the development of faster, better and cheaper genome sequencing. The next decade is likely to see significant changes in the way cancer is managed for individual cancer patients as next generation sequencing enters the clinic. In chapter 3 I discuss how ERBB2 amplification testing for breast cancer is currently dominated by immunohistochemistry (a single-gene test); and present the development, by the author, of a semi-quantitative PCR test for ERBB2 amplification. I also show that estimating ERBB2 amplification from microarray copy-number analysis of the genome is possible. In chapter 4 I present a review of microarray comparison studies, and outline the case for careful and considered comparison of technologies when selecting a platform for use in a research study. Similar, indeed more stringent, care needs to be applied when selecting a platform for use in a clinical test. In chapter 5 I present co-authored work on the development of amplicon and exome methods for the detection and quantitation of somatic mutations in circulating tumour DNA, and demonstrate the impact this can have in understanding tumour heterogeneity and evolution during treatment. I also demonstrate how next-generation sequencing technologies may allow multiple genetic abnormalities to be analysed in a single test, and in low cellularity tumours and/or heterogenous cancers. Keywords: Genome, exome, transcriptome, amplicon, next-generation sequencing, differential gene expression, RNA-seq, ChIP-seq, microarray, ERBB2, companion diagnostic

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Washington University Senior Undergraduate Research Digest (WUURD), Spring 2018

    Get PDF
    From the Washington University Office of Undergraduate Research Digest (WUURD), Vol. 13, 05-01-2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Scienc

    The genetic architecture of psychiatric disorders

    Get PDF
    • …
    corecore