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Abstract 

 
The genetic nature of psychiatric disorders was observed by clinicians long before DNA had 

been identified as the molecule of inheritance. The greatest identified risk factor of many 

psychiatric disorders still is a positive family history. Until recently this knowledge has not 

contributed substantially to treatment efforts or to a better understanding of the disease 

processes because we lacked the necessary genetic data. Advances in genotyping 

technologies have brought an end to this data shortage which is leading to a better 

understanding of the genetic architecture of psychiatric disorders. Two patterns started to 

emerge which were uncommon in earlier studied Mendelian disorders. (i) most of the genetic 

part of disease risk is conferred by a large number of genetic loci of small effect, and (ii) 

genetic loci often influence a large number of traits at the same time. While this is true of 

many traits ("complex" traits), these two phenomena (polygenicity and pleiotropy) are 

particularly pronounced in psychiatric disorders. This has wide-reaching consequences for 

the analysis and interpretation of genetic data and provides challenges as well as 

opportunities. This thesis focuses on two areas in particular: genetic heterogeneity and 

genetic risk prediction. 

 

Genetic heterogeneity in a phenotypically homogenous group describes a situation where 

different and distinct genetic risk profiles are causing similar symptoms in different people. 

This can be easily identified under a Mendelian inheritance pattern, but proves to be 

challenging under polygenicity. The presence of genetic heterogeneity can limit the accuracy 

of genetic risk prediction.  

 

The aim of genetic risk prediction is to use the information that has been gathered on the 

effects of genetic loci to estimate the genetic liability of an individual to develop a disease. 

Here, pleiotropy offers an opportunity to increase the accuracy of genetic prediction by 

leveraging information from multiple diseases at the same time. 

 

The aim in this thesis is to describe several projects which center around the two concepts 

of genetic risk prediction based on multiple traits and of genetic heterogeneity. Chapter 1 

sets the scene with an overview of recently developed polygenic methods. Chapter 2 deals 

with the effects of genetic heterogeneity on heritability estimates and demonstrates how 

genetic heterogeneity might contribute to the phenomenon of missing heritability, which is 
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the discrepancy between twin study heritability estimates and the variance explained by the 

sum of individual genetic loci. Chapter 3 addresses the question of whether genotype 

clustering can detect groups with different genetic risk profiles. Chapter 4 describes the 

implementation of a multivariate extension to the univariate Best Linear Unbiased Prediction 

(BLUP) method and its application to five psychiatric traits. Chapters 4 and 5 investigate 

whether this multivariate BLUP model can be approximated when only summary statistics, 

not individual level genotype data, are available for the predicted traits. Theory is derived for 

such an approximation, which is then tested in a simulation setup and applied to two 

psychiatric disorders, as well as to a range of other traits. 

 

Finally, the discussion places the work into wider context and discusses the findings and 

limitations of each project, and highlights similarities and differences between the two 

prediction projects.  
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HLA: Human leucocyte antigen 
IBD: Identity by descent / Inflammatory bowel disease 
IBS: Identity by state 
IQ: Intelligence quotient 
LD: Linkage disequilibrium 
LDpred: Linkage disequilibrium prediction 
LDSC: LD score regression 
LMM: Linear mixed model 
LRT: Likelihood ratio test 
MAF: Minor allele frequency 
MDD: Major depressive disorder 
MDS: Multi-dimensional scaling 
MHC: Major histocompatibility complex 
MME: Mixed model equations 
MND: Motor neuron disease 
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MR: Mendelian randomization 
MT: Multi trait 
MTGBLUP: Multi trait genomic BLUP 
MTGREML: Multi trait genetic REML 
NCP: Non centrality parameter 
OLS: Ordinary least squares 

PC: Principal component 
PCA: Principal component analysis 

PEV: Prediction error variance 
PGC: Psychiatric genomics consortium 
PICS: Probabilistic Identification of Causal SNPs 
QC: Quality control 
REML: Restricted (or residual) maximum likelihood analysis 
ROC: Receiver operator characteristic 
SAI: Schizophrenia / Autism / Intellectual disability 
SBLUP: Summary statistics BLUP 
SD: Standard deviation 
SE: Standard error 
SCZ: Schizophrenia 
SMR: Summary statistics Mendelian randomization 
SMTpred: Summary statistics multi trait prediction 

SNP: Single nucleotide polymorphism 
ST: Single trait 
STBLUP: Single trait BLUP 
TWAS: Transcriptome wide association study 
UK: United Kingdom 
UKB: UK Biobank	  
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Introduction	

	

Our understanding of what we now call psychiatric disorders has changed profoundly in the 

last two centuries. The notion that the brain underlies all kinds of cognitive and emotional 

processes has led to the idea that a mental disorder may be a manifestation of 

malfunctioning brain processes, analogous to how somatic disease is often a consequence 

of the malfunctioning of other organs. This started the field of biological psychiatry and with 

it the difficult search for somatic correlates of psychiatric disorders that may aid in diagnostic 

classifications and treatment. 

 

After the concept of the biological origin of psychiatric disorders became accepted, a 

separate but related question was to what degree heritable factors contribute to variation in 

susceptibility to psychiatric disorders. The true but not very informative statement that both 

genetic and environmental factors play a role could be refined by twin and family studies 

which provided estimates of how much genetic factors contribute to each trait or disease. 

These estimates pointed to a large genetic component of many psychiatric traits [1], implying 

that it would be worthwhile to study this component in greater detail [2,3]. This has become 

possible in the last fifteen years through the reduction in the cost of genotyping technologies. 

We can now address a multitude of questions about how genetic factors contribute to 

disease risk, often starting with the estimation of effects of individual genetic loci [4]. 

 

The first chapter of this thesis gives an overview over recently emerged methods that tackle 

some of these questions, including estimation of heritability and genetic correlation, inferring 

causality of SNPs and of phenotypes on other phenotypes, polygenic risk prediction and 

detection of disease heterogeneity. 

 

The question of disease heterogeneity is of particular interest in psychiatry. Psychiatry uses 

carefully drafted disease classifications, which are in turn based on various symptom 

configurations, but it is an open question if the separations imposed by these classifications 

are mirrored in a similar structure on the genetic level [2,5]. If that is not the case, our current 

diagnostic criteria are not perfectly aligned with underlying biology, and what we classify as 

one disease might in fact be genetically distinct groups of diseases. This kind of disease 

heterogeneity is the subject of two chapters of this thesis. 
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Chapter 2 explores how disease heterogeneity affects estimates of heritability from pedigree 

studies and estimates of SNP heritability. The difference between heritability estimates from 

pedigree studies and estimates of SNP heritability has been labelled missing heritability and 

has been the subject of much research [6–8]. While much of missing heritability can be 

explained by imperfect tagging of causal markers by genotyped markers, we show that 

disease heterogeneity can also account for some of the difference between the two types of 

estimates, as they are differently affected by genetic heterogeneity. 

 

For this and many other reasons, it seems desirable to define groups of affected individuals 

who exhibit a genetically more homogeneous risk profile. One approach to this is to cluster 

individuals based on a certain set of SNPs. Chapter 3 investigates in a simulation setup the 

degree to which such genotype based clustering methods are able to distinguish between 

disease subgroups. The results of this analysis are sobering in that even with very large 

sample sizes, a good separation between subgroups may not be possible for polygenic 

disorders. 

 

However, genetic heterogeneity doesn’t only pose problems. A flip side of heterogeneity is 

that what we classify as separate diseases might in fact have a shared aetiology. On a 

genetic level this may manifest itself as a positive genetic correlation between the two 

diseases. This is common across most traits and diseases, but especially common among 

psychiatric disorders, and provides a unique opportunity to improve genetic risk prediction 

[9,10]. In polygenic traits, genetic risk prediction crucially depends on the accurate 

estimation of the effects of associated (and non-associated) markers [4]. These estimates 

can be made more accurate by combining data on multiple, genetically correlated diseases. 

This concept is the subject of chapters 4 and 5. 

 

Chapter 4 introduces a method to use genotype and phenotype data from multiple traits to 

derive genetic risk predictors which are more accurate than their counterparts for single 

traits. The method is a multivariate extension of the GBLUP method which is widely used in 

genomic prediction. We show that the method increases prediction accuracy in five 

psychiatric disorders, and quantify the amount of increase in sample size that would be 

necessary to achieve a similar increase using the single trait approach. 

 

This method requires individual level genotype data on all traits that are to be combined. 
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Access to individual level data is often restricted and analysing these data comes with a 

large computational burden. Many methods overcome these problem by using summary 

statistics from genome wide association studies (GWAS). We therefore set out to develop a 

method that is equivalent to the multivariate GBLUP method and requires only summary 

statistics. After deriving theory for such a summary statistics based method, we conducted 

extensive simulations to test its performance. We then went on to apply this method to 

schizophrenia and bipolar disorder, as well as to a wide range of other traits, often finding 

large increases in prediction accuracy. 

 

Finally, the discussion chapter concludes with a critical reflection on the work presented in 

the results chapters, highlighting in particular limitations of the approaches and differences 

between the two multi trait risk prediction projects. 
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Abstract 

 

The availability of genome-wide genetic data on hundreds of thousands of people has led 

to an equally rapid growth of the range of methodologies available to analyse these data. 

While the motivation for undertaking genome-wide association (GWA) studies is 

identification of genetic markers associated with complex disease, once generated these 

data can be used for many other analyses. GWA data have demonstrated that complex 

traits (including psychiatric traits) exhibit a highly polygenic genetic architecture, often with 

shared genetic risk factors across traits. New methods to analyse GWA data are increasingly 

being used in research studies of psychiatric disorders, as well as many other fields of 

medicine, to address a diverse set of questions about the aetiology of complex traits and 

diseases. Here, we give an overview of some of these methods and present examples of 

how they have contributed to our understanding of psychiatric disorders. The methods are 

concerned with (i) estimation of the extent of genetic influence on traits, (ii) uncovering of 

shared genetic control between traits, (iii) predictions of genetic risk for individuals, (iv) 

uncovering of causal relationships between traits, (v) identifying causal SNPs and genes or 

(vi) the detection of genetic heterogeneity. This classification helps to organise the large 

number of recently developed methods, however some of them could be placed in more 

than one of these classes. While some methods require GWA data on individual people, 

others simply use GWA summary statistics data, allowing novel well-powered analyses to 

be conducted at a low computational burden.  

 

Introduction 

 

The reduction in costs of genotyping technologies in recent years has led to an explosion of 

genetic and phenotypic information collected on large numbers of people. The primary aim 

of these studies is to find genetic polymorphisms associated with a quantitative trait or with 

an increased risk of disease. These genome-wide association studies (GWAS) have led to 

an important increase in understanding of the underpinnings of psychiatric and other 

disorders [3,11,12]. However, the potential use of these data goes far beyond merely 

mapping genetic variation to disease. 
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Here, we present an overview of some recently developed methods utilizing genome-wide-

genotype and phenotype data on large numbers of individuals and show how they can be 

applied to the research of psychiatric disorders. These new methods serve at least one of 

the following purposes: (i) estimation of the extent of genetic influence on traits (Estimation 
of proportion of variance attributable to genome-wide single nucleotide 
polymorphisms (SNPs), SNP-heritability or h2

SNP), (ii) uncovering of shared genetic control 

between traits (Estimation of genetic correlation from using genome-wide SNPs), (iii) 

predictions of genetic risk for individuals (Polygenic risk prediction), (iv) uncovering of 

causal relationships between traits (Mendelian randomization), (v) identifying causal SNPs 

and genes (Fine-mapping and gene prioritization), or (vi) Detection of genetic 
heterogeneity. There is often an overlap between these applications: some methods can 

be applied for more than one purpose, and some of the available software implements more 

than one method. Other applications of GWAS summary statistics such as pathway analysis 

[13] are outside the scope of this review. 

 

Most of the methods presented here require genetic data in one of two possible formats. 

The first data format is that of full individual level genotype data and phenotypic 

measurements on each person, where the genetic data can be represented as a matrix with 

allele counts for each genetic marker for each person. While this offers the largest range of 

analytic options, file sizes can be very large, which can become prohibitive as computational 

burden is usually non-linear with increasing numbers of individuals and markers. Moreover, 

privacy concerns can prevent this type of data from being shared across research groups. 

Summary statistics of genome-wide association analysis represent the second data format, 

for which data sharing has fewer privacy concerns [4]. GWAS summary statistics comprise 

the association test statistic (including direction of effect for a reference allele), standard 

error, p-value of association and allele frequency of each SNP. While it has been shown that 

it is possible to infer whether an individual was part of a cohort using summary statistics, the 

power to do so is limited [14–16], and in any case requires the genome-wide genotype data 

of the individual to be identified. To guard against any privacy concerns GWAS summary 

statistics can be provided using allele frequencies estimated in large independent samples 

of the same ethnicity. Methods which require only summary statistic data benefit from 

shorter analytical run-times, much reduced computer memory requirements, and 

applicability to a larger number of traits. 
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While genetic data in one of these two formats are required by all methods presented here, 

some methods additionally make use of other information such as genomic annotation and 

expression quantitative trait locus (eQTL) data. Genomic annotation can give clues about 

the functional importance of a region in which a SNP resides, whereas eQTL data are the 

result of an association test where the phenotype of interest is the expression of a particular 

gene. 

 

Here, we review a range of different polygenic methods and highlight their aims and the 

input data they require (Figure 1). For each method we provide some examples of 

applications relevant to psychiatric genetics research. 

 

 

 

 

Figure 1:	Schematic of the basic models underlying the polygenic methods reviewed 

All models assume that a phenotype (P) is influenced by genetic (G) and environmental (E) 

factors (with environmental defined loosely as anything not captured by G including 

stochastic variation and measurement error). (a) model which considers only one phenotype 
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and no gene expression. (b) model which considers only one phenotype and gene 

expression (X). (c) model which considers two or more phenotypes and no gene expression. 

Methods can be grouped into those where the focus lies on individual SNPs, genes or people 

(nodes highlighted), and those where the focus lies on aggregate measures affecting the 

relationship between genetic and environmental factors and a phenotype (edges 

highlighted).  
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Estimation of proportion of variance attributable to genome-wide SNPs 

 

Heritability is the proportion of phenotypic variance that can be attributed to genetic factors. 

It is a key quantity in genetics research as it summarizes the role of causal inherited 

variation. Trait heritability can be estimated by comparing the phenotypic resemblance 

among family members to their coefficients of relationships. However, estimating heritability 

from relatives can result in upwards-biased estimates [17] if non-genetic factors shared by 

relatives cannot be disentangled from the shared genetic relationships. This can be 

circumvented by estimating heritability from genome-wide markers in unrelated individuals. 

Genomic restricted maximum likelihood analysis (GREML) can be used to estimate the 

proportion of phenotypic variance which is captured by genotyped SNPs (SNP-heritability), 

by using genetic data of unrelated individuals [18]. SNP-heritability estimates are typically 

lower than from twin or family based heritability estimates, because genotyped SNPs 

account only for a subset of all genetic effects (the remainder includes other types of 

polymorphisms and SNPs that are not tagged by genotyped SNPs). Hence, the parameter 

estimated by SNP-heritability analysis depends on the genotype data available in the data 

set analysed, and can only converge to the traditional parameter being estimated from family 

data, when the genotypes available are fully representative of the variation in the genome. 

 

Estimation of SNP-heritability has been of particular importance for disease traits, especially 

those of low lifetime risk (<1% is typical of most common diseases) for which it is difficult to 

collect the large samples needed to calculate heritability from estimates of increased risk in 

relatives of those affected. Both traditional-heritability and SNP-heritability estimates are 

presented on the liability scale (and depend on lifetime risk of disease in the population), 

and empirical data of the GWAS era [19,20] demonstrates that the polygenic model implied 

in these estimates is justified. GWAS case-control samples for disease traits are usually 

heavily over-sampled for cases compared to a population sample and so SNP-heritability 

estimates are made on this binary case-control scale and transformed to the liability scale 

accounting for this ascertainment [21]. The SNP-heritability estimates are relatively robust 

to choice of lifetime risk for most common diseases (lifetime risk < 1%). However, for the 

very common diseases such as major depressive disorder (lifetime risk 15%), SNP-

heritability estimates are more sensitive to the choice of lifetime risk estimate and to 

screening vs non-screening of controls ([22], Figure 2). Furthermore, the ascertainment of 

cases in case-control studies can induce an artificial gene-environment correlation, which 
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may lead to underestimation of heritability, especially in rare diseases, where the 

ascertainment of cases is most extreme. It has therefore been recommended to instead use 

another method, Haseman-Elston (H-E) regression to estimate heritability in case-control 

studies [23]. In H-E regression, the heritability estimate is obtained by regressing pairwise 

phenotypic similarity on pairwise genetic similarity. This corresponds to a model where the 

phenotypic similarity is in expectation equal to the genetic similarity multiplied by the 

heritability of the trait. This model is most appropriate when the phenotype is an additive, 

polygenic, quantitative trait and the individuals comprise a random sample of the population. 

PCGC is a method which generalises H-E regression, by allowing more general models, in 

which the phenotypic similarity depends on heritability and genetic similarity in more flexible 

ways [23]. 

 

 

 

 

 

Figure 2: Conversion of heritability from the observed case/control scale to the 
liability scale 

An estimate of SNP-heritability from a case-control sample reflects the properties of the 

sample as well as the properties of the disease. Here we show that an estimate of SNP-

heritability of 0.1 from the linear model applied to a case-control sample (ℎ.//
0 ) can reflect a 
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very different heritability on the liability scale, depending on the proportion of cases in the 

sample (colours), the lifetime prevalence K (x-axis), and depending on whether or not 

controls were screened (solid lines (Lee et al. 2011, Eq. 23) vs dotted lines (Peyrot et al. 

2016, Eq. 3)). 

 

 

The GREML method for estimation of SNP-heritability is based on a linear mixed model [24], 

where a central component is the genetic relationship (or similarity) matrix (GRM), which 

captures the genetic relatedness of all pairs of individuals (Hayes et al., 2009). For 

application to human data, the algorithm is implemented in GCTA (Yang et al., 2011). 

Several independent studies have confirmed that GREML results in unbiased estimates of 

SNP heritability when the model assumptions are met: The model states that the phenotypic 

similarity between individuals can be decomposed into a genetic component, which is given 

by the genetic relationship matrix multiplied by the heritability of the phenotype, and a 

residual component of uncorrelated errors. It assumes that each SNP is causal and that the 

variance explained by a SNP is independent of its MAF. This is equivalent to rare SNPs 

having a larger effect size. Further assumptions are that SNP effects as well as random 

errors are normally distributed. It has been investigated how departures from these 

assumptions can influence the results [27,28]. Potential biases that might influence 

heritability estimation are an association between MAF and SNP effect size which doesn’t 

fit the assumptions of the model, or an overrepresentation of causal SNPs in regions of high 

or low linkage disequilibrium (LD) [21,27]. To overcome the problem of bias introduced by 

an enrichment of causal variants in regions of high or low LD, it has been suggested to use 

an LD weighted GRM instead of the normal GRM, as implemented in the LDAK program 

[27]. Another solution to this problem is to stratify the GREML analysis by MAF and LD, as 

implemented in GCTA GREML-LDMS [8]. A recent comparison of multiple heritability 

estimation has shown that GREML-LDMS can overcome these biases and performs as well 

or better than other methods under most simulation scenarios [29]. The runtime of GCTA-

GREML is a function of both the number of markers, M, and the number of individuals, N. 

Compute time is O(N3 + MN2), which includes a component for the construction of the 

genetic relationship matrix and a component for the actual REML algorithm. The steep 

increase in runtime with larger N makes it impractical for data sets with very large numbers 

of individuals. The software BOLT-LMM can estimate variance components through a 

stochastic approximation algorithm, which circumvents the costly calculation of a genetic 
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relationship matrix and thus reduces the runtime to only O(MN1.5) [30]. Note that both GCTA 

and BOLT-LMM have other features such as linear mixed model association analysis [31], 

which are not the topic of this review. 

 

LD score regression (LDSC) [32] is a method which requires only summary statistics to 

estimate SNP-heritability and has therefore even shorter runtime than the methods 

discussed so far. Under polygenic genetic architecture, SNPs which are highly correlated 

with many other SNPs (have a high LD score) are more likely to tag a causal SNP and are 

therefore expected, on average, to have a higher association test statistic than SNPs which 

are not highly correlated with many other SNPs. The regression coefficient of the association 

test statistics of all SNPs on their LD score is a function of SNP-heritability [33,34]. Any 

factor that increases the association statistic of a SNP independently of its LD score (as 

might be found in population stratification which induces correlations in test statistics across 

chromosomes) will increase the intercept term of this regression [34]. LDSC estimates SNP-

heritability with vastly reduced computational speed compared to GREML.  

 

The standard error (s.e.) of GREML SNP-heritability estimates is accurately approximated 

as 316/N, where N is the total sample size [35]. For traits with very high or very low heritability 

the estimation of the standard error can be inaccurate. A more accurate bootstrap based 

method has been developed which yields unbiased standard errors, and thus confidence 

intervals, for GREML heritability estimates [36]. For LDSC the standard errors of the 

variance component estimates are typically larger (usually by 50% or more) than those of a 

GREML analysis for the same sample size [37]. However, it is typical that LDSC can be 

applied to larger data sets (which generate smaller s.e.) since only summary statistics are 

needed. Comparisons of estimates from GREML and LDSC show that the accuracy of 

estimates from LDSC are dependent on LD scores calculated from a population 

representative of the population used to estimate GWAS summary statistics [8,38]. 

 

 

 

Examples of applications to psychiatric disorders 

GREML SNP-heritability estimated for psychiatric disorders usually ranges from 15% to 

30%, depending on the disease, and these estimates are roughly half of the estimates 

derived from family studies [10,19,39]. However, some studies estimate the SNP-heritability 
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of Autism Spectrum Disorder to be between 50% - 60% [40,41], while other studies give 

estimates ranging from 17% - 24% [10,42]. These different estimates might result from 

differences in the ascertainment of cases and of controls between the studies. SNP-

heritability estimates of quantitative mental traits tend to be relatively low (< 0.15), for 

example, a meta-analysis of the Big Five personality traits reported significant SNP-

heritability estimates below 0.2 for all five traits [43]. This is in line with another study of up 

to 300,000 people finding SNP-heritability estimates for subjective well-being, depressive 

symptoms and neuroticism in the same range [44]. LDSC can also be used to estimate the 

SNP-heritability of specific genomic regions, such as enhancer regions. Furthermore, cell 

type-specific genomic annotations can be used to identify cell types or tissues which play a 

significant role in disease aetiology: In disease-relevant cell types, genomic annotations will 

more often overlap with causal SNPs than in other cell types. This type of analysis has 

identified the central nervous system as the most relevant tissue in the aetiology of 

schizophrenia and bipolar disorder [45]. 

 

Estimation of genetic correlation using genome-wide SNPs 

 

Two traits are genetically correlated, if there is a correlation between the true effect sizes of 

SNPs affecting the two traits, or in other words, when, on-average, SNPs have directionally 

similar effects on two traits. For example, a genetic correlation of say zero, could imply no 

pleiotropy at all across the genome, or it could imply mixed directionality of pleiotropy. A 

positive genetic correlation estimate doesn’t have to imply a correlation between the true 

effects for two traits, however. It can also occur when the causal SNPs for both traits are in 

LD with each other. This could for example happen after an admixture event where one 

population differs in both traits from the other population. Genetic correlations (rG) are of 

interest because generally, they suggest a shared aetiology. However, they also be caused 

by misdiagnosis between two diseases [46,47]. The availability of genetic marker data on 

disease case-control samples has allowed the interrogation of the genetic relationship 

between diseases often for the first time, since traditional methods to estimate genetic 

correlation based on increased risk of a disease in relatives of those with another disease 

requires often unattainably large samples [35]. 
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Formally, genetic correlation is defined as genetic covariance between two traits, scaled by 

the product of the genetic standard deviations of the two contributing traits. Methods used 

to estimate SNP heritability can be extended into a bivariate form to estimate rG. In order to 

estimate genetic correlation using GREML, individual-level genetic data and measurements 

on two phenotypes are required (from the same or from different individuals). The power of 

bivariate GREML analyses to detect rG departing from 0 or from 1 depends on the population 

value of rG, the SNP-heritability of both traits, on the sample sizes, on whether the same or 

different samples are used for the two traits, and for disease traits, on the proportion of cases 

in the sample [35]. For example, for two diseases with lifetime prevalence of 1%, SNP-h2 of 

0.2 and genetic correlation of 0.5, 5000 cases and 5000 controls for each disease are 

sufficient to have 89% power at type 1 error rate of 5% to detect a genetic correlation greater 

than 0, corresponding to a standard error of 0.06. The BOLT-LMM software is also capable 

of calculating rG in a bivariate GREML analysis with shorter runtime [30]. In contrast to 

heritability estimates, rG estimates are scale independent (approximately) and hence scale 

transformation is not needed [48]. 

 

If summary statistics on two or more traits are available, LDSC can be used to estimate rG 

between them, albeit with higher standard errors than GREML. Just as in the bivariate 

GREML analysis, sample overlap between the two traits should not affect the estimate of rG. 

While it is easy to detect sample overlap in the presence of individual level data through the 

calculation of the GRM, it is much harder to detect if only SNP level summary statistics are 

available. When performing a bivariate LDSC analysis, the intercept of the regression is 

informative on whether the two sets of summary statistics are based on overlapping 

individuals [9]. 

 

To make the application of LDSC for SNP-heritability and rG estimation even more user-

friendly, the LD Hub resource has been developed, which provides access to summary 

statistics from more than 200 different traits and can calculate genetic correlation estimates 

of each of them with data provided by the user [49]. 

 

Estimation of rG is most commonly applied to uncover genetic relationships between two 

different traits, but it can also be applied to detect heterogeneity in genetic effects between 

two different groups, for example a trait might be under different genetic control in men and 

in women or in old people and young people. It has also been applied to two data sets of 
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the same disease, where rG should be one [10] to infer between-sample heterogeneity or 

two data sets of the same disease but of different ethnicity [50]. Calculating rG across 

populations is not straight-forward, however, due to differences in both allele frequencies 

and LD structure. The program Popcorn addresses this problem and allows to estimate the 

transethnic genetic correlation based on summary statistics and LD matrices from two 

populations [38]. 

 

Examples of applications to psychiatric disorders 

One of the first application of the bivariate GREML method to disease traits was to estimate 

genetic correlations between psychiatric disorders, presenting evidence that most pairs of 

disorders result in estimates that are significantly different from zero (PGC Cross disorder 

group, 2013). From those initial estimates the high correlations between schizophrenia and 

bipolar disorder (~0.6) and between bipolar and major depressive disorder (MDD) (0.5) were 

considered plausible given evidence from family studies, however the high genetic 

correlation between schizophrenia and MDD was more surprising for the clinical community. 

In fact, close study of the literature from family studies (PGC Cross disorder group, 2013) 

showed that all three genetic correlation estimates were consistent with published increased 

risk to relatives (RR) of one disorder for individuals diagnosed with another. However, for 

the same genetic correlation the size of RR involving a very common disorder (~15% lifetime 

risk) such as MDD is much smaller than when both disorders are less common (<1% lifetime 

risk for both schizophrenia and bipolar disorder). This connection between RR and genetic 

correlation is the bivariate analogue of the univariate case of computing heritability from risk 

to relatives. For example, when estimating heritability from first degree relatives, a disease 

with a lifetime risk of 15% and a relative risk to relatives of 1.5 has a heritability on the liability 

scale of 37%. For a disease with lifetime risk of only 1%, a relative risk to relatives of 3.17 

would be needed to achieve the same heritability on the liability scale  [51]. 

 

Genetic correlation can arise through misdiagnosis between two diseases. For example, 

those first presenting with clinical features consistent with a diagnosis of bipolar disorder 

can in the long-term receive a diagnosis of schizophrenia (and vice versa) [52,53]. However, 

it can be shown analytically that very high misclassification rate of 20% would be needed 

under no shared aetiology to result in rG of ~0.6 estimated between schizophrenia and 

bipolar disorder [47]. In contrast, a high genetic correlation between disorders would be 

consistent with some clinical presentations being difficult to classify. 
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LDSC has been applied to a full battery of GWAS summary statistics and report higher 

estimates of genetic correlations estimates between pairs of psychiatric disorders than 

between psychiatric- and non-psychiatric disorders [9]. Some notable examples include a 

positive genetic correlation between schizophrenia and anorexia nervosa, and a positive 

genetic correlation between bipolar disorder and years of education. A study investigating 

genetic sharing between neurological and psychiatric traits found that among neurological 

disorders significant genetic correlations are rare, but that there is some overlap in genetic 

risk between migraine and major depressive disorder, ADHD and Tourette syndrome  [39]. 

On the other hand, genetic correlations between psychiatric traits and personality traits are 

more common. Figure 3 shows the top genetic correlations for psychiatric disorders and 

traits. Data obtained from LD Hub. 

 

 

 

 

Figure 3: Genetic correlations between psychiatric disorders and traits, and almost 
200 other traits 

For each trait, the 10 traits with the highest absolute genetic correlations are shown. Colours 

indicate whether genetic correlations are positive or negative. One star indicates a genetic 

correlation p-value < 0.05. Three starts indicate a p-value below the Bonferroni threshold of 

2.81×10-6 for 17766 tested trait pairs. Data obtained from LD Hub [49]. 
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Polygenic risk prediction 

 

Estimates of SNP effects can be used to predict the genetic risk of individuals. Simple risk 

scores for each individual are calculated as the sum over all per SNP effects, where the per 

SNP effect is the allele count of the SNP for the individual multiplied by the effect size of the 

SNP [54,55]. Here the SNP effects come from a typically large and well powered discovery 

(sometimes called training) data set. While the ultimate goal of genetic risk prediction is in 

applications where the phenotype has not yet been observed, in research applications the 

risk predictor is evaluated for individuals in a target (sometimes called validation or testing) 

data set where the phenotype has already been recorded, so that the efficacy of the predictor 

can be evaluated. 

 

Screening of high risk individuals for early intervention or prevention programs is a potential 

clinical application of polygenic risk prediction, that at present is not widely used because of 

the low accuracy of genetic risk predictors [56]. However, there are applications of polygenic 

risk prediction in research where low prediction accuracy is less limiting; for example, it could 

be a cost-effective strategy to conduct follow-up studies in samples ascertained to be low or 

high for polygenic risk. The genetic predictor is evaluated against a measured phenotype in 

the target sample, which may or may not be the same phenotype from which the predictor 

was constructed. Generally, if the predicted and the measured trait are genetically 

correlated, there should be a positive prediction accuracy, given enough power in both data 

sets [57].  

 

In the usual implementation of polygenic risk scores, SNP effect sizes have been estimated 

from the standard, one SNP GWAS analyses. Then construction of polygenic risk scores is 

based on some decision about the proportion of SNPs to include in the predictor. As the 

discovery sample p-value threshold becomes more lenient the increased predictive power 

of including estimated effect sizes from more true positive associated SNPs is balanced by 

the inclusion of more false positives. The optimum proportion of SNPs to include depends 

on the (unknown) genetic architecture and size of the discovery sample. In the latest 

schizophrenia GWAS, the optimum p-value threshold was identified as 0.05 (based on 

variance explained in out-of-sample prediction across many samples), although inclusion of 

all SNPs did not lower accuracy drastically [58]. Often a range of different p-value thresholds 

are used to determine the best predictor, although this approach is prone to overfitting. 
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Software such as PLINK [59,60] implements basic polygenic risk scoring, while PRSice 

compares polygenic risk predictors using a large number of p-value cut-offs to find the 

optimum threshold given the data [61]. In polygenic risk scoring, LD among SNPs is usually 

accounted for by applying LD-clumping, i.e. pruning of SNPs based on LD but with higher 

preference to SNPs with lower p-values (usually simply termed “clumping”). 

 

Prediction accuracy can be improved by using methods which provide estimates of SNP 

effects that are conditional on all other SNPs, thereby directly taking SNP LD correlations 

into account [62]. One example of such a method is Genomic Best Linear Unbiased 

Prediction (GBLUP) [24], which is widely used in animal breeding. In GWAS there are many 

more SNPs compared to individuals so effects sizes of each SNP are not estimable in a 

multiple regression model. In GBLUP it is assumed that SNP effect sizes are drawn from a 

normal distribution and a shrinkage term, or penalty term, proportional to the trait heritability 

is introduced in the model. This shrinks the SNP effect estimates (i.e., the effect attributable 

to SNPs in LD with each other is shared between the correlated SNPs) and will ensure the 

predicted phenotypes are on the right scale (unbiased) as well as being more accurate. 

More complex models, such as BayesR, remove the assumption of a single normal 

distribution of effect sizes, and allow for more general genetic architectures better by 

simultaneously estimating the true distribution of all SNP effect sizes and choosing individual 

SNP effect estimates accordingly [63]. Application of BayesR showed improved prediction 

over GBLUP for traits with some SNPs of larger effect (such as auto-immune disorders), but 

no improvement for other disorders (including bipolar disorder) [63]. 

 

There are a number of other prediction models which fit all SNPs at the same time and 

thereby utilize LD-information [64]. For example, LASSO (least absolute shrinkage and 

selection operator), which like GBLUP, shrinks SNP effects. In contrast to GBLUP, LASSO 

will shrink the effect of some SNPs to zero, and thus effectively select a subset of SNPs to 

include in the prediction. Underlying genetic architecture will dictate which method is better 

in practice. A study comparing the LASSO method to other prediction models found that it 

results in similar or higher prediction accuracy for immune disorders (an architecture that 

includes some SNPs of large effect), but not for bipolar disorder which is highly polygenic 

[65]. Finally, GBLUP approaches can be extended to a multi-trait model, which can further 

improve prediction accuracy when phenotypes are genetically correlated, because 

measurements on each trait provide information on the genetic values of the other correlated 
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traits. This approach has been implemented in the program MTG2 and has been shown to 

improve prediction accuracy for schizophrenia and bipolar disorder [66]. 

 

If individual-level genotype data are not available, it is still possible to transform marginal 

SNP effects (standard GWAS summary statistics) into penalized, conditional SNP effects, 

by making use of an LD reference data set [67,68]. This is implemented in GCTA [26] and 

in LDpred [69], which not only accounts for LD between SNPs, but also uses a Bayesian 

framework to adjust the SNP effects for traits where an infinitesimal model (all SNPs have 

some effect) is not the best fit to the data (e.g., autoimmune disorders). This is analogous 

to the selecting SNPs based on p-value in standard polygenic risk prediction and can further 

improve accuracy. 

 

Examples of applications to psychiatric disorders 

Polygenic risk prediction is widely used in psychiatric genetics, not to infer an individual’s 

case control status, but to gain a better understanding of disease aetiology. Polygenic risk 

prediction in applications relevant to psychiatry has been reviewed previously [70]. Some 

more recent examples include schizophrenia polygenic risk scores calculated for community 

samples of individuals which explain variation in creativity [71] and cannabis use [72]. An 

association between schizophrenia polygenic risk scores and negative symptoms and 

anxiety disorder in adolescents gives reason to hope that these kind of studies can not only 

lead to a better understanding of disease aetiology but may someday also contribute to early 

intervention programs [73,74]. Polygenic risk prediction additionally provides a novel 

approach to studying gene – environment interactions (GxE). Traditional GxE studies, which 

test for an interaction effect between single genetic variants and an environmental exposure 

on disease risk, often suffered from low power caused by the small amount of variance 

explained by individual genetic loci. In contrast, interactions between a polygenic risk score 

and environmental exposure can be detected more easily, because polygenic risk scores 

explain more of the variance in disease risk than individual loci. This type of GxE study has 

been applied to investigate a potential interaction between a polygenic risk score for major 

depressive disorder and childhood trauma on the risk for major depressive disorder. Two 

independent studies found that both the polygenic risk score and exposure to childhood 

trauma increase the risk for major depressive disorder, but came to different conclusions 

about the nature of the interaction between the two: One study found a positive interaction, 

meaning that those with both exposure to childhood trauma and high polygenic risk scores 
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are at the greatest risk of developing major depressive disorder [75], while another study 

found a negative interaction, where people with exposure to childhood trauma and low 

polygenic risk scores are at the highest risk [76]. The latter study attributes these different 

findings to design differences between the two studies: The first study, which found a 

positive interaction effect, was a larger, population based study with a less stringent 

definition of depression and used a different instrument to assess childhood trauma. 

 

Mendelian randomization 

 

Mendelian randomization (MR) analysis investigates the causal relationships between traits. 

It is a specific form of an instrumental variable analysis [77], where the goal is to test the 

causal effect of an explanatory variable (exposure to a risk factor) on a dependent outcome 

variable (such as disease risk). In MR, genetic markers are used as the instrumental 

variables. For example, MR was used to investigate a causal influence of HDL and LDL 

cholesterol levels on the risk for myocardial infarction [78]. They first identified SNPs which 

significantly lowered HDL cholesterol. If HDL cholesterol levels were causally related to the 

risk of myocardial infarction, these same SNPs should also be associated with a lower risk 

of myocardial infarction. However, no such association was found and so it was concluded 

that these data are inconsistent with a protective role of HDL for myocardial infarction. On 

the other hand, SNPs which increase LDL cholesterol were found to also increase the risk 

of myocardial infarction, confirming that LDL is a risk factor. Lowering LDL levels is a well-

established intervention to reduce the risk of coronary artery disease [79], and the question 

of whether raising HDL levels can be similarly effective is of large public health interest. 

Together with a number of randomized controlled trials [80], this application of MR has had 

major impact on drug development by providing evidence against a causal role of HDL and 

thus helped in the search for effective ways of preventing myocardial infarction, and 

demonstrates how evidence from an MR analysis could be used to circumvent costly 

randomized controlled trials. 

 

Despite its great potential, MR is often limited by low power, and by the fact that it is very 

difficult to show that all the assumptions which are necessary to infer causality are met. One 

of them is the absence of pleiotropy, since the SNPs used in the analysis may not have 

independent effects on the exposure and on the outcome. However, if MR is applied 
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bidirectionally for trait pairs of approximately comparable power, and evidence for significant 

causality is detected in only one direction, then this can help to infer causality over pleiotropy. 

The power in MR studies is a function of the true causal association between exposure and 

outcome and of the variance explained by the instrumental variables [81]. Since statistically 

significantly associated SNPs often only explain a small proportion of the genetic variance, 

for many pairs of traits, very large sample sizes are needed to achieve sufficient power to 

detect causal associations (see online calculator [81]). 

 

In recent years, many improvements to the MR method have been developed. Apart from 

the extension to more than one instrumental variable (SNP), they include utilization of 

summary statistic data [82],  better ways to test some the assumptions, modifications which 

allow the relaxation of the no-pleiotropy assumption, and improvements which increase the 

power to detect causal effects [77]. The web based resource MR BASE has been developed 

to simplify the application of MR to test causality between a large number of traits and to 

compare different variations of the method [83]. Summary data for more than a thousand 

traits have been collected and can be tested for causal associations with data provided by 

the user. 

 

Examples of applications to psychiatric disorders 

Several Mendelian randomization studies have investigated a potential causal influence of 

variables which are known to be associated with psychiatric traits and diseases from 

observational studies. One study which looked at BMI as a potential risk factor concluded 

that there is no evidence of BMI being a causal influence on schizophrenia and bipolar 

evidence, but weak evidence of BMI conferring a higher risk of major depressive disorder. 

It was noted, however, that the BMI association suffers from low power caused by small 

sample sizes for major depressive disorder [84].  C-Reactive protein (CRP) is a potential 

risk factor for psychiatric disorders with undisputed correlational association, but unclear 

causality. A study from 2016 surprisingly found a protective role of genetically elevated CRP 

levels on the risk for schizophrenia, as well as weak (nominally significant) evidence for a 

risk increasing effect on bipolar disorder as well as a range of other somatic traits [85]. This 

is in contradiction with a another 2016 study which identified elevated CRP levels to confer 

an increased risk of schizophrenia [86]. There is much debate on whether cannabis is a risk 

factor for psychosis or schizophrenia, or whether the association is due to reverse causation 

or due to a confounding factor [87,88]. Recently MR studies have provided evidence for a 
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causal role of cannabis in the development of schizophrenia, but also for a reverse causation 

[89,90]. Several other risk factors for schizophrenia, anxiety and depression have been 

investigated through MR with negative results [91–93]. 

 

In summary, MR studies investigating risk factors for psychiatric disorders could in a few 

cases provide evidence for a risk increasing effect. As the power of GWAS with increasing 

sample sizes, there will be more robust SNP associations which can be used as instrumental 

variables. This will provide more certainty on whether the many negative results were just 

caused by low power or by the absence of a true causal association. 

 

Fine-mapping and gene prioritization 

 

Linkage disequilibrium between SNPs is both a blessing and a curse for GWAS. On one 

hand, it makes it possible to probe only a subset of all genetic variants yet still detect 

associations for a much larger set, either through tagging of non-genotyped SNPs by 

genotyped SNPs or through LD based imputation to sequenced reference samples. On the 

other hand, it means that a detected association doesn’t necessarily imply a causal role for 

the associated SNPs. Fine-mapping attempts to identify which ones out of a number of 

associated SNPs in a LD region have a causal role, and which ones are merely associated 

because they are in LD with causal SNPs, but this can be complex and costly [94]. 

 

To better understand disease aetiology, it may be of interest to identify causal genes, rather 

than causal SNPs. In many cases the causal gene may simply be the gene closest to the 

most strongly associated SNP in a region. However, Chromatin Confirmation Capture 

experiments show that the majority of chromatin loops are formed between regulatory 

elements and genes which are not directly adjacent to them, suggesting that it could be 

common for top associated SNPs to lie at a distance from the genes through which their 

effect is mediated. For example, a SNP associated with body mass index and located in an 

enhancer region in an intron of the FTO gene has been shown to disrupt binding of ARID5B, 

which in turn leads to increased expression of the IRX3 and IRX5 genes [95]. This means 

that the local proximity of that SNP to the FTO gene could be a red herring. 
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Identifying causal SNPs 

A range of different approaches have been developed for the fine-mapping of SNPs. Most 

of them use information on functional annotation of the genome and LD between SNPs, in 

addition to SNP association statistics on one or more diseases. An  algorithm (PICS) utilizing 

all these kinds of information has recently been applied to 21 autoimmune disorders and 

identified many putative causal variants by integrating information from different types of 

functional annotations, including epigenetic marks and gene expression information [96]. 

 

Fine-mapping methods can use LD information to either identify causal SNPs within a region 

that may not have the strongest association signal, but are located in a functional genomic 

element like an enhancer, or they can use LD information to identify multiple independently 

associated SNPs, by calculating the association signal conditionally on the association 

signal of neighbouring SNPs. Traditionally, this would require full genotype data on the trait 

of interest. However, it has been demonstrated that it is possible to borrow LD information 

from a reference genotype data set for a conditional analysis, making it possible to apply 

this approach to traits for which only summary statistics are available ([67]; GCTA-cojo). For 

this to work well, the LD structure in the reference genotype population should be a good 

approximation of the LD structure in the population on which the GWAS has been 

performed. 

 

Fine-mapping can benefit from data on multiple traits. When two traits share regions of 

significant genetic associations it can be investigated if they share causal loci at those 

shared regions, or if different loci drive the regional association in each trait. This has been 

investigated in a Bayesian framework using only summary statistics and resulted in the 

identification of 341 loci associated with more than one trait across 42 different phenotypes 

[97]. SNPs associated with two traits form the basis of the previously discussed Mendelian 

randomization methods. The same study [97] also investigated evidence for causal 

relationships between the pairs of 42 traits in a bidirectional fashion, where for each pair of 

traits the evidence for a causal influence of trait X on trait Y was compared to the evidence 

for a causal influence of trait Y on trait X. The key idea is the same as in traditional Mendelian 

randomization: If X is one of many causal influences for Y, then an association of a SNP 

with X should lead to an association of the same SNP with Y. However, the reverse is not 

true: An association of a SNP with Y would not lead to an association of the same SNP with 
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X. This approach identified a causal relationship of BMI on triglyceride levels [97] 

(implemented in the program gwas-pw). 

 

Identifying causal genes 

Genome wide association studies suffer from a massive multiple-testing burden, owing to 

the large number of association tests between SNPs and phenotype. To minimize the 

number of false positive results, associations are usually required to be significant at a p-

value of 5 x 10-8 (Bonferroni correction of a million independent tests). Gene-based tests 

have a reduced multiple-testing burden (~20,000 independent tests) and give biological 

meaning to association results. In gene-based tests SNPs are aggregated into larger groups 

[98] assuming that SNPs exert their effect through nearby genes, which is not always true. 

The PrediXcan method refines this aggregation step by including external tissue specific 

eQTL data to predict gene expression levels based on SNP data [99]. This has several 

advantages over conventional gene-based tests as it limits the multiple-testing burden by 

only using SNPs which are known to affect gene expression, and the direction of effect of a 

SNP on expression levels is not lost when aggregating multiple SNPs. By using tissue 

specific eQTL data, associations can be tested between a phenotype and expression 

changes in tissues relevant to the phenotype. PrediXcan has been used to identify genes 

which may play causal roles in amyloid deposition and cognitive changes in Alzheimer’s 

disease [100] and genes associated with Asthma [101]. While PrediXcan requires individual 

level genotype data, the extension MetaXcan requires only summary statistics and promises 

similar accuracy, if the right reference population is used for LD estimation [102]. 

Transcriptome wide association study (TWAS) is a summary statistics based method similar 

to MetaXcan, which differs in the algorithm used to predict expression [103]. More recently, 

TWAS has been applied to detect pairs of traits with genetic correlations at the level of 

predicted expression [104]. A current limiting factor in this and other expression based 

methods is the quality of tissue specific eQTL data. The previously mentioned methods 

prioritize genes based on predicted effects of SNPs on expression. This is in contrast to 

other methods, such as DEPICT, which use gene expression data to predict gene function 

and prioritize genes at specific loci based on the predicted function [105]. 

 

While an association of predicted gene expression and a phenotype is suggestive of a 

causal role for that gene, pleiotropy is an alternative explanation for this association. That 

is, the same SNPs could independently lead to expression changes in one gene and via a 
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different route have an effect on the phenotype. The summary statistics based Mendelian 

randomization (SMR) method [106] attempts to distinguish between these two scenarios 

using eQTL SNPs as instrumental variables and gene expression as exposure variable. To 

guard against spurious results, this method also introduces the HEIDI test, which identifies 

and excludes regions where multiple linked SNPs are independently associated with gene 

expression and phenotype. The method was applied to several complex human traits and 

has identified 126 putatively causal genes. 77 of these genes are not the closest gene to 

their respective top associated GWAS hit and may have remained undetected in a 

conventional gene based analysis. 

MetaXcan, TWAS and SMR use the same type of data to identify genes of interest. However, 

there are many subtle differences between the methods which will likely lead to unique 

results for each method. To date, no systematic comparison of their relative performance 

has been published. 

 

Examples of applications to psychiatric disorders 

PrediXcan has been applied to bipolar disorder, resulting in the identification of two genes, 

PTPRE and BBX, for which predicted increased expression in whole blood and the anterior 

cingulate cortex, respectively, was associated with increased risk of bipolar disorder [107]. 

SMR has been applied to schizophrenia, highlighting two genes, SNX19 and NMRAL1, with 

a potentially causal influence [106]. The previous two examples have highlighted genes by 

using eQTL data, but the concept can be extended to account for the fact that chromatin 

modifications may mediate the association between genetic variants and eQTLs, and that 

splice-QTLs, rather than eQTLs, may underlie the genetic effect of a SNP. A TWAS study 

on schizophrenia has incorporated these ideas and has highlighted 157 genes, many of 

which were identified due to brain specific splice-QTLs [108]. 

 

Detection of genetic heterogeneity 

 

Most genetic studies are based on the assumption that individuals who exhibit similar 

symptoms or who have been diagnosed with the same disease are representatives of the 

same underlying biology defined by a common genetic architecture. Under a polygenic 

disease architecture, each individual is likely to have a unique combination of risk loci, but 

with each combination drawn from the pool of risk loci. Genetic heterogeneity occurs when 
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individuals with the same clinical presentation have risk alleles drawn from independent (or 

perhaps correlated) sets of risk loci, and the genetic risk profile of one or more subgroups 

of cases departs from that of the rest. This may arise through misclassification of some 

cases, or through distinct etiological pathways leading to the same disease [109,110]. The 

inherent phenotypic heterogeneity within psychiatry makes detection of genetic 

heterogeneity an appealing goal and identification of distinct pathways holds the promise of 

shedding light on disease aetiology. Furthermore, a biological basis for disease stratification 

could lead to more personalized treatments [111]. 

 

Although the concept of identifying genetic sub-groups is intuitively appealing simulations 

suggest it is very difficult to find meaningful genetic groupings if each sub-group has a 

genetic architecture of a large number of loci with small effects. The large number of 

combinations of risk loci, their small effect sizes, the uncertainty about the size or even about 

the presence of genetically heterogeneous groups, and the challenging disentanglement 

from population stratification all contribute to the difficulty of this problem. As a result, even 

data sets comprising hundreds of thousands of individuals may not provide sufficient power 

for naïve approaches to detecting even the simplest scenarios of genetic heterogeneity 

([112], Maier et al. unpublished results). 

 

The BUHMBOX method [112] frames the question of disease heterogeneity in a different 

way and sets out to  test if two diseases that share a genetic basis (rG > 0) are correlated 

because the shared genetic risk factors are present in the whole sample (pleiotropy) or are 

confined to only a subgroup of individuals (identifiable genetic sub-type or potentially due to 

misdiagnosis) [112]. The BUHMBOX method investigates LD-independent risk loci for 

disease B in individuals diagnosed with disease A. If only a subgroup of individuals has a 

higher genetic risk for disease B, this will induce a correlation among the disease B risk loci, 

which would support the presence of genetic heterogeneity and not pleiotropy. This 

approach can demonstrate presence of a genetic sub-group without identifying which 

specific individuals diagnosed with disease A are genetically more similar to those with 

disease B. The method found evidence for heterogeneity among seronegative rheumatoid 

arthritis cases, suggesting that they may contain a significant proportion of seropositive 

cases. The power of the BUHMBOX method depends on the number of cases, number of 

markers, risk allele frequency, odds ratio and heterogeneity proportion. For example, with 
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2000 cases and 2000 controls, a heterogeneity proportion of 0.2 and 50 risk loci, the power 

to detect heterogeneity at a significance threshold of 0.05 is 92% [112]. 

 

Alternatively, genetic heterogeneity can be studied by first grouping individuals (for example 

disease cases) based on non-genetic data and then testing for genetic heterogeneity 

between these disease subtypes. A recent method follows this approach by jointly modelling 

the probability for each SNP of whether its frequency differentiates cases and controls 

and/or differentiates disease subgroups. Applied to type 1 diabetes, this method suggests 

that cases with and without autoantibodies exhibit a different genetic architecture for type 1 

diabetes disease risk [113]. 

 

Examples of applications to psychiatric disorders 

The BUHMBOX method was used to investigate the shared genetic basis between major 

depressive disorder and schizophrenia, and found no evidence that suggested that a subset 

of major depressive disorder cases was genetically more similar to schizophrenia cases, 

implying that the genetic correlation estimated between the disorders reflect pleiotropy [112]. 

Application of this method will become more interesting as sample sizes increase. 
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Table 1: An overview of polygenic methods 

Program/Method Data needed URL 

Estimation of h2, rG   

GCTA (GREML) individual-level genotype data http://cnsgenomics.com/software/gcta/ 

BOLT-REML / BOLT-

LMM individual-level genotype data https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 

LD score regression summary statistics 

https://github.com/bulik/ldsc; 

http://ldsc.broadinstitute.org/ 

Polygenic risk prediction  

PLINK 

summary statistics + individual-

level data https://www.cog-genomics.org/plink2 

PRSice 

summary statistics + individual-

level data http://prsice.info/ 

GCTA, MTG2 (GBLUP, 

MTGBLUP) individual-level genotype data 

http://cnsgenomics.com/software/gcta/; 

https://sites.google.com/site/honglee0707/mtg2 

BayesR individual-level genotype data https://github.com/syntheke/bayesR 

LDpred 

summary statistics + individual-

level data https://github.com/bvilhjal/ldpred 

Causality of phenotypes   

Mendelian 

Randomization 

individual-level genotype data 

or summary statistics http://www.mrbase.org/ 

gwas-pw summary statistics https://github.com/joepickrell/gwas-pw 

Causality of genes (Gene prioritization)  

gwas-pw summary statistics https://github.com/joepickrell/gwas-pw 

SMR summary statistics + eQTL http://cnsgenomics.com/software/smr/ 

PrediXcan 

individual-level genotype data + 

eQTL https://github.com/hakyimlab/PrediXcan 

metaXcan summary statistics + eQTL https://github.com/hakyimlab/MetaXcan 

TWAS / FUSION summary statistics + eQTL http://gusevlab.org/projects/fusion/ 

DEPICT summary statistics https://data.broadinstitute.org/mpg/depict/ 

Causality of SNPs (Fine-mapping) 

PICS (Fine-mapping) summary statistics http://pubs.broadinstitute.org/pubs/finemapping/ 

GCTA (COJO) summary statistics http://cnsgenomics.com/software/gcta/ 

Detection of genetic heterogeneity 

BUHMBOX 

summary statistics + individual-

level data http://software.broadinstitute.org/mpg/buhmbox/ 

Subtest summary statistics https://github.com/jamesliley/subtest 
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Conclusions 

 

For many psychiatric disorders, genetic factors explain more variation in disease risk in the 

population than any other known risk factors, but only recently has it become possible to 

resolve the overall familial genetic risk into individual risk factors at the DNA level. The 

evidence is now conclusive that psychiatric disorders, like many other common disease and 

disorders are highly polygenic underpinned by thousands of genetic loci, each of which 

contributes a small amount to the overall genetic risk. After a period in which many candidate 

gene studies have reported association results which failed to replicate [114], the 

hypothesis-free GWAS approach has established itself as the dominating paradigm to find 

associated genetic loci. With ever growing sample sizes, more and more SNPs surpass the 

stringent p-value threshold for almost all investigated traits. However, it is also becoming 

clear that the bulk of genetic risk factors remains hidden among those loci that do not 

achieve genome wide significance. Many of the methods presented in this review leverage 

the large amount of information that is harboured by genetic variants, regardless of whether 

or not they achieve significance. While the focus of some methods is on individual SNPs or 

genes, other methods aggregate over a potentially large number of loci to answer questions 

such as “What is the combined genetic effect of all measurable SNPs on phenotypic 

variance?”, “Do these traits have a shared genetic aetiology?” or “Do these traits causally 

influence one another?”. One thing that all of these methods have in common is that their 

utility crucially depends on the power to detect an association, which in turn depends on 

sample size. Larger sample sizes lead to a higher computational burden, but for most 

analytical questions which have been presented here, there are methods which can utilize 

summary statistics and thus drastically reduce runtime and memory requirements.  

 

The literature on new methods is ever-growing and while we have tried to present an 

overview of key methods to help navigation of this complex field, but it is difficult to be fully 

exhaustive. We have illustrated the methods with some example applications, however we 

expect the full potential of the data will only be revealed in coming years when studies with 

half a million or more people will be widely available. A key issue for the field is to develop 

cost-effective strategies to capture larger sample sizes with both DNA samples and 

phenotypic data as these are needed to evaluate the extent to which genetic data can 

explain phenotypic heterogeneity and to fulfil the potential of more personalized medicine.  
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Abstract 

 
The genetic basis of complex genetic disease can be quantified by heritability, which is an 

estimate of the relative importance of genetic to non-genetic factors in contributing to 

differences between individuals for any given trait. Heritability is estimated from phenotypic 

records in data sets of families and represents contributions from genetic variants across 

the frequency spectrum and genetic variants of any kind and function. Advances in 

technology allow direct interrogation of some kinds of DNA variants. Specific DNA variants 

identified in the era of genome-wide association studies explain only a fraction of the 

heritability estimated from family studies as do less common variants identified through 

whole exome sequencing. If true effect sizes of risk variants are small studies to date may 

be underpowered to detect individual risk variants, but the studies may be well-powered to 

detect the total contribution from common risk variants and this has explained some of the 

missing heritability. Here we review explanations for the so-called “still-missing heritability” 

and focus particularly on the issue of genetic heterogeneity. 
 

Introduction 

 

Complex genetic diseases are those that tend to ‘run’ in families yet show no clear pattern 

of inheritance. Most common diseases are complex genetic diseases including cancers, 

heart disease, immune disorders and psychiatric disorders. Our understanding of causality 

of these diseases is limited, and this limited knowledge has contributed to the limited 

progress made in the development of new treatments. Traditionally, quantification of the 

genetic basis of disease has been determined by measuring the increased risk of disease 

in relatives of those affected. Evidence for a genetic risk shared between relatives implies 

that DNA risk variants are passed from parent to child. This knowledge has underpinned the 

philosophy that identification of genetic risk variants is a worthy goal that may expose and 

open new doors towards understanding of causality of disease, which in turn may lead to 

new treatments. Strategies to identify DNA risk variants have been dictated by available 

genotyping technologies.  Advances in technology of the last decade have delivered 

methodologies, notably genome-wide association studies (GWAS) and whole exome 

sequencing (WES) that have started to deliver DNA risk variants associated with disease.  

Here we review the portfolio of strategies used to understand of the genetic contribution to 
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complex disease. We close by focussing on the issue of genetic heterogeneity of disease. 

 

Heritability 

 

Evidence for a genetic contribution to disease comes from measurement of an increased 

risk of the disorder in relatives of those affected. However, such increased risks need to be 

interpreted with care, since close relatives share a common family environment so that 

recurrence risk in relatives may also reflect non-genetic factors. Estimates of risks of disease 

in different types of relatives (e.g. monozygotic and dizygotic twins, first and second degree 

relatives) are needed to disentangle genetic from non-genetic factors. These risks to 

relatives are used to estimate heritability on the liability scale [115,116]. Liability to disease 

is a non-observable or latent, continuous variable with those ranking highest on liability being 

affected. Heritability on the liability scale, h2, quantifies the proportion of variance of liability 

to disease attributable to inherited genetic factors. Comparison of the relative importance of 

genetic factors for different disorders is more intuitive on this scale, particularly when 

comparing diseases of different lifetime risk. Heritability accounts for genetic factors that are 

additive on the liability scale; these genetic factors combine non-additively on the disease 

scale [117], so that the probability of disease is many times higher for individuals carrying a 

high number of risk alleles compared to those carrying only half the number. Non-genetic 

factors include identifiable (but perhaps not recorded) environmental factors or 

measurement error, but also unidentifiable factors which form an intrinsic stochastic noise. 

Estimates of heritability may vary between populations, across ages and may depend on 

whether non-genetic factors have been recorded and included in the analysis [118]. They 

depend on baseline risk of disease in the population, and the degree of sampling variance 

is often overlooked. Hence, in reality heritability estimates should be viewed as pragmatic 

benchmarks representing evidence for low, moderate or high contributions of genetic 

effects. 

Genetic architecture 

 

While heritability on the liability scale expresses the proportion of the variance in liability that 

is attributable to genetic factors, it tells nothing about the underlying genetic architecture of 

the disease in terms of number, frequency and effect sizes of individual causal variants, nor 
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of the mode of action of causal loci (i.e. additive or non-additive). Lack of evidence that 

complex disease cases represented single gene disorders generated theories of 

polygenicity [119]. Empirical results of the last decade provide support for a polygenic model 

[11]. Under a polygenic model, the liability to disease reflects multiple genetic and non-

genetic effects acting additively. Hence, liabilities are assumed to be normally distributed, 

because such a distribution results from many additively acting effects.  All individuals in the 

population carry some genetic risk variants and likely experience some non-genetic risk 

factors, but most individuals in the population are not affected - disease status results when 

the cumulative load exceeds a burden of risk threshold.  

 

De novo mutations 

 

De novo mutations are genetic variants present in the DNA of a child but not of their parents. 

Genotyping of parents and their child is used to identify de novo mutations. Whole exome 

sequencing has identified that de novo mutations play an important role in Mendelian 

diseases [120]. Effect sizes of de novo mutations, that is their contribution to risk of disease, 

are expected to be both small and large. In contrast, genetic variants of large effect size are 

more likely to be de novo as they have not been subject to selection. Sequencing studies of 

the last decade have demonstrated that de novo mutations play an important causal role in 

some complex diseases and disorders for some individuals [121] (for example, mental 

retardation [122] and autism [123]. For other diseases and diseases there is evidence of an 

increased burden of de novo mutations in cases compared to controls [124], without being 

able to identify which of the de novo mutations are individually causal, which increase risk 

of disease and which are benign [125]. In rare instances, somatic de novo mutations have 

been shown to be causal [126]. De novo mutations are not shared between relatives (except 

possibly between identical twins, or between siblings as a result of germline mutations in 

sperm) and so rarely contribute to explaining heritability [127].  

 

Familial vs sporadic 

 

It is not uncommon for cases to be referred to as either ‘familial’ or ‘sporadic’, reflecting 

whether or not there is a known family history for the disease. In childhood disorders, cases 
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are similarly referred to as multiplex or simplex depending on presence or absence of other 

affected children. In common parlance, the terms tend to be interpreted as implying a genetic 

or non-genetic aetiology of disease, but this can be misleading. On the one hand, knowledge 

of family history can be used in optimal experimental design. For example, genetic studies 

designed to identify de novo mutations would be optimised by genotyping of cases with no 

family history of disease. In contrast, genetic studies designed to identify common genetic 

risk variants are optimised by prioritising selection of cases with family history and controls 

with no family history of disease. On the other hand, it is frequently overlooked that under a 

polygenic genetic architecture the majority of cases are not expected to report family history. 

For example, for a disease with lifetime prevalence of 1% and heritability of 80% less than 

a quarter of cases are expected to report family history when considering all first, second 

and third generation relatives [128]. Likewise, for the same disease more than 60% of 

monozygotic twins are expected to be discordant for disease status [129]. 

 

Missing heritability 

 

Advances in genotyping technology allow cheap genome-wide interrogation of single 

nucleotide polymorphism (SNPs). GWAS identify associations between SNPs and disease. 

Reported results from association analyses include risk allele frequency (RAF), effect size 

(expressed for disease as the odds ratio, OR) and p-value of association. The contribution 

of these associated DNA genetic variants to variance can be calculated on the liability scale 

[130] to allow direct comparison of the contribution to risk of each locus on the same scale 

as heritability is reported. Assuming independence (and ignoring potential overestimation of 

effect size due to winner’s curse), the contribution of each genome-wide significant (GWS) 

locus can be summed to determine the proportion of variance in liability explained by these 

loci together, thus quantifying the effects of all genome-wide significant SNPs (ℎ123
0 ).  

 

Given the stringent significance threshold applied, the ability to detect risk loci (i.e., the 

power) depends on whether the sample size is sufficient given the true effect sizes. When 

the first GWAS were planned the distribution of expected effect sizes was unknown and 

sample sizes were powered to detect OR > ~1.3. The first generation of GWAS yielded few 

GWS results with ℎ123
0  much less than h2. This difference has been termed “missing 

heritability” [7]. As sample sizes have increased, the number of GWS variants have 
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increased for both quantitative traits and diseases (see Figure 2 in Visscher et al [11]) 

providing empirical evidence that common variants do play a role in complex genetic 

disease. None-the-less substantial missing heritability remains. 

Hiding Heritability 

 
The observed increase in number of significant association results as sample sizes have 

been increased [11], implies that the earlier studies were underpowered to detect the 

variants given their effect sizes. However, given that collection of larger samples is time 

consuming and expensive, can we be sure that the same will be true for other diseases? 

Statistical methods that combine quantitative and population genetic concepts to evaluate 

the contribution to variance of common SNPs across the whole genome without identifying 

them individually have been developed [18,26,47,131–133]. These methods use people 

unrelated in the conventional sense of the word, but given the finite global population size, 

share a proportion of their DNA by descent. The proportion of sharing between pairs of 

individuals can be estimated using genome-wide marker data, and that genomic similarity 

can be correlated with disease status to estimate genetic variation [18,21,47,134]. By using 

distantly related individuals, a significant heritability tagged by common SNPs, ℎ3560 , is 

detected if case-case pairs and control-control pairs have higher genomic similarity than 

case-control pairs [21]. For most disease traits studied, significant SNP heritabilities have 

been estimated which demonstrates that although the data sets analysed may have been 

underpowered to detect the individual small effects as GWS, contributions from common 

variants exist but that larger sample sizes are needed for individual detection. Hence, the 

polygenic analyses have been successful in identifying “hidden heritability”, i.e. the increase 

from 	ℎ123
0  to ℎ3560 . In theory, with sufficiently large sample size, ℎ123

0  can become as large 

as ℎ3560 . 
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Figure 4: Schematic of heritabilities 

 

Explanations for the still-missing heritability 

 

For most diseases the “still-missing” heritability, i.e. the difference between ℎ3560  and h2 

remains substantial at approximately half of the heritability estimated from family data. It is 

important to note that it is not necessary to explain all heritability when the goal is to open 

new biological research doors that may impact treatment, and indeed it is likely to be 

impossible to do so. None-the-less, seeking further insight for the still-missing heritability 

may also provide important guidance of future research directions. A number of explanations 

have been proposed [6,7] which include:  

 

a) Over-estimation of heritability from family studies 

In human populations, part of the still-missing heritability may simply reflect overestimation 

of h2 since typical study designs for estimation of heritability use very close relatives (e.g., 

full siblings and twins) who share non-additive gene combinations and a common 
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environment and these confounding factors can be difficult to separate [118,135]. The 

difference between estimates of h2 from family data and the “true” h2 has been termed 

“phantom heritability” [136] when the difference is attributable to non-additive genetic 

variance, but our ability to quantify this based on realistically collectable data is limited. 

Others have argued that the contribution from non-additive genetic variance to complex 

traits is likely limited [137,138] and that presence of important epistasis and small epistatic 

variance are not inconsistent [139]. The extent to which gene-environment interaction (GxE) 

or G and E correlation inflate estimates of heritability from twin and family studies is 

unknown. Nonetheless, it seems intuitive that exposure to environmental risk factors 

increases risk of disease only in those that are already genetically susceptible and hence 

SNP effect sizes may differ in cases stratified by environmental exposure. However, GxE 

studies to date are limited by a dearth of samples that are informative for G and consistently 

recorded E [140]. For this reason, studies of candidate GxE interactions have generally 

lacked replication and the field is plagued by publication bias towards studies with positive 

results [141].  

 

b) Variants not tagged by common SNPs 

Part of the still-missing heritability must reflect genomic variants not well tagged by SNPs 

[7,18]. Since the SNPs on SNP chips are chosen because both their alleles are common 

they cannot be in high r2 linkage disequilibrium with rare causal variants.  For many 

diseases, copy number variants or other rare variants have been identified usually through 

WES studies. In order to have been detected, necessarily these rare variants have relatively 

large effect size, but still because they are rare, their contribution to risk in the population is 

small. A very large number of rare variants are needed to explain the still-missing heritability. 

For example, a locus with risk allele frequency 0.0001 and heterozygous relative risk (RR) 

of 10 explains approximately the same proportion of variance in liability as a locus with allele 

frequency 0.5 and RR 1.06. It is notable, that estimation of ℎ3560  using SNPs imputed to the 

1000 Genomes reference panel does not tend to generate higher estimates compared to 

imputation to the HapMap3 panel [142,143]. It is notable that the relative importance of small 

structural variants to genomic variation is currently not well documented and may not be well 

represented in sequenced reference panels used for imputation.  Since recurrent tandem 

repeat polymorphisms are known to modulate a range of biological functions [144,145] these 

may represent an example of an important, but as yet unprobed, source of disease 
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associated variation. Estimation of ℎ3560  based on haplotypes constructed from SNPs is a 

field of active research, since haplotypes have the opportunity to tag uncommon structural 

variants not present in imputation reference panels. In practice, such methods may be 

difficult to apply since they are likely to be very sensitive to genotyping error. 

 

c) Disease heterogeneity 

Disease heterogeneity is a possible explanation for still-missing heritability. We have 

previously noted, for psychiatric disorders at least, that heritabilities estimated from large 

population samples are lower than those estimated from twin studies. We argued [146] that 

this may reflect greater diagnostic heterogeneity in large cohorts compared to the carefully 

collected twin samples, but that the large cohorts may be more representative of the 

samples currently brought together for analysis in genetic studies. 

 

Disease heterogeneity can have several interpretations, but at its most tangible there are 

multiple examples of complex genetic diseases that are now recognised to have biologically 

determined subtypes reflecting independent, or more likely correlated, diseases which may 

have different optimal treatment strategies. For example, decades ago based on clinical 

symptoms alone the inflammatory bowel diseases ulcerative colitis and Crohn’s Disease 

would have been indistinguishable and given the same diagnosis. More recently, it has been 

recognised that diagnosis and treatment of rheumatoid arthritis should consider presence 

and absence of anti-citrullinated-protein-autoantibodies [147].  The genomics era has 

allowed good progress in subtyping of cancers (e.g., ER +ve/ER –ve and over-expression 

of HER2 as a breast-cancer subtype [148,149] or K-ras mutations in colorectal cancer and 

EGFR mutations in lung cancer, reviewed in [150]), however other branches of medicine are 

less able to supply measures of phenotypic heterogeneity in the tissue of relevance for 

mapping onto the genetic heterogeneity. Given the known examples, it seems likely that 

other diseases currently treated as a single disease entity may in fact be a diagnostic 

aggregation of sub-types. How could this impact missing heritability? We consider the 

impact of disease heterogeneity on estimates of the different parameters of variance 

explained by genetic factors and demonstrate that it could make an important contribution 

to still-missing heterogeneity. 
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Exploring the impact of disease heterogeneity 

 

To consider the impact of disease heterogeneity on genetic interpretation of disease, we 

consider an extreme example of two diseases each of lifetime prevalence 0.5% and 

heritability 80% that are phenotypically and genetically independent but that have such 

similar clinical presentation that they are indistinguishable and are considered a single 

disease. We further assume that both diseases exhibit a genetic architecture in which the 

effects of all SNPs follow a normal distribution and there is no enrichment of high effect 

SNPs in high LD regions. The various heritability estimates of the composite disease should 

therefore not be influenced by LD. Under this composite disease aetiology what would be 

the impact on estimates of h2, ℎ123
0  and ℎ3560 ? 

 

a) Impact on h2 

The composite disease would have lifetime prevalence of 0.05 (2-0.05) = 0.975% and that 

the heritability estimated from the two-disease composite would be estimated as greater 

than 65% from a twin design (see Appendix). In fact, for the composite disease the estimates 

of heritability using the liability threshold model are expected to be slightly inconsistent when 

estimated from the relative risks of disease from different types of relatives (Figure 5), but 

such inconsistencies are expected to be difficult to detect given the sampling error on 

estimates especially since most studies to estimate heritability use relatively small samples 

of only twins or first degree relatives. We conclude that high estimates of heritability are 

possible for a composite disease. 
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Figure 5: Estimates of heritability under a liability threshold model 
Calculated from lifetime risk of disease and lifetime risk of disease in relatives of affected 

individuals for a composite disease that comprises two independent diseases each of 

lifetime risk 0.5% and heritability 80%. 

 

 

b) Impact on 𝒉𝑮𝑾𝑺
𝟐  

We have previously provided theory to estimate power of association studies in the context 

of misdiagnosis [47] (see Appendix) which is analogous to the scenario here of a disease 

composite. In Figure 6 we show the power of an association study to detect risk alleles of a 

spectrum of frequencies that have effect size under a multiplicative model of heterozygote 

relative risk 1.15. For a sample of 10,000 cases of a single genetic disease and 10,000 

controls we have > 75% power to detect risk alleles of frequencies 0.2-0.8 at genome-wide 

significance of 5x10-8 (line A).  However, for our composite disease (for which we expect 

risk alleles to be associated with only one of the underlying diseases) an association study 

of 10,000 cases, of which only half are from the disease impacted by the risk allele, is totally 

underpowered to detect risk alleles (line B). To demonstrate that this reflects the impact of 

contamination by the phenocopy disease rather than the reduced sample size of the 

associated disease, we also show the power of an association study of 5,000 cases and 

10,000 controls (line C).  To consider a range of disease composite scenarios when the 

proportion disease 2 cases in the disease composite sample is 0%, 5%, 10%, 20% and 

50%, the power to detect a disease 1 risk variant of frequency 0.4 and relative risk 1.15 at 
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the genome-wide significance threshold of p< 5x10-8 is 93%, 87%, 79%, 55% and 3% 

(assuming 10,000 composite disease cases and 10,000 controls and 0.5% lifetime risk of 

disease 1).  

We conclude that disease heterogeneity can severely compromise the power of association 

studies and hence estimation of ℎ123
0 . 

 

 

Figure 6: Power of a genome-wide association study to detect risk variants with 
heterozygous relative risk of 1.15 
A) 10,000 cases of a homogeneous genetic disease of prevalence 0.975% and 10,000 

screened controls B) 10,000 cases of a composite disease and 10,000 screened controls, 

the composite disease has prevalence 0.975% but comprises two equally represented 

genetically independent diseases each of prevalence 0.5% C) 5,000 cases of a 

homogeneous genetic disease of prevalence 0.5% and 10,000 screened controls 
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c) Impact on 𝒉𝑺𝑵𝑷𝟐  

The impact of analysing a disease composite to estimate ℎ3560  can also be considered in 

terms of disease misclassification [47]. The estimated ℎ3560  is a weighted average of the true 

ℎ3560 	parameters of each underlying disease and the SNP-covariance (counted twice). So if 

the two contributing diseases have equal true ℎ3560  and are independent the estimated value 

from the composite disease will be 0.5 ℎ3560 . We conclude that disease heterogeneity can 

generate underestimates of ℎ3560  compared to when disease classes are genetically 

homogeneous. 

 

Summary 

 

The genetic basis of complex genetic disease can be quantified by heritability, which is an 

estimate of the relative importance of genetic to non-genetic factors in contributing to 

differences between individuals for any given trait. Heritability is estimated from phenotypic 

records in data sets of families and represents contributions from genetic variants across 

the frequency spectrum and genetic variants of any kind and function. Advances in 

technology allow direct interrogation of some kinds of DNA variants. Specific DNA variants 

identified in the era of genome-wide association studies, explain only a fraction of the 

heritability estimated from family studies (ℎ123
0 ) as do less common variants identified 

through whole exome sequencing. If true effect sizes of risk variants are small then studies 

to date may be underpowered to detect individual risk variants, but they may be well-

powered to detect the total contribution from common risk variants (ℎ3560 ) and such analysis 

have helped to explain some of the missing heritability. Here we reviewed explanations for 

the so-called “still-missing heritability” and focus particularly on the issue of disease 

heterogeneity. To explore the impact of disease heterogeneity on estimates of h2, ℎ123
0  and 

ℎ3560 we considered an extreme example of two independent indistinguishable but equally 

genetic diseases being lumped together as a disease composite. We have shown that under 

this scenario the estimates of h2 from family data are nearly as high as the heritabilities of 

the contributing individual diseases, yet the estimates of ℎ123
0  and ℎ3560  are severely 

compromised. In reality this toy example may be too extreme as real presentations of 

composite diseases may reflect diseases that are genetically correlated rather than totally 

independent. For example, Crohn’s Disease and ulcerative colitis are estimated to have a 
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genetic correlation based on SNP data of 0.6 [151], which means the vast majority of SNPs 

identified in GWAS affect both diseases with effects in the same direction, but a handful of 

them have effects in the opposite direction [152]. Clearly, as the genetic correlation between 

the two contributing diseases approaches 1, the two diseases merge as a single genetic 

disease entity. For genetically correlated diseases the power to detect associated loci may 

be increased by considering the disease composite for loci contributing to both diseases 

and decreased for other loci. Consideration of these factors can quickly lead to philosophical 

musings of the definition of disease, since even for a single genetic disease under a 

polygenic model of disease each individual could carry a unique portfolio of risk loci. In the 

genomics era, a disease definition may be at the pathway level, whereby a single genetic 

disease considers different portfolios of risk loci impacting the same pathway, or more 

practically the class of individuals who respond to the same treatment.  

 

Acknowledgments 

 

NRW is funded by the Australian National Health and Medical Research Council grants 

61602 and 1050218. 
 

Appendix 

 

Estimation of heritability from a disease composite 

We define a disease composite as a clinically indistinguishable disease comprising two 

independent diseases. For illustration and simplicity, we assume that the two independent 

diseases (D1, D2) have the same lifetime risk of disease of K and the same heritability of h2
. 

From standard liability threshold theory, we can calculate the risk in family members whose 

relatives of a given degree of kinship are affected, KR. The lifetime risk of the composite 

disease is KC = K(2-K). The risk of either of the underlying disease in relatives of those 

affected by either of the underlying diseases can be written in terms of the probabilities of 

each of the underlying diseases relatives (DR1, DR2)    
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𝐾𝑅_𝐶	 = 	 (P D@A	 DA) 	+ 	P D@0	 DA)	– P(D@A	&	D@0	|	DA))	P(DA	|	DA	or	D0) 	+	(P D@A	 	D0) 	

+ 	P D@0	 	D0)	– P D@A	&D@0	 	D0 	P D0	 	DA	or	D0 	+	(P D@A	 DA	&	D0) 	

+ 	P(D@0	 	DA	&D0	 – P D@A	&D@0 DA	&	D0))	P(DA	&	D0	 	DA	or	D0

=
𝐾𝐾H(2(

1 − 𝐾	
𝐾 +	 1 −	𝐾H

0	
𝐾H

) 	+ (2	–	𝐾H))

2 − 𝐾  

 

From Kc and KR_C, which are the risks that would be estimable from family data we can 

calculate the heritability of liability. These calculations have been checked by simulation. 

 

Impact of power of an association study in the context of a disease composite 

As before define a disease composite as a clinically indistinguishable disease comprising 

two independent diseases. A locus is expected to be associated with only one of the two 

underlying diseases. The underlying disease considered has lifetime risk K. We consider a 

causal variant for this disease that has frequency of the risk allele and protective alleles of 

p and (1-p) respectively in the population. Let (1 - p)2, 2p(1 –p) and p2 be the frequencies of 

the genotypes (in Hardy-Weinberg equilibrium), and the risks of disease in the genotypes 

are f0, f1 and f2. If we assume a multiplicative model on the disease scale, then f1 = f0 γ and 

f2 = f0 γ2 where γ is the relative risk of the risk allele compared to the protective allele. We 

can calculate the frequency of the risk alleles in cases (true cases) and screened controls 

as 

𝑝MNOP = 	
QR

ASQ(R-A)
  and 𝑝M.UVW.X = 	

Q
AYZ

1 − ZR
ASQ RYA

Q
A-Z

1- ZR
ASQ R-A

. 

If s is the proportion of cases in the association sample that that are from the other underlying 

disease, then the allele frequency in the composite disease sample is 

pcaseC  =  (1- s) pcase + spcontrol 

The non-centrality parameter (NCP) of the 𝛸2 test of association is 

NCP = 5
\(]/^_`aY]/bcdebf)\

gNW(]/^_`aY]/bcdebf)
= 	 5h(AYh)(]/^_`aY]/bcdebf)

\

](AY])
 

where 𝑝 = 𝑣𝑝MNOPj + (1 − 𝑣)𝑝M.UVW.X  where v = Ncase/(Ncase + Ncontrol) = Ncase/N. We calculate 

power as the normal probability p(Z > T), where Z =√NCP and T is the normal deviate 

corresponding to the type I probability level, i.e., 5 x 10-8 for genome-wide association. When 

s = 0, the power calculation agrees with the genetic power calculator [153]. 
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Chapter	3:	Genotype	based	clustering	

 

Abstract 

 

Medicine is full of examples where a given set of symptoms can be caused by different 

biological pathways. Diagnostic tests illuminating these pathways are therefore often used 

to correctly classify the symptom cluster and to find an appropriate treatment. So far, this 

approach has not been very successful in psychiatry. With the identification of genetic loci 

contributing to disease risk in psychiatric disorders, attempts have been made to use this 

information to define genetically defined subtypes. Here we undertake a simulation study to 

explore the underlying parameters that would be consistent with success of a genetically-

based clustering approach. 

 

Introduction 

 

Defining biologically meaningful classifications of psychiatric disorders is a notoriously 

difficult problem [5]. Diagnostic tests, often based on molecular markers connected to the 

pathophysiology of a disease, are commonplace in most fields of medicine and usually allow 

the conclusive and unambiguous categorization of a patient’s symptoms. To date, effective, 

biologically based tests are not available for psychiatric disorders, reflecting our 

comparatively poor understanding of affective and cognitive brain functions [111]. Other 

fields of medicine, such as immunology [154] and oncology [155] are full of examples where 

a molecular test allows distinguishing between disease subtypes which appear homogenous 

on a clinical level. In many cases this has important consequences for treatment [156]. It 

has often been suggested that a similar type of genetic heterogeneity may exist in 

psychiatric disorders, such as Major depressive disorder [109] and Autism [110], and that 

not recognizing this kind of heterogeneity may limit our understanding, as well as the 

effective treatment of these disorders [156]. 

 

From a quantitative genetics perspective, there is yet another motivation for studying genetic 

heterogeneity: In most complex disorders the heritability explained by all genetic markers if 
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well below the heritability estimated from twin or family studies [130]. While there are several 

possible explanations for this observation, one reason for this so called ‘still missing 

heritability’ is the presence of genetic heterogeneity [157]. If it was possible to identify 

genetically more homogenous groups, the power of genetic studies to detect associated 

variants would be greatly increased [157]. 

 

There have been several studies which have addressed the issue of genetic heterogeneity 

in psychiatric disorders. Some merely aimed at identifying the presence of genetic 

heterogeneity in a population [158], while others had the more ambitious goal of identifying 

genetic subtypes and grouping individuals accordingly [159]. However, while Arnedo et al. 

[159] reported to find evidence for distinct schizophrenia subtypes, this claim has been 

heavily disputed on a number of grounds (see PubMed discussion at 

http://www.ncbi.nlm.nih.gov/pubmed/25219520). While the potential benefit of identifying 

genetic clusters is large, it is not clear whether clustering methods are powerful enough to 

achieve this feat. 

 

Here we aim to address this question via a simulation framework. The framework is based 

on real genotype data and simulated phenotypes, which represent two different subtypes. 

After de-labeling the subtypes, it is evaluated how well a clustering approach can recover 

the two subtypes. 

 

 

Methods 

Data 

Simulated genotypes lack the complex structure that is often present in real genotype data 

and that may have a profound effect on the clustering of samples based on their genotypes. 

We therefore conducted extensive simulations based on real genotypes. For this genotypes 

from individuals of European ancestry were obtained from the GERA data set (dbGaP 

number: phs000674.v2.p2). Related individuals were excluded. The genotypes consisted of 

585,652 SNPs. 
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Simulation of phenotypes 

For the simulation of genetically correlated phenotypes, between 10 and 1000 SNPs out of 

the total of 585,652 were chosen to be causal SNPs. Effect sizes for these causal SNPs of 

the two phenotypes were drawn from a bivariate normal distribution: 𝛽~𝑁(0, Σ), where Σ =

ℎA0 𝜎r
𝜎r ℎ00

/𝑀, and 𝜎r = 𝑟1× ℎA0×ℎ00. The SNP effects were then multiplied with the genotype 

matrix to obtain an aggregate genetic effect (breeding value) for each individual. 

Environmental effects were simulated in a similar way for each individual and added to the 

genetic values, according to the model: 𝑦 = 𝑔 + 𝑒. Two case-control phenotypes were 

simulated with a prevalence of 0.1, heritability of 0.8 and varying levels of genetic correlation 

(rG) between the two diseases. This was done by first simulating normally distributed liability 

values, and then classifying individuals as cases or controls, depending on whether their 

liability was above or below the prevalence dependent threshold. 

 

The two phenotypes represent the “true” underlying disorders which should be recovered 

by the clustering approach. They are then merged into a genetically heterogeneous set 

where every sample is labeled a case if they were a case in either the first or the second 

phenotype; otherwise the sample is a control.  

 

Initially 5200 cases and 5200 controls were simulated for each phenotype, which were 

based on 5000 causal SNPs. To allow for the exploration of a wider parameter space we 

later switched to another simulation setup which was based on 100 cases and 100 controls 

for each phenotype, and 10/100/1000 causal SNPs. 

 

Estimation of causal SNPs 

Clustering genotypes will inevitably lead to two or more clusters of individuals, but what 

these clusters represent depends among other things on the SNPs that are used for 

clustering. If the clusters should capture the two simulated diseases, the clustering must be 

based on the causal SNPs which were used to generate them, specifically SNPs with 

different effects on each disease. In any real setting the differentiating causal SNPs are not 

known and can only be estimated through a GWAS. We therefore performed a GWAS 

between the heterogeneous cases and the control. Under large sample sizes and low rG the 
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most significant SNPs in the GWAS should be the causal SNPs. While this is not necessarily 

the case anymore with smaller sample size and higher rG., these SNPs still represent useful 

candidates for clustering. 

 

 

Clustering and evaluation 

K-means clustering was performed on the genotypes of all cases in the heterogeneous set 

to obtain two clusters of samples. The clustering was performed only on the genotypes of 

SNPs which were most significantly associated with disease status in a GWAS of controls 

versus merged cases. For the k-means clustering, k was set to two, and the Euclidean 

distance between the genotype vectors of two individuals was used as the measure of 

dissimilarity. 

 

Finally, the clustered groups are compared to the real underlying phenotypes to test whether 

the clustering could recover the original groups. This can be done through calculating the 

AUC (which ideally would be close to 1) or through estimating the genetic correlation 

between the two clusters (which ideally would recover the simulated genetic correlation). 

An illustration of the main steps of the simulation and clustering workflow is shown in Figure 
7. 

 

Figure 7: Illustration of the main steps of the clustering analysis 

Blue individuals are controls, orange and purple individuals represent genetically 

heterogeneous but clinically indistinguishable cases. 
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MDS analysis 

The genotype of each individual can be seen as a point in an m-dimensional space, where 

m is the number of markers. Any type of clustering will only achieve reasonable separation 

of the two simulated disorders, if the there is a smaller distance between individuals with the 

same disorder than between individuals with a different disorder. To test whether this is the 

case, non-metric multi-dimensional-scaling (MDS) was performed on the genotypes of the 

causal SNPs and of the GWAS SNPs. Similar to PCA, MDS can be used as a dimensionality 

reduction technique, which maps distances between samples from a high dimensional 

space to a lower dimensional space, while attempting to keep pairwise distances 

proportional [160]. 

 

 

Results 

 

In the large-scale simulation setup, the simulated rG of 0.5 and 0 could not be recovered 

after clustering the merged case samples using GWAS SNPs (see Figure 8). 

 

In order to better understand at which point these simulations fail, a small-scale simulation 

setup was employed, in which AUC rather than rG between clusters was evaluated (see 

Figure 9). These analyses suggested that high AUC values are only achieved if the causal 

SNPs are used for clustering or if the number of causal SNPs is very low. 

 

Impact of simulated rG on clustering performance. 

In order to simulate two different underlying disorders, the SNP effects for the two disorders 

must have a correlation smaller than 1. The smaller the correlation of the SNP effects, the 

more genetic differentiation there will be. On the other hand, a GWAS which compares 

controls to combined cases will be better able to detect causal SNPs if the correlation of 

SNP effects is high. At a correlation of -1 the SNP effects will be opposite of one another, 

however if the sample size of the two simulated disorders is equal, a GWAS will not be able 

to identify the causal SNPs because the effects on disease 1 and disease 2 cancel each 

other out. Consequently, clustering based on the causal SNPs will work best with a 
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simulated rG of -1, but clustering based on GWAS SNPs will work best at higher values of 

simulated rG. 

 

The poor performance of the clustering approach raises the following question: Does 

clustering on genotypes fail to retrieve the original phenotypes, because the clustering 

algorithm cannot pick up a signal which is present in the genotypes of the causal SNPs or 

GWAS SNPs? Or does it fail because there is no signal to be picked up at genotypes of the 

causal or GWAS SNPs? In our simulation the same causal SNPs with different effect sizes 

give rise to two phenotypes, so it could be expected that the two phenotypes form two 

clusters of genotypes with different allele frequencies at the causal SNPs. MDS was 

performed on the genotypes of the causal SNPs and of the GWAS SNPs to answer this 

question. Figure 10 shows MDS dimensions 1 and 2 for three simulations with different 

numbers of causal SNPs. With 10 causal SNPs, the genotypes segregate according to the 

two different phenotypes. A larger numbers of causal SNPs however does not induce any 

discernible differences between the genotypes corresponding to the two phenotypes, as can 

be seen by the nearly perfect overlap of the samples in the MDS figure. In these cases, any 

clustering algorithm will fail to partition samples according to their simulated disease. 

 

 

Figure 8: Genetic correlations (rG) between clusters 
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The black lines indicate the simulated rG which would ideally be recovered. The dots and 

lines represent rG point estimates and standard errors for each simulation run. Green: rG not 

between clusters, but between the original simulated phenotypes to validate the phenotype 

simulation process. Red: rG between both clusters. rG lower than one could not be recovered, 

indicating that the resulting clusters do not correspond to the simulated phenotypes. Blue: 

permuted clusters as negative control. 

 

 

Figure 9: Clustering AUC in the small-scale simulation setup for a wide range of 
parameters 

Pink: Clustering based on GWAS SNPs. Blue: Clustering based on true causal SNPs. 

Labels on the x-axis show the parameters used for the simulations separated by semicolons: 

rG, h2, number of causal SNPs, number of causal SNPs which are located on chromosome 

1 (always the same as all causal variants here), number of GWAS SNPs which were used 

for clustering. 
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Figure 10: MDS of genotypes performed at causal SNPs and at GWAS SNPs 

MDS performed in 6 simulations using 10/100/1000 causal SNPs and rG of 0. Each dot is a 

sample which has either disease 1 or disease 2. With small numbers of causal SNPs the 

genotypes segregate according to the simulated disease. With large numbers of causal 
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SNPs the two groups become almost inseparable. Top two rows: rG = -1; bottom two rows: 

rG = 0. 

 

Discussion 

 

Current diagnostic classifications in psychiatry are mostly symptom based and may not 

perfectly align with underlying pathomechanisms [5]. A nosology based on biological 

mechanisms could greatly benefit diagnostic accuracy as well as enable better targeted 

treatments [156]. A special case of an imperfect alignment between diagnostic boundaries 

and causal mechanisms is a scenario in which a clinically homogenous disease consists of 

two or more groups of genetically different underlying disorders. If the genetic differences 

between the underlying disorders are large enough, it should be possible to separate the 

two groups in a clustering approach. In this work, the goal was to study in a simulation setting 

if, and under which parameters k-means clustering can achieve this task. 

 

The results of our large-scale simulations based on real genotype data did not support the 

view that clustering can identify groups that correspond to the different phenotypes. We then 

moved to small-scale simulations based on real genotype data, which allowed us to explore 

a wider parameter space. 

 

This resulted in the following observations: 

 

(i) Clustering on the true causal SNPs leads to a better performance than clustering on the 

SNPs which can be detected through a GWAS. This is not surprising, since the SNPs 

detected in a GWAS are only an approximation to the causal SNPs and effect sizes are 

estimated with error. Larger sample size and a lower number of SNPs will make this 

approximation more accurate, as will a higher rG. However, rG cannot be too high, otherwise 

no heterogeneity is being simulated. 

 

(ii) Only if the number of causal SNPs is very small, do the genotypes segregate according 

to the simulated disease. This is not just a consequence of how well the effects of the causal 

SNPs can be estimated. The analysis that uses the causal SNPs for clustering demonstrates 

that even with infinite sample size and perfect estimates of SNP effects, the clustering 
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approach would fail to identify disease subgroups if the number of causal SNPs is not very 

small. 

 

Given that the genetic architecture of psychiatric disorders is such that very many small 

effect loci, but not many large effect loci have been found to contribute to risk [58,109], it 

appears unlikely that clustering approaches based on genetic data will be very informative, 

and suggests that claims to the opposite [159] may need to be reconsidered. 

 

It should be noted that our simulations make some assumptions that may not be met in real 

life applications. Most of the assumptions, if not met, would make it even harder to detect 

separate groups in genetic data using unsupervised clustering: 

 

First, all simulations assume that the compound disorder consists of two underlying 

disorders with the same prevalence. In reality, if two underlying disorders are present they 

are more likely to have different prevalences, which would reduce power. 

 

Second, heterogeneity may not just come in the form of discrete differences. Rather than 

having two separate underlying disorders with differing genetic effects, there could be a 

continuum of genetic effects between individuals. In that case, a cluster analysis which is 

bound to find discrete clusters, would be insufficient to describe the data well. 

 

Third, if two distinct underlying disorders are present, their genetic correlation may be high. 

Here, many analyses assumed that rG = 0, meaning orthogonal SNP effects for both 

disorders. In reality this could be much higher, making a genetic differentiation harder. For 

example, Schizophrenia and Bipolar disorder, despite being clinically distinct, have an rG of 

around 0.7 [10]. 

 

Being able to stratify a clinical sample into different groups based on their genotypes holds 

great promises. Not only could it facilitate better targeted treatments, it could also make 

other studies that depend on biologically well-defined phenotypes more effective. 

Unfortunately, our simulations indicated that at current sample sizes the power to identify 

meaningful clusters is very low under a polygenic architecture. It was therefore decided to 

move on to other projects, such as the summary statistics based multi-trait predictors. 

Subsequent to our investigations [158] have developed another promising approach to 
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investigate genetic heterogeneity. Their approach differs from the one presented here. 

Firstly, because they assume that one of the unobserved underlying disorders includes 

individuals that are genetically more similar to cases of a second disorder (at the extreme 

they may be misclassified cases), and its risk loci of the second disorder are known. 

Secondly, they don’t attempt to cluster individuals, but rather to detect the presence of 

genetic heterogeneity.
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Abstract 

 

Genetic risk prediction has several potential applications in medical research and clinical 

practice, and could be used, for example, to stratify a heterogeneous population of patients 

by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, 

the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and 

apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This 

method exploits correlations between disorders and simultaneously evaluates individual risk 

for each disorder. We show that the multivariate approach significantly increases the 

prediction accuracy for schizophrenia, bipolar disorder and major depressive disorder in the 

discovery as well as in independent validation data sets. By grouping SNPs based on 

genome annotation and fitting multiple random effects, we show that the prediction accuracy 

could be further improved. The gain in prediction accuracy of the multivariate approach is 

equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, 

and 76% for major depressive disorders using single trait models. Since our approach can 

be readily applied to any number of GWAS data sets of correlated traits, it is a flexible and 

powerful tool to maximize prediction accuracy. With current sample size, risk predictors are 

not useful in a clinical setting but already are a valuable research tool, for example in 

experimental designs comparing cases with high and low polygenic risk. 
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Main text 

 

Genome-wide association studies (GWAS) have been highly successful in identifying 

variants associated with a wide range of complex human diseases [11,161]. However, most 

common diseases are highly polygenic and each variant explains only a tiny proportion of 

the genetic variation. Even when associated SNPs are considered jointly in polygenic 

approaches such as polygenic risk scores [162] or genomic best linear unbiased prediction 

(GBLUP) [163,164], the accuracy of risk prediction is low. Using more advanced methods 

[163–167] improved prediction accuracy for traits where a small number of relatively strong 

associations have been identified, such as type 1 diabetes, ankylosing spondylitis and 

rheumatoid arthritis, but not for other traits characterized by small effect size variants, 

including psychiatric disorders [163,164,168]. 

 

A major factor determining how well a polygenic model can predict a trait value in an 

independent sample is the sample size of the discovery data [57,169]. Using more 

individuals will provide more information and hence increase the accuracy of the estimated 

effect size of a specific SNP. Sample size can also be effectively increased through data 

sets measured for correlated traits. Recently, we estimated the genetic relationships 

between five psychiatric disorders from the Psychiatric Genomics Consortium (PGC) using 

a bivariate linear mixed model demonstrating that there are significant shared genetic risk 

factors across the disorders and that measurement of one trait provides information on other 

genetically correlated traits [10]. Here we extend our bivariate approach to a multivariate 

linear mixed model and apply multi-trait genomic best linear unbiased prediction 

(MTGBLUP) [170,171] for genetic risk prediction of disease. MTGBLUP is expected to be 

more powerful as it uses correlations between disorders and jointly evaluates individual risk 

across disorders. To date, the information from other correlated traits has been little 

exploited in the context of risk prediction although recently Li et al. [168] applied bivariate 

ridge regression to two genetically correlated diseases to improve risk prediction. 

 

An important advantage of the MTGBLUP approach is that it does not require multiple 

phenotypes to be measured on the same individuals and therefore, can be readily applied 

to any number of existing datasets of genetically related traits. This is particularly beneficial 

for disease studies that are limited to a single phenotype but typically aim for large sample 

sizes. Moreover, it is not necessary for the data sets to be genotyped with the same SNP 
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array as SNPs can be imputed to a common set of SNPs, such as those available from the 

HapMap or 1000 Genomes reference panel [172,173]. Prediction accuracy can be expected 

to improve as more data from phenotypes with shared aetiology are utilised.  

 

In this report, we apply the MTGBLUP approach to the cross-disorder PGC GWAS data and 

show a significant increase in risk prediction accuracy in independent cohorts of 

schizophrenia, bipolar disorder and major depressive disorder. MTGBLUP increased the 

discriminant power between the top and bottom 10% of individuals ranked on their risk 

predictor, implying that this approach may be useful for stratified medicine in a research 

setting, to develop tailored interventions or treatments for individuals having different risks 

[111,156,174]. We further demonstrate a relationship between functionally annotated SNPs 

and increased prediction accuracy of schizophrenia and bipolar disorder.  

 

As the main method, we use a multivariate linear mixed model for the analyses of GWAS 

data that estimates the total genetic values of individuals directly by utilising genomic 

relationships based on SNP information. In the model, a vector of phenotypic observations 

for each trait is written as a linear function of fixed effects, random genetic effects and 

residuals. For simplicity, we constrain the description to a single component for the random 

genetic effects, but the model can be readily extended to multiple components of random 

genetic effects: 

111111 egZbXy ++=                                for trait 1 

222222 egZbXy ++=                             for trait 2 

                  

yn =Xnbn +Zngn + en                                for trait n 

where y is a vector of trait phenotypes, b is a vector of fixed effects, g is a vector of total 

genetic value for each individual and e are residuals. The random effects (g and e) are 

assumed to be normally distributed with mean zero. X and Z are incidence matrices for the 

effects b and g, respectively. Subscript 1,…, n represents trait 1 to trait  n. The variance 

covariance matrix is defined as, 
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where A is the genomic similarity matrix based on SNP information, and I is an identity 

matrix. The terms, 𝜎rz
0  and 𝜎rz

0  denote the genetic and residual variance of trait i, respectively 

and 𝜎rz{
	  and 𝜎rz{

	  the genetic and residual covariance of trait i and j. Multi-trait genomic 

residual maximum likelihood (MTGREML) estimates (see Appendix A) are obtained using 

the average information algorithm [26,175,176].  

 

Next we show that SNP risk predictors can be easily transformed from individual risk 

predictors with a simplified BLUP model that uses individual risk predictors as the dependent 

variable and fits a covariance structure without residual variance (i.e. heritability is 1). 

Individual risk predictors are the Best Linear Unbiased Predictors (BLUPs) of total genetic 

value of individual subjects contributed by genome-wide SNPs, i.e. g in the previous section. 

Analogously, SNP risk predictors are defined as the BLUPs of SNP effects estimated jointly 

with a linear mixed model that intrinsically accounts for linkage disequilibrium between 

SNPs. The SNP BLUP model is computationally more demanding for a large number of 

SNPs. Therefore, it is desirable to estimate genetic values (GBLUP) for efficiency, and to 

transform them to SNP-BLUP. The SNP-BLUP can be projected to predict genetic risk for 

independent validation sample without the need to have access to the training individuals. 

The SNP-BLUP estimates can be applied to independent data sets as the SNP weights 

used to create a risk profile score, for example using the PLINK --score command. The 

individual BLUP model is 
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where Wi is a N × M matrix of standardised SNP coefficients with N being the number of 

individuals and M the number of SNPs, Ä is the Kronecker product function, and the variance 

covariance matrix for SNP BLUP mode is defined as 
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Replacing y with g (individual BLUP) and setting residual (co)variances as zero (because 

individual BLUP is already adjusted for residuals), the variance covariance matrix can be 

simplified as 
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Therefore, SNP BLUP can be written as 
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And, this can be rewritten as 
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This agrees with Hayes et al. (2009) [177] and Yang et al. (2011) [26] when it reduces to a 

univariate model. In equation (2), replacing [g1 , … , gn]’ with the right hand side in equation 

(1), it can be rewritten as  
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This agrees with VanRaden (2008) [178] and Stranden and Garrick (2009) [179] derived 

from a matrix inversion theory when it reduces to a univariate model. 

 

We extended our approach to genomic partitions according to gene annotation. An 

enrichment analysis based on gene annotation categories has shown that SNPs located 

within genes identified as being differentially expressed in the central nervous system (CNS) 

explain a significantly larger proportion of phenotypic variance than expected by chance for 

schizophrenia and bipolar disorder [10,180]. It is of interest to determine if the 
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gene/functional annotation information can further increase the prediction accuracy. In the 

annotation analysis, we grouped SNPs that were located within ±50 kb from the 5′ and 3′ 

UTRs of 2725 genes differentially expressed in the CNS [19,180] together, and 21% of the 

SNPs belonged to this category. We then estimated SNP effects from a two component 

model fitting relationship matrices of SNPs in CNS genes and SNPs localised elsewhere. 

The model is,    

y1 =X1b1 +Z1g1CNS +Z1g1non−CNS + e1                                   for trait 1 

                       

yn =Xnbn +ZngnCNS +Zngnnon−CNS + en                                for trait n 

where gCNS is a vector of random genetic effects due to the CNS genes and gnon-CNS is a 

vector of random genetic effects due to the non-CNS region. 

 

We also tested another gene set that included candidate genes set for schizophrenia / 

autism / intellectual disability [162]. We matched these candidate genes with human genome 

version 18 (on which the discovery data set was built) and retained 4133 autosomal genes. 

It is noted that we excluded 479 genes flanking GWAS SNPs identified in the Swedish 

sample [143] to avoid artefact inflation in prediction accuracy. We annotated SNPs within 

the schizophrenia / autism / intellectual disability genes (28% of the SNPs) and fitted 

genomic similarity matrices of the annotated SNPs and the rest of SNPs in a two component 

model.    

 

We had access to the PGC-Cross-Disorder data and three independent validation data sets. 

The details of the PGC-Cross-Disorder data with additionally available ADHD samples are 

described elsewhere [10]. Genotype data from each study cohort were processed through 

the stringent PGC pipeline and imputation of autosomal SNPs was carried out with the 

HapMap3 reference sample [181]. In each imputation cohort, we retained only SNPs with 

MAF >0.01 and imputation R2 >0.6. The number of SNPs used in this study was 745,705. 

We excluded individuals to ensure that all samples from the 5 disorders were completely 

unrelated in the conventional sense, so that no pair of individuals had a genome-wide 

similarity relationship greater than 0.05. The number of cases and controls used in this study 

are shown in Table 2. All phenotypes were controlled for cohort, sex and the first 20 principal 

components estimated from genome-wide SNPs. Adjustments were performed for each 

trait.  
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Table 2: Estimates of SNP-heritability and genetic correlations from multivariate 
analysis of five psychiatric disorders 

Disorders Cases Controls SNP-h2 on the liability scale SE 
SCZ 8826 6106 0.235 0.011 

BIP 5867 3328 0.218 0.017 

MDD 8770 6506 0.286 0.023 

ASD 3086 3163 0.130 0.024 

ADHD 3997 8479 0.281 0.022 

   Genetic correlation SE 
BIP/SCZ 5867/8826 3328/6106 0.590 0.048 

MDD/SCZ 8770/8826 6506/6106 0.365 0.047 

MDD/BIP 8770/5867 6506/3328 0.371 0.060 

ASD/SCZ 3086/8826 3163/6106 0.194 0.071 

ASD/BIP 3086/5867 3163/3328 0.084 0.089 

ASD/MDD 3086/8770 3163/6506 0.054 0.089 

ADHD/SCZ 3997/8826 8479/6106 0.055 0.046 

ADHD/BIP 3997/5867 8479/3328 0.160 0.059 

ADHD/MDD 3997/8770 8479/6506 0.242 0.059 

ADHD/ASD 3997/3086 8479/3163 -0.044 0.088 

SE Standard error; SCZ schizophrenia; BIP bipolar disorder; MDD major depressive 

disorder; ASD autism spectrum disorder; ADHD attention deficit disorder 

 

 

In preliminary analysis, using the multivariate linear mixed model, we estimated genetic 

variances and genetic correlations between the 5 psychiatric disorders (Table 2). The 

estimates agreed with those reported in the previous study [10] (Figure 11, Figure 12 and 

Figure 13) but were slightly less accurate (larger standard errors) because of the smaller 

sample size due to excluding genetically related samples across all five disorders rather 

than across only two traits in the bivariate analyses. 
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Figure 11: Previous vs current estimates – heritability  

 

 

 

Figure 12: Previous vs current estimates – genetic correlations 
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Figure 13: Previous vs current estimates – SNP-coheritability 
Previous estimates (Lee et al. 2013) plotted against estimates from this study for 5 

psychiatric disorders. Both studies and the previous utilized the same data. However, the 

previous estimates used a bivariate model and so overlapping and closely related samples 

were excluded on a pairwise basis. In this study overlapping samples and closely related 

samples were removed across all 5 disorders generating small samples per disease. Figure 
11 SNP-heritability (correlation coefficient between previous and current estimates = 0.69); 

Figure 12 Genetic correlations (correlation coefficient between previous and current 

estimates = 0.98); Figure 13 SNP-coheritability (correlation coefficient between previous 

and current estimates = 0.98) 

 

 

To evaluate the risk prediction performance of MTGBLUP, we performed within-study cross-

validation of the PGC data, i.e. internal validation. We randomly split the data for each 

disease into a training sample containing ~80% of individuals and a validation sample 

containing the remaining ~20% [182] and repeated this five times. For assessing predictive 

performance in the internal validation, we calculated the correlation coefficient between the 

observed disease status and the predicted genomic risk score of the validation individuals. 

We also regressed observed disease status was on risk scores. If the risk scores are 

unbiased estimates of genetic risk then the regression coefficient is expected to be one, i.e. 

the covariance between true and estimated risks equals the variance of estimated risks. 

Deviations from one reflect the degree of bias of the risk scores. We averaged the correlation 

and regression coefficients, and estimated empirical standard errors over 5 replicates. Using 



98 

 

the empirical standard errors estimates, a t-test was performed to assess differences in 

prediction accuracy between methods. In the within-study cross-validation, MTGBLUP 

outperformed single-trait genomic best linear unbiased prediction (STGBLUP) for all 

disorders: the gain in prediction accuracy was significant for schizophrenia (p-value < 6.0E-

08) and bipolar disorder (p-value < 6.6E-11) (Figure 14). The slope from the regression of 

disease status on predicted risk score ranged from 0.88 to 1.14 (Table 3) indicating that the 

risk scores are well calibrated. 

 

 

Figure 14: Prediction accuracy of MTGBLUP and STGBLUP for five psychiatric 
disorders in the within-study validation of PCG 
Results are based on 5 replicates. Error bars are ± empirical standard error. Prediction 

accuracy is measured as the mean of the correlation coefficient between the true disease 

status and the predicted genomic risk score in the validation data. 
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Table 3: Comparison of prediction accuracy (correlation) and regression coefficient 
(Regression) of MTGBLUP and STGBLUP for five psychiatric disorders in the within-
study validation of PCG 
Correlation and regression coefficient is averaged over 5 replicates. Empirical SE over 5 

replicates is in bracket. 

 

	 Correlation		 Regression		

	 Schizophrenia	

STGBLUP	 0.240	(0.003)	 1.011	(0.022)	

MTGBLUP	 0.264	(0.003)	 1.019	(0.019)	

	 Bipolar	disorder	

STGBLUP	 0.159	(0.005)	 1.091	(0.054)	

MTGBLUP	 0.204	(0.005)	 0.971	(0.025)	

	 Major	depression	

STGBLUP	 0.125	(0.009)	 1.078	(0.054)	

MTGBLUP	 0.140	(0.007)	 0.930	(0.038)	

	 Autism	Spectrum	Disorders	

STGBLUP	 0.075	(0.003)	 0.965	(0.080)	

MTGBLUP	 0.078	(0.006)	 0.884	(0.054)	

	 ADHD	

STGBLUP	 0.141	(0.013)	 1.144	(0.052)	

MTGBLUP	 0.146	(0.013)	 1.116	(0.050)	

 

  

Results obtained from a within-study validation might not reflect the true performance when 

SNPs effects estimated from the training data are spuriously associated with the diseases. 

To better assess the true prediction potential of MTGBLUP, risk scores derived from the 

complete PCG data were validated in independent samples for schizophrenia, bipolar and 

major depressive disorder. As independent validation sets, we used Swedish schizophrenia 

[143] and bipolar GWAS data [183] and the GENRED2 MDD dataset collected by the same 

methods as reported for the GENRED1 dataset [184]. SNPs in the validation data were 

processed through the same stringent quality control as the discovery data. The Swedish 
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schizophrenia data was imputed using the HapMap3 as reference. The bipolar disorder data 

and MDD data were imputed using the 1000 Genomes Project data as reference. Post-

imputation quality control was applied to exclude poorly imputed SNPs from the validation 

sets. Finally, we selected SNPs that matched those in the discovery set. The number of 

SNPs in each validation set is shown in Table 4. Individuals were removed from the 

validation datasets if they had relatedness > 0.05 to any one of the individuals in the 

discovery set. Table 4 gives the numbers of cases and controls in the independent validation 

datasets before and after excluding related individuals. 

 

Table 4: Numbers of cases and controls in the independent validation data sets before 
and after removing related individuals 

 SCZ (Swedish) BIP (Swedish) MDD (GENRED2) 
 Cases Controls Cases Controls Cases Controls 

All 5193 6391 2208 6056 831 474 

After cut-off QC 4068 5471 2029 5338 822 466 

Number of SNPs 745631 645237 673109 

SCZ: Swedish schizophrenia GWAS, BIP: Swedish bipolar disorder GWAS, MDD: 

GENRED2 GWAS. 

 

In the discovery set we obtained SNP solutions by applying SNP GBLUP (Eq. (3)) and then 

projected the SNP solution to the genotypes of the validation individuals (Eq. (2)). For 

assessing predictive performance in the independent validation, the correlation and 

regression coefficient were used as measures of prediction accuracy and biasedness, 

respectively, similar to the internal validation. A likelihood ratio test (LRT) was used to test 

for differences in prediction accuracy between methods comparing the likelihood of a logistic 

regression fitting the STGBLUP to that of a logistic regression fitting the MTGBLUP and 

STGBLUP jointly. In the logistic regression models, case-control status was used as the 

dependent variable. In the validation datasets, all phenotypes were controlled for cohort, sex 

and the first 20 principal components just as in the discovery dataset. This external validation 

confirmed the superior performance of MTGBLUP over STGBLUP (Table 5). From the LRT 

to test differences in prediction accuracy, the model including MTGBLUP fitted the data 

significantly better (p-value=2.4E-24 for schizophrenia, 6.6E-16 for bipolar disorder and 

0.010 for major depressive disorder) (Table 6). We further tested a two-components model 
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fitting similarity matrices based on SNPs annotated in CNS genes and or SNPs localised 

elsewhere (MTGBLUP-CNS and STGBLUP-CNS). Including the CNS component resulted 

in increased gain in prediction accuracy for schizophrenia and bipolar disorder (Table 5 and 

Table 6). We also tested a second annotation model replacing the CNS gene set with a 

schizophrenia / autism / intellectual disability (SAI) candidate genes set (4133 autosomal 

genes)3 (MTGBLUP-SAI or STGBLUP-SAI), but found little improvement due to SAI genes 

for three of the disorders (Table 7 and Table 8).  
 

Table 5: Prediction accuracy for schizophrenia, bipolar disorder and major 
depressive disorder in independent validation data sets 

Prediction accuracy is given as the correlation coefficient between the observed disease 

status and the predicted genomic risk score in the validation data. Regression deviated from 

one reflects the degree of bias of the risk scores.  

 Correlation Regression slope 
 SCZ BIP MDD SCZ BIP MDD 

STGBLUP 0.198 0.129 0.045 0.784 0.709 0.304 

MTGBLUP 0.222 0.159 0.075 0.815 0.697 0.466 

STGBLUP-CNS 0.203 0.132 0.045 0.789 0.719 0.306 

MTGBLUP-CNS 0.224 0.162 0.076 0.807 0.690 0.476 

 

 

Table 6: P-values from the likelihood ratio test comparing different models 

Likelihood ratio LR = -2 [logL(x1) - logL(x1+ x2)] where logL(x1) (logL(x1+x2)) is the log 

likelihood from a logistic regression with case-control status as the dependent variable and 

x1 (x1 and x2) as independent explanatory variable.    

  SCZ BIP MDD 
x1 x2 p-values from LRT 

STGBLUP MTGBLUP 2.4E-24 6.6E-16 1.0E-02 

STGBLUP STGBLUP-CNS 9.1E-06 4.6E-03 5.8E-01 

MTGBLUP MTGBLUP-CNS 2.4E-03 5.3E-03 3.3E-01 

STGBLUP MTGBLUP-CNS 6.7E-26 1.3E-17 7.3E-03 
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Table 7: Prediction accuracy for schizophrenia, bipolar disorder and major 
depressive disorder in independent validation data sets when using a second 
annotation model 
MTGBLUP-SAI or STGBLUP-SAI: a second annotation model replacing the CNS gene set 

with a schizophrenia / autism / intellectual disability (SAI) candidate genes sets. Prediction 

accuracy is given as the correlation coefficient between the true disease status and the 

predicted genomic risk score in the validation data. 

 Correlation Regression 
 SCZ BIP MDD SCZ BIP MDD 

STGBLUP-SAI 0.199 0.130 0.048 0.787 0.746 0.323 

MTGBLUP-SAI 0.222 0.160 0.076 0.817 0.718 0.470 

 

 

 

Table 8: Comparison of the fit of standard model with the SAI-annotation model for 
STGBLUP, MTGBLUP and MTGBLUP 
Likelihood ratio LR = -2 [logL(x1) - logL(x1+ x2)] 

  SCZ BIP MDD 
x1 x2 p-values from LRT 

STGBLUP STGBLUP-SAI 0.18 0.18 0.070 

MTGBLUP MTGBLUP-SAI 0.22 0.71 0.54 

STGBLUP MTGBLUP-SAI 1.2e-24 9.7E-15 0.0083 

 

 

 

When using independent validation samples, the slopes of the regression of the case-control 

status on the predictor were less than 1 (Table 5). The bias was relatively small for 

schizophrenia and bipolar disorder but larger for major depressive disorder. A slope less 

than one implies that the difference between the true genetic risks in a pair of individuals is 

less than that of the predicted genetic risk between them. The bias could be due to low 

predictive power (e.g. MDD) or to heterogeneity between the discovery and validation 

sample. 
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In order to assess population differences, we calculated ancestry principal components from 

the POPRES reference sample [185,186] and projected them into the discovery and 

validation samples and found ancestral differences between them for each disorder (Figure 
15, Figure 16 and Figure 17). We estimated that the SNP-correlation [176] between the 

discovery and validation data set was significantly different from 1 for schizophrenia and 

bipolar disorder (Table 9; the point estimate was lower for MDD but the small sample size 

generated a large standard error so it was not significantly different from 1). To explore if 

the found heterogeneity reflects real population differences or is caused by other factors that 

lead to differences between the discovery and validation samples such as batch effects, we 

looked for evidence of heterogeneity within PGC discovery samples for schizophrenia, 

bipolar disorder and major depressive disorder (Appendix B). For each disorder, we divided 

the discovery sample into four groups based on the 25%, 50% and 75% quartile of the first 

principal component, which reflects ancestral population differences between individuals 

(Figure S4). Applying a reaction norm model [187,188] (Appendix B), we found significant 

heterogeneity attributable to the ancestral population differences for schizophrenia and 

bipolar disorder (Table 10, Figure 21, Figure 22 and Figure 23). This indicates that for 

schizophrenia and bipolar disorder real population heterogeneity rather than batch effects 

contribute to the reduced SNP-correlation between discovery and validation set. Previously 

we reported more heterogeneity between MDD cohorts than between schizophrenia cohorts 

[10], where cohorts were defined based on sample collection, genotyping platform and 

imputation set. The lack of evidence of population heterogeneity for the depression sample 

here may reflect that population heterogeneity not detectable given other heterogeneity 

within these samples. 
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Figure 15: Principal components – schizophrenia  

 

 

 

 

 

Figure 16: Principal components – bipolar disorder 
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Figure 17: Principal components – major depressive disorder 
Principal component analysis based on the projected PC from POPRES for SCZ (Figure 
15), BIP (Figure 16Figure 12) and MDD (Figure 17). The same SNPs were selected from 

the discovery and validation set and used to project PC in each disorder. The number of 

SNPs used was 745,631 for SCZ, 645,237 for BIP and 673,109 for MDD. 

 

 

 

Figure 18: Principal components – quartiles – schizophrenia 
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Figure 19: Principal components – quartiles – bipolar disorder 

 

 

 

 

 

Figure 20: Principal components – quartiles – major depressive disorder 
Principal component analysis based on the projected PC from POPRES for the discovery 

sample of SCZ (Figure 18), BIP (Figure 19) and MDD (Figure 20). The number of SNPs 

used to project PC was 745,705 for all three disorders. The dashed lines are 25%, 50% and 

75% quartiles of the first principal component in the discovery sample (four population 
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classes) and the plus sign is the mean (of PC1) of each population class. The four population 

classes for each trait were used in the reaction norm model (Appendix B). 

 

 

 

 

 

Figure 21: Reaction norm model – schizophrenia  

 

 

 

 

Figure 22: Reaction norm model – bipolar disorder 
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Figure 23: Reaction norm model – major depressive disorder 
Genetic correlation pattern across different ancestry principal components estimated from 

the reaction norm model (Appendix B). Order of polynomial (see Table 10): Figure 21 k=3 

for SCZ, Figure 22 k=2 for BIP, Figure 23 k=1 for MDD. 

 

 

 

Table 9: SNP-heritability and genetic correlation from bivariate analyses of the 
discovery and validation data set for SCZ, BIP and MDD 
h2 is SNP-heritability on the liability scale. rg is genetic correlation between 

discovery/validation set. P-value is for testing if rg is different from 1, indicating heterogeneity 

for a lower p-value.    

 

 

 

 

 

 

 

 

 

 

 

 

Trait 1/  

trait 2 

Cases 

T1/T2 

Controls 

T1/T2 

Trait 1  

 (SE) 

Trait 2  

 (SE) 

rg (SE) p-value 

SCZ discovery/ 

SCZ validation 

8826/ 

4068 

6106/ 

5471 

0.23  

(0.01) 

0.21  

(0.02) 

0.80  

(0.05) 

7.3E-51 

BIP discovery/ 

BIP validation 

5867/ 

2029 

3328/ 

5338 

0.21  

(0.02) 

0.22  

(0.02) 

0.75  

(0.08) 

7.3E-17 

MDD discovery/ 

MDD validation 

8770/ 

822 

6506/ 

467 

0.28  

(0.02) 

0.11  

(0.25) 

0.51  

(0.64) 

0.84 

2h 2h
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Table 10: Reaction norm model to test heterogeneity across populations classified 
by the first ancestry principal component 
Schizophrenia (p-value=0.00078) and bipolar disorder (p-value=0.0017) show a significant 

evidence for heterogeneity across different populations.  

 

k log L 

Number of 

parameters LR p-value 

SCZ     

1 3830.01 5 0.00 1 

2 3836.61 7 13.20 0.0014 

3 3840.55 10 21.07 0.00078 
4 3841.36 14 22.69 0.0069 

BIP     

1 2342.89 5 0.00 1 

2 2349.27 7 12.76 0.0017 
3 2351.64 10 17.49 0.0037 

4 2352.77 14 19.75 0.019 

MDD     

1 3326.17 5 0.00 1 
2 3326.39 7 0.42 0.81 

3 3328.24 10 4.14 0.53 

4 3330.98 14 9.61 0.38 

 

 

 

Following a common epidemiological approach to assess a continuous risk factor [58], 

individuals were stratified into deciles according to the ranked values of the genetic risk 

predictors. We estimated the odds ratio of case-control status by contrasting each decile to 

the lowest decile (Figure 24). For all disorders the odds ratio was highest between 

individuals in the highest and lowest decile, ranging from 1.3 to 5.5. Generally, odd ratios 

from MTGBLUP were larger than those from STGBLUP. For example, for bipolar disorder 

MTGBLUP increased the odds ratio by up to 60% compared to STGBLUP (odds ratio of 4.4 

and 2.8, respectively). The discriminant power increased more for the annotation model with 
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the CNS genes, compared to the one-component models without annotation (Figure 24). 

With increasing sample sizes the odds ratio is expected to increase further [58]. 

 

 

Figure 24: Odds Ratios of Individuals Stratified into Deciles Based on GBLUP Genetic 
Risk in Independent Samples, using the Decile with the Lowest Risk as the Baseline 
The vertical error bars denote 95% CI. We note that the estimates for the different methods 

are highly correlated, and therefore the vertical error bars cannot be used to infer 

significance of difference between the methods (see Appendix C). 

 

We also quantified the gain in prediction accuracy from MTGBLUP in terms of sample size. 

Using recent results on prediction accuracy of polygenic scores derived from quantitative 
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genetic theory [57,189], we inferred the sample sizes required to achieve the accuracies 

observed by the methods (Figure 25). We assumed prevalence of 1% for schizophrenia, 

1% for bipolar disorder and 15% for major depressive disorder. The proportion of cases in 

the sample was based on the real structure of the discovery data (59% for schizophrenia, 

64% for bipolar disorder and 57% for major depressive disorder). The effective number of 

SNPs was assumed to be 69748 calculated with a weighted SNP method [27]. The observed 

accuracy was within the theoretical expectation for SCZ and BIP, but not for MDD where the 

actual predictive power was lower. Accuracy of risk prediction for individual traits benefited 

from including the correlated disorders. The gain in accuracy of MTGBLUP compared to 

STGBLUP was equivalent to increasing the sample size for schizophrenia, bipolar disorder 

and major depressive disorder by ~ 4660 (95% confidence interval: 3110-6270), ~ 5560 

(2830-8640) and ~ 10940 (730 – 24440) individuals, respectively (Figure 25). Gains in 

accuracy were even greater using the CNS annotation model (Table 11). The 95% 

confidence interval was obtained according to the sampling error of the difference between 

the prediction accuracies (Appendix C). 
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Figure 25: Theoretical and Observed Prediction Accuracy of STGBLUP and MTGBLUP 
Depending on Sample Size 
Theoretical line of prediction accuracy increased with larger sample size (solid line), the 

observed accuracy achieved by STGBLUP with the actual sample size (red dot), and the 

observed accuracy achieved by MTGBLUP and inferred sample size (blue dot). The 

increase from MTGBLUP equates to ~4,660 samples for schizophrenia, ~5,550 samples for 

bipolar disorder, and ~10,940 for major depressive disorder. The vertical error bars denote 

95% CI. We note that the estimates for the different methods are highly correlated, and 

therefore the vertical error bars cannot be used to infer significance of difference between 

the methods (see Appendix C). 
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Table 11: The gain in prediction accuracy from MTGBLUP option in terms of sample 
size equivalence using STGBLUP 
Ninety-five percent confidence interval (CI) is in bracket.  

 

 

 SCZ BIP MDD 

MTGBLUP 4660 (3110 – 6270) 5550 (2830 – 8640) 10940 (730 – 24440) 

MTGBLUP-CNS 5080 (3520 – 6690) 6220 (3380 – 9380) 11550 (1220 – 25300) 

 

 

 

In order to test how sensitive our results on prediction are against population stratification, 

we re-estimated the prediction accuracy (correlation) removing potential outliers that were 

± 6SD, 2 SD, 1.75 SD, 1.5 SD, 1.25 SD or 1 SD away from the mean of the first and second 

principal component in the validation data set (Figure 26, Figure 27 and Figure 28). The 

accuracy of MTGBLUP and STGBLUP remained stable in all three diseases for which 

independent datasets were available. Restricting the samples to individuals whose values 

of the first and second principal component lay within one SD of the mean retained between 

51% and 70% of the samples (Figure 26, Figure 27 and Figure 28).  This shows that the 

prediction accuracy was not substantially affected by ancestry outliers in the validation 

dataset. 

 

 

Figure 26: Effect of excluding population outliers – schizophrenia 
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Figure 27: Effect of excluding population outliers – bipolar disorder 

 

 

Figure 28: Effect of excluding population outliers – major depressive disorder 
Effect of excluding population outliers on the prediction accuracy from MTGBLUP and 

STGBLUP. Outliers are defined as points ± 6, 2, 1.75, 1.5, 1.25 and 1 SD from the mean for 

both the first and second principal components in the independent (Figure 26) SCZ, (Figure 
27) BIP, (Figure 28) MDD samples. 
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We compared the performance of MTGBLUP with that of bivariate GBLUP (a special case 

of MTGBLUP). The accuracy of MTGBLUP was significantly higher than bivariate GBLUP 

except for a MDD risk prediction where the accuracy of MTGBLUP and that of the bivariate 

model involving SCZ and MDD was not significantly different. (Table 12 and Table 13). 

 

Table 12: Prediction accuracy of bivariate GBLUP (BVGBLUP) 

model Dependent 

variable 

correlation regression 

BVGBLUP (SCZ, BIP) SCZ 0.220 0.822 

BVGBLUP (SCZ, BIP) BIP 0.156 0.705 

BVGBLUP (SCZ, MDD) SCZ 0.201 0.785 

BVGBLUP (SCZ, MDD) MDD 0.071 0.461 

BVGBLUP (BIP, MDD) BIP 0.133 0.682 

BVGBLUP (BIP, MDD) MDD 0.040 0.263 

 

 

 

 

Table 13: P-values from likelihood ratio test for comparisons among BVGBLUP and 
MTGBLUP 
Likelihood ratio LR = -2 [logL(x1) - logL(x1+x2)] 

x1 x2 Dependent 

variable 

p-value 

BVGBLUP (SCZ, BIP) MTGBLUP SCZ 1.9E-03 

BVGBLUP (SCZ, BIP) MTGBLUP BIP 7.4E-03 

BVGBLUP (SCZ, MDD) MTGBLUP SCZ 1.9E-23 

BVGBLUP (SCZ, MDD) MTGBLUP MDD 0.50 

BVGBLUP (BIP, MDD) MTGBLUP BIP 2.5E-14 

BVGBLUP (BIP, MDD) MTGBLUP MDD 0.00056 
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Psychiatry lags behind other fields of medicine in terms of diagnostic tests that could 

facilitate early diagnosis and accurate classification of disorders. The considerable 

heritability of psychiatric disorders implies that the genome contains a large amount of 

information with potential diagnostic utility. However, the highly polygenic nature of 

psychiatric disorders makes it very hard to exploit this information, mostly because the effect 

of each individual locus contributing to disease risk can only be estimated with error, and 

the size of the error depends on factors such allele frequency, effect size and crucially, 

sample size. 

 

The genetic correlation between several diseases implies that a SNP contributing to risk of 

one disease will, on average, also be informative of the risk of the correlated diseases. Here, 

we have developed a multivariate method that can combine data from an arbitrary number 

of genetically correlated diseases resulting in better estimates of the disease specific SNP 

effects and thus generating more accurate predictors of individual risk. Our results 

demonstrate a significant advantage of incorporating data from multiple correlated diseases 

compared to single-trait analyses. Our estimates of pairwise genetic correlations obtained 

in independent datasets reconfirm previous results regarding the extent of genetic 

correlations between the five psychiatric disorders [10]. External validation demonstrated 

that the predictive models generalise to other populations, confirming that the correlations 

reflect pleiotropy between the disorders rather than artefacts. 

 

We used a multiple random effects model that fitted two components, one is due to 

annotated SNPs and the other is due to the rest of SNPs. The prediction accuracy 

significantly increased when using an appropriate gene set. For example, the gain in 

predictive accuracy in terms of sample size equivalence increased from 4660 to 5080 for 

schizophrenia, from 5550 to 6220 for bipolar disorder, and from 10940 to 11550 for major 

depressive disorder when using the CNS genes annotation [10,180] (Table 11). This 

demonstrates that the multiple random effects model in MTGBLUP can be useful especially 

for psychiatric disorders where prediction accuracy is hardly improved by other advanced 

methods [163,164].    

 

Zhou and Stephens [28] recently introduced a multivariate linear mixed model algorithm that 

is particularly suited for genome-wide association studies. Their method requires that 
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multiple traits are measured on the same individual or that the level of missingness is 

sufficiently small so that missing phenotypes can be imputed.  However, this algorithm is not 

useful when phenotypes are collected from independent data sets as in the PGC data where 

dependent variables are totally missing for the other four traits as is typical of disease 

ascertained cohorts. Moreover, the efficiency of Zhou and Stephens’ algorithm substantially 

decreases when fitting multiple random effects (e.g. the annotation model). 

 

Korte et al. (2012) [190] proposed a similar model to MTGREML using ASReml [191] that is 

as flexible as our method in that it can handle partial overlapping or disjoint sets of 

phenotypes. However, our algorithm is different from that used in ASReml and is much more 

efficient when using genomic data [175] (see Appendix A). Moreover, Korte et al. did not 

explore their method with respect to improvements in risk prediction. 

 

Even though sensitivity and specificity of genetic diagnostics to predict an individual’s risk 

of psychiatric disorders are generally low, genetic risk scores can still be a valuable tool for 

research to stratify a heterogeneous population in groups with shared ‘genomic’ 

characteristics. It was suggested that psychiatric diagnoses encompass several clinically 

similar phenotypes with distinct pathophysiology and that stratification according to 

individual heterogeneity is an important requirement for the development of treatments 

targeted at specific disease subtypes [111,156,174]. Our proposed multivariate approach 

with the annotation model is a flexible and powerful tool for such stratification. The 

MTGREML and MTGBLUP package and documentation are publicly available online (see 

Web Recourses), which we anticipate will be implemented into the GCTA package [26]. 

Using a CPU running at 2.2 GHz, analysing 58128 sample with 5 disjoint set of phenotypes 

(e.g. the PGC data) takes ~ 7 hours per each iteration in MTGREML. Convergence is usually 

achieved within 10 iterations. The virtual memory required for such data is ~ 45 GB. Good 

starting values (probably from single trait GREML [190]) can reduce the number of iterations 

to convergence and our software has the option to provide starting values. The 

computational time increases cubically with sample size, e.g. analysing sample size of 

10000 takes a few minutes per each iteration. Our software provides a parallelisation option 

that can reduce computational burden substantially, for example speed is increased by a 

factor of ten when using 20 CPUs. The number of traits hardly affects running time if 

phenotypes are non-overlapping.  
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Appendix A 

 

Average of Hessian and Fisher information matrix for the multivariate model 
The log likelihood of the multivariate model is, 

ln𝐿 = 	
1
2 [ln 𝐕 + ln 𝐗�𝐕YA𝐗 + 𝐲′𝐏𝐲] 

where ln is the natural log, and |  | the determinant of the associated matrices. The projection 

matrix is defined as 𝐏 = 	𝐕YA 	−	𝐕YA𝐗 𝐗�𝐕YA𝐗 Y𝟏𝐗′𝐕YA with X =
X1 ! 0
" # "
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"

#
#
#
#
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⋮
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The Newton-Raphson algorithm obtains the MTGREML estimates using the following 

equation [192]. 

Θ(�SA) = Θ(�) + 𝐇 � YA ��
��
|Θ(�)       (A1) 

where Q  is a column vector of estimated variance components, k is the iteration round, ��
��

 

is a column vector of the first derivatives of the log likelihood function with respect to each 

variance component, and H is the Hessian matrix which consists of the second derivatives 

of the log likelihood function with respect to the variance components. In Fisher’s scoring 

method, the inverse of the Hessian matrix in (A1) is replaced by its expected value [192]. 

Θ(�SA) = Θ(�) + 𝐹 � YA ��
��
|Θ(�)                                                                (A2)  

The derivation of the Hessian matrix and the Fisher information matrix has been described 

in several studies [192,193]. The Hessian matrix for the multivariate model is 

𝐇 = �\�
�� 

\��¡
\ =

A
0
[𝑡𝑟 �	𝐕

�� 
\ 𝐏

�	𝐕
�� 

\ 𝐏 − 𝐲′ �
	𝐕

�� 
\ 𝐏

�	𝐕
�� 

\ 𝐏𝐏𝐲]    (A3) 

where y, P and V are defined in the section ‘Multivariate linear mixed model’ in the main 

text. The Fisher information (F) matrix is 

𝐅 = 𝐸 �\�
�� 

\��¡
\ = A

0
[𝑡𝑟 �	𝐕

�� 
\ 𝐏

�	𝐕
�� 

\ 𝐏 ]      (A4) 

Gilmour et al. (1995) [191] and Johnson and Thompson (1995) [194] used the average of 

the H and F that was estimated based on Henderson’s mixed model equation (MME) [195]. 

The MME-based average information algorithm is efficient particularly when covariance 
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structure fitted in the model is sparse. Lee and van der Werf (2006) [175] introduced the 

direct average information algorithm where average information matrix was derived directly 

from the V and P matrix. When using non-zero elements of covariance structure, this direct 

average information algorithm is much more efficient than the MME-based average 

information algorithm. The equation for the iterative AI algorithm is  

Θ(�SA) = Θ(�) + 𝐀𝐈 � YA ��
��
|Θ(�)                                                             

where AI is the average information matrix and that for multivariate model can be written as 

𝐀𝐈 =
1
2 [𝐲′

𝜕	𝐕
𝜕σ§0

𝐏
𝜕	𝐕
𝜕σ§0

𝐏𝐏𝐲] 

The first derivative for each variance covariance component i can be obtained as [192,193] 
��
� z̈

\ = − A
0
𝑡𝑟(𝐏 �𝐕

� z̈
\) +

A
0
𝐏 �𝐕
� z̈

\ 𝐏𝐲  
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Appendix B 

 

Reaction norm model to test heterogeneity across populations classified by the 
ancestry principal component 
Reaction norm models have been used in ecology and evolution to study genotype x 

environment interaction [187,188]. Genotype x environment interaction (G x E) means that 

different genotypes respond different to environmental changes, i.e. norms of reaction. In 

the model, a random intercept and a random slope, as covariance functions, are estimated 

that can describe genetic and phenotypic variation across different environments. The slope 

of the reaction norm is often called phenotypic plasticity or environmental sensitivity. The 

amount of variation in slope in the population indicates the extent of G x E [187,188]. Here, 

we describe a reaction norm model to test heterogeneity across populations. We group each 

sample set into four populations by splitting them into the four quartiles of the first ancestry 

principal component. Whereas typically reaction norm models would compare samples with 

different categories of environmental factors to each other, we use the model to compare 

the samples in different principal component quartiles to each other. We limit our 

interpretation to heterogeneity across the groups, and do not speculate about potential 

causes like G x E or G x G interaction. We apply the model to each disorder of the PGC 

data. Incorporating population difference among sample, the linear mixed model can be 

rewritten as 

yij = bij + gij + eij  

where yij is the observation for individual i in population class j (j=1, …, P where P is the 

number of populations classified by the ancestry principal component, in our case 4), bij is 

fixed effects, gij is genetic effects and eij is residual effects. We applied a reaction norm 

model to fit functions of the ancestry principal component as covariables using Legendre 

polynomials. 

 

y§ª = b§ª + 𝛼®𝑓® 𝑝° + 𝑒°

�YA

®±²

 

pij is the average of the ancestry principal components in the j th population class containing 

individual i, fm(pij) is the m th Legendre polynomials evaluated for pij, αim is the m th genetic 

random regression coefficients for the i th individual, and k is the orders of fit. The genetic 

covariance between individual i in population class j and i’ in population class j’ is   
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𝑐𝑜𝑣(g§ª, g§�ª�) = 𝑓® 𝑝° 𝑓X p§�ª� 𝑐𝑜𝑣(𝛼®, 𝛼X)�YA
X±²

�YA
®±² . 

This can be written in a matrix from as 

𝐕r = 𝐅𝐊𝐅′ 
where F is the matrix of Legendre polynomials evaluated at given ancestry principal 

components and K is the covariance coefficient matrix consisting of random regression 

coefficients, i.e.  

𝐊 = 𝑐𝑜𝑣 𝛼®, 𝛼X =
𝑣𝑎𝑟 𝛼² 		

	 ⋯ 𝑐𝑜𝑣 𝛼², 𝛼�
⋮ ⋱ ⋮

𝑐𝑜𝑣 𝛼�, 𝛼² ⋯ 𝑣𝑎𝑟 𝛼�

	

  

The optimal order of the polynomial was determined with a likelihood ratio test by comparing 

the likelihood of models with higher order to the null model with k=1.
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Appendix C 

Estimating the sampling error of the difference between prediction accuracies 
(correlations)    
It is assumed that there are three normalised variables with the covariance structure as 

below, mimicking the MTGBLUP, STGBLUP and outcome variable.   

Table 14: Multi-trait – single-trait correlations 

 m s y 

m 1 0.927 0.222 

s 0.927 1 0.189 

y 0.222 0.198 1 

 

We are interested in estimating the sampling error of the difference between cor(m,y) and 

cor(s,y). The sampling variance of the difference (σ¹0) can be expressed as 

σ¹0 = σº»¼ ½,¾
0 + σº»¼ ¿,¾

0 − 2𝑟σº»¼ ½,¾
	 σº»¼ ¿,¾

	     (C1) 

where σº»¼ ½,¾0
 is the sampling variance of cor(m, y) and σº»¼ ¿,¾0  is the sampling variance of 

cor(s, y) and r is the correlation between cor(m, y) and cor(s, y). We show here that r is 

approximately equal to cor(m, s).   

 

With N records for each variable, correlations among the variables can be written as  

cor m, y = 𝐸 𝑚	𝑦 =
1
𝑁 𝑚𝑦

5

±A

 

cor s, y = 𝐸 𝑠	𝑦 =
1
𝑁 𝑠𝑦

5

±A

 

cor m, s = 𝐸 𝑚	𝑠 =
1
𝑁 𝑚𝑠

5

±A

 

 

 

For T replicates, the expected value of the product of cor(m,y) and cor(s,y) can be written 

as 
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𝐸[𝐸 𝑚	𝑦 𝐸 𝑠	𝑦 ] = A
Å
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If m and s are uncorrelated, this reduces to 

𝐸 𝐸 𝑚	𝑦 𝐸 𝑠	𝑦 = 𝐸 𝐸 m	y 	𝐸[𝐸 𝑠	𝑦 ] 

If m and s are correlated, there is an additional term,  

𝐸 𝐸 𝑚	𝑦 𝐸 𝑠	𝑦 ≅ A
Å

A
5\

𝑚𝑠5
±A °

Å
° + 𝐸 𝐸 m	y 	𝐸 𝐸 𝑠	𝑦 = A

Å
A
5	
𝐸 m	y

°
Å
° +

𝐸 𝐸 m	y 	𝐸 𝐸 𝑠	𝑦 = A
5
𝐸 𝐸 𝑚	𝑠 + 𝐸 𝐸 𝑚	𝑦 𝐸 𝐸 𝑠	𝑦 . 

 

Therefore,  

𝑐𝑜𝑣 𝐸 𝑚	𝑦 , 𝐸 𝑠	𝑦 = 	𝐸 𝐸 𝑚	𝑦 𝐸 𝑠	𝑦 − 	𝐸 𝐸 𝑚	𝑦 ]	𝐸[𝐸 𝑠	𝑦 ≅
1
𝑁𝐸 𝐸 𝑚	𝑠  

With 𝑣𝑎𝑟 𝐸 𝑚	𝑦 ≅ 𝑣𝑎𝑟 𝐸 𝑠	𝑦 ≅ A
5
, the correlation between cor(m, y) and cor(s, y) (r) can 

be approximated as 

𝑐𝑜𝑟 𝐸 𝑚	𝑦 , 𝐸 𝑠	𝑦 	 ≅ 𝐸 𝐸 𝑚	𝑠 ≅ 𝑐𝑜𝑟(𝑚, 𝑠). 

This expression was checked and validated by simulations (result not shown).   

 

Here we have shown that Equation (C1) can be used to estimate the sampling variance (the 

square of the standard error) of the difference in correlation between the STGBLUP and 

MTGBLUP predictors (which are themselves correlated with each other) and the outcome 

variable (the adjusted phenotype). This allows us to estimate the 95% confidence interval of 

the increase in correlation which MTGBLUP achieves over STGBLUP. Note that since the 

two predictors are correlated, this is a smaller confidence interval than that of the correlation 

between MTGBLUP and the outcome variable (which is shown in Figure 24 and Figure 25). 

Using the method described above, we can transform the confidence interval from the 

correlation scale to the sample size scale, to get estimates of the effective increase in 

sample size achieved by MTGBLUP (Table 11). 
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Appendix D 

It has been pointed out that the reaction norm model, which in this work has been used to 

detect genetic heterogeneity between discovery and validation set along the first principal 

component, bears resemblance to the genotype clustering approach of Chapter 3. This 

section explores what the similarities and differences between these two approaches are. 

Estimating genetic correlations across different populations can be tricky. Even when the 

true effect sizes for the trait are the same across populations, differences in LD structure 

can lead to estimates lower than one. Furthermore, identical effect sizes across populations 

don’t necessarily imply that each SNP explains the same amount of variance in the two 

populations, since allele frequencies can differ. This has motivated the distinction between 

transethnic genetic correlation and transethnic genetic impact correlation [38]. In this 

Chapter, we showed that when we group individuals in our discovery and validation set into 

four groups each, according to their first principal component, which captures the direction 

of the largest ancestry variation in the (European) data, the genetic effects differ for more 

distant groups, but not for groups which fall into the same PC 1 region. This can be caused 

either by differences in the true effect sizes among more distant groups or by differences in 

the LD structure. 

In the analyses of Chapter 3, the goal was not to start with two groups of individuals 

(discovery and validation) and to test whether there is genetic heterogeneity between the 

two groups, conditional on ancestry. Rather, we assumed that there is genetic heterogeneity 

with respect to a phenotype and wanted to test whether clustering will detect this 

heterogeneity or whether it will pick up other effects, such as ancestry or population 

stratification. What the k-means clustering algorithm picks up depends very much on the 

first principal component of the data used for clustering. Generally, the clusters will form 

along the direction of the largest variance in the data. If the clustering had been performed 

on all SNPs in the data, this would simply be the first ancestry principal component, and 

hence the clustering would only be informative of case status to the extent to which case 

status is confounded with PC1. To prevent the clustering from picking up ancestry, we 

selected only SNPs associated with the phenotype (after correction for PCs). Ideally, the 

first principal component in this subset should not reflect ancestry or stratification, but rather 

case status, which would lead to clusters that can distinguish both types of cases. 

To summarise, in both the Chapter 3 and Chapter 4 analysis, there are groups of individuals 

with a certain genetic correlation for a given phenotype. In Chapter 4 the first principal 

component was fixed and was used to define groups and for which the genetic correlation 
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was then determined. In Chapter 3 the goal was to select a subset of SNP such that the first 

principal component would recover the two groups with a genetic correlation of less than 

one. 
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Psychiatric Genomics Consortium 

https://pgc.unc.edu/ 

 

Genetic Cluster Computer 

http://www.geneticcluster.org/ 
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http://www.complextraitgenomics.com/software/gcta 
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Abstract 

 
Genomic prediction has the potential to contribute to precision medicine where diagnosis 

and treatment are tailored to individuals on the basis of their genetic risk of disease. 

However, current genetic predictors of complex human disorders and quantitative traits are 

generally characterized by low prediction accuracy, which limits their utility. Here, theory and 

simulation study are used to demonstrate that widespread pleiotropy among phenotypes 

can be utilized to improve genomic risk prediction. We show how a genetic predictor can be 

created as a weighted index that combines published genome-wide association study 

(GWAS) summary statistics across many different traits. We apply this framework to predict 

risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, 

finding substantial heterogeneity in prediction accuracy increases across cohorts.  For six 

additional phenotypes in the UK Biobank data, we find increases in prediction accuracy 

ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor 

that combines published summary statistics from multiple traits, as compared to a predictor 

based only on one trait. 

 

Introduction 
 

Personalized medicine, in which genetic testing is the basis for informing future health status 

and determining intervention, is effectively applied for a number of monogenic disorders 

[196]. For common complex disorders, which are those that are underlain by multiple genetic 

and environmental factors [7], predictive genetic testing that can discriminate individuals 

who are most at risk is currently limited, mainly because much of the genetic variation 

remains poorly understood [51,56]. Improving the accuracy of genetic risk prediction has the 

potential to (i) prospectively identify individuals at increased risk of disease, thus informing 

early interventions, and (ii) aid diagnosis for diseases where current diagnostic approaches 

are imperfect [197]. While genome-wide association studies (GWAS) of increased sample 

size will continue to unravel the role of genetic factors for complex diseases [11], improved 

prediction models are also required to maximize the accuracy of a risk predictor. 

 

GWAS use linear regression to independently estimate the effects of single nucleotide 

polymorphisms (SNPs) across the genome, and commonly, these estimated SNP effects 
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are then used to create a genetic risk predictor in independent samples [24,54,198]. 

However, this approach is not optimal because it either ignores LD between markers, or 

accounts for LD by discarding potentially informative SNPs [70]. Prediction accuracy of 

complex phenotypes can be improved by methods that jointly estimate the SNP associations 

to obtain best linear unbiased predictors (BLUP) of the SNP effects within a linear mixed 

model (LMM) approach [24,199,200]. A multi-trait extension of the LMM approach, yielding 

multivariate BLUP (MT-BLUP) predictors of the SNP effects, can further improve prediction 

accuracy when phenotypes are genetically correlated, because measurements on each trait 

provide information on the genetic values of the other correlated traits [66,170,201,202]. MT-

BLUP has been shown to improve prediction accuracy for genetically correlated common 

psychiatric disorders when combining individual-level data across independent data sets 

[66,168]. However, the application of MT-BLUP to complex common disorders is limited as 

combining individual-level genotype-phenotype data across case-control studies of all 

complex diseases is generally not feasible due to data protection concerns and restrictions 

on data sharing.  

 

Here, we overcome this limitation by developing a framework that combines publically 

available GWAS summary statistics across multiple studies of different traits together in a 

weighted index to generate approximate multi-trait summary statistic BLUP (wMT-SBLUP) 

predictors (Table 15). We show through theory and simulation study that MT-BLUP 

predictors, which traditionally require individual-level phenotype-genotype data for all traits, 

can be approximated accurately by wMT-SBLUP predictors in a computationally efficient 

manner using only summary statistic data and an independent genomic reference sample. 

We apply this approach to multiple phenotypes in the Psychiatric Genomics Consortium 

(PGC) and the UK Biobank data and show increased prediction accuracy as compared to a 

single trait predictor. 

  



131 

 

 

Table 15: SNP-heritability estimates and sample size for each summary statistics trait, 
as well as matched UK Biobank traits 

Trait	 h2		 SE	 Median	N	 PMID	 UKB	matched	 UKB	N	

ADHD	 0.17	 0.1	 5422	 20732625	 	  

Agreeableness	 0.02	 0.02	 17375	 21173776	 	  

Alzheimers	 0.05	 0.03	 54162	 24162737	 	  

Autism	 0.41	 0.05	 10610	 23453885	 	  

Bipolar	 0.27	 0.02	 29031	 24280982	

mania/bipolar	

disorder/manic	

depression	 301	

Birth	Length	 0.17	 0.02	 22145	 25281659	 	  

Birth	Weight	 0.11	 0.02	 26836	 23202124	 	  

BMI	 0.14	 0.01	 233723	 25673413	 bmi	 112027	

CAD	 0.07	 0.01	 184305	 21378990	 angina	 3847	

Childhood	Obesity	 0.42	 0.05	 13848	 22484627	 	  

Conscientiousness	 0.08	 0.03	 17375	 21173776	 	  

Crohn's	disease	 0.52	 0.06	 20883	 26192919	 	  

Depression	 0.18	 0.03	 16610	 23453885	 depression	 4698	

Diabetes	 0.09	 0.01	 63390	 22885922	 diabetes	 4978	

Education	Years	 0.11	 0.01	 216772	 23722424	 	  

Extraversion	 0.03	 0.03	 17375	 21173776	 	  

Glucose	 0.15	 0.03	 38422	 22581228	 	  

Head	Circumference	 0.21	 0.05	 10761	 22504419	 	  

Height	 0.35	 0.02	 252190	 20881960	 height	 112147	

Inflammatory	 Bowel	

Disease	 0.35	 0.04	 34652	 26192919	 	  

Insulin	 0.1	 0.02	 33823	 22581228	 	  

IQ	 0.19	 0.03	 17989	 23358156	 fluid_intelligence_score	 36093	

MND	 0.04	 0.02	 36052	 27455348	 	  

Neuroticism	 0.04	 0.01	 63661	 25993607	 	  
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Openness	 0.11	 0.03	 17375	 21173776	 	  

Osteoporosis	Femur	 0.13	 0.02	 49988	 26367794	 	  

Pubertal	Growth	 0.44	 0.05	 13955	 23449627	 	  

Rheumatoid	Arthritis	 0.23	 0.06	 25500	 20453842	 	  

Schizophrenia	 0.25	 0.01	 150064	 25056061	 schizophrenia	 131	

Smoking	 0.08	 0.01	 74035	 20418890	 	  

Tanner	 0.12	 0.05	 9915	 24770850	 	  

Triglycerides	 0.27	 0.06	 90981	 20686565	 	  

Ulcerative	Colitis	 0.27	 0.04	 27432	 26192919	 	  

Waist	Hip	Ratio	 0.09	 0.01	 142471	 25673412	 	  

 

 

 

Results 

 

Overview of the approach. Standard GWAS summary statistics are OLS estimates of the 

SNP effects and do not have optimal properties for prediction [199]. Even when LMM 

association analysis is used, the estimated SNP effects still represent marginal effects, and 

not effects conditional on other SNP, which is what is desirable for prediction [31]. Previous 

studies have shown how OLS summary statistics can be reanalysed in a mixed model 

framework to produce approximate BLUP predictors (summary statistic BLUP: SBLUP) 

[67,68,203]. We first extend this approach to a multi-trait framework (MT-SBLUP) and find 

a computational limitation associated with the inversion of a SNP-by-SNP-by-trait matrix. To 

overcome this, we then derive theory to show how single trait predictors with BLUP 

properties can be combined together in a weighted index to generate predictors with 

equivalent properties to those gained from a MT-BLUP analysis (Methods, Figure 29, Table 
16).  
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Figure 29:	Data and programs used to create predictors 
GCTA and an external reference data set is used to turn GWAS effect estimates into SBLUP 

effect estimates; two or more traits are combined to create wMT-SBLUP estimates; these 

are then converted into individual predictors using PLINK. 

 

 

 

Table 16:	Terminology to refer to different types of predictors	
OLS: Ordinary Least Squares. The most common GWAS methodology to estimate SNP 

effects is to estimate the effect sizes of one SNP at a time. BLUP: Best Linear Unbiased 

prediction. SNP effects are estimated simultaneously for all SNPs. The estimates depend 

on the other SNPs included in the analysis, since the contribution from correlated SNPs with 

be shared between them. 
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  Single-trait starting point 
  Full Genotype-

Phenotype data 
GWAS OLS 
summary 
statistics 

GWAS OLS 
summary 
statistics 
converted to 
BLUP summary 
statistics 
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 None (Single Trait) BLUP OLS SBLUP 

Full Multiple-Trait MT-BLUP - MT-SBLUP 
Approximate Multiple Trait 
from weighting of single 
trait predictors 

wMT-BLUP wMT-OLS wMT-SBLUP 

 

 

 

 

Consider two genetically correlated traits for which we have individual-level genetic 

predictors with BLUP properties. For each individual, i, and focal trait of interest, f, we have 

a genetic prediction (𝐠ÊËÌÍz,Î) for each trait, k, that we can combine together using the index 

weights, w,�, for each 𝐠ÊËÌÍz,Îeffect to produce a weighted multi-trait BLUP genetic 

predictor: 

 

𝐠ÐÑÒYÊËÌÍz,Ó = w,�gÊËÌÍz,Î� = 𝐰
�𝐠ÕÊËÌÍz            [1] 

 

In the methods section we show that the optimal index weights can be calculated as: 

𝒘 =	
𝑤A
𝑤0 =

𝑅A0
WØH�\H\\

Ù�\Ù\\

WØH�\H\\

Ù�\Ù\\
𝑅00

YA

𝑅A0

𝑟1
Ù�\

Ù\\
𝑅00

    [2] 

 

where ℎ�0 is the SNP-heritability of trait k (proportion of phenotypic variance explained by 

genome-wide SNPs), 𝑟1 is the genetic correlation between trait k and the focal trait, and𝑅�0 

is the expected squared correlation between a phenotype and a BLUP predictor, calculated 

as: 
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	𝑅�0 =
ÙÎ
\

ASÚ`ÓÓ
�ÛÜÎ

\

ÈÎÝÎ
\

        [3] 

 

where Meff is the effective number of chromosome segments and 𝑁� is the sample size of 

trait k. These weights will ensure that the contribution of each added trait is approximately 

proportional to the square root of its sample size, its SNP-heritability and its genetic 

correlation with the focal trait (trait 1), while accounting for different variances of single trait 

BLUP predictors. 

 

Both ℎ�0 and 𝑟1 can be estimated from GWAS summary statistics [9,32]. Following [67], 

individual-level genetic predictors with BLUP properties can also be obtained from GWAS 

summary statistics (𝐠ÕÊËÌÍÎ, where SBLUP represents summary statistic approximate 

BLUP). Therefore for any given trait, genetic predictors with BLUP properties (𝐠ÕÊËÌÍÎ) can 

be created from GWAS summary statistics and these can then be placed in a weighted index 

to produce approximate multi-trait summary statistic BLUP (wMT-SBLUP) predictors, using 

only LD score regression and an independent reference sample. This approach 

approximates MT-BLUP predictors without the need for individual-level phenotype-genotype 

data for all traits, enabling prediction accuracy to be improved by fully utilizing all of the 

publically available GWAS summary statistic data. 

 

Simulation study. We first conducted a simulation study using observed SNP genotype 

data to confirm the expectations from our theory. We show through theory (Online methods) 

that a wMT-SBLUP genetic predictor has the same expected prediction accuracy as one 

created from a multivariate mixed effects model (multi-trait BLUP: MT-BLUP) if the linkage 

disequilibrium among SNP markers in the individual-level analysis is well approximated by 

a reference genotype panel. (Online Methods). We demonstrate that a wMT-SBLUP 

predictor increases prediction accuracy over a single-trait predictor, with the magnitude of 

increase being proportional to the ratio of the SNP-heritability of the added traits relative to 

that of the predicted trait, the sample size of the added traits relative to that of the predicted 

trait, and the genetic correlation between the added traits and the predicted trait (Figure 30, 

Figure 31 and Figure 32).  

 

We also provide a theoretical expectation for the loss in prediction accuracy that occurs 

when using an independent reference sample to compute SBLUP effects compared to a 



136 

 

predictor based on BLUP effects (see Methods), and we detail the loss of prediction 

accuracy in our simulation study (Figure 30, Figure 31 and Figure 33).  
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Figure 30:	Improving prediction accuracy using information from multiple traits	

(a) Expected gain from multi-trait vs cross-trait predictors as a function of rG. Two traits 

are considered. The first trait has a sample size of 20,000 and a SNP-heritability of 

0.5. The sample size and SNP-heritability of the second trait vary between panels. 

The blue line shows the expected prediction accuracy of a single-trait predictor. The 

black line shows the expected prediction accuracy of a multi-trait predictor. The purple 

line shows the expected prediction accuracy of a cross-trait predictor (using only trait 

2 to predict trait 1). The advantage of a multi-trait predictor over a cross-trait predictor 

decreases with increasing rG, h2 and sample size of the second trait. 

(b) Simulations results. Prediction accuracy is shown as correlation between simulated 

genetic value and predicted phenotype of individuals. Genotypes from European 

individuals in the GERA cohort were used for simulation. Boxplots show results across 

6 replicates. In the left panels the LD structure was removed by permuting dosage 

values for each SNP across all individuals. In the right panels the original genotypes 

were used for simulation. Expected prediction accuracies were derived for the case of 

unlinked genotypes and are shown as red horizontal bars. In each section the 

prediction accuracy of three predictors is shown: (1) single trait BLUP, (2) multi-trait 

BLUP (MT-BLUP), (3) weighted approximate BLUP (summary statistic based multi-

trait predictor: wMT-SBLUP). Simulation in genotypes without LD results in prediction 

accuracies which conform to expectations. In the presence of LD individual level 

correlations are higher because the effective number of markers is smaller. 
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Figure 31: Extended simulation results 
Each of the four panels has 10 predictors. For all predictors the correlation of simulated and 

estimated effect sizes are shown in the left half and the correlation between simulated 

genetic value and genetic predictor are shown in the right half. Predictors are ordered as 

follows: 1 to 3, predicting trait 1, while training on trait 1 (1: GWAS, 2: BLUP, 3: SBLUP); 4 

to 6, predicting trait 2, while training on trait 2 (4: GWAS, 5: BLUP, 6: SBLUP); 7 to 10, 

predicting trait 1, while training on trait 1 and 2 (multi trait predictor; 7: wMT-GWAS, 8: wMT-

BLUP, 9: MT-BLUP; 10: wMT-SBLUP) 

 

 



139 

 

 

Figure 32:	 Theoretically derived weights vs optimal weights in a small-scale 
simulation setup under a range of different parameters	
Two genetically correlated phenotypes were simulated under different values of h2 (SNP 

heritability), rG (genetic correlation), N (sample size) and M (number of markers). For each 

combination of parameters we calculated weights using Eq. [15] (red bars) and using the 

approximation 𝑤� = 𝒓𝑮𝒌,𝒇 𝒉𝒌𝟐𝑵𝒌 for focal trait f and additional traits k, which assumes that 

the SNP effects of each trait k have equal variance (blue bars). For each parameter 

combination we replicated simulations 50 times and determined the weight ratio which 

resulted in the highest prediction accuracy (box plots and black dots). This confirms that the 

weights in Eq. [15] result in the highest prediction accuracy. The approximation may work in 

well in some cases, but ignores covariances among traits other than the focal trait. 
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Figure 33: Comparison of the accuracy of different methods to estimate simulated 
SNP effects	
Blue line: GWAS effect estimates (univariate OLS). Green line: BLUP estimates. Pink line: 

SBLUP estimates as a function of λ. Purple line: LDpred-inf estimates as a function of λ 

(where λ is calculated as Ú
Ù\

). Simulations are based on 20,000 individuals. 1000 SNPs from 

chromosome 22 were used so that the LD window included all SNPs. In (a) the external 

reference for SBLUP / LDpred-inf is the same dataset as the genotypes which were used 

for simulation. Choosing an LD reference dataset which is different from the genotypes used 

for simulation (b) lowers prediction accuracy and increases the optimal value of λ. 

  

 

Application to Psychiatric disorders. We then applied our approach to the PGC 

schizophrenia [58,143] and bipolar data, two psychiatric disorders known to have a high 

genetic correlation [10]. The availability of combined individual-level data for both disorders 

enabled a direct comparison of the MT-BLUP [66] and wMT-SBLUP approaches. We 

calculated all predictors for the previously used [66] PGC wave 1 (PGC1) data sets [143] 

and compared the prediction accuracy (correlation between predicted values and 

phenotypes adjusted for sex, cohort and the first 20 principal components) across diseases 

and approaches. We find comparable but slightly lower accuracies in the wMT-SBLUP 

predictors as compared to the MT-BLUP predictors (0.151 vs 0.156 in bipolar disorder and 

0.217 vs 0.219 in schizophrenia) and an increase in prediction accuracy as compared to the 
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single-trait (BLUP) predictors (0.128 in bipolar disorder, 0.198 in schizophrenia) (Figure 34). 

Our results demonstrate that creating SBLUP genetic predictors using an independent LD 

reference sample, and combining these in a weighted sum results in prediction accuracy 

comparable to a full MT-BLUP prediction for common complex disease traits, at a much 

lower computational burden. 

 

 

Figure 34:	Prediction accuracy for schizophrenia and bipolar disorder from several 
single-trait and multi-trait predictors 

Prediction accuracy of seven different types of predictors using PGC1 schizophrenia and 

bipolar disorder data. Single-trait predictor (lighter colors) are on the left, multi-trait predictors 

(darker colors) are on the right. Black error bars indicate correlation coefficient standard 

errors, calculated as 𝑠𝑒W =
AYW\

UY0
	 . 
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We then applied our approach to the larger PGC wave 2 (PGC2) data sets for schizophrenia 

[58] and bipolar disorder (online methods), which included the PGC1 data. To test whether 

the addition of more cohorts improved prediction accuracy, we estimate wMT-SBLUP 

predictors in the PGC2 data. Having shown the resemblance of wMT-SBLUP and MT-BLUP 

by theory, simulation, and in the PGC1 data, we refrained from running a MT-BLUP model 

in the PGC2 data to avoid the computational burden of analysing the combined 

schizophrenia bipolar data set. For schizophrenia, there were 36 cohorts (26412 cases and 

32440 controls in total) and for bipolar disorder there were 23 cohorts (18865 cases and 

30460 controls in total). We conducted a cohort-wise leave-one-out cross-validation 

approach to examine variation in prediction accuracy across cohorts. 

 

For schizophrenia, we find that prediction accuracy increases in 20 of the 36 cohorts of the 

PGC2 data when using a wMT-SBLUP predictor as compared to a SBLUP predictor (Figure 
35). However, the median correlation (0.300 with an SBLUP predictor, and 0.304 with a 

wMT-SBLUP predictor) and mean correlation (0.295 with a SBLUP predictor and 0.294 with 

a wMT-SBLUP predictor) across the 36 PGC2 cohorts did not improve with a wMT-BLUP 

predictor. For bipolar disorder, we find an improvement of the wMT-SBLUP predictor over 

the SBLUP predictor in 17 out of 23 cohorts (Figure 36), with a mean correlation increase 

from 0.212 to 0.229 and a median correlation increase from 0.210 to 0.225. To evaluate 

whether this is because the weights we used for schizophrenia and bipolar disorder do not 

represent the mixing proportions which lead to the highest accuracy in this data set or 

whether other factors explain the variable results across cohorts, we created multi-trait 

predictors using not only weights calculated from Eq. [17], but also weights corresponding 

to any other mixing proportion of the two disorders (Figure 35, Figure 36 and Figure 37). 

This demonstrates (i) that our calculated weights are very close to the empirically optimal 

weights when averaged across cohorts (Figure 37), (ii) that there is substantial 

heterogeneity across cohorts as shown by the variable prediction accuracies of single-trait 

and cross-trait predictors across cohorts, which is supported by previous studies [58], and 

(iii) that for some test set cohorts, there is no mixing proportion which will lead to a multi-trait 

predictor which outperforms a single-trait predictor. 

 

 The larger gain in accuracy that results from supplementing a bipolar disorder predictor with 

schizophrenia data compared to supplementing a schizophrenia predictor with bipolar 

disorder data is consistent with greater power of the schizophrenia discovery sample. We 
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find that for both single-trait and multi-trait predictors the SBLUP predictors outperform the 

OLS predictors in almost all cohorts (Figure 35 and Figure 36). 

 

 

 

Figure 35:	Prediction accuracy for schizophrenia in each schizophrenia cohort using 
single-trait and multi-trait, GWAS (blue) and SBLUP (purple) predictors 
Each point along the x-axis represents a different multi-trait predictor with a different mixing 

proportion of schizophrenia and bipolar disorder data, corresponding to different weights. 

Dotted vertical lines indicate weights according to Eq. [15], and dotted horizontal lines 

indicate wMT-SBLUP prediction accuracy at these weights. If this prediction accuracy is 

higher than the single-trait prediction accuracy on the left hand side, the multi-trait predictor 

improves upon the single-trait predictor. The difference between single-trait and multi-trait 

accuracy (Δρ) is visualized by green or red lines and printed in each panel. 
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Figure 36:	Prediction accuracy for bipolar in each bipolar cohort using single-trait and 
multi-trait, GWAS (blue) and SBLUP (purple) predictors 

Each point along the x-axis represents a different multi-trait predictor with a different mixing 

proportion of schizophrenia and bipolar disorder data, corresponding to different weights. 

Dotted vertical lines indicate weights according to Eq. [15], and dotted horizontal lines 

indicate wMT-SBLUP prediction accuracy at these weights. If this prediction accuracy is 

higher than the single-trait prediction accuracy on the left hand side, the multi-trait predictor 

improves upon the single-trait predictor. The difference between single-trait and multi-trait 

accuracy (Δρ) is visualized by green or red lines and printed in each panel. 
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Figure 37:	 Prediction accuracy difference between SBLUP predictors and wMT-
SBLUP predictors, summarized over all cohorts 
A summary over all cohorts shown in Figure 35 and Figure 36. The y-axis now shows 

accuracy difference rather than absolute accuracy. For each weighting there is a distribution 

of prediction accuracy improvement (correlation single-trait predictor minus correlation multi-

trait predictor) across all cross-validation iterations. The quantiles of this distribution are 

shown in shades of blue and the white line represents the median. The vertical line 

represents the weights derived from Eq. [15]. 
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Figure 38	Genetic correlation estimates between 34 traits	
LD score regression was used to estimate the genetic correlation based on summary 

statistics for each trait. Empty circles indicate a genetic correlation p-value lower than 0.05, 

filled circles indicate a genetic correlation p-value smaller than the Bonferroni threshold 0.05 

/ 561 = 8.91e-05. Traits are ordered according to hierarchical clustering based on the 

absolute value of genetic correlation estimates. Summary statistics were obtained from 

various sources, for details see Table 15. 
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Application to phenotypes recorded in a large population study. In principle any 

number of traits can be combined into a multi-trait predictor at almost no computational cost. 

We therefore extended our approach to create wMT-SBLUP predictors from 34 phenotypes 

for which we could access summary statistics. In order to calculate wMT-SBLUP weights, 

we used LD score regression to estimate SNP-heritability and genetic correlations of the 34 

summary statistics traits. The results are mostly in line with previous reports [9] (Figure 38, 

Table 17). As test set we used 112,338 individuals in the UK Biobank data. We matched six 

of the 34 discovery traits to traits in the UK Biobank (Table 15) and created wMT-SBLUP 

predictors. For the wMT-SBLUP predictor of each focal trait we included predictor traits with 

genetic correlation p-value < 0.05. For all traits, wMT-SBLUP genetic predictors were more 

accurate than any single-trait (SBLUP) predictor (Figure 39). We observe the largest 

increases in accuracy for Type 2 diabetes (47.8%) and depression (34.8%). Accuracy for 

height (0.7%) and BMI (1.4%) increase only marginally. As shown in our theory and 

simulation study, the magnitude of increase in prediction accuracy of a wMT-SBLUP 

predictor over a single trait SBLUP predictor depends upon the prediction accuracies of all 

of the traits included in the index and the genetic correlation among phenotypes. As GWAS 

sample sizes increase and genomic predictors increase in accuracy, a wMT-SBLUP 

approach will likely become increasingly beneficial. 
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Figure 39: Prediction accuracy for single-trait and multi-trait predictors in UK Biobank 
traits (SBLUP)	
Prediction accuracy for six traits in the UK Biobank for multi-trait predictors (light blue bars, 

wMT-SBLUP) and single-trait predictors (colourful bars on the right, SBLUP). Black bars 
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show the correlation coefficient standard error. The multi-trait predictors for each trait are 

composed of all traits for which colourful bars are shown (rG p-value < 0.05). Smaller bars 

on the right show, from top to bottom, sample size, SNP-heritability, rG, and weights (given 

by Eq. [15]) for each trait. 
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Figure 40:	Prediction accuracy for single-trait and multi-trait predictors in UK Biobank 
traits (OLS)	
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Prediction accuracy for six traits in the UK Biobank for multi-trait predictors (light blue bars, 

wMT-OLS) and single-trait predictors (colorful bars on the right, OLS). Black bars show the 

correlation coefficient standard error. The multi-trait predictors for each trait are composed 

of all traits for which colorful bars are shown (rG p-value < 0.05). Smaller bars on the right 

show, from top to bottom, sample size, SNP-heritability, rG, and weights (given by Eq. [24]) 

for each trait. 

 

Discussion 
 

In summary, we demonstrate that multivariate predictors derived from GWAS summary 

statistics can increase prediction accuracy in a wide range of traits. This approach has 

particular utility in risk prediction of traits for which it is hard to generate large sample sizes 

for GWAS, as the increase in prediction accuracy over a standard genetic predictor is 

greatest when the additional traits included in the predictor have a high genetic correlation 

with, and are better powered than, the trait to be predicted.  

 

Special consideration should be given to the risk of sample overlap between the summary 

statistics data used to create the predictor and the prediction target. Sample overlap will lead 

to inflated estimates of accuracy, and while here we were able to take steps to avoid 

individuals being recorded across multiple datasets, further work is required to negate these 

effects within this framework. An additional limitation of our method is that the conversion of 

OLS SNP effects to SBLUP SNP effects assumes that the true SNP effect sizes follow a 

normal distribution. However, results from other studies which have not made this 

assumption [69], show that it does not negatively impact prediction accuracy for the majority 

of traits [63,69]. Despite these limitations, current evidence suggests that genetic 

correlations among phenotypes are pervasive [9], sample sizes of GWAS are increasing 

[11], and public availability of genome-wide summary statistics is becoming the norm [4], 

meaning that genomic prediction of complex common disease will continually improve 

especially when predictors of multiple phenotypes are integrated across studies within this 

framework. 
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Methods 

General model 

We consider a general linear mixed model: 

𝐲 = 𝐖𝐛 + 𝛜          [4] 

 

where y is the phenotype, W a matrix of single nucleotide polymorphism (SNP) genotypes, 

where values are standardized to give the ijth element as: 𝑤° = 𝑥°−2𝑝° 	/ 2𝑝° 1 − 𝑝° , 

with 𝑥° the number of minor alleles (0, 1, or 2) for the ith individual at the jth SNP and 𝑝° the 

minor allele frequency. b are the genetic effects for each SNP, and 𝛜 the residual error. The 

dimensions of y, W, b, and 𝛜 are dependent upon the number of phenotypes, k, the number 

of SNP markers, M, and the number of individuals, N, and are described in the sections 

below. We denote the distributional properties var(b) = B, var(𝛜) = R and var(y) = WBW’ + 

R. 

For human complex diseases and quantitative phenotypes, genome-wide association 

studies (GWAS) have typically estimated the solutions for b of Eq. [1] one SNP at a time 

using ordinary least squares (OLS) regression [204] as: 

𝐛äËÕ = 𝑑𝑖𝑎𝑔 𝐖′𝐖 YA𝐖′𝐲       [5] 

where 𝑑𝑖𝑎𝑔 𝐖′𝐖  has diagonal elements 𝑤°�𝑤° and off-diagonal elements of zero. However, 

by analysing one SNP at a time, GWAS effect size estimates do not account for the 

covariance structure among SNPs and they are not unbiased in the sense that E b b = 	b 

[200]. Best linear unbiased predictors (BLUP) of the SNP effects have the property E b b =

	b  are used in genomic prediction in animal and plant breeding [195], and more recently in 

human medical genetics, yielding improved prediction accuracy for a number of traits over 

genetic predictors created from OLS SNP estimates [66,168]. In a general form, BLUP 

solutions for b of Eq. [1] can be written using Henderson’s mixed model equations [205] as: 

𝐛ÊËÌÍ = 𝐖�𝐑Y𝟏𝐖 + 𝐁YA YA𝐖′𝐑Y𝟏𝐲     [6] 

and if R is diagonal, then Eq. [6] can be reduced to: 

𝐛ÊËÌÍ = 𝐖�𝐖+ 𝐁YA𝐑 YA𝐖′𝐲      [7] 

Below, we describe how Eq. [6] and Eq. [7] can be used to estimate BLUP SNP effects for 

a single trait and for multiple traits jointly, from individual-level phenotype-genotype data. 

We then show how Eq. [6] and [7] can be approximated to obtain BLUP SNP effects for 
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single and multiple traits in the absence of individual-level data, from publically available 

GWAS summary statistics and an independent reference sample. 

Estimation of BLUP SNP effects for a single trait 

For a univariate analysis of trait k, y of Eq. [4] is a column vector of length N x 1 and W has 

dimension N x M. Assuming b is an M x 1 vector of random SNP effects for trait k, with 

distribution 𝐛	~𝑁(0, 𝐈Ú𝜎êÎ
0 ), then 𝐁 = 𝐈Ú𝜎êÎ

0 , where 𝐈Ú is an identity matrix of dimension M. 𝛜 

of Eq. [1] is a column vector of independent residual effects, with distribution 𝛜	~𝑁(0, 𝐈5𝜎ëÎ
0 ), 

giving 𝐑 = 𝐈5𝜎ìÎ
0 , where 𝐈5 is an identity matrix of dimension N. Substituting these 

expressions into Eq. [6] means that Eq. [7] can then be written as: 

𝐛ÊËÌÍÎ = 𝐖�
�𝐖� + 𝐈Ú𝜆� YA𝐖�

�𝐲�      [8] 

with 𝜆� = 𝜎ìÎ
0 /𝜎îÎ

0 . 

 

Joint estimation of BLUP SNP effects for multiple traits 

When phenotypes are genetically correlated, measurements on each trait provide 

information on the genetic values of the other correlated traits [201,202,206]. Recent studies 

have shown that prediction accuracy of common complex disease can be improved by 

estimating SNP effects for multiple traits jointly within a multivariate mixed effects model 

[66,168]. 

 

If k traits are measured on different individuals, with 𝑁𝒌 observations for trait k, the elements 

of Eq. [4] become: 𝐲� = 𝒚A� …𝒚�� ,𝐖 =
𝐖A 0 0
0 ⋱ 0
0 0 𝐖�

, and	𝐑 = 𝑑𝑖𝑎𝑔 𝐑� = 𝑑𝑖𝑎𝑔 𝐈5Î𝜎ìÎ
0 , a 

diagonal matrix of length 𝑁 = 𝑁�� . 𝐁 = 𝚺ê⨂𝐈Ú, where 𝚺ê is a k x k matrix, with diagonal 

elements 𝜎êÎ
0 and off-diagonal elements the covariances of SNP effects between traits k and 

l, 𝜎êÎ,f. For Kronecker products, 𝐁YA = 𝚺êY𝟏⨂𝐈Ú and substituting these expressions directly 

into Eq. [6] means that multi-trait BLUP solutions for b can be obtained in Eq. [7] as: 

𝐛ÑÒYÊËÌÍ = 𝐖�𝐖+ 𝚺ì𝚺êYA⨂𝐈Ú
YA𝐖′𝐲,      [9] 

with 𝚺ì = 𝑑𝑖𝑎𝑔[𝜎ìÎ
0 ], a diagonal k x k matrix. For a two-trait example Eq. [9] expands to: 
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𝐛ÑÒYÊËÌÍ 		=
𝐖𝟏

�𝐖𝟏 0
0 𝐖𝟐

�𝐖𝟐
+

𝐈Ú𝜎ì�
0 0

0 𝐈Ú𝜎ì\
0

𝐈Ú𝜎ê�
0 𝐈Ú𝜎ê�,\

𝐈Ú𝜎ê\,� 𝐈Ú𝜎ê\
0

YA YA

𝐖𝟏 0
0 𝐖𝟐

� 𝐲𝟏
𝐲𝟐          

 
[10] 

 

Estimation of BLUP SNP effects from summary statistics for multiple traits 

Estimating SNP effects for multiple traits jointly in Eq. [9] requires individual-level genotype 

and phenotype data across a range of common complex diseases and quantitative 

phenotypes, which are not readily available in human medical genetics due to privacy 

concerns and data sharing restrictions. Additionally, Eq. [9] requires a series of 

computationally intensive M x k equations to be solved. However, these issues can be 

overcome by approximating Eq. [9] using publically available GWAS summary statistic data 

and an independent genomic reference sample.  

 

Single trait approximate BLUP SNP effects can be obtained from GWAS summary statistics 

(SBLUP: summary statistic approximate BLUP) by replacing 𝐖�
�𝐖� and 𝐖�

�𝐲� of Eq. [8] by 

their expectation, which are 𝔼 𝐖�
�𝐖� = 𝑁�𝐋 and 𝔼 𝐖�

�𝐲� = 𝑁�𝐛äËÕÎ respectively, where L 

is an M x M scaled SNP linkage disequilibrium (LD) correlation matrix estimated from a 

reference SNP dataset and 𝐛äËÕÎ are obtained from publically available GWAS summary 

statistics [67]. GWAS summary statistics report effect estimates of SNPs on an 

unstandardized scale, and not 𝐛äËÕ as it is defined here. To obtain 𝐛äËÕ from GWAS 

summary statistics, the effect of each SNP must be multiplied by the standard deviation of 

each SNP: 𝐛äËÕ¡ = 𝐛äËÕYÌõÕö÷Ëøù¡ ∗ 2𝑝° 1 − 𝑝°   . Eq. [8] can then be written as: 

𝐛ÕÊËÌÍÎ = 𝑁�𝐋 + 𝐈Ú𝜆� YA𝑁�𝐛äËÕÎ  

                = 𝐋 + 𝐈Ú𝜆�/𝑁� YA𝐛äËÕÎ            [11] 

The shrinkage parameter is 𝜆� = 	𝜎ëÎ
0 𝜎êÎ

0 = 𝑀𝜎ëÎ
0 /ℎ356Î

0 = 𝑀(1 − ℎ356Î
0 )/ℎ356Î

0 , under the 

assumption of phenotypic variance of 1 which makes the proportion of phenotypic variance 

of trait k attributable to the SNPs ℎ356Î
0 = 𝑀𝜎êÎ

0 .  
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This approach was implemented in [68] and is similar to the model presented by 

Vilhjálmsson et al. [69] but with two differences. The first is that the shrinkage parameter of 

Vilhjálmsson et al. [69]  is 𝜆� = 	𝑀/ℎ356Î
0  as they assume that the error variance is 1 rather 

than 1 − ℎ356Î
0  in our implementation. The second difference is that Vilhjálmsson et al. [69] 

calculate BLUP effects for blocks of a certain number of SNPs following a tiling window 

approach giving a block diagonal structure to L, whereas our implementation within the 

software GCTA (see URLs) follows a sliding window approach giving a banded diagonal to 

L. Assuming an error variance of 1 − ℎ356Î
0  is more appropriate because cumulatively the 

SNP markers explain ℎ356Î
0  of the phenotypic variance. Additionally, a banded diagonal for 

L is also appropriate as it captures a greater extent of the long-range LD (Figure 33). In 

both implementations a window is used to capture the LD around SNP markers in order to 

avoid the large computational costs of inverting a dense M dimensional SNP LD matrix, with 

only little loss of information (see below). 

For multiple phenotypes, the elements of Eq. [11] become: 𝐛äËÕ
� = 𝐛äËÕA

� …𝐛äËÕ�
�  and N = 

𝐍A 0 0
0 ⋱ 0
0 0 𝐍�

, meaning that Eq. [11] can be extended as: 

𝐛ÑÒYÕÊËÌÍ = 𝐈�⨂𝐋 + 𝚺ì𝚺êY𝟏𝑵Y𝟏⨂𝐈Ú
YA
𝐛äËÕ                     [12] 

Eq. [12] approximates Eq. [9] using only publically available GWAS summary statistic data 

and an independent genomic reference sample. However, there remains the large 

computational cost associated with the inversion of the non-diagonal matrix 𝐈�⨂𝐋 +

𝚺ì𝚺êY𝟏𝑵Y𝟏⨂𝐈Ú . 

 

Index weighted multi-trait BLUP SNP effects from summary statistics 

An alternative to Eq. [12], is to obtain k 𝐛ÑÒYÕÊËÌÍ effects by combining together k single 

trait 𝐛ÕÊËÌÍ estimates of Eq. [11], using an optimal index weighting for each trait. The index 

weighting to derive 𝐛ÑÒYÕÊËÌÍ from 𝐛ÕÊËÌÍ estimates is identical to the  index weighting to 

derive 𝐛ÑÒYÊËÌÍ from 𝐛ÊËÌÍ estimates. 

For SNP j, and focal trait f, we have 𝐛ÕÊËÌÍ values for k traits, and we wish to obtain the 

index weights, w°,�, for each 𝐛ÕÊËÌÍ{,Îeffect as: 

𝐛ÐÑÒYÕÊËÌÍ{,Ó = wÕÊËÌÍ,°,�bÕÊËÌÍ{,Î� = 𝐰ÕÊËÌÍ,°
� 𝐛ÕÊËÌÍ{          [13] 
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In animal and plant breeding, selection indices have been developed, which combine many 

single trait BLUP predictors of an individual’s genetic value together in an index weighting 

to optimise the selection of individuals with the most favourable multi-trait phenotype for 

breeding programs [207–210]. Utilising a selection index approach, the solution for 𝐰ÕÊËÌÍ 

of Eq. [13] can be obtained as: 

	𝐰ÕÊËÌÍ = 𝐕ÕÊËÌÍYA 𝐂ÕÊËÌÍ       [14] 

where 𝐂ÕÊËÌÍ a k x 1 column vector of the covariance of the 𝐛ÕÊËÌÍÎ values of the k traits, 

with the true genetic effects of the SNPs for the focal trait, and 𝐕ÕÊËÌÍ a k x k variance-

covariance matrix of the 𝐛ÕÊËÌÍ effects: 

𝐰ÕÊËÌÍ = 𝐕ÕÊËÌÍYA 𝐂ÕÊËÌÍ =

𝑣𝑎𝑟(	𝐛ÕÊËÌÍ�) ⋯ 𝑐𝑜𝑣(	𝐛ÕÊËÌÍ�, 𝐛ÕÊËÌÍÎ)
⋮ ⋱ ⋮

𝑐𝑜𝑣(	𝐛ÕÊËÌÍÎ, 𝐛ÕÊËÌÍ�) ⋯ 𝑣𝑎𝑟(	𝐛ÕÊËÌÍÎ)

YA
𝑐𝑜𝑣(	𝐛ý, 𝐛ÕÊËÌÍ�)

⋮
𝑐𝑜𝑣(	𝐛ý, 𝐛ÕÊËÌÍÎ)

  

 
[15] 

Therefore, if 𝐕ÕÊËÌÍ and 𝐂ÕÊËÌÍ can be approximated then 𝐛ÑÒYÕÊËÌÍ of Eq. [12] can be 

obtained from k single trait 𝐛ÕÊËÌÍ estimates from Eq. [11].  

To derive the approximations, we first consider the diagonal elements of 𝐕ÕÊËÌÍ which 

comprise the variance of the SBLUP SNP solutions, 𝑣𝑎𝑟(𝐛ÕÊËÌÍÎ). These can be 

approximated from theory under the assumption that 𝐛ÕÊËÌÍÎhave BLUP properties E b b =

	b, which in turn implies that 𝑐𝑜𝑣 𝐛�, 𝐛ÕÊËÌÍÎ = 𝑣𝑎𝑟(𝐛ÕÊËÌÍÎ). Following Daetwyler et al. 

[169] and Wray et al. [211], the squared correlation between a phenotype, 𝒚�, in an 

independent sample and a single trait BLUP predictor of the phenotype, 𝐠ÊËÌÍÎ, is 

approximately: 

𝑅𝒚Î,𝐠þÿ!"Î
0 = 𝑅�0 ≈ ℎ�0 1 + 𝑀P$$ 1 − 𝑅�0 𝑁�ℎ�0    [16] 

where 𝐠ÊËÌÍÎ = 𝐖𝐛ÊËÌÍÎand ℎ�0 is the proportion of phenotypic variance attributable to 

additive genetic effects for trait k. Note that Meff is the effective number of chromosome 

segments or the number of independent SNPs which is a function of effective population 

size (Ne) and can be empirically obtained as an inverse of the variance of genomic 

relationships [212,213]. Here, we use an estimate of Meff of 60,000, which is in line both with 

our estimates from the genomic relationships in our simulation data and with previously 

reported estimates [33]. With a phenotypic variance of 1 and individual-level genetic effects 



157 

 

𝐠� = 𝐖𝐛�, then ℎ�0 = 𝜎rÎ
0 = 𝑀𝜎êÎ

0  and the squared correlation between the true, 𝐠�, and 

estimated BLUP effects, 𝐠ÊËÌÍÎ, is: 

𝑅𝐠Î,𝐠þÿ!"Î
0 = 𝑅�0 ℎ�0        [17] 

rearranging Eq. [17] gives 𝑅�0 = ℎ�0𝑅𝐠Î,𝐠þÿ!"Î
0 = ℎ�0

M.h 𝐠Î,𝐠þÿ!"Î
\

hNW(𝐠Î)hNW(𝐠þÿ!"Î)
 , which given the BLUP 

properties 𝑐𝑜𝑣 𝐠�, 𝐠ÊËÌÍÎ = 𝑣𝑎𝑟(𝐠ÊËÌÍÎ)and ℎ�0 = 𝜎rÎ
0 with a phenotypic variance of 1, 

reduces to 𝑅�0 = 𝑐𝑜𝑣 𝐠�, 𝐠ÊËÌÍÎ = 𝑣𝑎𝑟(𝐠ÊËÌÍÎ) = 𝑀𝑣𝑎𝑟(𝐛ÊËÌÍÎ). Therefore: 

𝑣𝑎𝑟(𝐛ÊËÌÍÎ) =
hNW(𝐠þÿ!"Î)

Ú
= HÎ

\

Ú
      [18] 

Second, we consider the off-diagonal elements of 𝐕ÕÊËÌÍ, which are comprised of the 

covariance of BLUP SNP solutions among the k traits. These can again be approximated 

from theory given the covariance of genetic effects among traits k and l is 𝑐𝑜𝑣(𝐛�, 𝐛%) =

r1ℎ�ℎX 𝑀, with r1 the genetic correlation, and given the squared correlation between the 

true genetic effects of the SNPs, 𝐛�, and 𝐛ÊËÌÍÎ which is given by Eq. [17] as 𝑅𝐛Î,𝐛þÿ!"Î
0 =

HÎ
\

Ú
ÙÎ
\

Ú
= 𝑅�0 ℎ�0. The covariance of BLUP SNP predictors is then: 

𝑐𝑜𝑣(𝐛&�'6�, 𝐛&�'6f) =
HÎ
\

ÙÎ
\ ∙

Hf
\

Ùf
\ 𝑐𝑜𝑣(𝐛�, 𝐛%) =

¼ØHÎ
\Hf

\

ÙÎÙfÚ
    [19] 

Finally, we can consider the column vector 𝐂ÕÊËÌÍ, which is composed of the covariance 

between the true genetic effects of the SNPs for the focal trait, 𝐛$, and 𝐛ÕÊËÌÍÎfor all of the 

k traits. The first element of 𝐂ÕÊËÌÍ is covariance between the true genetic effects of the 

SNPs for the focal trait 𝐛$and 𝐛ÕÊËÌÍÓfor the focal trait 𝑐𝑜𝑣(𝐛$ , 𝐛ÊËÌÍÓ) = 𝑣𝑎𝑟(𝐛ÊËÌÍÓ) =
HÓ
\

Ú
. 

The remaining elements of 𝐂ÕÊËÌÍ are 𝑐𝑜𝑣(𝐛$ , 𝐛ÊËÌÍÎ)which can be approximated from 

theory by considering a regression of 𝐛$ on 𝐛� where the regression coefficient 𝛽$,� =

r1 𝑣𝑎𝑟(𝐛$) 𝑣𝑎𝑟(𝐛�). The covariance of 𝐛$and 𝐛ÊËÌÍÎcan then be written as: 

𝑐𝑜𝑣(𝐛$ , 𝐛ÊËÌÍÎ) = 𝑐𝑜𝑣(𝛽$,�𝐛�, 𝐛ÊËÌÍÎ) = r1
HÎ
\

Ú
∙ ÙÓ
ÙÎ

   [20] 

If we consider a two-trait example where the focal trait that we want to predict is matched to 

the first of the two traits, Eq. [18-20] combine as: 

	𝐰ÕÊËÌÍ = 𝐕ÕÊËÌÍYA 𝐂ÕÊËÌÍ =
H�\

Ú
¼ØH�\H\\

Ù�Ù\Ú
¼ØH�\H\\

Ù�Ù\Ú
H\\

Ú

YA
H�\

Ú

r1
H\\

Ú
∙ Ù�
Ù\

   [21] 

giving the index for the focal trait as: 𝐛ÐÑÒYÕÊËÌÍÓ = wA𝐛3ÊËÌÍÓ + w0𝐛ÕÊËÌÍ\with solutions 

for the index weights of: 
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w$ = 1 − ¼Ø\H\\

Ù\\
1 −

¼Ø\HÓ
\H\\

ÙÓ
\Ù\\Ú

  

      =	 1 − r10𝑅𝐛\,𝐛þÿ!"\
0 1 − r10𝑅𝐛Ó,𝐛þÿ!"Ó

0 𝑅𝐛\,𝐛þÿ!"\
0 , and 

w0 = r1 ℎ$ℎ0 ℎ$0 − 𝑅A0 1 −
¼Ø\HÓ

\H\\

ÙÓ
\Ù\\Ú

  

      = r1 ℎ$ ℎ0 1 − 𝑅𝐛Ó,𝐛þÿ!"Ó
0 1 − r10𝑅𝐛Ó,𝐛þÿ!"Ó

0 𝑅𝐛\,𝐛þÿ!"\
0       [22]  

 

For traits with low power 𝑅�0 is usually very small. In that case, 𝐕ÕÊËÌÍ can be well 

approximated by a diagonal matrix with entries HÎ
\

Ú
. w$ will become 1 and w�for all other traits 

will be r1Ó,Î	
ÙÓ
ÙÎ

. It may appear surprising that traits with higher SNP-heritability have smaller 

weights than traits with lower SNP-heritability. This can be explained by the fact that the 

variance of each BLUP predictor (𝑅�0) is approximately proportional to ℎ�)𝑁 if 𝑀P$$ is large, 

and thus a trait with higher SNP-heritability will still have a larger contribution to the multi-

trait predictor than a trait with lower SNP-heritability. 

 

Eq. [17] implies 𝑅𝐛Î,𝐛þÿ!"Î
0 = 𝑅𝐠Î,𝐠þÿ!"Î

0 = 𝑅�0 ℎ�0 and thus the index weights of Eq. [15] can 

be applied equally to BLUP solutions for the SNP effects, or BLUP predictors for individuals 

of each trait as described in the main text in Eq. [1] through [3]. Both r1Î,f and ℎ�0 of Eq. [15] 

can be obtained from summary statistic data using LD Score regression [32] and therefore 

𝐛ÑÒYÊËÌÍ effects of Eq. [10], which would traditionally require individual-level phenotype-

genotype data for all traits, can be approximated accurately in a computationally efficient 

manner using only publically available GWAS summary statistic data and an independent 

genomic reference sample. 

 

Index weighted multi-trait OLS SNP effects from summary statistics 

In the previous section we have shown how 𝐛ÕÊËÌÍ estimates for multiple traits can be 

combined to yield more accurate 𝐛ÐÑÒYÕÊËÌÍ SNP effects, which can be turned into 

𝐠ÐÑÒYÕÊËÌÍ individual predictors that approach 𝐠ÑÒYÊËÌÍ accuracy.  However, using a 

similar weighting we can also combine 𝐛äËÕ estimates for multiple traits into 𝐛ÐÑÒYäËÕ. 
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For SNP j, and focal trait f, we have 𝐛äËÕ values for k traits, and we wish to obtain the index 

weights, w°,�, for each 𝐛äËÕ{,Îeffect as: 

𝐛ÐÑÒYäËÕ{,Ó = w°,�bäËÕ{,Î� = 𝐰°�𝐛äËÕ{            [23] 

Just like before, the optimal weights can be derived as:	𝐰äËÕ = 𝐕äËÕYA 𝐂äËÕ, where 𝐂äËÕ is now 

a k x 1 column vector of the covariances of the 𝐛äËÕÎ values of the k traits with the true 

genetic effects of the SNPs for the focal trait, and 𝐕äËÕ is a k x k variance-covariance matrix 

of the 𝐛äËÕ effects: 

𝐰äËÕ = 𝐕äËÕYA 𝐂äËÕ =
𝑣𝑎𝑟(	𝐛äËÕ�) ⋯ 𝑐𝑜𝑣(	𝐛äËÕ�, 𝐛äËÕÎ)

⋮ ⋱ ⋮
𝑐𝑜𝑣(	𝐛äËÕÎ, 𝐛äËÕ�) ⋯ 𝑣𝑎𝑟(	𝐛äËÕÎ)

YA
𝑐𝑜𝑣(	𝐛ý, 𝐛äËÕ�)

⋮
𝑐𝑜𝑣(	𝐛ý, 𝐛äËÕÎ)

 [24] 

The diagonal elements of 𝐕äËÕ are: 

𝑣𝑎𝑟 	𝐛äËÕÎ = ÙÎ
\

Ú
+ A

5Î
       [25] 

 

The off-diagonal elements for trait k and l are 

𝑐𝑜𝑣 𝐛äËÕÎ, 𝐛äËÕf = ¼ØÙÎÙf
Ú

.       [26] 

 𝐂äËÕ now has elements  

𝑐𝑜𝑣 𝐛�, 𝐛äËÕÎ = ¼ØÙÎÙf
Ú

       [27] 

If we again consider a two-trait example, Eq. [25-27] combine as: 

	𝐰äËÕ = 𝐕äËÕYA 𝐂äËÕ =
Ù�\

Ú
+ A

5�

¼ØÙ�Ù\
Ú

¼ØÙ�Ù\
Ú

Ù\\

Ú
+ A

5\

YA
Ù�\

Ú
¼ØÙ�Ù\
Ú

    [28] 

These weights are considerably different from the BLUP weights, which reflects the different 

variances of BLUP effects and OLS effects. Here, we include this section for completeness 

but focus our analyses on multi-trait BLUP effects, because they are more accurate in 

expectation than multi-trait OLS effects. 

 

Prediction accuracy of an index weighted multi-trait BLUP predictor 

The prediction accuracy of 𝐛ÐÑÒYÊËÌÍ effects obtained from Eq. [15] can be derived by 

considering the correlation of 𝐛$and 𝐛ÐÑÒYÊËÌÍÎas:  
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𝑟𝐛Ó,𝐛*+,Ûþÿ!"Ó =
M.h 𝐛Ó,𝐛*+,Ûþÿ!"Ó

hNW 𝐛*+,Ûþÿ!"Ó hNW 𝐛Ó
		      [29] 

Eq. [13] gives 𝐛ÐÑÒYÊËÌÍÓ = 𝐰�𝐛ÊËÌÍ and thus the covariance of 𝐛$and 𝐛ÐÑÒYÊËÌÍÓ is: 

 𝑐𝑜𝑣 𝐛$ , 𝐛ÐÑÒYÊËÌÍÓ = 𝑐𝑜𝑣 𝐛$ , 𝐰�𝐛ÊËÌÍ = 𝐰�𝑐𝑜𝑣 𝐛$ , 𝐛ÊËÌÍ = 𝐰�𝐂 [30] 

The variance of the 𝐛ÐÑÒYÊËÌÍ effects obtained from Eq. [15] is: 

 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ = 𝑣𝑎𝑟 𝐰�𝐛ÊËÌÍÎ = 𝐰�𝑣𝑎𝑟 𝐛ÊËÌÍÎ 𝐰 = 𝐰�𝐕𝐰   [31]  

Additionally, 𝐰 = 𝐕YA𝐂 and 𝐕𝐰 = 𝐂, and thus 𝐰�𝐂 = 𝐰�𝐕𝐰 or written another way 

𝑐𝑜𝑣 𝐛$ , 𝐛ÐÑÒYÊËÌÍÓ = 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ following BLUP properties. Substituting into Eq. 

[19] the correlation of 𝐛$and 𝐛ÐÑÒYÊËÌÍÎcan then be written as: 

𝑟𝐛Ó,𝐛*+,Ûþÿ!"Ó = 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ 𝑣𝑎𝑟 𝐛$   

     = 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ 𝑣𝑎𝑟 𝐛$            [32] 

which gives the squared correlation as 𝑅𝐛Ó,𝐛*+,Ûþÿ!"Ó
0 = 𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ /𝑣𝑎𝑟 𝐛$ =

HÓ
\

Ú
ÙÎ
\

Ú
=

𝑅$0 ℎ�0. Therefore, the squared correlation between a phenotype, and a multiple trait index 

weighted BLUP predictor of the phenotype is approximately: 

 𝑅𝒚Î,𝐠*+,Ûþÿ!"Î
0 = 𝑀𝑣𝑎𝑟 𝐛ÐÑÒYÊËÌÍ = 	𝑀𝐰�𝐕𝐰.   [33] 

If we consider a two-trait example then prediction accuracy for a focal trait 𝑅𝒚Ó,𝐠*+,Ûþÿ!"Î
0 can 

be written as: 

𝑅𝒚Ó,𝐠*+,Ûþÿ!"Ó
0 = 𝐰$0𝑅𝒚Ó,𝐠þÿ!"Ó

0 + 𝐰0
0𝑅𝒚\,𝐠þÿ!"\

0 + 2w$w0VA,0   [34] 

where VA,0 is the off-diagonal element of the matrix V of Eq. [15] and [21]. The value of 

𝑅𝒚Ó,𝐠*+,Ûþÿ!"Ó
0  can then be compared to the prediction accuracy of the single trait BLUP 

predictor of Eq. [16] and to the prediction accuracy of a cross-trait predictor [57], where a 

BLUP predictor of the second trait is used to predict the focal trait phenotype, which is given 

by: 𝑅𝒚Ó,𝐠þÿ!"\
0 = 𝑅𝒚\,𝐠þÿ!"\

0 r1 ℎ0 ℎ$ . This comparison is of interest, because we expect the 

multi-trait predictor to be more accurate than any available single-trait predictor, even if the 

most accurate single-trait predictor is across two different traits. Cross-trait prediction is 

equivalent to the proxy-phenotype method, which has been used to predict cognitive 

performance from educational attainment GWAS data [214]. 
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Loss of prediction accuracy when approximating a BLUP predictor 

Eq. [16-34] assume that 𝑐𝑜𝑣 𝐛�, 𝐛ÕÊËÌÍÎ = 𝑣𝑎𝑟 𝐛ÕÊËÌÍÎ = 𝑣𝑎𝑟 𝐛ÊËÌÍÎ , or in other words 

that SBLUP SNP solutions have BLUP properties. The use of an independent LD reference 

sample to create an approximate single trait BLUP predictor in Eq. [11] does not affect the 

covariance between the true SNP effect sizes and the approximate BLUP SNP solution, 

meaning that the approximate single trait BLUP predictors have BLUP properties. However, 

the variance of 𝐛ÕÊËÌÍ is likely affected, which may potentially result in a loss of prediction 

accuracy of a weighted multi-trait BLUP predictor. The variance of 𝐛ÕÊËÌÍ is: 

𝜎𝐛.þÿ!"
0 = 𝑁𝐋 + 𝐈Ú𝜆 YA𝐖� 𝐖�𝐖𝜎î0 + 𝐈𝜎/0 𝐖 𝑁𝐋 + 𝐈Ú𝜆 YA 	

= 𝑁𝐋 + 𝐈Ú𝜆 YA 𝐖�𝐖 𝐖�𝐖 𝜎î0 +𝐖�𝐖𝜎/0 𝑁𝐋 + 𝐈Ú𝜆 YA  

= 𝑁𝐋 + 𝐈Ú𝜆 YA 𝐖�𝐖 𝐖�𝐖 𝑁𝐋 + 𝐈Ú𝜆 YA +	 𝑁𝐋 + 𝐈Ú𝜆 YA𝐖�𝐖𝜆� 		 𝑁𝐋 + 𝐈Ú𝜆 YA 𝜎î0  
[35] 

The loss of information from using an independent data set as an LD reference to obtain L, 

rather than directly using the individual-level data to calculate 𝐖�𝐖, can be approximated 

by considering the scenario where SNP markers are unlinked, resulting in 𝑑𝑖𝑎𝑔 𝐋 . The 

diagonal elements of  𝜎𝐛.þÿ!"{{
0 for SNP j are then: 

𝜎𝐛.þÿ!"{{
0 = 𝑁 + 𝜆 Y0𝑑𝑖𝑎𝑔 𝐖�𝐖 𝐖�𝐖 +𝑁𝜆	 𝑁 + 𝜆 Y0 𝜎î0  [36]  

The diagonal elements of 𝑑𝑖𝑎𝑔 𝐖�𝐖 𝐖�𝐖  can be approximated as 

𝑑𝑖𝑎𝑔 𝐖�𝐖 𝐖�𝐖 ≈ 𝑁0 1 + 𝔼 𝑟0 𝑀 = 𝑁0 1 +𝑀 𝑁 , where the expectation of the LD 

correlation of the SNPs, 𝔼 𝑟0 , is 1/N as the SNP markers are unlinked. Eq. [36] can then 

be written as: 

𝜎𝐛.þÿ!"{{
0 = 𝑁0 + 𝑁𝑀 +𝑁𝜆 𝑁 + 𝜆 0 𝜎î0  

                 = 𝜎î0𝑁 (𝑁 + 𝜆) + 𝜎î0𝑁𝑀 (𝑁 + 𝜆)0    [37]  

From Eq. [37] the squared correlation between true SNP effects and SBLUP SNP effects 

can be written as: 

𝑅𝒃,𝐛.þÿ!"
0 = 𝑁 𝑁 +𝑀 + 𝜆 = 𝑁 𝑁 +𝑀 ℎ0      [38] 

This can be contrasted to Eq. [17], which gives the squared correlation between the true 

genetic effects of the SNPs, 𝐛�, and 𝐛ÊËÌÍÎ as:  

𝑅𝐛Î,𝐛þÿ!"Î
0 = HÎ

\

Ú
ÙÎ
\

Ú
= 𝑅�0 ℎ�0 = 1 1 +𝑀 1 − 𝑅�0 𝑁�ℎ�0    

                      = 𝑁� 𝑁� +𝑀 1 − 𝑅�0 ℎ�0      [39] 
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Eq. [39] is similar to Eq. [38] apart from the factor 1 − 𝑅�0. Therefore, the relative loss of 

prediction accuracy from using an SBLUP predictor is given as a ratio of Eq. [39] and Eq. 

[38] as: 
H𝒃,𝐛.þÿ!"
\

H𝐛Î,𝐛þÿ!"Î
\ = 5Ù\SÚ

5Ù\SÚ AYHÎ
\            [40] 

For a phenotype of SNP-heritability 0.5, with effective number of independent markers 

(independent genomic segments), Meff, of ~60,000 and sample size, N, of 500,000,  

𝑅𝒃,𝐛.þÿ!"
0 from summary statistics in an independent reference sample will be 91% of the 

value of 𝑅𝐛Î,𝐛þÿ!"Î
0 if individual-level data were available. Likewise for a two-trait example 

where both traits have ℎ0 = 0.5 and N = 500,000, the accuracy of the multi-trait SBLUP 

predictor will also be 91% of the accuracy of the multi-trait BLUP predictor. 

It should be noted that here we assume L to be a diagonal matrix, which will lead to a 

conservative estimate of the accuracy of SBLUP relative to the accuracy of BLUP, and that 

this estimate is in fact equivalent to the expected accuracy of a polygenic risk predictor 

based on marginal OLS effects[4]. In practice, approximating L through an external 

reference data set leads to SBLUP predictors which are more accurate than predictors 

based on marginal OLS effects, but less accurate than predictors based on BLUP effects. 

 

 

Simulation study 

To compare the accuracy of single-trait and multi-trait genetic predictors created from SNP 

effects obtained from both individual-level and summary statistic data, we conducted a 

simulation study based on real genotypes from the Kaiser Permanente study (Genetic 

Epidemiology Research on Adult Health and Aging: GERA cohort) and simulated 

phenotypes.  

 

From the GERA cohort, we selected 50,000 individuals of European ancestry (for definitions 

of European individuals and quality control of the genotypic data see [215]). SNP genotype 

data was imputed to a 1000 genomes reference panel, using quality control (QC) procedures 

on the initial datasets of per-SNP missing data rate of < 0.01, minor allele frequency > 0.01, 

per-person missing data rate < 0.01, and Hardy-Weinberg disequilibrium p-value < 1x10-6. 

Imputation was performed in two stages. First, the target data was haplotyped using HAPI-
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UR. Second, Impute2 was used to impute the haplotypes to the 1000 genomes reference 

panel (release 1, version 3). We then extracted best-guess genotypes at common SNPs 

typed in the HapMap 3 European sample with imputation info score > 0.5, missing data rate 

of < 0.01, minor allele frequency > 0.01, per-person missing data rate < 0.01, and Hardy-

Weinberg disequilibrium p-value < 1x10-6.  We conducted principal component analysis and 

removed individuals with principal eigenvector values that were > 7 SD from the mean. 

Finally, we removed one of any pair of individuals with estimated relatedness in a genetic 

relatedness matrix greater than a threshold of 0.05.  

 

The Atherosclerosis Risk in Communities study (ARIC data) was used as an independent 

LD reference when estimating SBLUP SNP effects of Eq. [11]. 8744 European individuals 

were selected and the data was imputed and QC conducted in the same way as described 

above for the GERA cohort. We then reduced the SNPs used in both the GERA and ARIC 

cohorts to overlapping HapMap3 SNPs, which gave 557,034 SNPs that were used in the 

simulation study. 

 

We then randomly assigned 20,000, 20,000 and 10,000 individuals from the GERA cohort 

to create three datasets: training set one, training set two, and a testing set.  We simulated 

two genetically correlated traits by randomly selecting 2000 causal SNPs Effect sizes for the 

causal markers were simulated from a bivariate normal distribution with mean 0, variances 

of Ù�
\

Ú
 and Ù\

\

Ú
 and covariance of 𝑟1 ℎA0ℎ00. These effect sizes were then multiplied with the 

standardized genotype dosages (mean 0 and variance 1) to create a genetic value for each 

individual. Normally distributed environmental effects 𝑒	~	𝑁(0, 1 − ℎ0) were added to this 

genetic value for each individual to create phenotypes with mean 0 and variance of 1. To 

remove any effects of population stratification, the simulated phenotypes were then 

regressed against the first 20 genetic principal components, and the residuals from this 

regression were used in all subsequent analyses.  

 

In training set 1, we simulated trait 1 and we then estimated: (i) OLS SNP effects using Eq. 

[5] 𝐛äËÕ , (ii) BLUP SNP effects from the individual-level data using Eq. [8] 𝐛ÊËÌÍ , and 

(iii) approximate SBLUP effects using the OLS SNP effects from Eq. [5] and the ARIC data 

as a reference 𝐛ÕÊËÌÍ . In training set 2, we simulated trait 2 and estimated 𝐛äËÕ, 𝐛ÊËÌÍ, 

and 𝐛ÕÊËÌÍ in the same manner. We then estimated multi-trait BLUP SNP effects using Eq. 
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[9] 𝐛ÑÒYÊËÌÍ  from individual-level data by combining trait 1 from training set 1 and trait 2 

from training set 2.  

 

In the testing set, we then used the estimated SNP effects from the training sets to produce 

genetic predictors for both traits. Single trait genetic predictors were created for both 

simulated traits from (i) the OLS SNP effects 𝐠äËÕ , (ii) the BLUP SNP effects 𝐠ÊËÌÍ , and 

(iii) the SBLUP SNP effects 𝐠ÕÊËÌÍ . We then created multi-trait predictors where trait 1 

was the focal trait from: (i) individual-level multi-trait BLUP predictor 𝐠ÑÒYÊËÌÍ , (ii) weighted 

multi-trait SBLUP predictor 𝐠ÐÑÒYÕÊËÌÍ , (iii) a weighted multi-trait BLUP predictor based 

individual-level single-trait BLUP estimates 𝐠ÐÑÒYÊËÌÍ , and (iv) a weighted multi-trait 

GWAS predictor based on GWAS OLS estimates 𝐠ÐÑÒYäËÕ . We simulated phenotypic 

values for both traits using the same effect sizes as those used to generate the phenotypes 

in the training sets, and normally distributed environmental effects sampled independently 

for each trait as 𝑒	~	𝑁(0, 1 − ℎ0). 

 

We created two simulation scenarios. Heritability of the first and second trait, and genetic 

correlations were ℎA0 = 0.2, ℎ00 = 0.8, and 𝑟1 = 0.8, respectively in the first scenario and were 

ℎA0 = 0.5, ℎ00 = 0.5, and 𝑟1 = 0.5 respectively in the second scenario. In each setup 6 replicates 

were conducted, each with a different set of randomly selected causal markers. We then 

repeated all analyses on a permuted data set, where the values of the genotype matrix were 

permuted across all individuals, for each SNP. This creates a genotype matrix where the 

allele frequency distribution remains the same, but all LD structure is removed, allowing us 

to determine the degree to which differences between the simulations results are driven by 

the LD structure in the real genotype data. Finally, because prediction accuracy is expected 

to be reduced by the error introduced by using an external LD reference data set and a 

restricted LD window when implementing Eq. [8] (see above), we examined how changing 

the LD reference, and restricting the LD window size, influences to optimal value of 

shrinkage parameter 𝜆, when implementing Eq. [8], (see Figure 33). 

 

Application to PGC schizophrenia and bipolar disorder 

We then applied our approach to the schizophrenia (SCZ) and bipolar disorder (BIP) 

samples from both wave 1 and wave 2 data of the Psychiatric Genomics Consortium (PGC1 
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and PGC2). A description of the data collection and imputation of the SNP genotype data 

can be found elsewhere [10,58,216].  

 

We selected these two disorders because there is a high genetic correlation between them 

(estimate for rG between schizophrenia and bipolar disorder using ldsc: 0.72, SE: 0.03; 

estimated using meta-analysis of all PGC2 schizophrenia and bipolar cohorts, excluding 

cohorts which were used as test set in the initial PGC1 analysis) and it enabled us to draw 

a direct comparison between the approach described here and a previous study which 

estimated multi-trait BLUP SNP effects 𝐛ÑÒYÊËÌÍ  from individual-level data in an approach 

equivalent to Eq. [9]. The previous study used PGC1 data in the training set and selected 4 

cohorts for schizophrenia and 3 cohorts for bipolar disorder as test sets. For schizophrenia, 

the training set comprised 17 cohorts (8826 cases, 6106 controls) and for bipolar disorder 

the training set comprised 11 cohorts (5867 cases, 3328 controls). The test set of 4 cohorts 

for schizophrenia contained 4068 cases and 5471 controls, and the test set of 3 cohorts for 

bipolar disorder contained 2029 cases and 5338 controls. The analyses on the PGC1 data 

were performed on 745,705 HapMap3 SNPs in common across all datasets. To have a 

direct comparison to our previous study, we began by re-analysing the same PGC1 training 

set data to estimate: (i) OLS SNP effects using Eq. [5] 𝐛äËÕ , (ii) BLUP SNP effects from 

the individual-level data using Eq. [8] 𝐛ÊËÌÍ , and (iii) approximate SBLUP effects using the 

OLS SNP effects from Eq. [5] and the ARIC data as a reference 𝐛ÕÊËÌÍ  using Eq. [11]. For 

the estimation of schizophrenia SBLUP effects, 𝜆 was set to 1,100,000, corresponding 

roughly to 1,000,000 markers and an observed scale SNP-heritability estimate of 0.47 and 

for the estimation of bipolar disorder SBLUP effects, lambda was set to 1,200,000, 

corresponding roughly to 1,000,000 markers and an observed scale SNP-heritability 

estimate of 0.45. For the four SCZ testing cohorts and the three BIP testing cohorts used in 

the previous study, we created: (i) weighted multi-trait SBLUP predictors 𝐠ÐÑÒYÕÊËÌÍ , (ii) 
weighted multi-trait BLUP predictor based individual-level single-trait BLUP estimates 

𝐠ÐÑÒYÊËÌÍ , and (iii) weighted multi-trait GWAS predictor based on GWAS OLS estimates 

𝐠ÐÑÒYäËÕ . We then compared the prediction accuracy we obtained using the weighted 

multi-trait SBLUP predictors to the individual-level multi-trait BLUP predictor 𝐠ÑÒYÊËÌÍ  

used in the previous study [66]. 

 

We then extended our analysis to the PGC2 dataset. There were 36 cohorts for 

schizophrenia (26412 cases and 32440 controls in total) and 23 cohorts for bipolar disorder 
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(18865 cases and 30460 controls in total) available to us. The number of SNPs used in the 

PGC2 analyses varied between cohorts. Summary statistics for each of the PGC2 cohorts 

was available to an imputed SNP set of more than 10,000,000 SNPs. After intersecting this 

set of SNPs with the HapMap3 SNPs and the ARIC SNPs, 932,344 SNPs remained which 

were used to create predictors.  

 

We applied a cross-validation approach as we observed that prediction accuracy as well as 

accuracy differences between predictors can be highly dependent on the choice of the test 

set in the extended PGC2 dataset (Figure 35 and Figure 36), which is supported by 

previous results showing highly variable prediction accuracy across cohorts in the PGC2 

dataset [58]. A cross-validation approach allowed us to get a more robust estimate of the 

increase of prediction accuracy achieved by our multi-trait prediction method compared to a 

single trait predictor. We employed a leave-1-out-cross-validation approach, where for each 

test set cohort, all cohorts of the same disease without any highly related individuals were 

chosen to be in the training set for the single-trait predictor, and all cohorts of both diseases 

without any highly related individuals were chosen to be in the training set for the multi-trait 

predictor. To identify pairs of cohorts with highly related individuals, genetic relatedness for 

all pairs of individuals (across all pairs of cohorts) was calculated based on chromosome 22, 

and whenever at least one pair of individuals had relatedness greater than 0.8, that pair of 

cohorts was not simultaneously used in the training set and the test set. 

 

The full genotypes from the PGC2 cohorts that were used as test sets underwent stringent 

quality control and only comprised 458,744 to 860,576 SNPs for schizophrenia and 556,278 

to 859,034 SNPs for bipolar disorder. We refrained from using the intersection between all 

these cohorts to not reduce the number of SNPs used in prediction by too much. This meant 

that different iterations in the cross-validations were based on predictions using a different 

number of SNPs. However, each comparison between a single trait predictor and a multi-

trait predictor is based on the same number of SNPs. 

 

In each iteration of the cross-validation, a different cohort acts as the test set and a different 

set of cohorts comprises the training set. To create a predictor from a particular set of 

cohorts, we first had to obtain effect size estimates from this particular set of cohorts. This 

is achieved by performing a meta-analysis of the summary statistics of the cohorts that 

comprise the training set. The meta-analysed beta values 𝑏Ú3Å4 are calculated as: 
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𝑏Ú3Å4 =
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_

�
67_\
_

         [41] 

where 𝑏O is the effect size in cohort s and 𝑆𝐸O is the standard error in cohort s. Conversion 

between beta values and odds ratios (OR) simply follows the equality 𝑏 = log	(𝑂𝑅). The 

weights derived for each trait make assumptions about the variance of SNP effects. We 

found that in the summary statistics we used, the observed variance across SNP effects 

often departed from the expected value. To correct for that, we scaled the SNP effect 

estimates for each trait to have a variance of one and multiplied the weights for the unscaled 

SNP effects by the expected standard deviation across all SNPs.  

 

We created approximate SBLUP effects 𝐛ÕÊËÌÍ  using the OLS SNP effects from Eq. [5] 

and the ARIC data as an LD reference using Eq. [11] and set the shrinkage parameter, 𝜆, 

to 1,300,000 for schizophrenia and to 2,000,000 for bipolar disorder, corresponding to 

observed scale SNP-heritability estimates of 0.43 and 0.33 for schizophrenia and bipolar 

disorder, respectively. We then used the PLINK “--score” function to turn SNP effects 

𝐛ÕÊËÌÍ, 𝐛9:÷Õ  into individual predictors 𝐠ÕÊËÌÍ, 𝐠9:÷Õ  for each meta-analysed 

schizophrenia or bipolar disorder cross-validation set. For the multi-trait weighting, we 

estimated the heritability of schizophrenia and bipolar disorder and their genetic correlation 

using LD score regression from publicly available PGC2 schizophrenia summary statistics 

and the PGC1 bipolar disorder summary statistics. These estimates were then used to 

calculate the index weights of Eq. [15] for the weighted multi-trait SBLUP predictors 

𝐠ÐÑÒYÕÊËÌÍ, 𝐠ÐÑÒY9:÷Õ  of SCZ and BIP, and these were not altered between different 

cross-validation sets. 

 

To test the degree to which the choice of weights affects the accuracy of the multi-trait 

predictor, we compared the accuracy of multi-trait predictors based on a spectrum of other 

weights (Figure 35 and Figure 36). For this, we took advantage of two things: First, when 

individual predictors 𝐠ÕÊËÌÍ, 𝐠9:÷Õ  are weighted rather than SNP effects 𝐛ÕÊËÌÍ, 𝐛9:÷Õ , 

the conversion from SNP effects to individual effects does not have to be repeated for 

different weights. Second, the scaling of a predictor does not influence its accuracy in terms 

of correlation between prediction and outcome. Therefore, rather than testing each 

combination of weights of schizophrenia and bipolar disorder, it is sufficient to vary the 

relative weight of schizophrenia to bipolar disorder to explore the whole range of possible 
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multi-trait predictors for these two traits. For each test cohort, this enabled us to test whether 

the weights of our multi-trait predictor derived from theory deviate from the weights that 

would result in the highest prediction accuracy for that dataset. 

 

Application to wide range of phenotypes in the UK Biobank study 

We applied our approach to a large range of phenotypes for which GWAS summary 

statistics are publicly available. We started with GWAS summary statistics for 46 

phenotypes. However, in some circumstance the same studies (i.e., based on the same 

individuals) had generated summary statistics for multiple similar phenotypes, so we chose 

only one phenotype per study, which left us with 34 phenotypes. For example, out of 

“Cigarettes per day” and “Smoking Ever” we only selected the latter to have only one trait 

for smoking. We used 112,338 unrelated individuals of European descent in the UK biobank 

data as the testing set. We paired 6 phenotypes out of the 34 summary statistic phenotypes 

to phenotypes in the UK Biobank: Height, BMI, fluid intelligence score, depression, angina 

and diabetes. The first three are quantitative traits and the latter three are disease traits for 

which we could identify at least 1000 cases in the UK Biobank data. For details see Table 
15. 

 

For the disease traits, we used the self-reported diagnoses rather than ICD10 diagnoses, 

as they tend to have larger sample sizes. For depression, we used a more refined definition 

of cases and controls, where individuals were not counted as cases if they had any history 

of psychiatric symptoms or diagnoses other than depression, or if they were prescribed 

drugs that are indicative of such diagnoses. Individuals were selected as controls only when 

there was an absence of any psychiatric symptoms or diagnoses, and only when they were 

not prescribed any drugs that could be indicative of such diagnoses. All 6 traits in the UK 

Biobank were corrected for age, sex and the first 10 principal components by regressing the 

phenotype on these covariates and using the residuals from that regression for further 

analysis.  For each trait, the SNPs that went into the analysis were based on the overlap 

between the GWAS summary statistics, the HapMap3 SNPs, the GERA data set, which was 

used as an LD reference in the SBLUP analysis, and the imputed SNPs from the UK 

Biobank. (For details on the QC process and imputation, see URLs). Depending on the trait, 

the total number of SNPs ranged from around 660,000 to around 930,000. 
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We created single-trait 𝐠ÕÊËÌÍ  as well as multi-trait 𝐠ÐÑÒYÕÊËÌÍ  predictors for the 6 paired 

phenotypes. To create SBLUP SNP effects 𝐛ÕÊËÌÍ  from summary statistic trait we used a 

𝜆 value of 𝑀(1 − ℎ356Î
0 )/ℎ356Î

0  for each trait k, where M is assumed to be 1,000,000. As LD 

reference set we used a random subset of 10,000 people of European descent from the 

GERA dataset, and we set the LD window size to 2,000 kb. We then used the PLINK “--

score” function to turn SNP effects 𝐛ÕÊËÌÍ  into individual predictors 𝐠ÕÊËÌÍ  for each trait. 

For the multi-trait weighting, we used LD score regression to calculate SNP-heritability and 

genetic correlation between all pairs of cohorts. For dichotomous disease traits SNP-

heritability was calculated on the observed scale. For each phenotype for which a multi-trait 

predictor was created, we selected all phenotypes which had a genetic correlation estimate 

significantly different from 0 at p = 0.05 with the focal trait, as well as the focal trait itself. The 

summary statistics based single-trait SBLUP predictors of the selected phenotypes were 

then combined into multi-trait SBLUP (𝐠ÐÑÒYÕÊËÌÍ) predictors. The weights for each 

phenotype were calculated according to Equation [15]. These weights require the single-

trait predictors to have exactly the right variance. Since the summary statistics data slightly 

diverged from this expectation, we scaled each single-trait SBLUP predictor to have mean 

0 and variance 1 and then multiplied it with its expected standard deviation, to ensure 

everything is on exactly the correct scale. 

 

We compared the performance of the multi-trait predictors (𝐠ÐÑÒYÕÊËÌÍ) not only to the 

performance of the single-trait predictor 𝐠ÕÊËÌÍ  for the same trait, but also to the 

performance of all other (cross-trait) single-trait predictors for the traits that exhibited 

significant rG with the focal trait (Figure 39). This is appropriate because in some traits the 

single-trait predictor from the same trait is not the most accurate single-trait predictor. 
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Code availability 

Code is available from https://github.com/uqrmaie1/smtpred. 
 

Data availability 

PGC summary statistics data is available from http://www.med.unc.edu/pgc/results-and-

downloads. 

For UK Biobank data, see https://www.ukbiobank.ac.uk/. 

 

URLs 

GCTA, http://cnsgenomics.com/software/gcta/ 

LDSC, https://github.com/bulik/ldsc 

MTG2, https://sites.google.com/site/honglee0707/mtg/ 

LDpred, https://github.com/bvilhjal/ldpred/ 

UK Biobank, http://www.ukbiobank.ac.uk/ 

PLINK2, http://www.cog-genomics.org/plink2 
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Table 17: LDSC rG estimates 
Shaded lines highlight pairs with p < 0.05 

Trait	1	 Trait	2	 rg	 SE	 p	

ADHD	 Agreeableness	 -1.02	 1.09	 0.35	

ADHD	 Alzheimers	 -0.15	 0.24	 0.52	

ADHD	 Autism	 -0.22	 0.16	 0.17	

ADHD	 Bipolar	 0.21	 0.14	 0.13	

ADHD	 Birth	Length	 -0.19	 0.25	 0.45	

ADHD	 Birth	Weight	 0.10	 0.21	 0.65	

ADHD	 BMI	 0.31	 0.12	 0.01	

ADHD	 CAD	 0.33	 0.12	 0.00	

ADHD	 Childhood	Obesity	 0.00	 0.13	 1.00	

ADHD	 Conscientiousness	 -0.44	 0.40	 0.27	

ADHD	 Crohns	 0.12	 0.11	 0.28	

ADHD	 Depression	 0.06	 0.19	 0.76	

ADHD	 Diabetes	 0.20	 0.17	 0.25	

ADHD	 Education	 -0.31	 0.14	 0.02	

ADHD	 Extraversion	 -0.43	 0.67	 0.51	

ADHD	 Glucose	 -0.06	 0.15	 0.69	

ADHD	 Head	Circumference	 -0.59	 0.31	 0.06	

ADHD	 Height	 -0.02	 0.08	 0.81	

ADHD	

Inflammatory	Bowel	

Disease	 0.17	 0.11	 0.14	

ADHD	 Insulin	 -0.05	 0.19	 0.77	

ADHD	 IQ	 -0.12	 0.23	 0.61	

ADHD	 MND	 0.12	 0.30	 0.68	

ADHD	 Neuroticism	 0.01	 0.21	 0.97	

ADHD	 Openness	 -0.44	 0.38	 0.25	

ADHD	 Osteoporosis	 0.23	 0.14	 0.11	

ADHD	 Pubertal	Growth	 -0.07	 0.15	 0.61	

ADHD	 Rheumatoid	Arthritis	 0.02	 0.12	 0.88	
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ADHD	 Schizophrenia	 0.11	 0.09	 0.23	

ADHD	 Smoking	 0.27	 0.15	 0.06	

ADHD	 Tanner	 0.56	 0.39	 0.16	

ADHD	 Triglycerides	 0.10	 0.09	 0.27	

ADHD	 Ulcerative	Colitis	 0.22	 0.13	 0.10	

ADHD	 Waist	Hip	Ratio	 0.32	 0.13	 0.02	

Agreeableness	 Alzheimers	 0.82	 0.74	 0.26	

Agreeableness	 Autism	 -0.09	 0.31	 0.76	

Agreeableness	 Bipolar	 -0.14	 0.33	 0.67	

Agreeableness	 Birth	Length	 0.10	 0.36	 0.77	

Agreeableness	 Birth	Weight	 -0.31	 0.47	 0.51	

Agreeableness	 BMI	 -0.27	 0.23	 0.23	

Agreeableness	 CAD	 -0.46	 0.38	 0.23	

Agreeableness	 Childhood	Obesity	 0.42	 0.43	 0.32	

Agreeableness	 Conscientiousness	 0.53	 0.58	 0.36	

Agreeableness	 Crohns	 -0.45	 0.39	 0.25	

Agreeableness	 Depression	 -0.74	 0.75	 0.32	

Agreeableness	 Diabetes	 -0.48	 0.45	 0.28	

Agreeableness	 Education	 0.58	 0.38	 0.12	

Agreeableness	 Extraversion	 1.19	 1.15	 0.30	

Agreeableness	 Glucose	 -0.14	 0.29	 0.64	

Agreeableness	 Head	Circumference	 0.16	 0.47	 0.73	

Agreeableness	 Height	 0.00	 0.14	 0.97	

Agreeableness	

Inflammatory	Bowel	

Disease	 -0.05	 0.24	 0.84	

Agreeableness	 Insulin	 -0.33	 0.45	 0.47	

Agreeableness	 IQ	 0.54	 0.84	 0.52	

Agreeableness	 MND	 -0.45	 0.55	 0.42	

Agreeableness	 Neuroticism	 -1.38	 1.18	 0.24	

Agreeableness	 Openness	 1.15	 1.01	 0.25	

Agreeableness	 Osteoporosis	 -0.19	 0.39	 0.62	
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Agreeableness	 Pubertal	Growth	 -0.14	 0.32	 0.67	

Agreeableness	 Rheumatoid	Arthritis	 -0.40	 0.40	 0.32	

Agreeableness	 Schizophrenia	 -0.41	 0.35	 0.25	

Agreeableness	 Smoking	 -0.18	 0.32	 0.56	

Agreeableness	 Tanner	 -0.60	 0.59	 0.31	

Agreeableness	 Triglycerides	 -0.02	 0.14	 0.91	

Agreeableness	 Ulcerative	Colitis	 0.25	 0.36	 0.49	

Agreeableness	 Waist	Hip	Ratio	 -0.25	 0.24	 0.31	

Alzheimers	 Autism	 -0.01	 0.12	 0.91	

Alzheimers	 Bipolar	 0.05	 0.10	 0.64	

Alzheimers	 Birth	Length	 -0.11	 0.13	 0.37	

Alzheimers	 Birth	Weight	 -0.05	 0.13	 0.70	

Alzheimers	 BMI	 -0.02	 0.06	 0.70	

Alzheimers	 CAD	 -0.03	 0.08	 0.69	

Alzheimers	 Childhood	Obesity	 -0.12	 0.10	 0.24	

Alzheimers	 Conscientiousness	 0.02	 0.17	 0.92	

Alzheimers	 Crohns	 -0.09	 0.09	 0.33	

Alzheimers	 Depression	 0.18	 0.16	 0.25	

Alzheimers	 Diabetes	 0.01	 0.12	 0.94	

Alzheimers	 Education	 -0.37	 0.11	 0.00	

Alzheimers	 Extraversion	 -0.07	 0.31	 0.82	

Alzheimers	 Glucose	 0.21	 0.11	 0.05	

Alzheimers	 Head	Circumference	 -0.27	 0.17	 0.12	

Alzheimers	 Height	 -0.11	 0.05	 0.04	

Alzheimers	

Inflammatory	Bowel	

Disease	 -0.11	 0.09	 0.23	

Alzheimers	 Insulin	 -0.20	 0.13	 0.12	

Alzheimers	 IQ	 -0.36	 0.12	 0.00	

Alzheimers	 MND	 0.16	 0.21	 0.45	

Alzheimers	 Neuroticism	 0.11	 0.17	 0.50	

Alzheimers	 Openness	 -0.08	 0.16	 0.63	
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Alzheimers	 Osteoporosis	 -0.18	 0.10	 0.07	

Alzheimers	 Pubertal	Growth	 -0.32	 0.12	 0.01	

Alzheimers	 Rheumatoid	Arthritis	 -0.05	 0.11	 0.64	

Alzheimers	 Schizophrenia	 0.06	 0.06	 0.35	

Alzheimers	 Smoking	 0.01	 0.10	 0.90	

Alzheimers	 Tanner	 -0.02	 0.19	 0.90	

Alzheimers	 Triglycerides	 -0.04	 0.06	 0.58	

Alzheimers	 Ulcerative	Colitis	 -0.15	 0.11	 0.15	

Alzheimers	 Waist	Hip	Ratio	 0.01	 0.07	 0.86	

Autism	 Bipolar	 0.05	 0.08	 0.55	

Autism	 Birth	Length	 0.19	 0.11	 0.09	

Autism	 Birth	Weight	 0.08	 0.10	 0.42	

Autism	 BMI	 0.01	 0.04	 0.82	

Autism	 CAD	 -0.05	 0.05	 0.32	

Autism	 Childhood	Obesity	 -0.06	 0.08	 0.44	

Autism	 Conscientiousness	 -0.24	 0.17	 0.16	

Autism	 Crohns	 -0.04	 0.06	 0.47	

Autism	 Depression	 0.15	 0.11	 0.20	

Autism	 Diabetes	 -0.01	 0.09	 0.96	

Autism	 Education	 0.31	 0.05	 0.00	

Autism	 Extraversion	 -0.39	 0.33	 0.24	

Autism	 Glucose	 -0.17	 0.08	 0.02	

Autism	 Head	Circumference	 0.07	 0.12	 0.53	

Autism	 Height	 -0.07	 0.04	 0.06	

Autism	

Inflammatory	Bowel	

Disease	 -0.02	 0.05	 0.64	

Autism	 Insulin	 0.08	 0.10	 0.42	

Autism	 IQ	 0.43	 0.12	 0.00	

Autism	 MND	 -0.16	 0.18	 0.35	

Autism	 Neuroticism	 0.02	 0.13	 0.85	

Autism	 Openness	 0.48	 0.16	 0.00	
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Autism	 Osteoporosis	 0.03	 0.07	 0.65	

Autism	 Pubertal	Growth	 -0.08	 0.08	 0.30	

Autism	 Rheumatoid	Arthritis	 -0.10	 0.09	 0.23	

Autism	 Schizophrenia	 0.20	 0.05	 0.00	

Autism	 Smoking	 0.08	 0.08	 0.31	

Autism	 Tanner	 0.09	 0.17	 0.58	

Autism	 Triglycerides	 0.05	 0.05	 0.28	

Autism	 Ulcerative	Colitis	 0.01	 0.07	 0.92	

Autism	 Waist	Hip	Ratio	 0.08	 0.06	 0.15	

Bipolar	 Birth	Length	 0.00	 0.08	 0.97	

Bipolar	 Birth	Weight	 0.01	 0.09	 0.94	

Bipolar	 BMI	 -0.02	 0.04	 0.49	

Bipolar	 CAD	 0.07	 0.04	 0.09	

Bipolar	 Childhood	Obesity	 -0.04	 0.06	 0.49	

Bipolar	 Conscientiousness	 -0.33	 0.15	 0.03	

Bipolar	 Crohns	 0.20	 0.05	 0.00	

Bipolar	 Depression	 0.53	 0.09	 0.00	

Bipolar	 Diabetes	 0.04	 0.06	 0.53	

Bipolar	 Education	 0.23	 0.04	 0.00	

Bipolar	 Extraversion	 -0.07	 0.23	 0.77	

Bipolar	 Glucose	 0.04	 0.07	 0.53	

Bipolar	 Head	Circumference	 0.06	 0.10	 0.58	

Bipolar	 Height	 -0.01	 0.03	 0.65	

Bipolar	

Inflammatory	Bowel	

Disease	 0.18	 0.05	 0.00	

Bipolar	 Insulin	 0.00	 0.08	 0.99	

Bipolar	 IQ	 0.07	 0.08	 0.37	

Bipolar	 MND	 0.13	 0.11	 0.26	

Bipolar	 Neuroticism	 0.08	 0.10	 0.40	

Bipolar	 Openness	 0.08	 0.11	 0.48	

Bipolar	 Osteoporosis	 -0.05	 0.06	 0.42	
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Bipolar	 Pubertal	Growth	 -0.08	 0.08	 0.29	

Bipolar	 Rheumatoid	Arthritis	 -0.06	 0.07	 0.40	

Bipolar	 Schizophrenia	 0.81	 0.04	 0.00	

Bipolar	 Smoking	 0.07	 0.06	 0.25	

Bipolar	 Tanner	 0.18	 0.13	 0.18	

Bipolar	 Triglycerides	 0.00	 0.04	 0.93	

Bipolar	 Ulcerative	Colitis	 0.15	 0.06	 0.01	

Bipolar	 Waist	Hip	Ratio	 0.00	 0.05	 0.98	

Birth	Length	 Birth	Weight	 0.69	 0.08	 0.00	

Birth	Length	 BMI	 0.04	 0.04	 0.35	

Birth	Length	 CAD	 -0.21	 0.06	 0.00	

Birth	Length	 Childhood	Obesity	 0.03	 0.09	 0.71	

Birth	Length	 Conscientiousness	 -0.03	 0.17	 0.86	

Birth	Length	 Crohns	 0.00	 0.07	 0.96	

Birth	Length	 Depression	 -0.10	 0.12	 0.39	

Birth	Length	 Diabetes	 -0.24	 0.10	 0.02	

Birth	Length	 Education	 0.14	 0.06	 0.02	

Birth	Length	 Extraversion	 0.22	 0.24	 0.37	

Birth	Length	 Glucose	 -0.12	 0.08	 0.14	

Birth	Length	 Head	Circumference	 0.55	 0.13	 0.00	

Birth	Length	 Height	 0.51	 0.05	 0.00	

Birth	Length	

Inflammatory	Bowel	

Disease	 0.10	 0.07	 0.16	

Birth	Length	 Insulin	 0.04	 0.11	 0.71	

Birth	Length	 IQ	 -0.01	 0.10	 0.93	

Birth	Length	 MND	 0.02	 0.14	 0.87	

Birth	Length	 Neuroticism	 0.06	 0.14	 0.68	

Birth	Length	 Openness	 -0.10	 0.14	 0.49	

Birth	Length	 Osteoporosis	 0.02	 0.08	 0.76	

Birth	Length	 Pubertal	Growth	 0.49	 0.08	 0.00	

Birth	Length	 Rheumatoid	Arthritis	 -0.09	 0.08	 0.29	
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Birth	Length	 Schizophrenia	 0.01	 0.05	 0.92	

Birth	Length	 Smoking	 -0.10	 0.09	 0.26	

Birth	Length	 Tanner	 -0.37	 0.17	 0.03	

Birth	Length	 Triglycerides	 -0.06	 0.05	 0.18	

Birth	Length	 Ulcerative	Colitis	 0.19	 0.09	 0.03	

Birth	Length	 Waist	Hip	Ratio	 -0.06	 0.06	 0.25	

Birth	Weight	 BMI	 0.11	 0.04	 0.01	

Birth	Weight	 CAD	 -0.14	 0.06	 0.02	

Birth	Weight	 Childhood	Obesity	 0.11	 0.08	 0.16	

Birth	Weight	 Conscientiousness	 -0.10	 0.16	 0.53	

Birth	Weight	 Crohns	 0.09	 0.08	 0.27	

Birth	Weight	 Depression	 -0.04	 0.12	 0.75	

Birth	Weight	 Diabetes	 -0.35	 0.10	 0.00	

Birth	Weight	 Education	 0.11	 0.05	 0.04	

Birth	Weight	 Extraversion	 -0.13	 0.34	 0.71	

Birth	Weight	 Glucose	 -0.20	 0.09	 0.03	

Birth	Weight	 Head	Circumference	 0.42	 0.14	 0.00	

Birth	Weight	 Height	 0.43	 0.05	 0.00	

Birth	Weight	

Inflammatory	Bowel	

Disease	 0.05	 0.08	 0.51	

Birth	Weight	 Insulin	 -0.19	 0.13	 0.13	

Birth	Weight	 IQ	 0.13	 0.13	 0.31	

Birth	Weight	 MND	 0.25	 0.16	 0.12	

Birth	Weight	 Neuroticism	 -0.02	 0.14	 0.90	

Birth	Weight	 Openness	 0.07	 0.15	 0.63	

Birth	Weight	 Osteoporosis	 0.09	 0.08	 0.25	

Birth	Weight	 Pubertal	Growth	 0.29	 0.09	 0.00	

Birth	Weight	 Rheumatoid	Arthritis	 -0.09	 0.09	 0.33	

Birth	Weight	 Schizophrenia	 0.03	 0.06	 0.56	

Birth	Weight	 Smoking	 -0.06	 0.09	 0.53	

Birth	Weight	 Tanner	 0.08	 0.20	 0.68	
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Birth	Weight	 Triglycerides	 -0.11	 0.05	 0.03	

Birth	Weight	 Ulcerative	Colitis	 -0.01	 0.09	 0.93	

Birth	Weight	 Waist	Hip	Ratio	 -0.19	 0.07	 0.01	

BMI	 CAD	 0.21	 0.03	 0.00	

BMI	 Childhood	Obesity	 0.77	 0.04	 0.00	

BMI	 Conscientiousness	 0.04	 0.07	 0.55	

BMI	 Crohns	 0.02	 0.03	 0.55	

BMI	 Depression	 -0.07	 0.05	 0.19	

BMI	 Diabetes	 0.34	 0.05	 0.00	

BMI	 Education	 -0.28	 0.02	 0.00	

BMI	 Extraversion	 0.17	 0.14	 0.23	

BMI	 Glucose	 0.26	 0.05	 0.00	

BMI	 Head	Circumference	 0.17	 0.05	 0.00	

BMI	 Height	 -0.06	 0.02	 0.00	

BMI	

Inflammatory	Bowel	

Disease	 -0.04	 0.03	 0.21	

BMI	 Insulin	 0.64	 0.06	 0.00	

BMI	 IQ	 -0.16	 0.05	 0.00	

BMI	 MND	 0.05	 0.07	 0.45	

BMI	 Neuroticism	 0.04	 0.06	 0.54	

BMI	 Openness	 0.04	 0.06	 0.51	

BMI	 Osteoporosis	 -0.06	 0.03	 0.07	

BMI	 Pubertal	Growth	 0.20	 0.04	 0.00	

BMI	 Rheumatoid	Arthritis	 0.00	 0.03	 0.95	

BMI	 Schizophrenia	 -0.09	 0.02	 0.00	

BMI	 Smoking	 0.20	 0.03	 0.00	

BMI	 Tanner	 0.33	 0.10	 0.00	

BMI	 Triglycerides	 0.19	 0.03	 0.00	

BMI	 Ulcerative	Colitis	 -0.09	 0.03	 0.01	

BMI	 Waist	Hip	Ratio	 -0.08	 0.03	 0.01	

CAD	 Childhood	Obesity	 0.18	 0.05	 0.00	



180 

 

CAD	 Conscientiousness	 -0.13	 0.11	 0.20	

CAD	 Crohns	 0.08	 0.04	 0.05	

CAD	 Depression	 0.23	 0.07	 0.00	

CAD	 Diabetes	 0.36	 0.06	 0.00	

CAD	 Education	 -0.30	 0.03	 0.00	

CAD	 Extraversion	 -0.03	 0.17	 0.86	

CAD	 Glucose	 0.12	 0.05	 0.02	

CAD	 Head	Circumference	 -0.06	 0.08	 0.43	

CAD	 Height	 -0.11	 0.02	 0.00	

CAD	

Inflammatory	Bowel	

Disease	 0.07	 0.04	 0.10	

CAD	 Insulin	 0.25	 0.07	 0.00	

CAD	 IQ	 -0.07	 0.07	 0.36	

CAD	 MND	 -0.09	 0.10	 0.39	

CAD	 Neuroticism	 0.15	 0.07	 0.04	

CAD	 Openness	 -0.04	 0.08	 0.59	

CAD	 Osteoporosis	 -0.06	 0.04	 0.17	

CAD	 Pubertal	Growth	 -0.01	 0.05	 0.81	

CAD	 Rheumatoid	Arthritis	 0.04	 0.04	 0.30	

CAD	 Schizophrenia	 0.00	 0.03	 0.96	

CAD	 Smoking	 0.22	 0.05	 0.00	

CAD	 Tanner	 0.39	 0.13	 0.00	

CAD	 Triglycerides	 0.26	 0.04	 0.00	

CAD	 Ulcerative	Colitis	 0.03	 0.05	 0.61	

CAD	 Waist	Hip	Ratio	 0.18	 0.03	 0.00	

Childhood	Obesity	 Conscientiousness	 0.18	 0.15	 0.22	

Childhood	Obesity	 Crohns	 -0.02	 0.06	 0.72	

Childhood	Obesity	 Depression	 -0.10	 0.10	 0.28	

Childhood	Obesity	 Diabetes	 0.24	 0.07	 0.00	

Childhood	Obesity	 Education	 -0.20	 0.04	 0.00	

Childhood	Obesity	 Extraversion	 0.11	 0.21	 0.60	
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Childhood	Obesity	 Glucose	 0.06	 0.07	 0.38	

Childhood	Obesity	 Head	Circumference	 0.31	 0.10	 0.00	

Childhood	Obesity	 Height	 -0.01	 0.04	 0.82	

Childhood	Obesity	

Inflammatory	Bowel	

Disease	 -0.16	 0.05	 0.00	

Childhood	Obesity	 Insulin	 0.29	 0.09	 0.00	

Childhood	Obesity	 IQ	 -0.09	 0.09	 0.29	

Childhood	Obesity	 MND	 -0.03	 0.15	 0.86	

Childhood	Obesity	 Neuroticism	 0.08	 0.11	 0.46	

Childhood	Obesity	 Openness	 0.10	 0.12	 0.40	

Childhood	Obesity	 Osteoporosis	 -0.11	 0.07	 0.09	

Childhood	Obesity	 Pubertal	Growth	 0.30	 0.06	 0.00	

Childhood	Obesity	 Rheumatoid	Arthritis	 0.06	 0.06	 0.35	

Childhood	Obesity	 Schizophrenia	 -0.05	 0.04	 0.18	

Childhood	Obesity	 Smoking	 0.18	 0.07	 0.01	

Childhood	Obesity	 Tanner	 0.51	 0.17	 0.00	

Childhood	Obesity	 Triglycerides	 0.11	 0.04	 0.02	

Childhood	Obesity	 Ulcerative	Colitis	 -0.23	 0.06	 0.00	

Childhood	Obesity	 Waist	Hip	Ratio	 -0.14	 0.04	 0.00	

Conscientiousness	 Crohns	 0.24	 0.12	 0.05	

Conscientiousness	 Depression	 -0.56	 0.20	 0.01	

Conscientiousness	 Diabetes	 0.16	 0.15	 0.28	

Conscientiousness	 Education	 0.06	 0.09	 0.50	

Conscientiousness	 Extraversion	 0.53	 0.41	 0.20	

Conscientiousness	 Glucose	 0.11	 0.14	 0.43	

Conscientiousness	 Head	Circumference	 -0.03	 0.21	 0.89	

Conscientiousness	 Height	 -0.07	 0.07	 0.33	

Conscientiousness	

Inflammatory	Bowel	

Disease	 0.22	 0.11	 0.05	

Conscientiousness	 Insulin	 0.04	 0.17	 0.80	

Conscientiousness	 IQ	 0.14	 0.17	 0.43	
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Conscientiousness	 MND	 0.07	 0.23	 0.78	

Conscientiousness	 Neuroticism	 -0.66	 0.26	 0.01	

Conscientiousness	 Openness	 0.30	 0.24	 0.22	

Conscientiousness	 Osteoporosis	 -0.04	 0.13	 0.74	

Conscientiousness	 Pubertal	Growth	 -0.17	 0.16	 0.30	

Conscientiousness	 Rheumatoid	Arthritis	 -0.23	 0.15	 0.11	

Conscientiousness	 Schizophrenia	 -0.14	 0.09	 0.13	

Conscientiousness	 Smoking	 -0.29	 0.14	 0.04	

Conscientiousness	 Tanner	 -0.31	 0.27	 0.25	

Conscientiousness	 Triglycerides	 -0.01	 0.07	 0.86	

Conscientiousness	 Ulcerative	Colitis	 0.16	 0.14	 0.23	

Conscientiousness	 Waist	Hip	Ratio	 -0.13	 0.09	 0.17	

Crohns	 Depression	 0.04	 0.07	 0.54	

Crohns	 Diabetes	 0.04	 0.06	 0.42	

Crohns	 Education	 -0.06	 0.04	 0.13	

Crohns	 Extraversion	 0.32	 0.24	 0.17	

Crohns	 Glucose	 -0.06	 0.06	 0.27	

Crohns	 Head	Circumference	 0.06	 0.09	 0.51	

Crohns	 Height	 0.05	 0.03	 0.11	

Crohns	

Inflammatory	Bowel	

Disease	 0.95	 0.02	 0.00	

Crohns	 Insulin	 -0.01	 0.07	 0.89	

Crohns	 IQ	 -0.11	 0.10	 0.24	

Crohns	 MND	 0.15	 0.11	 0.19	

Crohns	 Neuroticism	 -0.01	 0.07	 0.92	

Crohns	 Openness	 -0.10	 0.11	 0.35	

Crohns	 Osteoporosis	 0.16	 0.05	 0.00	

Crohns	 Pubertal	Growth	 0.06	 0.06	 0.33	

Crohns	 Rheumatoid	Arthritis	 0.04	 0.07	 0.58	

Crohns	 Schizophrenia	 0.11	 0.03	 0.00	

Crohns	 Smoking	 -0.02	 0.06	 0.68	
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Crohns	 Tanner	 -0.04	 0.11	 0.70	

Crohns	 Triglycerides	 0.05	 0.04	 0.22	

Crohns	 Ulcerative	Colitis	 0.68	 0.06	 0.00	

Crohns	 Waist	Hip	Ratio	 0.00	 0.04	 0.96	

Depression	 Diabetes	 0.06	 0.10	 0.51	

Depression	 Education	 -0.09	 0.07	 0.18	

Depression	 Extraversion	 -0.87	 0.48	 0.07	

Depression	 Glucose	 -0.10	 0.09	 0.24	

Depression	 Head	Circumference	 0.02	 0.14	 0.89	

Depression	 Height	 -0.10	 0.04	 0.01	

Depression	

Inflammatory	Bowel	

Disease	 0.13	 0.08	 0.08	

Depression	 Insulin	 -0.10	 0.12	 0.39	

Depression	 IQ	 -0.04	 0.14	 0.76	

Depression	 MND	 0.19	 0.20	 0.34	

Depression	 Neuroticism	 1.15	 0.19	 0.00	

Depression	 Openness	 0.16	 0.16	 0.30	

Depression	 Osteoporosis	 0.15	 0.09	 0.09	

Depression	 Pubertal	Growth	 -0.36	 0.11	 0.00	

Depression	 Rheumatoid	Arthritis	 0.04	 0.08	 0.65	

Depression	 Schizophrenia	 0.51	 0.06	 0.00	

Depression	 Smoking	 0.23	 0.10	 0.02	

Depression	 Tanner	 -0.05	 0.20	 0.80	

Depression	 Triglycerides	 0.09	 0.05	 0.09	

Depression	 Ulcerative	Colitis	 0.21	 0.10	 0.03	

Depression	 Waist	Hip	Ratio	 0.16	 0.06	 0.01	

Diabetes	 Education	 -0.17	 0.05	 0.00	

Diabetes	 Extraversion	 -0.21	 0.22	 0.33	

Diabetes	 Glucose	 0.60	 0.09	 0.00	

Diabetes	 Head	Circumference	 -0.09	 0.11	 0.42	

Diabetes	 Height	 -0.01	 0.04	 0.82	
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Diabetes	

Inflammatory	Bowel	

Disease	 0.04	 0.05	 0.42	

Diabetes	 Insulin	 0.50	 0.11	 0.00	

Diabetes	 IQ	 -0.16	 0.11	 0.12	

Diabetes	 MND	 0.07	 0.13	 0.61	

Diabetes	 Neuroticism	 0.10	 0.12	 0.41	

Diabetes	 Openness	 -0.14	 0.11	 0.21	

Diabetes	 Osteoporosis	 -0.20	 0.07	 0.01	

Diabetes	 Pubertal	Growth	 0.12	 0.07	 0.10	

Diabetes	 Rheumatoid	Arthritis	 -0.04	 0.07	 0.61	

Diabetes	 Schizophrenia	 0.00	 0.04	 0.98	

Diabetes	 Smoking	 -0.01	 0.07	 0.93	

Diabetes	 Tanner	 0.29	 0.14	 0.04	

Diabetes	 Triglycerides	 0.30	 0.05	 0.00	

Diabetes	 Ulcerative	Colitis	 0.05	 0.07	 0.48	

Diabetes	 Waist	Hip	Ratio	 0.26	 0.05	 0.00	

Education	 Extraversion	 0.24	 0.15	 0.10	

Education	 Glucose	 -0.18	 0.05	 0.00	

Education	 Head	Circumference	 0.28	 0.07	 0.00	

Education	 Height	 0.14	 0.02	 0.00	

Education	

Inflammatory	Bowel	

Disease	 -0.05	 0.04	 0.24	

Education	 Insulin	 -0.36	 0.06	 0.00	

Education	 IQ	 0.70	 0.07	 0.00	

Education	 MND	 -0.05	 0.08	 0.54	

Education	 Neuroticism	 -0.46	 0.08	 0.00	

Education	 Openness	 0.52	 0.09	 0.00	

Education	 Osteoporosis	 -0.02	 0.04	 0.60	

Education	 Pubertal	Growth	 0.13	 0.04	 0.00	

Education	 Rheumatoid	Arthritis	 -0.16	 0.05	 0.00	

Education	 Schizophrenia	 0.09	 0.03	 0.00	
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Education	 Smoking	 -0.33	 0.05	 0.00	

Education	 Tanner	 -0.13	 0.09	 0.16	

Education	 Triglycerides	 -0.18	 0.03	 0.00	

Education	 Ulcerative	Colitis	 -0.01	 0.05	 0.91	

Education	 Waist	Hip	Ratio	 -0.21	 0.03	 0.00	

Extraversion	 Glucose	 -0.10	 0.27	 0.72	

Extraversion	 Head	Circumference	 -0.52	 0.43	 0.23	

Extraversion	 Height	 0.05	 0.11	 0.65	

Extraversion	

Inflammatory	Bowel	

Disease	 0.29	 0.22	 0.18	

Extraversion	 Insulin	 -0.40	 0.39	 0.31	

Extraversion	 IQ	 -0.30	 0.26	 0.25	

Extraversion	 MND	 0.74	 0.46	 0.11	

Extraversion	 Neuroticism	 -1.67	 0.79	 0.03	

Extraversion	 Openness	 0.40	 0.41	 0.33	

Extraversion	 Osteoporosis	 -0.14	 0.25	 0.56	

Extraversion	 Pubertal	Growth	 0.01	 0.22	 0.98	

Extraversion	 Rheumatoid	Arthritis	 -0.04	 0.23	 0.86	

Extraversion	 Schizophrenia	 -0.18	 0.15	 0.24	

Extraversion	 Smoking	 -0.10	 0.22	 0.64	

Extraversion	 Tanner	 -0.09	 0.42	 0.84	

Extraversion	 Triglycerides	 -0.04	 0.13	 0.75	

Extraversion	 Ulcerative	Colitis	 0.24	 0.25	 0.32	

Extraversion	 Waist	Hip	Ratio	 0.02	 0.16	 0.92	

Glucose	 Head	Circumference	 -0.01	 0.11	 0.90	

Glucose	 Height	 -0.04	 0.04	 0.38	

Glucose	

Inflammatory	Bowel	

Disease	 0.00	 0.06	 0.94	

Glucose	 Insulin	 0.31	 0.10	 0.00	

Glucose	 IQ	 0.00	 0.10	 1.00	

Glucose	 MND	 -0.04	 0.13	 0.78	
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Glucose	 Neuroticism	 0.02	 0.10	 0.86	

Glucose	 Openness	 -0.10	 0.12	 0.40	

Glucose	 Osteoporosis	 -0.22	 0.07	 0.00	

Glucose	 Pubertal	Growth	 -0.03	 0.07	 0.64	

Glucose	 Rheumatoid	Arthritis	 0.00	 0.07	 0.95	

Glucose	 Schizophrenia	 -0.04	 0.03	 0.25	

Glucose	 Smoking	 0.08	 0.07	 0.26	

Glucose	 Tanner	 0.02	 0.15	 0.88	

Glucose	 Triglycerides	 0.09	 0.09	 0.30	

Glucose	 Ulcerative	Colitis	 0.06	 0.08	 0.44	

Glucose	 Waist	Hip	Ratio	 0.03	 0.05	 0.52	

Head	Circumference	 Height	 0.26	 0.06	 0.00	

Head	Circumference	

Inflammatory	Bowel	

Disease	 0.04	 0.09	 0.68	

Head	Circumference	 Insulin	 0.01	 0.13	 0.92	

Head	Circumference	 IQ	 0.37	 0.16	 0.02	

Head	Circumference	 MND	 0.02	 0.22	 0.93	

Head	Circumference	 Neuroticism	 -0.05	 0.19	 0.80	

Head	Circumference	 Openness	 0.01	 0.21	 0.95	

Head	Circumference	 Osteoporosis	 -0.15	 0.10	 0.15	

Head	Circumference	 Pubertal	Growth	 0.44	 0.11	 0.00	

Head	Circumference	 Rheumatoid	Arthritis	 0.02	 0.11	 0.88	

Head	Circumference	 Schizophrenia	 -0.03	 0.07	 0.62	

Head	Circumference	 Smoking	 -0.01	 0.11	 0.91	

Head	Circumference	 Tanner	 0.25	 0.23	 0.29	

Head	Circumference	 Triglycerides	 -0.06	 0.06	 0.33	

Head	Circumference	 Ulcerative	Colitis	 0.01	 0.12	 0.94	

Head	Circumference	 Waist	Hip	Ratio	 -0.17	 0.08	 0.04	

Height	

Inflammatory	Bowel	

Disease	 0.06	 0.03	 0.07	

Height	 Insulin	 0.05	 0.04	 0.24	
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Height	 IQ	 0.11	 0.05	 0.03	

Height	 MND	 -0.07	 0.06	 0.21	

Height	 Neuroticism	 -0.13	 0.05	 0.01	

Height	 Openness	 -0.07	 0.06	 0.24	

Height	 Osteoporosis	 0.00	 0.03	 0.95	

Height	 Pubertal	Growth	 0.75	 0.04	 0.00	

Height	 Rheumatoid	Arthritis	 0.02	 0.03	 0.46	

Height	 Schizophrenia	 0.01	 0.02	 0.77	

Height	 Smoking	 -0.06	 0.03	 0.09	

Height	 Tanner	 -0.03	 0.07	 0.70	

Height	 Triglycerides	 -0.07	 0.02	 0.00	

Height	 Ulcerative	Colitis	 0.05	 0.04	 0.22	

Height	 Waist	Hip	Ratio	 -0.03	 0.03	 0.26	

Inflammatory	Bowel	

Disease	 Insulin	 0.00	 0.06	 0.97	

Inflammatory	Bowel	

Disease	 IQ	 -0.11	 0.10	 0.25	

Inflammatory	Bowel	

Disease	 MND	 0.19	 0.11	 0.09	

Inflammatory	Bowel	

Disease	 Neuroticism	 -0.02	 0.08	 0.84	

Inflammatory	Bowel	

Disease	 Openness	 -0.08	 0.11	 0.44	

Inflammatory	Bowel	

Disease	 Osteoporosis	 0.11	 0.05	 0.02	

Inflammatory	Bowel	

Disease	 Pubertal	Growth	 -0.04	 0.06	 0.55	

Inflammatory	Bowel	

Disease	 Rheumatoid	Arthritis	 0.05	 0.06	 0.40	

Inflammatory	Bowel	

Disease	 Schizophrenia	 0.14	 0.03	 0.00	
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Inflammatory	Bowel	

Disease	 Smoking	 -0.04	 0.06	 0.50	

Inflammatory	Bowel	

Disease	 Tanner	 -0.18	 0.12	 0.14	

Inflammatory	Bowel	

Disease	 Triglycerides	 0.02	 0.04	 0.57	

Inflammatory	Bowel	

Disease	 Ulcerative	Colitis	 0.94	 0.02	 0.00	

Inflammatory	Bowel	

Disease	 Waist	Hip	Ratio	 -0.03	 0.04	 0.48	

Insulin	 IQ	 -0.24	 0.11	 0.03	

Insulin	 MND	 -0.31	 0.19	 0.10	

Insulin	 Neuroticism	 -0.02	 0.12	 0.90	

Insulin	 Openness	 -0.24	 0.15	 0.10	

Insulin	 Osteoporosis	 -0.09	 0.09	 0.33	

Insulin	 Pubertal	Growth	 0.07	 0.09	 0.43	

Insulin	 Rheumatoid	Arthritis	 0.06	 0.08	 0.42	

Insulin	 Schizophrenia	 0.02	 0.05	 0.61	

Insulin	 Smoking	 0.20	 0.09	 0.03	

Insulin	 Tanner	 0.26	 0.20	 0.19	

Insulin	 Triglycerides	 0.42	 0.09	 0.00	

Insulin	 Ulcerative	Colitis	 -0.06	 0.07	 0.46	

Insulin	 Waist	Hip	Ratio	 0.33	 0.07	 0.00	

IQ	 MND	 0.00	 0.16	 1.00	

IQ	 Neuroticism	 0.04	 0.17	 0.83	

IQ	 Openness	 0.42	 0.15	 0.00	

IQ	 Osteoporosis	 0.13	 0.09	 0.14	

IQ	 Pubertal	Growth	 0.08	 0.09	 0.40	

IQ	 Rheumatoid	Arthritis	 -0.13	 0.09	 0.14	

IQ	 Schizophrenia	 -0.05	 0.06	 0.37	

IQ	 Smoking	 -0.28	 0.11	 0.01	
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IQ	 Tanner	 -0.24	 0.24	 0.32	

IQ	 Triglycerides	 -0.17	 0.06	 0.00	

IQ	 Ulcerative	Colitis	 -0.01	 0.10	 0.92	

IQ	 Waist	Hip	Ratio	 -0.10	 0.06	 0.07	

MND	 Neuroticism	 0.08	 0.20	 0.68	

MND	 Openness	 0.14	 0.20	 0.49	

MND	 Osteoporosis	 -0.04	 0.12	 0.71	

MND	 Pubertal	Growth	 0.04	 0.12	 0.73	

MND	 Rheumatoid	Arthritis	 0.00	 0.13	 0.99	

MND	 Schizophrenia	 0.25	 0.08	 0.00	

MND	 Smoking	 0.16	 0.14	 0.26	

MND	 Tanner	 -0.08	 0.23	 0.73	

MND	 Triglycerides	 -0.02	 0.09	 0.84	

MND	 Ulcerative	Colitis	 0.11	 0.14	 0.42	

MND	 Waist	Hip	Ratio	 -0.02	 0.10	 0.85	

Neuroticism	 Openness	 0.15	 0.20	 0.46	

Neuroticism	 Osteoporosis	 0.22	 0.10	 0.02	

Neuroticism	 Pubertal	Growth	 -0.13	 0.12	 0.29	

Neuroticism	 Rheumatoid	Arthritis	 -0.05	 0.11	 0.65	

Neuroticism	 Schizophrenia	 0.18	 0.06	 0.00	

Neuroticism	 Smoking	 0.15	 0.10	 0.15	

Neuroticism	 Tanner	 0.33	 0.25	 0.19	

Neuroticism	 Triglycerides	 0.21	 0.08	 0.01	

Neuroticism	 Ulcerative	Colitis	 -0.01	 0.10	 0.88	

Neuroticism	 Waist	Hip	Ratio	 0.19	 0.08	 0.02	

Openness	 Osteoporosis	 -0.03	 0.10	 0.80	

Openness	 Pubertal	Growth	 0.08	 0.11	 0.48	

Openness	 Rheumatoid	Arthritis	 0.08	 0.11	 0.46	

Openness	 Schizophrenia	 0.24	 0.08	 0.00	

Openness	 Smoking	 -0.13	 0.13	 0.35	

Openness	 Tanner	 0.57	 0.25	 0.02	
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Openness	 Triglycerides	 -0.05	 0.06	 0.46	

Openness	 Ulcerative	Colitis	 0.02	 0.12	 0.89	

Openness	 Waist	Hip	Ratio	 -0.14	 0.08	 0.07	

Osteoporosis	 Pubertal	Growth	 -0.06	 0.07	 0.39	

Osteoporosis	 Rheumatoid	Arthritis	 0.02	 0.06	 0.71	

Osteoporosis	 Schizophrenia	 0.01	 0.04	 0.80	

Osteoporosis	 Smoking	 -0.01	 0.07	 0.87	

Osteoporosis	 Tanner	 0.04	 0.13	 0.76	

Osteoporosis	 Triglycerides	 0.00	 0.04	 0.96	

Osteoporosis	 Ulcerative	Colitis	 0.05	 0.06	 0.38	

Osteoporosis	 Waist	Hip	Ratio	 -0.03	 0.05	 0.50	

Pubertal	Growth	 Rheumatoid	Arthritis	 -0.05	 0.07	 0.52	

Pubertal	Growth	 Schizophrenia	 -0.03	 0.04	 0.42	

Pubertal	Growth	 Smoking	 -0.13	 0.07	 0.08	

Pubertal	Growth	 Tanner	 0.42	 0.14	 0.00	

Pubertal	Growth	 Triglycerides	 -0.01	 0.04	 0.89	

Pubertal	Growth	 Ulcerative	Colitis	 -0.11	 0.07	 0.14	

Pubertal	Growth	 Waist	Hip	Ratio	 -0.02	 0.05	 0.73	

Rheumatoid	Arthritis	 Schizophrenia	 0.03	 0.04	 0.56	

Rheumatoid	Arthritis	 Smoking	 0.15	 0.06	 0.02	

Rheumatoid	Arthritis	 Tanner	 -0.05	 0.14	 0.70	

Rheumatoid	Arthritis	 Triglycerides	 -0.02	 0.04	 0.64	

Rheumatoid	Arthritis	 Ulcerative	Colitis	 0.10	 0.07	 0.13	

Rheumatoid	Arthritis	 Waist	Hip	Ratio	 0.02	 0.05	 0.59	

Schizophrenia	 Smoking	 0.10	 0.04	 0.01	

Schizophrenia	 Tanner	 0.10	 0.08	 0.22	

Schizophrenia	 Triglycerides	 -0.02	 0.03	 0.45	

Schizophrenia	 Ulcerative	Colitis	 0.14	 0.03	 0.00	

Schizophrenia	 Waist	Hip	Ratio	 0.00	 0.03	 0.97	

Smoking	 Tanner	 -0.13	 0.14	 0.33	

Smoking	 Triglycerides	 0.13	 0.04	 0.00	
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Smoking	 Ulcerative	Colitis	 -0.05	 0.07	 0.47	

Smoking	 Waist	Hip	Ratio	 0.13	 0.05	 0.00	

Tanner	 Triglycerides	 0.11	 0.07	 0.13	

Tanner	 Ulcerative	Colitis	 -0.21	 0.15	 0.15	

Tanner	 Waist	Hip	Ratio	 -0.01	 0.10	 0.89	

Triglycerides	 Ulcerative	Colitis	 -0.01	 0.05	 0.78	

Triglycerides	 Waist	Hip	Ratio	 0.32	 0.04	 0.00	

Ulcerative	Colitis	 Waist	Hip	Ratio	 -0.04	 0.04	 0.35	
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Discussion	/	General	conclusion	

 
The aim of this thesis was to elucidate three particular aspects of the genetic architecture of 

psychiatric disorders: The impact of genetic heterogeneity on heritability estimates (Chapter 

2: Genetic basis of complex genetic disease: the contribution of disease heterogeneity to 

missing heritability), the feasibility of detecting genetic heterogeneity through genotype 

clustering (Chapter 3: Genotype based clustering) and the degree to which the genetic 

similarity between psychiatric disorders makes it possible to improve genetic risk predictors 

(Chapter 4: Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction 

for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder and Chapter 5: 

Improving genetic prediction by leveraging genetic correlations among human diseases and 

traits). 

 

Here, I will first review the aims and findings of the chapters centered around genetic 

heterogeneity and then those of the chapters about multi trait genetic risk prediction. 

 

Genetic heterogeneity 

The first heterogeneity related question was to investigate how genetic heterogeneity affects 

family based heritability estimates compared to how it affects SNP-heritability estimates. If 

the two are affected differently, heterogeneity can contribute to missing heritability. We 

assumed an extreme case of zero genetic correlation between two equally sized disease 

subgroups and found that in this case SNP-heritability estimates will be substantially lower 

than family based heritability estimates. Even under less extreme assumptions, the 

presence of genetic heterogeneity can contribute to missing heritability. 

 

The second heterogeneity related question was to investigate the feasibility of genotype 

based clustering. The relative diagnostic uncertainty in psychiatry makes researchers as 

well as clinicians look to fields like genetics and brain imaging in the hope for biomarkers 

that could lead more accurate diagnoses and more individualized interventions. Recently 

the term “stratified medicine” is often used in this context [111]. 

 

Reports of the successful detection of schizophrenia subtypes based on genetic data have 
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been met with great interest as well as with skepticism [159], but to date no such genotype 

based sub-classification has withstood the test of time and replication. Motivated by 

preliminary positive results based on simulated, unstructured genotype data, we set out to 

explore the conditions under which genotype based clustering can achieve reasonable 

separation between simulated case subtypes. In our simulation setup we assumed that we 

know nothing about what separates the subtypes from one another, and that we only have 

genotype data as well as estimates of the effects that separate the combined case group 

from the controls. The results were sobering: Only when very few SNPs explained most of 

the genetic variance, and when we could accurately estimate these effects, the clustering 

was able to achieve a reasonable separation of cases and controls. Why is that? 

 

In some way, what we attempted to do is similar to polygenic risk prediction: Given 

information on genotypes and SNP effect estimates, what can we learn about the individual’s 

phenotype? However, there are notable differences: In the clustering case, (i) there is no 

separate test set, (ii) the SNP effects are only to some degree related to the quantity we 

want to predict, (iii) the SNP effects are only used to decide which SNP to use for the 

clustering, (iv) the similarity between individuals determines the predicted phenotype. While 

(i) should play strongly in our favor, (ii) to (iv) explain why compared to genetic risk 

predictors, the outcome was disappointing. The curse of dimensionality explains why (iv) is 

a problem: As the number of markers on which to cluster increases, the variance in the 

distance among individuals decreases, until it becomes almost meaningless. This is less of 

a problem in a method like GREML, which is based on the pairwise similarity among 

individuals, because there, a large number of pairwise similarity measures are used to 

estimate a small number of parameters, and not to accurately group a large number of 

individuals. 

 

The small overlap between clusters and simulated sub-types didn’t leave much hope for this 

approach to be successful in practice, especially because a number of optimistic 

assumptions were made in the simulations that are not likely to hold in practice: (i) whereas 

the simulations assume distinct and well defined groups, a continuum of different genetic 

risk profiles seems more probable. Shades of grey are more common than black and white. 

(ii) even if distinct and discrete genetic clusters exist, they are unlikely to be equal in size 

and there are probably more than just two of them. 
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Given that even under these simplifying assumptions the clustering could only recapture 

sub-types when the number of markers explaining most of the variance was very small, it 

appears more promising to pursue other paths. For example, the simpler problem of 

detecting the presence of genetic heterogeneity seems to be more tractable [112], as is the 

task of detecting sub-groups by combining both genetic and non-genetic data. These non-

genetic data could include traditional phenotypes, for example environmental covariates, or 

molecular phenotypes such as gene expression, DNA methylation, or other epigenetic 

modifications. 

 

Multi trait risk prediction 

 

Due to the similarity between the two multi trait risk prediction projects, they will here be 

discussed together. 

Aims and findings 

The first goal of the multi trait risk prediction projects was to develop methodology that allows 

to combine data on multiple traits such that genetic risk predictors for each of the traits will 

be more accurate than corresponding single trait predictors. The second goal was to test 

empirically how much such a multi trait risk predictor increases accuracy. 

 

In the first study, based on individual level genotype data, the method was tested on five 

psychiatric disorders using PGC wave 1 data and found consistent improvements, both in a 

cross validation design, as well as in independent samples for three of the disorders. The 

gain was benchmarked as equivalence in sample size increases between 34% and 76%. 

In the second, summary statistics based projects, the method was first tested on two out of 

the five traits from the first project, and achieved very similar prediction accuracy. Further 

tests on different validation cohorts complicated the picture. Application to a wide range of 

other traits resulted in consistent improvements over single trait predictors. 
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Differences between the two multi trait projects 

Apart from the main distinction of individual level data versus summary statistics data, there 

are several other differences between the two projects that are worth discussing. Some of 

these differences were imposed by the data analyzed, others just reflect a focus on different 

aspects of the analysis. 

 

 

Summary data versus individual level data. The motivation behind the second project 

was to replicate the results of the first projects using summary statistics data, with the 

previously discussed advantages related to computation and ease of access. One 

implication of using summary data was that we could show that even for non-psychiatric 

traits, where genetic correlations are generally lower, this method can provide a benefit. 

Another implication of using summary data is that what was one step in the first project, 

became two separate steps in the second project (SBLUP transformation and weighting of 

multiple traits). There is some loss of accuracy associated with both of these steps, arising 

from the use of summary statistics. These are discussed separately further below. 

 

Prediction accuracy differences. A central question in both projects was to find out if the 

prediction from one method is more accurate than the prediction from another method. In 

the first project, the difference in accuracy between two predictors was evaluated by a 

likelihood ratio test of two nested models: The first model contained only one predictor (the 

single trait predictor), and the second model contained both predictors (single trait and multi 

trait). If the difference between the two models was significant, we deemed the multi trait 

predictor to be significantly better. This procedure is valid, but it treats the validation set as 

fixed. 

 

If, on the other hand, the validation set is seen as a random sample from a larger population, 

it is desirable to account for this source of variation. This can be done by calculating the 

standard error of the correlation coefficient, or similarly by splitting the validation data into 

random subsets. Establishing a significant difference between two prediction methods in this 

case requires a larger sample size in the validation set. The UK Biobank provided us with a 

large enough data set to test significance in this more stringent way and still find significant 

differences.  
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The third way to test the significance of the difference between two predictors is by treating 

the validation set as a non-random sample of a larger population. In this case there is even 

more variation among the validation data, which means that large validation set sample 

sizes and large prediction accuracy differences would be needed to establish significance. 

On the other hand, this method provides the highest confidence in the generalizability of the 

result and the best protection against labelling a difference as significant that is in fact just 

a consequence of overfitting. 

 

The cohort-wise summary statistics in the PGC2 data provided us with the opportunity to 

compare predictors in this most stringent way. However, due to the large variation between 

cohorts and the limited number of cohorts, this leave-one-cohort out validation procedure 

did not allow us to find significant differences between the predictors. It did, however, open 

the door for further analyses which allowed to explore the impact of heterogeneity on the 

prediction results. 

 

Cohort wise analysis. In the PGC wave 2 schizophrenia and bipolar disorder analysis we 

could use each cohort as a validation set, while using the other cohorts as training sets. This 

highlighted the substantial amount of heterogeneity among cohorts, as the prediction 

accuracies varied substantially between the different validation cohorts. In some cases, the 

relative accuracy of single trait and multi trait predictors could be explained by different 

ascertainment of cases in the validation cohorts. 

 

Exploring the parameter space. In the first project, we tested the impact of inclusion or 

exclusion of specific traits on the prediction accuracy. The low computational runtime of the 

method developed in the second project allowed us to go further than that and to test the 

impact of gradually increasing or decreasing the contribution of specific traits on the 

prediction accuracy. In the comparison of schizophrenia and bipolar disorder this revealed 

that when adding schizophrenia data to bipolar data, the weights were on average close to 

optimal, but in the other direction the weights we used were too much skewed towards 

bipolar disorder. This could be a consequence of an overestimation of SNP-heritability of 

bipolar disorder and of the genetic correlation in this data set. 
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Impact of population outliers on prediction. In the first project we went to great lengths 

to show that the prediction results are not driven by population outliers. Having found that 

population outliers don’t have a large effect, in the second project we settled for a standard 

principal component correction. 

 

Notation. Finally, the equations in both projects were parameterized differently. For 

example, Equation (3) in Chapter 4 is equivalent to Equation (9) in Chapter 5, even though 

this may not be immediately obvious. See Appendix section “Comparison of different BLUP 

formulations”. 

Limitations 

Sample overlap. In contrast to the first project, the method developed in the second project 

assumes that the data that are to be combined into a multi trait predictor were collected on 

non-overlapping individuals. The extent of sample overlap can be estimated from summary 

statistics [9], but the model developed here does not account for overlap. Consequently, the 

weights may not be optimal when traits are combined that are based on overlapping 

samples. 

 

Differences in the number of markers. For many GWAS summary statistics data sets, the 

number of individuals is more or less constant across SNPs, apart from small fluctuations 

caused by different rates of missingness in the QC process. In some meta analyzed sets 

however, there can be larger differences between SNPs. As our method uses the median 

sample size across all markers, and assigns one constant weight to each trait, large 

differences in the number of individuals within a data set can also lead to weights that don’t 

maximize prediction accuracy. 

 

Treating heritability and genetic correlation estimates as fixed. Both methods of multi 

trait prediction rely on accurate estimates of SNP heritability and genetic correlation. In the 

method using individual level genotype data GREML is used to estimate these parameters, 

whereas the summary statistics based method uses LD score regression, which has larger 

standard errors. However, our expectations for the multi trait prediction accuracy assume 

that these parameters have been estimated without error. This is especially problematic 

when using data with low sample size as this increases the standard error, and when 

combining many traits. To protect against that, we applied a threshold on the genetic 
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correlation p-value estimates when choosing traits to combine in the application of the 

summary statistics based method. 

 

Limitations of SBLUP. BLUP is a well-established prediction method, but the concept of 

approximating BLUP from summary statistics is relatively new. While under ideal conditions 

(perfect match of the reference set and large window size) SBLUP is identical to BLUP, 

under more realistic conditions SBLUP will not be as accurate as BLUP. Furthermore, our 

simulations have revealed that when an external reference data set is used to approximate 

the LD structure, the optimal shrinkage factor increases, but there is currently no theory that 

describes the magnitude of this effect. 

 

Biased predictors. A multi trait predictor for bipolar disorder that incorporates data from 

schizophrenia will perform better in individuals who have both a high liability for bipolar 

disorder and schizophrenia, than in individuals who have a high liability for bipolar disorder, 

but a low liability for schizophrenia. As such, it is not a “pure” bipolar disorder predictor 

anymore. We don’t view this as a major limitation, since the key metric of a predictor is its 

overall accuracy. It is for this reasons, however, that we decided to apply the methodology 

presented here only to prediction, and not to the discovery of associated variants: A SNP 

that is significantly associated with bipolar disorder, because it has the same direction of 

effect in schizophrenia and bipolar disorder, has to be interpreted differently than a SNP 

which is significant because of its direction of effect in bipolar disorder, independent of its 

effect on schizophrenia. 

 

Overall conclusions 

The main contributions of this thesis are to highlight the impact of genetic heterogeneity on 

estimates of heritability, and the development and application of methods for multi trait 

genetic risk prediction. Even after harnessing the combined effect of multiple traits, the 

prediction accuracy for many traits is still too low for many potential applications, but in 

combination with other improvements to risk prediction as well as with growing sample sizes, 

accuracy will eventually be high enough to allow accurate genetic predictions of many traits 

and diseases. When that will be the case, polygenic risk prediction will not only be a widely 

used research method, but a powerful tool for preventing disease. 
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Thesis	appendix:	A	practical	 introduction	 to	some	theoretical	concepts	 in	

quantitative	genetics	

 

Introduction 

The purpose of this document is to give an overview over frequently occurring quantities in 

quantitative genetics and to demonstrate how to they can be validated in R examples using 
simulated genotype data. 

It is intended as a guide for students in the field of quantitative genetics and focuses on the 

demonstration of theoretical concepts through simulation and the highlighting of connections 

between related concepts. Many concepts are therefore presented in a simplified way. 

It has been originally created as an html document and is here reproduced without some of 

the dynamic features of the original document. 
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Table 18: Notation 

Symbol	 Meaning	

𝐗²A0	 Original	genotype	matrix	

𝐗∗	 Mean-centered	genotypes	

𝐗	 Scaled	genotypes	(each	SNP	has	mean	0,	variance	1)	

𝐲	 Phenotype	

𝑝	 Minor	Allele	Frequency	(MAF)	

𝑀	 Number	of	SNPs	

𝑁	 Number	of	individuals	

𝑀P 	 Effective	number	of	SNPs	

𝑁P 	 Effective	number	of	individuals	

𝐀	 Genetic	relatedness	matrix	(GRM)	

𝐕	 Variance-covariance	matrix	of	the	phenotype	

𝐈Ú	 Identity	matrix	of	dimension	𝑀×𝑀	

𝛽∗	 Effect	of	a	SNP	(assumes	unscaled	genotypes)	

𝛽	 Effect	of	a	SNP	(assumes	scaled	genotypes)	

𝑔	 Genetic	effect	of	an	individual	

𝑖	 Index	for	individuals	

𝑗	 Index	for	SNPs	

𝜎Æ0	 Phenotypic	variance.	Often	assumed	to	be	1.	𝜎r0 + 𝜎P0	

𝜎r0	 Genetic	variance	

𝜎P0	 Error	variance	

ℎ0	 SNP-heritability.	
¨<\

¨=\
	

𝑝	 Estimate	of	𝑝	

𝑝	 Mean	of	𝑝	

𝑣𝑎𝑟(𝐲)	 (Scalar)	variance	of	𝑦	(usually	1	here)	

𝑉𝑎𝑟[𝐲]	 Variance-covariance	matrix	of	the	random	variable	𝐲	
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Table 19: Summary of equations 

Quantity	 Definition	

Genotype	properties	  

MAF	estimate	for	a	SNP	𝑗	
𝑝° =

𝐗²A0,°
2 	

Expected	MAF	sampling	variance	
𝑆𝐸]{

0 = 𝑣𝑎𝑟(𝑝° ∣ 𝑝°) =
𝑝° (1 − 𝑝°)

2𝑁 	

Expected	variance	of	a	SNP	 𝑣𝑎𝑟(𝐗²A0,°) = 2𝑝° (1 − 𝑝°)	

LD	matrix	 𝐋 =
𝐗@𝐗
𝑁 	

GRM	 𝐀 =
𝐗𝐗@

𝑀 	

LD	score	of	a	SNP	 𝑙° =
1
𝑁0 𝐗°

@𝐗𝐗@𝐗° 	

SNP	effect	estimates	  

OLS	effect	estimate	for	model	with	one	SNP	(𝛽1243)	 𝛽°,1243 =
𝐗°@𝐲
𝐗°@𝐗°

=
𝑐𝑜𝑣(𝐗°, 𝐲)
𝑣𝑎𝑟(𝐗°)

	

Mixed	linear	mode	association	(MLMA)	estimate	for	

one	SNP	
𝛽°,Ú�Ú4 =

𝐗°@𝐕YA𝐲
𝐗°@𝐕YA𝐗°

	

OLS	effect	estimate	for	model	with	all	SNPs	(𝛃C�3)	 𝛃C�3 = (𝐗@𝐗)YA𝐗@𝐲	

BLUP	effect	estimate	 𝛃&�'6 = (𝐗@𝐗 + 𝜆𝐈)YA𝐗@𝐲	

Precision	of	SNP	effect	estimates	  

Expected	sampling	variance	of	𝛽∗°,1243	 𝑆𝐸
D∗{

0 = 𝑣𝑎𝑟(𝛽∗° ∣ 𝛽°
∗) ≈

1
𝑁×𝑣𝑎𝑟(𝐗°)

	

Expected	sampling	variance	of	𝛽°,1243	 𝑆𝐸
D{

0 = 𝑣𝑎𝑟(𝛽° ∣ 𝛽°) ≈
1
𝑁	

Expected	variance	of	𝛽°,1243	assuming	independent	

markers	

𝑣𝑎𝑟(𝛽°) = 𝑣𝑎𝑟(𝛽°) + 𝑣𝑎𝑟(𝛽° ∣ 𝛽°)

=
ℎ0

𝑀 +
1
𝑁	

Expected	variance	of	𝛽°,1243	 𝑣𝑎𝑟(𝛽°) =
ℎ0

𝑀P
+
1
𝑁	
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Expected	accuracy	of	GWAS	predictor	 𝑐𝑜𝑟0(𝐲, 𝐠1243) =
ℎ0

1 + 𝑀P
𝑁ℎ0

	

Expected	accuracy	of	BLUP	predictor	 𝑐𝑜𝑟0(𝐲, 𝐠&�'6) = 𝑅0 =
ℎ0

1 +𝑀P(1 − 𝑅0)
𝑁ℎ0
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The structure of genotype data	

Simulating genotypes 

Humans have diploid genomes, so at each biallelic SNP, there are 2×2 possible 

combinations of alleles at each locus. Since we don't usually distinguish between, say 𝐴𝐺 

and 𝐺𝐴, we are left with 3 distinct genotypes, which means that we can code genotypes for 

each SNP and individual as 0, 1 or 2, which can be interpreted as 0, 1 or 2 alternative alleles. 

Under a random mating assumption, the number of alternative alleles for a SNP and 

individual follows a binomial distribution with 2 draws (one from mum and one from dad) and 

probability equal to the minor allele frequency of that SNP. 

Let's assume that the minor allele frequency of our 𝑀 SNPs come from a uniform distribution 

between 0 and 0.5. 

set.seed(6155)	

m = 500                                  # number of SNPs	

maf = runif(m, 0, .5)                    # random MAF for each SNP	

# apologies if using "=" as the assignment operator in R makes your eyes 

hurt	

The set.seed command here ensures that the random draws from a distribution will be the 

same each time this code is run. We can then draw genotypes for one person for each SNP. 

x012 = rbinom(m, 2, maf)	

We want genotypes for 𝑁 individuals, so let's replicate this 𝑁 times. 

n = 400                                    # number of individuals	

x012 = t(replicate(n, rbinom(m, 2, maf)))  # n x m genotype matrix	

If	we	are	unlucky,	some	SNPs	will	be	monomorphic,	so	not	actually	vary	between	people.	Since	

this	can	cause	problems,	let's	simulate	more	SNPs	and	only	keep	𝑀	polymorphic	ones.	

x012 = t(replicate(n, rbinom(2*m, 2, c(maf, maf))))	

polymorphic = apply(x012, 2, var) > 0	

x012 = x012[,polymorphic][,1:m]	

maf = c(maf, maf)[polymorphic][1:m]	

round(maf[1:10], 2)	
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##  [1] 0.02 0.04 0.28 0.18 0.08 0.10 0.45 0.03 0.22 0.26	

x012[1:5, 1:10]	

##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]	

## [1,]    0    0    0    0    0    0    1    0    0     0	

## [2,]    0    0    1    0    0    0    2    0    0     0	

## [3,]    0    0    0    1    0    0    0    0    1     1	

## [4,]    0    1    1    1    0    0    1    0    1     1	

## [5,]    0    0    1    0    0    0    1    0    1     0	

Later on, we will not only need the original genotype matrix 𝐗²A0, but also a version in which 

each SNP is mean-centered, 𝐗∗, and a version in which each SNP has mean 0 and variance 

1, 𝐗. 

x = scale(x012, scale=FALSE)                 # mean 0	

x01 = scale(x012, scale=TRUE)                # mean 0, variance 1	

# note that the x in R is X* in the text and x01 in R is X in the text, 

similar with beta.	

Working with mean-centered genotypes and phenotypes makes life a lot easier, but it means 

we don't have to estimate intercept terms. So a model like this: 

𝐲 ∼ 𝛽² + 𝛽A𝐱+ 𝐞 

just becomes 

𝐲 ∼ 𝛽𝐱+ 𝐞 

Similarly, assuming that there are no covariates, or that 𝑦 has already been corrected for 

any covariates, makes things a lot simpler as well. 

		

		

MAF estimate 

Here, we know what the true MAF is for each SNP (𝑝), because we have simulated it, but in 

real data we will have to get an estimate based on a finite sample. For a diploid genome 

coded in 0 and 1, this estimate would just be the mean across individuals, but since we have 

a diploid genome, it is the mean divided by two. 
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𝑝° =
𝐗²A0,°
2 	

maf_est = colMeans(x012)/2	

qplot(maf, maf_est, col=maf) +	

  geom_abline() + xlab('p') + ylab(expression(hat(p)))	

 

Figure 41: True and estimated minor allele frequency 

Strictly speaking, we are estimating the frequency of the alternative allele (the one coded as 

2 when homozygous), but since we simulated MAFs in the range [0, 0.5], we can talk about 

the minor allele frequency. 

Sampling variance of MAF estimates 

For most SNPs we get a reasonable MAF estimate. If we want to dig deeper, we can also 

quantify how close our MAF estimate is, on average, to the true value. So we want to know 

what 𝑝° − 𝑝° is, on average. If we have an unbiased estimate, 𝑝° − 𝑝° will be zero on 

average, but it is also interesting what the variance of this quantity is: 
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𝑆𝐸]{
0 = 𝑣𝑎𝑟(𝑝° ∣ 𝑝°) = 𝑣𝑎𝑟(𝑝° − 𝑝°)	

This is called the sampling variance, or the (squared) standard error. Very often when the 

standard error is mentioned, it is about the standard error of a mean estimate, which is 

𝑆𝐸H
0 =

𝑣𝑎𝑟(𝑥)
𝑁 	

However, any kind of estimate has a standard error, and it is not always as straight forward 

to calculate. In this case here, we want to know the sampling variance of the MAF estimate, 

which is in fact the standard error of a mean estimate, because the MAF estimate is the 

mean of the genotype values divided by two. So: 

𝑆𝐸]{
0 = 𝑣𝑎𝑟(𝑝° − 𝑝°) =

𝑣𝑎𝑟(
𝐗°
2 )

𝑁 =
𝑣𝑎𝑟(𝐗°)
4𝑁 	

Since it depends on a finite sample, the standard error is itself an estimate and should get 

a hat. 

𝑆𝐸]{
0
=
𝑣𝑎𝑟(𝐗°)
4𝑁 	

But we're short on hats, so some quantities will be missing them even though they should 

have	them. 

The variance of a genotype can be estimated as 𝑣𝑎𝑟(𝐗°) = 2𝑝°(1 − 𝑝°) 

So the standard error of 𝑝° can be also estimated as 

𝑆𝐸]{
0
=
𝑝° (1 − 𝑝°)

2𝑁 	

Let's see how this estimated standard error of 𝑝° compares to the actual fluctuation of 𝑝° 

around 𝑝°. For this we have to group SNPs by MAF, because the standard error of 𝑝° 

depends on 𝑝°. 

ss = .02	

sequ = seq(0, max(maf_est), ss)	

bins = cut(maf_est, sequ)	

binMeans = (sequ + ss/2)[-length(sequ)]	

dat = data.frame(observed=tapply(colMeans(x012)/2 - maf, bins, var),	

                expected=binMeans*(1-binMeans)/(2*n),	
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                binNum=1:length(binMeans))	

	

ggplot(dat, aes(expected, observed)) +	

  geom_text(aes(label=binNum, col=binMeans)) +	

  geom_abline() +	

  xlab(expression(paste(hat(SE)[hat(p)]^2, "  (",hat(var),"(", hat(p), " 

| p))"))) +	

  ylab(expression(paste("var(",hat(p)," | p)")))	

 

Figure 42: MAF standard error estimate vs actual variance of the MAF estimate	

So for the higher MAF bins the empirical 𝑣𝑎𝑟(𝑝° − 𝑝°) is not very well estimated by our 

estimate of 𝑆𝐸]{
0 . In other words, the standard error of the standard error estimate of 𝑝° gets 

larger with 𝑝°. Determining 𝑆𝐸
33J{

\
0

, or 𝑣𝑎𝑟(𝑣𝑎𝑟 (𝑝° ∣ 𝑝°) ∣ 𝑣𝑎𝑟(𝑝° ∣ 𝑝°)) is left as an exercise 

for the reader. 
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Variance of a genotype 

I mentioned before that the variance of a genotype for a SNP can be estimated as 

𝑣𝑎𝑟(𝑥) = 2𝑝 (1 − 𝑝) 

This is simply the expected variance of a binomially distributed random variable. 

At the same time this is the expected frequency of heterozygous genotypes under Hardy-

Weinberg equilibrium. 

varx = apply(x012, 2, var)	

p1 = qplot(2*maf*(1-maf), varx, col=maf) + geom_abline()	

# genotype frequencies	

p2 = ggplot(data.frame(x=c(0, 1)), aes(x)) +	

  stat_function(fun=function(x) 2*x*(1-x), col='red') +	

  stat_function(fun=function(x) x^2, col='green') +	

  stat_function(fun=function(x) (1-x)^2, col='blue') +	

  ylim(c(0,1)) +	

  xlab('allele frequency') +	

  ylab('genotype frequencies / variance of x (red)')	

grid.arrange(p1, p2, ncol=2)	

 

Figure 43: Genotype variance 
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Left: True genotype variance vs estimate of 2p(1-p). Right: Expected genotype frequencies 

as a function of MAF. The red curve shows the genotype variance / average heterozygosity 

as a function of 𝑝. 

	

		

Linkage disequilibrium (LD) Matrix 

SNPs are often correlated with one another. Especially when they are nearby, since 

recombination rarely breaks up any correlation between them. This correlation between a 

pair of SNPs (two columns in 𝐗) is called linkage disequilibrium (LD) and can be estimated 

by calculating the correlation coefficient between the SNP genotypes. 

The LD matrix contains the correlations of all SNP pairs in the genotype matrix and has 

therefore dimensions 𝑀×𝑀. Since correlation implicitly scales by the variance, 

𝑐𝑜𝑟(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

𝑣𝑎𝑟(𝑥)𝑣𝑎𝑟(𝑦)
 

it doesn't matter whether the scaled or unscaled genotype matrix is used. Further, when 𝐗 

is already scaled, the covariance matrix is the same as the correlation matrix, so the LD 

matrix can be calculated as: 

𝐋 =
𝐗@𝐗
𝑁  

The following should all result in approximately the same LD matrices. 

ld1 = cor(x012)	

ld2 = cor(x01)	

ld3 = cov(x01)	

ld4 = (t(x01) %*% x01) / n	

The reason why the last one is slightly different is because cov (and var) in R divide by (n - 

1) rather than by n (see Bessel's correction).  
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LD scores 

For some applications, such as LD score regression, it is useful to calculate the LD score of 

a SNP. This is defined as the sum of squared correlations of a SNP 𝑗 with all other SNPs: 

𝑙° = 𝑐
Ú

�±A

𝑜𝑟0(𝐗°, 𝐗�) 

Since 𝐗 is standardized, we can just calculate the sum of the squared sample correlations 

like this: 

𝑙° =
1
𝑁0 𝐗°

@𝐗𝐗@𝐗° 

However, this is not an unbiased estimate. We can correct for the bias like this: 

𝑙° =
𝑙° 𝑁 −𝑀
𝑁 + 1 	

ldscores_sample = colSums(ld1^2)	

ldscores = (ldscores_sample*n - m) / (n + 1)	

	

qplot(ldscores, ldscores_sample, col=ldscores) +	

  xlim(c(min(ldscores), max(ldscores))) +	

  ylim(min(ldscores), max(ldscores_sample)) +	

  geom_abline() +	

  scale_colour_continuous(low='black', high='green')	
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Figure 44: LD scores before and after correcting for biased estimates 
In the simulations without LD, LD scores should be centered around one. 

		

Genetic relatedness matrix (GRM) 

The genetic relatedness between two individuals (two rows in 𝐗) can be estimated as the 

covariance of the genotypes for these individuals across all SNPs. The GRM contains 

estimates of the genetic similarity for all pairs of individuals and can be calculated as the 

covariance matrix of the transposed scaled genotype matrix. 

The GRM is actually a genetic similarity matrix. For a genotype in two individuals we want 

to know if it comes from the same ancestor (identity by descent (IBD)), but we can only 

measure if it is the same or not (identity by state (IBS)). 

It can be calculated as: 

𝐀 =
𝐗𝐗@

𝑀 	
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This is very similar to the definition of the LD matrix, but will be a 𝑁×𝑁 instead of a 𝑀×𝑀 

matrix. Also, since 𝐗 is usually scaled to have equal variance across SNPs, not across 

individuals, the diagonal elements on the GRM usually differ from one. 

The similarity between the GRM (≈ 𝐗𝐗@) and the LD matrix (≈ 𝐗@𝐗) explains why models 

which depend on the GRM often have an equivalent form which depends on the LD matrix. 

grm = (x01 %*% t(x01))/m	

grm2 = cov(t(x01))	

	

p1 = ggplot(melt(grm), aes(value)) + geom_histogram(bins=100) 	

p2 = ggplot(melt(grm), aes(value)) + geom_histogram(bins=100) +	

  coord_cartesian(ylim=c(0,n)) + theme(panel.background=element_blank())	

grid.arrange(p1, p2, layout_matrix=matrix(c(1,1,2,1), 2))	

 

Figure 45: Histogram of GRM values 
Inset: Truncated y-axis which highlights the diagonal values centered around one.	



251 

 

Offdiagonal elements represent the relatedness between two individuals (in histogram the 

large peak centered at 0). Diagonal elements represent the relatedness of an individual with 

itself, which is the average homozygosity or the level of inbreeding (in histogram the small 

peak centered at 1). While the LD of a SNP with itself is 1 by definition, the genetic 

relatedness of an individual with itself can vary around one, because the genotype scaling 

is performed per SNP, not per individual.   

Genetic principal components 

The GRM can be used to calculate genetic principal components via singular value 

decomposition (SVD) of the mean-centered genotype matrix or via eigendecomposition of 

the GRM. (Comparison of Eigendecomposition and SVD) 

Principal component analysis (PCA) can be used to rotate a matrix in such a way, that each 

column (principal component) is orthogonal to each other column and the columns are 

sorted by the amount of variance explained. In genome wide genetic data, the first principal 

components usually capture ancestry or population stratification and can therefore be used 

to correct for these confounding factors. 

xt = scale(t(x01), scale=F) # transpose and mean center across 

individuals	

	

principal_axes_eigen        = eigen(grm2)$vectors	

principal_axes_svd          = svd(xt)$v	

principal_axes_prcomp       = prcomp(xt)$rotation	

	

principal_components_eigen  = xt %*% eigen(grm2)$vectors	

principal_components_svd1   = xt %*% svd(xt)$v	

principal_components_svd2   = svd(xt)$u %*% diag(svd(xt)$d)	

principal_components_prcomp = prcomp(xt)$x	

The above shows different ways to calculate genetic principal components. While the results 

are the same, the runtime can differ greatly. 

cor(principal_components_eigen[,1], principal_components_eigen[,2])	

## [1] 9.158365e-18	

All principal components are orthogonal to each other, so uncorrelated. 
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p1 = qplot(1:min(n,m), prcomp(xt)$sdev^2) + xlab('rank') + 

ylab('eigenvalues')	

p2 = qplot(principal_components_eigen[,1], 

principal_components_eigen[,2]) +	

  xlab('PC1') + ylab('PC2')	

grid.arrange(p1, p2, ncol=2)	

 

Figure 46: Genotype principal components 
Left: The eigenvalues of the GRM indicate what proportion of variance in the genotype is 

explained by the corresponding genetic principal component. Eigenvectors are sorted by the 

order of their eigenvalues, so the first principal components always explain more variance 

than the subsequent ones. Right: No structure in the simulated genotype data. 

	

Simulating genotypes with LD 

Real genotype data has LD, and to demonstrate some concepts, we have to briefly leave 

our cozy fantasy world of only independent SNPs. 

x012ld = jitter(x012[,rep(1:m, 1:m)[1:m]], .03)	

x01ld = scale(x012ld)	

ldld = (t(x01ld) %*% x01ld)/n	

grmld = (x01ld %*% t(x01ld))/m	

ldscores_sampleld = colSums(ldld^2)	

ldscoresld = (ldscores_sampleld*n - m) / (n + 1)	
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varxld = apply(x012ld, 2, var)	

	

greens = colorRampPalette(c('black', 'green'))(12)	

par(mfrow=c(1,2))	

image(ld1, col=greens)	

image(ldld, col=greens)	

 

Figure 47: LD matrix in data without and with LD 

par(mfrow=c(1,1))	

Effective number of SNPs 

When there is LD between SNPs, it is useful to have a quantity that describes how many 

independent SNPs there are. This is the effective number of SNPs, markers or chromosome 

segments (𝑀P), and can be defined as 

𝑀P =
𝑀
𝐥

 

where 𝐥 denotes the mean LD score across all SNPs. 

In practice, LD scores are often calculated based on a limited number of SNPs (for example 

2000 kb or 1 centimorgan), which makes them smaller, so they can't be used to calculate 

𝑀P. 

Because of the similarity of 𝐀 and 𝐋, 𝑀P can also be approximated as 
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𝑀P ≈
1

𝔼[𝐀,°0 ]
≈

1
𝑣𝑎𝑟(𝐀,°)

	

where 𝐀,° denotes all offdiagonal elements of 𝐀. 

m	

## [1] 500	

(me = m/mean(ldscores))	

## [1] 502.6183	

1/var(grm[upper.tri(grm)])	

## [1] 514.2901	

(meld = m/mean(ldscoresld))	

## [1] 24.11521	

1/var(grmld[upper.tri(grmld)])	

## [1] 24.47277	

𝑀P is smaller than the number of LD blocks in the data with LD. This is because larger blocks 

have higher weight. 

In an average European population of unrelated individuals 𝑀P is between 60,000 and 

70,000. 

		

Effective population size 

The effective population size (𝑁P) is the number of individuals that an idealized population 

would have to have to result in the parameters that are being observed in the real population 

and can be estimated in different ways, depending on what parameters are of interest. 

Due to the symmetry of 𝐀 and 𝐋, 𝑁 and 𝑀, one could expect that it can be simply estimated 

as A
𝔼[𝐋z,{

\ ]
, but it is in fact better approximated by: 

𝑁P ≈
1

4𝑐×𝔼[𝐋,°0 ]
≈

1
4𝑐×𝑣𝑎𝑟(𝐋,°)

	

where 4 accounts for the fact that humans have diploid, not haploid genomes and 𝑐 is the 

recombination rate. The absence of a term equivalent to 𝑐 in the estimation of 𝑀P reflects 

the assumption of random mating and thus an unstructured population. 
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n	

## [1] 400	

1/var(ld1[upper.tri(ld1)])	

## [1] 400.0754	

# estimate of recombination rate in this particular case	

recomb = sqrt(2*m)/m	

1/(var(ldld[upper.tri(ldld)]) * recomb)	

## [1] 391.0233	

Estimates of 𝑁P in human populations range from around 2,500 in European and Asian 

populations to around 6,000 in African populations, while 𝑐 is around 0.01 per Mb. 
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SNP effects - basics 

While the previous parts have been fun, quantitative genetics really on becomes interesting 

when it is studied in combination with one or more phenotypes, for example to estimate the 

effect that a SNP has on a phenotype. Here I will first describe a model to simulate 

phenotypes from genotypes, and then talk about different ways to estimate SNP effects. 

Modeling a phenotype 

A particular phenotype 𝑦 of an individual 𝑖 can be modeled as a combination of a genetic 

component, 𝑔, and an error component 𝑒: 

𝑦 = 𝑔 + 𝑒 

Some researchers choose to focus on the 𝑒 component and distinguish between 

environmental effects and various sources of error, but we will focus on the 𝑔 component 

and model 𝑒 as a normally distributed random variable which is independent of 𝑔. 

Here, we set up a model which says that the similarity (or differences) between our 𝑁 

individuals can be partitioned into a genetic component and an environmental / error 

component. 

𝑉𝑎𝑟[𝐲] = 𝑉𝑎𝑟[𝐠 + 𝐞] = 𝑉𝑎𝑟[𝐠] + 𝑉𝑎𝑟[𝐞] 

𝐠 and 𝐞 are independent by defintion, so the variance of the sum is the sum of the variances. 

𝑉𝑎𝑟[𝐲], 𝑉𝑎𝑟[𝐠] and 𝑉𝑎𝑟[𝐞] are all 𝑁×𝑁 variance-covariance matrices of the phenotypes, the 

genetic effects and the environmental effects. 

In contrast, the scalar variances 𝜎Æ0, 𝜎r0 and 𝜎P0, represent the variances of the phenotype, 

the total genetic effect and the environmental effect, respectively. 

𝜎Æ0 = 𝜎r0 + 𝜎P0 

So what is Var[e]? If we assume that the error term is independent and identically distributed 

(i.i.d.) for each individual, then 

𝑉𝑎𝑟[𝐞] = 𝜎P0𝐈5 
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where 𝐼5 is a 𝑁×𝑁 identity matrix. 

What about 𝑉𝑎𝑟[𝐠]? 𝑔° is the genetic part of the phenotype of an individual (also called 

genetic value or breeding value). The genotype of an individual is comprised of 𝑀 markers, 

each of which has a contribution proportional to the general effect size of this marker, 𝛽°, 

and the number of effect alleles (0, 1 or 2): 

𝑔 = 𝑋°

°

𝛽° 	

Written in matrix notation for all individuals, this becomes 

𝑔 = 𝐗@𝛃 

So 𝑉𝑎𝑟[𝐠] = 𝑉𝑎𝑟[𝐗𝛃]. Part of our model assumption is that we see SNP effects as random 

(they are drawn from a probability distribution), but genotypes as fixed (even though we also 

drew genotypes from a probability distribution to simulate them). This allows to write 

𝑉𝑎𝑟[𝐗𝛃] = 𝐗𝑉𝑎𝑟[𝛃]𝐗@ 

This is just a more general form of the rule 𝑣𝑎𝑟(𝑎𝑥) = 𝑎0𝑣𝑎𝑟(𝑥), for a constant 𝑎 and random 

variable 𝑥. If we assume that the true SNP effects are all i.i.d., and that the variances of all 

SNP effects add up to 𝜎r0, then 

𝑉𝑎𝑟[𝛃] =
𝜎r0

𝑀 𝐈Ú 

and so 

𝑉𝑎𝑟[𝐗𝛃] = 𝐗(
𝜎r0

𝑀 𝐈Ú)𝐗@ =
𝜎r0

𝑀 𝐗𝐗@ 

𝐗𝐗N

Ú
 is the GRM, so 

𝑉𝑎𝑟[𝐠] = 𝜎r0𝐀 

Putting it all together, we get 

𝑉𝑎𝑟[𝐲] = 𝜎r0𝐀 + 𝜎P0𝐈5 
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This is the model on which our phenotype simulations will be based and it is also the model 

underlying many other quantitative genetics methods. 

  

Limitations of the model 

All models are wrong; some models are useful. Most of this document describes how the 

model specified above is useful, but it is important to keep in mind the extent to which it is 

wrong. 

No	non-genetic	effects	

Apart from the inclusion of fixed effects, which is omitted here for simplicity, the model 

doesn't account for environmental effects. Specifically, the equation 𝑉𝑎𝑟[𝐲] = 𝜎r0𝐀 + 𝜎P0𝐈5 

states that the phenotypic similarity among individuals is partly due to genetic factors, and 

that the GRM tells us who should be similar to whom, and partly due to other factors, which 

are unique for each individual, and independent of their genetic relatedness. This 

assumption would not be justified when working with close relatives - close relatives share 

environments as well as genes. It is less problematic in unrelated individuals. 

No	dominance	effects	

Another assumption of our model is that for each SNP the effect of having two copies of the 

alternative allele is twice that of having on copy. In other words, we assume complete 

additivity and no dominance effects. This is not as bad as it sounds because the dominance 

effect is only whatever is left after removing the additive effect, and empirical data suggests 

that this is usually not a lot. 

No	epistasis	

Dominance can be seen as interaction effects of a SNP with itself, and epistasis describes 

interaction effects among different SNPs. For example, if there is a SNP which leads to a 

gene knockout, the effect of another SNP which can lead to a knockout of the same gene 

will depend on the first SNP. It seems at first that these effects should be ubiquitous, but as 

with dominance effects, empirical evidence does not suggest that all epistatic effect together 
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explain as much variance as the additive effects alone, partially because the interaction 

effects are again only what is left after accounting for additive effects. 

That's very useful, because the number of interactions among SNPs can grow very rapidly, 

which makes it hard to test them exhaustively. With 𝑀 SNPs, there are Ú(ÚYA)
0

 pairwise 

interactions, and pairwise interactions are only the simplest kind. 

Effect	size	distribution	

Although so far we have not specified any distribution of effect sizes, in the next section we 

will do so by drawing effects from a normal distribution. This makes the model more 

tractable, but is not a good approximation for traits with a few loci of large effects. However, 

for many polygenic traits this does not impose a great limitation, even if the true effect size 

distribution is not exactly normal. There are many tools and methods which try to better 

model a wide range of traits by assuming a different distribution of SNP effect sizes. 

		

Simulating a phenotype 

According to the model described above we will simulate our phenotypes. Here we will 

assume that all SNPs have an effect and that their effect size follows a normal distribution. 

h2 = 0.5	

beta01 = rnorm(m, 0, sqrt(h2/m))	

beta = beta01/sqrt(varx)	

g = x %*% beta	

# equivalent to g = x01 %*% beta01	

e = rnorm(n, 0, sqrt(1-h2))	

y = g + e	

	

var(y) # should be around 1	

##         [,1]	

## [1,] 1.04066	

Same for the data with LD: 
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gld = x01ld %*% beta01	

eld = rnorm(n, 0, sqrt(1-h2))	

yld = gld + eld	

Here we assume that the (SNP-)heritability is 0.5, and that the effect that each SNP has on 

the (scaled) phenotype assuming scaled genotypes (effect of 𝛃 on 𝐲 assuming 𝐗) is drawn 

from a normal distribution with mean 0 and variance Ù
\

Ú
. 

The effect of 𝛃 given 𝐗 is identical to the effect of 𝛃∗ given 𝐗∗: 

𝐗𝛃 = 𝐗∗𝛃∗ 

because 

𝛽° = 𝛽°∗× 𝑣𝑎𝑟(𝐗°) 

and 

𝑋° =
𝑋°∗

𝑣𝑎𝑟(𝐗°)
 

but by drawing 𝛃 from a normal distribution, not 𝛃∗, we ensure that 𝛃 is independent of 𝑝, 

but 𝛃∗ is not. Absolute values of 𝛃∗ will be larger for rare SNPs (low 𝑝). This models the 

expectation from natural selection which predicts that common variants will on average have 

smaller effects than rare variants. The seemingly innocuous scaling of genotypes therefore 

has a profound impact on the way in which the phenotype is modeled. There is some debate 

over whether this model uses the right relation between minor allele frequency and effect 

size, but the fact remains that it is very convenient to assume that the variance explained 

per SNP is independent of minor allele frequency. 

ma = function(x, n=10) stats::filter(x, rep(1/n, n), sides=2)	

p1 = qplot(maf, abs(beta01), col=maf) +	

  geom_line(data=data.frame(maf=sort(maf), 

beta01=ma(abs(beta01)[order(maf)])),	

            col='red', size=1) +	

  xlab('p') + ylab(expression(beta)) +	

  theme(legend.position='none')	
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p2 = qplot(maf, abs(beta), col=maf) +	

  geom_line(data=data.frame(maf=sort(maf), 

beta=ma(abs(beta)[order(maf)])),	

            col='red', size=1) +	

  xlab('p') + ylab(expression(paste(beta^"*"))) + 

theme(legend.position='none')	

grid.arrange(p1, p2, ncol=2)	

 

Figure 48: Relation between MAF and effect size 
𝛽 is independent of MAF, but 𝛽∗ increases with smaller MAF. 
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SNP effects - methods of estimation 

		

OLS effect estimate for one SNP (simple linear regression, GWAS) 

The simplest way to estimate the effect of a SNP on a quantitative trait is simple regression 

through OLS. Simple regression usually means that it is univariate, or one SNP at a time. 

This is what is done in GWAS. To contrast this with multivariate regression through OLS, I 

call the (marginal) estimates from univariate OLS 𝛃1243 and the (conditional or joint) 

estimates from multivariate OLS 𝛃C�3. 

The effect estimate in a simple linear regression is defined as: 

𝛃∗°,1243 =
𝐗°∗@𝐲
𝐗°∗@𝐗°∗

	

Or for standardized effects: 

𝛃°,1243 =
𝐗°@𝐲
𝐗°@𝐗°

≈
𝐗°@𝐲
𝑁 	

beta01_gwas = t(x01) %*% y / diag(t(x01)%*%x01)	

beta_gwas = t(x) %*% y / diag(t(x)%*%x)	

	

beta01_gwasld = (t(x01ld) %*% yld) / n	

beta_gwasld = beta01_gwasld / sqrt(varxld)	

	

p1 = qplot(beta, beta_gwas, col=maf) + geom_abline() +	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta, beta_gwas), 3))) +	

  theme(legend.position='none')	

	

# compare this with lm	

beta_gwas_lm = sapply(1:m, function(i) lm(y ~ x[,i])$coefficients[2])	

p2 = qplot(beta_gwas, beta_gwas_lm, col=maf) + geom_abline() +	

  theme(legend.position='none')	
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grid.arrange(p1, p2, ncol=2)	

 

Figure 49: GWAS effect estimates 
Left: true SNP effects vs GWAS estimates. Right: two identical ways to estimate the effect 

in R.	

		

OLS effect estimate for all SNPs (multiple regression, OLS) 

Rather than fitting one SNP at a time, we can also fit all SNPs at the same time. This will 

create effect estimates which are conditional on other SNPs. 

𝛃C�3 = (𝐗@𝐗)YA𝐗@𝐲	

if(n >= m) {	

  beta_ols = solve(t(x) %*% x) %*% t(x) %*% y	

} else {	

    # pseudo beta_ols	

  beta_ols =  solve(t(x) %*% x + diag(m)*1e-6) %*% t(x) %*% y	

}	

p1 = qplot(beta, beta_ols, col=maf) + geom_abline() +	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta, beta_ols), 3))) +	

  theme(legend.position='none')	
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# compare this with lm	

p2 = ggplot() + theme(panel.background = element_blank())	

if(n >= m) {	

  beta_ols_lm = lm(y ~ x)$coefficients[-1]	

  p2 = qplot(beta_ols, beta_ols_lm) + geom_abline()	

}	

grid.arrange(p1, p2, ncol=2)	

 

Figure 50: True effects vs multiple regression (OLS) estimates	

So what's the difference between the marginal single SNP GWAS model and the conditional 

multiple SNP OLS model? Imagine two SNPs with large, opposite effect size are in high LD. 

To the first model, this LD information is inaccessible, and because it can't control for the 

effect of the other SNP, it will calculate for each SNP an estimate of the combined effect of 

all the SNPs on the same haplotype block. In this case it means that the effects of both SNP 

cancel each other out and the GWAS estimate will be very small. 

The conditional OLS estimate on the other hand will be able to differentiate between the 

effects of both SNP, given 𝑁 is large enough (unless the LD correlation is one). This property 

of multiple regression can lead to more accurate estimates of the true effects. In our 

genotype model, all SNPs are independent, so there is not a large difference between 

conditional and marginal effects. However, the small chance correlation between SNPs that 

arises through the sampling process is enough to make conditional effect estimates different 

from marginal effect estimates. On the other hand, conditional effect estimates may not 
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always be what is desired. Let's assume that a haplotype block with many highly correlated 

SNPs contains only one SNP with a true, large effect. In a the marginal GWAS model, all 

correlated SNPs will pick up the signal from this one SNP. In the conditional OLS model, the 

effect may get smeared out over all correlated SNPs, if 𝑁 is not large enough to assign the 

effect to only the causal SNP. By smearing out the effect, none of the SNPs may be found 

to be significantly associated. 

There is also a computational difference between the two models: The multiple regression 

model is slower because the inversion of 𝐗@𝐗 can take time. 

Another problem with this model is that it is prone to overfitting the data, as Ú
5

 increases. 

This will lead to less accurate estimates of the true effect size. When 𝑀 > 𝑁, it becomes 

impossible to apply this model, because 𝐗@𝐗 will become singular. This problem is being 

addressed by the BLUP model. 

		

Best Linear Unbiased Prediction (BLUP) 

As mentioned before, the multiple regression OLS model above doesn't work if 𝑀 > 𝑁. If 

𝑀 > 𝑁 the system of equations is underdetermined (there are infinitely many solutions for 

𝛃, 𝐗@𝐗 is not positive semidefinite and cannot be inverted). Adding even very small values 

to the diagonal of 𝐗@𝐗 will change that and lead to a unique solution for 𝛃. This is called 

Ridge regression. The shrinkage parameter 𝜆 will make estimated effect sizes smaller and 

should be proportional to the amount of error in the model. In our case, the error is given by 

the non-genetic component of the phenotype (𝜎P or 1 − ℎ0 since we assume a phenotypic 

variance of 1) and 𝜆 is defined as 

𝜆 = 𝑀
1 − ℎ0

ℎ0  

While OLS effects for standardized 𝐗 and 𝛃 are defined as 

𝛃C�3 = (𝐗@𝐗)YA𝐗@𝐲 

BLUP can be written as 
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𝛃&�'6 = (𝐗@𝐗 + 𝜆𝐈Ú)YA𝐗@𝐲 

The equation above is equivalent to the following equation which is a function of the GRM, 

rather than the LD matrix: 

𝛃&�'6 = 𝐗@(𝐗𝐗@ + 𝜆𝐈5)YA𝐲 

This illustrates why it is equivalent to say that BLUP corrects for the LD between SNPs, and 

that it corrects for the genetic relatedness among individuals. 

The last equation can be rearranged to define BLUP as a function of the phenotypic 

variance-covariance matrix, 𝐕: 

𝛃&�'6 =
ℎ0

𝑀 𝐗@𝐕YA𝐲 

where 𝐕 = 𝜎r𝐀 + 𝜎P𝐈5 =
Ù\

Ú
(𝐗𝐗@ + 𝜆𝐈5). 

Here BLUP is defined for standardized genotypes and SNP effects, because the phenotypic 

covariance matrix, 𝐕, is defined based on standardized genotypes, but conversion between 

𝛃 and 𝛃∗ is always simple: 

𝛽°,&�'6
∗

≈
𝛽°,&�'6
2𝑝°(1 − 𝑝°)

	

lambda = m*(1-h2)/h2	

	

beta01_blup = solve(t(x01) %*% x01 + diag(m)*lambda ) %*% t(x01) %*% y	

beta_blup = beta01_blup / sqrt(varx)	

	

beta01_blupld = solve(t(x01ld) %*% x01ld + diag(m)*lambda ) %*% t(x01ld) 

%*% yld	

beta_blupld = beta01_blupld / sqrt(varxld)	

	

p1 = qplot(beta, beta_blup, col=maf) + geom_abline() +	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta, beta_blup), 3)))	
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p2 = qplot(beta_gwasld, beta_blupld, col=ldscoresld) + geom_abline() +	

  scale_colour_continuous(low='black', high='green')	

grid.arrange(p1, p2, ncol=2)	

 

Figure 51: BLUP effect estimates 
Left: Data without LD. BLUP estimates usually provide better estimates of the true effect 

size than GWAS estimates, so the correlation between 𝛽 and 𝛽&�'6 should be a bit larger 

than between 𝛽 and 𝛽1243. Right: Data with LD. Compared to GWAS estimates, BLUP 

estimates are shrunk, and the shrinkage is proportional to the LD score. 

	

The shrinkage factor 𝜆 can vary between 0 and ∞, as ℎ0 varies between 0 and 1. Consider 

what happens when ℎ0 becomes large: 𝜆 will go to 0 and 𝛃&�'6 will become equivalent to 

𝛃C�3. The same happens when 𝑀 decreases (since 𝜆 = 𝑀 AYÙ\

Ù\
) and also as 𝑁 increases, 

since 𝜆 will be small relative to the values in the 𝐗@𝐗 matrix to which it is added. 

What happens in the opposite case, as ℎ0 and 𝑁 get smaller and 𝑀 becomes larger? The 

matrix 𝐗@𝐗 + 𝜆𝐈 will become very heavy along its diagonal, so similar in structure to an 

identity matrix, but with large values. Consequently, 𝛃&�'6 will be shrunk very heavily 

towards 0, but become very similar to 𝛃1243. 

The importance of the shrinkage factor is not so much that it makes the effects smaller 

(although this can be useful as well, see winner's curse section). If we just wanted smaller 
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effects, we could just divide GWAS estimates by some factor, but this wouldn't affect the 

correlation with the true effects. 

The reason why the shrinkage factor is important is because it prevents the estimation 

procedure from placing too much weight on the correlation structure among SNPs and 

instead to focus more on the marginal effect of each SNP. This is especially important when 

𝑀 is large relative to 𝑁, because this makes it more difficult to estimate purely conditional 

effects accurately, while the estimability of each marginal effect only depends on 𝑁, not 𝑀. 

Notice that this model assumes that we know what 𝜎r0 and 𝜎P0 are (or just ℎ0 with 𝑣𝑎𝑟(𝐲) =

1). In practice, these parameters also have to be estimated from the data at the same time 

(see variance component estimation section). 

A practical tip for calculating BLUP solutions in R: Matrix multiplications are not 

commutative, but they are associative. That means the order can't change, but we can group 

them however we like, without changing the result. We can use this to greatly speed up the 

calculation of chained matrix multiplications, by forcing R to first evaluate the matrix - vector 

multiplications: 

invmat = solve(t(x01) %*% x01 + diag(m)*lambda )	

	

system.time( invmat %*% t(x01) %*% y )	

##    user  system elapsed 	

##   0.083   0.002   0.089	

system.time( invmat %*% (t(x01) %*% y) )	

##    user  system elapsed 	

##   0.002   0.000   0.001	

BLUP	only	has	an	advantage	over	OLS	in	two	or	more	dimensions:	

if(is.null(out_type)) out_type = ''	

if(out_type != 'html') knit_hooks$set(rgl = hook_rgl, webgl = hook_webgl)	

sam = 5	

x1 = rbinom(sam, 2, .45)	

x2 = rbinom(sam, 2, .43)	

z = rnorm(sam) - x2	

dat = data.frame(x1, x2 , z)	



269 

 

mfrow3d(nr = 1, nc = 2, sharedMouse = TRUE)	

scatter3d(z ~ x1 + x2, data=dat, xlab='x1', ylab='y', zlab='x2', 

axis.scales=F,	

          fill=out_type=='html', fit='linear')	

scatter3d(z ~ x1 + x2, data=dat, xlab='x1', ylab='y', zlab='x2', 

axis.scales=F,	

          fill=out_type=='html', fit='ridge', lambda=5)	

fn = spin3d(axis = c(0, 1, 0))	

rglwidget() %>%	

  playwidget(controls=par3dinterpControl(fn, 0, 100, steps = 100,	

            subscene=subsceneList()[[1]]), step=0, components=c('Play')) 

%>%	

  playwidget(controls=par3dinterpControl(fn, 0, 100, steps = 100,	

            subscene=subsceneList()[[2]]), step=0, components=c('Play'))	

	

 

Figure 52: Left: OLS; right: BLUP 
Each dot represents an individual with two SNPs (x1 and x2) and a phenotype (y). The 

surface on the left is the OLS fit to the data, which minimizes the sum of the squared 

residuals. The slope along the dimensions x1 and x2 represents 𝛽A and 𝛽0. Here, N is large 

relative to M (2). If that were not the case, the OLS model could easily overfit the data. To 

prevent that, BLUP softens the objective of minimizing the squared residuals (green 

segments), by modeling the y-values not as fixed values, but as measurements with a 

normally distributed error. The BLUP objective function is then to minimize the sum of 
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squared residuals, while at the same time limiting the estimated beta values (preventing the 

surface from becoming too steep). The purple lines are the marginal effects for the two 

SNPs. On the left, they are just GWAS effects and on the right, they are shrunk marginal 

effects. BLUP effects should be closer to the marginal effects than OLS effects are to 

marginal effects. 

 

	

		

Mixed linear model association (MLMA) 

In a standard GWAS setting, the first 10 or 20 principal components are often fitted as 

covariates to correct for population stratification. A different approach is to run a mixed linear 

model association analysis, which is sometimes said to be similar to fitting all principal 

components, as it fits the whole GRM, which contains the same information as all principal 

components. 

While GWAS estimates are based on ordinary least squares (OLS), MLMA estimates are 

based on generalized least squares (GLS). 

The GWAS association statistic is based on univariate OLS and is 

𝛽°,1243 =
𝐗°@𝐲
𝐗°@𝐗°

 

and the MLMA association statistic is based on univariate GLS and is 

𝛽°,Ú�Ú4 =
𝐗°@𝐕YA𝐲
𝐗°@𝐕YA𝐗°

 

where 𝐕 is the phenotypic variance covariance matrix: 

𝐕 = 𝑉𝑎𝑟[𝐲] = 𝜎r0𝐀 + 𝜎P0𝐈 =
ℎ0

𝑀 (𝐗𝐗@ + 𝜆𝐈5) 

Strictly speaking, the 𝐕 matrix should be based on a GRM which includes all SNPs except 

the SNP for which the association statistic is calculated, so that this SNP is not fitted twice 

in the model. This is impractical because it would require to compute a different GRM for 
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each SNP. What is therefore often done in practice is to have 23 GRMs, where each 

chromosome is left out in one of them, and each SNP is modelled with the GRM that doesn't 

include that SNP (GCTA MLMA-LOCO). 

When we compare the definition of 𝛽°,Ú�Ú4 here to 𝛽°,&�'6, we see that they are closely 

related. In fact, 𝛽°,Ú�Ú4 can be expressed like this: 

𝛽°,Ú�Ú4 =
𝑀
ℎ0

𝛽°,&�'6
𝐗°@𝐕YA𝐗°

 

The un-standardized MLMA effects can be obtained like this: 

𝛽∗°,Ú�Ú4 =
𝐗°∗@𝐕YA𝐲
𝐗°∗@𝐕YA𝐗°∗

≈
𝛽°,Ú�Ú4

(2𝑝°(1 − 𝑝°))
 

V = h2*grm + (1-h2)*diag(n)	

Vi = solve(V)	

beta_mlma = (t(x) %*% Vi %*% y) / diag(t(x) %*% Vi %*% x)	

beta01_mlma = beta_mlma * sqrt(varx)	

	

p1 = qplot(beta_gwas, beta_mlma, col=ldscores) + geom_abline() + theme() 

+	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta_gwas, beta_mlma), 3))) +	

  scale_colour_continuous(low='black', high='green')	

p2 = qplot(beta_blup, beta_mlma, col=ldscores) + geom_abline() + theme() 

+	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta_blup, beta_mlma), 3))) +	

  scale_colour_continuous(low='black', high='green')	

grid.arrange(p1, p2, ncol=2)	
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Figure 53: MLMA estimates compared to other estimates in data without LD 
MLMA estimates are not shrunk and therefore about as large as GWAS estimates. 

	

Let's see what this comparison looks like in data with a wider range in LD scores. 

Vld = h2*grmld + (1-h2)*diag(n)	

Vild = solve(Vld)	

beta_mlmald = (t(x01ld) %*% Vild %*% yld) / diag(t(x01ld) %*% Vild %*% 

x01ld) / sqrt(varxld)	

beta01_mlmald = beta_mlmald * sqrt(varxld)	

	

p1 = qplot(beta_gwasld, beta_mlmald, col=ldscoresld) + geom_abline() +	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta_gwasld, beta_mlmald), 

3))) +	

  scale_colour_continuous(low='black', high='green')	

p2 = qplot(beta_blupld, beta_mlmald, col=ldscoresld) +	

  geom_point() + geom_abline() + theme() +	

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2,	

           label=paste0('corr: ', round(cor(beta_blupld, beta_mlmald), 

3))) +	

  scale_colour_continuous(low='black', high='green')	

grid.arrange(p1, p2, ncol=2)	
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Figure 54: MLMA estimates compared to other estimates in data with LD 
In data with more variable LD between SNPs, MLMA estimates are more similar to the 

marginal GWAS estimates than to the conditional BLUP estimates. Conditioned on LD 

score, BLUP estimates are proportional to MLMA estimates. 

	

		

Comparison of the models 

𝛽°,1243 =
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐲
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐗°

	

The	covariance	of	SNP	and	phenotype,	scaled	by	the	variance	of	the	SNP.	

		

𝛽°,C�3 =
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐲
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐗°

	

The	covariance	of	SNP	and	phenotype,	scaled	by	the	covariance	structure	of	all	SNPs.	

		

𝛽°,&�'6 =
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐲
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐗°
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The	covariance	of	SNP	and	phenotype,	scaled	by	the	covariance	structure	of	all	SNPs,	without	

overemphasizing	the	covariances	among	SNPs.	

		

𝛽°,Ú�Ú4 =
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐲
(𝜆Ú𝐈 + 𝐗@𝐗)°YA𝐗°@𝐗°

	

Like	𝛽°,&�'6 ,	but	scaled	back	so	that	effects	are	not	shrunk	if	they	are	in	LD	with	many	other	

SNPs.	

		

  



275 

 

SNP effects - precision of estimates 

		

Almost as important as the estimate itself is the standard error of the estimate. This 

quantifies the variability of the estimate that is due to the sampling process and thus the 

precision of the estimate. The standard error of an estimate is the basis for other statistics 

like p-values and confidence intervals and is defined as 

𝑆𝐸
D
0 = 𝑣𝑎𝑟(𝛽 ∣ 𝛽) = 𝑣𝑎𝑟(𝛽 − 𝛽) 

We don't usually know 𝛽, but we can still estimate what the standard error of an effect 

estimate is. 

Sampling variance of GWAS estimates 

The standard error of the GWAS estimate of the effect size of a SNP is: 

𝑆𝐸
D∗{,ØQR6

0 = 𝑣𝑎𝑟(𝛽∗°,1243 ∣ 𝛽°
∗) =

𝑣𝑎𝑟(𝐲) − 𝑣𝑎𝑟(𝐗°∗) 𝛽∗°,1243

0

𝑁×𝑣𝑎𝑟(𝐗°∗)
 

Here the numerator represents the variance in the phenotype that is not explained by this 

SNP. Since under a polygenic model, each SNP explains almost no variance 

(𝑣𝑎𝑟(𝐗°∗) 𝛽∗°,1243

0
 is close to 0), and 𝑣𝑎𝑟(𝐲) is often one, the numerator is often approximated 

as one: 

𝑆𝐸
D∗{,ØQR6

0 = 𝑣𝑎𝑟(𝛽∗°,1243 ∣ 𝛽°
∗) ≈

1
𝑁×𝑣𝑎𝑟(𝐗°∗)

=
1

𝑁×2𝑝°(1 − 𝑝°)
 

It gets even simpler when switching to standardized genotypes and effect sizes: Since 

𝑣𝑎𝑟(𝐗°) = 1 for every SNP 𝑗, the sampling variance of 𝛽°,1243 is 

𝑆𝐸
D{,ØQR6

0 = 𝑣𝑎𝑟(𝛽°,1243 ∣ 𝛽) ≈
1
𝑁 

Let's see how the expected sampling variance compares to the observed sampling variance, 

stratified by MAF: 
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beta_se = sqrt(1/(n*varx))	

observed_beta_sampling_variance = tapply(beta_gwas - beta, bins, var)	

expected_beta_sampling_variance = tapply(beta_se^2, bins, mean)	

	

dat = data.frame(binNum=1:length(binMeans),	

                 expected_beta_sampling_variance,	

                 observed_beta_sampling_variance)	

ggplot(dat, aes(expected_beta_sampling_variance, 

observed_beta_sampling_variance)) +	

  geom_text(aes(label=binNum, col=binMeans)) +	

  scale_x_log10() + scale_y_log10() +	

  geom_abline() +	

  xlab(expression(paste(hat(SE)[hat(beta)]^2,	

                        '  (',hat(var),'(',hat(beta),' | ',beta,'))'))) +	

  ylab(expression(paste('var(',hat(beta),' | ',beta,')')))	

 

Figure 55: The standard error of 𝜷1243 is higher for rare SNPs 
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Sampling variance of MLMA estimates 

If 𝑣𝑎𝑟(𝐲 = 1) and if each SNP explains only very little variance, the sampling variance of 

𝛽∗°,1243 can be approximated as 

𝑆𝐸
D∗{,ØQR6

0 ≈
1

𝑁×𝑣𝑎𝑟(𝐗°∗)
=

1
𝐗°∗@𝐗°∗

 

Similarly, the standard error for MLMA estimates can be approximated as 

𝑆𝐸
D∗{,STSR

0 ≈
1

𝐗°∗@𝐕YA𝐗°∗
 

		

z-scores	

z-scores are defined as 

𝑧 =
𝑥 − 𝔼[𝑥]
𝜎(𝑥)  

where 𝜎(𝑥) is the standard deviation of 𝑥. It quantifies how far a statistic is from its 

expectation in standard deviation units and it should follow a standard normal distribution. 

We can calculate the z-score of an effect estimate under the null hypothesis (𝔼[𝛃] = 0) 

𝑧° =
𝛽∗°
𝑆𝐸D∗{

 

Since the 𝜒�0 distribution with 𝑘 degrees of freedom is the same as a sum of 𝑘 independent 

standard normal distributions, z-scores are closely related to 𝜒0 values with degree of 

freedom of 1: 

𝑧0 = 𝜒A0 

Strictly speaking, 
D∗{
33

X∗{

 follows a t-distribution with 𝑁 − 1 degrees of freedom, not a standard 

normal distribution, but for large 𝑁 the difference becomes negligible. 
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p-value of GWAS estimates 

The z-score tells us where on the null distribution our effect estimate lies. It can therefore be 

converted into a (two-sided) p-value, which is the probability of observing an effect at least 

as extreme as the one estimated, under the null distribution. 

p − valueD∗{
= 2×𝑚𝑖𝑛{𝑃𝑟(𝛽∗ ≥ 𝛽∗° ∣ 𝛽

∗ = 0),𝑃𝑟(𝛽∗ ≤ 𝛽∗° ∣ 𝛽
∗ = 0)}

= 2𝛷(−
| 𝛽∗° |
𝑆𝐸

D{
∗
)

= 2𝛷(−| 𝑧 |)

 

where 𝛷(𝑥) is the probability distribution function of the standard normal distribution at 𝑥 

(pnorm) and 𝛽∗ denotes the random variable rather than the concrete estimate of 𝛽∗°. 

To go from two-sided p-values to z-scores: 

𝑧 = 𝛷YA(
p − value

2 ) 

where 𝛷YA(𝑥) is the quantile function of the standard normal distribution at 𝑥 (qnorm). 

lim = 3	

z = 1.5	

ggplot(data.frame(x=c(-lim, lim)), aes(x)) + stat_function(fun=dnorm) +	

  stat_function(fun=dnorm, geom='area', xlim=c(z, lim), fill='purple', 

alpha = 0.2) +	

  stat_function(fun=dnorm, geom='area', xlim=c(-lim, -z), fill='purple', 

alpha = 0.2) +	

  geom_vline(xintercept=z, linetype=2) +	

  annotate('text', z+.11, .2,	

           

label=as.character(expression(paste("z=",frac(hat(beta),SE[beta])))),	

           parse=T, hjust=0) +	

  ylab(expression(phi(x)))	
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Figure 56: z-score and p-value 
The vertical line represents a z-score. The total area of the shaded segments represents 

the p-value. 

	

par(mfrow=c(1,4))	

z = beta_gwas/beta_se	

pval = 2*pnorm(-abs(z))	

	

plot(beta_gwas, -log10(pval), main='Volcano plot')	

hist(pval, 100, col='black')	

qqPlot(pval, main='qq-plot')	

plot(-log10(pval), main='Manhattan plot')	
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Figure 57:	Different ways to visualize p-values. 
Most are based on negative 𝑙𝑜𝑔A² transformed p-values, to better highlight the more 

interesting small p-values. Volcano plots illustrate that SNPs with larger absolute 𝜷∗ values 

tend to have lower p-values. Histograms of p-values are useful, because under the null 

hypothesis, p-values will follow a uniform distribution between 0 and 1. QQ-plots can also 

highlight an overall inflation of p-values, but with better resolution at the lower end. 

Manhattan plots from GWAS p-values usually show peaks of multiple SNPs with low p-

values, because of LD.	

par(mfrow=c(1,1))	

		

Re-estimating GWAS statistics 

The equations above can be rearranged to estimate various statistics. To keep things 

simpler, in this section 𝑆𝐸0 refers to 𝑆𝐸D{,ØQR6
∗
0  and 𝛽 refers to 𝛽°∗. The approximations assume 

that 2𝑝(1 − 𝑝)𝛽0 is close to zero. 

𝑆𝐸0 =
𝑣𝑎𝑟(𝐲) − 2𝑝(1 − 𝑝)𝛽0

𝑁×2𝑝(1 − 𝑝) ≈
𝑣𝑎𝑟(𝐲)

𝑁×2𝑝(1 − 𝑝) 

 

 

𝑁 =
𝑣𝑎𝑟(𝐲) − 2𝑝(1 − 𝑝)𝛽0

𝑆𝐸0×2𝑝(1 − 𝑝) ≈
𝑣𝑎𝑟(𝐲)

𝑆𝐸0×2𝑝(1 − 𝑝) 

 

 

𝑣𝑎𝑟(𝐲) = 2𝑝(1 − 𝑝)(𝑁×𝑆𝐸0 + 𝛽0) ≈ 2𝑝(1 − 𝑝)×𝑁×𝑆𝐸0 
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𝛽0 =
𝑣𝑎𝑟(𝐲)
2𝑝(1 − 𝑝) − 𝑁×𝑆𝐸

0 

This one doesn't tell us about the sign of 𝛽, however. 

 

 

𝑝(1 − 𝑝) =
𝑣𝑎𝑟(𝐲)

2(𝑁×𝑆𝐸0 + 𝛽0) 

The last one can be solved for p, and only leaves two options which center around 0.5. 

When working with GWAS summary statistics, all of these quantities except 𝑣𝑎𝑟(𝐲) are 

usually known. When 𝑣𝑎𝑟(𝐲) can be assumed to be one, sample size or standard error can 

be re-estimated from the other quantities. When 𝛽 refers to standardized 𝛽, 2𝑝(1 − 𝑝) should 

be set to 1. 

	

	

Confidence intervals and power 

While p-values are widely used, they often draw criticism for their potential to be misused. 

An alternative to reporting p-values can be to report confidence intervals, which describe 

the range in which the estimated value would fall with a certain probability, if the sampling 

process was repeated. If the sampling distribution is normal, the 95% confidence interval 

can be estimated as 𝛃 ± 1.96×𝑆𝐸𝛃 (because 1 − 2𝛷(−1.96) ≈ 0.95). A 95% confidence 

interval that does not include 0 is equivalent to a p-value smaller than 0.05 for an effect 

being different from 0. 

plot_power(n=200, reps=30, b=0.2, xlim=c(-.25,.5), ylim=c(0,6))	
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Figure 58: Draws from the sampling distribution and from the null distribution 
This plot shows a number of draws from the null distribution and the same number of draws 

from the sampling distribution of the effect estimate. The horizontal bars are standard errors, 

and are like a 68% confidence interval (because 1 − 2𝛷(−1) ≈ 0.68). Each standard error 

represents an estimate of what the (square root of the) variance of the sampling distribution 

is. 

	

An important question in hypothesis testing is this: What is the probability that we will be 

able to reject the null hypothesis (𝛃 = 0), if there is a true effect of a certain magnitude? This 

probability depends at least on the sample size and on how willing we are to mistake a null 

effect for a true effect (type I error, 𝛼). Not rejecting the null hypothesis when there is a true 

effect is called a type II error and is the opposite of power. This means that being strict in 

controlling the type I error rate (small 𝛼) will reduce power. 

plot_power(n=200, reps=30, b=0.2, alpha=0.05, show_points=F, xlim=c(-

.25,.5), ylim=c(0,6))	
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Figure 59: Power visualized 
In this plot 𝛼 is the red area (as a proportion of the area under the null distribution (𝐻²)), and 

the power is the blue area (as a proportion of the area under the true effect sampling 

distribution (𝐻A)). Power is also 1 − 𝛽, where 𝛽 is the type II error rate (green area). 

	

plot_power(n=40, reps=30, b=0.2, alpha=0.05, show_points=F, xlim=c(-

.25,.5), ylim=c(0,6))	
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Figure 60: The effect of sample size on power 
Lowering sample size will widen both distributions, and thereby increases the threshold at 

which an estimated effect can be considered significant at the same level of 𝛼, thus lowering 

power. 

	

plot_power(n=40, reps=100, b=0.2, alpha=0.05, show_points=T, show_se=F,	

           xlim=c(-.25,.5), ylim=c(0,6))	
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Figure 61: Power determines the proportion of true positive results 

Evaluating in which of the four quadrants estimated effects fall, allows to estimate the 

numbers of true and false positives and negatives, and many statistics derived from these 

values, such as the area under the ROC curve (AUC). 

	

Here, the null distribution and the sampling distribution of the true effect both follow normal 

distributions (t-distributions actually, but we ignore that). When the null distribution is a 𝜒0 

distribution instead, the true effect distribution will follow a non-central 𝜒0 distribution. 

 

Prediction error variance (PEV) of BLUP estimates 

The precision of BLUP estimates is usually given as a variance-covariance matrix, rather 

than as a scalar number and is usually defined for the genetic effects rather than the SNP 

effects, which is why it is called prediction error variance, but here we define it for the SNP 

effects: 
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𝑉𝑎𝑟 𝛃&�'6 𝛃 = 𝑉𝑎𝑟 𝛃&�'6 − 𝛃  

= 𝑉𝑎𝑟 𝛃 + 𝑉𝑎𝑟 𝛃&�'6 − 2𝐶𝑜𝑣 𝛃,𝛃&�'6  

= 𝑉𝑎𝑟 𝛃 + 𝑉𝑎𝑟 𝛃&�'6 − 2𝑉𝑎𝑟 𝛃&�'6  

= 𝑉𝑎𝑟[𝛃] − 𝑉𝑎𝑟[𝛃&�'6] 

Notice that while 𝑣𝑎𝑟(𝛃1243) > 𝑣𝑎𝑟(𝛃), 𝑣𝑎𝑟(𝛃&�'6) < 𝑣𝑎𝑟(𝛃). 

From before, we know that 𝑉𝑎𝑟[𝛃] = Ù\

Ú
𝐈Ú 

Recall that the BLUP solution can be written as: 

𝛃&�'6 =
ℎ0

𝑀 𝐗@𝐕YA𝐲 

The variance of that is: 

𝑉𝑎𝑟[𝛃&�'6] = 𝑉𝑎𝑟[
ℎ0

𝑀 𝐗@𝐕YA𝐲] = (
ℎ0

𝑀)
0𝐗@𝐕YA𝐗 

Therefore, 

𝑉𝑎𝑟[𝛃− 𝛃&�'6] = 𝑉𝑎𝑟[𝛃] − 𝑉𝑎𝑟[𝛃&�'6] =
ℎ0

𝑀 (𝐈Ú −
ℎ0

𝑀 𝐗@𝐕YA𝐗) 

The diagonal elements of this matrix should be similar to 𝑣𝑎𝑟(𝛃− 𝛃&�'6). 

beta01_blup_se2 = var(beta01_blup - beta01)	

pev = (h2/m) * (diag(m) - (h2/m) * t(x01) %*% Vi %*% x01)	

	

c(beta01_blup_se2, mean(diag(pev)))	

## [1] 0.0006994066 0.0006773369	

However, this is not as useful as the standard error estimates given above, because it is a 

function of the data, not just of the parameters. The section on the expected accuracy of a 

BLUP predictor has an expression which serves at the same time as an estimate of the 

BLUP PEV as a function of the parameters: 
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𝑐𝑜𝑟0(𝐲, 𝐠) = 𝑣𝑎𝑟(𝐠) = 𝑅0 =
ℎ0

1 +𝑀P(1 − 𝑅0)
𝑁ℎ0

	

𝑣𝑎𝑟(𝛃− 𝛃&�'6) = 𝑣𝑎𝑟(𝛃) − 𝑣𝑎𝑟(𝛃&�'6) =
ℎ0

𝑀 −
𝑅0

𝑀 =
ℎ0 − 𝑅0

𝑀 	

		

R2_BLUP = function(m, n, h2) { 

  k = m/n 

  ( (k + h2) - sqrt( (k+h2)^2 - 4*k*h2^2) ) / (2*k) 

} 

 

c(beta01_blup_se2, mean(diag(pev)), (h2 - R2_BLUP(m, n, h2))/m) 

## [1] 0.0006994066 0.0006773369 0.0006770330 

The BLUP PEV is substantially lower than the standard errors of the GWAS effect estimate. 

This is only partially due to the higher accuracy of BLUP estimates and mostly reflects the 

downward bias of BLUP estimates. 
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SNP effects - further topics 

		

Winner's curse and unbiasedness 

When the SNP with the largest effect is being selected from a GWAS, its estimated effect 

size is likely going to be larger than its true effect size. This phenomenon is called winner's 

curse. If we estimated the effect of the same SNP again in and independent cohort, we 

would likely get a smaller estimate in the new cohort. This closely related effect is called 

regression to the mean and is just a consequence of how we selected the SNP and the 

imperfect correlation between the true and the estimated effect size. 

If we estimated the effect for this same SNP many times in independent cohorts, the effect 

estimates will center around the SNP's true effect size. GWAS estimates are therefore 

unbiased in the sense that conditioned on the true effect, the estimated effect will in 

expectation be the same as the true effect: 

𝔼[𝛽 ∣ 𝛽] = 𝛽 

However, when we select the SNP with the largest estimated effect size, we don't condition 

on the true effect, we condition on the estimated effect. So we know the estimated effect, 

and ideally we would like an estimate that tells us what the true effect size is, in expectation. 

It's therefore often handy to have another definition of unbiasedness, which says that the 

estimated effect is equal to the expectation of the true effect, conditioned on the estimated 

effect: 

𝔼[𝛽 ∣ 𝛽] = 𝛽 

GWAS estimates (OLS, which is a BLUE, best linear unbiased estimators) are unbiased in 

the first sense, but biased in the second (they suffer from winner's curse but are not shrunk), 

whereas BLUP (best linear unbiased prediction) estimates are biased in the first sense but 

unbiased in the second (they don't suffer from winner's curse but are shrunk). 
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Figure 62: Two definitions of unbiasedness visualized 
First row: conditioning on true effects. Second row: conditioning on estimated effects. 

	

Both meanings of unbiasedness have an implication on what the covariance between true 

and estimated effect sizes is. For unbiasedness in the first (OLS) sense: 

𝑐𝑜𝑣(𝛽, 𝛽1243) = 𝑣𝑎𝑟(𝛽) 

and for unbiasedness in the second (BLUP) sense: 

𝑐𝑜𝑣(𝛽, 𝛽&�'6) = 𝑣𝑎𝑟(𝛽&�'6) 

This is why the regression slopes in the above plots are around one, if the unbiasedness 

condition is met (slope	of	y			x = M.h(H,Æ)
hNW(H)

). 

		

Fixed effects vs random effects 

By now the terms fixed effects and random effects have been mentioned a few times without 

having been defined. If you, as I have, looked online what the definition of fixed and random 

effects is, chances are you are a bit confused at this point. There are many different 

definitions of these terms that have little in common with one another. One thing that 
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everyone can agree on is that a mixed effects model gets its name from having both fixed 

and random effects. 

Here is how the terms fixed and random effects are used in the present context: SNP effects 

are modeled as random effects, everything else (age, sex, a couple of principal components, 

cohort) is modeled as fixed effects (here, we don't have any fixed effects for simplicity). In 

concrete terms that means that in a mixed effects model OLS or GLS (generalized least 

squares) is used to estimate fixed effects (without shrinkage) and BLUP is used to estimate 

random effects (with shrinkage). Both can be estimated simultaneously in a mixed effects 

model to account for the covariance between fixed and random effects (see Henderson's 

mixed model equation). Usually the fixed effects are much smaller in number than the 

random effect (SNPs). That means that there is a practical reason for modelling SNPs as 

random: With 𝑀 > 𝑁 it is impossible to estimate the effect of each SNP without shrinkage. 

Sometimes you will also hear that random effects are modelled as coming from a random 

distribution, whereas fixed effects are not. This is equivalent to the above statement about 

shrinking effect sizes, because BLUP can be viewed as a Bayesian method which assumes 

that the SNP effects come from a normal prior distribution with a mean of 0 and a variance 

that is determined by ℎ0: Low ℎ0 means the prior distribution will have a small variance, so 

all effects will be shrunk heavily towards 0. A large ℎ0 means that the prior distribution will 

have a large variance, and so it will be less informative and will have a smaller effect on the 

posterior distribution of effect sizes (the BLUP estimates), so that the effects will be shrunk 

less. A fixed effect is thus equivalent to a random effect with a prior distribution that has 

infinite variance and will not be shrunk at all. Growing sample size will not affect the absolute 

value of the shrinkage factor 𝜆, but it will make it smaller relative to the diagonal elements in 

𝐗@𝐗, so the prior distribution will have less effect on the posterior distribution. 
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Figure 63: Distribution of true and estimated effect sizes 
The green shaded area represents the prior distribution for the BLUP effect size estimation 

and should closely follow the distribution of the true effect sizes. The "prior distribution" of 

the GWAS effect estimates has infinite variance. 

 

This is in contrast with another definition of random effects, which occurs in the context of 

hierarchical models with multiple observations in different groupings, for example multiple 

observations per individual. According to this definition, the effect of an individual would be 

treated as a random, if the people on which data have been collected were of no particular 

interest, and if those people are rather seen as random sample of a bigger population. 

The SNP model is an adaptation from the earlier pedigree model which was used to estimate 

breeding values of cows and other animals. This pedigree model does indeed have a 

hierarchical, nested structure in which multiple cows belonging to the same family are being 

grouped together. A random effect in the pedigree model is a random effect according to 

both definitions. With the introduction of SNP genotyping arrays, the model has been 

adapted so that relationships between cows were not modeled anymore by grouping them 



292 

 

into families, but by treating them all as unrelated and calculating their genetic similarity 

using genome wide SNP data. The pedigree based relatedness matrix has been replaced 

by the GRM, and the term random effects for breeding values / genetic effects is still used, 

but the term random effects now only refers to the first definition. 

		

 
 
Meta-analysis 

Often GWAS are performed on smaller cohorts. The summary statistics (𝛽1243 and 

𝑆𝐸DØQR6
) of multiple smaller GWAS can be combined to increase power. This is in contrast 

to a Mega-analysis in which individual level genotype data from multiple small cohorts is 

combined. 

In this and the next section, 𝛽 is short for 𝛽°,1243 and can also refer to the non-standardized 

version of the effect estimate (𝛽∗°,1243). 

Meta analyzed 𝛽 values over 𝑐 cohorts can be obtained as: 

𝛽Ú3Å4 =

𝛽M
𝑆𝐸

D/

0
M

1
𝑆𝐸

D/

0
M

  𝑆𝐸DS7lR
=

1
1

𝑆𝐸
D/

0
M

 

Let's get meta-analyzed summary statistics first. 

cohort_stats = list()	

num = 10	

first = floor(seq(1, n+1, len=num+1))	

last = first[-1]-1	

for(i in 1:num) {	

  nc = last[i] - first[i]	

  xc = x[first[i]:last[i],]	
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  yc = y[first[i]:last[i],]	

  betac = t(xc) %*% yc / diag(t(xc)%*%xc)	

  sec = sqrt(1/(varx*nc))	

  cohort_stats[[i]] = data.frame(betac, sec)	

}	

And now meta-analyze them, one cohort at a time. 

numer_one_cohort = lapply(cohort_stats, function(x) x$betac/x$sec^2)	

denom_one_cohort = lapply(cohort_stats, function(x) 1/x$sec^2)	

numer_sums = do.call('cbind', Reduce(`+`, numer_one_cohort, accumulate = 

TRUE))	

denom_sums = do.call('cbind', Reduce(`+`, denom_one_cohort, accumulate = 

TRUE))	

beta_meta = numer_sums/denom_sums	

	

dat = data.frame(maf, beta_gwas, beta_meta=beta_meta[,num])	

ggplot(dat, aes(beta_gwas, beta_meta, col=log10(maf))) +	

  geom_point() + geom_abline()	



294 

 

 

Figure 64: Effect estimates from a meta-analysis and a mega-analysis 
Low MAF SNPs are more likely to be outliers. 

	

minmaf = .1	

cor_mega = cor(beta[maf > minmaf], beta_gwas[maf > minmaf])	

corrs = sapply(1:num, function(i) cor(beta[maf > minmaf], beta_meta[maf > 

minmaf, i]))	

	

dat = data.frame(name=c(num+1, 1:num), corr=c(cor_mega, corrs))	

ggplot(dat, aes(as.factor(name), corr, fill=corr)) +	

  geom_col() +	

  scale_x_discrete(labels=c(1:num, 'mega')) +	

  xlab('number of cohorts in meta-analysis') +	

  ylab('correlation between meta-analyzed and true effects') +	

  scale_fill_gradient(low='black', high='purple')	
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Figure 65: Sequentially adding more cohorts to a meta-analysis	

		

	

	

De-meta-analysis 

It	is	also	possible	to	exclude	the	effects	of	one	cohort	from	GWAS	summary	statistics,	using	a	

de-meta-analysis:	

𝛽m3YÚ3Å4 = 𝛽Ú3Å4 − 𝑆𝐸Dn7ÛS7lR
0 𝛽M − 𝛽Ú3Å4

𝑆𝐸
D/

0

M

	

		

𝑆𝐸Dn7ÛS7lR
=

1
1

𝑆𝐸
DS7lR

0 − 1
𝑆𝐸

D/

0
M
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Variance of GWAS estimates 

We have previously looked at the sampling variance of a SNP effect estimate, 𝑣𝑎𝑟(𝛽°,1243 ∣

𝛽°). Often variance of a SNP effect estimate, 𝑣𝑎𝑟(𝛽°,1243), is also of interest. While 

𝑣𝑎𝑟(𝛽°,1243 ∣ 𝛽°) estimates the variance of 𝛽°,1243, assuming that the true effect size is kept 

constant but the sampling process is repeated, 𝑣𝑎𝑟(𝛽°,1243) estimates the variance of 

𝛽°,1243 assuming that both the assignment of a true effect and the sampling process are 

repeated. 

If 𝑣𝑎𝑟(𝛽°,1243) is i.i.d. for all SNPs 𝑗, 𝑣𝑎𝑟(𝛽°,1243) will be equal to the variance across all 

SNPs, 𝑣𝑎𝑟(𝛃1243). The true effect sizes are i.i.d., and this is why 𝑣𝑎𝑟(𝛽°) = 𝑣𝑎𝑟(𝛃) = Ù\

Ú
. 

		

Variance	of	standardized	GWAS	estimates	

From an earlier section we know that if 𝑣𝑎𝑟(𝐲) = 1 and the variance explained per SNP is 

small, 

𝑣𝑎𝑟(𝛽°,1243 ∣ 𝛽°) = 𝑣𝑎𝑟(𝛽°,1243 − 𝛽°) =
1
𝑁 

We also know that 

𝑣𝑎𝑟(𝛽°) =
ℎ0

𝑀  

From this we are able to get 𝑣𝑎𝑟(𝛽°,1243). 

𝑣𝑎𝑟(𝑋 − 𝑌) = 𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑌) − 2×𝑐𝑜𝑣(𝑋,𝑌), so: 

𝑣𝑎𝑟(𝛽° − 𝛽°) = 𝑣𝑎𝑟(𝛽°) + 𝑣𝑎𝑟(𝛽°) − 2×𝑐𝑜𝑣(𝛽° , 𝛽°) 

OLS estimates are unbiased, in the sense that 𝔼[𝛽° ∣ 𝛽°] = 𝛽°. This implies that 𝑐𝑜𝑣(𝛽°, 𝛽°) =

𝑣𝑎𝑟(𝛽°). 

From this it follows that 
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𝑣𝑎𝑟(𝛃1243) = 𝑣𝑎𝑟(𝛽°,1243) = 𝑣𝑎𝑟(𝛽°) + 𝑣𝑎𝑟(𝛽°,1243 − 𝛽°) =
ℎ0

𝑀 +
1
𝑁 

		

The	effect	of	LD	on	the	variance	of	GWAS	estimates	

The derivation above uses the unbiasedness property of OLS estimates. However, the 

unbiasedness and consistency of OLS estimates depends on certain assumptions, which 

are not all met in a GWAS setting. Specifically, the model is not correctly specified, if the 

model doesn't include important explanatory factors for 𝐲 that are correlated with 𝐗° (SNPs 

in LD with SNP 𝑗). Not including these other SNPs can lead to omitted-variable bias. It's 

easy to see that this will create bias when you consider only two SNPs which are highly 

correlated and together explain most of the variance. Including only one of them in the model 

will induce a correlation between the error term and 𝐗° and lead to a biased estimate, where 

the bias depends on the LD between the two SNPs. 

In a polygenic setting, this bias will not be very large, but can still be noticeable, especially 

if LD is widespread and 𝑁 is large compared to 𝑀. In this case, a better approximation of 

𝑣𝑎𝑟(𝛽°,1243) is 

𝑣𝑎𝑟(𝛽°,1243) = 𝑙°
ℎ0

𝑀 +
1
𝑁 

where 𝑙° is the LD-score of SNP 𝑗. 

The LD score regression method is based on this observation. 

Averaged over all SNPs, this becomes 

𝑣𝑎𝑟(𝛃1243) =
ℎ0

𝑀P
+
1
𝑁 

dat = data.frame(type1=c('observed', 'observed', 'expected', 'expected', 

'observed', 'expected'),	

                type2=c('true_effects', 'estimated_effects', 

'true_effects',	

                        'estimated_effects', 'estimated_effects_ld', 

'estimated_effects_ld'),	
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                value=c(var(beta01), var(beta01_gwas), h2/m, h2/m + 1/n,	

                        var(beta01_gwasld), h2/meld + 1/n  ))	

dat$type2 = factor(dat$type2, levels=levels(factor(dat$type2))[c(3,1,2)])	

	

ggplot(dat, aes(type1, value, fill=type1)) +	

  geom_col() +	

  facet_wrap(~ type2, scales='free_x') +	

  xlab('') +	

  ylab(expression(paste("var(",hat(beta),") / var(",beta,")"))) +	

  theme(legend.position = 'none')	

 

Figure 66: Expected and observed beta variance. 
For the genotypes without LD, the variance across all estimates is well approximated by 
Ù\

Ú
+ A

5
, for the genotypes with LD, the variance across all estimates is better approximated 

by Ù
\

Ú`
+ A

5
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Variance	of	un-standardized	GWAS	estimates	

𝑣𝑎𝑟(𝛽°,1243) is identically distributed for each SNP for each SNP, if 𝛽° is identically 

distributed for each SNP. But the same is not true for 𝛽∗°,1243, which is 𝛽∗°,1243 =
D{,ØQR6

0]{(AY]{)
. 

Here, the variance of rare SNPs is larger than that of common SNPs. A SNP with MAF zero 

has infinite variance, and this makes the expectation of 𝑣𝑎𝑟(𝛃∗1243) infinte too, for a MAF 

range beginning at zero. 

		

Comparison of different BLUP formulations 

The BLUP equation here looks very different from more common formulations of the BLUP 

model, for example in the animal breeding literature. This is partly due to different notation 

and partly because the animal model is a pedigree model in which different individuals are 

modeled as being part of different families. In the model that is used here, there is no such 

hierarchical structure, which simplifies the model. Lynch and Walsh (Eq. 26.4) defines BLUP 

(individual effects) as follows: 

𝐮 = 𝐆𝐙@𝐕YA(𝑦 − 𝐗𝛃) 

This equation uses a different notation and makes different assumptions than what is 

presented in this document. The following table compares the notation. 

	

	

	

	

	

	

	

	

	



300 

 

Table 20: Comparison of BLUP models 

Lynch and 

Walsh 

(pedigree 

model) Meaning 

This document 

(SNP model) 

𝐮 estimated genetic effects 𝐠 

𝐆 covariance matrix of random genetic effects: pedigree 

matrix or SNP based matrix 
𝜎r𝐀 

𝐙 Incidence matrix in case of pedigree design. For 

unrelated individuals this is a diagonal matrix and can 

be ignored 

not relevant (𝐈) 

𝐕 = 𝐙𝐆𝐙@ + 𝐑 variance-covariance matrix of phenotype vector 𝐕 = 𝜎r𝐀 + 𝜎P𝐈5 

𝑦 phenotypes. In L&W, not standardized. Here, it is 

assumed that they have mean 0, variance 1, so 𝜎r =

ℎ0. Further, here we assume that y represents 

residuals after accounting for covariates or fixed 

effects. 

𝐲 

𝐗 Incidence matrix of fixed effects not relevant (0) 

𝛃 Effect sizes of fixed effects not relevant (0) 

	

After substituting L&W terminology with the terminology used here, the equation above can 

be rewritten as 

From this, it follows that 

𝛃&�'6 = (𝐗@𝐗 + 𝜆𝐈Ú)YA𝐗@𝐲 

and so the two models are identical if we assume the absence of fixed effects. 
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Prediction 

Estimated SNP effects (𝛃) can easily be converted into predictors of genetic effects for 

individuals (𝐠): 

𝑔 = 𝑋°

°

𝛽° 

In matrix notation: 

𝐠 = 𝐗𝛃 

Unless we have a prediction model that incorporates non-genetic factors, this is also our 

phenotype predictor: 

𝐲 = 𝐠 = 𝐗𝛃 

Generally, more accurate 𝛃 will result in more accurate 𝐠. 

The importance of an independent test set 

The first rule of any kind of prediction is that the training set, which is used to train a predictor, 

has to be strictly separated from the testing set, which is used to evaluate the predictor. 

Otherwise the accuracy of the predictor will be highly overestimated. 

That is why we will first create an independent test set of equal size and equal allele 

frequencies, and then use the true effect sizes to again simulate phenotypes in this 

independent set. 

x012test = apply(x012, 2, sample)	

xtest = scale(x012test, scale=FALSE)	

x01test = scale(x012test, scale=TRUE)	

	

	

# simulate test set phenotypes	

gtest = xtest %*% beta	

etest = rnorm(n, 0, sqrt(1-h2))	

ytest = gtest + etest	
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# same for data with LD	

x012ldtest = jitter(x012test[,rep(1:m, 1:m)[1:m]], .03)	

x01ldtest = scale(x012ldtest)	

	

g01ldtest = x01ldtest %*% beta	

eldtest = rnorm(n, 0, sqrt(1-h2))	

yldtest = g01ldtest + eldtest	

Creating individual predictors from SNP effects is very simple. Apart from scaling, the 

following is equivalent to plink --score. 

ghat_train_gwas = x01 %*% beta01_gwas	

ghat_test_gwas = x01test %*% beta01_gwas	

	

# for data with LD	

ghat_test_gwasld = x01ldtest %*% beta01_gwasld	

# confounded data set	

x01conf = rbind(x01, x01test[1:floor(n/10),])	

yconf = c(y, ytest[1:floor(n/10)])	

beta01_gwas_conf = t(x01conf) %*% yconf / diag(t(x01conf)%*%x01conf)	

	

ghat_conf_gwas = x01test %*% beta01_gwas_conf	

	

ghat_train_blup = x01 %*% beta01_blup	

ghat_test_blup = x01test %*% beta01_blup	

	

dat = data.frame(predictor=c('training', 'test', 'test_confounded_10%'),	

                 corr=c(cor(y, ghat_train_gwas),	

                        cor(ytest, ghat_test_gwas),	

                        cor(ytest, ghat_conf_gwas)))	

ggplot(dat, aes(predictor, corr, fill=predictor)) +	

  geom_col() +	
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  xlab('') + ylab('correlation') +	

  theme(legend.position='none')	

 

Figure 67: Prediction accuracy if training and test set are not independent 
The red bar represents prediction accuracy in an independent set. The green bar is 

prediction accuracy in an independent set, but 10% of the independent set went into the 

training set, so it's not independent anymore. The blue bar represent accuracy in the same 

sample that was used to estimate SNP effects. Only the red bar is a useful measure of 

prediction accuracy. 

	

		

Accuracy of a GWAS predictor 

The expected accuracy of a GWAS predictor, measured as the correlation between 

predicted breeding value and the phenotype in an independent sample, is given by: 
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𝑐𝑜𝑟0(𝐲, 𝐠1243) =
ℎ0

1 + 𝑀P
𝑁ℎ0

	

In case you wonder why: 

𝑐𝑜𝑟0(𝐲, 𝐠1243) =
𝑐𝑜𝑣0(𝐲, 𝐠1243)

𝑣𝑎𝑟(𝐲)𝑣𝑎𝑟(𝐠1243)
definition	of	correlation

=
𝑐𝑜𝑣0(𝐠 + 𝐞, 𝐠1243)

𝑣𝑎𝑟(𝐠1243)
𝑣𝑎𝑟(𝐲) = 1, definition	of	𝐲

=
𝑐𝑜𝑣0( 𝐗°° 𝛽°, 𝐗°° 𝛽°,1243)

𝑣𝑎𝑟( 𝐗°° 𝛽°,1243)
𝐠	and	𝐞	are	uncorrelated, definition	of	𝐠, 	 𝐠1243

=
𝑀0×𝑐𝑜𝑣0(𝛽°, 𝛽°,1243)

𝑀×𝑣𝑎𝑟(𝛽°,1243)
assuming	SNPs	are	independent

=
𝑀×𝑐𝑜𝑣0(𝛽, 𝛽1243)

𝑣𝑎𝑟(𝛽1243)
𝛽	are	i. i. d.

=
𝑀×𝑣𝑎𝑟0(𝛽)

𝑣𝑎𝑟(𝛽1243)
follows	from	OLS	unbiasedness

=
𝑀(ℎ

0

𝑀)
0

ℎ0
𝑀 + 1

𝑁

derived	in	earlier	sections

=
ℎ0

1 + 𝑀
𝑁ℎ0

rearrange

	

This	 derivation	 assumes	 independent	markers,	which	means	 that	𝑀 = 𝑀P .	 In	 order	 for	 the	

equation	to	be	applicable	to	data	sets	with	non-independent	markers,	𝑀	has	to	be	replaced	by	

𝑀P .	
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Accuracy of a BLUP predictor 

In the derivation above, we used an estimate of 𝑣𝑎𝑟(𝛽1243) of Ù0
Ú`
+ A

5
, where A

5
 is the 

standard error of the estimate. In a model that fits all SNPs at the same time, the standard 

error is better estimated as AYH
\

5
, where 𝑅0 is the variance explained by all SNP effect 

estimates. This is at the same time the expected accuracy of our predictor, and is smaller 

than an estimate of the variance explained by all SNPs (SNP-heritability), because each 

SNP has an estimation error. If we use this estimate of the standard error, then the expected 

prediction accuracy becomes: 

𝑐𝑜𝑟0(𝐲, 𝐠) = 𝑅0 =
ℎ0

1 +𝑀P(1 − 𝑅0)
𝑁ℎ0

 

This doesn't account for the overfitting problem that 𝛽C�3 estimates have, so it is not a good 

estimate of the accuracy of a predictor based on 𝛽C�3, but it is a good estimator of the 

accuracy of a 𝛽&�'6 based predictor. 

𝑅0 occurs on both sides of the equation, but we can solve for 𝑅0: 

𝑐𝑜𝑟0(𝐲, 𝐠&�'6) = 𝑅0 =
𝑘 + ℎ0 − (𝑘 + ℎ0)0 − 4𝑘ℎ0

2𝑘  

where 𝑘 = Ú`
5

 

Note that 𝑐𝑜𝑟0(𝐠, 𝐠) will always be larger than 𝑐𝑜𝑟0(𝐲, 𝐠) by a factor of A
Ù\

, because 𝐠 doesn't 

contain the error component of 𝐲: 

𝑐𝑜𝑟0(𝐠, 𝐠&�'6) =
1

1 +𝑀P(1 − 𝑅0)
𝑁ℎ0

 

R2_GWAS = function(m, n, h2) {	

  h2 / (1 + (m / (n*h2)))	

}	

	

R2_BLUP = function(m, n, h2) {	
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  k = m/n	

  ( (k + h2) - sqrt( (k+h2)^2 - 4*k*h2^2) ) / (2*k)	

}	

cor.test.plus = function(x, y, ...) {	

  # like cor.test, but also returns se of correlation	

  corr = cor.test(x, y, ...)	

  corr$se = unname(sqrt((1 - corr$estimate^2)/corr$parameter))	

  corr	

}	

	

ghat_test_mlma = x01test %*% beta01_mlma	

ghat_test_mlmald = x01ldtest %*% beta01_mlmald	

ghat_test_blup = x01test %*% beta01_blup	

ghat_test_blupld = x01ldtest %*% beta01_blupld	

	

cornold = t(sapply(list(ghat_test_gwas, ghat_test_mlma, ghat_test_blup),	

         function(x) {corr = cor.test.plus(ytest, x); c(corr$estimate, 

corr$se)}))	

corld = t(sapply(list(ghat_test_gwasld, ghat_test_mlmald, 

ghat_test_blupld),	

         function(x) {corr = cor.test.plus(yldtest, x); c(corr$estimate, 

corr$se)}))	

dat = data.frame(type=rep(c('GWAS', 'MLMA', 'BLUP'), 2),	

                 ld = c(rep(' without LD', 3), rep('with LD', 3)),	

                 n=n,	

                 corr=c(cornold[,1], corld[,1]),	

                 se=c(cornold[,2], corld[,2]))	

dat$type = factor(dat$type, levels=levels(factor(dat$type))[c(2,3,1)])	

	

nlim = c(ceiling(n/10000), n*300)	

mypal = rev(c('seagreen4', 'royalblue4'))	

ggplot(dat[dat$type != 'MLMA',], aes(n, corr, col=type)) +	

  stat_function(fun=function(...) sqrt(R2_GWAS(...)), args=list(h2=h2, 

m=me), col=mypal[1]) +	
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  stat_function(fun=function(...) sqrt(R2_BLUP(...)), args=list(h2=h2, 

m=me), col=mypal[2]) +	

  stat_function(fun=function(...) sqrt(R2_GWAS(...)), args=list(h2=h2, 

m=meld), col=mypal[1], linetype=2) +	

  stat_function(fun=function(...) sqrt(R2_BLUP(...)), args=list(h2=h2, 

m=meld), col=mypal[2], linetype=2) +	

  scale_x_log10(limits=c(nlim[1], nlim[2])) +	

  geom_point(size=2) +	

  geom_errorbar(aes(ymin=corr-se, ymax=corr+se, linetype=ld), width=.1) +	

  scale_colour_manual(values=mypal) + xlab('sample size') + 

ylab('correlation') +	

  geom_hline(yintercept = sqrt(h2), linetype=2)	

 

Figure 68: Expected and observed prediction accuracy 
Prediction accuracy +/- SE of the GWAS and BLUP predictor. Lines show expected 

accuracy for a range of 𝑁. The horizontal line represents ℎ0, which is the upper limit for an 

(additive) genetic predictor. Dashed lines show accuracies for data with LD. 𝛽 estimates are 

not more accurate in data without LD, but the combined effect estimate of each LD block is 
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more accurate, since it is averaged over many SNPs. This is why prediction accuracy is 

higher in data with LD, if the LD structure is the same in the test set. The standard errors of 

the point estimates are underestimated for the simulations with LD, because the SE estimate 

assumes that all individual predictors are independent. However, they are not independent 

because they depend on correlated 𝛽 estimates. 

	

From	the	unbiasedness	of	BLUP	predictors,	it	follows	that	𝑅0	is	at	the	same	time	the	expected	

variance	of	a	BLUP	predictor:	

𝑅0 = 𝑐𝑜𝑟0(𝐲, 𝐠&�'6) =
𝑐𝑜𝑣0(𝐲, 𝐠&�'6)
𝑣𝑎𝑟(𝐠&�'6)

= 𝑣𝑎𝑟(𝐠&�'6)	

		

		

SNP selection 

The predictors so far have been based on all SNPs. In practice people often select SNPs 

based on their LD with other SNPs or based on their p-value. 

The motivation behind selecting SNPs based on LD with other SNPs is that GWAS estimates 

are marginal effect estimates and so regions with high LD will influence the predictor too 

much. 

The motivation behind selecting SNPs based on p-value, is that SNPs with low p-value are 

more likely to be truly associated with the trait, and so the signal to noise ratio of the SNP 

effects that go into the predictor will increase. This is especially true in well powered studies, 

where the p-value better separates the causal SNPs from the rest. 

Since we simulate SNP effects from a normal distribution, all SNPs will have some effect, 

but even here, selecting based on p-value can slightly increase accuracy. 

ghatmat = t(t(xtest) * beta_gwas[,1])	

ghatmat_pval = ghatmat[,order(pval)]	

ghatmat_cumsum = t(apply(ghatmat_pval, 1, cumsum))	

corrs = sapply(1:m, function(i) cor(ytest[,1], ghatmat_cumsum[,i]))	

	

reps = 5	
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corrs_rand = replicate(reps, {	

  ghatmat_pval = ghatmat[,sample(1:m)]	

  ghatmat_cumsum = t(apply(ghatmat_pval, 1, cumsum))	

  sapply(1:m, function(i) cor(ytest[,1], ghatmat_cumsum[,i]))	

})	

	

dat = rbind(data.frame(snp=1:m, rep=reps+1, corr=corrs),	

            melt(corrs_rand) %>% rename(snp=Var1, rep=Var2, corr=value))	

maxx = which.max(dat$corr[dat$rep==reps+1])	

maxcor = dat[maxx, 'corr']	

bestsnp = dat[maxx, 'snp']	

p_opt = sort(pval)[bestsnp]	

	

ggplot(dat, aes(snp, corr, col=as.factor(rep))) +	

  geom_line() +	

  geom_hline(yintercept=maxcor, linetype=2) +	

  geom_vline(xintercept=bestsnp, linetype=3) +	

  xlab('number of SNPs included in predictor') +	

  ylab('correlation') +	

  scale_color_manual(values=c(rep('grey', reps), 'navy')) +	

  theme(legend.position='none') +	

  annotate('text', bestsnp, 0, label=paste0('p-value = ', round(p_opt, 

2)), hjust=1.1)	
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Figure 69: Selecting SNPs based on p-value 

The blue line represent predictors based on an increasing number of SNPs, where SNPs 

are ordered from lowest to highest p-value from left to right. In comparison the grey lines 

represent predictors based on increasing numbers of SNPs when the SNPs are randomly 

selected. 

	

As the plot above illustrates, prediction accuracy randomly fluctuates with inclusion of more 

or fewer SNPs, so selecting a predictor based on the best p-value threshold can lead to 

inflated estimates of accuracy. 

		

Bias-variance tradeoff 

You would think the words "bias" and "variance" are already overloaded enough, but in this 

section they will get yet another set of meanings. From Wikipedia: 
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In	statistics	and	machine	learning,	the	bias-variance	tradeoff	(or	dilemma)	is	the	problem	of	simultaneously	minimizing	

two	sources	of	error	that	prevent	supervised	learning	algorithms	from	generalizing	beyond	their	training	set:	

• The	bias	is	error	from	erroneous	assumptions	in	the	learning	algorithm.	High	bias	can	cause	an	algorithm	to	miss	

the	relevant	relations	between	features	and	target	outputs	(underfitting).	

• The	variance	is	error	from	sensitivity	to	small	fluctuations	in	the	training	set.	High	variance	can	cause	overfitting:	

modeling	the	random	noise	in	the	training	data,	rather	than	the	intended	outputs.	

So that's another perspective on why BLUP predictors are more accurate than GWAS or 

OLS predictors: BLUP finds the right balance between the simple GWAS model which only 

considers one SNP at a time, and the complex multiple regression OLS model, which 

considers all SNPs at the same time without any safeguard against overfitting the data. The 

heritability quantifies how much error is in the model and therefore how close BLUP can go 

towards fully conditional OLS effects, without overfitting the data. 

 

Figure 70: Model complexity of GWAS, BLUP and multiple regression OLS estimates	
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The lowest prediction error in the test set is achieved when the model is neither too simple 

nor too complex. Note that even at equal values of root mean square error (RMSE), 

predictions into the training set have much higher accuracy than predictions into the test set. 
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Estimation of variance components 

Our model assumes that the phenotypic variance is composed of a genetic component and 

the rest (environment + error). 

𝜎Æ0 = 𝜎r0 + 𝜎P0 

In practice, we can only measure 𝜎Æ0, and have to estimate the other components. This is 

equivalent to estimating the heritability (SNP-heritability, but here we don't make this 

distinction), since 

ℎ0 =
𝜎r0

𝜎Æ0
 

If we had an infinite sample size, then 𝛽°,C�3 would be the same as 𝛽° and we could simply 

estimate 𝜎r0 as the sum of the variances explained by each SNP: 

𝜎r0 = 𝛽°∗0
°

𝑣𝑎𝑟(𝐗°∗) = 𝛽°0
°

 

c(h2, sum(beta^2 * varx)) 

## [1] 0.5000000 0.5184451 

We can't do the same with finite sample size OLS estimates of 𝛽. Even though they are 

unbiased in the sense that 𝔼[𝛽C�3 ∣ 𝛽] = 𝛽, when we take the square of 𝛽C�3, it will be 

inflated by the estimation error, and so the 𝜎r0 or ℎ0 estimate will be too large: 

c(h2, sum(beta_ols^2 * varx)) 

## [1] 0.50000 3.12752 

What if we had infinite sample size GWAS estimates of 𝛽? We still couldn't estimate 𝜎r0 as 

𝛽°,1243

0
° , because GWAS estimates are marginal effect estimates, so if two SNPs are in 

high LD, their effect would be counted twice, whereas OLS estimates are conditional on all 

other SNPs, so their effect wouldn't be counted twice. In other words, 𝛽1243 is not an 

unbiased estimator of 𝛽 (see section about variance of GWAS effects). 
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Another way to look at ℎ0 is as the variance in 𝑦 that is explained by 𝑔. For any two variables, 

the variance explained in one by the other is given by 𝑅0, or the squared correlation 

coefficient. For 𝑔 and 𝑦 this is defined as 

ℎ0 = 𝑅𝐠,𝐲0 =
𝑐𝑜𝑣0(𝐠, 𝐲)

𝑣𝑎𝑟(𝐠)𝑣𝑎𝑟(𝐲) 

𝑐𝑜𝑣(𝐠, 𝐲) is the same as 𝑐𝑜𝑣(𝐠, 𝐠 + 𝐞), and this is the same as 𝑐𝑜𝑣(𝐠, 𝐠) + 𝑐𝑜𝑣(𝐠, 𝐞). Further, 

𝑐𝑜𝑣(𝐠, 𝐠) is the same as 𝑣𝑎𝑟(𝐠), and our model assumes that 𝐠 and 𝐞 are uncorrelated, so 

𝑐𝑜𝑣(𝐠, 𝐞) = 0. Therefore, 

𝑐𝑜𝑣(𝐠, 𝐲) = 𝑣𝑎𝑟(𝐠) 

and the equation above simplifies to 

ℎ0 = 𝑅𝐠,𝐲0 =
𝑣𝑎𝑟(𝐠)
𝑣𝑎𝑟(𝐲) =

𝑐𝑜𝑣(𝐠, 𝐲)
𝑣𝑎𝑟(𝐲)  

Since the regression slope of 𝑦 on 𝑥 is defined as M.h(H,Æ)
hNW(H)

, the heritability is the same as the 

slope in a regression of 𝐠 on 𝐲. This is true by definition, but doesn't help us in estimating ℎ0 

because we don't know 𝑐𝑜𝑣(𝐠, 𝐲) any more than we know 𝑣𝑎𝑟(𝐠). 

However, 𝑣𝑎𝑟(𝐠) can be estimated by looking at close relatives. The first attempt at 

estimating heritability was a regression of height measurements for a number of individuals 

on the average height of the parents of those individuals. A problem with this method is that 

it cannot distinguish between genetic and shared environmental effects. There are many 

other methods to estimate heritability that are based on close relatives, but here we will 

focus on methods that utilize unrelated individuals. 

  

Variance explained per SNP 

The genetic variance can be further partitioned into the variances explained by each SNP: 

𝑣𝑎𝑟(𝐲) = 𝑣𝑎𝑟(𝐠° + 𝐠WPOV + 𝐞) = 𝑣𝑎𝑟(𝐗°𝛽° + 𝐠WPOV + 𝐞) 
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If we assume that not only 𝑔 and 𝑒 are uncorrelated, but also 𝑔°A and 𝑔°0 (which we can, 

because we assume that all 𝛽° are i.i.d.), then the variance explained by a particular SNP is 

𝑐𝑜𝑟0(𝐠°, 𝐲) = 𝑣𝑎𝑟(𝐠°) = 𝑣𝑎𝑟(𝐗°𝛽°) = 𝛽°0𝑣𝑎𝑟(𝐗°) = 𝛽°0 = 𝛽°∗0×2𝑝°(1 − 𝑝°) 

  

The next parts present different methods to estimate ℎ0. Haseman-Elston regression and 

GREML require a GRM and phenotype data, whereas LD score regression requires GWAS 

effect estimates and LD scores. 

  

Haseman-Elston regression 

One simple way to estimate ℎ0 is to regress pairwise similarities of phenotypes on pairwise 

similarities of genotypes. For 𝑁 individuals, there are 𝑁×(𝑁 − 1) such pairs. 

The genetic similarity for two individuals 𝑖1 and 𝑖2 is usually calculated as 𝐗z�𝐗z\
N

Ú
, which are 

elements of the GRM. 

There are two versions of HE-regression, with two different ways to calculate the phenotypic 

similarity. The first is to take the (negative) squared difference between phenotypes in the 

two individuals (𝑦A − 𝑦0)0, the other is to take the product of the phenotypes (𝑦A×𝑦0). 

he_regression_v1 = function(A, y) { 

  # estimates h2 

  # A: GRM 

  # y: phenotypes 

  pairs = t(combn(1:length(y), 2)) 

  phenosim = y[pairs[,1]] * y[pairs[,2]] 

  genosim = A[lower.tri(A)] 

  unname(lm(phenosim ~ genosim)$coefficients[2]) 

} 
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he_regression_v2 = function(A, y) { 

  # estimates h2 

  # A: GRM 

  # y: phenotypes 

  pairs = t(combn(1:length(y), 2)) 

  phenosim = -(y[pairs[,1]] - y[pairs[,2]])^2 

  genosim = A[lower.tri(A)] 

  reg = lm(phenosim ~ genosim)$coefficients 

  unname(-reg[2]/reg[1]) 

} 

 

 

h2_he_prod = he_regression_v1(grm, y) 

h2_he_diff = he_regression_v2(grm, y) 

 

c(h2, h2_he_prod, h2_he_diff) 

## [1] 0.5000000 0.5309630 0.5256482 

	

Figure 71: Two version of Haseman-Elston regression 
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GREML 

HE regression is quick and simple, but suffers from large standard errors, so the estimates 

will often not be very accurate. A better way to estimate variance components is through 

GRM residual maximum likelihood estimation (GREML). 

GREML directly builds on the phenotype model specified earlier: 

𝑉𝑎𝑟[𝐲] = 𝐕 = 𝜎r0𝐀 + 𝜎P0𝐈5 

It runs an optimization algorithm finds the values of 𝜎r0 and 𝜎P0 that maximize the likelihood 

of this model. The likelihood of a model with specific parameters (𝜎r0 and 𝜎P0) is defined as 

the probability of the data (𝐀 and 𝐲) under this model : 

ℒ(𝜎r0, 𝜎P0 ∣ 𝐀, 𝐲) = 𝑃(𝐀, 𝐲 ∣ 𝜎r0, 𝜎P0) 

Maximizing the likelihood is equivalent to maximizing the logarithm of the likelihood, because 

the logarithm is a monotonically increasing function. The log likelihood of our model is: 

𝑙𝑜𝑔ℒ(𝜎r0, 𝜎P0 ∣ 𝐀, 𝐲) = −
1
2 (𝑐𝑜𝑛𝑠𝑡 + 𝑙𝑜𝑔|𝐕| + 𝑙𝑜𝑔|𝟏𝐕

YA𝟏@| + 𝐲@𝐏𝐲) 

where |𝐕| is the determinant of 𝐕 and 𝐏 is a projection matrix defined as 

𝐏 = 𝐕YA − 𝐕YA𝟏(𝟏@𝐕YA𝟏)YA𝟏@𝐕YA 

Bear in mind that the description here is simplified a lot because we assume that there are 

no fixed effects. 

Here, our model only consists of the two variance components 𝜎r0 and 𝜎P0, so the likelihood 

can be visualized as a heat map: 

loglikelihood = function(sigma_g, sigma_e, grm, y, reml=TRUE) { 

  V = sigma_g*grm + sigma_e*diag(nrow(grm)) 

  Vi = solve(V) 

  if(reml) { 

    P = Vi - (colSums(Vi) %*% t(colSums(Vi))) / sum(Vi) 

  } else { 
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    P = Vi 

  } 

  -0.5*(log(det(V)) + log(sum(Vi)) + t(y) %*% P %*% y) 

} 

	

Figure 72: The log likelihood function as a heat map 

To find the values of 𝜎r0 and 𝜎P0 that maximize the log likelihood function, we can use the 

Newton optimization method. This method requires first order and second order derivatives 

of the likelihood function to iteratively calculate 𝛿 values, so that the new estimates 𝜎r0 + 𝛿r 

and 𝜎P0 + 𝛿P have a higher likelihood than the present estimates 𝜎r0 and 𝜎P0. 

The computation of the second order derivative matrix (the Hessian matrix) is expensive, 

but it can be approximated by the average information matrix, which is why the procedure 

below is called the average information (AI) algorithm. 

The difference between REML and normal maximum likelihood estimation lies in the 

definition of the likelihood function. When using the normal maximum likelihood function, the 

inclusion of fixed effects will lead to biased estimates of the variance components. Since we 

don't model any fixed effects here, we wouldn't see a big difference here between ML and 

REML. 
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Below is a very simple example of this method based on stripped down GCTA code, which 

uses the average information algorithm for optimization. It iteratively updates estimates of 

𝜎r0 and 𝜎P0 until it converges (or until this case, for a fixed number of iterations). 

greml = function(A, y, varcmp=c(.95, .05), itermax=25) { 

  # estimates g and e variance components 

  # A: GRM 

  # y: phenotypes 

  out = varcmp 

  for(iter in 1:itermax) { 

    V = varcmp[1]*A + varcmp[2]*diag(nrow(A)) 

    Vi = solve(V) 

    P = Vi - (colSums(Vi) %*% t(colSums(Vi))) / sum(Vi) 

     

    Py = P %*% y 

    APy = A %*% Py 

    PPy = P %*% Py 

     

    H = diag(2) 

    H[1,1] = t(APy) %*% P %*% APy 

    H[2,2] = t(Py) %*% PPy 

    H[1,2] = H[2,1] = t(APy) %*% PPy 

    Hi = solve(H + diag(2)*1e-6) 

     

    R1 = t(Py) %*% APy - sum(P * A) 

    R2 = t(Py) %*% Py - sum(diag(P)) 

     

    delta = Hi %*% c(R1, R2) 

    varcmp = varcmp + 0.316*delta 

    varcmp = pmax(1e-3, varcmp) # avoid negative var component 

    out = rbind(out, varcmp) 

       

    cat(paste0('Iteration ', iter, ': sigma_g = ', round(varcmp[1], 3), 

               ', sigma_e = ', round(varcmp[2], 3), 

               ', h2 = ', round(varcmp[1]/sum(varcmp), 3), '\n' )) 

  } 
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  colnames(out) = c('sigma_g', 'sigma_e') 

  out 

} 

 

varcmp = greml(grm, y) 

## Iteration 1: sigma_g = 0.982, sigma_e = 0.074, h2 = 0.93 

## Iteration 2: sigma_g = 0.975, sigma_e = 0.106, h2 = 0.902 

## Iteration 3: sigma_g = 0.933, sigma_e = 0.148, h2 = 0.863 

## Iteration 4: sigma_g = 0.866, sigma_e = 0.198, h2 = 0.814 

## Iteration 5: sigma_g = 0.788, sigma_e = 0.255, h2 = 0.756 

## Iteration 6: sigma_g = 0.713, sigma_e = 0.313, h2 = 0.695 

## Iteration 7: sigma_g = 0.647, sigma_e = 0.369, h2 = 0.637 

## Iteration 8: sigma_g = 0.594, sigma_e = 0.419, h2 = 0.586 

## Iteration 9: sigma_g = 0.553, sigma_e = 0.46, h2 = 0.546 

## Iteration 10: sigma_g = 0.523, sigma_e = 0.492, h2 = 0.515 

## Iteration 11: sigma_g = 0.501, sigma_e = 0.517, h2 = 0.493 

## Iteration 12: sigma_g = 0.486, sigma_e = 0.534, h2 = 0.476 

## Iteration 13: sigma_g = 0.476, sigma_e = 0.547, h2 = 0.465 

## Iteration 14: sigma_g = 0.469, sigma_e = 0.556, h2 = 0.457 

## Iteration 15: sigma_g = 0.464, sigma_e = 0.562, h2 = 0.452 

## Iteration 16: sigma_g = 0.461, sigma_e = 0.566, h2 = 0.449 

## Iteration 17: sigma_g = 0.459, sigma_e = 0.569, h2 = 0.446 

## Iteration 18: sigma_g = 0.457, sigma_e = 0.571, h2 = 0.444 

## Iteration 19: sigma_g = 0.456, sigma_e = 0.573, h2 = 0.443 

## Iteration 20: sigma_g = 0.455, sigma_e = 0.574, h2 = 0.443 

## Iteration 21: sigma_g = 0.455, sigma_e = 0.574, h2 = 0.442 

## Iteration 22: sigma_g = 0.455, sigma_e = 0.575, h2 = 0.442 

## Iteration 23: sigma_g = 0.455, sigma_e = 0.575, h2 = 0.442 

## Iteration 24: sigma_g = 0.454, sigma_e = 0.575, h2 = 0.441 

## Iteration 25: sigma_g = 0.454, sigma_e = 0.575, h2 = 0.441 

dat = data.frame(varcmp, log_likelihood=mean(ll[,3],na.rm=TRUE), 

                 step=1:nrow(varcmp), row.names=NULL) 

val = round(varcmp[nrow(varcmp), 1]/sum(varcmp[nrow(varcmp),]), 2) 

heat + geom_point(data=dat[1:(nrow(dat)-10),], size=.5) + 

  geom_path(data=dat, 

            aes(sigma_g, sigma_e), colour='grey20', size=.1, 

            arrow = arrow(angle = 25, ends = "last", type = "closed", 
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length=unit(5, 'mm'))) + 

  annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2, 

           label=as.character(paste0(bquote(hat(h^2)~": "~ ~.(val)), 

collapse='')), parse=T) 

	

Figure 73: GREML finds the maximum in the log likelihood function 

  

LD score regression 

We have previously stated that the variance of 𝛽°,1243 can be approximated as 

𝑣𝑎𝑟(𝛽°,1243) = 𝑙°
ℎ0

𝑀 +
1
𝑁 

Because 𝑣𝑎𝑟(𝑋) = 𝔼[𝑋0] − (𝔼[𝑋])0 and 𝔼[𝛽°,1243] = 0, 𝑣𝑎𝑟(𝛽°,1243) = 𝔼[𝛽°,1243

0
] and so 

𝔼[𝛽°,1243

0
] = 𝑙°

ℎ0

𝑀 +
1
𝑁 

Since 𝜒°
0 = 𝑧°

0 = 𝑁 𝛽°,1243

0
, it follows that 
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𝔼[𝜒°0] =
𝑁ℎ0

𝑀 𝑙° + 1 

Intuitively, this is because GWAS estimates are marginal effect estimates and this means 

that SNPs in high LD will have similar effect estimates, even if their true effect sizes are very 

different. A single large effect SNP within a group of correlated SNPs can give each of the 

correlated SNPs a large effect estimate. If a SNP is in high LD with many other SNPs, its 

chances of picking up the signal of another SNP are increased. This means that a SNP's 

LD score should be correlated to its GWAS effect estimate, and the correlation should be 

proportional to the heritability of the trait in question. 

From this it follows that ℎ0 can be estimated as the slope in a regression of 𝜒°
0 on 𝑙°: 

ℎ0 =
𝑐𝑜𝑣(𝛘

0
, 𝐥)

𝑣𝑎𝑟(𝐥)
𝑀
𝑁  

What is not shown here, is that the intercept in this regression is informative as well, because 

it will be higher when the effect estimates are inflated due to population stratification rather 

than real effects. 

The regression estimate can be made more efficient by constraining the intercept (if we 

assume there is no population stratification) and by weighting the regression by the inverse 

of the LD scores. 

ldsc = function(ldscores, beta01_gwas, n) { 

  m = length(ldscores) 

  chi2 = beta01_gwas^2 * n 

  summary(lm(chi2-1 ~ ldscores + 0, weights=1/ldscores))$coefficients[1,1] * 

m/n 

} 

 

ldsc(ldscores, beta01_gwas, n) 

## [1] 0.5896047 

ldsc(ldscoresld, beta01_gwasld, n) 

## [1] 0.3335093 
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This probably didn't give a great estimates of heritability, because this is based on a very 

small sample size, and in the first case, almost no variance among the LD scores for different 

SNPs. Let's try it again with a larger data set with LD: 

mm = 20000 

nn = 5000 

mmunique = sqrt(mm*2) 

maf_block = runif(mmunique, 0, .5) 

x012_block = t(replicate(nn, rbinom(2*mmunique, 2, c(maf_block, maf_block)))) 

polymorphic = apply(x012_block, 2, var) > 0 

x012_block = x012_block[,polymorphic][,1:mmunique] 

maf_block = c(maf_block, maf_block)[polymorphic][1:mmunique] 

 

# create haplotype blocks, so there is some variance in ld-scores 

x012_block = jitter(x012_block[,rep(1:mmunique,1:mmunique)[1:mm]], .4) 

x01_block = scale(x012_block) 

 

# we can approximate ld-scores from how we simulated LD 

ldscores_block = rep(1:mmunique,1:mmunique)[1:mm] 

 

m_block = ncol(x01_block) 

beta01_block = rnorm(m_block, 0, sqrt(h2/m_block)) 

g_block = x01_block %*% beta01_block 

y_block = g_block + rnorm(nn, 0, sqrt(1-h2)) 

 

beta01_gwas_block = t(x01_block) %*% y_block / nn 

 

h2_est = ldsc(ldscores_block, beta01_gwas_block, nn) 

h2_est 

## [1] 0.456884 

This should be closer to the true value of ℎ0. While this may not be as precise as the 

estimates from the other methods, LD score regression has the advantage of requiring only 

summary statistics data (effect estimates), not individual level genotype data. The LD scores 

can be estimated in a reference population. 
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chi2 = beta01_gwas_block^2 * nn 

sl = summary(lm(chi2-1 ~ ldscores_block + 0, 

weights=1/ldscores_block))$coefficients[1,1] 

 

dat = data.frame(x=ldscores_block, y=chi2, 

                 gr=cut(ldscores_block, seq(min(ldscores_block), 

max(ldscores_block), length=30))) 

dat_groupmean = group_by(dat, gr) %>% summarise(x=mean(x), y=mean(y)) 

 

val = round(h2_est, 2) 

layers = list(geom_abline(intercept=1, slope=sl, col='blue', size=1.0), 

              xlab('LD scores'), ylab(expression(Chi^2)), 

              scale_colour_continuous(low='black', high='green'), 

              theme(legend.position = 'none'), 

              annotate('text', -Inf, Inf, hjust=-.2, vjust=1.2, 

                       label=as.character(paste0(bquote(hat(h^2)~": "~ 

~.(val)), collapse='')), parse=T)) 

p1 = ggplot(dat, aes(x, y, col=x)) + geom_point(size=.01) + layers 

p2 = ggplot(dat_groupmean, aes(x, y, col=x)) + geom_point() + layers 

 

grid.arrange(p1, p2, ncol=2) 

	

Figure 74: LD score regression visualized 

The left panel shows the LD score regression for all SNPs. The right panel groups SNPs by 

LD score and shows the mean 𝜒0 value in each bin. 


