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ABSTRACT

Infectious diseases cause millions of illnesses and deaths every year, and raise great health

concerns world widely. How to monitor and cure the infectious diseases has become a

prevalent and intractable problem. Since the host-pathogen interactions are considered

as the key infection processes at the molecular level for infectious diseases, there have

been a large amount of researches focusing on the host-pathogen interactions towards

the understanding of infection mechanisms and the development of novel therapeutic

solutions. For years, the continuously development of technologies in biology has

benefitted the wet lab-based experiments, such as small-scale biochemical, biophysical

and genetic experiments and large-scale methods (for example yeast-two-hybrid analysis

and cryogenic electron microscopy approach). As a result of past decades of efforts, there

has been an exploded accumulation of biological data, which includes multi omics data,

for example, the genomics data and proteomics data.

Thus, an initiative review of omics data has been conducted in Chapter 2, which

has exclusively demonstrated the recent update of ‘omics’ study, particularly focusing

on proteomics and genomics. With the high-throughput technologies, the increasing

amount of ‘omics’ data, including genomics and proteomics, has even further boosted.

An upsurge of interest for data analytics in bioinformatics comes as no surprise to the

researchers from a variety of disciplines. Specifically, the astonishing rate at which

genomics and proteomics data are generated leads the researchers into the realm of

‘Big Data’ research. Chapter 2 is thus developed to providing an update of the omics
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background and the state-of-the-art developments in the omics area, with a focus on

genomics data, from the perspective of big data analytics.

Even though the host-pathogen interactions (HPI) systems have been a hot research

topic, the study of HPI is still in its early stage. One of the dominant reasons is that,

the identification of host-pathogen interactions takes a huge amount of experimental

resources and will demand lots of time, which has significantly limited the progress in

studying different HPI systems. Alternatively, computational models, as a cost-effective

approach, will facilitate the process for analysis and predictions of HPI systems with the

basis of the experimental data. Considering some specific issues existed in host-pathogen

protein-protein interactions (HP-PPIs) area, including the databases and computational

models, this thesis aims to propose a computational framework for HP-PPIs prediction

and study the structural interaction network to further reach an in-depth analysis. In

details, this thesis has made the following contributions.

A comprehensive review targeting on host-pathogen interactions resources published in

the last decades is firstly conducted. Since the prevailing application of high-throughput

sequencing and interaction detection methods has improved the production of inter-

species interaction data, numerous host-pathogen interactions resources have been re-

leased. Ranging from various aspects of available ‘omics’ data, theses host-pathogen

interactions (HPI) resources are accumulated in a fast speed, in which one of the dominant

sources is the protein-protein interactions. However, some of the published data may

only relate to specific human-pathogen interactions system, for example, the interactions

between human and HIV virus. These databases may be of special interests to a sub-group

of researchers. Moreover, there is still lacking a comprehensive overview of these host-

pathogen interactions resources with fingerposts delivering for particular research issues

in the present, including the goal towards data analysis and prediction.

Secondly, a systematic evaluation of machine learning-based models for prediction

of HP-PPI is presented. Although several literature reviews have been published by

introducing the machine learning-based models and some applications in the HPI domain,
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little research with empirical evaluations of the performance of HPI predictions based

on machine learning models has been conducted. Meanwhile, most studies of protein-

protein interactions prediction have been conducted based on a hypothesis of evaluating

the predictor with a balanced and small dataset, in which the numbers of positive and

negative PPIs are equivalent. In this thesis, a more extensively empirical evaluation con-

sidering different categories of sequence feature representation algorithms and numerous

traditional machine learning models is delivered.

Given the systematic evaluation performance of machine learning prediction models

for HP-PPIs in Chapter 4, the thesis subsequently focuses on developing novel machine

learning-based models to improve the performance for discovery of interactions of HP-

PPIs.

The third contribution in this thesis is a heterogeneous information mining and en-

sembling (HIME) model for discovery of interactions of HP-PPIs. In presence of

heterogeneous information based on sequence data, the HIME model is designed to

harness the power of the heterogeneous information and to benefit from various weak

machine learning models. The studied six different HP-PPIs datasets are included to

evaluate the performance and the extensive experiments show that HIME model is highly

effective and efficient.

The fourth contribution in this thesis is a two-layer machine learning-based model

for discovery of interactions of HP-PPIs. The two-layer machine learning-based model,

which is entitled ‘APEX2S’ model, is proposed to alleviate the latent imbalanced charac-

teristics of HP-PPIs dataset. In details, the two-layer model consists of two essential

modules, which are XGBoost and SVM. Herein, XGBoost is included to reduce the

imbalanced ratio of the data and SVM is utilised to enhance the prediction performance.

SMOTE technology is as well incorporated as a key component in the model to alleviate

the bias of imbalanced ratio. The curated dataset human-Shigella protein-protein inter-

actions dataset in Chapter 3 is utilised as the independent benchmarking dataset, and the

results have shown an enhancement of the overall performance.
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The fifth contribution in this thesis is an advanced bidirectional long short-term memory-

based (Bi-LSTM-based) model for discovery of interactions of HP-PPIs. The bidirec-

tional LSTM-based model is a variant deep learning model of long short-term mem-

ory model, which has demonstrated superior performance in domains such as natural

language processing, transportation and action recognition. However, the direct incor-

poration of traditional Bi-LSTM model will cause the model explicitly suffering from

the conventional vanishing gradient problem for the prediction of HB-PPI data. Thus,

in this chapter, a novel bidirectional LSTM-based (Bi-LSTM-based) model is designed

to yield results quite smoothly when the ratio changes. Meanwhile, the Bi-LSTM-

based model also shows a strong capability in dealing with the imbalanced issue. In

comparison with the evaluation models and the literature methods, Bi-LSTM-based model

has demonstrated a better performance in our study.

The sixth contribution in this thesis includes an unsupervised deep learning model for

discovery of interactions of HP-PPIs. Since deep learning method has shown powerful

performance in many areas, such as computer vision and nature language processing, this

thesis presents an unsupervised deep learning model for HP-PPIs prediction task, which

is based on stacked denoising autoencoders to capture higher level features regarding

the sequence information. The achieved performance indicates a superior capability of

the unsupervised deep learning model in dealing with the host-pathogen protein-protein

interactions scenario.

Lastly, this thesis concludes the contributions with a detailed effort for the reconstruc-

tion of a HP-PPIs structural interaction network (SIN) utilizing structure information

of proteins. Besides sequence information, structure information of protein is another

main published, experimentally determined three-dimensional (3D) structural data. It

is an atomic resolution macromolecular information for protein. However, the missing

data problem would hamper the acquirement of the structure information. A mapping

tool, which is BLAST/PRISM, is thus considered. Since the domain interactions are

considered as the solid evidence between proteins, iPfam/3did databases would be also
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utilized to filter this SIN to validate this network. There is a scarcity of studies based

on 3D structural data to provide an atomic mechanistic and high-resolution view of

HP-PPIs. In this chapter, we have demonstrated that SIN would be an alternative

solution revealing more mechanistic patterns of host-pathogen interactions which will

be an essential part for the future research. Lastly, we have concluded the thesis by

summarizing the advanced machine learning-based models, which will include inventive

feature representation algorithms and novel deep learning models, in the future work to

enhance the effectiveness for predictions of HP-PPIs.
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Chapter 1

INTRODUCTION

1.1 Background

Immersing in many disciplines, such as computer vision, economics, natural language

processing, online learning, bioinformatics and so on, big data, which terms data with

characteristics of high volume, high velocity and high variety, is impacting every aspect

of our research and life. More and more researches focus on data mining and machine

learning for predicting and uncovering the related domain knowledge. Particularly,

the extraordinarily expanding pace of data volume, variety and value characteristics is

bringing more attention on research towards the advancement of biology science. The

adoption of big data in bioinformatics has become a hot research topic not only in

genomics and proteomics areas [1], but also in biomedical medicine and biomedical

image areas [2].

Omics data, image data and signal data are dominant in biomedical research whilst

providing insights and research opportunities for biologists. These accumulated data

are deemed essential for transformation from experiments to valuable knowledge [3].

With the development of advanced high-throughput technologies, enormous amounts of

data are being generated by biologists. The availability of large-scale multi-omics data,

including proteomics data from The European Bioinformatics Institute (EBI) [4–6] and

genomics data from The Cancer Genome Atlas (TCGA) [7], provides an unprecedented

opportunity to transform the biomedical research onto system-level, mechanistic studies

1
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aimed at a comprehensive and holistic understanding of biological systems [8].

It is witnessed that, the data accumulated in a large scale via wet lab-based and in vitro-

based methods for biology science is booming to challenge the traditional data analysis

area of both computational and biological methods. Ranging from genomic sequencing

experiments to images of physiological structures, biologists are starting to grapple with

tremendous data sets, encountering challenges in processing and analysing information

that were once considered only with specific domain knowledge [9]. The analysis of

biological data is now becoming a data-driven work that helps biologists designing the

future experiments. The direct benefit for data analytics in biology is that, with the huge

amounts of data we have obtained nowadays, the hypothesis and phenomena behind these

biology researches could be generated based on data, which was summarized via vast

amount of experiments.

Herein, this chapter begins with the definitions of biological terminologies used in the

context of this thesis.

Proteins are considered as the basics of living organisms and the interactions between

different proteins are the basics of the biological functions, including immune response,

signal transduction and other essential functions [10].

* Definition 1 (Amino Acids): Amino acids are the structural units (monomers) that

make up proteins. As the important organic compounds, amino acids consist of

carbon, hydrogen, oxygen and nitrogen. Basically, a composition of hundreds or even

thousands of amino acids residues defines the primary structure of a protein. There

are 20 different kinds of amino acids. Shown as below Figure 1.1 is a diagram for

these amino acids. There are also several other rarely existing amino acids, such as

Selenocysteine (Sec) and Pyrrolysine (Pyl).

* Definition 2 (Protein): As amino acids are the monomer units of proteins, proteins

are composed of at least one chain of amino acids which is called a polypeptide. A

polypeptide is a linear chain which is directly defined by the composition of amino

acids. With folding, at least one polypeptide bends, twists and forms a unique,
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Figure 1.1: Twenty Basic Proteinogenic Types of Amino Acids [11]

complicated and stable three-dimensional structure. Most polypeptides shorter than

about forty amino acids in length do not fold. A determination of structure is far harder

than the composition of amino acids. Figure 1.2 and Figure 1.3 illustrate the basic

formation process of protein.

Proteomics is a main branch in computational biology, since proteins are considered

as the basis of living organisms and the interactions between different proteins result

in the biological functions, including immune response, signal transduction and other

essential functions [10]. Given a proteome is a collection of functional and non-functional

proteins existing in an organism, biological system, even biological context, proteomics

considers the proteomes study in a large scale [14]. Figure 1.4 shows the included areas

of proteomics, in which data will be collected from three different properties of location,

abundance/turnover and post-translational modifications. Either directly utilising these

data or inferring additional information from these data, the study of proteomics provides
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Figure 1.2: Amino Acids to Polypeptide [12]

Figure 1.3: Protein Structure [13]
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Figure 1.4: The Diagram of Proteomics[14]

substantial biological information and benefits the study of many biological problems.

‘Proteomics’ was originally coined in 1995.

* Definition 3 (Proteomics) [15–17]: Proteomics is the large-scale study of proteins,

usually by biochemical methods, which goal is to define the large-scale characterization

of the entire protein complement of a cell line, tissue and organism by focusing on

the five central pillars of proteomics research – mass spectrometry-based proteomics,

proteome-wide biochemical assays, systematic structural biology and imaging tech-

niques, proteome informatics, and clinical applications of proteomics.

As one of the major topics in proteomics, the studies of protein-protein interactions mostly

utilise large-scale and small-scale experimental methods, such as affinity purification,

yeast two-hybrid assay, affinity purifications-mass spectrometry (AP-MS) method, nu-

clear magnetic resonance (NMR) and mass spectrometry methods. It is a key question

about a protein, which is as important as the questions concerning when and where the

protein is expressed. Protein-protein interactions tell with which other proteins the protein
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interacts [15]. The tremendous value of a comprehensive protein-protein interaction map

of a biological system, such as a cell, presents a precious opportunity to understand the

mechanism of the biological system. Figure 1.5 presents a protein-protein interactions

network for schizophrenia genesis.

* Definition 4 (Protein-Protein Interactions) [18, 19]: Protein–protein interactions

(PPIs) are the physical contacts of high specificity established between two or more

protein molecules as a result of biochemical events steered by electrostatic forces

including the hydrophobic effect. Commonly, the physical contacts with molecular

association/docking between chains occur in a cell or in a living organism in a

specific biomolecular context. Specifically, two aspects are elaborated for the definition

of protein-protein interactions, which are firstly the interaction interface should be

intentional and not accidental and secondly the interaction interface should be non-

generic. Protein-protein interactions do not imply a static or permanent status for the

physical contacts between proteins.

1.2 Motivation and Goals

As for proteomics is a main branch in bioinformatics, a natural benefit for data analytics in

proteomics is to facilitate the understanding and prediction of the knowledge for proteins,

specifically for protein-protein interactions. Protein-protein interactions play a crucial

role by conducting basic biological functions in most biological processes. Mostly, PPIs

can be referred to either ‘intra-species PPI’ or ‘inter-species PPI’. Intra-species PPI is the

interaction between two proteins from the same species, while inter-species PPI means

the interaction occurs between two proteins from two different species. In this thesis,

how to get a better understanding and prediction of inter-species PPI, exactly between the

host and pathogen, is the research objective.

How to identify a PPI is essential for understanding the whole biological functions.

Since PPIs are essential to the majority of most cellular functions, many innovative



CHAPTER 1. INTRODUCTION 7

Figure 1.5: Schziophrenia Protein-Protein Interactions Network [20]

techniques and systems for identifying protein interactions have been developed [21].

Classifying pairs of proteins as interacting or not has been the subject of intense research

in recent years both in computational and experimental areas [22]. By far, numerous

supervised machine learning models have been adopted to PPIs’ prediction task.

For determining and studying PPIs, the most reliable biological methods are conducted

by wet lab-based experiments, which are deemed to be time consuming and resource

costing. Including low-throughput and high-throughput technologies, false positive data

and false negative data will be highly possible produced in one-time shot experiment.

Thereby, a reliable positive and negative data always require more repetitive experiments,

which will consume much more efforts, lab resources and time. It is also very difficult

for investigation with the prohibitively large set of possible host-pathogen protein-protein

interactions [23]. It has been reported that the unavailability of experimental methods for

large-scale detection of interactions between host and pathogen organisms is the obstacles
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[24] and also the false positive rate of available both computational predicted and high-

throughput experimentally verified interaction data are high [25].

Considering infectious disease as the major worldwide health concerns, they have

caused millions of illnesses and deaths every year. Figure 1.6 is an example from

Leibniz Institute for Natural Product Research and Infection Biology, which research

is to illustrate the interaction of Aspergillus fumigatus with the human innate immune

system. Host-pathogen interactions are subsequently studied as they play as the key

infection processes at the molecular level. Most diseases, which occur between hosts

and pathogens, can be analysed by groups of infection mechanisms. For host-pathogen

protein-protein interactions (HP-PPIs), including information of infection pathways, it

reveals much more in the infection mechanisms between host and pathogen. Thus,

analysing and understanding protein-protein interactions is of great importance and

presents huge values to the study on infectious diseases, especially for inter-species

interactions. This thesis focuses on the protein-protein interactions between human and

pathogens [26, 27], termed as host-pathogen protein-protein interactions (HP-PPIs) in the

following sections, which has been one of the hot topics towards the mechanism study of

infectious diseases. Concerning infectious diseases are still one of the dominant diseases

causing death, the research of HP-PPIs generally solicits data from different perspectives

to examine the hypothesis and propose potential therapeutics. Vast researches have been

conducted with a long time of development and examination.

Since host-pathogen PPIs are the key to either the mechanisms of infection or medicine

treatment, how to obtain a better understanding and prediction of inter-species PPI,

specifically between hosts and pathogens, is a hot topic for biology research. As a result

of decade efforts of wet lab-based experiments in biology, the production of biological

data, e.g. protein interactions data, has exploded. Even though there are still substantial

data to be further experimented, the collected data has benefitted the research on disease

mechanisms though to a limited extent. One of the earliest studies was on the symptom

of anthrax, which was identified as primarily caused by the protein interactions between
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Figure 1.6: Interaction of A. fumigatus with the human innate immune system, from
Leibniz Institute for Natural Product Research and Infection Biology with link of https:
//www.leibniz-hki.de/en/virulence-of-aspergillus-fumigatus.html

human and Bacillus anthracis. Bacillus anthracis is a type of bacterium pathogens, where

people want to fully understand mechanisms with the protein interactions map between

Bacillus anthracis and Homo sapiens (the host).

Meanwhile, as protein-protein interactions take charge of almost every biological

processes, systems biology-based approaches also study infectious diseases by analysing

the interactions between the host species and the pathogen organisms [23]. Different

from traditional protein-protein interactions, it has been reported that the unavailability of

experimental methods for large-scale detection of interactions between host and pathogen

organisms is one of the main obstacles [24]. On the other hand, the false positive rate

of the available computational and high-throughput experimental interaction data sets

remains high [25]. Specifically, for HP-PPIs, less experimentally identified data than

intra-species PPIs are available and multi high skewed data distribution should be further

investigated with regard to computational model constructions.

https://www.leibniz-hki.de/en/virulence-of-aspergillus-fumigatus.html
https://www.leibniz-hki.de/en/virulence-of-aspergillus-fumigatus.html
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Currently, there is little effort on delivering a comprehensive study of the experimen-

tally identified HP-PPIs data, as well as a systematic evaluation of the computational

models for the prediction task of host-pathogen protein-protein interactions. Even though,

there is an abundant information of protein with the details available for HP-PPIs.

Different kinds of data regarding protein characteristics, such as sequence information,

the homology between proteins, structural information of each proteins, and annotations,

are available for data analysis and can be utilised to build computational model in a

positive way. How to deal with the existing data and furthermore to incorporate these

data with machine learning models to predict the potential host-pathogen protein-protein

interactions is the main proposed research problem in this thesis. With the development of

advanced machine learning models, how to construct robust and effective computational

models dealing with different characteristics of the HP-PPIs data is the primary task in

the following chapters. At the same time, the in-depth knowledge of the potential HP-

PPIs lays behind the structural interaction network (SIN) [28]. To achieve this goal, this

thesis also initiates an investigation to evaluate the reconstruction of SIN for HP-PPIs.

The investigation includes the study of protein structural information from Protein Data

Bank (PDB [29]), the interacting interface and domain information from iPfam [30] and

3did [31] databases. SIN is designed to offer an atomic resolution understanding of host-

pathogen interactions.

Thus, the main goals of this research include:

1. Review the host-pathogen interactions databases published in the past decade in a

comprehensive way;

2. Evaluate machine learning-based computational models for prediction of host-pathogen

protein-protein interactions in a systematic manner. Several characteristics that may

affect the performance of the computational models are identified, which include the

singular information availability, model complexity and imbalanced data set issue.

3. Propose novel machine learning-based computational framework to better improve the
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prediction performance of host-pathogen protein-protein interactions. Four computa-

tional models are proposed in this thesis, which include conventional and deep learning

models, supervised and unsupervised models, for HP-PPIs prediction regarding the

aforementioned different characteristics of HP-PPIs data set.

4. Review the state-of-the-art of the SIN reconstruction, which could offer an atomic

resolution analysis on host-pathogen interactions.

1.3 Contributions of the Thesis

This thesis is to address the aforementioned goals with the purpose to provide a com-

putational framework for HP-PPIs research. By conducting the researches, the main

contributions of this thesis are summarized as follows.

1. This thesis fills the void of a comprehensive review of published databases regarding

pathogens study. A broad investigation of published databases regarding pathogens

study is presented. The investigation including the analysis of their corresponding

data source, target objects, current status and statistical analysis. A detailed statistic

analysis regarding selected databases for human-bacterial interactions (HBI) systems

is delivered, which involve a cross-check with their biological information. With this

regard, we focus the information primarily from the protein aspect since HBI mostly

happen between large molecular systems.

2. This thesis revisits the prediction task of HP-PPIs, specifically of human-bacterium

protein-protein interactions (HB-PPIs), which is a first endeavour in this area by

covering different aspects of HB-PPIs to report a systematic evaluation of different

machine learning-based computational models. A broader and deeper experimental

framework is designed to tackle the challenges, which explores a variety of feature

representation algorithms and different computational models to learn from the data

and perform predictions.
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3. This thesis proposes novel computational models for the prediction of host-pathogen

protein-protein interactions. To build a computational model to predict the potential

HP-PPIs, data and the corresponding methodologies are the main problems we first

need to figure out. In this thesis, a data set including positive and negative pairs is

curated from the verified experiments with selected features. Different information of

proteins, including sequence information, gene ontology, human interactome graph

and gene expression, are included at the first stage of investigations. Since for

general protein-protein interactions researches, most of them are based on sequence

information by the reason of its abundant availability, and as a result these researches

indicated they showed relatively good performance on a balanced data set. However,

for a HP-PPIs data set, a high skewed data distribution sometimes reflect the true

scenario presenting in the HPI system thus will be the main issue.

As machine learning models have become popular on dealing with PPI data[25, 32–

35], and nowadays the deep learning technology has also shown its ability to handle the

‘Big Data’ [36] including the imbalanced ones [37], in this thesis, four computational

models are proposed to tackle the HP-PPIs prediction task.

4. A review of the reconstruction of SIN process. Besides sequence information, structure

information of protein sequence is another main published, experimental determined

three-dimensional (3D) structural data. There is a scarcity of studies based on 3D

structural data to provide an atomic mechanistic and high-resolution view of HP-PPIs.

In this thesis, a primary goal is to deliver a review of the reconstruction of HP-PPIs

SIN process, which could be of potential to reveal more mechanistic patterns of host-

pathogen interactions in the future work.

With this research, the ultimate goal of this thesis is to deliver a deliberate and dedicated

computational framework to facilitate the study of HP-PPIs research. The bioinformatics

researchers would be the first group to benefit from our research. The proposed com-

putational models will be designed in accordance with the interested aspects in data
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Figure 1.7: The Structure of the Thesis

analytics, which could provide a better insights for molecular level interactions study.

Thus, including data scientists in applications modelling, the biologists in proteomics and

computer aided medicine area, this research would be beneficial to them.

1.4 Structure and Organization of the Thesis

The remainder of the thesis is structured in accordance with Figure 1.7.

Two major resources review contributions concerning omics data and host-pathogen

interactions resources are conducted in Chapter 2 and Chapter 3 respectively. Following

in Chapter 4, a systematic evaluation contribution with regard to computational models

for host-pathogen protein-protein interactions prediction is presented with the discussion

of the latent issues. Chapter 5 elaborates a two-layer model named APEX2s to handle

the imbalanced ratio issue for HP-PPIs data set. Chapter 6 propose a novel ensemble

model entitled HIME, which is capable of harnessing the power of the heterogeneous

information and benefitting from various weak machine learning models. In Chapter 7,

an unsupervised deep learning model which is based on stacked denoising autoencoders

to capture higher level features regarding the sequence information is presented for

discovery of interactions of HP-PPIs data sets. Chapter 8 further explore the power of

deep learning model, in which the bidirectional long short-term memory-based (LSTM-
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based) model is studied. Several novel designs are implemented in the proposed Bi-

LSTM-based model to yield performance results quite smoothly and effectively for HP-

PPIs data set. Lastly, in Chapter 9, a conclusion with a preliminary review effort for

the reconstruction of structure interaction network is provided, and the future work is

discussed.



Chapter 2

BIG DATA IN OMICS DATA RESEARCH

2.1 Introduction of the Omics Data

In recent years, bioinformatics has drawn much attentions from the academia and industry,

which demonstrates a strong vision to understand the internal and correlated meanings of

different mechanisms of the molecular systems on the Earth, with many advanced tools

and in-depth analyses. With the high-throughput technologies, the increasing amount of

‘omics’ data, including proteomics and genomics, has even further boosted. An upsurge

of interest for data analytics in bioinformatics comes as no surprise to the researchers

from a variety of disciplines. Specifically, the astonishing rate at which genomics and

genetic data are generated leads the researchers into the realm of ‘Big Data’. This chapter

is dedicated to providing an update of the omics background, particularly focusing on

the state-of-the-art developments in the genomics area from the perspective of big data

analytics.

2.1.1 History of the Omics Data

The research of omics data is developed for a number of different areas in biology, which

is widely studied with the advanced ‘omic’ technologies for the universal detection of

genes, mRNA, protein and metabolites [17, 38, 39]. The omics data research shares a

novel vision for analysis of the genome and molecule level data of the biological systems,

which is in contrast to conventional biological technology, for example, the genetics [40].

15
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From the World Health Organization (WHO) definition, the genomics data present a

more complex, more complicated and more comprehensive view towards the biological

systems by scrutinizing the functions and compositions of all genes and studying their

inter relationships, while the genetics focus on singe gene [40].

As two important categories of omics data, proteomics and genomics have gained lots

of attention in life science. While genomics is the study of the functions and composition

of genes, proteomics is dedicated to the research of the functions of all expressed

proteins [17]. Proteomics is considered as important as genomics, since the sharing and

integrations of proteomics and genomics data will yield substantial improvements and

meaningful reference for both gene and protein functions and properties [38, 41, 42].

In this section, we will start with the study of genomics data. The study of genomics

started in the early 1990s when the Human Genome Project (HGP) launched its research

on a complete sequence of all three billion base pairs in the human genome. The

experimental genomics data, which provides the veracious data of life at the molecular

level, promises to revolutionize the way in which cells and cellular processes have been

studied [43]. The Human Genome Project was designed as a three-step program to

produce genetic maps, physical maps and then the complete nucleotide sequence map

of the human chromosomes [44]. Besides the sequencing and genotyping technologies

development in the past decades, computational biology has become intrinsic to modern

biological research [45].

The dominant contribution of HGP is the generation of large, publicly available and

comprehensive genomics data [45]. On April 14th, 2003, the USA’s National Human

Genome Research Institute (NHGRI), the Department of Energy (DOE) and their partners

in the International Human Genome Sequencing Consortium announced the successful

completion of the Human Genome Project within the state-of-the-art technology [46].

Not only the human beings, but also other species are being sequenced. In 1995, the first

bacterium genome sequence was completed, namely Haemophilus influenza. The second

species being completely sequenced was Saccharomyces cerevisiae, one kind of beer
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Figure 2.1: The future of Genomics rests on the foundation of the Human Genome
Project [45]

yeast, in 1996. In 2000, Drosophila Melanogaster, a famous fruit fly, has its full genome

sequence completely finished. The latest sequenced species in records is Zebrafish, which

was finished its sequencing results in 2013.

So far, more and more different types of life on Earth are being sequenced, which

means more and more proteomics and genomics data have been recorded. As shown

in Figure 2.1, it details the future of genomics firmly resting on the foundation of HGP

[45]. Three themes are presented: the genomics to biology, the genomics to health and

the genomics to society. There are six critically important components relevant to the

themes, which are resources, technology development, computational biology, training,

ELSI (ethical, legal and social implications) and education.

It has been a promising research area which integrates computational and experimental

technology components [45]. The emergent availability of massive biological data has

demanded to involve a bunch of computational technologies, including the big data

analytic tools, data mining and machine learning, to cooperatively handle these data.

How to address the computational technology towards developing data-driven decision

support systems, in order to help biologists either design further experiments or conduct

data analysis, is the key issue in the next generation biomedical research.
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2.1.2 Genomics Data

With the impressive cost drop in high-throughput instruments, now there are many

biology laboratories being able to produce the data as quickly and vastly as they want.

Comparing genomics data with other major areas of ‘Big Data’, such as proteomics data,

astronomy data, particle physics, website resources (such as YouTube, Twitter) and so on,

it is very critical to have an insightful view about genomics via big data analytics [47], as

the genomics data is being produced at an extraordinary speed and has its specific domain

knowledge.

Every year over 25 zeta bytes (ZB) is being produced in astronomy area [47]. Same

phenomenon happens in particle physics which produces massive quantities of raw data.

However, only very few data is kept for storing and further analysis after data cleansing

and preprocessing.

With regard to genomics data, around 1 ZB data is generated annually. There are more

than 7,000 recorded high-throughput instruments all over the world. These instruments

are located in nearly 1,000 sequencing centers [47]. It is estimated that over the next ten

years, the sequencing genomics data of over 1.2 million reported species of plants and

animals would be encompassed.

Genomics data refers to the genome and DNA/RNA data of the organism. Typi-

cally, it is the representation in an alphabet array for every sequence. It is a chemical

and mechanical process essentially to ‘digitizes’ the information present in DNA and

RNA. Beside these data, other available omics data, which include transcriptomics,

methylomics and metabolomics data, could be integrated hierarchically to improve our

further understanding from the genotype to the phenotype [48]. Either for considering

individual data type for specific domain study or integrating related data types for

knowledge discovery between different domains, a data-driven framework built upon

a comprehensive representation of biology is desired to ease the upsurge of data and

facilitate the bioinformatics research.

For example, in one of our work, considering the proteomics data is publicly avail-
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able and is an expression of genomics data, we had drilled the big data analytics into

proteomics area to facilitate the experimental research of biologists. To be specific,

among the proteomics research, direct benefit from proteomics would be infectious

diseases. Thus, in this work, where host-pathogen protein-protein interactions (HP-PPIs)

is considered as the key infection process at the molecular level, a proper representation

of the proteomics data would introduce high dimensionality issue, while the highly skew

ratio between positive and negative HP-PPIs exist in a big dataset [49]. The highly skew

ratio is normally set to be 1:100. Considering the variety of infectious diseases and the

rising number of proteomics data, a powerful and comprehensive model is desired in this

area to help biologist to analyze these proteomics data.

These omics data, including proteomics, genomics and so on, have revolutionized the

system biology for a better understanding of biological mechanisms [8]. Bottlenecks

and opportunities are posed by a growing gap between the abilities in generating and

interpreting these data. The cost and difficulties in quantitative experiment have been

relatively controllable nowadays, whereas the challenges are further extended in data

analysis stage, which involves the process of data management, data integration, data

analysis and data interpretation [50]. Now, it has become even more challenging, as

recently precision medicine is gaining intensive attentions, the cooperation of big data

analytics with researchers on personalized medicine has also becoming very promising.

2.1.3 Challenges Ahead

While the extensive specialized analyses are required when data is becoming extremely

large, different big data areas have different domain knowledge. The interpretation of

genomics sequences and analysis of DNA expression, and the research of mutations and

developments at the molecular level are the main vision of the genomics [47]. Incorpo-

rated with big data analytics technologies, an integration of biology domain expertise,

data science, machine learning and even an infrastructure with powerful computation

capability are demanded to achieve these goals.
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There is no clear consensus among and within biologist and bioinformatics researchers

nowadays to best describe the process of leveraging the available omics data to interpret

such a domain knowledge, which could be either discovering previously unknown insights

or looking for specific patterns [51], such as recognizing the locations of transcription start

sites [52]. Today, many research institutions and companies are utilizing their specialty

domain knowledge to define and explore their own big data solutions for analyzing these

omics data for a further research and application [53, 54].

Since profiling the genomics data is no longer a bottleneck for biology study, an

efficient framework for data storage, transfer, and analysis is desired. Unlike the tradi-

tional dataset, a single genome sequencing file could be several gigabytes, meanwhile

the worldwide distribution of the high-throughput instruments would have facilitated the

research on formulating a fast and qualified system for cooperation. These specifications

in genomics areas call for more considerations in data acquisition, data transfer, data

storage and data analysis.

Next section would provide an in-depth view of the genomics area and its knowledge

delivered by cooperation with Big Data analytics technology. In the third section we will

detail the current research on data science in genomics area.

2.2 Domain Knowledge Driven by Genomics Data: In-
Depth View

The general definition of ‘Big data’ falls in using inductive statistics and concepts from

nonlinear system identification to infer laws (regressions, nonlinear relationships, and

causal effects) from large dataset to reveal relationships, dependencies, and to perform

predictions of outcomes and behaviors. By now, the DNA data deluge comes from

thousands of sources. More than 7,000 sequencing instruments are dispersed around the

world generating genomics data and sooner or later there will be tens of thousands of the

profiling instruments. As a consequence, both the storage and computation burden have

been increasing dramatically. In spite of these challenges, how to narrow the gap and
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build an efficient connection between the genomics data and the domain knowledge we

want to discover is an urgent research problem. Precision medicine and cancer genomics

are two major sub areas, which we would like to discuss in this section.

2.2.1 The Knowledge for Precision Medicine

As the genomics data piles up with an extraordinary speed and volume, biomedicine area

is increasingly turning into cross disciplines of data science [51, 55, 56]. Specifically, it

delivers a promising fortune towards precision and personalized research, which means a

P4 medicine: predictive, preventive, participatory and personalized [57].

On January 20, 2015, US President Barack Obama announced a speech to launch a

new Precision Medicine Initiative, which brings a closer look to curing diseases like

cancer and diabetes. The ultimate goal is to generate a medical solution according to the

personalized information to keep the human body healthy. According to the definition

of precision medicine in [58], besides the other biological databases, it is important

to consider individual information to pose a possible precaution and treatment solution

against diseases. Even though the development of high-throughput technologies has

lowered the cost of data acquisition, the development of electronic medical system is still

on its early stage for data acquisition. Currently, there are two main components being

discussed in precision medicine: a short-term goal in personalized therapeutic solution

for specific disease and a long-term goal in knowledge extraction for better health [54].

A basic framework of personalized medicine, as shown in Figure 2.2 was proposed.

The accumulated genomics data also stimulates the development of system biology,

which is an integrative research strategy for tackling the complexity of biological systems

and interpreting their behavior and interactions across all organization levels [59]. The

precision medicine benefits from the overwhelming medical data, which establishes a new

link between genes, biologic functions and the related diseases [59–62]. Analogous to the

proteomics area, assembling genomics data in system biology could deliver a trustful

graphical representation of biological interaction maps, and further compute a predictive
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Figure 2.2: A basic framework of personalized medicine [8]

and dynamic model of organisms and diseases. The advancement in identifying the

interactions between proteins reduced the false positive rate and improved the quality of

curated data sets [63, 64]. In cooperation with genomics data, a study which utilized

machine learning methods to recognize the locations of transcription start sites in a

genome sequence [52] has been a great start. Similar studies are supposed to be conducted

on splice sites, promoters, or positioned nucleosomes identification [65–68].

The genomics related medicine research has been known as ‘genomics medicine’ [69],

which has a consensus definition —- ‘using an individual patient’s genotypic information

in their clinical care [70]’. However, the approach to an effective precision medicine

solution is currently on its very early stage of development incorporating with the

genomics data. The private protocol issues would be a hindrance in both the electronic

medical system development and genomics data sequencing stage.

Towards a precision medicine solution, not only genomics data would be involved, but

also other omics data, especially the electronic medical records. This particular vision

provides a hierarchical framework as the physiology and pathophysiology do, in which

there is a belief that ‘genetic can be used to definitely explain features that our genome

might accurately indicate the individual risk of developing diseases’ [71]. Some specific

examples in therapy related study have been done, such as the discussion of the relevance

of CYP2D6 in breast cancer tamoxifen therapy decision [72], which tried to interpret the

genotype-phenotype association of cancer.
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A rational scheme of precision medicine would require each person’s genomics profile,

which raises not only ethical or legal issues, but also the modeling, computing and ana-

lyzing ability problems. Even though almost 2,000 clinical conditions are achieved with

genetic testing nowadays, the effective electronic health records (EHRs) still need to be

further developed, in an efficient way, which would accordingly produce a comprehensive

and individual-specific data [73]. The ultimate goal for precision medicine would be

aiming to deliver an exactly right treatment at a right dose at a right time, meanwhile with

minimum illness consequences and maximum efficacy [74, 75].

2.2.2 The Knowledge for Cancer Genomics

Among the overwhelming amounts of genomics data, the big data analytics provides a

novel paradigm to retrieve information into the related domain knowledge. Besides the

precision medicine area, several other research areas, such as functional traits research

[76], rice genome project [77], and plant genome annotation and function prediction [78],

have been raised associating with the boosting genomics data. In this section, we will

discuss about another major area: cancer genomics, which covers the study of cancer

mechanism, mutation prevention and detection, and cancer treatment. As an important

step towards precision medicine, cancer genomics study is one of the most important

discovery science areas [79]. A proposed paradigm from cancer genomics to precision

medicine is shown in Figure 2.3. The gap between the cancer genomics and precision

medicine is wide, and bridging this gap is far from straightforward. The major ethical

proof, data profiling and annotation, the integration of domain knowledge are the first

layer hurdles. Proper patient consents are required to proceed to data generation and

computational analyses. Furthermore, an efficient knowledge based system to process

data to achieve functional and mechanistic studies is desired.

Since cancer is considered as a disease of the genome mutation, the more the biologists

learn from the cancer tumors the more they put the belief in the finding that each single

cancer tumor is a representation of one specific set of genome changes. Even though
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Figure 2.3: From Cancer Genomics to Personalized Medicine [79]

its effects in clinic is currently limited because of the gap between cancer study and

therapeutic decision, the cancer genomics is considered to affect every corner of cancer

research and would be extended as a critical link for personalized cancer medicine [80,

81].

Most of the data science researches on cancer genomics area are currently conducted on

pattern detection problems. Our previous work once aimed to achieve a fast and accurate

cancer subtype classification on the genomics dataset. Machine learning technology

is the most popular method in classification. Specifically, extreme learning machines

(ELM), support vector machine (SVM), general vector machine (GVM) and the state-

of-the-art deep learning methods have been deployed to tackle the gene expression data

classification problem [82, 83]. In the classification problem of cancer genomics dataset,

the small quantity of samples and high dimensionality are two main hindrances for

learning model development. As the cancer genomics data piling, a relatively big dataset

with high dimension would appear in the near future, which is supposed to be an important

but also challenging branch of machine learning application in big data area.

There are two major consortia in the cancer genomics area, which are The Cancer

Genome Atlas (TCGA) Research Network and the International Cancer Genome Con-

sortium (ICGC). Both tumor and healthy cells over one thousand patients have been
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Figure 2.4: A Statistic Diagram from ICGC Data Portal

Figure 2.5: Broad’s Genome Data Analysis Center: Firehose [53]

sequenced and the molecular differences have been recorded in TCGA across 34 cancer

types. These data are currently held at the Cancer Genomics Hub at the University of

California, Santa Cruz (UCSC). Also for ICGC, more than 666 terabytes of data has been

profiled. The recent ICGC data release is version 21, which contains 68 different cancer

projects covering 18,677 donors. These data are housed on separate repositories, such as

the European Genome-phenome Archive (EGA-Hinxton), Pan-Cancer Analysis of Whole

Genomes (PCAWG), Genomic Data Commons in the University of Chicago (GDC) and

so on. As a benefit of the cloud computing technologies, now more and more data are

being transferred to Amazon Web Services (AWS). Shown in Figure 2.4 is a statistics

diagram of ICGC. Meanwhile the Broad’s Genome Data Analysis Center (GDAC) is

another genome data center which process TCGA data through their computational

framework to generate analysis reports. This pipeline shown in Figure 2.5 in the

computational framework is called Firehose.

However most of the ongoing work still focuses on data acquisition and storage. Espe-
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cially for some controlled data, the ethical and legal policies still need more consolidation

efforts and a proper protocol to process. An in-depth analysis, such as a specific discovery

which is previously unreported loss-of-function mutations in HLA-A gene in over 170

squamous cell lung cancers by ‘The Cancer Genome Atlas Research Network’ (TCGA)

[84], has shown the power and importance of network collaboration. Beyond TCGA,

these data would need to be more publicly available to researchers all over the world to

facilitate the analysis.

With the benefits from high-throughput technologies, cancer genomics is able to

compare the genomics sequences, epigenomics profiles and even the transcriptomics data

between tumor cells and normal cells [85]. As the increasing researches on genomics

aberrations inspire to target on the ultimate goal, i.e. personalized cancer medicine, the

future focus of cancer genomics falls on the identification of new genetic aberrations [86],

which is the critical aspect in revealing the cancer mechanism. Specifically, as cancer is

mostly occurred due to somatic mutations in genome with additional contributions from

epigenetic and transcriptomics alterations, one of the in-depth analyses is mainly focused

on the somatic mutations in cancer genomics data. This awareness focusing on somatic

mutations research has promised us within reach of personalized cancer medicine [87], in

which three main challenges are considered as the key hurdles. The first issue is to identify

the somatic mutations from the short sequence reads, the second issue is to distinguish the

responsible but small somatic mutation for the development and progression of cancer,

and the last one is to determine the developing biological pathways and processes which

are expressed by these somatic mutations [86].

Along with the studies on cancer mechanism via cancer genomics, the research on

cancer treatments is another main area in cancer genomics. Through the enhanced

understanding of molecular mechanisms of cancer, it is meaningful to translate the

genomics data to improve cancer prevention, early detection, diagnosis, and treatment

[88]. This would also be the link between cancer genomics and precision medicine,

especially the personalized cancer medicine, in modern oncology. Since very tiny changes
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in DNAs and RNAs could possibly introduce large-scale effects on the phenotype [89],

the more we know by extracting from cancer genomics, the deeper and closer we are able

to get a precision treatment.

Early stage research is ongoing on the area of associating the high or low levels of gene

expression with profiles of increased sensitivity or resistance to specific compounds [80,

90]. As TCGA and ICGC are generating an overwhelming amount of cancer genomics

data, both whole genome sequencing and targeted genome sequencing are promising

to reveal individual genomics variants information [81, 86]. The research on cancer

treatments associated with genomics aims to detect the molecularly targeted therapies

based on the genomics alterations in patient’s tumor, from the perspectives of initiation

and progression of cancer [91, 92]. A specific research based on integration of analyzing

complex cancer genomics and clinical profiles is introduced in [93]. Focusing on

visualization and analysis multidimensional cancer genomics data, [93] provides a portal,

namely cBioPortal, to process the overwhelming surge of multidimensional genomics

data. Currently the users are able to view some basic patterns in gene alterations across

samples in a cancer study, even to link the patterns to clinical outcomes when the related

data is available. Yet the future direction for cBioPortal is to include more genomics data

types and clinical attributes. The related genomics data types include somatic mutations,

DNA copy-number alterations (CNAs), mRNA and micro RNA (miRNA) expression,

DNA methylation, and proteomics data. The feature of batch download of complete data

sets is also anticipated.

The gap between the study of precision medicine and cancer genomics is wide.

Currently, the research strength on translating genomics data from genotype to phenotype

could not yet narrow the research gap and bring these two areas together to generate better

knowledge discovery. This intrigues the introduction of data science, especially big data

related research, into this domain. Focusing on the early stage of big data analytics in

genomics area, we would give a discussion about the data management and analysis in

genomics data in next section.
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2.3 Emerging Big Data Landscape in Genomics

As discussed in the aforementioned sections, to adapt big data analytics technologies in

genomics area, a scientific community, which consists of bioinformatics, biomathematics

and biostatistics, would be requisite to transfer the genomics data to its biological

meaning, which targets on both precision medicine and cancer genomics areas [8]. At

the turning points towards a data intensive research in bioinformatics area, we are able

to decipher the potential clues on the mechanisms underlying disease initiation and

progression, as well as providing further novel strategies for efficient prevention and

treatment [8, 50, 94]. Insides these expectations, the efforts in drilling the big data analytic

technology into genomics data entails many challenges and future research directions.

Although there are very few studies to reveal and establish a general or specific model on

discovering inner value out of genomics data for further study of disease mechanism,

interventions and treatments, the bottleneck has been shifted from the genomics data

profiling to data management, which includes acquisition, transfer and storage.

A basic ‘life cycle’ of a data set encompasses data acquisition, data transfer, data

storage and data analysis. In bioinformatics, the typical initialized data set size was

about 2.5 gigabyte in the year 2000, which was publicly available on the file transfer

protocol site of the University of California, Santa Cruz [95]. In 2012 the data set size

was reported approximately 170 terabyte in the Cancer Genomics Hub (CGHub) [96, 97].

Beyond the size of data set, the computational infrastructure and software tools need to

meet the requirement of the analysis tasks. Comparing with the data in astronomy, the

data in genomics is much more heterogeneous [47], which brings more challenges when

considering that even a single human sequencing genome is around 140 gigabyte in size

nowadays.

Utilizing and optimizing the technologies in big data area for genomics require special

expertise and experiences in data sciences. As mentioned, data is the key factor to

interpret these inner meanings. In this section, the emerging big data landscape in
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genomics would introduce several novel ideas to overcome the challenges in dataset

transfer, storage and computation.

2.3.1 Data Acquisition

According to the facilities recorded in [88], currently there are 7389 high-throughput

‘next-generation’ sequencing machines situated in 1027 centers, in which the most

machines are situated in the United States (5492 machines). These machines are the main

data acquisition access of genomics. Since most machines are located in the United States,

these sequencing data are mostly archived in Sequence Read Archive (SRA) maintained

by the United State National Institutes of Health National Center for Biotechnology

Information (NIH/NCBI). Besides these direct sequencing data, the TCGA and ICGC

also archive the cancer genomics data from both tumor and healthy cells. The genomics

data are heterogeneous and the research focus of these centers differs with each other.

Currently the genomics data are highly distributed and stored in different satellite sites as

a consequence of the location distribution.

For the highly distributed data sites, a comprehensive dataset repository in one single

site seems to be impossible in a short term. Beside the data transfer to AWS, there is also

an ongoing project in ICGC that transfers data from different satellite sites to a single

controllable repository, which is considered as a much more efficient way to maintain and

distribute the data [53]. However, for other big data areas, the data acquisition accesses

and acquisition differ a lot [47]. In the astronomy area the astronomical data is acquired by

limited specialist facilities [98, 99], while in the video area most of the video data comes

from YouTube streaming clips under several standard protocols. The fMRI (functional

magnetic resonance imaging) images are collected with controllable converted formats

by some centralized facilities.

Data quality control is an important aspect in these area and genomics data, since these

data are generally unaligned and noisy, even missing. The electronic internal fluctuations

of the instruments result in a non-consistent performance across the profiling process.
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Considering the published data set, the Genomics of Drug Sensitivity in Cancer project,

it contains 639 cancer cell lines which are described by a set of genomics features [80].

However, the data missing problem reduce the available training data set from 639 to

608, which results in less data samples. To uncover the knowledge beneath these data, a

simple target towards data analysis is not enough since the data consist of multiple levels

for their own corresponding meanings: including DNA sequencing data, RNA expression

data, miRNA data and so on.

To accommodate these problems, completing the missing data via data analytics

method and designing a rational data integration model from multi levels are demanded.

A hybrid understanding on these data is critical in the data acquisition stage and may leads

to a more meaningful and better knowledge discovery.

2.3.2 Data Transfer

It becomes more and more challenging for a single facility to host its own data on a single

machine since the upsurge speed of data is exceeding the Moore’s Law. Over the next ten

years, the sequencing speed and capacity are expected to grow continually. As collabo-

rations are more common nowadays, the data in TCGA and ICGC are deposited in the

corresponding portal and also every collaborator houses their own data. Considering the

heterogeneity in omics data, the various communities supported by different foundering

agency also generate their own omics data [38]. An increasing motivation to share and

transfer the data from the data portal to scientists in a fast speed has been significantly

raised.

As a starting maneuver, some ICGC data are deposited in the European Genome

Phoneme Archive [53]. Meanwhile each ICGC collaboration country (since PCAWG

is distributed by countries) and AWS also house their own data. Yet the network issues

have been occasionally occurring and brought the inconvenience for scientists. Thus,

now, a centralized database is being built to host all the interpreted data. This centralized

database is chosen to be located in the Ontario Institute for Cancer Research (OICR).
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With such a strategy that centralized administering data by one single portal site, a faster

and more stable connectivity is critical in data transfer. Currently, the Beijing Genomics

Institute (BGI) in Shenzhen, China, is able to generate 6 terabytes of genomics data per

day. BGI can transfer about 1 terabyte per day to its customer. By exploring a variety

of technologies for data transfer over internet, BGI has a vision that their transferred

ability could reach 24 gigabyte every 30 seconds when transferring data from China to

University of California, San Diego (UCSD) [9]. However this technology, namely fasp,

also demands the operators maintaining an extremely large bandwidth which makes the

transfer of data an expensive cost in genomics area.

An improvement on internet protocol itself would be a direct solution for big data

transfer in genomics, such as Internet2 [100]. Aside from protocol technology, data

compression on the DNA sequence reads, specifically in the FASTQ format is another

aspect to speed the data transfer [97, 101–104]. FASTQ format is a standard format for

storing both a biological sequence and its corresponding quality scores. Another method

to boost the data transfer speed would be realized via the efficient data distribution [97,

104, 105].

However, data transfer could be one of the less critical bottlenecks to apply big data

analytics in genomics, while data storage strategy is supposed to significantly affect

the performance of data processing. Since a single genome data file could be several

gigabytes and also the data is highly distributed all over the world, the data analysis

neither on the cloud nor the local storage in a raw data format could be limited. This

introduces the discussion of the genomics data storage.

2.3.3 Data Storage

Peta byte level storage management is required nowadays to tackle the storage demands

in many big data areas. In genomics area, the huge demand for storage mainly comes

from the raw genomics data. Since the storage issue has been identified and shifted from

the physical storage issues to the data itself, nowadays shipping is still the main method
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to transfer large quantities of sequence data [106]. Thus, an efficient method to store the

genomics data remains a major challenge for genomics data.

A method which encodes the difference between a logging genome sequence and

a recorded reference genome sequence was introduced in [107]. Considering that a

single human genome which might occupy three gigabytes of storage, it would be 150

terabyte when it might reach a 50,000 human genomes [106]. Different from traditional

data compression algorithms, the bioinformatics utilizes a referential data compression

algorithm to avoid a huge decompression time consumption and keep the absolute fidelity

of the raw sequence data [47, 108, 109]. A simple example for referential compression

sequence is shown in Figure 2.6. A developed algorithm based on this compression

schema could reach an evolutionary compression rate of 400:1 or even higher [106, 107].

Shown as Figure 2.6, the reference sequence is set to be ‘GCAAAACAAAGT’ while

normally we used the Revised Cambridge Reference Sequence (rCRS). It is represented

by its coordinate positions. For the uncompressed sequence, ‘AAAGGCAAAATA’, the

matches (7,4) and (0,6) indicate the segments of ‘AAAG’ and ‘GCAAAA’ by the start

position and the length of the segments. The last segment, which is ‘TA’, is stored in its

raw data format since there is no good matching in the reference sequence.

To achieve an optimal compression algorithm and develop it into a standard is a

promising effort to facilitate the storage of genomics data efficiently. However, using

the compression strategy on genomics data to resolve the data storage problem remains

open and challenge for researchers [106]. A balance between compression speed and

compression rate is one of the critical issues. Another issue is after the data compression

about how to utilize these compressed sequences directly. Despite the data compression

aspect in storage, data reduction is also a main aspect in data storage, which introduces

great opportunities for a direct understanding of the raw genomics data. As soon as the

real-time abstraction method becomes mature, these raw data will be redundant and no

longer needs to be stored in their raw representation method.
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Reference Sequence

G C A A A A C A A A G T

0 1 2 3 4 5 6 7 8 9 10 11

Uncompressed Sequence

Compressed Sequence

A A A G G C A A A A T A

(7,4) (0,6) T A

Figure 2.6: A Referential Compression Sequence [106]

2.3.4 Data Analysis

Data analysis is the final stage which matters the most. It is the primary challenge when

the researchers aim to learn knowledge from the massive genomics data. A functional

data analysis comprises data visualization, data relationship network mapping, data

relationship rules extraction and data prediction. Genomics data is heterogeneous and

high dimensional, it fits perfectly with the 4 ‘Vs’ definition of big data: which are high

volume, high velocity, high variety and high veracity [110–112].

As now data science is flourishing with the overwhelming data, various frameworks

and tools have been developed. Taking TCGA as an example, every two weeks the

Broad’s Genome Data Analysis Center (GDAC) would process the TCGA data by

the computational framework Firehose and release a brief analysis report, profiling

the significant alterations, and correlating methylation status with clinical features and

mutated genes. Meanwhile, another framework, namely SeqWare, takes consideration of

a small portion of ICGC data to release a report.

One important aspect of data analysis is data visualization. In the knowledge extraction

phase, a useful and important step is offering an intuitive visualization of the genomics

data to display the different types of alterations. As long as the visualization techniques

are employed in many areas, several tools such as Circos, Gitools, the UCSC Cancer

Genomics Browser, the Cancer Genome Workbench, and the cBio Cancer Genomics

Portal are developed [85, 113–117]. The visualization techniques offer a visual explo-
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ration mostly for the cancer genomics area, in which the concerned data could reveal

the cancer initialization genes and pathways. Several examples have been visualized in

[78], which are distinguishing the alterations in cancer-driven genome data in tumors,

studying the cause-effect relationships between different alteration types data in tumor

samples, stratifying the tumor samples based on clinical annotations data, and mapping

the global alteration profile patterns on the rearrangement large chromosomal regions

data. Visualization of cancer genomics data is critical to translate knowledge of cancer

genomics data into a possible personalized cancer medicine, which provides challenges

and opportunities for the complex genomics data.

Since machine learning methods have been extensively employed in almost every

scientific and engineering area, it has been considered as the next powerful toolbox

to interpret the genomics data and act as an important piece of precision medicine

[118–121]. An example utilizing machine learning in genomics is to learn to recognize

the locations of transcription start sites (TSSs) in a genome sequence [52, 65]. As a blend

of machine learning and bioinformatics, it develops into several special learning models

considering the application situations in genomics area, including supervised learning and

unsupervised learning.

As quoted from the ‘No free lunch theorems’ [122], there is not an exactly perfect

machine learning algorithm working for all applications. In bioinformatics area, espe-

cially in the genomics area, the various types of biology knowledge at hand are critical in

selecting a proper model. However, mostly it is implicit in mapping the prior knowledge

into the framing of the machine learning problem [65]. For example, there was a study

to quantitatively link the genomics data with its functional traits by utilizing the whole

genome sequence data from the related microbial communities [76]. In [119] both the

multi-layer perceptron (MLP) and radial basis function neural networks (RBFNN) have

been employed to predict the probability of membership of one individual in a phenotypic

class of interest using genomics and phenotypic data.

Along with several other issues, such as handling of heterogeneous data [123–128],
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feature selection, imbalanced data sets and the missing data considering different data

sources, using the machine learning methods to provide a comprehensive analysis and

prediction in genomics area remains challenging, yet promising [129, 130].

In a nutshell, the ultimate goal for big data analytics in genomics area is to be able

to interpret genomics sequence, and explain the relationship between genotypes and

phenotypes using data. To accomplish this goal, a hybrid understanding and cooperation

from different domains, including the data science, computer science, genomics specialist

and so on [38, 131–134] are required. In the next section, we would dive into two major

projects: ENCODE project and CGHub project, to show how the big data analytics could

facilitate genomics research.

2.4 Cases in Genomics Analytics and Bioinformatics

Several researches have achieved inspiring and interesting results from the analyses of big

data in genomics. In this section, we will review some state-of-the-art achievements. One

is the ENCODE project [131], and the other is the CGHub project [96, 97].

2.4.1 ENCODE

ENCODE (the encyclopedia of DNA Elements) project aims to project all the human

genome to their corresponding functional elements. Launched in 2003, ENCODE

involved more than 400 leading scientists and processed more than 11,972 files, with a

size of more than 15 terabyte. The National Human Genome Research Institute (NHGRI)

established a worldwide research consortium.

Started with two phases simultaneously: a pilot phase and a technology development

phase, currently ENCODE is on its third phases: the production phase. The pilot phase

tested and compared existing methods to rigorously analyze a defined portion of the

human genome sequence, while the technology development phase scaled the ENCODE

project to a production phase on the entire genome along with additional pilot-scale

studies. The report of the pilot phase was published in June 2007 [135]. The findings
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highlighted the success of the project to identify and characterize functional elements in

the human genome. The technology development phase has also been a success with the

promotion of several new technologies to generate high throughput data on functional

elements.

The successes of the pilot phase and technology development phase stimulate the

NHGRI to fund more studies in order to scale the ENCODE project to a production phase.

Meanwhile the production phase starts to include a Data Coordination Center, which

is located in the University of California, Santa Cruz, to offer a storage, analysis and

service of the ENCODE data. Currently there are over 440 scientists from 32 laboratories

participating in the ENCODE project and the tasks are also assigned over different sub

groups in the ENCODE Consortium, namely Production Centers, Data Coordination

Center, Data Analysis Center, Computational Analysis Awards, Technology Development

Effort.

The pilot phase targeted to identify gaps in current tools and data for detecting

functional sequences, and also evaluate the efficiency of the available methods in a large-

scale scenario. This phase involved both computational and experimental methods to

annotate the human genome. The findings promoted the knowledge of human genome

functions [135]. The targeted 1% of the human genome were studied from multiple

and diverse experiments. The genome transcribed process, transcriptional regulation, a

sophisticated view of chromatin structure, and data integration for new mechanistic and

evolutionary insights of human genome functions, were reported. The pilot phase helps

defining a more comprehensive pathway to understand the functional elements of the

human genome.

Since September 2007, the Production Phase was initiated in ENCODE project. As a

benefit from the pilot phase and technology development phase, an organized framework

for genomics study was established, in which raw sequence data acted as the bottom

layer with the annotation layers above [137]. The data model has facilitated the research

on knowledge mining of the human genome [131, 138–143]. As the data is continually



CHAPTER 2. BIG DATA IN OMICS DATA RESEARCH 37

Figure 2.7: A diagram of ENCODE Project [136]

accumulated, the real improvements start when the various data sets are layered together

[136] to tackle much more complex genome mechanisms and diseases. Figure 2.7 shows

a diagram of ENCODE project. Currently, 13 of 60 known histone modifications and 120

of 1800 transcription factors are examined, which benefits a lot for the complex genome

mechanisms study about the genotype-phenotype relationships. The view of genomics

data from biologists side has been changed and revolutionized towards a data intensive

research when various data are tiered together in ENCODE project.

As the ENCODE project is currently on its high way to the discovery of the func-

tional elements of the human genome, the sub group ENCODE Data Coordination

Center (DCC) plays a key role in this project. A well organized, data transfer ca-

pability and well developed data visualization tool are the basic demands in the EN-

CODE consortium. An available ENCODE data site on UCSC Genome Center is

http://genome.ucsc.edu/ENCODE/. For cancer genomics research, another site named

Cancer Genomics Hub in UCSC have already imposed massive impact towards overcom-

ing the cancer through the power of torrential data [96, 97].

2.4.2 CGHub

Under a contract with the National Cancer Institute (NCI), the Cancer Genomics Hub

(CGHub) is an online repository of the sequence data, including the Cancer Genomics
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Figure 2.8: General TCGA data flow in CGHub [96]

Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically

Applicable Research to Generate Effective Treatments (TARGET) projects. Among the

repository there are more than 1.4 petabyte data.

Shown in Figure 2.8 is the general TCGA data flow. Cancer genomics is the main

focused area in CGHub. Considering data acquisition and data transfer issues mentioned

in section 3, a specially enhanced protocol and well-designed data organization method

have been developed.

To achieve a higher and better network service, CGHub utilized the Annai GeneTorrent

(GT) protocol. It is an enhanced version of the BitTorrent (BT) protocol. Combined with

the IBM General Purpose Filesystem (GPFS), CGHub is able to transfer data in a highly

parallel and secure mode.

Since the data storage on CGHub is mostly patient-derived cancer genomics data, it is

highly confidential. Only the authorized researchers are able to access the data. In the

system design phase, CGHub deployed a separate authentication and authorization com-

ponent solution which is a single-sign-on (SSO) architecture, and the full authorization is

under control of the NCI appointed Data Access Committee (DAC).

To be a secure repository for the cancer genomics data, both the storage and transmis-

sion need to be encrypted. In CGHub, the SHA-1 (160 bits) hash and encryption are

implemented for each single genomics sequence file. The genomics data are stored under

the definition of the Sequence Read Archive Metadata XML schema, which is popular

in the cancer genomics community. Including the available commands and interfaces,

CGHub is an integrated system to provide confidential and interact service for cancer
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genomics researchers. As an extension of future development on CGHub, the expansion

of data acquisition and storage issues are the promising research areas. Besides these,

more help will come from the efforts on data transfer, such as deploying the INTERNET2

technology to increase the internet speed [53].

However, to address a possible solution on either precision medicine or cancer ge-

nomics, not a single site or single technology would be able to achieve them all [144, 145].

DISSECT is now able to analyze a wide range of genomics data using the distributed-

memory parallel computational architectures of computer clusters [144]. Even though

the data are under restricted conditions, DISSECT shows an ability of achieving same

performance on large sample sizes. From the data sharing aspect, an omics data sharing

mechanism is inevitably needed in the long run [146]. The genomics data are stored

worldwide in many data centers. To reveal the genotype-phenotype relationships, the

BD2K architecture is proposed to combine the separate genomics data repositories and

deliver an open source software stack [146]. A cohesive genomics informatics ecosystem

is desired and developing very quickly.

2.5 Summary

To utilize the big genomics data is challenging for our life and also research from every

aspects. The life science, biomedicine and health care sectors are currently at a turning

point into a data intensive science with the benefit from the overwhelmingly available

data. When we are talking about big data analytics, the vision is not only about a research

output but also the economic outcome and other benefits, specifically concerning the

human life. The genomics data leads us to a new era to play with heterogeneous data

and domain knowledge in order to extract insightful knowledge for improving a better

life.

As an emerging big data area, the knowledge discovery process of genomics data not

only requires abundant data but also leverages the corresponding domain knowledge. In

this chapter, two main concerning areas are discussed: precision medicine and cancer
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Figure 2.9: Proper Framework for Knowledge Discovery in Genomics

genomics. There is a scarcity of studies on the well-designed framework by now,

which is both time-consuming and costly. A hybrid education and cooperation is highly

demanded to leverage the data. Figure 2.9 shows a basic framework for data science

application. Several aspects must be considered during the research development, which

are interpretability (being able to interpret the data clearly), reproducibility (could be

mirrored to other researches), simplicity (ease to deploy), affinity (efficient utilization of

the computation power).

Besides the domain knowledge involved in this chapter, we have reviewed the current

international efforts in the big data analytics in genomics data. In the big data analytic,

data matters the most, which introduces the issues of acquisition, storage, transfer and

analysis. As long as an urgent desire for efficient data operations before the specific

analysis, the data operation problem is considered from several aspects: data acquisition,

data transfer and data storage. The highly distributed and heterogeneous characters of

genomics data result in the specific requirement for data integration. Since both structured

and unstructured data exist in genomics area, an analysis either on the cloud side or in the

local system involves a hybrid understanding of the cross-disciplines areas.

We have also introduced some of our work [49, 82] in big data analytics on genomics

and proteomics. The ENCODE project and CGHub system were presented to give an
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understanding about how we take care of genomics data and how the data is revolution-

izing our understanding of life. Technically, the legal and ethical issues are the first to

be considered in the genomics area. Beyond the further research of the genomics data, a

basic pipeline to deal with the data operation issues (focusing on data acquisition, transfer

and storage) and also a general framework towards data analysis are desired to facilitate

the international cooperation and research.

We have just reached a turning point towards the data intensive life and research.

Among these complex and unknown data, big data analytics has the potential to deliver a

better understanding and improvement of our life. As in a nascent stage, the combination

of big data analytics technologies and the surge of veracious data entail a lot of challenges

and research visions.



Chapter 3

LITERATURE REVIEW OF HOST-PATHOGEN
INTERACTIONS RESOURCES

As an important research topic towards the understanding of infectious diseases mech-

anisms study, the study of host-pathogen interactions has been a hot topic for decades.

In this chapter, the goal is to conduct a comprehensive literature review related to

host-pathogen interactions, particularly focusing on the resources which are collectively

published in last two decades. A background of the host-pathogen interactions resources

and a summary of the contributions is presented in Chapter.3.1. A wide range of topics of

host-pathogen interactions will be included in the review of the resources in Chapter.3.2.

Furthermore, Chapter.3.3 will introduce several standards and tools published in the

aim of facilitating proteomics research and development. Later on in Chapter.3.4 and

Chapter.3.5, both the statistic report of the curated human-pathogen interactions database

and the primary categories of bioinformatics tasks of host-pathogen interactions study

will be reported to give the details of the current status of human-pathogen interactions

resources by collectively analysing the selected databases.

3.1 Introduction

3.1.1 Background

The study of host-pathogen interactions has been a hot research topic dedicating to the

researches of infectious diseases mechanisms, which result in millions of illnesses and

42
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death worldwidely [147–149]. Ranging from various aspects of available ‘omics’ data,

theses host-pathogen interactions (HPI) are accumulated in an extraordinary speed with

the development of high-throughput detection methods, in which one of the dominant

sources is protein interactions. It presents both opportunities and challenges towards

infectious mechanisms study with the benefit of enormous data being generated by

biologists.

Since pathogens may vary from fungi pathogen, to virus pathogen and bacterium

pathogen, the host-pathogen interactions include interactions between proteins, nucleic

acid sequences, metabolites and small ligands [150–153]. The continuing researches

elucidating the response to invading pathogens or the cause of concomitant and an-

tagonistic processes with host immune-defence systems show complex and dynamic

interaction networks between host and pathogens [154, 155]. Recently, both in vivo and in

silico methods have particularly examined the protein-protein interactions between host

and pathogens (HP-PPI) and revealed that the outset of HP-PPI governs the infectious

mechanism of most host-pathogen interactions system [24, 148, 156–158].

The computational analysis of interactomes is of critical meaning to model the host-

pathogen space, which consolidates the prediction of possible pathogen interactors (e.g.

effector proteins) and knowledge generation of prospective host binding strategies [159].

Although more and more host-pathogen interactions data have been verified by exper-

iments, the high cost of in vivo and in vitro experimental approaches and their high

false-positives rate determine a fact that bioinformatics approaches towards obtaining and

understanding host-pathogen interactions is deemed essential.

There are three major components in the construction of whole life-cycle study of

HPI, including accessible databases, designed bioinformatics approaches and statistic

analytic strategy for hypothesis examination and knowledge extraction. We, in this

chapter, anticipate to contribute the inter-disciplinary studies with specific interest and

focus on understanding of HPI from both computer science and biology sides. Numerous

bioinformatics approaches designed for HPI will be discussed in this overview, whilst the



CHAPTER 3. HOST-PATHOGEN INTERACTIONS RESOURCES REVIEW 44

analytics strategy for HPI is also included.

3.1.2 Contribution

With regard to building accessible HPI databases, there have been efforts from the

academia researchers, among which several HPI resource systems have been actively

updated, such as The Pathosystems Resource Integration Center (PATRIC) [160], the

pathogen-host interaction search tool (PHISTO) [161] and so on. Some of them contains

only experimentally verified data and some others may include mixing results from both

literature and computational prediction. The computational prediction approaches for

HPI are generally categorized based on two different ways. One is by the study objects,

which include the protein-protein interactions (PPI), domain-domain interactions (DDI),

and mRNA-peptide interactions. Another one is the bioinformatics approaches, which

include the machine learning-based method, text mining-based method and so on. In this

way, the contributions of this chapter are summarized as below:

• A broad investigation of published databases focusing on the topic of pathogen

study is presented. The investigation including the analysis of their corresponding

data sources, pathogen types, the database current status and the statistic analysis

and so on.

• A detailed statistic analysis regarding selected databases for our subsequent re-

search topic is delivered. A general analysis concerning the host-pathogen interac-

tions human-bacterial interactions (HBI) systems is delivered, which also involve a

cross-check with their biological information. This chapter focuses the information

primarily from the protein aspect since HBI mostly happen between large molecular

systems.

• Bioinformatics approaches for HPI study, including task requirements and different

prediction strategies towards prediction and analysis, are also included in this

chapter. It is anticipated that this part would be helpful on designing computational
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methodologies towards a completing analysis for HPI in the future.

This overview is structured as follows. Firstly, the resources of currently available

host-pathogen interactions databases will be summarized, and the discussion will focus

on the specification of each databases and report the statistic analysis to extract a

potential solution for future HPI databases design. Second, a set of bioinformatics

approaches for HPI studies is elaborated, which includes homology-based methods

(i.e. for bacterial transport-systems) and machine learning-based methods (i.e. from

sequence information). The gap to constructing full map between biology experiments

and computational approaches is discussed in this part. In third part of this chapter,

the focus will be on the analytics strategy for HPI which shows the inherent source to

stimulate HPI network, atop of which how to integrate various data to complement the

HPI network is presented.

3.2 Host-pathogen Interaction Resources

3.2.1 History of HPI Resources

To encompass the study of HPI, the efforts of initial development of online HPI-specific

databases and repositories are being continuously conducted by the researchers. Though

the interests of each HPI-specific resources vary a lot, the development of the resources fa-

cilitates HPI studies and allows multidisciplinary collaboration [162]. There are numerous

HPI resources published in the literature (Table 3.1). These resources were filtered and

manually examined with the ‘Abstract’ from the first 400 results provided by the NCBI

PubMed searching engine with best relevance ranking out of more than 4,000 returning

result items, which were searched with the keywords ‘pathogen’ and ‘database’.

These efforts and developments mostly benefited from the results of a strategic plan

initialized by the National Institute of Allergy and Infectious Diseases (NIAID), which

focused on biodefense research to define the ‘Priority Pathogens’ and to develop a subse-

quent watch list of genera [160, 163]. There have been several initial developments wholly
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or partially funded by NIAID, including the pathogen interaction gateway (PIG [164]),

BioHealthBase [150], The Pathosystems Resource Integration Center (PATRIC [160]),

The Virus Pathogen Database and Analysis Resource (ViPR [165]), VectorBase [166],

The Eukaryotic Pathogen Database (EuPathDB [167, 168]). These efforts consolidate

and facilitate the understanding of host-pathogen ranges [169] to elaborates local defence

mechanisms [27] and a spectrum of diverse discordance in outcomes [170]. The host-

pathogen ranges contain a set of species such as eukaryotic pathogens, fungi, virus,

protozoa and bacteria. These ranges are somehow identified as the specific contributions

from these developed resources.

3.2.2 Review of HPI Resources

This section herein start with reviewing these public databases in Table 1. The web-based

database with massive annotated records for pathogen research can be firstly found in the

Ecological Database of the World’s Insect Pathogens (EDWIP) [169]. As a searchable

database majoring in insect pathogens, EDWIP has a foundation of association records

of infection between a single host specie and a single pathogen specie. The one-to-

one interaction relationship is defined as an association record, which summed up as a

result of over 9,400 records between 4,454 host species and 2,285 pathogen species when

EDWIP was released. Though it is now no longer available, it shows a particular interest

for pathologists and ecologists presenting literature records more dynamically and more

precisely. The data in EDWIP are dominantly taken from literature and reports, including

books, journals, dissertations from various sources.

MvirDB [171] is termed as a microbial database for protein toxins, virulence factors for

biodefence systems. MvirDB solicited most of the data resources from eight public-access

databases, which comprise the known protein toxins, virulence factors and antibiotic

resistance genes. It is a centralized resource gearing with extensive functions, such as

allowing user to search for entries in MvirDB for similar sequence. The data in MvirDB

are synchronized weekly from these eight databases and annotated with a developed
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parser.

The Host Pathogen Interaction Database (HPIDB) [10] and HPIDB 2.0 [172] refer to

two iterated versions of HPI databases pointing at one same hyper URL address http:

//agbase.msstate.edu/hpi/main.html. Both of them feature the service to provide unified

resource for host-pathogen interactions. This data resources were firstly implemented

with downloading and parsing several public-access databases. One major update in

HPIDB 2.0 is the inclusion of manual biocuration of HPI from literature. It expands the

scope from simply looking into existing databases to developing a community annotation

data system, which allows a more comprehensive integration of HPI data from a wide

range of hosts and pathogens.

Viral Protein Structural Database (VPDB) [173] summarizes the viral proteins with

the related structures. Its warehouse maintains viral proteins structures annotating with

detailed binding interaction information. Its motivation was to deliver a comprehensive

dataset with both sequence, structure and interactions information. As of its release date,

it hosted more than 1670 viral protein structures.

The Pathosystems Resource Integration Center (PATRIC) [160] targeted on all bacterial

data types in its current incarnation for all NIAID priority pathogenic genera. The related

data types include PPIs, genomics, transcriptomics, three-dimensional protein structures

and sequence data. This relational database jointly integrates analytic and visualization

tools, such as BLAST (the Basic Local Alignment Search Tool), to allow experts and

computationally ‘nav̈e’ users to obtain metadata with interests. The data in PATRIC

dominantly come from a number of public-access repositories and are automatically

updated monthly following the PSI Common Query Interface (PSICQUIC) [174] service.

It was initially built upon several other public archival databases, such as MINT [175],

IntAct [176], BioGRID [177] and DIP [178]. The pathogen-host interaction search tool

(PHISTO) [161] is another Web-accessible platform for HPI resources. The goal was to

access a complete coverage of HPI data. The database is updated monthly.

The virulence factor database (VFDB) [179] provides up-to-date knowledge of viru-

http://agbase.msstate.edu/hpi/main.html
http://agbase.msstate.edu/hpi/main.html
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lence factors in bacterial pathogens. It is one of the most important repository for bacterial

virulence factors. The latest generation of VFDB hosts both experimentally verified

and predicted virulence factors, which are delivered as one core dataset and another full

dataset. It is dedicated to facilitating the aid and development from big data analytics.

BioHealthBase [150] is another host-pathogen interaction resources in the context of

influenza virus. It was built upon a wide range of host species and influenza virus strains,

which includes data imported from both public-access databases and computational

algorithms derived data.

The Pathogen Interaction Gateway (PIG) [164] is integrated from a number of public

resources, including all experimentally verified and manually curated HP-PPIs. It serves

as a centralized database for easy-to-use aim. Each entry in PIG leads the hyperlink to

relevant database of interest, such as UniProt database, functional annotations to the Gene

Ontology, etc.

EuPathDB [167, 168] originated from ApiDB and expanded to include dominant

database resources for several eukaryotic pathogens of different genera. It encompasses

both apicomplexan-specific databases and non-apicomplexan pathogens databases to

direct an interactive portal for users as well as to generate across-genera orthology

research of interests.

VirusMINT [180] specifies virus protein and its interactions with host as the collection.

It accommodates all host-viral protein interactions reported in literature based on a

structural format following PSI-MI standards. The curation process also solicits data

from some other databases: MINT, which also adopted PSI-MI standards as the data

management policy.

VirusMentha [152] was established as an update generation of VirusMINT. It estab-

lished the data collection within IMEx databases and were regularly and automatically

updated weekly by capturing the interactions data via PSICQUIC service. VirusMentha

captured all published host-virus interactions without considering specific virus strains

and host species. In this regard, it achieved a larger coverage of 24 viral families than
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VirusMINT.

The pathogen-host interaction search tool (PHISTO) [161] is another web-accessible

platform for HPI resources. Its goal is to deliver an available resource to access a

complete coverage of HPI data, which is based on monthly data update strategy. It utilised

PSICQUIC service to access and extract HPI data from other nine developed databases,

which included all data with and without experimental method detection annotation.

Currently, it focus on human as the host.

The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) [181] is an-

other database resource targeting on bacterial infectious diseases. Its data curation

and system development are based on the experimentally validated interactions between

molecules, bioprocesses and cellular structures. The dominant data sources come from

the pathogenic bacteria P. aeruginosa and C. burnetii. HoPaCI-DB consolidates the

collection and finding by comprising comprehensive information extracted from the

scientific literature. This process is as well processed with the help of experienced

biocurators.

The pathogen-host interactions database (PHI-base) [153, 182] is a long-term main-

tained resource with expertly curated molecular and biological information on genes

proven for literature-reported host-pathogen interactions. It covers the information for

more than 4,000 genes from over 200 pathogens interacting with 176 host species. Both

prokaryotic and eukaryotic pathogens are included equally.

Recently, researchers have distilled the knowledge from related host-pathogen system

resources to conquer specific pathogen research issues. Among these, Penicillium-crop

protein-protein interactions (PCPPI) [183] encompasses the experimentally determined

orthologous interactions from available pathogen-plant systems to curate the database.

It was established with an initial collection of 439, 904 non-redundant PPIs between P.

expansum and seven crops including apple, kiwifruit, maize, pear, rice, strawberry and

tomato. These interactions were subsequently verified thoroughly with both interolog

mapping and domain-domain interactions supporting. As of this collection, it contained
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9,911 proteins from P. expansum and seven host species.

Particularly, the database resources focusing on host-pathogen interaction are dis-

cussed, whilst there are still a number of similar databases. In Table 1, 45 different

databases published between year 2002 and 2017 are included. These databases are eval-

uated from different aspects, which include the data sources, targeting object information,

storing data type, the released website link and the corresponding status. Concerning the

status of these databases, 29 out of the 45 are still operational. From the development

path of database ‘DIP’ and ‘EDWIP’ to ‘PHI-base’, the database is becoming more

interactive for the users and the related information is growing abundant as both biological

sequencing technologies and computational resources are evolving fast. These databases

concern mostly on pathogens systems, which include eukaryotic pathogens and viruses

pathogens.

Among these information, one of the most important factors to build a trustable

database is the data sources. In summary, there are several different sources. One of the

major ways is from literature and domain expert manual verification. Several databases,

such as DIP [178], BIND [184] and PHI-base [153, 182], collect the data primarily via

this method. Another major way to collect data is from public archival databases. From

the literature, we have identified that several databases are dominantly using the public

archival databases as the source. Alternatively, several databases use the submission from

users as part of the data source while the rest also include novel derived/predicted data as

the data source, such as PHIDIAS [185] and PCPPI [183].

In Table 1, a summary for the relationship between different databases is also collected

in the last column. The dispersion of data source motivates the ongoing development of

new database to offer wider coverage of data information by integrating heterogeneously

curated data [186]. From Table 1, a database with relationship ’None’ identifies itself

as self-sourcing database, which collects data without other public archival databases.

As a result of cross-checking of ‘Maintenance’ and ‘Related Databases’ information, the

following operational databases are selected as our referred databases for curating the HPI
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dataset for following research. These databases include DIP [178], Reactome [187], APID

[188], IntAct [176], MINT [175], InnateDB [189], PHISTO [161], PATRIC [160], Mentha

[186], HPIDB [10, 172], BioGRID [177]. In following section, the statistic regarding

these databases will be reported.
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Table 3.1: Host-pathogen Interaction Resources (sorted by published date). The information posted in this table were collected in September
2018.

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

DIP [178] 2002

Literature and

domain expert

manual verification

Target on interactions for

major organism and

humans

Protein-protein

interactions
http://dip.

doe-mbi.ucla.edu
Operational None

BIND [184] 2003 Literature
Target on biomolecular

interactions

Biomolecular

interactions, complex and

pathway information

http://bind.ca Retired None

EDWIP

[169]
2003

Reports in the

worldwide

literature

Target on infectious

pathogens

Host-pathogen

interactions and

bibliographical references

http://insectweb.
inhs.uiuc.edu/

Pathogens/
EDWIP

Retired None

VIDIL [169] 2003 Literature
Target on viral diseases

on insects host

Annotated literature for

viral diseases of insects

http://insectweb.
inhs.uiuc.edu/

Pathogens/VIDIL
Retired None

PathoPlant

[190, 191]
2004 Literature

Target on plant-pathogen

interaction systems

Plant-pathogen

interactions, proteins,

microarray gene

expression data

http://www.
pathoplant.de/
expression{ }
analysis.php

Operational None

Reactome

[187]
2005

Literature and

domain expert

manual verification

Target on Homo sapiens
Data portal for pathway

and its analysis
http://www.
reactome.org

Operational None

http://dip.doe-mbi.ucla.edu
http://dip.doe-mbi.ucla.edu
http://bind.ca
http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP
http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP
http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP
http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP
http://insectweb.inhs.uiuc.edu/Pathogens/VIDIL
http://insectweb.inhs.uiuc.edu/Pathogens/VIDIL
http://insectweb.inhs.uiuc.edu/Pathogens/VIDIL
http://www.pathoplant.de/expression{_}analysis.php
http://www.pathoplant.de/expression{_}analysis.php
http://www.pathoplant.de/expression{_}analysis.php
http://www.pathoplant.de/expression{_}analysis.php
http://www.reactome.org
http://www.reactome.org
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

APID [188] 2006
Public archival

databases

Target on protein-protein

interactions

An interactive platform

for collecting and

analyzing protein-protein

interactions

http://bioinfow.
dep.usal.es/apid/

Operational

BIND, DIP,

HPRD, IntAct,

MINT

MPact [192] 2004

Literature and

domain expert

manual verification

Target on yeast proteins
Data portal for yeast

protein interactions

http:
//mips.gsf.de/

genre/proj/mpact
Operational None

I2D [193] 2006

Public archival

databases and

novel

derived/predicted

data

Target on protein-protein

interactions

Organism protein-protein

interaction network

http:
//ophid.utoronto.
ca/ophidv2.204/

Operational

OPHID (An

earlier version

of I2D)

MvirDB

[171]
2006

Public archival

databases

Target on pathogens in

bio-defense fields

publicly available,

organized sequences

representing known

toxins, virulence factors

and antibiotic resistance

genes

http:
//mvirdb.llnl.gov/

Retired

VFDB,

ToxProt,

SCORPRION,

Prints, TVFac,

Islander, VIDA,

ARGO

http://bioinfow.dep.usal.es/apid/
http://bioinfow.dep.usal.es/apid/
http://mips.gsf.de/genre/proj/mpact
http://mips.gsf.de/genre/proj/mpact
http://mips.gsf.de/genre/proj/mpact
http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
http://mvirdb.llnl.gov/
http://mvirdb.llnl.gov/
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

PHIDIAS

[185]
2006

Literature and

novel

derived/predicted

data

Extensions of BBP

(Brucella Bioinformatics

Portal) target on 100

pathogens for bacteria,

virus, parasite and fungus

Host-pathogen

interactions, genome

sequences, conserved

domains, gene expression

data

http:
//www.phidias.us

Operational None

MPIDB

[194]
2008

Public archival

databases and

literature

Target on microbial

interactions

Known physical

microbial interactions
https://www.jcvi.

org/mpidb/
Retired

BIND, DIP,

IntAct, MINT,

MPI-EXP,

MPI-LIT

BioHealthBase

[150]
2007

Public archival

databases,

literature and novel

derived/predicted

data

Target on specific

bio-defense and public

health pathogen systems

Biological data related to

influenza virus

physiology and

pathogenesis

www.
biohealthbase.org

Retired N/A

VirusMINT

[180]
2008

Public archival

databases and

literature

Target on host-virus

interactions, mostly

between human proteins

and proteins encoded by

some of the most

medically relevant

viruses, following IMEx

standards

Host-virus

protein-protein

interactions

http://mint.bio.
uniroma2.it/

virusmint
Retired

MINT, IntAct,

HIV-1

http://www.phidias.us
http://www.phidias.us
https://www.jcvi.org/mpidb/
https://www.jcvi.org/mpidb/
www.biohealthbase.org
www.biohealthbase.org
http://mint.bio.uniroma2.it/virusmint
http://mint.bio.uniroma2.it/virusmint
http://mint.bio.uniroma2.it/virusmint
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

PIG [164] 2008
Public archival

databases

Target on most available

human-pathogen

interaction systems

Host-pathogen

protein-protein

interactions

http:
//pig.vbi.vt.edu

Retired

MINT, DIP,

BIND,

Reactome,

Mpact, HPRD,

MvirDB

Proteopathogen

[195]
2009 Literature

Target on

Candida-macrophage

interactions

Host-fungi interactions
http:

//proteopathogen.
dacya.ucm.es

Retired None

EuPathDB

[167]
2009

Public archival

databases

Target on eukaryotic

pathogen systems

Genome sequence,

annotation, functional

genomics data, pathway

and metadata

http:
//EuPathDB.org

Operational BIND

HPRD [196] 2003

Literature and

extensive

experiments

Target on Human
Protein information of

human
http:

//www.hprd.org/
Operational None

bioDBnet

[197]
2008

Public archival

databases

Target on presenting

ways to work with

various databases

Integrating a vast number

of biological databases

https:
//biodbnet-abcc.

ncifcrf.gov
Operational

As a node

connecting 153

databases for all

aspects of

biology

http://pig.vbi.vt.edu
http://pig.vbi.vt.edu
http://proteopathogen.dacya.ucm.es
http://proteopathogen.dacya.ucm.es
http://proteopathogen.dacya.ucm.es
http://EuPathDB.org
http://EuPathDB.org
http://www.hprd.org/
http://www.hprd.org/
https://biodbnet-abcc.ncifcrf.gov
https://biodbnet-abcc.ncifcrf.gov
https://biodbnet-abcc.ncifcrf.gov
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

PID [198] 2008

Public archival

databases and

manual review

Target on human

molecular event and key

cellular process

Signaling and regulatory

pathways
http:

//pid.nci.nih.gov
Retired None

AquaPathogen

X [199]
2010

Public archival

databases

Target on aquatic

pathogens
Aquatic pathogens http:

//wfrc.usgs.gov
Operational None

HCVpro

[200]
2011

Public archival

databases and

literature

Target on interactions

between Hepatitis C virus

and human

Hepatitis C virus-virus

and virus-human protein

interactions

http://www.cbrc.
kaust.edu.sa/

hcvpro/
Operational MINT, BIND

VPDB [173] 2011
Public archival

databases
Target on viral proteins

Viral proteins and 3D

structures
http://www.vpdb.

bicpu.edu.in
Retired None

VectorBase

[166]
2011

Public archival

databases and

community

submission

Target on invertebrate

vectors of human

pathogens

Genome sequence,

structural/functional

annotations and

reference, etc

http://www.
vectorbase.org

Operational None

ViPR [165] 2011

Public archival

databases, direct

submission and

novel

derived/predicted

data

Target on human

pathogenic viruses

belonging to specific

families

Sequence records, gene

and protein annotations,

3D protein structures,

immune epitope

locations, etc.

www.ViPRbrc.
org

Operational None

http://pid.nci.nih.gov
http://pid.nci.nih.gov
http://wfrc.usgs.gov
http://wfrc.usgs.gov
http://www.cbrc.kaust.edu.sa/hcvpro/
http://www.cbrc.kaust.edu.sa/hcvpro/
http://www.cbrc.kaust.edu.sa/hcvpro/
http://www.vpdb.bicpu.edu.in
http://www.vpdb.bicpu.edu.in
http://www.vectorbase.org
http://www.vectorbase.org
www.ViPRbrc.org
www.ViPRbrc.org
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

IntAct [176] 2004

Public archival

databases and

literature

Target on protein-protein

interaction data

Molecular interaction

database
http://www.ebi.

ac.uk/intact
Operational N/A

MINT [175] 2011 Literature
Target on protein-protein

interaction

Protein-protein

interaction
https://mint.bio.

uniroma2.it/mint/
Operational None

vHoT [201] 2011

Novel

derived/predicted

data

Target on the interaction

between viral microRNA

and host genomes

Viral microRNA and host

genomes interactions
http://dna.korea.

ac.kr/vhot
Retired None

InnateDB

[189]
2008 Literature

Target on mammalian

innate immunity systems

Mammalian innate

immunity networks,

pathways and genes

http://www.
innatedb.com

Operational None

PHISTO

[161]
2012

Public archival

databases

Target on human as the

host specie

Host-pathogen

interactions and human

intra-species

protein-protein

interactions

http:
//www.phisto.org

Operational

MINT, IntAct,

DIP, APID,

iRefIndex,

STRING,

MPIDB, BIND,

Reactome

PATRIC

[160]
2013

Public archival

databases

Target on bacterial

pathogen systems

Data portal for bacterial

pathogens
http://www.
patricbrc.org

Operational
MINT, IntAct,

BioGRID, DIP

HoPaCI-DB

[181]
2013 Literature

Target on Pseudomonas

aeruginosa and Coxiella

burnetii pathogens

Host-pathogen

interactions

http://mips.
helmholtz-muenchen.

de/HoPaCI
Operational None

http://www.ebi.ac.uk/intact
http://www.ebi.ac.uk/intact
https://mint.bio.uniroma2.it/mint/
https://mint.bio.uniroma2.it/mint/
http://dna.korea.ac.kr/vhot
http://dna.korea.ac.kr/vhot
http://www.innatedb.com
http://www.innatedb.com
http://www.phisto.org
http://www.phisto.org
http://www.patricbrc.org
http://www.patricbrc.org
http://mips.helmholtz-muenchen.de/HoPaCI
http://mips.helmholtz-muenchen.de/HoPaCI
http://mips.helmholtz-muenchen.de/HoPaCI
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

HIV1-HPID

[202, 203]
2008 Literature

Target on all HIV-1 and

human protein

interactions

HIV-1-human

protein-protein

interctions

https://www.ncbi.
nlm.nih.gov/

genome/viruses/
retroviruses/

hiv-1/
interactions/

Operational None

VirHostNet

[204]
2009

Public archival

databases and

literature and

domain expert

manual verification

Target on virus-virus,

virus-host and host-host

interaction networks

Virus-host interaction

study with extensive

functionality

http://virhostnet.
prabi.fr/

Operational

BIND, MINT,

IntAct, HPRD,

DIP, BioGRID,

Reactome,

Generif,

Networkin

MatrixDB

[205]
2009

Public archival

databases and

literature

Target on interactions for

matrix proteins,

proteoglycans and

polysaccharides

A database for

interactions established

by extracellular matrix

proteins, proteoglycans

and polysaccharides

http://matrixdb.
univ-lyon1.fr/

Operational
IntAct, MINT,

DIP, InnateDB

Mentha

[186]
2013

Public archival

databases

Target on interactions

between proteins

A database including

comprehensive resource

archiving all published

protein-protein

interactions

https://mentha.
uniroma2.it/

Operational

MINT, IntAct,

DIP, MatrixDB,

BioGRID

https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/
http://virhostnet.prabi.fr/
http://virhostnet.prabi.fr/
http://matrixdb.univ-lyon1.fr/
http://matrixdb.univ-lyon1.fr/
https://mentha.uniroma2.it/
https://mentha.uniroma2.it/
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

VirusMentha

[152]
2014

Public archival

databases and

literature

Target on host-virus and

virus-virus interaction

systems

Host-pathogen

interactions

http:
//virusmentha.

uniroma2.it
Operational

MINT, IntAct,

BioGRID,

VirusMINT,

DIP, MatrixDB,

APID

VFDB [179] 2005

Public archival

databases and

literature

Target on bacterial

pathogen systems

The virulence factors of

bacterial pathogens
http://www.mgc.

ac.cn/VFs
Operational None

HPIDB 2.0

[10, 172]
2010

Public archival

databases and

literature

Target on most available

PHI systems

Host-pathogen

interactions

http://hpidb.igbb.
msstate.edu/
index.html

Operational

MINT, IntAct,

BioGRID, DIP,

Reactome,

MPIDB,

VirHostNet,

I2D, InnateDB

SugarBindDB

[206]
2015

Literature and

domain expert

manual verification

Target on carbohydrate

sequences binding with

pathogenic organisms

Glycan binding of human

pathogen lectins and

adhesins, functional

annotation, 3D structure

and binding patterns

http://sugarbind.
expasy.org/

Operational None

http://virusmentha.uniroma2.it
http://virusmentha.uniroma2.it
http://virusmentha.uniroma2.it
http://www.mgc.ac.cn/VFs
http://www.mgc.ac.cn/VFs
http://hpidb.igbb.msstate.edu/index.html
http://hpidb.igbb.msstate.edu/index.html
http://hpidb.igbb.msstate.edu/index.html
http://sugarbind.expasy.org/
http://sugarbind.expasy.org/
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Continuation of Table 3.1

Databases
Release

Year
Sources Object Data Type URL Maintenance

Related

Databases

DenHunt

[207]
2016 Literature

Target on Dengue virus

and human interaction

system

Dengue-human

interactions, genes,

pathways

http://proline.
biochem.iisc.

ernet.in/
DenHunt/

Operational None

STRING

[208]
2000

Public archival

databases and

novel

derived/predicted

data

Target on protein-protein

interaction data

A platform for collecting

and integrating

protein-protein

interactions as well as

delivering network

analysis

https://string-db.
org/cgi/input.pl

Operational

BioGRID and

databases

organized in

IMEx

consortium

PCPPI [183] 2016

Public archival

databases and

novel

derived/predicted

data

Target on interactions

between P. expansum and

crops

Penicillium-crop

interactions, gene

ontology, sequence

records, DDI

http:
//bdg.hfut.edu.cn/
pcppi/index.html

Operational

GDR, KIR,

maizeGDB,

HPIDB

BioGRID

[177]
2015 Literature

Target on interctions for

major organism species

and humans

A comprehensive data

portal for protein, genetic

and chemical interactions

https:
//thebiogrid.org/

Operational None

PHI-base

[153, 182]
2016

Literature and

domain expert

manual verification

Target on most available

HPI systems

Host-pathogen

interactions, genome

information, referred

literature annotation and

phenotype

http:
//phi-base.org

Operational None

End of Table 3.1

Table 3.1 Host-pathogen Interaction Resources (sorted by published date). The information posted in this table were collected in September 2018.

http://proline.biochem.iisc.ernet.in/DenHunt/
http://proline.biochem.iisc.ernet.in/DenHunt/
http://proline.biochem.iisc.ernet.in/DenHunt/
http://proline.biochem.iisc.ernet.in/DenHunt/
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
http://bdg.hfut.edu.cn/pcppi/index.html
http://bdg.hfut.edu.cn/pcppi/index.html
http://bdg.hfut.edu.cn/pcppi/index.html
https://thebiogrid.org/
https://thebiogrid.org/
http://phi-base.org
http://phi-base.org
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3.3 Available Proteomics Standards and Tools

Despite the traditional published publication which continues acting as the most practical

method for disseminating experiment results and conclusions, the experimentally derived

scientific contributions are now generating substantial value by acting as important

references for building publicly accessible database. Mostly, this process will allow a rich

and centralized resource and data portal for researchers [209]. Although the databases

are published online and are mostly developed with specific interests, the primary goal is

to ease the downloading/searching of data, and to facilitate the communication between

biologists. In this sense, the researchers have strived to identify the requirement of the

creation of data standards and interchange formats for the database, which is considered

to benefit the storage and distribution of proteomics data [209, 210], particularly for our

study.

The Human Proteome Organization Proteomics Standards Initiative (HUPO PSI) is

one of the voluntary organizations which has developed the HUPO PSI-MI XML as

one of the widely adopted data format standards [211]. Meanwhile, with the efforts of

community researchers, recent examples of themed curation projects, such as BioGRID

[177] and Mentha [186], have taken advantages of the establishment of the International

Molecular Exchange (IMEx) consortium (http://www.imexconsortium.org/) [212]. IMEx

consortium has released a single joint data curation manual by 2005. In this section, we

briefly introduce the available standards with the file format for representing molecular

interactions data and the utilised tools in several databases.

• Data Format:

HUPO PSI-MI XML is a data format initially established by HUPO PSI in 2004. Its

generation encompasses the incremental needs of high-quality interaction datasets

for biologists [213]. It has taken extensive update from version 1.0 in 2004 to

version 2.5 in 2007 and the latest version is PSI-MI XML3.0 in 2018. The updates

of PSI-MI XML represent the continuing changes of standard data interchange

http://www.imexconsortium.org/
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format between data producers, data users, tool developers and databases providers.

The scope of PSI-MI XML schema is expanding from the inclusion of simple

protein interaction (version 1.0) to a rich description of molecule features (version

3.0). Along the development of PSI-MI XML2.5, the molecular interaction tabular

format MITAB2.5 is a simpler data format which provides less detailed molecular

interaction data. Currently, both PSI-MI XML2.5 and MITAB2.5 are also exten-

sively utilised by users and data providers. The data format contributes to a system-

atically description ability for important biological events in molecular interaction

data. It will facilitate the data curation strategy and the service development.

• Data Curation Strategy:

Acting as an international collaboration community of databases providers, IMEx

has further extended the accessibility of data based on the common data format

HUPO PSI-MI XML. Since the scarce public funding opportunity and different

curation strategies, IMEx is framed as a long-term coordination for curation of

dataset and avoiding redundant work on same data [212] on a single website

(www.imexconsortium.org).

The data curation strategy is thus designed to align the worldwide databases to a

same identifier, which allows user to trace data from both the original resource and

IMEx website resource. IMEx website also encompasses the access function of

PSICQUIC service.

• Data Service:

PSICQUIC retains the standard PSI-MI XML format and is designed to be a

common computational access to multiple molecular interaction databases. PSIC-

QUIC is jointly developed with PSI confidence scoring system (PSISCORE),

which extends the system ability with retrieving confidence scores of molecular

interactions [174].

www.imexconsortium.org
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As of this writing, there are over 30 databases supporting PSICQUIC service from

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/home.xhtml. Via PSIC-QUIC

registry, there are totally over 7,015,614 accessible interactions and the PSICQUIC

service could also easily help to cluster and filter these interactions. Since the

PSICQUIC service is developed to be programmatic, it can be integrated with other

applications with their stylish manner.

3.4 Statistical Analysis of HPI Resources

For a purpose of evaluating the accessible pathogen databases, in this section, an extensive

literature review of the databases published in the last two decades has been conducted.

The resources were filtered and manually examined with the ‘Abstract’ from the first 400

results ranking by best relevance out of more than 4,000 returning result items, which

were searched by NCBI PubMed search engine with keywords ‘pathogen’ and ‘database’.

In Table 3.2, partial details of the selected databases is listed.

These databases are evaluated from different aspects, which include the data sources,

targeting object information, storing data type and the corresponding status. Concerning

the status of these databases, 29 databases are still operational. From the development

path of database, such as ‘DIP’ [178] and ‘EDWIP’ [169] to ‘PHI-base’ [182], the

database is becoming more interactive for the users and the related information is growing

abundant as both biological sequencing technologies and computational resources are

evolving fast. These databases concern mostly on pathogens systems, which include

eukaryotic pathogens and virus pathogens.

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/home.xhtml
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Databases
Release
Year

Object Data Type Maintenance

DIP [178] 2002
Target on interactions for major
organism and humans

Protein-protein interactions Operational

Reactome [187] 2005 Target on Homo sapiens
Data portal for pathway and its
analysis

Operational

APID [188] 2006
Target on protein-protein interac-
tions

An interactive platform for collect-
ing and analyzing protein-protein
interactions

Operational

IntAct [176] 2004
Target on protein-protein interac-
tion data

Molecular interaction database Operational

MINT [175] 2011
Target on protein-protein interac-
tion

Protein-protein interaction Operational

InnateDB [189] 2008
Target on mammalian innate immu-
nity systems

Mammalian innate immunity net-
works, pathways and genes

Operational

PHISTO [151] 2012 Target on human as the host specie
Host-pathogen interactions and hu-
man intra-species protein-protein
interactions

Operational

PATRIC [160] 2013
Target on bacterial pathogen sys-
tems

Data portal for bacterial pathogens Operational

Mentha [152,
186]

2013
Target on interactions between pro-
teins

A database including comprehen-
sive resource archiving all pub-
lished protein-protein interactions

Operational

HPIDB [10, 172] 2010
Target on most available PHI sys-
tems

Host-pathogen interactions Operational

BioGRID [177] 2015
Target on interctions for major or-
ganism species and humans

A comprehensive data portal for
protein, genetic and chemical inter-
actions

Operational

Table 3.2: The Resource of Pathogen Databases
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Among the information, one of the most important factors to build a trustable database

is the data sources, which indicates how is the data derived. In summary, there are several

different sources. One of the major ways is from literature and domain expert manual

verification. Several databases, such as DIP [178], collect the data primarily via this

method. Another major way to collect data is from public archival databases. From

the literature, we have identified that several databases are dominantly using the public

archival databases as the source. Alternatively, several databases use the submission from

users as part of the data source while the rest also include novel derived/predicted data as

the data source, such as PHIDIAS [185] and PCPPI [183].

To collectively build a basic pathogen database, normally it is better to have more

databases involved in the curation stage. The reason is that, mostly the databases are

developed with different specification and they serve for various research interests of

pathogens study. However, according to our literature review, it is clearly to see that,

computational prediction interactions are as well included in some databases. This work

focuses on the experimentally verified interactions, which limits the usage of the databases

among those with only experimentally verified interactions, as shown in Table 3.2.

DIP [178], Reactome [187], APID [188], IntAct [176], MINT [175], InnateDB [189],

PHISTO [161], PATRIC [160], Mentha [152, 186], HPIDB [10, 172] and BioGRID [177]

are included as the databases in our study to build the database and present the inceptive

data analysis. All the databases were downloaded on the date of 2018-August-31th.

Since host species are mostly limited within several species including plants and

human, pathogen species could be referred to many, such as bacteria, fungi, protozoa,

helminths and viruses. Figure 3.1 illustrates the coverage of the pathogen types and

the amount of proteins. It is easy to see that, Mentha database has housed the most

pathogen types as well as the proteins, whereas the result of IntAct database is the second.

In Figure 3.2, the example of pathogen interactions with Homo sapiens (taxonomy ID:

9606) is diagrammed. The data are counted for human proteins in inter-species and intra-

species interactions respectively. Most databases provide intra-species interactions for
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Figure 3.2: The Homo Sapiens Protein Numbers Distributions in Databases

human as the inclusion for researchers. From Figure 3.1 and Figure 3.2, the Mentha

database has hosted the most pathogen proteins number as well as the Homo sapiens

protein numbers. It is interesting to note that, for some databases such as HPIDB and

PHISTO, only the inter-species interactions between human and pathogens are reported.

These two databases have a focus on the study of host-pathogen interactions.

The related statistic in Figure 3.3 indicates that, Mentha database covers most of the

Homo sapiens interaction information, including the inter species interactions as well as

the intra species interactions. Although PHISTO and PATRIC are two databases focusing

on Homo sapiens inter species interactions, it will be a good supplementary of Mentha

database.

Furthermore, the corresponding pathogen categories within the different human-pathogen
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interaction (HPI) systems are analysed. By combining the 11 databases as one, we

show the result in Figure 3.4. There are totally 436 different types of Viruses and

Viroids in the database, and it is one of the most studied pathogen categories ranging

from these 11 databases. The species number of pathogens in the combined database

is 649, which consist 502,635 different intra species interactions for Human-pathogen

interactions systems.

With species-specific interest, it is also possible to consider one pathogen types as the

analysed subject. Herein, we take bacteria as the selected pathogen category. The bacteria

species containing more than 50 interaction pairs with homo sapiens are reported in

Figure 3.5. They are collected distinctly with their corresponding taxonomy ID from the

database files. This information could help researchers in designing future biological and

computational experiments with regard to analyse the internal relationship for pathogenic

mechanism studies.

3.5 Bioinformatics Approaches for HPI study

There are two featuring bioinformatics tasks in the pathogenic mechanism studies. One

is the secreted system effector proteins and another is the complete pathogen interactions

network completion. In this section, we focus on discussing the issues and solutions

for the prediction task of host-pathogen interactions network. In Figure 3.6, the exper-

imentally verified host-pathogen protein-protein interactions are collected via literature

review, and the diagram is generated with the software of Cytoscape [214]. The green
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Figure 3.6: The Protein-protein Interactions Network between Human and Influenza A
virus

nodes represent the proteins from human, while the pink nodes are the proteins from

pathogen of Influenza A virus. It represents a small set of the overall protein-protein

interactions network between human and Influenza A virus. The rest interactions network,

which is not illustrated in Figure 3.6, could be either unknown or un-experimentally

verified. Thus, the prediction task of host-pathogen interactions network will be critical

for the researchers to understand the holistic interactions mechanisms between host and

pathogen. Generally, this prediction task is dealt with two different methods, which are

template-based method and machine learning-based method.

Template-based Method for Prediction

For host-pathogen interactions, it is of biological meaning to predict the interactions

with template-based methods, which mostly utilise the homology similarity, structure

similarity and domain interactions relationships for prediction. For template-based

method, the homologous proteins with known experimentally verified structures and other

properties are firstly identified by searching among a number of databases, such as the

Protein Data Bank (PDB) [29]. One prominent advantage of template-based method is

that, the relevant biological meaning is easy to interpret if the indexed homologous protein
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has been systematically studied [215].

However, several shortcomings have been identified as well. One of them is the limited

resources with experimentally verified data. In some cases, the proteins might not be

able to detect the homologous proteins [24]. The limitation of accessible database has

shorten the application of such kind of method [216]. Another drawback of template-

based method is the sources of databases. Even though most of the databases deposit the

experimentally verified data, their sources are from different experiments circumstances.

With the different reliability of data, the template-based method would probably generate

different hypothesis and conclusions, which will further demand more other methods for

verification.

Machine Learning-based Method for Prediction

Another important category of methods for host-pathogen interactions prediction is the

machine learning-based method. Building a data-driven model to predict HPI in a broader

range is the motivation of applying machine learning models in prediction task of HPI,

since there may be only a small number of templates with biological experiments support

and the relation between host and pathogen has been roughly studied.

Applying machine learning model has shown the effectiveness for predicting novel HP-

PPIs. Most of the machine learning models, such as Bayesian statistics [217], random

forest [218], support vector machine [34, 156] and so on, have been utilised as the

primary computational model to learn the internal relationship from protein information

and curated dataset. Various sources of protein information have been considered to

represent the protein in the curated dataset, while the selected machine learning model

would be different due to the studied pathogen species and dataset. The studies of

machine learning-based method have also been performed for general intra-species PPIs

predictions, which indicates its scalability and effectiveness, with regard to the significant

challenges impairing the experiments to develop proteome-wide interactions network.

Besides the identified literatures for the prediction task of HP-PPIs, there are numerous
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works focusing on the feature representation algorithms for other protein related topics,

such as structure, folding topics and so on. To present a comprehensive literature review

with regard to the machine learning-based method for prediction, the details of systematic

evaluation is included in Chapter. 4.

3.6 Summary

In this chapter, a comprehensive literature review related to host-pathogen interactions

resources, which are collectively published in last two decades, was conducted. The re-

sources reviewed in this chapter cover a wide range of topics of host-pathogen interactions

in Chapter.3.1 and Chapter.3.2. Furthermore, several standards and tools published in the

aim of facilitating proteomics research and development were reviewed in Chapter.3.3.

Later on, a brief statistic report of the curated human-pathogen interactions database and

the primary categories of bioinformatics tasks of host-pathogen interactions study were

elaborated in Chapter.3.4 and Chapter.3.5 repectively, which give the details of the current

status of human-pathogen interactions resources by collectively analysing the selected

databases.

Following in next section, the research will focus on the task of evaluating the machine

learning-based computational models, which covers a broad range of machine learning

models and model from literatures, for the prediction task of HP-PPIs.



Chapter 4

SYSTEMATIC EVALUATION OF SEQUENCE-
BASED MACHINE LEARNING PREDICTION
MODELS FOR HUMAN-PATHOGEN PROTEIN-
PROTEIN INTERACTIONS

Developing machine learning models in the predictions task for HP-PPIs has been studied

with the interests of its efficiency and accuracy. However, how to select and determine the

best model requires a systematic evaluation of different predictors for HP-PPIs. In this

chapter, a wide and deep overview on currently available resources and computational

tools is reported in Chapter. 4.2. In Chapter. 4.3, a dedicated data curation process will

be implemented and a pipeline for HB-PPI studies will be summarized which includes

numerous sequential feature-representation algorithms and machine learning models. In

Chapter. 4.4, the experimental results of different ratios of benchmark datasets, different

feature-representation algorithms and different machine-learning models will presented.

4.1 Introduction

4.1.1 Background

Infectious diseases are predominantly caused by many pathogenic species, such as

bacteria, fungi and viruses and so on. These infectious species actively interact with

their hosts in a variety of ways, which place the host-pathogen interactions (HPI) in a

72



CHAPTER 4. SYSTEMATIC EVALUATION OF PREDICTORS FOR HP-PPIS 73

complicated, but also critical, role in the study of infectious-diseases mechanisms. In

most cases, the host-pathogen system is studied from different perspectives to further

our understanding of infectious mechanisms [219]. A major approaches is studying the

interactions of inter-species proteins, in which one protein is from the host and the other

is from the pathogen.

While protein interactions occur extraordinarily between human and bacterium pathogens,

one of the earliest studies illustrated the importance of human-bacterium interactions

(HBI) in relation to the symptom cause by anthrax Bacillus anthracis. In this study,

Bacillus anthracis was conclusively demonstrated as the primary cause of anthrax [220].

Additionaly studies of Bacillus anthracis were conducted, aimed at fully understanding

the mechanisms of a complete protein interaction network between Bacillus anthracis (the

bacterium pathogen) and Homo sapiens (the host) [221, 222]. These studies encouraged

researchers to study a broad range of infectious diseases by exploring the human-

bacterium protein-protein interactions (HB-PPI).

However, the investigation of HBIs consumes lots of time, money and resources

in determining the complete interaction network and understanding their mechanisms.

Currently, investigations of the interactions between host and pathogens are still very

limited. Even though large-scale biomedical technologies, such as yeast two-hybrid

assay and the affinity purifications-mass spectrometry (AP-MS) method, have allowed

us to detect the interactions (positive or negative) in a faster and more accurate way, the

amount of possible human-bacterium protein-protein interactions is large. Other small-

scale technologies, like nuclear magnetic resonance (NMR), are often labor-intensive and

time-consuming. Thus, it is critical to formulate a computational model for the prediction

of HB-PPIs.

Several reviews studied current computational approaches [32, 151] as well as re-

searches on applying machine learning-based models to predict host-pathogen protein-

protein interactions (HP-PPIs) [23, 34, 156, 223, 224]. In particular, how to de-

ploy machine learning-based models as a generic approach in predicting novel human-
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bacterium interactions based on sequence information is considered as an important

category of research, which involves many challenges and opportunities. However, there

is currently not comprehensive evaluation study that has focused on machine learning-

based model as the primary computational method and further comparatively evaluated

their corresponding performances across a wide range of HBI systems.

4.1.2 Contributions

In this chapter, we follow the previous study of host-pathogen resource review to imple-

ment an evaluation protocol for human-bacterium protein-protein interactions study. This

study is based on literature reviews by firstly collecting human-bacterium interactions

systems data from the mentioned wide range of host-pathogen databases. The systematic

evaluation is subsequently achieved from two aspects. The first considered the application

of feature representation algorithms to the protein data, while the other was related to

different machine learning-based models. Meanwhile, the literature methods on topic of

host-pathogen protein-protein interactions is reported.

We summarize the contributions of this study as follows:

• A review on currently available data sources and computational tools is presented.

This chapter is based on the investigation of the reviewed databases, while the

performance evaluation is carried out among different computational tools and

methods from the literature.

• A systematic evaluation of machine learning-based computational prediction is

delivered. Although there have been several existing studies reporting the perfor-

mance of traditional machine learning-based methods on the specific HPI prediction

task separately, such as support vector machine, random forest, decision trees and so

on, we anticipate to cover a comprehensive study of machine learning models and

the feature representation algorithms in this chapter. The evaluation is conducted by

reporting multiple metrics and comparing the performance in a substantial manner.
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• A pipeline for human-bacterium interactions study is summarized whilst the datasets

are also curated for further researches. By building the pipeline for HBI study, we

anticipate to answer the following questions:

– How do machine learning models perform on the prediction task of human-

bacterium protein-protein interactions;

– How do the feature representation algorithms based on sequence information

affect the model performance;

– Do the ratios between positive and negative interactions have impact on the

model performances;

– What are the key issues to be addressed in order to build a robust and effective

machine learning-based method for human-bacterium protein-protein interac-

tions prediction.

4.2 Overview of Predictors for Host-Bacterium Protein-
protein Interactions

4.2.1 The Overview of Predictors for HB-PPIs Study

Although there has been a long history of research on protein-protein interactions pre-

diction, so far there are only a small number of publications that have focused on host-

pathogen interactions reviews [32, 151, 162, 225]. A broad search has resulted in four

major review papers, and Table 4.1 summarizes the reviews.

The studies by [162] and [151] have a wide coverage on host-pathogen interactions,

which include prediction as well as analyses, while the reviews by [151] and [225]

focused on the computational prediction of host-pathogen interactions. These reviews

aimed at describing the progress of host-pathogen interactions, without anchors of naming

pathogens, and they collectively reported on potential computational methods, such as

homology-based approaches, structure-based approaches, domain and motif interactions-

based approaches and machine learning-based approaches. Furthermore, no systematic
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Figure 4.1: A General Computational Framework for Host-Pathogen Protein-Protein
Interactions Prediction

evaluation with details was implemented or reported in these reviews. Recently, [226]

conducted a sequence-based predictors review, however they focused on the prediction of

protein-binding residues via single-sequence methods.

Adapted from these reviews, we subsequently collected all published predictors that

focused on host-bacterium protein-protein interactions and host-pathogen protein-protein

interactions, which are summarized in Table 4.2. The frameworks of the two different

types of computational models for predicting HP-PPIs, including machine learning-based

models and template-based models, are shown in Figure 4.1.

A template-based model utilises different types of protein information to build the

prediction model, including sequence information, structure information and domain in-

formation [227–229]. Template-based models use different protein information to detect

high score homology which might yield similar functions. However, template-based

models may fail to predict whether the remote homology will interact with known proteins

or not. Another type of computational model is based on machine-learning models. The

protein information is first vectorized as the input to learn their inherent relationships

automatically, which are thus used to build the model and predict the interactions.
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Review Reviewed Methods for HP-PPI Reviewed Database

[162]
(2013)

Homology-based approaches,
structure-based approach, domain and

motif interaction-based approach,
machine-learning-based approach

VirusMINT, PHI-base, MINT,
VirHostNet, BioGRID, IntAct,

APID, PATRIC and so on

[151]
(2015)

N/A
Web-Based Databases

(HCVPro, PATRIC, HPIDB,
PHISTO and so on)

[32]
(2015)

Machine learning and data mining
based approaches, homology based

approaches, structure based
approaches, domain and motif based

approaches

None

[225]
(2016)

Homology-based prediction,
structure-based prediction,

domain/motif interaction-based
prediction, machine learning-based

predictions of host-pathogen
interactions

PATRIC, PIG, VirHostNet,
HPIDB, VirusMINT and so on

1. For the released datasets in the reviews, they are not available at the time of our review;
2. For the evaluation of methods, including general methods, independent data methods and
performance measurement, the quantitative reports are not available in the reviews.

Table 4.1: Overview of the reviews for host-pathogen protein-protein interactions

Specifically, for PPIs, the relevant protein information can be sequence information, gene

ontology information, domain information, gene expression information and interaction

network information.

As indicated in Table 4.2, numerous feature-representation algorithms for sequence

information are incorporated with different machine-learning models for predicting host-

pathogen protein-protein interactions. In this regard, we first grouped the sequential

feature-representation algorithms into three different types: amino acid composition,

pseudo-amino acid composition and evolutionary information. It should be noted that,

not only the reported algorithms in Table 4.2, but also the related sequential-representation

algorithms from other protein sequence-specific topics, such as protein structure, protein

folding topics, are included in this section. The models from [218] and [34], which are

shown in Table 4.2, were selected as the representative models regardless of the pathogen

species.
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Table 4.2: Computational Approaches for Prediction of Host-pathogen Protein-Protein Interactions (sorted by published year)

Refere-
nce

Predictor Pathogen
Data
Source

Training Data Independent
Data

Protein
Information

Sequence
representation
algorithms

Algorithm/
Model

Stand-alone
software/
platform

Web server Performance
Positive

Pairs
Negative

Pairs

[217] N/A Parasite

BIND,
DIP,

IntAct,
Reactome

39207
human,

18412, 2643
Plasmodium
falciparum

intra-species
interactions

N/A N/A Gene Ontology N/A
Bayesian
statistics

N/A N/A N/A

[227] N/A Parasite DIP N/A N/A N/A Sequence PSSM
Remote

homology
detection

N/A N/A N/A

[218] N/A Parasite

MINT,
IntAct,

Reactome,
HPRD

1112 1136 N/A Sequence
CTM

variation
Random Forest N/A N/A ROC curve

[156] N/A Virus

HPRD,
MINT,
BIND,
DIP,

IntAct,
Reactome

1028

1:25, 1:50,
1:100 ratio
comparing

with positive

N/A

Domain,
sequence,
interaction

network

k-mers
Support vector
machine (linear

kernel)
N/A N/A AUC value

[34] N/A Virus I-MAP 500 500 N/A Sequence
CTM

variation

Support vector
machine (radial
basis function

kernel)

N/A N/A

Sensitivity,
Specificity

and
Accuracy
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Continuation of Table 4.2

Refere-
nce

Predictor Pathogen
Data
Source

Training Data Independent
Data

Protein
Information

Sequence
representation
algorithms

Algorithm/
Model

Stand-alone
software/
platform

Web server Performance
Positive

Pairs
Negative

Pairs

[23] N/A

Bacterium
(B.

anthracis,
F.

tularensis,
Y. pestis,
S. typhi )

PHISTO

655 B.
anthracis,

491 F.
tularensis,

839 Y. pestis,
62 S. typhi

1:100 ration
comparing

with postive

N/A

Sequence, gene
ontology, gene

expression,
interaction

network

k-mers
Multitask
learning

Yes N/A
Precision,
Recall and
F1 score

[230]
PWEN-
TLM

Virus RefSeq 3638 3638 Holding
subcatalog
PPI dataset

Gene Ontology N/A Transfer learning N/A N/A
F1 score
and ROC

curve

[223] N/A Virus IntAct 657 2910 N/A

Sequence,
interaction

network, tissue
information,

post-
translational

modifications

AAC, PAAC,
PSSM

Ensemble
learning

N/A N/A

Sensitivity,
Specificity

and
Accuracy

[228] N/A

Bacterium
(Mycobac-

terium
tuberculo-

sis)

N/A - N/A N/A
Sequence,

motif
N/A

Homologous
method

N/A

Databse:
protein

interactions
of

M.tuberculosis
and human

N/A

[231] N/A
Bacterium
(Bacillus

anthracis )
PATRIC 554 N/A N/A

Sequence,
graph

properties

CTM
variation,

quadruples of
consecutive
amino acids

Four layers
neural network

Yes N/A
Accuracy

and F1

End of Table 4.2

Table 4.2 Computational Approaches for Prediction of Host-pathogen Protein-Protein Interactions (sorted by published year)
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4.2.2 Host-Pathogen Interactions Databases

There has been continuous effort spent on developing online HPI databases and repos-

itories by many researchers. These developments mostly benefited from the National

Institute of Allergy and Infectious Diseases (NIAID), which initialized a strategic plan

to focus on biodefense research. Several ‘priority pathogens’ were defined. Several

initial developments, including pathogen interaction gateway (PIG [164]), BioHealthBase

[150] and the Pathosystems Resource Integration Center (PATRIC [160]), were wholly or

partially funded by the NIAID.

The first web-based database with massive annotated records for pathogen research

was the Ecological Database of the World’s Insect Pathogens (EDWIP) [169]. EDWIP

uses a one-to-one interaction relationship, which records the infection between a single

host species and a single pathogenic species. This strategy resulted in 9,400 records

between 4,454 host species and 2,285 pathogen species when it was first released in 2003.

PIG was designed as a collection of a number of public resources, which focussed on

experimentally verified and manually curated HP-PPIs. This centralized database served

as an easy-to-use database which transfers search results to the relevant database, such

as the UniProt [5] database. Another important host-pathogen interaction database is

the Pathogen-Host Interaction Search TOol (PHISTO) [161]. This tool aims to provide

researchers with a complete coverage of HPI data via monthly updates. Proteomics

Standards Initiative Common Query InterfaCe (PSICQUIC) [174] service was installed

to allow access to and extraction of HPI data the other web-based databases.

Following Chapter 2, numerous publicly available databases were reviewed, which

were returned by searching specific keywords in the NCBI PubMed search engine. We

manually examined the abstracts of the first 400 results ranked by ‘best relevance’ out

of more than 4,000 returned items based on the keywords ‘pathogen’ and ‘database’. As

such, in this paper, a selection of 11 databases is reviewed and evaluated based on their

contents. The selection is followed by the review of Chapter. 3, in which a cross-checking

of ‘Maintenance’ and ‘Related Databases’ information has resulted in a subset of the 11
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operational databases as the referred databases for curating the HPI dataset. Meanwhile,

the 11 databases were mainly collected with the data sources coming from literature,

domain expert manual verification and public archival databases, which are with high

confidence. Details are provided in the following sections.

4.2.3 Sequence Representation Algorithms

To encode proteins as feature vectors, several different features have been included in

this study to predict protein-protein interactions between Homo sapiens and bacterium

pathogens, which are: (1) protein amino acid composition information [11, 33, 232]; (2)

protein pseudo-amino acid composition information [233–235]; (3) protein evolutionary

information feature [236, 237]. We discuss the related feature encoding algorithms below.

Amino acid composition

* Conjoint Triad Method

It was proposed in [11] to classify the 20 amino acids into seven groups according

to each amino acids dipole scale and volume scale, which are their electrostatic

and hydrophobic properties. We briefly describe the physicochemical information

in Table 4.3. There are afterwards several variations of encoding algorithms for

sequence representation based on this table.

Among these, one popular approach is to consider the relationship of the properties

of one amino acid and its vicinal amino acids as a descriptor [11], which is named

the conjoint triad method (CTM). The conjoint triad information of several adjacent

amino acids makes it easy to represent every single protein sequence into a class-

based feature with the same length, which is also called its k-mer features.

Each amino acid type is indicated as a number ranging from 1−7 according to its

group. A detailed diagram for illustration of how k-mer features work is shown

in Figure 4.2. The frequency of three conjoint triad data (3-mer) of a sequence is

calculated. In total, there will be a combinations set including {(1,1,1), (1,2,1), . . . ,
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Group Index Dipole Volume Amino Acids
1st - - Ala(A), Gly(G), Val(V)
2nd - + Ile(I), Leu(L), Phe(F), Pro(P)
3rd + + Tyr(Y), Met(M), Thr(T), Ser (S)
4th ++ + His(H), Asn(N), Gln(Q), Tpr(W)
5th +++ + Arg(R), Lys(K)
6th +’+’+’ + Asp(D), Glu(E)
7th +‘ + Cysc(C)

Table 4.3: Seven Groups of 20 Basic Amino Acids [11]

Figure 4.2: Basic Process of CTM [11]

(1,7,1), . . . ,(1,7,7), . . . , (7,7,7)}. As a result, 3-mer features will encode a sequence

to a vector of 343 dimensions. For other 2-mer, 4-mer and 5-mer features, the

features number would be 49, 2401 and 16807, respectively.

* Auto Covariance

The auto csovariance (AC) relationship among the amino acids based on the order

of the sequence information was utilised in another feature representation algorithm

by [33]. It is a popular transformation algorithms used to adopt numerical vectors

to uniform matrices by analyzing sequences in the auto cross covariance (ACC)

information.

Between two different vectors, there are two covariance relationships, which are

cross covariance (CC) and auto cross covariance (ACC). Only ACC variables are

calculated [33]. The basic idea is to derived the physicochemical properties of the

amino acid, which include hydrophobicity (H), volumes of side chains of amino

acids (VSCs), polarity (P1), polarizability (P2), solvent-accessible surface area
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Name H1 H2 Vsc P1 P2 SASA NCISC
A 0.62 -0.5 27.5 8.1 0.046 1.181 0.007187
C 0.29 -1 44.6 5.5 0.128 1.461 -0.03661
D -0.9 3 40 13 0.105 1.587 -0.02382
E -0.74 3 62 12.3 0.151 1.862 0.006802
F 1.19 -2.5 115.5 5.2 0.29 2.228 0.037552
G 0.48 0 0 9 0 0.881 0.179052
H -0.4 -0.5 79 10.4 0.23 2.025 -0.01069
I 1.38 -1.8 93.5 5.2 0.186 1.81 0.021631
K -1.5 3 100 11.3 0.219 2.258 0.017708
L 1.06 -1.8 93.5 4.9 0.186 1.931 0.051672
M 0.64 -1.3 94.1 5.7 0.221 2.034 0.002683
N -0.78 2 58.7 11.6 0.134 1.655 0.005392
P 0.12 0 41.9 8 0.131 1.468 0.239531
Q -0.85 0.2 80.7 10.5 0.18 1.932 0.049211
R -2.53 3 105 10.5 0.291 2.56 0.043587
S -0.18 0.3 29.3 9.2 0.062 1.298 0.004627
T -0.05 -0.4 51.3 8.6 0.108 1.525 0.003352
V 1.08 -1.5 71.5 5.9 0.14 1.645 0.057004
W 0.81 -3.4 145.5 5.4 0.409 2.663 0.037977
Y 0.26 -2.3 117.3 6.2 0.298 2.368 0.023599

Table 4.4: Physicochemical Properties for Amino Acids [33]

(SASA) and the net charge index of the side chains (NCISC). These properties

of 20 types of amino acids are reported in Table 4.4.

In the auto covariance method, each single protein sequences is first translated into a

numerical value corresponding to seven different physicochemical properties. Since

the ranges of these seven physicochemical properties vary a lot from each other, a

first step of performing normalization for the numerical values is required. These

values were hence normalized to a distribution, whose mean is zero and the standard

deviation is one. The normalization equation is shown in Equa. 4.1.

pi, j =
pi, j−mean j

sd j
(i = 1,2,3, ...,20; j = 1,2,3,4,5,6,7) (4.1)

where pi, j represents the jth property value of the ith amino acid, mean j is the mean

value of the jth property over the 20 amino acids. sd j is the standard deviation of

jth property over the 20 amino acids. Via this operation, every protein sequence is
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Figure 4.3: Dividing Protein Sequence into 10 Regions [232]

translated into a N ∗M with zero mean and a standard deviation of unity in each

column. With a proper range of these numerical values for each single protein

sequence, auto covariance can be used to represent them into a uniform matrix.

Based on Equa. 4.2, a matrix of lg ∗ 7 is calculated, where lag is the distance

between two amino acids, and 0 < lg≤ lag.

AC(lag, j) =
1

N− lag

N−lag

∑
i=1

(Pi, j−
1
N

N

∑
i=1

Pi, j)∗ (Pi+lag, j

− 1
N

N

∑
i=1

Pi, j)

(4.2)

For z properties chosen out of the seven physicochemical properties, the length of

AC is lag∗ z. Pi, j orresponds to the value from {pi, j}. Here, N is the length of the

protein sequence. After ACC transformation, a representation of protein-protein

interaction is a concatenation of these two AC transform calculations results.

* Local Descriptor

Another sequenced-based feature representation method is a local descriptor [232].

The most important feature of an HP-PPI is that the interaction often occurs in

some specific intermittent fragments. To better extract this continuous or discrete

knowledge from sequence information, [232] proposed using region descriptors to

firstly divide a protein sequence into 10 regions. As shown in Figure 4.3, a protein

sequence is divided into four quarter regions (A-D), two half regions (E, F), the

central 50% region (G), the first 75% region (H), the last 75% region (I) and the

central 75% region (J).
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Figure 4.4: Local Descriptor for Protein Sequence adapted from [232]

With these 10 regions, a local descriptor is utilised to transform the region sequence

into three related descriptors [232]. These three descriptors are composition (C),

transition (T) and distribution (D). Composition is the composition ratio of each

group of amino acid within a separate region. Transition represents the percentage

of which amino acid group is followed by another amino acid group. Distribution

describes the specific location information obtained by selecting the first, 25%,

50%, 75% and last one of each amino acid group. Figure 4.4 shows more details of

C, T and D on a protein region sequence with 21 amino acids.

When using a local descriptor, the extracted feature vector contains 7 features for

composition, 21 features for transition and 35 features for distribution. When

multiplied by 10 different local regions, the local descriptor method generate 630

features for a single protein sequence. For a HB-PPI pair, this local descriptor

contains 1260 features.

There are also some other schemes that can be used to extract different types of

features of a protein sequence, for example Moran Autocorrelation Score [238]

and the amino acid triplet [34]. As protein sequence information is directly linked

to protein-protein interactions, a further novel representation of protein-protein

interactions, especially for human-bacterium protein-protein interactions, might

include any other information related to the specific host species and pathogenic
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species, which may be a better alternative for prediction of host-pathogen protein-

protein interactions [23].

Pseudo-amino acid composition

* PseAAC

Directly converting a protein sequence to a vectorized feature according to the

amino acid composition (AAC) might result in sequence-order information loss.

The pseudo-amino acid composition (PseAAC) method was proposed as a novel

protein sequence representation of a discrete model, which has remarkable im-

provement in prediction performance as an important feature representation algo-

rithm [233, 239, 240].

Various modes of PseAAC have been introduced in the literature. The key is to

combine the sequence order correlation information from the protein sequence. In

the work of [233], the original version of PseAAC was introduced, as shown in

Equa. 4.3.

θ1 =
1

T −1

T−1

∑
i=1

Θ(Si,Si+1)

θ2 =
1

T −2

T−2

∑
i=1

Θ(Si,Si+2) λ < T

. . .

θλ =
1

T −λ

T−λ

∑
i=1

Θ(Si,Si+λ )

(4.3)

Here, the Θ function is calculated by Equa. 4.4:

Θ(Si,S j) =
1
3
{[H1(R j)−H1(Ri)]

2 +[H2(R j)−H2(Ri)]
2+

[M(R j)−M(Ri)]
2}

(4.4)

where H1(Ri), H2(Ri) and M(Ri) are the corresponding phycial-chemical properties

of the amino acid residue Ri. Equa. 4.4 produces a λ -dimensional vector.
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Evolutionary information

* Position-Specific Scoring Matrix (PSSM)

By scanning a unique sequence against a reference database, the compilation of a

set of alignment profiles results in a position-specific scoring matrix (PSSM) of

the sequence, which indicates the probability of the corresponding positions of

the amino acid types [236]. The position-specific scoring matrix is returned as a

T × 20 matrix for a given protein sequence by position-specific iterated BLAST

(PSI-BLAST). Here, T denotes the length of the corresponding protein sequence.

Transformation of the PSSM, which involves highly and broadly homologous

sequences information, has been widely used in sequence-related studies [237,

241–246]. These studies indicated that, including evolutionary information for

feature representation helps to improve prediction model performance.

In detail, given a protein sequence as S = S1S2S3S4 . . .ST , where T is the length

of the protein sequence, the corresponding PSSM P = {Pm,n},m = 1, . . .T ;n =

1, . . . ,20 is calculated based on the amino acid similarity matrix. The matrix used

can be either point-accepted mutation (PAM, such as Dayhoff‘s mutation matrix

[247]) or position-weight matrix (PWM, such as the block substitution matrix

BLOSUM [248]). The value is calculated according to Equa. 4.5:

Pm,n =
20

∑
k=1

w(m,k)×θ(n,k) (4.5)

where w(m,k) is the probability that the kth amino acid appears at position m, and

θ(n,k) is the value of the position of (n,k) in the similarity matrix.

In this study, PSI-BLAST was employed to create PSSM with three iterations,

where the e-value was set to 0.001. Accordingly, the various lengths of the protein

sequences resulted in matrices with different dimension, which introduces different

encoding features based on the PSSM profile. The following parts present several

PSSM-based feature representation algorithms.
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• Pse-PSSM

The pseudo Position-Specific Score Matrix (Pse-PSSM) is firstly introduced in the

task of predicting an uncharacterized protein to be membrane protein or not [239]. It

extends the idea of corrupting PSSM descriptor vertically as a mean value, as shown

in Equa. (7), though the value of PSSM is firstly processed by a standardization

procedure horizontally by rows in Equa. 4.6 and Equa. 4.7. The concept of pseudo

amino-acid composition is to generate correlation information between different

amino acid locations.

P
′
m,n =

Pm,n− 1
20 ∑

20
k=1 Pm,k√

1
20 ∑

20
k=1(Pm,k− 1

20 ∑
20
k=1 Pm,k)2

(4.6)

Pn =
1
T

T

∑
m=1

P
′
m,n (n = 1,2, . . . ,20) (4.7)

Thus, the original PSSM profile is converted to a 20-dimensional vector, P =

{Pn,n = 1, . . . ,20}. This derived feature focuses on representing the average score

of each amino acid types according to the reference database, which loses the

sequence order information of the protein. Thus, [239] proposed considering

supplementary information from the pseudo amino acid composition, which slices

the PSSM profile according to Equa. 4.8.

Psen =
1

T − c

T−c

∑
m=1

[P
′
m,n−P

′
(m+c),n]

2 (n = 1,2, . . . ,20;c < T ) (4.8)

This process generates a 40-dimensional vector Pse = {P1,P2, . . . ,P20,Pse1,Pse2, . . . ,Pse20}

while 0 < c < min(T ). For a given set of protein sequences, the upper bound of c

should be smaller than the shortest length of the protein sequences.

• Block-PSSM

By considering the PSSM profile in a dimension format of T ×20, [249] proposed

dividing the whole sequence into 20 equal blocks, where each represents five

percent of the total sequence. Each block generate a 20-dimensional vector, which
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is finally combined as a 20×20 = 400 dimension vector in total.

The ith block is calculated according to following Equa. 4.9.

Pblocki, j =
1
Bi

Bi

∑
i=1

Pi, j i = 1,2, . . . ,20; j = 1,2, . . . ,20 (4.9)

where i represents the block number. Since each five percent of a sequence

is considered as a block, i ranges from 1 to 20. j is the number of amino

acid types. In short, Pblocki is extracted as a 1× 20 vector, thus Pblock =

Pblock1,Pblock2, . . . ,Pblock20 is calculated as the Block-PSSM feature in a form

of 1×400 vector feature.

• AAC-PSSM & DPC-PSSM

Another variation of PSSM-based features was proposed in [250]. The original

PSSM profile is scaled to the range from 0 to 1 by following a sigmoid function

shown in Equa. 4.10:

P
′′
m,n =

1
1+ e−Pm,n

(4.10)

P
′′
m,n is also used in the transition probability composition (TPC) PSSM [250].

AAC-PSSM extracts the corresponding amino acid composition information from

P = {P′′m,n,m = 1, . . . ,T ;n = 1, . . . ,20}. The vector from Equa. 4.11 represents an

average mutation score of the amino acid types in the protein during the evolution

process, namely AAC-PSSM. This calculation generates a 20-dimensional feature

vector.

As a supplementary, traditional dipeptide composition (DPC) from the protein

sequence is extended [250], which is then named DPC-PSSM. The calculation is

based on the covariance between two adjacent amino acid residues, denoted by

Equa. 4.12. This process produces a 400-dimensional feature vector.

Paacn =
1
T

T

∑
m=1

P
′′
m,n m = 1, . . . ,T ;n = 1, . . . ,20 (4.11)
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Pd pci, j =
1

T −1

T−1

∑
k=1

P
′′
k,i×P

′′
(k+1), j i, j = 1, . . . ,20 (4.12)

• TPC-PSSM & DP-PSSM

The transition probability composition (TPC) PSSM [251] and directional property

(DP) PSSM [252] are two variants of PSSM-based feature algorithms from DPC-

PSSM and Pse-PSSM, respectively.

TPC-PSSM is defined as a 400-dimensional feature vector Pt pc = {Pt pci, j, i, j =

1, . . . ,20}, and it is calculated by following Equa. (13).

Pt pci, j =
∑

T−1
k=1 P

′′
k,i×P

′′
(k+1), j

∑
20
j=1 ∑

T−1
k=1 P′′

(k+1), j×P′′k,i
i, j = 1, . . . ,20 (4.13)

DP-PSSM takes the standardization procedure from Pse-PSSM feature and expands

the extraction of information from both positive and negative terms [252]. It

consists of two parts, in which one is from individual amino acid composition

and the other is from the dipeptide composition. Pd p could be illustrated as the

following Equa. 4.14.

Pd p = [T
′
,G
′
]

T
′
= [T P

1 ,T N
1 , . . . ,T P

20,T
N

20]

G
′
= [G1,G2, . . . ,G20]

G j = [∆P
1, j,∆

N
1, j, . . . ,∆

P
α, j,∆

N
α, j]

(4.14)

In Equa. 4.15 and Equa. 4.16, the superscripts P and N represent the positive terms

and negative terms according to following equations.

T P
j =

1
NPj

∑P
′
i, j i f P

′
i, j ≥ 0

T N
j =

1
NNJ

∑P
′
i, j i f P

′
i, j < 0

j = 1,2, . . . ,20

(4.15)
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∆
P
k, j =

1
NDPj

∑[P
′
i, j−P

′
i+k, j]

2 i f P
′
i, j−P

′
i+k, j ≥ 0

∆
N
k, j =

1
NDN j

∑[P
′
i, j−P

′
i+k, j]

2 i f P
′
i, j−P

′
i+k, j < 0

k = 1,2, . . . ,α

(4.16)

T
′

contributes 40 dimensions and G
′

contains another 40×α-dimensional feature.

Totally, protein sequence is represented by a (40 + 40×α)-dimensional feature

vector.

4.2.4 Machine Learning Models for Prediction

Applying computational approaches for prediction of bioinformatics tasks is considered

as an important supplementary method for identifying specific targets and high-fidelity

interactions in experiments. Recently, we have witnessed numerous applications focusing

on the domains containing an abundance of unknown data, which require hypothesis

verification [26, 32, 159, 162].

In Table 4.2, the predictors from [34, 218], which are based on machine learning model

and protein sequence information, were selected for our following study. The machine

learning models include support vector machine (SVM) and random forest (RF).

In this section, we will first briefly review most of the potential machine learning

models that can be utilized for host-pathogen interactions prediction in Table 4.2, which

include logistic regression (LR), the Na’́ive Bayes (NB) model, decision tree (DT)

model, random forest (RF) model, support vector machine (SVM) model and gradient

boosting machine (GBM) model. These models have demonstrated their capability in

other applications for protein structure prediction; however, this is the first time they

have been presented in an overall performance evaluation in relation to different feature-

representation algorithms for HB-PPIs.
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Support Vector Machine

Support vector machine (SVM) model is one of the most widely used models in the

literature, which was originally developed by [253]. The introduced structural risk

minimization theory ensures the performance of SVM to be widely and successfully

applied to many classification and regression tasks in computational biology. SVM with a

Radial Basis Functions (RBF) kernel is firstly deployed given a task of classifying HP-PPI

pairs [34, 224]. Given a dataset of HB-PPI denoted as {xi,yi}, i=1,2,...,N, where xi ∈ Rn

and yi ∈ {+1,−1}, yi is calculated in the following Equa. 4.17 in SVM:

y(x) = sign[
N

∑
i=1

yiαi ∗K(x,xi)+b] (4.17)

where K(xi,x j) = exp(−γ‖xi − x j‖2) stands for the RBF kernel, and αi contains the

parameters from a convex quadratic programming problem.

Decision Tree

The decision tree (DT) model is designed as a non-parametric supervised model [254]. It

uses a tree-like graph to predict an incoming instance based on learnt decision rules from

given data samples and represented features. Decision trees are simple to understand and

interpret, and they are also capable of handling both numerical and categorical data.

Random Forests

Derived from the decision tree model, random forests (RF) adopts random learning

method to construct a combination of decision trees [255]. It presents superior perfor-

mance compared with other machine learning models for classification task, regression

task and so on. Technically, it is an ensemble learning model based on the tree bagging

method, which builds a bunch of random decision trees to avoid the latent problem caused

by potentially biased data.

In this study, we implement random forest using scikit-learn toolkit [256] in Python.
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Logistic Regression

Logistic regression is an important machine learning model, which targets modelling yi

between 0 and 1 given unseen data xi. Accordingly, the logistic regression returns results

by Equa. 4.18:

P(yi = 1|xi) = hθ (xi) = 1/(1+ exp(−θ
T ∗ xi))

P(yi = 0|xi) = 1−P(yi = 1|xi) = 1−hθ (xi)
(4.18)

where θ is the combination of the model parameters, and the optimization of θ is solved

with either the cross-entropy function J1 or the mean square error loss function J2, which

is shown in Equa. 4.19:

J1(θ) =−∑
i
(yilog(hθ (xi))+(1− yi)log(1−hθ (xi)))

J2(θ) =
1
n

n

∑
i=1

(yi−hθ (xi))
2

(4.19)

Naı̈ve Bayes Model

Based on the Bayes‘ theorem [257, 258], the naı̈ve Bayes model consists of a probabilistic

classifier and considers features as independent variables between each other when the

class label is given. Given X = (x1,x2, . . . ,xn), xi is the ith feature, the probability of

being in category yk is calculated by Equa. 4.20:

p(yk|X) =
p(yk)

p(X)

n

∏
i=1

p(xi|yk) (4.20)

In this study, we selected the Gaussian Naı̈ve Bayes (GNB) model to deal with the contin-

uous data projected from the various feature representation algorithms. The distribution

of the data was assumed to be a Gaussian distribution, which follows Equa. 4.21.

p(xi|yk) =
1√

2πσ2
k

e
− (xi−µk)

2σ2
k (4.21)

In Equa. 4.21, µk is the mean of X and σ2
k is the corresponding variance.
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Gradient Boosting Machine

Gradient boosting machine (GBM) was firstly developed as a greedy optimization model

[259] for both regression and classification tasks. Among the variants of gradient boosting

machine, gradient tree boosting is a frequently used model integrated with the decision

trees model. Given a X = (x1,x2, . . . ,xn), in which xi is related to label yi, gradient

tree boosting builds an ensemble of trees sequentially by distilling the gradient descent

algorithm into the process of new tree construction. A new tree is constructed under the

discrepancy between target function f (x) and current model, in which f (xi) = yi. The

discrepancy between target function f (x) and the current model is also called residual of

gradient boosting machine.

4.3 Host-pathogen Interactions Materials

4.3.1 Human-bacterium Interaction Resources

In this section, we firstly collected and reviewed 11 public databases, as summarized in

Table 4.5: the Database of Interacting Proteins (DIP) [178], Reactome [187], the Agile

Protein Interaction DataAnalyzer (APID) [188], IntAct [176], the Molecular Interaction

Database (MINT) [260], the InnateDB [189], the pathogen-host interaction search tool

(PHISTO) [161], the Pathosystems Resource Integration Center (PATRIC) [160], Mentha

[186], the Host Pathogen Interaction Database (HPIDB) [172], the Biological General

Repository for Interaction Datasets (BioGRID) [177].

As humans are one of the primary host species among infectious diseases, the human-

pathogen interaction resources are considered as the preliminary investigation subjects

from all these databases. The column ‘HPI number’ indicates the corresponding recorded

interaction number from the databases, which contain both inter-species interactions and

intra-species interactions. These 11 databases were selected because their data sources

mainly come from literature, domain expert manual verification and public archival

databases, which are with high confidence of the presented data.
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Taking database PATRIC [160] as an example, the data source was built upon several

public archival databases, such as MINT [260], IntAct [176], BioGRID [177], and DIP

[178]. The cross-archived databases have extended the availability of host-pathogen

interactions resources, however there would also be some duplicates which inevitably

occur during the combination of these 11 databases. Thus, we followed the traditional

data collection and cleansing method from the literature [23, 34, 156].
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Database Data Source Data Type HPI number
DIP [178] Literature and domain expert manual

verification
Protein-protein interactions 76,882

Reactome [187] Literature and domain expert manual
verification

Comprehensive data portal including
pathway and analysis

1,016,953

APID [188] Public archival databases Protein-protein interactions 133,994
IntAct [176] Public archival databases and literature Molecular interaction database 857,826
MINT [260] Literature Protein-protein interactions 123,892

InnateDB [189] Literature Mammalian innate immunity networks,
pathways and genes

24,077

PHISTO [161] Public archival databases Host-pathogen and human intraspecies
protein-protein interactions

90453

PATRIC [160] Public archival databases Comprehensive data portal for bacterium
pathogens

618,737

Mentha [186] Public archival databases Protein-protein interactions 1,272,096
HPIDB [10, 172] Public archival databases and literature Host-pathogen interactions 62,783
BioGRID [177] Literature Comprehensive data portal for protein,

genetic and chemical interactions
1,568,115

Table 4.5: The Human-Pathogen Interaction Resources
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4.3.2 Data Curation

In this section, we briefly describe the major statistics for our ‘golden dataset’ curation,

which will be thoroughly surveyed in following sections.

Positive Interactions

Six different types of bacterium pathogens were selected and the related data were pre-

processed from the available databases. We identified these bacterium by mapping the

taxonomy IDs according to the NCBI Taxonomy database. In Table 4.6, the corre-

sponding information, including taxonomy ID, organism name, total pair number from

the databases and the number after cleansing, are presented. These 11 databases were

accessed and downloaded in September, 2018.

Despite the redundant ID information appearing in the databases, the collected protein

sequence information from Swiss-Prot/UniProtKB is also involved at this stage with the

assistance of CD-HIT tool [261]. Herein, CD-HIT is a popular tool to cluster highly

homologous sequences (in this paper the threshold of sequence identity is set as 70%) to

reduce the redundancy of database. It also helps to identify the clusters with representative

protein. The redundancy between sequences is deemed to bring potential bias in the

trained models.

In Table 4.6, the statistics refer to the results of the representative proteins. Meanwhile,

any proteins with less than 50 amino acids were removed since these proteins may be

non-functional fragments. The protein sequence information was primarily from the

SwissProt/UniProtKB database [5].

Negative Interactions

How to select feasible negative PPIs remains an active topic for prediction of protein-

protein interaction. Currently, there is not a standard protocol defining both the negative

pairing strategy and the ratio to positive interactions. In most cases, building a negative

interaction dataset by randomly selecting protein pairs from a set of unknown interacting
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relationship between protein pairs is utilised. This heuristic approach works well in

practice as the interaction ratio (i.e. the number of positives in a large, random set of

protein airs) is expected to be very low, which in the work of [156] was defined as 25,

50, and 100 times as many negative examples as positive examples. In the study by [23],

the ratio was set as 1/100. The assumption in this approach is that the probability that the

selected negatives contain true positives is negligible.

Thus, we follow the traditional approaches from the literature [23, 156, 223, 231]. A

random pairing for a negative protein-protein interaction was firstly undertaken between

different proteins sets, which in this study was between the chosen bacterium pathogens

(listed in Table 4.6) and Homo sapiens proteins (taxonomy ID: 9606). Then, we randomly

selected a subset from this random pairing set to be the negative dataset. The negative

interactions were selected with different ratio, which are 1:1, 1:25, 1:50 and 1:100.

Protein Information

When building machine learning models for prediction of protein-protein interactions, it

requires the research subject HB-PPI to utilise the diverse protein information, which can

be divided into three groups: structure-based, domain-based and sequence-based protein

information.

Numerous studies have utilised and examined different information in the prediction of

specific host-pathogen protein-protein interactions [156, 262, 263]. Particularly, domain-

domain and structure-structure interaction methods are two main approaches to comple-

ment existing high-confidence interactions [156, 263]. Also, the structural similarity,

which refers to a result of homology-based modelling, is an important alternative for

detecting proteins with a homogeneous structure based on experimentally verified host-

pathogen protein-protein interactions [262].

Although structure-based and domain-based information have some benefits for explor-

ing the host-pathogen interactions [28, 264], it limits the scale of the study of HP-PPI to

specific genre and species, such as HIV-1, HCV, Ebola viruses and so on [22, 26, 156,
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223, 265, 266]. One dominant reason is the limited amount of available experimentally

determined structures and domain information, particularly for bacteria. Imputation

remains a core technology to compensate for the dearth of protein information and helps

to address the challenge of interaction prediction [263]. Imputation for missing data also

have impacts on the prediction performance since it brings putative information, which

might not be accurate. Thus, utilizing structure-based and domain-based information

limits the availability and scalability to a wide range of studies of HB-PPIs.

Alternatively, there has been a research trend of predicting PPIs from sequence-based

protein information [11, 267]. Sequence-based protein information is one of the most

abundant protein information, which has stimulates ongoing research to improve the

prediction performance of novel feature representation and machine learning models [34,

226, 231, 268, 269]. The sequence-based methods enable the models to be applied on

larger dataset and various species and genres.

Independent Datasets

To help understanding each dataset’s information, in Table 4.7, all the proteins numbers

related to the different subsets were included. This information, which was related to the

reviewed sequence information from UniProtKB database [5], was last updated on 30th

Oct., 2018. In total, we collected 18,181 Homo sapiens protein sequence information,

and the corresponding protein numbers for each taxonomy ID are reported in Table 4.7.

The evaluation of models requires a careful preparation of independent datasets.

Generally, cross-validation shows better performance than the independent-testing model

for an unseen dataset. To give a general performance evaluation, we followed [34] when

we built the independent datasets. The difference was that we further built five-fold

independent datasets, which helped us to better measure the means and variations of the

machine-learning models.

The independent datasets were not used during the training, and various measurements

were included to evaluate the performance of different models based on the independent
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datasets. Thus, we first randomly select one-fifth of the PPIs from both positive and

negative interactions to be the independent dataset. The remaining PPIs of positive and

negative interactions were then combined as the training set. We assembled the negative

interactions with a random sampling method, where random sampling of the negative

interactions was conducted five times, which allowed us to evaluate the different models

with statistic means and variations to reduce the bias caused by negative interactions.

The involved proteins number for Homo sapiens and corresponding bacterium pathogen

taxonomy IDs are reported in details in Table 4.7. We have reported the number of utilised

proteins for each species for different ratio settings. We anticipate that this experimental

setting and details will help to provide more information to build novel machine learning

methods in future work.

The framework of our evaluation study is presented in Figure 4.5. In Figure 4.5, a clear

process procedure from databases to training and independent datasets, followed by the

feature representation algorithms and machine learning model evaluations, are mapped in

a coherent line. The best model selection and prediction are given as the main outcome

of this framework.
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Taxonomy ID Bacterium Pathogen Total number from Databases After cleansing
1491 Clostridium botulinum 61 57
644 Aeromonas hydrophila 73 73
623 Shigella paradysenteriae 118 105

177416 Francisella tularensis subsp. tularensis
(strain SCHU S4 / Schu 4)

1319 1207

1392 Bacillus anthracis bacterium 3275 2810
632 Yersinia pseudotuberculosis subsp. pestis

(Lehmann and Neumann 1896)
Bercovier et al. 1981

4114 3528

Table 4.6: Selected bacterium Species Positive Interactions

Taxonomy
ID

Whole Proteome Information Positive Information Positive
Pairs

Total no. of
HB-PPI

Negative Pairs
Human Bacterium Human Bacterium 1:1 1:25 1:50 1:100

1491 18181 524 9 7 57 9.5 M 57 1425 2850 5700
644 18181 511 66 4 73 9.3 M 73 1825 3650 7300
623 18181 1724 75 60 105 31.3 M 105 2625 5250 10500
177416 18181 550 889 306 1207 10.0 M 1207 30175 60350 120700
1392 18181 1501 1537 844 2810 27.3 M 2810 70250 140500 281000
632 18181 1893 1866 1092 3528 34.4 M 3528 88200 176400 352800

Table 4.7: Overview of the Protein Information for the Datasets Preparation Process. Note: Only the proteins from the positive interactions
which are processed by CD-HIT [261] are kept and counted in this table; M is short for ‘million’. For each human-bacterium PPI dataset, the
number of pathogen proteins, the size of the dataset and other such statistics are shown.
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Figure 4.5: Designed Framework of Human-Bacterium Protein-protein Interaction Prediction
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4.4 Evaluation Results

4.4.1 Evaluation Metrics

A set of six popular performance evaluation metrics, including precision (Pre), accuracy

(Acc), sensitivity (Sn), specificity (Sp), F1-score and Matthew’s correlation coefficient

(MCC) score were applied to evaluate the overall prediction performance of the models.

The measurements are defined as following Equa. 4.22.

Pre =
T P

T P+FP

Acc =
T P+T N

T P+FP+T N +FN

Sn =
T P

T P+FN

Sp =
T N

T N +FP

F1 =
2×Pre

Pre+Rec

MCC =
(T P×T N)− (FN×FP)√

(T P+FN)× (T N +FP)× (T P+FP)× (T N +FN)

(4.22)

where TP, FP, TN and FN means the number of true positives, false positives, true

negatives and false negatives respectively. Also, the receive operating characteristic

(ROC) curve and the area under the curve (AUC) are included to quantify the model

performance.

4.4.2 Performance Evaluation and Discussion

In this section, the holistic performance evaluation is presented with regard to the

prediction task of human-bacterium protein-protein interactions, including the details of

numerous feature representation algorithms, different ratios between positive and negative

interactions, different machine learning models.
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Performance Evaluation Based on Different Class Ratios

One major evaluation of this study was the ratio impact of different predictors, which was

the ratio between the positive and negative protein interactions. Herein, we present the

F1 score and Acc value from our measurements for feature ‘ACC’ for the evaluation

discussion in the main body of this thesis, while the more details of the metrics are

reported in the appendix. The mean value and deviation of each of the five independent

tests were calculated in terms of different bacterial species and building ratio settings

between the positive and negative pairs. In general, the ability to predict positive

interactions as negative pairs decreases both the F1 and Acc results. Here, we found

that the Acc was as high as 0.990099 when all the test data were predicted as negative

interactions for a ratio of 1 : 100 between the positive and negative interactions. For ratios

of 1 : 25, 1 : 50 and 1 : 100 between the positive and negative interactions, the datasets

were considered as imbalanced datasets. Thus, F1 score was more suitable for measuring

the performance of imbalanced datasets.

From Figure 4.6, it is easy to see that the F1 scores present a trend of getting worse as

the dataset becomes bigger and more complicated, which means more protein nodes and

edges are involved in the dataset. For example, when the positive to negative ratio was

1 : 1, a 1.0±0.0 F1 score was found for the RF algorithm and the taxonomy ID is “1491”.

However, the F1 score became 0.96± 0.0 with RF for ID “644”, 0.817555± 0.029558

with LR for ID “623”, 0.730386± 0.005192 with RF for ID “177416”, 0.770171±

0.007703 with RF for ID “1392” and 0.752226±0.006632 with RF for ID “632”.

In Figure 4.7 and Figure 4.8, feature representation algorithms ‘PseAAC’ and ‘BlockPS-

SM’ from the evolutionary information method are included with different ratios. The

performance comparison between these two different sequence based features also indi-

cate the impact of the ratio upon the F1 and Acc results.

From Figure 4.8, we can see that all the predictors have worse performance for all

datasets when the ratio increases from 1 : 1 to 1 : 25, 1 : 50 and 1 : 100, especially when

the dataset is with more than one hundred thousand samples. For example, for taxonomy
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Figure 4.6: Accuracy and F1 Score of Different Machine Learning-based Models for
‘Auto Covariance’ Feature Representation Algorithm in Predictions of HB-PPIs

Figure 4.7: Accuracy and F1 Score of Different Machine Learning-based Models for
‘PseAAC’ Feature Representation Algorithm in Predictions of HB-PPIs
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Figure 4.8: Accuracy and F1 Score of Different Machine Learning-based Models for
‘BlockPSSM’ Feature Representation Algorithm in Predictions of HB-PPIs

ID “632”, the F1 score was 0.752226±0.006632 for a 1 : 1 ratio, however, the F1 scores

dropped to 0.312530±0.010944 for a 1 : 25ratio, 0.243679±0.012883 for a ratio of 1 : 50

and 0.154535± 0.012569 for the 1 : 100 ratio. These results were all achieved with the

RF algorithm.

In Figure 4.9 and Figure 4.10, the results of the existing available methods from litera-

ture are included. Figure 4.9 contains the Acc, F1 and MCC scores for IDs “1491”, “644”

and “623”, and Figure 4.10 contains the results for IDs “177416”, “1392” and “632”. Both

Figure 4.9 and Figure 4.10 indicate the performance variation when the dataset changes

from taxonomy ID “1491” to “644” and “623”, which becomes worse for taxonomy

IDs “177416”, “1392” and “632”. Even though the existing methods in Figure 4.9 and

Figure 4.10 have incorporated several novel sequential feature representation algorithms,

their performance has not improved.
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Figure 4.9: Accuracy, F1 Score and MCC Value of Methods from Literature for
‘Clostridium botulinum’, ‘Aeromonas hydrophila’ and ‘Shigella paradysenteriae’
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Figure 4.10: Accuracy, F1 Score and MCC Value of Methods from Literature for
‘Francisella tularensis’, ‘Bacillus anthracis’ and ‘Yersinia pseudotuberculosis’



CHAPTER 4. SYSTEMATIC EVALUATION OF PREDICTORS FOR HP-PPIS 109

Figure 4.11: The ROC Curve for ‘Francisella tularensis’

Performance Evaluation of Different Machine Learning Models

In Figure 4.11 and Figure 4.12, the ROC curves for taxonomy IDs “177416” and “644”

are illustrated, respectively. For each figure, we have listed the six evaluated machine

learning models as two groups for the convenience of following analysis. One group is

called tree-based models which are mostly based on decision trees, while another group is

called kernel-based models which are not based decision trees instead involving complex

optimization algorithms. The tree-based models contain decision tree (DT), random

forest (RF) and gradient boost machine (GBM). The kernel-based models include support

vector machine (SVM), logistic regression (LR) and Gaussian Naı̈ve Bayes model. The

performances are presented as mean ROC curves from five-fold independent test results

for different ratios.

As there are 1207 positive interaction pairs for taxonomy ID “177416”, the dataset size

is 121907 for a ratio of 1 : 100, which is larger than that of taxonomy ID “644”. Somehow,

the predictors performance became worse for the larger dataset, for both the two groups

of models. One major outcome is that, the tree-based models appears to perform better

for the prediction task in comparison with the kernel-based models. Although the tree-

based models still outperformed the kernel-based models for each dataset, the overall

performance was not stable across the different host-bacterium systems.
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Figure 4.12: The ROC Curve for ‘Aeromonas hydrophila’

Performance Evaluation of Different Feature Representation Algorithms

In the following tables, the results of accuracy value, F1 score, and Matthew’s correlation

coefficient value are reported. Since the results of each value are still of large amount,

which include the performance for the combination set of six different machine learning

model and seven feature representation algorithms, the best machine learning models with

each feature representation algorithms are selected for the tables.

In Table 4.8, Table 4.9 and Table 4.10, the best results of all the predictors are listed

accordingly for taxonomy ID ‘632’. For example, for the AC feature representation

algorithm dataset, the best results of for ratios of 1 : 1, 1 : 25, 1 : 50 and 1 : 100 were all

achieved by RF model with accuracies of 0.757082± 0.008000, 0.967350± 0.000365,

0.982521± 0.000128, and 0.990674± 0.000043, respectively. The tree-based models,

including DT, RF, and GBM, have demonstrated a strong generalization ability in terms

of providing effective and efficient performance. The other models, such as kernel-based

model, including SVM, Gaussian Naı̈ve Bayes (GNB) model and the LR model, however,

are less robust compared with the tree-based models. Meanwhile, the training time was in

higher demand than for the tree-based models. Taking CTM as the feature representation

algorithm, the time spent training GBM for the dataset of ratio 1 : 100 on taxonomy ID

“632” was over 1,500 seconds. However, the time spent training the SVM model was
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more than 23,000 seconds.

Following, an extension of discussion for future directions, which identifies the key

issues and suggestions to build a robust and effective machine learning-based model, is

presented.
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Table 4.8: Results of Accuracy on ‘Yersinia pseudotuberculosis’

Model
Accuracy

1:1 1:25 1:50 1:100
Auto Covariance

(420D)
0.757082±0.008000

(RF)
0.96735±0.000365

(RF)
0.982521±0.000128

(RF)
0.990674±0.000043

(RF)
Local Descriptor

(1260D)
0.720963±0.016687

(GBM)
0.965377±0.000487

(RF)
0.981676±0.000091

(RF)
0.990444±0.000060

(RF)
Conjoint Triad Method

(686D)
0.700283±0.010306

(GBM)
0.965039±0.000311

(RF)
0.98176±0.000208

(SVM)
0.990523±0.000051

(SVM)
PseAAC (110D) 0.718697±0.014061

(GBM)
0.964374±0.000203

(RF)
0.981415±0.000113

(RF)
0.990391±0.000145

(GBM)
PsePSSM (80D) 0.709632±0.005540

(GBM)
0.966216±0.000450

(RF)
0.982049±0.000120

(RF)
0.990624±0.000044

(RF)
DPCPSSM (800D) 0.734278±0.009506

(GBM)
0.966053±0.000333

(RF)
0.98206±0.000208

(RF)
0.990585±0.000061

(RF)
Block-PSSM(800D) 0.729037±0.008095

(GBM)
0.965279±0.000464

(RF)
0.981698±0.000293

(GBM)
0.990551±0.000078

(RF)
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Table 4.9: Results of F1 Score on ‘Yersinia pseudotuberculosis’

Model
F1 Score

1:1 1:25 1:50 1:100
Auto Covariance

(420D)
0.752226±0.006632

(RF)
0.31253±0.010944

(RF)
0.243679±0.012883

(RF)
0.154535±0.012569

(RF)
Local Descriptor

(1260D)
0.727218±0.013162

(GBM)
0.255139±0.009452

(RF)
0.177423±0.010255

(DT)
0.173899±0.010245

(GBM)
Conjoint Triad Method

(686D)
0.700275±0.006187

(GBM)
0.18578±0.010755

(RF)
0.180318±0.006771

(SVM)
0.129115±0.010062

(RF)
PseAAC (110D) 0.724976±0.010361

(GBM)
0.23077±0.011551

(SVM)
0.148855±0.011666

(GBM)
0.130497±0.010625

(GBM)
PsePSSM (80D) 0.720259±0.004842

(GBM)
0.256988±0.009757

(RF)
0.191165±0.012116

(RF)
0.143488±0.008093

(RF)
DPCPSSM (800D) 0.742534±0.008470

(GBM)
0.259213±0.010695

(RF)
0.205636±0.012626

(RF)
0.154714±0.013181

(DT)
Block-PSSM(800D) 0.739192±0.007676

(GBM)
0.207103±0.009433

(RF)
0.175258±0.011638

(GBM)
0.157700±0.004793

(GBM)
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Table 4.10: Results of MCC Value on ‘Yersinia pseudotuberculosis’

Model
MCC Value

1:1 1:25 1:50 1:100
Auto Covariance

(420D)
0.514740±0.016240

(RF)
0.389241±0.010464

(RF)
0.335746±0.010207

(RF)
0.253434±0.010138

(RF)
Local Descriptor

(1260D)
0.442457±0.032907

(GBM)
0.328314±0.013210

(RF)
0.256948±0.008037

(RF)
0.233817±0.012761

(GBM)
Conjoint Triad Method

(686D)
0.400747±0.020562

(GBM)
0.297864±0.012409

(RF)
0.249646±0.012510

(RF)
0.219050±0.009724

(SVM)
PseAAC (110D) 0.437930±0.027559

(GBM)
0.270015±0.008225

(RF)
0.241630±0.013639

(GBM)
0.212697±0.018621

(GBM)
PsePSSM (80D) 0.420486±0.010975

(GBM)
0.348116±0.013818

(RF)
0.294669±0.010245

(RF)
0.242970±0.007387

(RF)
DPCPSSM (800D) 0.469595±0.018729

(GBM)
0.344422±0.010812

(RF)
0.300172±0.014612

(RF)
0.240708±0.009831

(RF)
Block-PSSM (800D) 0.459515±0.016168

(GBM)
0.321348±0.005442

(SVM)
0.274589±0.018411

(RF)
0.227935±0.004565

(GBM)
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Figure 4.13: Protein Interaction Map between Homo Sapiens and Clostridium botulinum
(ID: 1491)

4.4.3 Further Discussion

Given different PPI networks, such as the HB-PPI between Homo sapiens and Clostridium

botulinum (ID: 1491), and the interaction between Homo sapiens and Yersinia pseudo-

tuberculosis subsp. pestis (ID: 632), the positive interactions networks have presented

different complexities. As we can see, it still requires huge amounts of work towards

the completeness of human-bacterium protein-protein interactions network. They have

indicated different pathways between the different species. Figure 4.13 and Figure 4.14

show diagrams of two different interaction networks for taxonomy IDs 1491 and 632,

respectively.

To accomplish a robust performance of predicting HB-PPIs, the relationship between

positive and negative protein interactions requires further consideration. There have

been several methods dedicated to one-class classification tasks, such as semi-supervised

learning [270–272], to leverage the power of singularly labelled data and unlabelled data.

This may help to improve the performance of protein interaction prediction regardless

of the ratio between the positive and negative protein interactions. Meanwhile, since
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Figure 4.14: Protein Interaction Map between Homo Sapiens and Yersinia pseudotuber-
culosis subsp. pestis (ID: 632)

sequential feature-representation algorithms have been an active and challenging area, a

better feature representation algorithm is needed to help build a sequence based end-to-

end machine learning model [3, 273, 274] for predicting HB-PPIs.

4.5 Summary

In this chapter, we have evaluated the predictions task for HP-PPIs in a systematic manner.

The focus was on leveraging machine learning-based models as the primary computa-

tional method. We first presented a wide and deep review on currently available resources

and computational tools. As noted in the literature review in Chapter. 4.2, to evaluate

the computational tools developed for prediction tasks of HP-PPIs, a dedicated data

curation process was implemented and a pipeline for HB-PPI studies was summarized

in Chapter. 4.3, which included numerous sequential feature-representation algorithms

and machine-learning models. Several other computational methods concerning HB-PPIs

were also evaluated.

Given the study of HP-PPIs, we have tried to determine the impacts caused by different

ratios of benchmark datasets, different feature-representation algorithms and different

machine-learning models. The experimental results in Chapter. 4.4 indicated that to better
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utilise machine learning models and harness the power of accumulated protein interaction

data, a more robust and more powerful computational model is required to achieve better

performance across different HB-PPI prediction tasks.

In following chapters, the design and details with regard to develop novel machine

learning-based models with novel feature representation algorithms are presented, which

has greatly improved the performance for discovery of interactions of HP-PPIs.



Chapter 5

HETEROGENEOUS INFORMATION MINING
AND ENSEMBLING MODEL FOR DISCOV-
ERY OF HP-PPIS

Research on protein-protein interactions (PPIs) data is of critical meaning towards the

understanding of the infectious mechanisms of diseases. In previous chapters, reviews

with regard to host-pathogen interactions resources and computational models evaluation

have been broadly conducted. However, it remains a challenge to improve the prediction

performance of PPIs of inter-species, particularly between host and pathogen. In this

chapter, a novel framework for HP-PPIs prediction based on Heterogeneous Information

Mining and Ensembling (HIME) process to effectively learn from the interaction data.

In particular, the proposed approach introduces an ensemble process together with sub-

stantial features that generate better performance of HP-PPIs prediction task. The

performance of the proposed framework is validated on the curated protein interactions

datasets. The extensive experiments show that HIME achieves higher performance over

all existing methods reported in literature so far.

In this chapter, a brief introduction and review work will be reported in Chapter. 5.1 and

5.2 to build the context for discovery of HP-PPIs. The detail of proposed HIME model and

experiment settings will be presented in Chapter. 5.3. In Chapter. 5.4, a comprehensive

comparison against different machine-learning models will debriefed.

118



CHAPTER 5. HIME MODEL FOR DISCOVERY OF HP-PPIS 119

5.1 Introduction

Analyzing and understanding protein-protein interactions (PPIs) for inter-species interac-

tions is of great importance, such as the interactions between human and pathogens [26,

27]. One of the earliest studies was on the symptom of anthrax, which was identified as

primarily being caused by the protein interactions between human and Bacillus anthracis.

Bacillus anthracis is a type of bacterium pathogens, where people want to fully understand

mechanisms with the protein interactions map between Bacillus anthracis and Homo

sapiens (the host).

However, the experiment results to investigate protein-protein interactions are still very

limited. The identification of protein-protein interactions is traditionally conducted by

in vitro and in vivo methods, which are deemed cost-sensitive task for both time and

resources. To effectively generate high-fidelity PPIs prior to biology experiments, there

has been numerous studies introducing computational methods to facilitate the process.

One major category is to build machine learning-based model with different protein data,

such as protein sequence data [34], gene ontology data [275], and protein structure data

[276], for the prediction of protein interactions.

Among these, sequence information is considered as the main protein information

because of its substantial accumulation in a large scale. Specifically, the proteins

have been determined uniquely by the sequence information as for their physical and

biochemical characteristics. By analyzing the protein sequence information hosted by

the Universal Protein Resource (UniProt), the past studies had indicated that combining

machine learning-based models with protein sequence data mining would benefit the

prediction and analysis of protein interactions task [26, 32, 162]. More recently, Soyemi et

al. [277] have reviewed the relevant data of inter-species/host-parasite protein interaction

in a comprehensive manner, though the quantitative evaluation is still void. Inspired from

the idea in [26, 277], a systematic evaluation of machine learning-based models, include

the methods from literature focusing on the prediction of HP-PPIs, was conducted in
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Chapter 4.

Given the void of systematic evaluation of machine learning-based HP-PPIs predic-

tion models, the first of this kind of evaluation show that there is plenty of room for

improvements to achieve a robust and efficient machine learning-based model. In this

chapter, an ensemble machine learning-based model is proposed through mining the

heterogeneous information of protein data. The proposed framework demonstrates its

robustness and accuracy based on Heterogeneous Information Mining and Ensembling

(HIME) prediction model to harness the power of heterogeneous information, thereby

greatly improving the prediction performance. The experimental results indicate that the

HIME model achieves the best and most robust performance for prediction of HP-PPIs in

comparison with the state-of-the-art.

5.2 Review and Motivation of HIME Study

There have been a large body of research on protein-protein interactions, aiming at

developing cost-effective methods for prediction of protein interactions [278–281]. Since

there are different characteristics presented by protein, the methods include text mining

method, network analysis method, kernel-based method, machine learning-based method

and so on. However, these methods are presented as feasible and effective methods in a

combination with the corresponding protein characteristics, such as sequence data, gene

ontology data, gene expression data.

In recent years, protein sequence data has prevailed in numerous research areas of

protein, for example protein structure prediction, protein function prediction and as in

our study, PPIs prediction. In [282], development of Pups (pupylation site predictor)

involved the utilization of protein sequences and machine learning model, in which the

pseudo-amino acid composition information was particularly employed. To deal with

the avalanche of newly sequenced protein data, the feature representation methods of

protein sequence data were well designed as one of the important components for machine

learning-based PPIs prediction models [33, 34, 156, 278]. Because sequence data was the
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most abundant data benefiting from high-throughput technology development, it would

be beneficial to understand the performance in computational models and develop a more

efficient model for HP-PPIs prediction.

In Chapter. 3 and Chapter. 4, a comprehensive review with regard to the HPI resources

was conducted by manually examining with ‘Abstract’ from the first 400 returning items

ranking by best relevance out of more than 4,000 papers. A huge number of databases

were reviewed prior to be included in the study. The selected eleven public databases were

utilised in this chapter. With the reported performance of numerous feature representation

algorithms and different machine learning models, how to mine the most of protein

sequence information to enhance the prediction performance is the goal. In following

chapter, HIME model is presented to harness the heterogeneous information from protein

sequence and it has presented a better performance than the others.

5.3 The HIME Model

5.3.1 Material Brief

For the collected data, only positive protein interactions data are available from the

databases. Two steps are conducted to process the data. One is to reduce the ID

information redundancy, as there may be duplicate entries when combining data from

different databases. Another is related to sequence length. The proteins with less than

50 amino acids are discarded since they may be non-functional fragments. In Table 5.1,

the statistic of the collected positive human-bacterium protein-protein interactions is pre-

sented, which includes the species of ‘Clostridium botulinum’, ‘Aeromonas hydrophila’,

‘Shigella paradysenteriae’, ‘Francisella tularensis subsp. tularensis (strain SCHU S4 /

Schu 4)’, ‘Bacillus anthracis bacterium’ and ‘Yersinia pseudotuberculosis subsp. pestis

(Lehmann and Neumann 1896) Bercovier et al. 1981’. In most of the literature, building

a negative interaction dataset by randomly pairing proteins from the set of unknown

interacting PPIs is utilized [34, 156, 218], since none standard protocol defines the
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Table 5.1: Selected Human-Pathogens Interactions Systems’ Datasets

Taxonomy
ID

Bacterium
Pathogens

Positive
Interactions

Negative
Interactions

Interactions
Number of
Training
Dataset

Interactions
Number of

Independent
Dataset

1491 Clostridium
botulinum

57 57 90 24

644 Aeromonas
hydrophila

73 73 116 30

623 Shigella
paradysen-

teriae

105 105 168 42

177416 Francisella
tularensis

subsp.
tularensis

1207 1207 1930 484

1392 Bacillus
anthracis
bacterium

2810 2810 4496 1124

632 Yersinia
pseudotu-
berculosis

subsp.
pestis

3528 3528 5644 1412

negative pairing strategy.

Following Chapter. 4, protein sequence data, which is dominantly published by UniPro-

tKB database, was utilised. The information helps building the negative HP-PPIs as

well as building the independent datasets. To obtain an extensive evaluation, a dedicated

preparation of independent datasets is applied, which datasets should not be used during

the training and will be reported with different measurements to evaluate the model

performance.

Thus, a randomly selection of one-fifth HP-PPIs from both positive and negative

interactions as the independent dataset is conducted. The rest PPIs of positive and negative

interactions were combined as the training set. Since the construction of the negative

interactions is achieved by a random sampling method, the random sampling for the
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Figure 5.1: The Framework of HIME Model

negative interactions was applied five times and the evaluation was measured with statistic

means and variations to reduce the bias caused by negative interactions.

5.3.2 The HIME Model

This chapter firstly introduce the HIME model, then the details of each part of HIME

model will be explained.

The proposed heterogeneous information mining and ensembling (HIME) model is

shown in Figure 5.1, which leverages the mining and ensembling process of hetero-

geneous information of sequence data, and also includes the learning process. HIME

model is a sequence-based model, since the protein sequence data is considered as one of

the most abundant data. The overwhelming sequence data has exclusively stimulated

the ongoing research to improve the prediction performance based on novel feature

representation algorithms of sequence data and machine learning models. It helps to

generalize the computational models on a larger dataset and various species and genres.

HIME model tackle the heterogeneous information of sequence data in three different

types, as shown in Figure 5.1, which are amino acid composition information, pseudo-
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amino acid composition information and evolutionary information. Multiple training

models are produced for different information, and HIME model subsequently utilises

ensemble learning techniques to make the prediction with high performance for different

human-pathogen interactions systems.

Heterogeneous Information of Sequence Data

Encoding sequence data as feature vectors is the first step in building computational model

for prediction [34, 218]. Three different types of heterogeneous information of sequence

data are explored in our proposed model, which helps to build a robust and efficient model.

Since the information was reported in details in Chapter. 4, they will be briefly reported

in this chapter.

Amino acid composition information Amino acid composition information is dom-

inantly inferred by the amino acids order of protein sequence data. There are several

different methods converting this information into feature vectors. One was considering

several adjacent amino acids as one region in the sequence, which was also called conjoint

triad method feature or k-mer [283]. It considered the protein in segments to be functional

between different proteins, which firstly classified the 20 different types of amino acids

into seven groups according to their physiochemical characteristics. This encoded the

sequence data into a 343-dimension vector. The flexibility of this method allows the

region to be two, four, and other length adjacent amino acids.

Another approach based on amino acid composition information is to discover the auto

covariance relationship among amino acids [33]. Auto covariance method considered

each amino acid with its seven physicochemical properties. For different properties, the

auto covariance relationship was calculated for two different locations of amino acids

given the maximum distance Dis. The dimension of feature vector generated via auto

covariance method would be Dis∗7, when all seven properties are employed.

The last popular method for amino acid composition information is local descriptor

[232], which has divided the protein sequence information into 10 regions of six different
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types, including by quarter division, half division, central 50% region, first 75% region,

last 75% region and central 75% region. Local descriptor specifically defined three

different descriptors for each region, including composition, transition and distribution.

This generated seven features for composition, 21 features for transition and 35 features

for distribution. Totally with the 10 regions, local descriptor generated 630-dimension

feature vector for single protein sequence.

Pseudo-amino acid information Even though amino acid composition information

takes consideration of sequence order to some extent, there is still some information loss

when directly encoding sequence data based on composition information. Thus, pseudo-

amino acid information is discovered as an important type of information of sequence

data [233].

Evolutionary information Another important information of sequence data is the

evolutionary information, which represents the continuous change and evolution trends

in a given reference protein database. The information is referred as a scoring matrix

to indicates the probability of related amino acid types in corresponding position. It is

commonly derived by aligning a set of sequence, which is considered to be functionally

related. One important matrix firstly derived is called the position-specific scoring matrix

(PSSM), which is a T*20 matrix for a given protein sequence. T represents the length of

its corresponding protein sequence. Several algorithms have been developed to generate

feature vector for single protein sequence. The first one is pseudo position-specific score

matrix (Pse-PSSM), which combines the idea of pseudo-amino acid composition [239].

Pse-PSSM represented the original PSSM by compressing the matrix values vertically

into their corresponding mean value. This means, after transformation, PSSM becomes a

20-dimension Pse-PSSM vector. Another one is called Block-PSSM by dividing sequence

data into 20 equal blocks [249]. Each block represents five percent of a sequence. For each

block, a 20-dimension vector is extracted. This generates a 20*20=400-dimension vector

totally with 20 blocks. The last one is the traditional dipeptide composition PSSM (DPC-
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PSSM) [251]. It calculated the covariance of two adjacent amino acid and represented the

information in a 400-dimension feature vector.

The heterogeneous information of sequence data have been categorized in three dif-

ferent types, as shown in Figure 5.1. Different algorithms including conjoint triad

method (CTM) [283], auto covariance (ACC) [33], local descriptor (LD) [232], PseAAC

[233], pseudo position-specific score matrix (Pse-PSSM) [239], transition dipeptide

composition PSSM (DPCPSSM) [251] and block PSSM (BlockPSSM) [249] algorithms,

are subsequently incorporated in HIME model.

Ensemble Learning

Machine learning-based models have been widely applied for prediction of bioinformatics

tasks recently. Mostly, the models are compared and the best of the models is selected as

the applied computational model.

Ensemble learning model is designed with multiple machine learning models, which

are called ‘base learner’ for same task [284]. Typically, ensemble learning model

benefits from the integration of individual base learners to achieve a robust and superior

performance. Even though there are different categories of ensemble learning model,

various applications have shown that none of them could be outstanding consistently

[285–287].

Generally, the ensemble learning model can be deployed either vertically or horizon-

tally [287]. To avoid building a single strong machine learning model in the task, HIME

model leverages the heterogeneous information and plenarily exerts the various base

learners in a horizontal way. lightGBM [288], one of the recently popular tree-based

models, is selected as the base learner in the model to build HIME for prediction of

human-pathogen protein-protein interactions.

Algorithms 1 illustrates the procedure of HIME model. Our model not only leverages

the precision and diversity from base learner, but also emphasises the diversity from

the heterogeneous information mining process. As a result, the proposed HIME model
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Algorithm 1 Heterogeneous Information Ensembling Process
Input: Dataset D = (x1,y1),(x2,y2), ...,(xm,ym)

- Heterogeneous information feature representation algorithms ℜ1,ℜ2, ...,ℜT
- Base learner algorithms L1,L2, ...,LT
- Ensemble learner L

Output: H(x)
Process:

1: for t = 1 to T do Heterogeneous information mining
2: Dt = ℜt() %Mining heterogeneous information
3: %and applying the different feature
4: %representation algorithms
5: end for
6: for t = 1 to T do
7: ht = Lt(Dt) %Training a base learner algorithm ht
8: %by applying the base leanrner
9: %algorithm Lt to the dataset Dt

10: end for
11: D ′ = ∅ %Collect the base learners
12: for i = 1 to m do
13: for t = 1 to T do
14: zit = ht(xi) %Use ht to classify the Dataset D
15: end for
16: D ′ = D ′ ∪ {((zi1,zi2,...,ziT ),yi)}
17: end for
18: h′ = L (D ′)
19: Output: H(x) = h′(h1(x), ...,hT (x)).
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is capable to enhance the performance fueled by the designed information mining and

ensembling procedure.

5.3.3 Baseline Models

In this study, different methods, such as [218] and [34] from literature, and traditional

machine learning models including random forest, support vector machine, logistic

regression model, Gaussian naı̈ve Bayes, decision tree and gradient boosting machine,

are used in the prediction task of HP-PPIs. These models explicitly demonstrate different

capabilities on different tasks, such as classification task and time series regression task.

Since these models are traditionally used in different tasks, as mentioned in Chapter. 4,

the performance of different groups of feature representation algorithms and machine

learning models is included. This results in 42 different combinations as the first

group baseline models. The hyperparameters are subsequently obtained by 5-fold cross

validation test for each classifier according to the dataset.

Meanwhile, two methods from literature, which are [34] and [218] were included. In

[218], random forests model was selected as the ensemble model to learn from the host-

parasite protein-protein interactions. A variant version of amino acid triplets algorithm

was used as the feature representation algorithm. [34] applied SVM as the computational

model with the proposed protein sequence representation algorithm to predict the human-

pathogen protein-protein interactions.

5.3.4 Performance Measurements

To evaluate the performance of HIME model, numerous metrics are compared, including

the accuracy, precision, recall, specificity, F1-score, the area under curve (AUC) value

and Matthew’s correlation coefficient (MCC) score. The receiver operating characteristic

curves (ROC) is also collected. The definition can be reffered to Equa. 4.22.
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5.4 Results and Discussion

The results of a 5-fold independent test of the six different taxonomy IDs datasets were

collected to present the performances with both the mean values and the deviations.

5.4.1 Baseline Models

The evaluations on traditional machine learning models, including decision tree (DT),

random forest (RF), gradient boosting machine (GBM), logistic regression (LR), Naı̈ve

Bayesian and support vector machine (SVM) will be discussed firstly. Seven different

feature representation algorithms of sequence data are included and the corresponding

models are built upon six traditional machine learning models, which result in 42 different

models. Table 5.2 includes the accuracy and F1 score for all the evaluated models,

including HIME model. The performances of traditional models, ‘Model1’ and ‘Model2’,

share a same fluctuation trend concerning different datasets, which worst performances

are all observed with ‘HB6’. HIME model has shown its enhanced performance by

improving the results of accuracy, in which multi feature representation algorithms

are utilised to mine the heterogeneous information. The proposed Algorithm 1 has

further improved the performance by combining the horizontal ensemble procedure for

the heterogeneous information. For both accuracy and F1 score, HIME model has

demonstrates a best performance in comparison with the others. Following, we will show

more details with regard to the ROC curves.

5.4.2 HIME Model Performance and Comparison

In Table 5.2, the best models are indicated in bold fonts. We can clearly observe that

for five prediction tasks, which are ‘HB1’, ‘HB3’, ‘HB4’, ‘HB5’ and ‘HB6’, the best

performances are all achieved by our proposed HIME model. This indicates that mining

and ensembling heterogeneous information of sequence data indeed help boosting the

model performance.
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Figure 5.2: The ROC Curves for ‘HB6’ of Traditional Models

Figure 5.3: The ROC Curves for ‘HB4’ of Traditional Models
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In Figure 5.2 and Figure 5.4, we have shown partial results of the ROC curves for

discussion due to the limited space. The ROC curves show that, different types of protein

sequence information generate diverse learners, which generate different performance.

One particularly selected information may not be sufficient to produce a robust model.

Moreover, the performance will become worse when the dataset is larger.

In comparison with Figure 5.2, the ROC curves for five-times independent test of ‘HB6’

with HIME model is illustrated in Figure 5.4. Since the proposed HIME model utilizing

heterogeneous information, the model obtains a more robust and accurate performance

than the other baseline models. From Table 5.2, it is easy to see the proposed HIME model

has a better prediction capability than the other methods. Out of the six different types

of dataset, it has achieved five of the best performance, in which each dataset may have a

different second-best model. In Figure 5.3 and Figure 5.5, the ROC curves for ‘HB4’ are

also illustrated with the conclusion that HIME model has achieved a better performance.

Given the performance metrics including Specificity, MCC and AUC values, we have also

observed the same performance comparison results, in which HIME model outperforms

the others. The performance comparison demonstrates that, the proposed HIME model

outperforms most of the predictor compared in this study for different human-pathogen

PPIs prediction tasks. Hence, the heterogeneous information mining and ensembling

strategy benefits the performance improvement in this work.
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Figure 5.4: The ROC Curves for ‘HB6’ of HIME Model

Figure 5.5: The ROC Curves for ‘HB4’ of HIME Model
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Table 5.2: Results of Accuracy and F1 Score for Models

Model Accuracy F1 Score
HBa

1 HB2 HB3 HB4 HB5 HB6 HB1 HB2 HB3 HB4 HB5 HB6
ℜb

1 1.000±0.000 0.967±0.000 0.824±0.036 0.725±0.008 0.773±0.011 0.757±0.008 1.000±0.000 0.966±0.000 0.811±0.040 0.730±0.005 0.770±0.011 0.752±0.007
ℜ2 1.000±0.000 0.967±0.000 0.757±0.038 0.696±0.007 0.689±0.010 0.661±0.015 1.000±0.000 0.966±0.000 0.771±0.034 0.715±0.011 0.710±0.009 0.691±0.012
ℜ3 0.975±0.033 0.967±0.000 0.752±0.053 0.686±0.011 0.670±0.015 0.651±0.012 0.974±0.036 0.966±0.000 0.768±0.049 0.707±0.009 0.696±0.014 0.680±0.011RF ℜ4 1.000±0.000 0.967±0.000 0.795±0.039 0.682±0.017 0.701±0.005 0.684±0.016 1.000±0.000 0.966±0.000 0.807±0.033 0.705±0.016 0.723±0.006 0.711±0.012
ℜ5 1.000±0.000 0.973±0.013 0.876±0.035 0.671±0.014 0.680±0.004 0.683±0.009 1.000±0.000 0.972±0.014 0.878±0.038 0.696±0.008 0.704±0.004 0.711±0.006
ℜ6 1.000±0.000 0.973±0.013 0.814±0.063 0.679±0.010 0.690±0.015 0.678±0.009 1.000±0.000 0.974±0.013 0.831±0.049 0.709±0.012 0.712±0.011 0.707±0.008
ℜ7 1.000±0.000 0.993±0.013 0.838±0.066 0.678±0.014 0.687±0.011 0.676±0.006 1.000±0.000 0.993±0.014 0.852±0.057 0.707±0.010 0.709±0.010 0.709±0.004
ℜ1 1.000±0.000 0.867±0.000 0.800±0.024 0.700±0.013 0.653±0.015 0.719±0.012 1.000±0.000 0.846±0.000 0.775±0.016 0.674±0.014 0.656±0.013 0.697±0.012
ℜ2 0.975±0.033 0.960±0.013 0.676±0.053 0.696±0.012 0.708±0.016 0.676±0.007 0.977±0.031 0.959±0.013 0.705±0.041 0.722±0.012 0.701±0.017 0.703±0.005
ℜ3 1.000±0.000 0.860±0.033 0.790±0.046 0.651±0.008 0.696±0.007 0.597±0.009 1.000±0.000 0.835±0.046 0.792±0.036 0.678±0.009 0.702±0.007 0.599±0.007SVM ℜ4 1.000±0.000 0.700±0.101 0.752±0.049 0.666±0.019 0.604±0.025 0.661±0.018 1.000±0.000 0.762±0.061 0.741±0.040 0.670±0.020 0.539±0.125 0.657±0.014
ℜ6 1.000±0.000 0.767±0.060 0.729±0.058 0.583±0.008 0.665±0.007 0.588±0.005 1.000±0.000 0.734±0.062 0.722±0.028 0.531±0.010 0.682±0.005 0.567±0.002
ℜ6 0.992±0.017 0.853±0.086 0.648±0.035 0.601±0.010 0.642±0.016 0.635±0.007 0.992±0.016 0.877±0.064 0.701±0.031 0.615±0.008 0.644±0.026 0.663±0.005
ℜ7 1.000±0.000 0.947±0.027 0.900±0.035 0.673±0.011 0.635±0.047 0.699±0.009 1.000±0.000 0.948±0.026 0.908±0.032 0.683±0.006 0.665±0.090 0.713±0.008
ℜ1 0.942±0.033 0.967±0.000 0.819±0.032 0.635±0.018 0.656±0.012 0.645±0.006 0.946±0.031 0.966±0.000 0.818±0.030 0.642±0.020 0.661±0.011 0.654±0.004
ℜ2 0.983±0.033 0.953±0.016 0.695±0.051 0.709±0.017 0.709±0.013 0.686±0.010 0.985±0.031 0.953±0.016 0.691±0.039 0.719±0.018 0.720±0.014 0.696±0.006
ℜ3 0.983±0.020 0.960±0.013 0.829±0.028 0.681±0.013 0.692±0.010 0.659±0.010 0.984±0.020 0.959±0.013 0.828±0.029 0.684±0.015 0.698±0.007 0.659±0.011LR ℜ4 0.975±0.033 0.887±0.045 0.843±0.061 0.673±0.017 0.676±0.014 0.643±0.015 0.974±0.036 0.892±0.041 0.840±0.065 0.673±0.011 0.664±0.007 0.624±0.024
ℜ5 1.000±0.000 0.953±0.016 0.857±0.052 0.678±0.008 0.662±0.008 0.648±0.008 1.000±0.000 0.953±0.016 0.856±0.055 0.692±0.006 0.670±0.005 0.659±0.006
ℜ6 0.992±0.017 0.960±0.025 0.876±0.038 0.712±0.018 0.706±0.016 0.694±0.013 0.992±0.016 0.961±0.024 0.881±0.035 0.723±0.016 0.713±0.012 0.702±0.011
ℜ7 1.000±0.000 0.973±0.025 0.895±0.029 0.667±0.015 0.702±0.017 0.695±0.014 1.000±0.000 0.973±0.025 0.899±0.028 0.675±0.015 0.711±0.016 0.707±0.013
ℜ1 1.000±0.000 0.967±0.000 0.767±0.061 0.661±0.007 0.625±0.002 0.608±0.019 1.000±0.000 0.966±0.000 0.794±0.043 0.714±0.005 0.672±0.003 0.653±0.013
ℜ2 1.000±0.000 0.967±0.000 0.667±0.050 0.658±0.007 0.634±0.008 0.597±0.015 1.000±0.000 0.966±0.000 0.697±0.030 0.708±0.006 0.687±0.006 0.646±0.009Nav̈e ℜ3 1.000±0.000 0.967±0.000 0.733±0.049 0.621±0.016 0.639±0.011 0.609±0.013 1.000±0.000 0.966±0.000 0.724±0.034 0.685±0.006 0.667±0.003 0.614±0.026

Bayes ℜ4 1.000±0.000 0.947±0.040 0.619±0.054 0.638±0.022 0.580±0.009 0.574±0.006 1.000±0.000 0.947±0.036 0.524±0.088 0.622±0.039 0.341±0.032 0.380±0.011
ℜ5 1.000±0.000 0.967±0.000 0.833±0.040 0.609±0.008 0.592±0.014 0.589±0.009 1.000±0.000 0.966±0.000 0.828±0.039 0.574±0.005 0.539±0.016 0.545±0.007
ℜ6 1.000±0.000 0.960±0.013 0.619±0.045 0.571±0.015 0.565±0.005 0.586±0.007 1.000±0.000 0.958±0.015 0.673±0.033 0.618±0.010 0.602±0.013 0.654±0.003
ℜ7 1.000±0.000 0.967±0.000 0.752±0.061 0.627±0.014 0.610±0.003 0.632±0.007 1.000±0.000 0.966±0.000 0.771±0.052 0.647±0.010 0.616±0.001 0.665±0.005
ℜ1 0.892±0.090 0.933±0.021 0.771±0.089 0.719±0.009 0.744±0.013 0.724±0.011 0.900±0.079 0.934±0.020 0.758±0.097 0.727±0.010 0.747±0.013 0.733±0.009
ℜ2 0.975±0.020 0.953±0.016 0.814±0.038 0.728±0.013 0.753±0.017 0.721±0.017 0.976±0.020 0.953±0.016 0.817±0.037 0.731±0.013 0.754±0.015 0.727±0.013
ℜ3 0.867±0.085 0.960±0.013 0.795±0.039 0.714±0.016 0.735±0.006 0.700±0.010 0.860±0.098 0.959±0.013 0.794±0.040 0.719±0.017 0.737±0.006 0.700±0.006GBM ℜ4 1.000±0.000 0.953±0.034 0.833±0.058 0.720±0.020 0.737±0.013 0.719±0.014 1.000±0.000 0.954±0.032 0.842±0.054 0.724±0.022 0.741±0.011 0.725±0.010
ℜ5 1.000±0.000 0.933±0.021 0.886±0.059 0.728±0.015 0.720±0.010 0.710±0.006 1.000±0.000 0.935±0.020 0.893±0.052 0.737±0.014 0.722±0.011 0.720±0.005
ℜ6 0.992±0.017 0.987±0.016 0.824±0.072 0.725±0.011 0.738±0.007 0.734±0.010 0.992±0.016 0.987±0.016 0.830±0.068 0.735±0.010 0.738±0.009 0.743±0.008
ℜ7 1.000±0.000 0.967±0.030 0.910±0.038 0.719±0.011 0.743±0.007 0.729±0.008 1.000±0.000 0.967±0.029 0.915±0.035 0.729±0.009 0.748±0.005 0.739±0.008
ℜ1 0.900±0.077 0.927±0.033 0.676±0.061 0.628±0.015 0.604±0.017 0.624±0.013 0.905±0.077 0.929±0.030 0.681±0.072 0.655±0.009 0.640±0.012 0.656±0.011
ℜ2 0.942±0.057 0.953±0.016 0.729±0.081 0.650±0.028 0.593±0.003 0.590±0.021 0.936±0.070 0.953±0.016 0.722±0.092 0.653±0.028 0.587±0.055 0.591±0.038
ℜ3 0.883±0.085 0.980±0.016 0.695±0.087 0.640±0.018 0.609±0.015 0.576±0.009 0.875±0.099 0.979±0.017 0.712±0.079 0.634±0.029 0.611±0.047 0.571±0.023DT ℜ4 1.000±0.000 0.953±0.034 0.705±0.094 0.633±0.010 0.644±0.019 0.629±0.008 1.000±0.000 0.954±0.032 0.685±0.105 0.640±0.010 0.651±0.017 0.636±0.010
ℜ5 0.983±0.020 0.933±0.021 0.829±0.065 0.632±0.011 0.644±0.006 0.632±0.012 0.984±0.020 0.934±0.020 0.834±0.061 0.639±0.006 0.650±0.009 0.641±0.014
ℜ6 0.992±0.017 0.947±0.054 0.710±0.070 0.640±0.023 0.640±0.013 0.634±0.015 0.992±0.016 0.949±0.051 0.735±0.049 0.648±0.028 0.648±0.011 0.648±0.015
ℜ7 1.000±0.000 0.960±0.033 0.771±0.072 0.632±0.018 0.631±0.008 0.630±0.012 1.000±0.000 0.960±0.031 0.764±0.096 0.639±0.022 0.639±0.005 0.639±0.014

Model c
1 1.000±0.000 0.900±0.000 0.800±0.029 0.710±0.012 0.742±0.004 0.719±0.019 1.000±0.000 0.889±0.000 0.779±0.028 0.705±0.011 0.735±0.004 0.716±0.016

Model d
2 0.992±0.017 0.967±0.000 0.810±0.030 0.689±0.021 0.731±0.015 0.706±0.008 0.992±0.016 0.966±0.000 0.810±0.026 0.682±0.018 0.728±0.013 0.705±0.007

HIME
(proposed) 1.000±0.000 0.967±0.000 0.929±0.037 0.757±0.009 0.801±0.009 0.783±0.010 1.000±0.000 0.966±0.000 0.931±0.032 0.763±0.009 0.798±0.007 0.783±0.008

aHB1–HB6 represent the six built dataset in the order from Table 5.1, which are ‘1491’, ‘644’, ‘623’, ‘177416’, ‘1392’, ‘632’, respectively;
bℜ1–ℜ7 are the different feature representations algorithms, representing ACC, LD, CTM, PseAAC, PsePSSM, DPCPSSM, BlockPSSM;
c Model1 is the method from [34];d Model2 is the method from [218] .
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5.5 Summary

In this chapter, Chapter. 5.1 and Chapter. 5.2 have firstly presented a short review

and reported the motivation of HIME model in this chapter. Generally, a machine

learning-based model with robust performance is desired to achieve for different HPI

systems. Through mining the heterogeneous information of sequence data, HIME

model was proposed leveraging the abundant information and the details were included

in Chapter. 5.3. The horizontal ensemble procedure with heterogeneous information

has greatly exerted the base learners to boost the performance in the prediction task.

The performances were evaluated on six different datasets indicating HIME model

outperforms the others in Chapter. 5.4.



Chapter 6

APEX2S: A TWO-LAYER MACHINE LEARN-
ING MODEL FOR DISCOVERY OF HP-PPI

In this chapter, with the focus for host-pathogen protein-protein interactions study,

developing novel machine learning techniques for learning the interactions data and

making predictions is the goal. This chapter follows a brief introduction and review work

reported in Chapter 6.1 and 6.2 to build the context for HP-PPIs study. Meanwhile, a

general workflow to harness multi-omics data is discussed in 6.2. Given the foundation

of the review, a novel two-layer machine learning model, namely APEX2S, is proposed

to deal with the imbalanced issue, which has discussed in Chapter 4. The model

will be discussed in 6.3. A vanilla version of APEX2S model was initialised as the

effort to illustrate the effectiveness of two-layer model, which is indicated as Model3 in

Chapter 6.4. The advanced APEX2S model is thus compared with other twenty different

traditional machine learning models and Model3 with regard to various performance

metrics. The results are comprehensively illustrated in Chapter 6.4, showing that APEX2S

model can better learn and predict from the accumulated host-pathogen protein-protein

interactions.

6.1 Introduction

The continuous development of biology technology contributes a substantial accumu-

lation of biological interactions data. Different subareas of computational biology are

135
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investigated, such as protein-protein binding prediction [289], protein complexes study

[290], protein-protein interactions predictions [291] and sequence analysis [292], and

have continuously drawn the focus of research topics towards the mechanisms of infec-

tious diseases [149, 293]. In particular, the researches on pathogens causing the infectious

diseases solicit a complete proteins and genomes interactions data collection from the

hosts, pathogens and host-pathogen interactions to elucidate the infection rationale and

develop effective therapy. One of the major research challenges between the practice

and idealist is that, the host-pathogen interactions data are not yet complete and ready

for a genome-wide level study, among which host-pathogen protein-protein interactions

(HP-PPIs) data are one of the major objects [49]. Most of the host-pathogen protein-

protein interactions have remained unknown, since the wet-lab experiments to determine

whether the relationship should be negative or positive are deemed to be both time and

cost sensitive. While positive host-pathogen protein-protein interactions data indicate that

there are physical and chemical interactions between different proteins from hosts and

pathogens separately, there are also a huge amount of negative HP-PPIs. Meanwhile, the

number of HP-PPIs is huge given the nature of proteins number in hosts and pathogens.

As one dominant alternative, computational biology seeks to develop computational

models to be cost-efficient and outcome-reliable to facilitate the study. Several studies

have indicated that allocating computational resources will benefit the modelling and

predicting phases, in which recently machine learning techniques are mostly involved

to accelerate the generation progress of high-fidelity biological hypothesis candidates.

These candidates, which represent a small amount of all interactions data, will be

subsequently verified by wet-lab experiments. However, for HP-PPIs study, the research

gap concerning the available omics data and computational model construction still exists.

There are two research questions of the study of HP-PPIs. The first one is related

to the data, which has been addressed in previous chapters. Given the abundance

of biological interactions data, the researchers are expected to delve into the data to

learn from their different natures. The other one is about how to further enhance
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the prediction performance of computational model by incorporating different machine

learning models and feature representation algorithms. Particularly, some datasets may

present the imbalance issue among the positive and negative interactions. As Chapter 3

and Chapter 4 have reported, there remains a hot topic on improving the prediction

performance of HP-PPIs. Although several studies have been presented [34, 218], how to

address the imbalance issue in a dedicated manner remains a problem.

In this chapter, a two-layer machine learning-based model is proposed in a more

compatible manner to achieve a best performance for prediction of HP-PPIs. APEX2S

model is designed as a two-layer model to alleviate the imbalanced characteristics of HP-

PPIs dataset. The comparison against the traditional models and literature-based models

indicates that APEX2S model achieves the best performance.

6.2 Review and Motivation of APEX2S

As for the research of infectious diseases, HP-PPIs data is considered as one of the

dominant data sources in host-pathogen interactions. Particularly, the development

of wet-lab techniques, such as high-throughput sequencing and interaction detection

methods, has contributed to the accumulation of HP-PPIs data, which has been published

across different organizations. This results in many available database resources targeting

on specific scientific interests and topics.

This chapter firstly reviews a general workflow for HP-PPIs from multi-omics perspec-

tives. An overview of the workflow is presented in Figure. 6.1.

The workflow in Figure.6.1 includes five consecutive steps, which starts from the

evaluation of host-pathogen interactions (HPI) databases, to the consideration of multi-

omics databases to pre-process the HPI databases for a curated HP-PPIs dataset. Given

the large number of databases, both the host-pathogen interactions databases and the

multi-omics databases are being extensively studied with the assistance of ‘in silico’

and ‘in vitro’ methods. In Figure.6.1, the HPI databases are firstly examined with

the huge amount of accumulated interactions data, which may include intra-species
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Figure 6.1: General Workflow for Host-Pathogen Protein-Protein Interactions

interactions, inter-species interactions and so on. Meanwhile, the interactions data may

have sources from different methodologies, such as the wet-lab experimentally verified

data and computational predictions. In this regard, an extensively review and selection

of HPI databases is required to filter the untrusted and unrelated data. Thus, the

trustworthy data with annotations will be output for the multi-omics databases step, which

is designed as attributing the information for the interaction data. This step presents the

abundance information from different omics studies, including proteomics, epigenomics

and genomics, for the interactions. By implementing these two steps, a curated HP-PPIs

dataset is subsequently achieved with both annotations and information for the following

steps study. The details regarding the HPI databases and multi-omics databases are

discussed in following sections.

The following steps involve the information encoding depending on the selection of

multi-omics databases, and eventually the machine learning models are constructed to

learn and predict from the HP-PPIs datasets. Technically, the mismatch between the

multi-omics databases will results in missing data issue, which can hinder the generation

of subsequently curated HP-PPIs datasets. To alleviate the issue, the collection of host-

pathogen interactions databases will be firstly processed by the consideration of multi-

omics databases. The retained data will later be utilised to generate the HP-PPIs datasets.

At this stage, the datasets will only hold the proteins ID information. For feature

representation, the corresponding information from the multi-omics databases are again
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introduced for the encoding phase, such as the sequence information encoding scheme

and the gene expression information encoding scheme.

Multi-omics study has started since 1990s when the biology technology has been

continuously developed in a rapid pace. There are some relevant definitions of omics

study referring to a large-scale experimental analysis giving credits to the living organisms

study, which include phenomics, transcriptomics and so on. Since proteins perform a

great amount of functions with organisms and host-pathogen protein-protein interactions

are essential to biology functions between hosts and pathogens, HP-PPIs are known to

correlate with various diseases. Particularly, HP-PPIs have associations with several

omics studies, such as proteomics for proteins, epigenomics for epigenomes and genomics

for genome. However, as noted in [41, 294], it is still difficult to coordinate a harmonious

environment for multi-omics datasets, especially when the datasets are produced by

different laboratories.

Including the early Protein Data Bank (PDB) [295], UniProt [5], and the recently con-

structing ENCODE [296] and so on, the database systems have allowed a better sharing

for biologists, with which researchers are presented an easy access to heterogeneous

datasets to build workflow for the analyses. UniProt hosts most of the proteins sequence

information, which are determined by the sequencing technology. Sequence information

retains the basic information of protein in a composition of hundreds or thousands of

amino acid residues. By folding and binding different amino acid residues, the sequence

information is developed into a unique corresponding protein structure, which is mostly

archived in PDB database. For gene ontology, GO annotations are fundamentally defined

by the literature research to justify three distinct aspects of biological domain including

molecular function, cellular component and biological process. Entitled with the three

important properties, each single protein has its own GO terms. Gene expression data

is another category of process information providing a gene to regulate the synthesis

of a functional gene product, which are mostly proteins [297]. They are collectively

available in GEO database. Mostly, they are presented in two ways, namely microarray
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and RNA-seq data. Concerning protein-protein interactions between hosts and pathogens

for diseases, the interest mostly occurs for human as the host. With this regard, HPRD

is included as potential omics database for HP-PPIs prediction task. It is manually

curated by biologists for most human proteins. Three different properties are subsequently

annotated by human protein interaction network, which are graph degree, between-ness

centrality and clustering coefficient.

Although the coordination for multi-omics databases is somehow hampered and the

amount of accumulated data between different databases are not level, the multi-omics

databases have shown some benefits on building powerful computational models towards

the analysis of infectious diseases and improving the performance of protein related

prediction task [23, 218, 298–300]. Thus, the prospects of using multi-omics databases

for HP-PPIs prediction task in Figure.6.1 is designed, which solicits future work from

different disciplines to acquire more data.

In this chapter, we have followed the systematic review from Chapter 4 to consider the

imbalance issue of the prediction task of HP-PPIs. The initial effort was conducted on a

vanilla version of APEX2S model, which demonstrate that the construction of two-layer

model can achieve an improved performance. The vanilla version of APEX2S model

considers upsampling technique to balance the dataset in the second layer, while most

hard negative and all positive are output by the first layer training model. Based on this

strategy, APEX2S model takes a further consideration of numerous feature representation

algorithms to improve the performance. The model design and experiments evaluation

are included in Chapter 6.3 and Chapter 6.4.

6.3 The Two-Layer APEX2S Model

In this section, the proposed APEX2S model, which is a novel two-layer machine learning

model based on the preliminary model [291], will be developed to enhance the prediction

performance comparing with the other traditional models. The HP-PPIs workflow

from Figure.6.1 is applied by considering the sequence information from proteomics
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data as the primary information for HP-PPIs study. Since the missing data issue of

valuable information are inevitable when incorporating different types of omics data for

HP-PPIs prediction task based on machine learning models, which will subsequently

cause removal and discards of the data in the following studies, the focus of this task

is within different sequence feature representation algorithms and different machine

learning models. Following, the sequence feature representation algorithms utilised in

APEX2S model will be firstly debriefed, and the design of APEX2S model will be

subsequently reported.

6.3.1 Sequence Feature Representation Algorithms

Feature representation algorithms are important for the construction of computational

models. In APEX2S model, three different encoding schemes for sequence information,

which are amino-acid composition method, pseudo-amino-acid composition method and

evolutionary information method, are applied. Traditionally, only one of the methods is

utilised to represent the sequence information, as introduced in Chapter 3 and 4.

For amino acid composition method, local descriptor algorithm [232] has been utilized

to encode sequence information as the dominant feature vector, which takes regional

amino acid order into accounts [291]. The protein sequence information is considered

in ten regions, by which the regional amino acid order information could be retained and

calculated. The method firstly divides the sequence into ten regions. Within these regions,

three different descriptors, which are composition descriptor (C), distribution descriptor

(D) and transition descriptor (T), are calculated. In a HP-PPIs pair, a vector of 1260

features is eventually generated by the local descriptor algorithm.

For pseudo-amino acid composition method, it was developed with the consideration of

the loss of potential sequence order information when directly encoding protein sequence

with amino-acid composition method.

For evolutionary information method, it processes the protein sequence against a given

reference protein database. The evolutionary information is captured by constructing a
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Figure 6.2: The Two-layer APEX2S Model for Host-Pathogen Protein-Protein
Interactions

scoring matrix to record the probability of related amino acid types in different position.

The position-specific scoring matrix (PSSM) is one direct output, which is a T ∗20 matrix

for a given protein sequence [236]. T is the length of the given protein sequence. PSSM

is then processed by the developed algorithm, one of which is called Block-PSSM [249].

Block-PSSM divides sequence data into 20 equal blocks, and each block represents five

percentage a sequence. As the outcome, a feature of 20∗20 = 400 dimension vector will

be generated.

6.3.2 Proposed Two-Layer Model

The design of APEX2S will be elaborated in this section. Both the discussion of model

learning stage and algorithm design will be discussed. XGBoost, which is short for

eXtreme gradient boosting, is embedded as the first layer with the sampling scheme, and

support vector machine (SVM) is the final classifier in the second layer with the synthetic

minority over-sampling technique (SMOTE). Figure.6.2 illustrates a global diagram of

the proposed two-layer model APEX2S.
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eXtreme Gradient Boosting Machine

XGBoost machine is a scalable tree boosting system. Its applications in many areas have

proved its ability as a powerful and efficient gradient boosting framework library [301].

Benefiting from the boosting algorithm, XGBoost has substantially extended the gradient

boosting decision tree (GBDT) parallelly to achieve an efficient and accurate result.

Since XGBoost is an implementation of ‘extreme gradient boosting machine’ for tree

ensemble models, APEX2S model applies it firstly to learn the imbalanced dataset and

make classification. During the training phase, the predicted true negatives are removed

from the dataset. A sub-dataset which consists of predicted positives and predicted false

negatives are kept for the training of next layer. A random sampling process is then

conducted on the removed negative dataset to generate a sampled negative data in the

scenario that positive data in the sub-dataset is much more than negative data. This

scenario will limit the performance of SMOTE and SVM of the second layer. In the

algorithm, the performance of preliminary experiments indicates that when negative data

is less than half of the positive data, sampling the predicted true negatives for an amount of

appending the negative data to be half of the positive data in the sub-dataset, particularly

will maximise the performance of SMOTE and SVM.

The final outcome of the first layer for the training phase will be the collection of

the sub-dataset and the sampling data, which is to be input into the second layer. For

the testing phase, the predicted negative interactions data by XGBoost is directly output

as the predicted negative data, and only the rest predicted positive interactions data are

further dealt within SVM.

Synthetic Minority Over-sampling Technique

In most real-world cases, the datasets are imbalanced concerning the ‘irrelevant’ examples

and ‘relevant’ examples. The machine learning model performance may be fluctuated

due to the imbalanced ratio between different classes, which will fail to yield desired

prediction. The situation will be worse especially when the ratio becomes as high as
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1:50 even 1:100 for binary classification tasks. Thus, two different types of sampling

algorithms, including down-sampling the majority class [302, 303] and over-sampling

the minority class [304, 305], have been proposed to address this issue.

In the proposed two-layer model APEX2S, SMOTE is applied to alleviate the imbal-

anced affect caused by the positive and negative HP-PPIs data. SMOTE over-samples

the minority class by generating ‘synthetic’ examples [304]. These ‘synthetic’ examples

present the model with more training data of the minority class by operating in ‘feature

space’. SMOTE has been proved as a better option than the naive over-sampling method

which uses replacement data in ‘data space’.

In the two-layer model APEX2S, SMOTE is utilised for the output data from first layer

in the case that negative and positive data are not balanced. SVM is designed as the

final classifier in the second layer to learn from the balanced dataset. APEX2S benefits

from SVM’s ability to map raw data into higher-dimension space, and thus the prediction

performance is enhanced to finally achieve a better result.

Overall APEX2S Model

Overall, the two-layer APEX2S model is described in Algorithm 1 and the flowchart is

shown in Figure.6.2.

6.4 Experimental Evaluation and Discussion

The design and selection of HP-PPIs datasets and the performance metrics is firstly

reported. Then, the performance of different models will be reported.

6.4.1 Experiment Evaluation

Concerning the imbalanced ratio of HP-PPIs dataset [156], the negative HP-PPIs data

are as important as the positive ones to build the HP-PPIs dataset. As mentioned earlier

in Chapter 3 and 4, a thorough investigation has been conducted for 11 public archival

databases to collect the positive HP-PPIs data. A shared meaningful character is identified
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Algorithm 2 Training APEX2S Model for Prediction of HP-PPIs

Require: Dataset M = {vi,oi},
• vi is the vector of input, a concatenated representation of protein-protein

pair with the corresponding Amino-acid-composition, Pseudo-amino-acid-
composition and Evolutionary-information features;

• oi ∈ {+1,−1} represents positive and negative interactions;

Ensure: Output of the APEX2S model, pi;
1: Initializing eXtreme gradient boosting machine (XGBoost);
2: Inputting the training dataset M into XGBoost model;
3: Saving the first layer training model X ;
4: Giving the first layer prediction results MXGBoost by X giving M;
5: Obtaining an interactions dataset N by comparing MXGBoost with M, in which the data

except predicted true negatives are kept;
6: Saving the set O, which is the true negatives predicted by X ;
7: Defining O1=Ø;
8: if N(Neg)<N(Pos)

• N(Neg) is the negative interactions data in N

• N(Pos) is the negative interactions data in N

then
9: λ = N(Pos)/2−N(Neg);

10: if λ > 0 then
11: randomly sampling λ negative interactions data from O, as O1;
12: end if
13: end if
14: Obtaining an interactions dataset as Q = N +O1;
15: if Q(Pos)< Q(Neg)orQ(Pos)> Q(Neg)

• Q(Pos) is the positive interactions data in Q

• Q(Neg) is the negative interactions data in Q

then
16: Balancing the dataset Q by the Syenthetic minority over-sampling technique

(SMOTE);
17: Obtaining a sub-sampling balanced interactions dataset M̄;
18: end if
19: Training Support vector machine (SVM) giving M̄;
20: Saving the second layer training model S;
21: Indexing X and S for performance evaluation.



CHAPTER 6. A TWO-LAYER APEX2S MODEL FOR DISCOVERY OF HP-PPIS146

among the databases, which is the resources of the HP-PPIs data are highly trustworthy.

All of the data are by verification of literature or domain experts. The collectded

data are then carefully processed to remove the redundant HP-PPIs data and the highly

homologous proteins. The redundancy of the HP-PPIs datasets was reduced by this step,

so as the bias in the training models was reduced. Once the positive HP-PPIs data was

collected, the different ratios on positive HP-PPIs data are applied to build the negative

interaction data, which is of 1:25, 1:50 and 1:100 following the procedure from [23, 156].
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Figure 6.3: The Dataset Curation Protocol for Host-Pathogen Protein-Protein Interac-
tions

Both the training dataset and the independent test dataset are required for evaluation and

comparison of computational models. Figure.6.3 briefly demonstrate the diagram of the

applied curation protocol from previous chapters. One-fifth HP-PPIs data from positive

and negative HP-PPIs data are randomly selected to build the independent test datasets.

These datasets are held till the model is trained and are unseen until the model makes all

the predictions. The rest data will be the training dataset. Combining one independent

test dataset and one training dataset is called a complete curated HP-PPIs dataset. In

this way, the HP-PPIs datasets are built five times to avoid the bias causing by random

sampling method. All five curated HP-PPIs datasets are used to train and test the models.
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Table 6.1: The Statistics of Training Datasets

Pathogen
Name ID

Positive
Interactions

Number

Ratio 1:25 Ratio 1:50 Ratio 1:100
Training Independent

Testing
Training Independent

Testing
Training Independent

Testing
Shigella

paradysen-
teriae

623 105 2184 546 4284 1071 8484 2121

The performance results are collected with the mean and deviation results with regard to

different measurement metrics.

6.4.2 Datasets

To verify both the HP-PPIs workflow from Figure.6.1 and proposed APEX2S model from

Figure.6.2 to be applicable for the prediction task, the experimental HP-PPIs dataset is

selected to consist of the protein interactions between homo sapiens (taxonomy ID 9606)

as host species and Shigella paradysenteriae as the bacterium pathogen (taxonomy ID

623). Table.6.1 shows the final statistics of the curated datasets. The datasets has 118

pairs of the positive HP-PPIs data, and a total number of 2184, 4284, 8484 for different

ratios of 1:25, 1:50 and 1:100 for negative HP-PPIs data. Among the interactions between

homo sapiens and Shigella paradysenteriae, there are 75 different proteins from homo

sapiens and 60 different proteins from the pathogen. Given its relative high protein nodes

number for both human and pathogens, the dataset is considered as the examplar dataset

for the evaluation of the proposed APEX2S model to study the impact of different high

skewed ratios, which are 1:25, 1:50 and 1:100.

6.4.3 Performance Metrics

In this study, numerous performance metrics have been included. The accuracy is

usually not accurate at comparing models in a full scale for an imbalanced dataset.

Especially when the ratio is 1:100, the accuracy value would still be very high whereas the

difference between different models would be negligible in the worst case when giving

all predictions to be majority class. Thus, other measurement metrics, such as precision,
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recall, F1-score and Matthew’s correlation coefficient (MCC) score, are included. The

deinition of the metrics can be reffered to Equa. 4.22.

6.4.4 Results and Discussion

In the experiments, the results are collected on the curated HP-PPIs dataset, which is the

protein-protein interaction between human and Shigella paradysenteriae pathogen. By

conducting each experiments for a five-independent test, both standard and deviation

results are recorded with regard to accuracy, precision, recall, F1 and MCC. For the

execution environment of the experiment, the working system is built with 64GB memory

and a core CPU of Intel i7-6700K. The working operating system is Ubuntu 16.04, and

all the implementations were written in Python, partially with the support of open source

package ‘scikit-learn’ [256].

Table.6.2 shows the accuracy, precision and recall results of numerous models, in-

cluding the traditional machine learning models with different feature representation

algorithms, three different models from literature [34, 218, 291] and the proposed

APEX2S model. For the symbol of ‘A’, ‘P’ and ‘E’ in Table.6.2, they represent the

amino acid composition method, the pseudo-amino acid composition method and the

evolutionary information method.

It is clearly to observe that, APEX2S model has achieved the best performance on all

the different datasets. However, the improvement on accuracy may not be outstanding due

to the high imbalanced ratio of the HP-PPIs dataset. For the dataset with the ratio of 1:25,

APEX2S model achieves a result of 0.982051± 0.004546 while the following results in

the performance ladder are 0.981685± 0.001638 by SVM and 0.980586± 0.002484 by

Model3. Also, for the dataset with the ratio of 1:100, the result of APEX2S model is

0.993022±0.000625, however the results of the second and third places are 0.992834±

0.000693 and 0.992551±0.000189 achieved by Model3 and RF respectively.

Thus, the evaluation has further compared the precision, recall and F1-score results.

Table.6.3 contains the results of precision and recall, and Table.6.4 shows the results of
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F1-score and MCC. Both the best and second best results are illustrated in the bond and

italic font. All the results are presented in Table.6.2, Table.6.4 and Table.6.3with the mean

values and deviation values for the five-independent tests experiments.

For F1-score and MCC values, the closer the value is to 1.0 indicates the better the

trained model is. In TABLE 6.4, APEX2S model has shown a best performance of F1 on

datasets with the ratio of 1:25 and 1:100, but only achieved a second best performance on

dataset with the ratio of 1:50. The best model for dataset with the ratio of 1:50 is presented

by the logistic regression (LR) model. For dataset with the ratio of 1:25, the second

best model is achieved by SVM, while the third best model is Model3 [291]. It shows a

comparative performance between APEX2S model and SVM model for dataset with the

ratio 1:50. However, the proposed APEX2S model achieves a much better performance

for the other datasets with the ratio 1:25 and 1:100.

The best performance regarding MCC value for datasets with the ratio 1:25, 1:50

and 1:100 is 0.735440± 0.063093, 0.469571± 0.036759 and 0.543188± 0.051758,

respectively. The results of MCC values also indicate that, APEX2S model can achieve a

best performance on all datasets.

For the execution times, the average costing times are 21.0856, 47.9768 and 100.1876

seconds for APEX2S model accordingly. The comparison between different models is

illustrated in Figure.6.4. In Figure.6.4, Model1 - Model3 are the models from [218], [34]

and [291] respectively. Since APEX2S model consists of two layers and has included

SMOTE technique to enhance the performance, its consumption of time has also been the

most. However, as it can be observed from Figure.6.4, the time cost for models training

are mostly around minutes.
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Table 6.2: Results of Accuracy for Models

Model Accuracy
1:25 1:50 1:100

RF
A 0.970330±0.001371 0.981139±0.000373 0.991985±0.000298

P 0.978022±0.003065 0.981326±0.001446 0.992456±0.000298

E 0.978755±0.001868 0.981699±0.000747 0.992551±0.000189

SVM
A 0.979121±0.001465 0.980952±0.000457 0.992268±0.000971

P 0.975458±0.005507 0.980392±0.000000 0.990948±0.000550

E 0.981685±0.001638 0.981886±0.000457 0.991513±0.000000

LR
A 0.971795±0.002741 0.980766±0.000747 0.991702±0.000377

P 0.958608±0.004719 0.977218±0.001267 0.988967±0.000640

E 0.969963±0.003589 0.979085±0.002547 0.989062±0.000754

Naı̈ve
Bayes

A 0.677289±0.015341 0.694304±0.017995 0.680717±0.009091

P 0.820147±0.020572 0.766760±0.011319 0.836115±0.003708

E 0.797436±0.021252 0.823903±0.012225 0.798680±0.007286

GBM
A 0.971429±0.004719 0.978711±0.001811 0.988213±0.002109

P 0.975458±0.004719 0.980205±0.002241 0.991042±0.000596

E 0.979121±0.003771 0.980952±0.001923 0.986327±0.000516

DT
A 0.952381±0.007141 0.971242±0.001712 0.988685±0.001606

P 0.961905±0.005102 0.979645±0.001239 0.988967±0.000640

E 0.961172±0.004546 0.968067±0.004023 0.985196±0.001418
Model1[218] 0.975092±0.089700 0.981326±0.000000 0.991985±0.000000
Model2[34] 0.971795±0.000897 0.981326±0.000000 0.992362±0.000462
Model3[291] 0.980586±0.002484 0.981513±0.001089 0.992834±0.000693

APEX2S 0.982051±0.004546 0.984500±0.000952 0.993022±0.000625
aA, P and E represent the three feature representation algorithms of amino acid composition, pseudo-amino acid
composition and evolutionary information methods.
bRF, SVM, LR, GBM and DT are acronyms for random forests, support vector machine, logistic regression, gra-
dient boosting machine and decision tree, respectively;
c Model1 is the method from [218],d Model2 is the method from [34] and Model3 is the method from [291].
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Table 6.3: Results of Precision and Recall for Models

Model Precision Recall
1:25 1:50 1:100 1:25 1:50 1:100

RF
A 0.695922±0.045611 0.900000±0.200000 0.960000±0.080000 0.419048±0.087287 0.047619±0.000000 0.200000±0.019048

P 0.907692±0.113053 0.850000±0.300000 0.966667±0.066667 0.485714±0.019048 0.076190±0.023328 0.247619±0.019048

E 0.901732±0.057326 0.783333±0.194365 1.000000±0.000000 0.504762±0.038095 0.104762±0.019048 0.247619±0.019048

SVM
A 0.907143±0.068760 0.800000±0.244949 0.877778±0.173561 0.514286±0.019048 0.047619±0.000000 0.266667±0.038095

P 0.753875±0.119560 0.000000±0.000000 0.612857±0.073426 0.552381±0.048562 0.000000±0.000000 0.247619±0.063174

E 0.939377±0.054579 1.000000±0.000000 1.000000±0.000000 0.561905±0.019048 0.076190±0.023328 0.142857±0.000000

LR
A 0.805000±0.074833 0.766667±0.290593 0.860000±0.127192 0.352381±0.048562 0.047619±0.000000 0.200000±0.019048

P 0.459524±0.131406 0.276032±0.066228 0.332143±0.100661 0.238095±0.000000 0.104762±0.046657 0.133333±0.063174

E 0.594326±0.047306 0.466190±0.068087 0.438730±0.042999 0.714286±0.030117 0.400000±0.064594 0.361905±0.064594

Naı̈ve
Bayes

A 0.094328±0.004231 0.044737±0.002568 0.026024±0.000730 0.857143±0.000000 0.714286±0.000000 0.857143±0.000000

P 0.080587±0.004092 0.045398±0.002598 0.026684±0.001396 0.352381±0.048562 0.542857±0.023328 0.438095±0.019048

E 0.145761±0.015513 0.092781±0.005800 0.044068±0.001609 0.866667±0.019048 0.904762±0.000000 0.933333±0.023328

GBM
A 0.750999±0.153070 0.406926±0.090796 0.406117±0.208510 0.409524±0.023328 0.152381±0.019048 0.200000±0.035635

P 0.725199±0.097395 0.521111±0.143776 0.609207±0.085156 0.600000±0.048562 0.200000±0.035635 0.295238±0.019048

E 0.813650±0.073419 0.533492±0.143428 0.277746±0.027269 0.600000±0.088320 0.180952±0.069985 0.238095±0.030117

DT
A 0.397069±0.083398 0.213095±0.030152 0.383333±0.178263 0.409524±0.038095 0.171429±0.023328 0.133333±0.035635

P 0.508844±0.049335 0.362338±0.204123 0.150000±0.133333 0.609524±0.092337 0.114286±0.088320 0.028571±0.023328

E 0.514949±0.141427 0.215148±0.062349 0.279321±0.031932 0.209524±0.048562 0.228571±0.055533 0.304762±0.048562
Model1[218] 1.000000±0.000000 1.000000±0.000000 1.000000±0.000000 0.352381±0.023328 0.047619±0.000000 0.190476±0.000000
Model2[34] 0.942857±0.069985 1.000000±0.000000 0.847619±0.106053 0.285714±0.000000 0.047619±0.000000 0.285714±0.000000

Model3[291] 0.905505±0.090918 0.643333±0.124544 0.908333±0.130171 0.561905±0.035635 0.133333±0.035635 0.314286±0.023328
APEX2S 0.869937±0.105470 0.821429±0.111677 0.950000±0.100000 0.638095±0.038095 0.276190±0.019048 0.314286±0.038095

aA, P and E represent the three feature representation algorithms of amino acid composition, pseudo-amino acid composition and evolutionary information methods.
bRF, SVM, LR, GBM and DT are acronyms for random forests, support vector machine, logistic regression, gradient boosting machine and decision tree, respectively;
c Model1 is the method from [218],d Model2 is the method from [34] and Model3 is the method from [291].
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Table 6.4: Results of F1 Score and MCC for Models

Model F1-score MCC
1:25 1:50 1:100 1:25 1:50 1:100

RF
A 0.515472±0.057686 0.090119±0.001581 0.330462±0.027493 0.522309±0.044992 0.202909±0.026521 0.435610±0.031072

P 0.630859±0.038081 0.138530±0.043473 0.393732±0.025949 0.653953±0.050929 0.247093±0.080549 0.486779±0.028365

E 0.645855±0.033990 0.182899±0.029017 0.396581±0.023932 0.665099±0.034396 0.278747±0.041975 0.495406±0.018609

SVM
A 0.654747±0.015513 0.089328±0.001936 0.406553±0.058855 0.673402±0.021537 0.189648±0.032481 0.479377±0.074487

P 0.635962±0.071484 0.000000±0.000000 0.346947±0.067800 0.632491±0.079112 0.000000±0.000000 0.381936±0.057596

E 0.702562±0.023684 0.140711±0.040663 0.250000±0.000000 0.718527±0.027769 0.269979±0.043936 0.376355±0.000000

LR
A 0.488988±0.056970 0.088603±0.003047 0.322872±0.025335 0.520864±0.056991 0.183660±0.040926 0.410708±0.034654

P 0.308802±0.026074 0.149518±0.058623 0.188561±0.081085 0.308530±0.048173 0.158566±0.056588 0.204576±0.081694

E 0.647466±0.029745 0.428223±0.058702 0.393653±0.046146 0.635593±0.029990 0.420129±0.059519 0.391535±0.044933

Naı̈ve
Bayes

A 0.169922±0.006850 0.084184±0.004546 0.050514±0.001375 0.212762±0.008699 0.122152±0.007389 0.113248±0.002763

P 0.130786±0.006891 0.083776±0.004604 0.050304±0.002596 0.098283±0.011443 0.102841±0.008675 0.074663±0.005712

E 0.249316±0.023371 0.168247±0.009552 0.084157±0.002969 0.303128±0.026605 0.256394±0.010482 0.177718±0.005867

GBM
A 0.527137±0.054758 0.219974±0.030379 0.255816±0.052325 0.540288±0.073108 0.238834±0.039974 0.271733±0.075399

P 0.654161±0.057202 0.284501±0.047494 0.395112±0.017083 0.645980±0.062210 0.311523±0.060472 0.418660±0.026424

E 0.685798±0.066382 0.268066±0.093979 0.255978±0.027031 0.686201±0.063461 0.301726±0.098554 0.250090±0.027065

DT
A 0.401192±0.057632 0.189447±0.024179 0.190145±0.046456 0.377599±0.061403 0.176362±0.024848 0.215932±0.066885

P 0.550339±0.050891 0.165606±0.118433 0.047481±0.038882 0.535429±0.053898 0.188720±0.122450 0.061233±0.054063

E 0.292852±0.064972 0.220097±0.056711 0.288767±0.029965 0.308496±0.073374 0.204790±0.057824 0.282994±0.030010
Model1[218] 0.520690±0.025340 0.090909±0.000000 0.320000±0.000000 0.585766±0.019551 0.216169±0.000000 0.434680±0.000000
Model2[34] 0.438095±0.007776 0.090909±0.000000 0.426032±0.014395 0.510286±0.020527 0.216169±0.000000 0.488573±0.031846

Model3[291] 0.690496±0.032247 0.219316±0.053920 0.465441±0.038502 0.703311±0.038889 0.285516±0.061405 0.530828±0.052146
APEX2S 0.734050±0.056882 0.411436±0.025322 0.470881±0.049072 0.735440±0.063093 0.469571±0.036759 0.543188±0.051758

aA, P and E represent the three feature representation algorithms of amino acid composition, pseudo-amino acid composition and evolutionary information methods.
bRF, SVM, LR, GBM and DT are acronyms for random forests, support vector machine, logistic regression, gradient boosting machine and decision tree, respectively;
c Model1 is the method from [218],d Model2 is the method from [34] and Model3 is the method from [291].
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6.5 Summary

Machine learning and data analytics techniques can be a good leverage to boost the study

of biological interactions data, especially when more and more data have been available.

In this chapter, the HP-PPIs prediction problem is studied and a detailed investigation con-

cerning the multi-omics data for HP-PPIs is conducted firstly in Chapter 6.1. Presented by

the abundant multi-omics data, a comprehensive and practical workflow is subsequently

designed in Chapter 6.2, which has elaborated the usage of machine learning techniques

in a preliminary stage. More importantly, an improved two-layer model APEX2S for

the prediction task of HP-PPIs is presented in Chapter 6.3. In Chapter 6.4, a practice

of the model in real case concerning the protein-protein interactions between human and

Shigella infections pathogen is reported to evaluate the performance of various machine

learning models, which include the traditional machine learning models and our two-

layer model. The comparison against traditional models and literature-based models has

indicated the better prediction ability and higher efficiency of APEX2S model



Chapter 7

TOWARDS A MORE EFFECTIVE BIDIREC-
TIONAL LSTM-BASED LEARNING MODEL
FOR HUMAN-PATHOGEN PROTEIN-PROTEIN
INTERACTIONS

In this chapter, the deep learning model will be examined for the prediction task of HP-

PPIs. Particularly, a bidirectional LSTM-based model will be presented for the prediction

task, which demonstrates a more effective performance in comparison with the others.

The imbalance issue is considered as the main research task in this chapter, for which

we have include the imbalanced ratios of 1:25, 1:50 and 1:100. Particularly, we have

designed a novel feature representation algorithm for protein information to be input in the

LSTM model. For the Bi-LSTM model, a novel loss function is introduced to enhance the

performance of the deep learning model. To evaluate the performance, we have conducted

the comparison with numerous traditional machine learning models as well as the methods

from literature. In this chapter, we will start with a brief introduction and related work

in Chapter 7.1 and 7.2. The details of the Bi-LSTM-based model will be presented

in Chapter 7.3. Chapter 7.4 will report the performance evaluation while Chapter 7.5

summarise the chapter.

155
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7.1 Introduction

Monitoring and curing the infectious diseases for human are still prevalent and intractable

problems, while there have been substantial researches focusing on the understanding

of infectious mechanisms and the development of novel therapeutic solutions. This

solicits great efforts in revealing the biological interactions between human and different

pathogens [147, 306, 307]. However, research on identification of interactions is still in

its early stage. Some published data may focus on particular human-pathogen interactions

(HPI) system, for example between human and HIV virus, which may be of special

interest to a small group of researchers. Meanwhile, the identification of interactions takes

huge amount of experimental resources and consumes lots of time. This has significantly

limited the progress in studying different HPI systems.

Although several literature reviews have been published by introducing the machine

learning-based methods and some applications in the HPI domain, little research on

empirical evaluations of the performance of HBI predictions based on machine learning

models has been ever conducted [32, 225], and no work focusing on the prediction

of human-bacterium interactions has been reported. Meanwhile, most studies of PPI

predictions have been conducted based on a hypothesis on evaluating the predictor with

a balanced and small dataset, in which the numbers of positive and negative PPIs are the

same.

As a cost-effective approach, in Chapter. 3 and 4, the computational models for analysis

and predictions of HPI systems have been broadly investigated to learn the HP-PPIs data

in a comprehensive manner. Moreover, the prediction performance has shown distinct

fluctuation on HP-PPI datasets using different machine learning models. The evaluations

of various traditional machine learning methods and models found in the literature review

have revealed that, current techniques could not render a robust performance and could

not generalise well for the HP-PPIs dataset.

Thus, how to design a novel robust and effective model for the prediction task remains
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challenging. In this chapter, a bidirectional long short-term memory-based model is pro-

posed, jointly learning with the designed multi-channel feature representation algorithm,

tree-based feature selection algorithm and synthetic minority over-sampling technique

(SMOTE), for the prediction of HP-PPIs dataset. The proposed model achieves a more

robust and effective performance on the HP-PPIs datasets of three different HPI systems,

which demonstrates a superior performance over the others. The details of design will be

discussed in Section 3. The proposed model indicates a promising research direction of

studying big HP-PPIs dataset with deep learning model.

7.2 Review and Motivation

There have been substantial research interests in applying machine learning methods for

prediction of protein interactions [156, 218, 225, 267, 278, 283]. A similarity between all

these works was to have successfully applied machine learning methods in a given positive

protein interactions data, whilst their work focused on a balanced protein interactions

dataset by building negative protein interactions data with a same number of the positives.

For the prediction of HP-PPIs, a wide coverage of host-pathogen interactions can

be found in [225], [151] and [277], which includes the prediction as well as analysis,

while research on computational prediction of host-pathogen interactions was discussed

in [32] and [162]. Since these reviews aimed at describing the progress in prediction of

host-pathogen interactions without anchors of naming pathogens, they have collectively

listed potential computational methods. The computational methods include a homology-

based approach, a structure-based approach, and a motif interaction-based approach and

machine learning-based approach. Furthermore, no systematic evaluation with sufficient

details has been implemented and reported in these reviews.

Following the systematic review from Chapter 3, 11 databases are chosen to curate the

dataset of different HPI systems. More details could be referred to Chapter 3 and 4.

To better address the imbalance issue of the prediction task of HP-PPIs, we at first time

introduce deep learning model for training. Particularly, we consider the bidirectional
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LSTM model. The reason is that, LSTM model has illustrated a better capability for

sequence-based task, such as natural language processing and protein structure prediction.

Based on Bi-LSTM model, a novel feature representation algorithm is demanded to

translate the sequence information as three-dimensional data. Thus, in this chapter, a

dedicated Bi-LSTM-based model is proposed and has achieved a superior performance in

comparison with the other models.

7.3 Proposed Bi-LSTM-based Model

7.3.1 Our Model

Fig. 7.4 illustrates the Bi-LSTM-based model. It includes five layers to learn from the

raw data, which are feature representation algorithm layer, SMOTE layer, a multi-channel

feature representation layer, the Bi-LSTM layer and a full-connected layer. In this chapter,

the details of two important layers, the Bi-LSTM layer and the multi-channel feature

representation layer will be discussed.

7.3.2 Bidirectional LSTM

The Bidirectional LSTM (Bi-LSTM) is the critical component of the model, which is

a variant deep learning model of LSTM proposed by [308, 309]. LSTM model and its

variant version Bi-LSTM have demonstrated superior performance in domains such as

natural language processing, transportation and action recognition [310, 311].

Figure. 7.1 demonstrates the block of vanilla LSTM model. Figure. 7.2 is the vanilla

LSTM model. Briefly, the block of vanilla LSTM model is built with four gates and the

mainline on top of the block connects the state Ct−1 and Ct . The four gates are forget gate,

two input gates and one output gate.

For forget gate, the main output is ft , which is defined by Equa. 7.1.

ft = σ(Wf ∗ [ht−1,xt ]+b f ) (7.1)
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Figure 7.1: The Block of Long Short-Term Memory-based Model

For the input gates, the definition is given in Equa. 7.2.

it = σ(Wi ∗ [ht−1,xt ]+bi)

Ct = tanh(Wc ∗ [ht−1,xt ]+bc)

Ct = ft ∗Ct−1 + it ∗Ct

(7.2)

For the output gate, the definition is given in Equa. 7.3.

Ot = σ(Wo ∗ [ht−1,xt ]+bo)

ht = Ot ∗ tanh(Ct)
(7.3)

Several variations of LSTM block connect the internal signals by different mechanisms,

including the peephole connections LSTM, coupled LSTM and gated recurrent unit

(GRU). In Bi-LSTM model, two layers, namely forward and backward layers, are

designed to converge into a single layer. The details can be found in

However, the traditional Bi-LSTM model explicitly suffers from the conventional

vanishing gradient problem for the prediction of HB-PPI data. In most cases, the

cross entropy loss is applied as the cost function for binary classification, as following

Equa. 7.4.

CE(p,y) =

{
−log(p) i f y = 1

−log(1− p) otherwise
(7.4)
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In the definition, y ∈+1,−1 which is the ground-truth class. p ∈ [0,1] is the estimated

probability for the class while y = 1. For notational efficiency, pt is defined as:

pt =

{
p i f y = 1

1− p otherwise
(7.5)

Thus, Equa. 7.4 can be rewritten as Equa. 7.6.

CE(p,y) =CE(pt) =−log(pt) (7.6)

In the Bi-LSTM-based model, the focal loss function as the cost function ∆ to resolve

gradient vanishing problem, which is defined in Equq. 7.7 [312]. αt and γ are the

parameters.

∆(pt) =−αt(1− pt)
γ log(pt) (7.7)

Besides the machine learning model, the feature representation algorithm is another

critical factor that will contribute to the performance improvement. Next, the details of

several utilised sequence feature representation algorithm will be firstly debriefed, and the

design of the multi-channel feature will be introduced for the machine learning model.

7.3.3 Interpreting the Sequence Information

Since utilizing protein sequence information has become a research trend due to its avail-

ability of abundant information, it also solicits novel feature representation algorithms to

the ongoing protein researches to improve the prediction performance [34, 226, 268]. In

this work, sequence information is selected as the primary information. It is anticipated

that the study can be potentially extended to other related research topics. Thus, mapping

the sequence information according to the selected feature representation algorithms is

the first step.

Because every different protein possesses different length of amino acid combinations,

it will be difficult to directly input the sequence information into the machine learning
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Figure 7.4: The Bi-LSTM-based Model for HP-PPIs

methods. This raises a great interest for us to develop an efficient and powerful algorithm

to retain the identity of proteins. Two different categories are included in this work,

namely, amino acid composition methods and evolutionary information methods.

Amino acid composition methods consider the feature representation according to

the amino acid combination of a given protein sequence information in different ways,

such as their grouping based on different physicochemical characteristics and their order

of sequence information. This results in two different popular algorithms, namely the

conjoint triad method [283] and auto covariance algorithm [33]. The conjoint triad

method divides twenty different types of amino acid into seven groups according to their

different physicochemical characteristics. The auto covariance algorithm calculates the

auto covariance relationship using the order of amino acids in the sequence information.

The basic idea is to consider the difference between proteins according to their frequency

in amino acid combinations, for example three adjacent amino acids (3-mer). The

combinations set will be {(1,1,1),(1,2,1),(1,3,1), ...,(1,7,1), ...,(1,7,7), ...,(7,7,7)}.

1− 7 represent the seven groups, which results in 343 different combinations for 3-mer

features. It also utilizes seven different physicochemical properties to represent the amino
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acids, which results in a N ∗7 matrix, where N is the length of the sequence.

Evolutionary information methods refer to a process of protein alignment against a

reference protein sequence database, which produces a position-specific scoring matrix

(PSSM) to indicate the appearing probability of each amino acid types for corresponding

position. PSSM is a T*20 matrix for a protein sequence by PSI-BLAST. T denotes

the length of the protein sequence. In our work, we apply two different methods,

which are Pseudo Position-Specific Score Matrix (Pse-PSSM) [239] and Block-PSSM

[249]. Pse-PSSM is a 40-dimensional vector, which generates a direct and joint amino

acids relationship from the original PSSM. Block-PSSM firstly divides PSSM profile

and protein sequence into 20 equal blocks. For each block, a 20-dimensional vector

is calculated according to amino acid information. Since each block generates a 20-

dimensional vector, Block-PSSM will produce a 20*20 = 400-dimensional vector feature

for the whole protein sequence.

Based on the selected feature representation algorithms, a novel three-dimension tensor

data as the feature representation algorithm, which is a multi-channel feature in this study.

The design of the multi-channel feature benefits from various sequence-based feature

representation algorithms. The tree-based feature selection algorithm is employed at first

to reduce the abundant features. Once the features are processed, the data will be learnt by

SMOTE technique to ease the imbalanced ratio. The output of the SMOTE model will be

subsequently stacked horizontally to build the multi-channel feature data, which is then

input to Bi-LSTM.

Totally, the proposed model is designed with the consideration of the distinct feature

of protein sequence information and the imbalanced issue of the HB-PPI datasets as

illustrating in Fig. 7.4. In next section, a complete evaluation performance as well as

the proposed model results with regard to F1-score will be presented, which is a suitable

measurement for the evaluation in this research.



CHAPTER 7. BI-LSTM-BASED MODEL FOR DISCOVERY OF HP-PPIS 164

Table 7.1: The Statistics of Datasets

Taxonomy
IDa

Positive
Interactions

Number

Ratio 1:25 Ratio 1:50 Ratio 1:100
Training Independent

Testing
Training Independent

Testing
Training Independent

Testing
1491 57 1185 297 2325 582 4605 1151

177416 1207 25105 6277 49245 12312 97525 24382
1392 2810 58448 14612 114648 28662 227048 56762

a‘1491’ represents Clostridium botulinum, ‘177416’ is Francisella tularensis subsp.
tularensis (strain SCHU S4 / Schu 4), and ‘1392’ is Bacillus anthracis bacterium

7.4 Evaluation and Discussion

In this work, the study have dedicated to focus on three different HPI systems, for the

reason of their sufficiently available protein information to constitute both small and big

dataset for the subsequent evaluation and comparison with the proposed model. The

others could be used for further research or repeated verification, but are not within the

scope of this chapter.

7.4.1 The HB-PPI Dataset

The details of the curated HB-PPI dataset are shown in Table. 7.1. The taxonomy IDs

are listed as the specific bacterium pathogen species selected after data pre-processing.

They correspond to three different bacterium pathogens actively interacting with human

host. The selected bacterium pathogens are Clostridium botulinum (taxonomy ID: 1491),

Francisella tularensis subsp. tularensis (strain SCHU S4 / Schu 4) (taxonomy ID: 177416)

and Yersinia pseudotuberculosis subsp. pestis (taxonomy ID: 632). To alleviate the

impact of randomness in sampling, this process is repeated for five times, which resulted

in a five-fold independent tests for the evaluation.

7.4.2 Machine Learning based Methods

It is crucial to select feasible machine learning methods to perform the HPI prediction

task. In this paper, we evaluate several popular machine learning models, including

support vector machine (SVM), random forests (RF), logistic regression (LR), naı̈ve
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Bayes model (GNB), decision tree (DT) and gradient boosting machine (GBM). These

machine learning models are still more predominant than deep learning methods in protein

interaction related studies, because they usually require less data and have a simpler

architecture, yet achieving a reasonable performance, in contrast to computer vision or

other AI problems. Meanwhile, two sequence-based machine learning models [34, 218]

are included for comparisons.

7.4.3 Evaluation Metrics

Different metrics, including precision (Pre), recall (Rec), accuracy (Acc), F1-score

and Matthew’s correlation coefficient (MCC) score, are adopted to evaluate the overall

prediction performance of these models under comparison, since the dataset is highly

imbalanced. The measurements are defined in Chapter. 4.22.

7.4.4 Evaluation and Discussion

Since the datasets exhibit a highly skewed characteristics for the classes, the F1-score is

the first one considered to evaluate the performance. The F1-score results of pathogens

with taxonomy ID ‘1491’ and ‘1392’ are collectively included in Table. 7.2 and Table. 7.3,

and the result of ‘177416’ is included in Table. 7.4. For the performance in Table. 7.2,

Table. 7.3 and Table. 7.4, all first two best performances of each column are indicated by

bold font.

It is easy to observe that, the performance of different machine learning models for the

different dataset vary a lot. For example, the best models by applying different machine

learning models on the feature representation algorithms for ‘1491’ are different for the

different ratios. For the ratio of ‘1:25’, the best model is achieved by applying auto

covariaance feature representation algorithm with SVM model. However, for the ratio of

‘1:50’ and ‘1:100’ in Table. 7.2, the best model are random forests, although the feature

representation algorithms are different. It is not easy to identify which one would achieve

the best in a combination with an appropriate feature representation algorithm, even for
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Table. 7.3 and Table. 7.4.

For the proposed Bi-LSTM-based model, it achieves a more stable and better perfor-

mance than the others for HPI systems of ID ‘1392’ and ‘177416’. These two datasets

are much bigger than the one of ID ‘1491’, for which Bi-LSTM-based model has not

been the best. However, it still yields results quite smoothly when the ratio changes.

For the best performance on ‘177416’, Bi-LSTM-based model delivers the results of

0.244036±0.011577, 0.186221±0.014773 and 0.135071±0.014663 for ratio of ‘1:25’,

‘1:50’ and ‘1:100’, respectively. For the rest models, the second best models are decision

tree with PsePSSM feature, decision tree with BlockPSSM feature and logistic regression

with BlockPSSM feature for ratio of ‘1:25’, ‘1:50’ and ‘1:100’ accordingly. Their

performances are 0.164183±0.017133, 0.106201±0.009550 and 0.055682±0.004960.

The performance improvements are substantial. In comparison with the evaluation models

and the literature methods, Bi-LSTM-based model has demonstrated a better and more

stable performance in the three tables, which dataset sizes range from thousands to

hundred thousand. It is considered that deep learning model will be more powerful for

bigger dataset. In the meantime, Bi-LSTM-based model has shown a stronger capability

in dealing with the imbalanced issue.
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Table 7.2: Results of F1 score for ‘Clostridium botulinum’ (ID ‘1491’)

Model ‘1491’a

1:25 1:50 1:100

RF

ℜb
1 0.956522±0.000000 0.992000±0.016000 0.984000±0.019596

ℜ2 0.941414±0.075156 0.959224±0.024432 0.924522±0.083396
ℜ3 0.984615±0.030769 0.968615±0.028956 0.982609±0.021300
ℜ4 0.955429±0.052297 0.992000±0.016000 1.000000±0.000000

SVM

ℜ1 1.000000±0.000000 0.992000±0.016000 0.984000±0.019596
ℜ2 0.968615±0.028956 0.991304±0.017391 1.000000±0.000000
ℜ3 1.000000±0.000000 0.984000±0.019596 0.956522±0.000000
ℜ4 1.000000±0.000000 0.984000±0.019596 0.956522±0.000000

LR

ℜ1 0.666667±0.000000 0.406032±0.070505 0.278095±0.009331
ℜ2 0.968615±0.028956 0.992000±0.016000 0.956522±0.000000
ℜ3 0.953846±0.037684 0.939009±0.037895 0.832094±0.100316
ℜ4 0.984615±0.030769 0.984615±0.030769 0.984000±0.019596

Naı̈ve
Bayes

ℜ1 0.883028±0.024547 0.758788±0.082664 0.649003±0.070794
ℜ2 0.911173±0.043226 0.858851±0.037809 0.771614±0.076227
ℜ3 0.852107±0.030032 0.710083±0.093410 0.508655±0.071947
ℜ4 0.852063±0.028789 0.708051±0.098742 0.534819±0.071385

GBM

ℜ1 0.940580±0.019525 0.955429±0.052297 0.911363±0.044262
ℜ2 0.920551±0.051773 0.984000±0.019596 0.828641±0.120346
ℜ3 0.937862±0.055289 0.939348±0.047797 0.876161±0.050595
ℜ4 0.915481±0.091261 0.961231±0.034407 0.856216±0.056709

DT

ℜ1 0.870437±0.016061 0.867342±0.076270 0.859912±0.069821
ℜ2 0.767804±0.095732 0.885468±0.081738 0.804467±0.062837
ℜ3 0.934857±0.065113 0.902340±0.063049 0.890957±0.027656
ℜ4 0.892971±0.075027 0.933333±0.054433 0.955429±0.052297

Modelc1 0.693333±0.065741 0.928063±0.023236 0.603922±0.031373
Modelb2 0.949913±0.038801 0.976000±0.019596 0.977778±0.044444

Proposed
Model

0.939009±0.037895 0.925206±0.043780 0.968615±0.028956

a‘1491’ represents the taxonomy ID for the related bacterium pathogen species, details can be found in Table. 7.1;
bℜ1–ℜ4 are the different feature representations algorithms, representing ACC, CTM, PsePSSM and BlockPSSM;
c Model1 is the method from [218];d Model2 is the method from [34] .
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Table 7.3: Results of F1 score for ‘Bacillus anthracis’ (ID ‘1392’)

Model ‘1392’
1:25 1:50 1:100

RF

ℜb
1 0.169574±0.009818 0.139858±0.008719 0.067787±0.007116

ℜ2 0.102595±0.019776 0.078685±0.006405 0.056184±0.012903
ℜ3 0.206946±0.009279 0.166349±0.003645 0.092209±0.013757
ℜ4 0.198025±0.016039 0.173696±0.008468 0.104019±0.003440

SVM

ℜ1 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
ℜ2 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
ℜ3 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
ℜ4 0.047702±0.029081 0.000000±0.000000 0.002773±0.005546

LR

ℜ1 0.021057±0.005808 0.000000±0.000000 0.007090±0.000005
ℜ2 0.050513±0.005512 0.011968±0.002819 0.007072±0.003149
ℜ3 0.030629±0.002586 0.000000±0.000000 0.000000±0.000000
ℜ4 0.108181±0.004233 0.042454±0.005122 0.016177±0.002795

Naı̈ve
Bayes

ℜ1 0.105464±0.001593 0.057432±0.000310 0.030130±0.000167
ℜ2 0.108749±0.000841 0.067130±0.000972 0.029825±0.000117
ℜ3 0.115154±0.001251 0.060245±0.001256 0.038347±0.000314
ℜ4 0.117401±0.001404 0.062892±0.000381 0.033565±0.000154

GBM

ℜ1 0.158191±0.004589 0.117939±0.004031 0.141740±0.017368
ℜ2 0.152236±0.007431 0.118625±0.010773 0.093061±0.012445
ℜ3 0.114896±0.009166 0.096469±0.022617 0.090649±0.008828
ℜ4 0.156120±0.012877 0.114349±0.011817 0.100959±0.018261

DT

ℜ1 0.237893±0.013778 0.039335±0.013057 0.011078±0.016093
ℜ2 0.084730±0.021789 0.034857±0.006656 0.017363±0.007127
ℜ3 0.235041±0.016372 0.072505±0.009355 0.005604±0.011208
ℜ4 0.035104±0.033722 0.186819±0.013715 0.079502±0.018047

Modelc1 0.046355±0.004581 0.051664±0.004274 0.017488±0.002201
Modelb2 0.199300±0.011655 0.151864±0.005336 0.123265±0.015311

Proposed
Model

0.281453±0.010696 0.243263±0.016143 0.194048±0.010940

a‘1491’ and ‘1392’ represent the taxonomy IDs for the related bacterium pathogen species, details can be found in Table. 7.1;
bℜ1–ℜ4 are the different feature representations algorithms, representing ACC, CTM, PsePSSM and BlockPSSM;
c Model1 is the method from [218];d Model2 is the method from [34] .
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Table 7.4: Results of F1 score for ‘Francisella tularensis’ (ID ‘177416’)

Model ‘177416’a

1:25 1:50 1:100

RF

ℜb
1 0.039731±0.013702 0.003259±0.003991 0.000000±0.000000

ℜ2 0.028668±0.015407 0.006518±0.003259 0.008085±0.005142
ℜ3 0.068694±0.014250 0.014582±0.006053 0.004878±0.003983
ℜ4 0.042995±0.012560 0.008071±0.008799 0.001619±0.003239

SVM

ℜ1 0.126970±0.014229 0.052459±0.006285 0.027375±0.006314
ℜ2 0.022791±0.005985 0.041411±0.012721 0.052282±0.010144
ℜ3 0.121876±0.011250 0.040185±0.007599 0.000000±0.000000
ℜ4 0.106272±0.014042 0.019592±0.006398 0.000000±0.000000

LR

ℜ1 0.008210±0.000027 0.000000±0.000000 0.000000±0.000000
ℜ2 0.062458±0.007364 0.011429±0.003999 0.000000±0.000000
ℜ3 0.000000±0.000000 0.000000±0.000000 0.000000±0.000000
ℜ4 0.145415±0.010038 0.082374±0.010049 0.055682±0.004960

Naı̈ve
Bayes

ℜ1 0.115664±0.001010 0.063485±0.000650 0.035815±0.000347
ℜ2 0.113069±0.001109 0.055818±0.000839 0.028822±0.000140
ℜ3 0.123359±0.002777 0.076426±0.001523 0.039672±0.000415
ℜ4 0.119222±0.001129 0.066671±0.000397 0.034570±0.000356

GBM

ℜ1 0.076012±0.008883 0.074200±0.024640 0.040672±0.007316
ℜ2 0.102556±0.023905 0.044597±0.005541 0.037121±0.008202
ℜ3 0.111070±0.007061 0.091760±0.009066 0.047583±0.007300
ℜ4 0.121684±0.017300 0.081683±0.007212 0.051077±0.012051

DT

ℜ1 0.153325±0.023107 0.017464±0.011643 0.000000±0.000000
ℜ2 0.035766±0.036349 0.020309±0.014948 0.006439±0.005997
ℜ3 0.164183±0.017133 0.049342±0.005803 0.014460±0.011808
ℜ4 0.001639±0.003279 0.106201±0.009550 0.020142±0.014128

Modelc1 0.029041±0.010670 0.004918±0.004016 0.000000±0.000000
Model2 0.108861±0.015895 0.067577±0.011019 0.052312±0.012894

Proposed
Model

0.244036±0.011577 0.186221±0.014773 0.135071±0.014663

a‘177416’ represents the taxonomy ID for the related bacterium pathogen specie, details can be found in Table. 7.1;
bℜ1−−ℜ4 are the different feature representations algorithms, representing ACC, CTM, PsePSSM and BlockPSSM;
c Model1 is the method from [218];d Model2 is the method from [34]
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7.5 Summary

In this chapter, a Bi-LSTM-based model achieving a more robust and effective perfor-

mance was proposed. A multi-channel feature representation algorithm, which is based

on tree-based feature selection algorithm and synthetic minority over-sampling technique

(SMOTE), was firstly designed. Later, the bidirectional LSTM model was introduced

as the learning model. Given the scenario of imbalanced issue, the focal loss function

was subsequently employed as a novel cost function for the training. The prediction

performance of HP-PPIs dataset has indicated that Bi-LSTM-based model has obtained

the best results.



Chapter 8

UNSUPERVISED DEEP LEARNING MODEL
FOR DISCOVERY OF HP-PPIS

This chapter will investigate the host-pathogen protein-protein interactions with an un-

supervised deep learning model based on stacked denoising autoencoders. Given the

various feature representation algorithms and the different characterisitcs exhibited by

the HP-PPIs dataset, we firstly introduce and briefly review the current state-of-the-art

techniques for prediction task of HP-PPIs in Chapter 8.1 and Chapter 8.2. The goal of this

chapter is to propose an unsupervised deep learning model, which is capable of mining

latent protein information for model training to improve the performance. Thus, the

proposed model based on stacked denoising autoencoder will be discussed in Chapter 8.3.

The stacked denoising autoencoder further extends the capability of mining higher level

information from protein sequence in the model, and the designed multi-layer model has

subsequently obtained the advantage in the training phase. The experiment evaluation is

discussed in Chapter 8.4. The achieved performance indicates a superior capability of the

unsupervised deep learning model in dealing with the host-pathogen protein interactions

scenario among all of these models.
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8.1 Introduction

Given the high volume and variety of data, many researches are being conducted in data

analytics to predict and uncover information and knowledge concerning related domains,

including computer vision, economics, online resources and bioinformatics. Based on the

availability of data, computational biology methods, including omics fields, biomedical

imaging, and biological signal processing [3], have grown in importance, with pilot

studies having been previously conducted in areas such as genomics and proteomics areas

[1], and biomedical medicine and imaging areas [2].

Proteomics is an important branch of system biology in the post-genomics era, with

data analytics playing a vital role in understanding and predicting biological knowledge

for proteins. Proteomics research focuses on utilising existing experimental data related to

the protein interactions in order to elucidate high-fidelity interaction networks for future

biological experiments. Predicting protein-protein interactions remains an active research

area in bioinformatics [22]. Among the protein interactions, inter-species protein-protein

interactions (HP-PPIs) are one type of interactions observed within the same species.

Thus, it is motivated to study inter-species PPIs to reveal interactions between proteins

from different species. Specifically, host-pathogen interactions (HPI) are considered as

key infection processes at the molecular level with the associated infectious diseases

representing major worldwide health concerns, which have caused millions of illnesses

annually.

There has been an accumulation of experimentally verified PPI data generated through

in vitro methods, including small-scale biochemical, biophysical, and genetic experi-

ments, as well as large-scale methods, such as yeast-two-hybrid analysis. However, these

methods are time consuming and require substantial biomedical resources. Additionally,

many of the methods exhibit high false positive rates, and the occasional large number of

potential interactions hinders the deployment of some in vitro methods.

Here, this chapter is designed to describe the development of a new method for
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HP-PPIs prediction. Since host-pathogen protein-protein interactions reveal substantial

information concerning HP-specific infection mechanisms, a better understanding on HP-

PPIs and the application of computational methods to promote their prediction will assist

in vitro experimental design.

In this chapter, the development of an unsupervised deep learning model is de-

signed to handle the HP-PPIs datasets, and the comparison against various supervised

machine learning models indicates that unsupervised deep learning model achieves a

best performance, particularly when the HP-PPIs datasets present both small and large

scales. Meanwhile, a highly skewed ratio between different classes exhibits a significant

challenge for model learning.

8.2 Related Work

As PPIs offer insights into molecular interactions and disease genes identification [313]

for a specific species, such as yeast [314], biological experiments are being carried out to

reveal or determine the interaction-specific relationships between proteins. In this regard,

HP-PPIs could further assist revealing the information concerning infection pathways and

providing additional insight from the interactions between host and pathogens [49].

A previous review [49] detailed the research vision for HP-PPIs and it highlighted

the importance of database construction. Several databases, including HPIDB [10],

PATRIC [160], PHISTO [161], VirHostNet [315] and VirusMentha [152], represent the

most relevant PPI repositories. Owing to these earlier research efforts, these databases

provide well sorted and experimentally verified HP-PPIs information. Nevertheless, these

manually updated databases currently represent only a small quantity of all PPIs.

There have been several recent studies on host-pathogen protein-protein interactions

[23, 157, 316, 317], with each testing a biological hypothesis that ‘similar pathogens

target the same critical biological processes in the host’ through the use of learning

models. These studies constructed a common structure using the pathway information

to compute the similarities between different types of pathogens, with human considered
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as the primary host. One of these studies constructed a pairwise level multi-task model to

combine two different tasks. A potential solution for combining more tasks in the multi-

task model has been proposed in [23], where the term ‘Task’ describes a computational

model used to predict interactions between a specific pathogen and host.

Since supervised machine learning models have been widely applied for diverse topics

of biological data, such as the decision tree for lung carcinoma cancer prediction model

[318] and an lung cancer diagnosis system based on support vector machine [319],

the traditional supervised machine learning models have been utilized to facilitate PPI

research. A previous study used two pathogen-human datasets as source tasks and a third

one as a target task to build a transfer learning model. Two other studies described extreme

learning machine (ELM) models, which aimed at obtaining faster training speeds and

higher degrees of accuracy [21, 320]. Such a model was deployed via using a balanced

intra-species PPI dataset. Additionally, one method using Naı̈ve Bayes classification

model was described in [215] and the results for a comprehensive study and prediction of

PPIs on yeast and humans via three-dimensional structural information were presented.

The algorithm (PrePPI) uses Bayesian statistics to derive relationships between structural

information and other functional clues. This method yields over 30,000 high-confidence

interactions for yeast and over 300,000 for humans [215].

Given the potential in utilizing computational models, especially machine learning

models, to facilitate the HP-PPIs task, possible solutions have been widely discussed

in [225] and [277]. Without positioning verified databases and specific pathogens, a

collection of traditional machine learning models has been assessed, including support

vector machine, decision tree, Naı̈ve Bayes and so on. Deep learning models, which

have shown great power in protein structure prediction task [321, 322], have also been

included as very important categories of machine learning models for prediction of HP-

PPIs. However, a comprehensive framework with detailed artefacts to illustrate data

analytics and machine learning models for HP-PPIs is still needed. Meanwhile, how

to leverage deep learning model to improve the performance comparing with traditional
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machine learning models is also lacking.

8.3 Unsupervised Deep Learning Model

Given the large number of databases, data analytics and learning models will contribute to

HP-PPIs research. Following previous chapters’ fashion, a complete framework for HP-

PPIs research involves data pre-processing, feature representation, and learning model.

In this section, the learning model will be firstly discussed, which mainly details the

proposed unsupervised deep learning-based model.

8.3.1 Unsupervised Deep Learning Model

Deep learning models have achieved good performance on both classification and re-

gression tasks, suggesting their generalized utility for learning relationships from data

[3, 321–324]. These models have shown that, deep learning models are capable of

learning protein structure prediction task in a more efficient way, and can achieve better

performance than the other models.

There is another group of unsupervised deep learning model, namely denoising autoen-

coder (dA), which represents features via a deep neural network. Denoising autoencoder

[325] is a training model used for unsupervised learning. It is motivated from general

autoencoder and is capable of reconstructing original input from corrupted input. Addi-

tionally, the denoising autoencoder could be stacked as stacked denoising autoencoders

(SdA) to build a multi-layer network [323].

As a primary unsupervised learning model, a stacked denoising autoencoders can

construct higher level features to allow for a better initial state in the deep learning model.

Herein, an SdA model is applied as the unsupervised model to learn from the curated

datasets comprising three different bacterial species, whereas at the top layer, logistic

regression (LR) [326] is chosen as the classification model. The network is subsequently

fine-tuned to achieve better performance than simply training the network in two separate

stages [327].
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Figure 8.1: The Whole Model based on SdA

Technically, the input will be corrupted by adding small amounts of noise, in which

both Gaussian noise and ‘mask’ noise are feasible. The integrated model is depicted in

Fig. 8.1.

This four-layer network is applied to learn and predict from the HP-PPIs datasets. It

has a similar architecture as that of another work described in [327]; however, the network

is fine-tuned following initial training using LR Layer. The architecture of this network is

as follows: input layer (420 input nodes)→ dA layer1 (210 neurons)→ dA layer2 (210

neurons)→ dA layer3 (210 neurons)→ LR layer (1 output node).

In Fig. 8.2, the details of construction of the denoising autoencoder layer is described.

In Fig. 8.2, the Ẍ is the corrupted input data from X . For the experiments, it ended up

with choosing only Gaussian noise as it achieved better performance over Ẍ wit ‘mask’

noise. The encoding process and decoding process is given as:

Y =W ∗ Ẍ +bx

X̃ =W ′ ∗Y +bh

(8.1)

The dA layer trains each layer as an individual component first, followed by output of
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Figure 8.2: The Denoising Autoencoder Layer

the learned data, Y , to subsequent layers. The learned parameters, W , are maintained and

will be applied to the entire network during subsequent fine-tuning steps. Each layer is

pre-trained using the same process.

The logistic regression layer is the final classification layer. For a binary classification

problem, yi = 0,1, where i represents the ith example, the LR model returns the result

according to the following:

P(yi = 1|xi) = hθ (xi) = 1/(1+ exp(−θ
T ∗ xi))

P(yi = 0|xi) = 1−P(yi = 1|xi) = 1−hθ (xi)
(8.2)

Here, θ represents the model parameters. The cost function applied in logistic

regression model is:

J(θ) =−∑
i
(yilog(hθ (xi))+(1− yi)log(1−hθ (xi))) (8.3)

After pre-training the different layers, the overall network using a back propagation

algorithm is fine-tuned.
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8.3.2 Traditional Learning Algorithms and Models

The deep learning model is designed as the primary model for model learning and predic-

tion. Meanwhile, several traditional supervised learning models are also implemented for

comparison, including a linear-kernel support vector machine (SVM), extreme learning

machine (ELM), naı̈ve Bayes and decision tree models.

Besides the traditional learning models, to input information related to each unique

protein interaction into a learning model, feature representation is required. Since

sequence information includes most information of the corresponding protein and is

protein specific, in this study, we primarily use sequence information for feature rep-

resentation. Following the collection of positive protein-protein interactions from various

database repositories, the negative protein-protein interactions are also curated by a

random sampling strategy to build the supervised machine learning model.

As a result of the data pre-processing, a HP-PPIs dataset will be ready, which indicate

only the identities of interacting proteins between host and pathogen.

For different protein properties, it is required to represent the properties into a numerical

form. In the past, numerous studies related to feature representation have been conducted

for sequence information ([23, 33, 232, 283, 328]). The feature representation remains

a hot and ongoing research area for bioinformatics researchers. The unique information

include the different types of amino acids in different combination and various lengths. As

said in ‘The amino acid sequence of a protein determines its three-dimensional structure’

[329], it also provides a widely adopted view that knowledge of the sequence information

would be adequately feasible to represent a protein.

In this chapter, auto covariance algorithm (ACC) [33] is selected as the first step

of features representation methodology. As one of the popular feature representation

algorithms, ACC is capable of transforming numerical vectors to uniform matrices based

on sequence information. The representing matrices are having a same dimension after

ACC transformation regardless of protein sequence length. For the details of ACC

algorithm, it could be referred to Chapter 4. In this study, the length of each vector



CHAPTER 8. UNSUPERVISED LEARNING MODEL FOR HP-PPIS 179

Databases
Experimentally

Verified Data

Extraction

Data 

Preprocessing

UniProtKB

Feature 

Representation

…
 …
 

…
 …
 

…
 …
 

…
 …
 

1
 

2
 

3
 

4
 

4 ′ 

3 ′ 

2 ′ 1 ′ 

d
A
 La

y
e
r1
 

d
A
 L a

y
e
r2
 

d
A
 L a

y
e
r3
 

LR
 L a

y
e
r 

In
p
u
t L a

y
e
r0
 

Learning Model

Figure 8.3: The Overall Framework of the Stacked Denoising Autoencoder-based Model

was set to 210 for each protein, resulting in a pair-wise feature vector of 420 dimensions

for each HP-PPIs pair.

By this step, a curated HP-PPIs dataset is ready to be fed into the learning model. In

Figure. 8.3 overall framework of the unsupervised learning-based model is illustrated,

which is capable of constructing higher level features and initiate a deep neural network

in a better state. The stacked denoising autoencoders is deployed to achieve a boost

performance. In next section, the model will be evaluated on several HP-PPIs datasets in

comparison with the other traditional machine learning models.

8.4 Evaluation and Discussion

To evaluate the feasibility of the framework discussed in section 3, a detailed practice is

presented in this section. Specifically, two HP-PPIs database repositories, PATRIC and

PHISTO, were used for construction of the HP-PPIs datasets. The benefit from these two

databases is that, the hosted positive data are manually extracted and uploaded based on

biological literature.

Table. 8.1 shows the statistics associated with the bacterium pathogen species used for

construction of the datasets and used for model learning. For the data redundancy, we

have conducted two different ways to remove the redundant interaction pairs, which are

manual redundancy and CD-HIT redundancy removal. The manual redundancy removal
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Table 8.1: Processing of HP-PPIs Dataset

Species Positive
Pairs

Manual
Redundancy

CD-HIT
Redundancy

Removal

Ratio 1:100

Clostridium
difficile

56 53 52 5252

Escherichia
coli

168 104 98 9898

Bacillus
anthracis

6073 3138 3035 306535

aims at the repeated interaction pairs in the original databases, which might have been

reported more than once by different researchers. For the CD-HIT redundancy removal,

it compares the sequence similarity between different proteins and removes the redundant

ones with high similarity. These two steps ensure the dataset with less redundancy from

both interactions IDs and protein sequence similarity. After the data redundancy analysis,

three different bacterium pathogen species were retained containing enough samples for

model training and also in the best interest of infectious diseases for human. The HP-

PPIs datasets are corresponding to Clostridium difficile, Escherichia coli, and Bacillus

anthracis in the study, as shown in Table. 8.1, with the positive protein pairs numbers

decreasing after redundancy analyses. Here, Clostridium difficile is the primary cause of

the inflammation of the colon, Escherichia coli causes both minor and severe intestines

illness and Bacillus anthracis is the etiologic agent of anthrax.

As shown in Table. 8.1, the relatively small datasets that included 56 and 168 pairs of

positive HP-PPIs are utilised in this chapter, meanwhile, the large size dataset with 6073

pairs of positive HP-PPIs is also exploited. The ratio of positive and negative pairs is set

at 1:100 to align with experiment scenarios, which is normally considered to yield less

bias in predictions (Table. 8.1).

We further evaluated the learning models by 10-fold cross validation after dividing the

HP-PPIs datasets into training and test datasets. Details are listed in Table. 8.2.
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Table 8.2: Statistics of HP-PPIs Dataset

Species Training size Test size

Clostridium difficile 4545 707
Escherichia coli 8181 1717
Bacillus anthracis 275427 31108

8.4.1 Evaluation Metrics

To evaluate the performance and robustness of the models, the experiments are conducted

using 10-fold cross validation. The evaluation results are presented as the mean and

variance in terms of precision, recall values, F1 score, and accuracy. It should be noted

that the accuracy measurement might not fully reflect the performance of these models,

because the datasets are highly skewed. However, we have reported these results for com-

pleteness. The precision value represents the fraction of retrieved information relevant

to the result, whereas the recall value represents the ratio of successful retrievals by the

learning model. These are critical factors necessary to determine system performance,

specifically on an imbalanced dataset. The precision and recall values are further used to

calculate a harmonic average, which is subsequently termed as F1 score to provide a final

measurement for a given model. Normally, the F1 score is ranging between 0 and 1. It

reaches the best performance at 1 while worst at 0. The definition formulations can be

referred to Equa. 4.22

8.4.2 Evaluation and Discussion

Although supervised machine learning model is considered as the dominant classification

model, the unsupervised deep learning model is introduced in this chapter to build a

complementary feature representation, which also helps tuning multi-layer supervised

model. As for learning models for comparison, several traditional supervised machine

learning models are simultaneously built, including support vector machine (SVM),

extreme learning machine (ELM) and Naı̈ve Bayes Model, among others.

In this chapter, the SdA, SVM, ELM, decision tree, naı̈ve Bayes and also logistic regres-
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sion models are implemented with support partially from ‘Tensorflow’ ([330]), ‘libsvm’

([331]), ‘hpelm’ ([332]) and ‘scikit-learn’ ([256]). Furthermore, training deep learning

model on big datasets highly relies on specific structures, such as GPU/TPU/FPGA,

to decrease the running time and finalise the parallel processing tasks. In this regard,

the computing resources system is built upon ‘NVIDIA GTX 1080Ti’ GPU and 64GB

RAM, which allowed efficient parallelization computing. The working operating system

is Ubuntu 16.04. In this study, all framework implementations were written in Python.
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Table 8.3: Precision Result of Models (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium
difficile

78.53±11.37 97.50±0 96.25±5.73 84.88±9.48 97.50±5.0 100±0.00

Escherichia
coli

2.52±0.55 50.30±9.99 62.86±14.95 49.16±11.13 20.00±40.00 87.00±6.52

Bacillus
anthracis

1.65±0.04 92.48±7.97 70.00±45.83 60.25±1.33 10.00±30.00 92.49±2.04

Table 8.4: Recall Result of Models (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium
difficile

100±0 98.57±4.29 98.57±4.29 95.71±6.54 94.29±7.00 98.57±4.29

Escherichia
coli

71.76±14.11 35.88±10.00 29.41±11.16 70.59±10.85 1.18±2.35 51.18±8.34

Bacillus
anthracis

79.83±2.27 4.42±1.28 0.39±0.32 66.72±2.90 0.03±0.10 48.83±2.86

Table 8.5: F1 Result of Models

Species Gaussian NB LR SVM DT ELM SdA

Clostridium
difficile

0.8752±0.307 0.9790±0.0322 0.9723±0.0340 0.8954±0.0571 0.9559±0.362 0.9923±0.0230

Escherichia
coli

0.486±0.106 0.4097±0.0899 0.3939±0.1295 0.5775±0.1126 0.222±0.444 0.6382±0.0649

Bacillus
anthracis

0.323±0.009 0.0841±0.0238 0.0077±0.0063 0.6330±0.0175 0.006±0.019 0.6387±0.0278
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Table 8.6: Accuracy Result of Models (%)

Species Gaussian NB LR SVM DT ELM SdA

Clostridium
difficile

99.70±0.18 99.96±0.06 99.94±0.07 99.77±0.13 99.90±0.09 99.99±0.04

Escherichia
coli

71.88±2.57 98.99±0.18 99.13±0.15 98.95±0.37 98.98±0.09 99.44±0.07

Bacillus
anthracis

52.57±0.27 99.05±0.01 99.01±0.00 99.23±0.03 99.01±0.00 99.45±0.03

Table 8.7: The Area Under Curve Value of Models

Species Gaussian NB LR SVM DT ELM SdA

Clostridium
difficile

0.9985±0.001 0.9991±0.0026 0.9926±0.0214 0.9776±0.0326 0.9997±0.0005 0.9985±0.0045

Escherichia
coli

0.7182±0.0756 0.9413±0.0204 0.6462±0.0559 0.8491±0.0553 0.9448±0.0276 0.9431±0.0318

Bacillus
anthracis

0.6607±0.01 0.7675±0.0125 0.5019±0.0016 0.8314±0.0145 0.8157±0.0099 0.9250±0.0112
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Primary Results

The precision and recall values for all of the models are firstly collected. Table. 8.3 shows

the statistics associated with precision results, Table. 8.4 for the recall results, Table. 8.5

for the F1 results and Table. 8.6 for the accuracy results. In these tables, ‘SVM’ refers

to linear-kernel SVM, ‘ELM’ represents to extreme learning machine while ‘SdA’ is the

stacked denoising autoencoders model, ‘Gaussian NB’ indicates Gaussian Naı̈ve Bayes,

‘DT’ refers to decision tree model and ‘LR’ is logistic regression model.

The results of receiver operating characteristic (ROC) and the area under ROC curve

(AUC) value analysis for ‘Bacillus anthracis’ are shown in Fig. 8.4. The ROC results

illustrate the classification ability of binary HP-PPIs prediction according to various

discrimination thresholds. It was plotted based on different settings of TP rates against

FP rates. The AUC value ranges between 0 and 1 with higher values indicating a better

classification performance.

Moreover, it is worth noting that ELM model achieves better AUC value on smaller

datasets based on the comprehensive results from Table.8.7. It achieves AUC values of

0.9997 for C. difficile and 0.9448 for E. coli. However, across all three tasks, the SdA

model presents a more stable performance (0.9985 for C. difficile, 0.9431 for E. coli and

0.9250 on B. anthracis). From Table. 8.7, it is observed that the performance of SdA

model on B. anthracis specie is much better than the others, including the followings

from decision tree model (0.8314) and ELM model (0.8157).

Discussion

From Table. 8.3 and Table. 8.4, the proposed SdA model has illustrated a strongest

capability of precision result. However, for the recall result, the best model is achieved by

Gaussian NB model, though the performance of SdA model has been moderate. Overall,

the F1 score reported in Table. 8.5 indicates that the prediction performance of SdA model

is the best.

According to these measurements, the SdA model achieved the best performance on
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(a) Gaussian Naı̈ve Bayes
(0.6607±0.01)

(b) Logistic Regression
(0.7675±0.0125)

(c) SVM (0.5019±0.0016) (d) Decision Tree (0.8314±0.0145)

(e) ELM (0.8157±0.0099) (f) SdA (0.9250±0.0112)

Figure 8.4: Learning Models ROC Curve on Bacillus anthracis
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Figure 8.5: Convergence Curve

F1 score as well as accuracy for HP-PPIs prediction for Clostridium difficile, Escherichia

coli and Bacillus anthracis. Specifically, the SdA model outperformed the LR model in

terms of F1 score and accuracy, indicating that the unsupervised learning model presented

a better feature learning capability and resulted in an improved predictive performance.

Although model performances on different datasets are varied, the SdA model retains

the best performance among all the models. It is witnessed that, for both small and

big datasets, SdA model has benefitted from the unsupervised learning model, which

generates a higher-level feature. The four-layer model has obtained a best performance

for all three different datasets with regard to the accuracy result in Table. 8.6.

Furthermore, we have considered the training time, which may have been a big

challenge for training deep learning model. Regarding learning and convergence curve,

the related comparison results are presented in Fig. 8.5. The convergence curve represents

the relationship between the training epoch and global loss, with a lower global loss

suggesting the closeness of the model to the optimal state.

Fig. 8.5 shows the convergence curves for logistic regression and SdA model, with pre-

training step for the SdA model initially applied in the SdA layers, after which the output

of the last SdA layer is used as input for the logistic regression layer. Our results indicated

that the training iterations needed for the SdA model for C. difficile and E. coli HP-PPIs

prediction were much less than those needed for training the LR model. Retaining the

parameters from the pre-training step in the SdA layers improved the convergence speed

and aided the efficient realization of the optimal state.
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8.5 Summary

A well-designed framework of HP-PPIs study will facilitate the exploration and un-

derstanding of HP-PPIs networks, and offer critical insights of infectious mechanisms

between host and pathogen. In this chapter, a SdA-based deep learning model for HP-

PPIs datasets is presented and the comparison of the SdA model with other models

indicated its superiority for this application. From the evaluation result of this chapter, the

unsupervised SdA model is optimal for the highly skewed and big datasets and is better

at feature representation if compared to other models. Additionally, model convergence

speed has benefited from the unsupervised learning technique and the usage of GPU. The

results suggested that, the deep learning model was capable of dealing with big HP-PPIs

datasets.



Chapter 9

STRUCTURAL PRINCIPLES ANALYSIS OF
HOST-PATHOGEN PROTEIN-PROTEIN INTER-
ACTIONS: A STRUCTURAL BIOINFORMAT-
ICS SURVEY

Computational-intelligence methods in bioinformatics and systems biology show promis-

ing potential for leveraging abundant, large-scale molecular data. These methods can

facilitate analysis and prediction of the principles of biological systems through construc-

tion of statistical and visualised models. Specifically, structural data from exogenous

and endogenous protein-protein interactions are of vital significance in this context,

encompassing primarily three-dimensional (3D) structural information for a cohort of

macromolecules underpinning the biological system.

This chapter anticipates to further survey the main methodologies and algorithms

for the reconstruction and modelling of the structural-interaction networks (SINs) of

host-pathogen protein-protein interactions (HP-PPIs), regarding how the protein domains

interact with each other to constitute a SIN. Surveying the pattern and organisation of

the SIN delivers a state-of-the-art view of HP-PPIs and illustrates prospective future

research directions. In addition to the binary PPI network, the relevant data sources

into several branching research areas will be distilled and the discussions will be further

extended into computational-intelligence methods to shed light on effective method

design. In particular, atomic resolution level investigations can reveal novel insights

189
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into the underlying principles of the organisation and complexity of HP-PPIs networks.

Combining data analytics and machine learning technologies, it is anticipated that this

systematic overview will serve as a useful guide for interested researchers to carry out

related studies on this exciting and challenging research topic in system biology in the

future.

9.1 Introduction

In this chapter, the main goal is to discover how the computational-intelligence methods

can help solve key problems and the dominant mechanisms involved in proteomics

research. Considering proteomics represent the large-scale study of proteins, proteomics

relies upon the investigation of several aspects, including when, where, and how proteins

function, and how proteins interact with each other. Recently, an abundance of experi-

mental data has accumulated, propelling hypothesis-driven biomedical research into the

big-data era.

Given the continuous growth and availability of large-scale multi-omics data, both the

protein-protein interaction (PPI) networks and structural analyses involving proteomics

remain hot topics. Exploration of proteomics data sources, such as those from the

European Bioinformatics Institute [4, 6, 333], promotes research in transforming biomed-

ical research at system-level, mechanistic studies aimed at a comprehensive and holistic

understanding of biological systems [8]. Although challenges, such as specialised domain

knowledge and data issues, might hinder proteomics researches, this data-driven work to

obtain extensive information about systems from large amounts of raw data is currently

popular in both academia and industry [3].

Systems biology [334] represents the comprehensive study of presenting a holistic view

and analysis of biological processes. Specifically, systems biology aims to understand

and further predict the behaviour of biological systems [335] and includes studies on

functional genomics and proteomics. There are several studies focusing on genomics data,

mostly from The Cancer Genome Atlas (TCGA) [7], given that a nearly complete map



CHAPTER 9. STRUCTURAL PRINCIPLES ANALYSIS OF HP-PPIS 191

for human and other species had been provided along with the development of genome-

sequencing projects [335]. These studies provided insights into gene-related networks

and a fuller understanding of how a set of molecules interacts with each other [65].

Three-dimensional (3D) structures of these molecules are the most critical for deriving

relationships.

This chapter is focused on proteomics, and specifically on HP-PPIs. Considering the

prevalence of protein interactions between species, most early studies were performed

within the same species due to the limited availability of proteomics data at that time

[33, 283]. Several recent studies demonstrated improvements in PPI between different

species, which were referred as ‘interspecies PPI’, and that offered important information

for further analysis of infectious mechanisms [327, 335]. However, beyond the interaction

between these PPIs, their structural information is vital to their discovery. We anticipate

that study of the identified data collected via open databases [49] would present a

comprehensive survey towards structural principles concerning the PPI identified between

the host and pathogen. These HP-PPIs are experimentally verified and manually recorded

in systems and include information regarding infection pathways in their interaction net-

works and are able to reveal much more information regarding the infectious mechanisms

between hosts and pathogens. We first investigated a previous HP-PPIs study [49] and

expanded our work based on the preliminary sequence information [327, 336] to exploit

the online available and experimentally verified HP-PPIs data. However, these studies

simply focused on binary protein interactions prediction.

In addition to these studies, we expect to leverage the structural information of the

HP-PPIs data for building structural-interaction networks (SINs) with respect to simply

classifying pairs of proteins as interacting or not. The structural information of the HP-

PPIs represents various protein properties, from which systems biology might extract a

highly convincing network-analysis result and introduce trustworthy statistics in coopera-

tion with the corresponding structural information and domain data, as well as the atomic

resolution-level networks.
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Therefore, the structural-principle analysis of HP-PPIs networks is discussed and

surveyed in the following sections, which covers most branches closely associate with the

protein structural information. This analysis was achieved by SIN, an atomic-resolution

PPI network [28]. Protein structural information is another experimentally determined set

of 3D data previously described. It mainly contains several protein properties, including

domain information, family annotation, secondary/tertiary structure.

Because there are few 3D-specific studies offering an atomic view of HP-PPIs, we pro-

vide an overview of progress made by biologists in relation to bioinformatics, including

3D structural databases and analysis based on the structural information. It is anticipated

that the efforts will help to navigate gaps between biological analysis and computational

modelling. This includes: 1) Protein secondary/tertiary structure prediction; 2) Domain-

domain interaction prediction. These provide the basics for reconstruction of a SIN.

9.2 Preliminary Concepts

The two main predictive tasks associated with proteomics related to computational

biology are the protein structure and the domain-domain interaction. Both sets of data are

usually difficult for bioinformatics researchers to obtain; however, building a SIN requires

a complete understanding of both protein structure and domain features. In this section,

we present the biological meaning for both the structural information and the domain-

domain interactions, and also introduce the modelling process necessary for completing

the prediction of both tasks.

9.2.1 Sequence Information

Proteins are comprised of various numbers of amino acids as their basic building blocks.

The concatenated string of amino acids forming the folded protein represents its primary

sequence information. Typically, there are 20 different proteinogenic amino acids [283],

although five additional amino acids exist in the human and pathogen protein sequences

[49], including selenocysteine/U, pyrrolysine/O, aspartate or Asparagine/B, glutamate,
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Basic
Group

Histidine (His)

Arginine (Arg)

Lysine (Lys)

Nonpolar
Group

Isoleucine (Ile)

Phenylalanlne (Phe)

Leucine (Leu)

Tryptophan (Trp)

Alanine (Ala)

Methionine (Met)

Proline (Pro)

Valine (Val)

Polar
Group

Cysteine (Cys)

Asparagine (Asn)

Glycine (Gly)

Serine (Ser)

Glutamine (Gln)

Threonine (Thr)

Tyrosine (Tyr)

Acidic
Group

Aspartic (Asp)

Glutamic (Glu)

Figure 9.1: Amino Acids Groups

and glutamine/Z. Figure 9.1 shows the 20 different amino acids.

As a preprocessing step for inputting sequence data into computational model built

for protein classification and regression tasks, transformation of efficient and effective

data into the model is necessary. Sequence representation is a vital preprocessing

step for efficiently and effectively feeding data to any computational model for protein

classification and regression analysis. In Table 9.1, several mainstream algorithms

concerned with sequence representation is listed, where the protein sequence is denoted

as X = x1,x2, ...,xn. For a complete list of the feature representation algorithm review,

please refer to Chapter. 4.

These different sequence-representation algorithms provide as much information as

possible to the computational model in different vector lengths. Because the sequence

information is easier to obtain via the high-throughput technology, it is primarily utilised

for both protein structure prediction and interaction prediction.
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Table 9.1: Protein Sequence Representation Algorithms

Algorithm Reference Definition Prefix Equation Feature Dimension
Amino acid compo-
sition

[337] Each feature represents the
frequency of the corresponding
amino acid type in the protein

aai is one of the 20 types of amino
acids aa1,aa2, ...,aa20

fi =
countsaai

n 1∗20

Conjoint triad
method

[283] Considering the properties of one
amino acid and its vicinal amino
acids as a pattern fi, the frequency
of fi represents one feature. The
concatenation of these fi defines a
unique feature vector.

For the amino acids that have been
catalogued into seven classes, F =
f1, f2, . . . , f343. D = d1,d2, . . . ,d343

di =
fi−min( f1, f2,..., f343)

max( f1, f2,..., f343)
1∗343

Auto covariance [33] Projecting the amino acids with
their specific seven kinds of phys-
iochemical properties, auto covari-
ance formalizes the sequence infor-
mation into a uniform matrix

Pi, j is the jth property of the ith
amino acid, while the protein has n
amino acids. lag is defined as the
distance between two amino acids
and lg is the maximum value of lag.

AC(lag, j) =
1

n−lag ∑
n−lag
i=1 (Pi, j− 1

n ∑
n
i=1) ∗

(Pi+lag, j− 1
n ∑

n
i=1 Pi, j)

lg∗7

Local descriptor [232] Segmenting a protein sequence into
several individual regions, i.e. 10
regions in [232], three descriptors
are used to describe each region,
including Composition (C), Transi-
tion (T) and Distribution (D).

The basis to group amino acids
is considered by different biology
schemes, i.e. three functional
groups (hydrophobic (CVLIMFW),
neutral (GASTPHY) and polar
(RKEDQN)), seven physiochemi-
cal groups.

i = 1,2, . . . ,7; ci =
countsCi

n ;
ti =

countsTi
n−1 ; di = loc(Ti)

n ,
loc(Ti) denote the location
index of i

1∗630

Position-Specific
Scoring Matrix
(PSSM)

[249] The defined matrix, P, is in n ∗ 20
dimensions, where P(i, j) indicates
the possibility of the jth amino acid
appears at i position. PSI-BLAST
[338] is one of the most frequently
used tools. PSI-BLAST [236] is
one of the most frequently used
tools.

The protein sequence is divided into
20 blocks while its length is n.

Pi j = ∑
20
k=1 w(i,k) ∗ Y ( j,k);

Fj =
1

B j
∑

B j
i=1 P(

i j)
20∗20

One-hot sparse vec-
tor

[339, 340] Each amino acid is defined in a
one-hot sparse vector. The length,
M, of vector is dependent upon the
number of the amino acid types, i.e.
25 in [49], 22 in [339] and 21 in
[340]

Normally, a balance cut-off value
should be defined before prepro-
cessing. 700 is mostly used.

Each row only has one posi-
tion with value ‘1’

[700∗20]
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Figure 9.2: The 3D structure of the protective antigen (Uniprot ID: ‘P13423’)

9.2.2 Structural Information

Because protein sequences exhibit various lengths, those with < 50 amino acids are

generally referred to as polypeptides and contain only primary level information. For

secondary structure, folding forms common structures, such as α−helices and β−sheets

(from β − strands). Another structure is referred to as a random coli. Upon folding, a

secondary structure subunit transforms into tertiary structure. For some proteins, their

structure consist of more than one polypeptide, suggesting multiple tertiary structures.

This context information is subsequently referred to as quaternary structure. The 3D

structure for protective antigen (UniProt ID: ‘P13423’) is illustrated in Figure 9.2.

Because the wet lab is the site of protein-structure determination by X-ray crystal-

lography, NMR spectroscopy or cryo-electron microscopy, these methods are extremely

time-consuming and expensive. Therefore, an ab initio method based on computational

modelling is a current focus of academic and industrial research. Only < 0.5% of

all sequenced protein structures have solved structures according to the limitations of

biological experiments methods [341].
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Study of secondary structure prediction creates a dictionary of protein secondary

structure (DSSP), which is better defined and clearer than tertiary structure and quaternary

structure. Additionally, secondary structure can be analysed using efficient sequence in-

formation from primary structure. The secondary structure is predefined with three types

of motifs: α-helix, β -strand and coli, allowing Q3 accuracy [340, 342–344]. Statistical

models and machine learning methods have extensively improved Q3 predictive accuracy

from 65% to 80%. Recently a more challenging problem targeting on eight-category

prediction (Q8) defined in DSSP for secondary structure prediction was described. These

eight categories describe the secondary structure based on additional elements: 310-helix,

α-helix, π-helix, β -strand, β -bridge, β -turn, bend and loop/irregular [339, 345]. To

achieve more accurate results on secondary structure, these methods require not only an

efficient model but also sufficient feature representations from the sequence information.

The involved models will be introduced in Section 4. The key challenge to predicting

secondary structure involves prediction of those proteins having no close homologs and

that have not experimentally verified 3D structures.

To achieve sufficient feature representations for secondary structure prediction, most

studies introduced the protein-sequence information, amino acid profile information, local

and global sequence information [340, 343, 346, 347]. Herein, the focus is firstly on the

eight categories for secondary structure prediction task.

Figure 9.3 provides an example of a tertiary structure of the protective antigen protein

(UniProt ID: P13423). Prediction for this level of structure normally involves homology

modelling [348], which is also known as comparative modelling, where the main resulting

candidate is derived from amino acid sequence alignment by mapping amino acids

between different sequences. Introduction of homology modelling method into tertiary

structure prediction allows evolutionary results to reveal proteins harboring similar amino

acid sequences based on their shared similar tertiary structure to accomplish related

biological function [349]. The structure information is a requisite for structural interaction

networks, given that they provide atom level information.
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Figure 9.3: Tertiary Structure of Protein Protective Antigen (Uniprot ID ‘P13423’)

9.2.3 Domain-Domain Interactions

Given a protein sequence, protein domains are distinctive functional or structural subseg-

ments. Most protein domains build independently stable and folded 3D structures, with

which the domains combined into different arrangements to form a unique protein with

different functions [350]. Therefore, binary PPI networks can be further considered at

the domain level, especially when the interacting protein is large. Although most proteins

consist of multiple domains, a pair of PPIs often involves only one pair of domain-domain

interaction focusing on the actual binding site.

Domain-level interactions provide a global view of the binary PPIs network. For

HP-PPIs investigations, this reveals interaction location or pathological interactions and

can help facilitate drug-development targeting for infectious diseases. To acquire a

comprehensive understanding of how domain interactions are mediated, the primary

method involves analysis of individual interactions using experimentally determined 3D

structures. However, this information is available for only a small fraction of proteins,

indicating the domain-level PPI data not readily accessible.
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Figure 9.4: Domain-domain Interaction

There are several existing databases, including 3did [31] and iPfam [351], that provide

domain-domain interactions by identifying these based on experimentally determined 3D

structures. Other databases provide combined interactions, in which data are derived

experimentally and the rest is computationally predicted. DOMINE [352] includes both

3D-structure-based and predicted domain-domain interactions and shows the predicted

domain-domain interactions at three different levels, namely ‘High’, ‘Middle’ and ‘Low’.

Two primary methods, association [352] and maximum-likelihood estimation [353], are

introduced in this domain-domain interaction-prediction task. The essential information

utilised in these models includes domain information from protein sequence and binary

PPI information.

To provide a general understanding of domain-domain interactions associated with

binary PPIs, Figure 9.4 shows a basic diagram for domain-domain-interaction prediction

[354]. ‘Protein A’ interacts with ‘Protein B’ while ‘Protein C’ does not interact with

‘Protein D’. Several different domains types are identified using the related databases.

Mostly, Protein Data Bank (PDB) [355] is applied as suggested. Next, the differences

between these two groups of domain-domain relationships to identify the interacting

domains between two different proteins will be compared.
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9.3 RELATED DATABASES

Ranging from protein-sequence information to their structure data, several different

databases are currently available and well maintained, including host-pathogen PPI

databases, structure databases, protein families and domain databases, and also domain-

domain-interactions databases.

9.3.1 Host-Pathogen Interactions Databases

Although several different standardized formats for the host-pathogen PPIs are published

by different organizations, these databases contain the most important binary information

for HP-PPIs researches. Some popular repositories are initially built by universities, such

as HPRD by Johns Hopkins University and the Institute of Bioinformatics, PATRIC by

University of Chicago, PHISTO by Boğaziçi University, VirHostNet by Université de

Lyon. Highly credible positive HP-PPIs pairs are manually recorded in these systems

and updated periodically. The details of several selected popular databases are listed in

Table 9.2. For a complete survey regarding the HPI databases, please refer to Chapter. 3.

Table 9.2: Partial Host-Pathogens PPIs Database

HP-PPI Database Contents
HPRD [196] A database manually extracted from literature,

is built by Johns Hopkins University, includes
more than 39,000 interaction pairs.

BIND [184] It belongs to Biomolecular Object Network
Databank, and is maintained by University
of Toronto. It provides more than 200,000
interaction pairs.

DIP [178] It includes several sources, i.e. Yeast Protein
Database, Kyoto Encyclopedia of Genes and
Genomes.

PATRIC [160] Continuously updated by University of
Chicago, this database is built upon a
combination of several public repositories.

PHISTO [161] Currently it stores over 23,000 interaction pairs
and these data are imported from several PPI
databases using PSICQUIC tool.
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9.3.2 Structure Databases

The Protein Data Bank (PDB) [355] is the primary database housing structural infor-

mation for proteins and is managed by the worldwide Protein Data Bank (wwPDB)

international collaboration. The PDB contains all experimentally determined protein

structures ranging from different resolutions and detection methods.

The PDB is currently updated weekly and has its own file format standard, which is

strictly defined to provide protein and nucleic acid structure details. A standard PDB

file should contains atomic coordinates, observed sidechain rotamer, secondary structure

assignments and atomic connectivity information. Apart from the critical information,

abbreviation content about the corresponding literatures is also mandatory in PDB file,

which is listed as Header. Several other specific columns include the ID number, date

for publication, obsolete status, details about the related experimental methodology,

molecular components of the complexes, the source of the complexes, the experimental

method used to determine the structure, the authors, modification and revocation records,

and related literature, the maximum resolution, and other statistics.

A simple example of the protective antigen protein (UniProt ID: P13423) using PyMOL

[356, 357] is shown in Figure 9.3. It requires substantial time and effort to acquire

an experimentally determined protein structure, and currently, not every protein has its

corresponding structural information available. Determination of this information for

these proteins is critical for building a SIN.

9.3.3 Protein Families and Domain Databases

As an important database of protein domains and families, Pfam provides a complete

map for protein domains and families [358, 359]. It is regularly updated, with the latest

version being Pfam 31.0 released in March 2017 for instance and containing >16,712

protein families.

Although amino acids are the elements comprising a protein sequence, functions occur

in multi-sequential regions which are called domains. Identifying these domains provides
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details and insights regarding the functional mechanism of the protein.

Structural information allows bond information detailing interactions between proteins,

which is more concrete than binary HP-PPIs network provided in HP-PPIs databases.

Therefore, iPfam is used in SIN studies to identify domain-domain interactions between

proteins [351]. iPfam was developed by Howard Hughes Medical Institute, and currently

harbors > 9,500 domain-domain interactions.

iPfam is based on two continuously updating databases, PDB and Pfam, both of which

are well established for their 3D structure and domain-information purposes. Most of the

structural information in the PDB also contains multiple domains. The 3did is another

domain-domain interaction databases for 3D-interacting domains between proteins, and

is a collection of protein interactions from which high-resolution 3D structures are known

[31, 360].

By using iPfam and 3did to achieve domain-level resolution of HP-PPIs, SIN considers

proteins in their precise spatial relationships by layering domain-domain interactions

on top of the conventional PPI networks. As protein-sequence information accumu-

lates at a staggering rate, these data depict its characteristics with high volume, high

velocity, high variety, high value and high veracity (5V). This, along with big-data

analytics, including machine learning technologies, allows addressing structural and

domain-domain-interaction prediction problems. The following sections will introduce

the related computational models or methods for SIN construction, including machine

learning methodologies.

9.4 Computational Models

SIN is designed to layer high-confidence 3D models on top of PPIs. Before layering

the structural information on the binary HP-PPIs network, the structural information of

corresponding proteins is requisite. However, only a few proteins have experimentally

determined structure, specifically with high-resolution scale. Therefore, herein we present

related studies outlining structure prediction and domain-domain-interactions prediction.
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The review in this section is considered as an important step in jointly studying protein

structural information while supplementing the structural interaction network.

9.4.1 Bayesian Statistics

The earliest studies on protein secondary structure prediction mainly focused on the use

of Bayesian statistics [361–363]. Basically, Bayesian statistics describes this problem as

following Equa. 9.1.

I(S;R) = log[
P(S|R)
P(S)

] (9.1)

where P(S|R) is the conditional probability for observing a conformation S, when a

residue (amino acid) R is present, and P(S) is the probability of observing S. According

to the conditional probabilities definition, P(S|R) = P(S,R)/P(R). P(S,R) is the joint

probability of S and R. Through the use of Eq. (1), an estimation of I(S;R) from a database

of known protein sequences and corresponding secondary structures can be achieved.

Specifically, a previous study [362] showed that the the Garnier-Osguthorpe-Robson

(GOR) method based on information theory used a 17-amino-acid sequence window to

extract properties from protein sequences. The GOR method presented the observed

frequencies of singletons, then in pairs of residues on a local sequence of 17 residues

to build the Bayesian model, followed by estimation of the probabilities for the Q3

structures. This method increased the accuracy from 55% to 64.4%. Later, in [363],

combined with information theory, GOR V algorithm projects the known twenty amino

acids types for each specific secondary structure to achieve a Q3 accuracy of 73.5%.

9.4.2 Support Vector Machine (SVM)

Using SVMs to predict protein secondary structure was firstly introduced in 2001 [364],

with the first SVM proposed in 1995 [253]. It is not the first machine learning approach

used for protein secondary structure prediction, yet by then, it achieved the best perfor-

mance overall on Q3 task.

Similar to earlier researches using neural network based methods [346], the encoding
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scheme for the input layer is called a local-coding scheme and denotes every amino acid

with a 21-dimensional orthogonal binary vector as Equa. 9.4.2.

(1,0, ...,0)or(0,1, ...,0),etc

In the output layer, the Q3 task was first considered as a binary classifier later combined

into a tertiary classifier.

A previous study [364] considered the SVM as a superior model based on its ability

to effectively avoid overfitting and to handle large feature spaces. In details, the authors

[364] selected the radial basis function as the kernel function to train the SVM, resulting

in a Q3 task of 73.5%.

9.4.3 Random Forests

Apart from predicting secondary structure, domain-domain interaction is also critical to

the SIN. The random forest model was introduced to build multi-classifiers to determine a

decision for a dataset with 1050-dimensional features [365]. Additionally, another study

[366] showed an ensemble model of random forests and SVMs were able to predict the

domain-interacting sites.

Derived from decision trees model, random forest leverages the power of randomisation

to increase model performance [255, 367]. It is able to deal with imbalanced data

problems via the voting mechanism while its random feature selection benefits the model

in case of high-dimensional data.

9.4.4 Artificial Neural Networks

To the best of our knowledge, artificial neural networks were first introduced in protein

secondary structure prediction using a fully connected three-layer network in [346], with

a learning algorithm involving back propagation. Later, the authors of [368] used a two-

tier architecture to deploy neural networks for prediction; however, the improvement in

Q3 accuracy has since stalled.
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Recently, Q8 accuracy has been the focus of academia and industry, aiming to apply

deep learning techniques to improve performance. In [369], probabilistic graphical

models, which combine conditional neural fields (CNFs) with neural network, were

deployed to improve Q8 accuracy. The features are extracted from position-specific

score matrix (PSSM) and the physico-chemical properties of the amino acids. Both

the complex relationship between sequence and secondary structure information, and the

interdependency relationship among secondary structure types of adjacent amino acids

were studied using the CNFs model [369].

Generative stochastic networks (GSNs) were utilised to learn a generative model of

data distribution without explicitly specifying a probabilistic graphical model [339], .

Specifically, this supervised extension of GSNs is deployed via learning a Markov chain

to sample from a conditional distribution for training on a protein structure prediction

task. This model was presented with deep learning techniques to tackle Q8 problem for

protein secondary structure prediction. The empirical design for the data preprocessing

step involved choosing 700 lengths as the cut-off threshold to balance the efficiency and

coverage of protein sequence. The main features extracted included the evolutionary

information (PSSM feature) and the sequence information (one-hot binary vector feature).

The model achieved 66.4% accuracy on Q8 problem.

The most recent result on Q8 accuracy task was reported in [340], which proposed

a deep convolutional and recurrent neural network. The feature encoding the protein

sequence remained partially similar to the local-coding scheme. In this network model,

a feature embedding layer was deployed to map sequence information and profile feature

(by PSI-BLAST) to a denser matrix. Multiple convolutional neural network layers

and stacked bidirectional relational neural network layers were included to learn both

local context information and global context information from the denser matrix. Fully

connected and softmax layers were layered on the top of the model to build the classifier

for the prediction task.

Considering the different properties of protein structure, an iterative use of predicted
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features, including the backbone angles and dihedrals based on Cα atoms, improves

secondary structure prediction accuracy [370]. Stacked sparse auto-encoders with three

hidden layers were introduced. The hidden layers were all with 150 neuron nodes. The

method achieved an accuracy 80.8% in secondary structure prediction in the recent CASP

targetsa [370].

Various models have been discussed in this section; however, our goal is to stack

these different data types atop the binary HP-PPIs network to achieve structural principles

analysis. In the following section, the structural interaction network will be discussed.

9.5 STRUCTURAL INTERACTION NETWORK

Since principles analysis of protein interactions between host and pathogens still remains

poorly understood, an ensemble network of binary HP-PPIs networks and structural

information would provide an efficient option for mining this knowledge using a systems

biology approach.

A previous study used 3,949 genes, 62,663 mutations and 3,453 associated disorders

for analysis using a 3D structurally resolved human interactome network [371]. By

integrating data from iPfam, 3did and the Human Gene Mutation Database (HGMD)

[372], a high-quality binary PPIs network with the atomic-resolution interfaces was

successfully built [371], providing key insights to in-frame mutations, locations, and

disease specificity for different mutations in the same gene, which had not been possible to

be acquired on a low-resolution network. The original interaction network obtained from

literature-curated databases [371] contained 82,823 pairs; however, after filtering out the

proteins without experimentally determined structures, only 4,222 structurally resolved

interactions between 2,816 proteins remained. To build a structural interaction network

still requires more efforts on experimental determination of a structure or computational

prediction, because only a tiny fraction of these binary PPIs can be analysed with their

corresponding structure information.

ahttp://predictioncenter.org/casp11/index.cgi
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Figure 9.5: Binary PPI Network of Clostridium botulinum

9.5.1 Construction of SIN

Figure 9.5 shows six primary human proteins interacting with nine Clostridium botulinum

proteins, resulting in 44 HP-PPIs connections derived from the PHISTO database. These

interactions are considered as exogenous interactions. To further analyse interactions

from the PPI network, this information with structural information is embedded. There are

two classes of protein-protein interaction in physical interactions: interactions mediated

by two domains and that between short motifs and domains.

It can be observed that, several possible structural principles analyses were obtained

within the human-virus protein-protein interaction network [28]. The SIN approach in

human-virus PPIs network reveals atomic resolution, mechanistic patterns, and allows

systematic comparison with human endogenous interactions.

Figure 9.6 shows an example detailing how to layer the structure and domain-domain

interaction information on top of the binary PPIs network [28, 264].

Figure 9.6 reveals the overlapping interfaces between the ‘Pathogen Protein-Host

Protein2’ and the ‘Host Protein3-Host Protein2’, which determine the interaction. This

type of information could not be observed in the binary PPI network. Further analysis
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Host	
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Figure 9.6: Structure Interaction Network [264]

Figure 9.7: The Overlapping Structure Interaction: The red string is the human protein
Beclin-1, which is annotated with 5EFM as its PDB id. The compound (in yellow),
which is interacted by human protein ‘Beclin-1’ and Gamma Herpesvirus protein ‘v-
Bcl2’, is associated with the compound (in blue) by human protein ‘Beclin-1’ and human
protein ‘BCL-XL’. The 3D structure of yellow compound can be fetched by PDB id 4MI8
while the blue is 2P1L [373].

revealed that ‘Pathogen protein’ is mimicking the action of ‘Host Protein3’. Layering

the 3D structural information to illustrate the details of the protein interaction allows

derivation of two different classes of protein interactions (Figure 9.7 and Figure 9.8)

[373]. The results are generated by PyMOL [357].

The illustration examples present the non-overlapping protein-protein interactions by

3D structures 1F5Q-1BUH, and overlapping protein-protein interaction by 4MI8-2P1L

[373]. Here, 1F5Q, 1BUH, 4MI8 and 2P1L are their PDB id.
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Figure 9.8: The Non-overlapping Structure Interaction: The interaction is linked by the
human protein ‘CDK2’. The PDB id is 5MHQ. The yellow compound is the interaction
between Gama Herpervirus ‘Cyclin’ and human protein ‘CDK2’. The purple compound
is by human protein ‘CKS1’ and ‘CDK2’ [373].

9.5.2 Highlights of SIN

The host-pathogen PPI networks provide specific pathogen protein functions and the

global analyses on this network help revealing critical proteins in the networks [264].

Although Figure 9.7 provides essential mappings via the overlapping interfaces, anno-

tating the experimental HP-PPIs networks with 3D structural information will provide

further information, because the PPIs can be combined between two globular domains and

also between one short linear motif (a short functional segment considered on secondary

structure) and globular domains. Superimposing structures of the HP-PPIs can help to

visually reveal the details.

Several methods to assemble structural information with binary HP-PPI network in-

clude:

• Using only the experimentally determined structural information. Both proteins

in the HP-PPIs network could be mapped along with the determined structural

information;

• Using both the experimentally determined and computationally predicted structural
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information. One of the proteins in the HP-PPIs could not be mapped with its

determined structural information;

• Using only the computationally inferred structural information. Both proteins in

the HP-PPIs could not be mapped with its determined structural information. The

homology modelling method is widely used for searching for homologous proteins

with having determined structure according to the BLAST E-value.

Computationally predicted structural information mainly comes from homology mod-

elling, which is widely used in bioinformatics, provided that protein structure and function

are primarily determined according to their sequence information [28].

Typically, for host-pathogen protein-protein interactions, most researches hypothesised

that imitating the binding activities between proteins would allow insight into primary

mechanism associated with infections. Given a SIN, there are several types of statistics

data that may help us propose and support this hypothesis. As a specific example

between virus and host-PPI networks, a previous study [28] analysed the exogenous and

endogenous interactions in the human-virus SIN model.

Meanwhile, the overlapping ratio of protein interactions involved in exogenous in-

terface to those involved in endogenous interface indicates potential infectious targets,

although the mapping of endogenous interfaces is not guaranteed to be complete [28].

To achieve a better understanding of the mimicry mechanism that possibly explains

virus-infectious procedure, similarity statistical analysis can be performed according to

z-score [374] and E-value [236] levels. Since the mimicry action occurs between host

protein and pathogen protein, similarity statistics might help elucidate potential activities.

Overall, SIN, combined with binary protein-protein interactions, has many advantages

for precise analysis based on statistics associated with 3D structure and domain informa-

tion.
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9.6 Challenges

While the boom of big data analytics appears promising, when dealing with both the struc-

tural information and domain-domain interactions, there still remains several challenges

in the areas of SIN and HP-PPIs network development.

9.6.1 Feasible and Efficient Feature Representation

For computational models, especially protein sequences, feature representation remains

a challenging topic. Various methods for feature representation currently exist [49, 327,

336, 338, 344–347]. Previous studies have indicated that, various representational meth-

ods yielded different performances across several species, although additional protein

sequence information is being experimentally generated.

Additional models based on deep learning techniques present a more effective frame-

work for learning from big data sets. The automatic feature extraction process could be

a promising option for protein sequence research. For example, in previous chapters,

the unsupervised learning model, which applies the stacked denoising autoencoder as the

model to extract high-level feature for model learning, has shown a promising vision

[327]. The result showed a potential direction for introducing deep learning neural

networks.

Prior to inputting data into learning models, several traditional feature representation

methods, including one-hot vector method, PSSM feature, and other statistic methods

shown in Table 9.1, were widely used. Additionally, deep learning techniques are also first

introduced in protein secondary structure prediction [339, 340] and HP-PPIs prediction

tasks [327]. In terms of feature representation, deep learning techniques could harness the

power of high-dimensional data in large volumes, enabling acquisition of large volumes

of feature information to further improve model performance.
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9.6.2 Imbalanced Data

Another challenging issue is the imbalanced ratio among different classes of the structural

information, such as the eight categories of protein secondary structure. For struc-

ture prediction, domain-domain interaction and host-pathogen protein-protein interaction

problems, the imbalanced ratio between different classes is important in improving model

performance.

The ratio of non-interface interactions to interface interactions is about 9:1 [365].

In structure prediction task, the ratios in both Q3 and Q8 tasks are also different and

imbalanced between different protein families. Specifically, for Q8 tasks, some structures

are barely observable in the protein structures. In a previous study, the interacting pairs

and non-interacting pairs were defined with 1:100 ratio, which is a highly skewed number

[49].

With the continuous expansion and availability of structural information and domain

data, the issues involving imbalanced data biological areas intensifies.

9.7 Summary

This chapter is designed as a survey describing the building of structural interaction net-

work (SIN) for host-pathogen protein-protein interactions to analyse the resulting network

using a systems biology approach. This chapter is focused on structural information and

also SIN analysis. Several multidisciplinary and interdisciplinary areas were reviewed,

including protein feature representation, protein structure prediction, domain-domain

interaction prediction and machine learning methods applied for these prediction tasks.

For HP-PPIs researches, building SIN using atomic level data can provide insights into

high-resolution interactions based on protein structures and offer high-quality analyses

of interactions targeting infectious mechanisms. As a survey result of the state-of-the-

art methods, multiple areas still need to be addressed in this research direction. It

is anticipated that, this survey will benefit future proteomics studies, as well as the
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computational method design.



Chapter 10

CONCLUSION AND FUTURE WORK

This chapter will summarise the contributions of this thesis, and it will then discuss the

potential directions of future work.

10.1 Contributions

The main focus of this thesis is to deliver a comprehensive study of host-pathogen protein-

protein interactions, particularly there has been little effort on delivering a systematic

work of the computational models for the prediction task of host-pathogen protein-protein

interactions. Although great achievements have been made in biology and public health

areas around the world, it is still very important, also inspiring, to find novel methods

other than traditional purely medical and biological lab experiments. The traditional

methods are still expensive and slow-going, to uncover or predict mechanisms of viral

and bacterial infectious diseases. Considering the recent panic caused by the outbreak of

SARS-CoV-2, it has again brought great attention to viruses’ invading mechanism. Little

was known about the ‘novel’ coronavirus so that little therapeutic plan was ready at once

to handle it, even though similar viruses, such as SARS-CoV/MERS-CoV and HIV/HPV,

have been extensively studied for many years. On the other hand, benefiting from the

advanced development of high-throughput experimental and sequencing technologies,

increasingly tremendous and complicated omics data has been accumulated, which poses

great opportunities for computational biologist to find clues from protein interactions and

213
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omics data for carrying out system biology study. The knowledge learnt and shared from

such data can improve the understanding of the diseases and expedite the development of

effective therapeutic measures.

Since the study of HP-PPIs is critical to the understanding of infecitous diseases and

presents great values for the mechanism study, this thesis focus on building a delibarate

computational framework for discovery of HP-PPIs, which solicits an in-depth research of

HP-PPIs resources as well as feasible computational models. Thus, the thesis has studied

these two aspects by designing four distinct goals: 1) reviewing the host-pathogen inter-

actions databases published in the past decades in a comprehensive way; 2) evaluateing

machine learning-based computational models for discovery of host-pathogen protein-

protein interactions in a systematic manner; 3) developing novel machine learning-based

computational framework to better improve the discovery performance of host-pathogen

protein-protein interactions; 4) reviewing the state-of-the-art of the SIN reconstruction,

which could offer an atomic resolution analysis on host-pathogen interactions. In details,

following conclusions reports the achieved tasks.

In Chapter. 3, a comprehensive literature review related to host-pathogen interactions

resources, which are collectively published in last two decades, is conducted. The re-

sources reviewed in this chapter cover a wide range of topics of host-pathogen interactions

in Chapter.3.1 and Chapter.3.2. Furthermore, several standards and tools published in

the aim of facilitating proteomics research and development are reviewed in Chapter.3.3.

Later on, a brief statistic report of the curated human-pathogen interactions database and

the primary categories of bioinformatics tasks of host-pathogen interactions study are

elaborated in Chapter.3.4 and Chapter.3.5 repectively, which give the details of the current

status of human-pathogen interactions resources by collectively analysing the selected

databases.

In Chapter. 4, an systematic evaluation of the predictions task for HP-PPIs is conducted.

Different computational methods are included for evaluation, among which we have

presented a wide and deep review on currently available resources and computational
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tools. As noted in the literature review in Chapter. 4.2 to evaluate the computational

tools developed for prediction tasks of HP-PPIs, a dedicated data curation process

is implemented and a computational pipeline for HP-PPIs studies is summarized in

Chapter. 4.3, which includes numerous sequence feature representation algorithms and

machine learning models. Also, the computational methods concerning HP-PPIs from

literature are also elaborated. Given the evaluation of HP-PPIs, we have strived to

quantitatively determine the impacts caused by different ratios of benchmark datasets,

different feature representation algorithms and different machine learning models. The

experimental results in Chapter. 4.4 indicate that, to better utilise machine learning models

and harness the power of accumulated protein interaction data, a more robust and more

powerful computational model is required to achieve better performance across different

HP-PPI prediction tasks.

In Chapter. 5, a novel framework for HP-PPIs prediction based on Heterogeneous

Information Mining and Ensembling (HIME) process to effectively learn from the in-

teraction data is proposed. Since a robust performance of the prediction model is desired

to achieve for different HPI systems, HIME model leverages the abundant information

through mining the heterogeneous information of sequence data, and the details are

included in Chapter. 5.3. The horizontal ensemble procedure with heterogeneous infor-

mation has greatly exerted the base learners to boost the performance in the prediction

task. The performances are evaluated on different datasets, which has indicated HIME

model outperforms the others in Chapter. 5.4.

In Chapter. 6, given the foundation of the systematic review in Chapter. 4, a novel two-

layer machine learning model, namely APEX2S, is proposed to deal with the imbalanced

issue. In this chapter, the HP-PPIs prediction problem is further studied and a detailed

investigation concerning the multi-omics data for HP-PPIs in a broader scale is discussed

firstly in Chapter 6.1. Presented by the abundant multi-omics data, a comprehensive

and practical workflow is subsequently designed in Chapter 6.2, which has elaborated

the usage of machine learning techniques in a preliminary stage. More importantly
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for Chapter. 6, a novel two-layer model APEX2S for the prediction task of HP-PPIs

is presented in Chapter 6.3. In Chapter 6.4, a practice of the model in the dataset

concerning PPIs between human and Shigella infections pathogen is reported to evaluate

the performance of the computational models, which include the traditional machine

learning models and the two-layer APEX2S model. The comparison result has indicated

the better prediction ability and higher efficiency of APEX2S model

In Chapter. 7, the deep learning model is introduced to build a novel machine learning

model for the prediction task of HP-PPIs. Particularly, a bidirectional LSTM-based model

is presented for the prediction task, which demonstrates a more effective performance in

comparison with the others. In details, a multi-channel feature representation algorithm,

which is based on tree-based feature selection algorithm and synthetic minority over-

sampling technique (SMOTE), is firstly desined. Later, we discuss the bidirectional

LSTM model. Due to the scenario of imbalanced issue, the focal loss function is

subsequently employed as a novel cost function for Bi-LSTM model. The prediction

performance of HP-PPIs dataset has indicated that Bi-LSTM-based model has obtained

the best results.

In Chapter. 8, we report the investigation of the host-pathogen protein-protein interac-

tions with an unsupervised deep learning model based on stacked denoising autoencoders.

A SdA-based deep learning model for HP-PPIs datasets is presented and the comparison

of the SdA model with other models indicated its superiority for this application. From

the evaluation result of this chapter, the unsupervised SdA model is optimal for the highly

skewed and big datasets and is better at feature representation comparing with other

models. The results suggested that, the deep learning model is capable of dealing with

big HP-PPIs datasets.

In Chapter. 9, we have further surveyed the main methodologies and algorithms for

the reconstruction and modelling of the structural-interaction networks (SINs) of host-

pathogen protein-protein interactions (HP-PPIs), regarding how the protein domains

interact with each other to constitute a SIN. This chapter is focused on structural infor-
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mation and also SIN analysis. Several multidisciplinary and interdisciplinary areas were

reviewed, including protein feature representation, protein structure prediction, domain-

domain interaction prediction and machine learning methods applied for these prediction

tasks. As a survey outcome of the state-of-the-art methods, multiple areas will need to

be addressed in this research direction. It is anticipated that, this survey will benefit our

future work, for the future proteomics studies and the computational method design.

10.2 Future Work

In light of the research contents of this thesis, the following research directions could be

further explored in the future:

• Advanced Deep Learning Models: Deep learning models have been studied and

two models based on Bi-LSTM model and SdA model are proposed in Chapter. 7

and 8. The results have shown benefits by constructing deeper model for HP-PPIs

task. Meanwhile, advanced deep learning models, including the adversarial model

and attention model, also demonstrate capbilities of learning raw data automatically

in other research areas, such as computer vision and natural language processing.

The advanced deep learning model will be investigated in the future work. First

of all, the adversarial model aims to explore the data by generative model and

discriminative model. It could better utilise the unannotated data which has widely

exisited in proteomics area. Secondly, the attention model builds the model with

human-like attention mechanism. It can be better integrated in the sequence feature

representation algorithms to improve the model performance, for the reason that the

protein-protein interactions indeed occur between domains which is a functional

segmentation of the protein sequence. Thus, the advanced deep learning models

are expected to decipher the code of protein information in a better way and thus to

deliver more effective and efficient frameworks.

• Structural-Interaction Networks (SINs): A structural interaction etwork is of cru-
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cial significance for understanding the protein-protein interaction network at the

systems level. With the atomic level resolution, the structural information of the

HP-PPI network will be further interrogated. Based on Chapter. 9, the SIN will be

investigated based on various heterogeneous sources of structure data in the future

work. This network will be an essential component for systems biology to better

discover the biological functions and infectious mechanisms that underlie many

infectious diseases caused by pathogens. To reconstruct the structural interaction

network, it is important to annotate the protein interactions network with 3D

structural information, along with the protein family and domain data. However,

it still requires adequate efforts to be expended on the experimental determination

of structure or computational prediction, because only a tiny fraction of these binary

PPIs can be analysed with their structure information. Currently, there are several

feasible methods to assemble structural information with host-pathogen protein

interaction network, including: 1) using the experimentally determined structural

information only; 2) using both the experimentally determined and computationally

inferred structural information; 3) using the computationally inferred structural

information only. In the future work, both the computationally inferred method

and experimentally determined method to assemble structural information will be

investigated.

• Host-pathogen Interactions Network: Different protein interaction networks typi-

cally exhibit different characters due to the nodes representing proteins and edges

connecting proteins that can interact. For host-pathogen interactions network, it

plays a central role in biology function which regulates the mechanisms related

to healthy and diseased states in organisms. Meanwhile, there have been several

studies focusing on protein interaction networks alignment, by either local align-

ment or global alignment approach leading to new discoveries of protein complexes,

infectious pathways and functional orthologs. Herein, how to distill the alignment

task of protein interaction networks between host and pathogen could generate sub-
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stantial value to transfer knowledge between species. Most alignments of protein

interaction networks are achieved at pairwise level since the main approaches are

built upon either local network alignment or global network alignment. In the future

work, we anticipate to leverage the heterogeneous information to align the pairwise

level protein interaction network. From computational perspective, the evolutionary

algorithm is of great advantage to solve the similarity calculation problem between

interaction networks, which is NP-complete, in an efficient. It is inspired by

biological evolution and the computational complexity largely depend on the fitness

approximation method. It is expected that these future work could benefit the

computation of alignment task of HPI network and generate more knowledge.
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(285) Á. Győrfi, L. Kovács and L. Szilágyi, 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2019, pp. 909–914.

(286) S. Akodad, S. Vilfroy, L. Bombrun, C. C. Cavalcante, C. Germain and Y. Berthoumieu,
2019 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.

(287) F. Fahiman, S. M. Erfani and C. Leckie, 2019 International Joint Conference on
Neural Networks (IJCNN), 2019, pp. 1–8.

(288) G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye and T.-Y. Liu,
Advances in Neural Information Processing Systems, 2017, pp. 3146–3154.

(289) K. Yugandhar and M. M. Gromiha, “Protein-protein binding affinity prediction
from amino acid sequence.”, Bioinformatics (Oxford, England), 2014, 30, 3583–
3589.



BIBLIOGRAPHY 244

(290) N. Nakajima, M. Hayashida, J. Jansson, O. Maruyama and T. Akutsu, “Deter-
mining the minimum number of protein-protein interactions required to support
known protein complexes”, PLoS ONE, 2018, 1–17.

(291) H. Chen, L. Wang, C.-H. Chi and J. Shen, “Leveraging SMOTE in A Two-
Layer Model for Prediction of Protein-Protein Interactions”, 2019 International

Conference on Advanced Cloud and Big Data (CBD), 2019, 133–138.

(292) B. Liu, “BioSeq-Analysis: a platform for DNA, RNA and protein sequence
analysis based on machine learning approaches”, Briefings in Bioinformatics,
2017, 1–15.

(293) S. Blasche, S. Arens, A. Ceol, G. Siszler, M. A. Schmidt, R. Häuser, F. Schwarz,
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