338 research outputs found

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Self-adaptive unobtrusive interactions of mobile computing systems

    Full text link
    [EN] In Pervasive Computing environments, people are surrounded by a lot of embedded services. Since pervasive devices, such as mobile devices, have become a key part of our everyday life, they enable users to always be connected to the environment, making demands on one of the most valuable resources of users: human attention. A challenge of the mobile computing systems is regulating the request for users¿ attention. In other words, service interactions should behave in a considerate manner by taking into account the degree to which each service intrudes on the user¿s mind (i.e., the degree of obtrusiveness). The main goal of this paper is to introduce self-adaptive capabilities in mobile computing systems in order to provide non-disturbing interactions. We achieve this by means of an software infrastructure that automatically adapts the service interaction obtrusiveness according to the user¿s context. This infrastructure works from a set of high-level models that define the unobtrusive adaptation behavior and its implication with the interaction resources in a technology-independent way. Our infrastructure has been validated through several experiments to assess its correctness, performance, and the achieved user experience through a user study.This work has been developed with the support of MINECO under the project SMART-ADAPT TIN2013-42981-P, and co-financed by the Generalitat Valenciana under the postdoctoral fellowship APOSTD/2016/042.Gil Pascual, M.; Pelechano Ferragud, V. (2017). Self-adaptive unobtrusive interactions of mobile computing systems. Journal of Ambient Intelligence and Smart Environments. 9(6):659-688. https://doi.org/10.3233/AIS-170463S65968896Aleksy, M., Butter, T., & Schader, M. (2008). Context-Aware Loading for Mobile Applications. Lecture Notes in Computer Science, 12-20. doi:10.1007/978-3-540-85693-1_3Y. Bachvarova, B. van Dijk and A. Nijholt, Towards a unified knowledge-based approach to modality choice, in: Proc. Workshop on Multimodal Output Generation (MOG), 2007, pp. 5–15.Barkhuus, L., & Dey, A. (2003). Is Context-Aware Computing Taking Control away from the User? Three Levels of Interactivity Examined. Lecture Notes in Computer Science, 149-156. doi:10.1007/978-3-540-39653-6_12Bellotti, V., & Edwards, K. (2001). Intelligibility and Accountability: Human Considerations in Context-Aware Systems. Human–Computer Interaction, 16(2-4), 193-212. doi:10.1207/s15327051hci16234_05D. Benavides, P. Trinidad and A. Ruiz-Cortés, Automated reasoning on feature models, in: Proceedings of the 17th International Conference on Advanced Information Systems Engineering, CAiSE’05, Springer-Verlag, Berlin, 2005, pp. 491–503.Bernsen, N. O. (1994). Foundations of multimodal representations: a taxonomy of representational modalities. Interacting with Computers, 6(4), 347-371. doi:10.1016/0953-5438(94)90008-6Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161-180. doi:10.1016/j.pmcj.2009.06.002Blumendorf, M., Lehmann, G., & Albayrak, S. (2010). Bridging models and systems at runtime to build adaptive user interfaces. Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive computing systems - EICS ’10. doi:10.1145/1822018.1822022D.M. Brown, Communicating Design: Developing Web Site Documentation for Design and Planning, 2nd edn, New Riders Press, 2010.J. Bruin, Statistical Analyses Using SPSS, 2011, http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt.J. Cámara, G. Moreno and D. Garlan, Reasoning about human participation in self-adaptive systems, in: SEAMS 2015, 2015, pp. 146–156.Campbell, A., & Choudhury, T. (2012). From Smart to Cognitive Phones. IEEE Pervasive Computing, 11(3), 7-11. doi:10.1109/mprv.2012.41Y. Cao, M. Theune and A. Nijholt, Modality effects on cognitive load and performance in high-load information presentation, in: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI’09, ACM, New York, 2009, pp. 335–344.Chang, F., & Ren, J. (2007). Validating system properties exhibited in execution traces. Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering - ASE ’07. doi:10.1145/1321631.1321723H. Chen and J.P. Black, A quantitative approach to non-intrusive computing, in: Mobiquitous’08: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, 2008, pp. 1–10.Chittaro, L. (2010). Distinctive aspects of mobile interaction and their implications for the design of multimodal interfaces. Journal on Multimodal User Interfaces, 3(3), 157-165. doi:10.1007/s12193-010-0036-2Clerckx, T., Vandervelpen, C., & Coninx, K. (2008). Task-Based Design and Runtime Support for Multimodal User Interface Distribution. Lecture Notes in Computer Science, 89-105. doi:10.1007/978-3-540-92698-6_6Cook, D. J., & Das, S. K. (2012). Pervasive computing at scale: Transforming the state of the art. Pervasive and Mobile Computing, 8(1), 22-35. doi:10.1016/j.pmcj.2011.10.004Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., & Koschke, R. (2009). A Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE Transactions on Software Engineering, 35(5), 684-702. doi:10.1109/tse.2009.28Czarnecki, K. (2004). Generative Software Development. Lecture Notes in Computer Science, 321-321. doi:10.1007/978-3-540-28630-1_33M. de Sá, C. Duarte, L. Carriço and T. Reis, Designing mobile multimodal applications, in: Information Science Reference, 2010, pp. 106–136, Chapter 5.C. Duarte and L. Carriço, A conceptual framework for developing adaptive multimodal applications, in: Proceedings of the 11th International Conference on Intelligent User Interfaces, IUI’06, ACM, New York, 2006, pp. 132–139.Evers, C., Kniewel, R., Geihs, K., & Schmidt, L. (2014). The user in the loop: Enabling user participation for self-adaptive applications. Future Generation Computer Systems, 34, 110-123. doi:10.1016/j.future.2013.12.010Fagin, R., Halpern, J. Y., & Megiddo, N. (1990). A logic for reasoning about probabilities. Information and Computation, 87(1-2), 78-128. doi:10.1016/0890-5401(90)90060-uFerscha, A. (2012). 20 Years Past Weiser: What’s Next? IEEE Pervasive Computing, 11(1), 52-61. doi:10.1109/mprv.2011.78Floch, J., Frà, C., Fricke, R., Geihs, K., Wagner, M., Lorenzo, J., … Scholz, U. (2012). Playing MUSIC - building context-aware and self-adaptive mobile applications. Software: Practice and Experience, 43(3), 359-388. doi:10.1002/spe.2116Gibbs, W. W. (2005). Considerate Computing. Scientific American, 292(1), 54-61. doi:10.1038/scientificamerican0105-54Gil, M., Giner, P., & Pelechano, V. (2011). Personalization for unobtrusive service interaction. Personal and Ubiquitous Computing, 16(5), 543-561. doi:10.1007/s00779-011-0414-0Gil Pascual, M. (s. f.). Adapting Interaction Obtrusiveness: Making Ubiquitous Interactions Less Obnoxious. A Model Driven Engineering approach. doi:10.4995/thesis/10251/31660Haapalainen, E., Kim, S., Forlizzi, J. F., & Dey, A. K. (2010). Psycho-physiological measures for assessing cognitive load. Proceedings of the 12th ACM international conference on Ubiquitous computing - Ubicomp ’10. doi:10.1145/1864349.1864395Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., … Papadopoulos, G. A. (2012). A development framework and methodology for self-adapting applications in ubiquitous computing environments. Journal of Systems and Software, 85(12), 2840-2859. doi:10.1016/j.jss.2012.07.052Hassenzahl, M. (2004). The Interplay of Beauty, Goodness, and Usability in Interactive Products. Human-Computer Interaction, 19(4), 319-349. doi:10.1207/s15327051hci1904_2Hassenzahl, M., & Tractinsky, N. (2006). User experience - a research agenda. Behaviour & Information Technology, 25(2), 91-97. doi:10.1080/01449290500330331Ho, J., & Intille, S. S. (2005). Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’05. doi:10.1145/1054972.1055100Horvitz, E., Kadie, C., Paek, T., & Hovel, D. (2003). Models of attention in computing and communication. Communications of the ACM, 46(3), 52. doi:10.1145/636772.636798Horvitz, E., Koch, P., Sarin, R., Apacible, J., & Subramani, M. (2005). Bayesphone: Precomputation of Context-Sensitive Policies for Inquiry and Action in Mobile Devices. Lecture Notes in Computer Science, 251-260. doi:10.1007/11527886_33Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41-50. doi:10.1109/mc.2003.1160055Korpipaa, P., Malm, E.-J., Rantakokko, T., Kyllonen, V., Kela, J., Mantyjarvi, J., … Kansala, I. (2006). Customizing User Interaction in Smart Phones. IEEE Pervasive Computing, 5(3), 82-90. doi:10.1109/mprv.2006.49S. Lemmelä, A. Vetek, K. Mäkelä and D. Trendafilov, Designing and evaluating multimodal interaction for mobile contexts, in: Proceedings of the 10th International Conference on Multimodal Interfaces, ICMI’08, ACM, New York, 2008, pp. 265–272.Lim, B. Y. (2010). Improving trust in context-aware applications with intelligibility. Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous computing - Ubicomp ’10. doi:10.1145/1864431.1864491J.-Y. Mao, K. Vredenburg, P.W. Smith and T. Carey, User-centered design methods in practice: A survey of the state of the art, in: Proceedings of the 2001 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON’01, IBM Press, 2001, p. 12.Maoz, S. (2009). Using Model-Based Traces as Runtime Models. Computer, 42(10), 28-36. doi:10.1109/mc.2009.336Mayer, R. E., & Moreno, R. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 43-52. doi:10.1207/s15326985ep3801_6Motti, V. G., & Vanderdonckt, J. (2013). A computational framework for context-aware adaptation of user interfaces. IEEE 7th International Conference on Research Challenges in Information Science (RCIS). doi:10.1109/rcis.2013.6577709R. Murch, Autonomic Computing, IBM Press, 2004.Obrenovic, Z., Abascal, J., & Starcevic, D. (2007). Universal accessibility as a multimodal design issue. Communications of the ACM, 50(5), 83-88. doi:10.1145/1230819.1241668Patterson, D. J., Baker, C., Ding, X., Kaufman, S. J., Liu, K., & Zaldivar, A. (2008). Online everywhere. Proceedings of the 10th international conference on Ubiquitous computing - UbiComp ’08. doi:10.1145/1409635.1409645Pielot, M., de Oliveira, R., Kwak, H., & Oliver, N. (2014). Didn’t you see my message? Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI ’14. doi:10.1145/2556288.2556973Poppinga, B., Heuten, W., & Boll, S. (2014). Sensor-Based Identification of Opportune Moments for Triggering Notifications. IEEE Pervasive Computing, 13(1), 22-29. doi:10.1109/mprv.2014.15S. Ramchurn, B. Deitch, M. Thompson, D. De Roure, N. Jennings and M. Luck, Minimising intrusiveness in pervasive computing environments using multi-agent negotiation, in: Mobile and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004. The First Annual International Conference on, 2004, pp. 364–371.C. Roda, Human Attention and Its Implications for Human-Computer Interaction, Cambridge University Press, 2011.S. Rosenthal, A.K. Dey and M. Veloso, Using decision-theoretic experience sampling to build personalized mobile phone interruption models, in: Proceedings of the 9th International Conference on Pervasive Computing, Pervasive 2011, Springer-Verlag, Berlin, 2011, pp. 170–187.E. Rukzio, K. Leichtenstern and V. Callaghan, An experimental comparison of physical mobile interaction techniques: Touching, pointing and scanning, in: 8th International Conference on Ubiquitous Computing, UbiComp 2006, Orange County, California, 2006.Serral, E., Valderas, P., & Pelechano, V. (2010). Towards the Model Driven Development of context-aware pervasive systems. Pervasive and Mobile Computing, 6(2), 254-280. doi:10.1016/j.pmcj.2009.07.006D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger, J. Shaffer and F.L. Wong, Sensay: A context-aware mobile phone, in: Proceedings of the 7th IEEE International Symposium on Wearable Computers, ISWC’03, IEEE Computer Society, Washington, 2003, p. 248.Tedre, M. (2006). What should be automated? Proceedings of the 1st ACM international workshop on Human-centered multimedia - HCM ’06. doi:10.1145/1178745.1178753M. Valtonen, A.-M. Vainio and J. Vanhala, Proactive and adaptive fuzzy profile control for mobile phones, in: IEEE International Conference on Pervasive Computing and Communications, 2009, PerCom, 2009, pp. 1–3.Vastenburg, M. H., Keyson, D. V., & de Ridder, H. (2007). Considerate home notification systems: a field study of acceptability of notifications in the home. Personal and Ubiquitous Computing, 12(8), 555-566. doi:10.1007/s00779-007-0176-xWarnock, D., McGee-Lennon, M., & Brewster, S. (2011). The Role of Modality in Notification Performance. Lecture Notes in Computer Science, 572-588. doi:10.1007/978-3-642-23771-3_43Weiser, M., & Brown, J. S. (1997). The Coming Age of Calm Technology. Beyond Calculation, 75-85. doi:10.1007/978-1-4612-0685-9_6Van Woensel, W., Gil, M., Casteleyn, S., Serral, E., & Pelechano, V. (2013). Adapting the Obtrusiveness of Service Interactions in Dynamically Discovered Environments. Mobile and Ubiquitous Systems: Computing, Networking, and Services, 250-262. doi:10.1007/978-3-642-40238-8_2

    Design And Lab Experiment Of A Stress Detection Service Based On Mouse Movements

    Get PDF
    Workplace stress can negatively affect the health condition of employees and with it, the performance of organizations. Although there exist approaches to measure work-related stress, two major limitations are the low resolution of stress data and its obtrusive measurement. The current work applies design science research with the goal to design, implement and evaluate a Stress Detection Service (SDS) that senses the degree of work-related stress solely based on mouse movements of knowledge workers. Using van Gemmert and van Galen’s stress theory and Bakker and Demerouti’s Job Demands-Resource model as justificatory knowledge, we implemented a first SDS prototype that senses mouse movements and perceived stress levels. Experimental results indicate that two feature sets of mouse movements, i.e. average deviation from an optimal mouse trajectory and average mouse speed, can classify high versus low stress with an overall accuracy of 78%. Future work regarding a second build-and-evaluate loop of a SDS, then tailored to the field setting, is discussed

    Employing Environmental Data and Machine Learning to Improve Mobile Health Receptivity

    Get PDF
    Behavioral intervention strategies can be enhanced by recognizing human activities using eHealth technologies. As we find after a thorough literature review, activity spotting and added insights may be used to detect daily routines inferring receptivity for mobile notifications similar to just-in-time support. Towards this end, this work develops a model, using machine learning, to analyze the motivation of digital mental health users that answer self-assessment questions in their everyday lives through an intelligent mobile application. A uniform and extensible sequence prediction model combining environmental data with everyday activities has been created and validated for proof of concept through an experiment. We find that the reported receptivity is not sequentially predictable on its own, the mean error and standard deviation are only slightly below by-chance comparison. Nevertheless, predicting the upcoming activity shows to cover about 39% of the day (up to 58% in the best case) and can be linked to user individual intervention preferences to indirectly find an opportune moment of receptivity. Therefore, we introduce an application comprising the influences of sensor data on activities and intervention thresholds, as well as allowing for preferred events on a weekly basis. As a result of combining those multiple approaches, promising avenues for innovative behavioral assessments are possible. Identifying and segmenting the appropriate set of activities is key. Consequently, deliberate and thoughtful design lays the foundation for further development within research projects by extending the activity weighting process or introducing a model reinforcement.BMBF, 13GW0157A, Verbundprojekt: Self-administered Psycho-TherApy-SystemS (SELFPASS) - Teilvorhaben: Data Analytics and Prescription for SELFPASSTU Berlin, Open-Access-Mittel - 201

    Agents united:An open platform for multi-agent conversational systems

    Get PDF
    The development of applications with intelligent virtual agents (IVA) often comes with integration of multiple complex components. In this article we present the Agents United Platform: an open source platform that researchers and developers can use as a starting point to setup their own multi-IVA applications. The new platform provides developers with a set of integrated components in a sense-remember-think-act architecture. Integrated components are a sensor framework, memory component, Topic Selection Engine, interaction manager (Flipper), two dialogue execution engines, and two behaviour realisers (ASAP and GRETA) of which the agents can seamlessly interact with each other. This article discusses the platform and its individual components. It also highlights some of the novelties that arise from the integration of components and elaborates on directions for future work

    Overview of context-sensitive technologies for well-being

    Get PDF
    Today smart devices such as smartphones, smartwatches and activity trackers are widely available and accepted in most developed societies. These devices present a broad set of sensors capable of extracting detailed information about different situations of daily life, which, if used for good, have the potential to improve the quality of life not only for individuals but also for the society in general. One of the key areas where this type of information can help to improve the quality of life is in healthcare since it allows to monitor and infer the current level of well-being of the smart devices carriers. In this paper, some of the available literature about well-being sensing through context-aware data is reviewed. Also, the main types of mechanisms used in these studies are identified. These mechanisms are related to monitoring, generalization, inference, feedback, energy management and privacy. Furthermore, a description of the mechanisms used in each study is presented.info:eu-repo/semantics/acceptedVersio

    Overview of context-sensitive technologies for well-being

    Get PDF
    Today smart devices such as smartphones, smartwatches and activity trackers are widely available and accepted in most developed societies. These devices present a broad set of sensors capable of extracting detailed information about different situations of daily life, which, if used for good, have the potential to improve the quality of life not only for individuals but also for the society in general. One of the key areas where this type of information can help to improve the quality of life is in healthcare since it allows to monitor and infer the current level of well-being of the smart devices carriers. In this paper, some of the available literature about well-being sensing through context-aware data is reviewed. Also, the main types of mechanisms used in these studies are identified. These mechanisms are related to monitoring, generalization, inference, feedback, energy management and privacy. Furthermore, a description of the mechanisms used in each study is presented.info:eu-repo/semantics/publishedVersio

    3D Analytics: Opportunities and Guidelines for Information Systems Research

    Full text link
    Progress in sensor technologies has made three-dimensional (3D) representations of the physical world available at a large scale. Leveraging such 3D representations with analytics has the potential to advance Information Systems (IS) research in several areas. However, this novel data type has rarely been incorporated. To address this shortcoming, this article first presents two showcases of 3D analytics applications together with general modeling guidelines for 3D analytics, in order to support IS researchers in implementing research designs with 3D components. Second, the article presents several promising opportunities for 3D analytics to advance behavioral and design-oriented IS research in several contextual areas, such as healthcare IS, human-computer interaction, mobile commerce, energy informatics and others. Third, we investigate the nature of the benefits resulting from the application of 3D analytics, resulting in a list of common tasks of research projects that 3D analytics can support, regardless of the contextual application area. Based on the given showcases, modeling guidelines, research opportunities and task-related benefits, we encourage IS researchers to start their journey into this largely unexplored third spatial dimension
    • …
    corecore