64 research outputs found

    Inference and Visualization of Information Flow in the Visual Pathway using dMRI and EEG

    Get PDF
    International audienceWe propose a method to visualize information flow in the visual pathway following a visual stimulus. Our method estimates structural connections using diffusion magnetic resonance imaging and functional connections using electroencephalography. First, a Bayesian network which represents the cortical regions of the brain and their connections is built from the structural connections. Next, the functional information is added as evidence into the network and the posterior probability of activation is inferred using a maximum entropy on the mean approach. Finally, projecting these posterior probabilities back onto streamlines generates a visual depiction of pathways used in the network. We first show the effect of noise in a simulated phantom dataset. We then present the results obtained from left and right visual stimuli which show expected information flow traveling from eyes to the lateral geniculate nucleus and to the visual cortex. Information flow visualiza-tion along white matter pathways has potential to explore the brain dynamics in novel ways

    Methods and models for brain connectivity assessment across levels of consciousness

    Get PDF
    The human brain is one of the most complex and fascinating systems in nature. In the last decades, two events have boosted the investigation of its functional and structural properties. Firstly, the emergence of novel noninvasive neuroimaging modalities, which helped improving the spatial and temporal resolution of the data collected from in vivo human brains. Secondly, the development of advanced mathematical tools in network science and graph theory, which has recently translated into modeling the human brain as a network, giving rise to the area of research so called Brain Connectivity or Connectomics. In brain network models, nodes correspond to gray-matter regions (based on functional or structural, atlas-based parcellations that constitute a partition), while links or edges correspond either to structural connections as modeled based on white matter fiber-tracts or to the functional coupling between brain regions by computing statistical dependencies between measured brain activity from different nodes. Indeed, the network approach for studying the brain has several advantages: 1) it eases the study of collective behaviors and interactions between regions; 2) allows to map and study quantitative properties of its anatomical pathways; 3) gives measures to quantify integration and segregation of information processes in the brain, and the flow (i.e. the interacting dynamics) between different cortical and sub-cortical regions. The main contribution of my PhD work was indeed to develop and implement new models and methods for brain connectivity assessment in the human brain, having as primary application the analysis of neuroimaging data coming from subjects at different levels of consciousness. I have here applied these methods to investigate changes in levels of consciousness, from normal wakefulness (healthy human brains) or drug-induced unconsciousness (i.e. anesthesia) to pathological (i.e. patients with disorders of consciousness)

    Estimation of Axon Conduction Delay, Conduction Speed, and Diameter from Information Flow using Diffusion MRI and MEG

    Get PDF
    Data were provided by the Human Connectome Project (HCP), WU-MinnConsortium (Principal Investigators: David Van Essen and Kamil Ugurbil;1U54MH091657) funded by the 16 NIH Institutes and Centers that supportthe NIH Blueprint for Neuroscience Research; and by the McDonnell Center forSystems Neuroscience at Washington UniversityInternational audienc

    White Matter Information Flow Mapping from Diffusion MRI and EEG

    Get PDF
    International audienceThe human brain can be described as a network of specialized and spatially distributed regions. The activity of individual regions can be estimated using electroencephalography and the structure of the network can be measured using diffusion magnetic resonance imaging. However, the communication between the different cortical regions occurring through the white matter, coined information flow, cannot be observed by either modalities independently. Here, we present a new method to infer information flow in the white matter of the brain from joint diffusion MRI and EEG measurements. This is made possible by the millisecond resolution of EEG which makes the transfer of information from one region to another observable. A subject specific Bayesian network is built which captures the possible interactions between brain regions at different times. This network encodes the connections between brain regions detected using diffusion MRI tractography derived white matter bundles and their associated delays. By injecting the EEG measurements as evidence into this model, we are able to estimate the directed dynamical functional connectivity whose delays are supported by the diffusion MRI derived structural connectivity. We present our results in the form of information flow diagrams that trace transient communication between cortical regions over a functional data window. The performance of our algorithm under different noise levels is assessed using receiver operating characteristic curves on simulated data. In addition, using the well-characterized visual motor network as grounds to test our model, we present the information flow obtained during a reaching task following left or right visual stimuli. These promising results present the transfer of information from the eyes to the primary motor cortex. The information flow obtained using our technique can also be projected back to the anatomy and animated to produce videos of the information path through the white matter, opening a new window into multi-modal dynamic brain connectivity

    Functional and structural substrates of increased dosage of Grik4 gene elucidated using multi-modal MRI

    Get PDF
    Grik4 is the gene responsible for encoding the high-affinity GluK4 subunit of the kainate receptors. Increased dosage of this subunit in the forebrain was linked to an increased level of anxiety, lack of social communication, and depression. On the synaptic level, abnormal synaptic transmission was also reported. The manifestations of this abnormal expression have not been investigated at the circuit level, nor the correlations between those circuits and the abnormal patterns of the behavior previously reported. In this line of work, we aspired to use different non-invasive magnetic resonance imaging (MRI) modalities to elucidate any disturbance that might stem from the increased dosage of Grik4 and how those changes might explain the abnormal behaviors. MRI offers a noninvasive way to look into the intact brain in vivo. Resting-state functional MRI casts light on how the brain function at rest on the network level and has the capability to detect any anomalies that might occur within or between those networks. On the microstructural level, the diffusion MRI is concerned with the underlying features of the tissues, using the diffusion of water molecules as a proxy for that end. Moving more macroscopically, using structural scans, voxel-based morphometry can detect subtle differences in the morphology of the different brain structures. We recorded videos of our animals performing two tasks that have long been linked to anxiety, the open field and the plus-maze tests before acquiring structural and functional scans. Lastly, we recorded blood-oxygenationlevel dependent (BOLD) signals in a different set of animals during electrical stimulation of specific white matter tracts in order to investigate how neuronal activity propagates. Our analysis showed a vast spectrum of changes in the transgenic group relative to the animals in the control group. On the resting-state networks level, we observed an increase in the within-network strength spanning different structures such as the hippocampus, some regions of the cortex, and the hypothalamus. The increased internal coherence or strength in the networks contrasted with a significant reduction in between-networks connectivity for some regions such as parts of the cortex and the hypothalamus, suggesting long-range network decorrelation. Supporting this idea, major white matter (WM) tracts, such as the corpus callosum and the hippocampal commissure, suffered from substantial changes compatible with an important reduction in myelination and/or a decrease in the mean axonal diameter. Macrostructurally speaking, the overexpression of GluK4 subunit had a bimodal effect, with expansion in some cortical areas in the transgenic animals accompanied by a shrinkage in the subcortical regions. Upon stimulating the brain with an electrical current, we noticed a difference in activity propagation between the two hemispheres. In transgenic animals, the evoked activity remained more confined to the stimulated hemisphere, again consistent with an impaired long-range connectivity. The structural changes both, at the micro and macro level, were in tight correlation with different aspects of the behavior including markers of anxiety such as the time spent in the open arms vs the closed arms in the plus-maze test and the time spent in the center vs the corners in the open field test. Our findings reveal how the disruption of kainate receptors, or more globally the glutamate receptors, and the abnormal synaptic transmission can translate into brain-wide changes in connectivity and alter the functional equilibrium between macro-and mesoscopic networks. The postsynaptic enhancement previously reported in the transgenic animals was here reflected in the BOLD signal and measured as an increase in the within-network strength. Importantly, the correlations between the structural changes and the behavior help to put the developmental changes and their behavioral ramifications into context. RESUMEN Grik4 es el gen responsable de codificar la subunidad GluK4 de alta afinidad de los receptores de kainato. El aumento de la dosis de esta subunidad en el prosencéfalo se relacionó con un mayor nivel de ansiedad, falta de comunicación social y depresión. A nivel sináptico, también se informó una transmisión sináptica anormal. Las manifestaciones de esta expresión anormal no se han investigado a nivel de circuito, ni las correlaciones entre esos circuitos y los patrones anormales de la conducta previamente informada. En esta línea de trabajo, aspiramos a utilizar diferentes modalidades de imágenes por resonancia magnética (MRI) no invasivas para dilucidar cualquier alteración que pudiera derivarse del aumento de la dosis de Grik4 y cómo esos cambios podrían explicar los comportamientos anormales. La resonancia magnética ofrece una forma no invasiva de observar el cerebro intacto in vivo. La resonancia magnética funcional en estado de reposo arroja luz sobre cómo funciona el cerebro en reposo en el nivel de la red y tiene la capacidad de detectar cualquier anomalía que pueda ocurrir dentro o entre esas redes. En el nivel microestructural, la resonancia magnética de difusión se ocupa de las características subyacentes de los tejidos utilizando la difusión de moléculas de agua como un proxy para ese fin. Moviéndose más macroscópicamente, utilizando escaneos estructurales, la morfometría basada en vóxeles puede detectar diferencias sutiles en la morfología de las diferentes estructuras cerebrales. Grabamos videos de nuestros animales realizando dos tareas que durante mucho tiempo se han relacionado con la ansiedad, el campo abierto y las pruebas de laberinto positivo antes de adquirir escaneos estructurales y funcionales. Por último, registramos señales dependientes del nivel de oxigenación de la sangre (BOLD) en un grupo diferente de animales durante la estimulación eléctrica de tractos específicos de materia blanca para investigar cómo se propaga la actividad neuronal. Nuestro análisis mostró un amplio espectro de cambios en el grupo transgénico en relación con los animales en el grupo de control. En el nivel de las redes de estado de reposo, observamos un aumento en la fuerza dentro de la red que abarca diferentes estructuras como el hipocampo, algunas regiones de la corteza y el hipotálamo. La mayor coherencia interna o fuerza en las redes contrastó con una reducción significativa en la conectividad entre redes para algunas regiones como partes de la corteza y el hipotálamo, lo que sugiere una descorrelación de redes de largo alcance. Apoyando esta idea, los grandes tractos de materia blanca (WM), como el cuerpo calloso y la comisura del hipocampo, sufrieron cambios sustanciales compatibles con una importante reducción de la mielinización y / o una disminución del diámetro axonal medio. Macroestructuralmente hablando, la sobreexpresión de la subunidad GluK4 tuvo un efecto bimodal, con expansión en algunas áreas corticales en los animales transgénicos acompañada de una contracción en las regiones subcorticales. Al estimular el cerebro con una corriente eléctrica, notamos una diferencia en la propagación de la actividad entre las dos hemiesferas. En los animales transgénicos, la actividad evocada permaneció más confinada al hemisferio estimulado, de nuevo consistente con una conectividad de largo alcance deteriorada. Los cambios estructurales, tanto a nivel micro como macro, estaban en estrecha correlación con diferentes aspectos de la conducta, incluidos marcadores de ansiedad como el tiempo pasado con los brazos abiertos frente a los brazos cerrados en la prueba del laberinto positivo y el tiempo pasado en el centro vs las esquinas en la prueba de campo abierto. Nuestros hallazgos revelan cómo la interrupción de los receptores de kainato, o más globalmente los receptores de glutamato, y la transmisión sináptica anormal pueden traducirse en cambios de conectividad en todo el cerebro y alterar el equilibrio funcional entre las redes macro y mesoscópicas. La mejora postsináptica informada anteriormente en los animales transgénicos se reflejó aquí en la señal BOLD y se midió como un aumento en la fuerza dentro de la red. Es importante destacar que las correlaciones entre los cambios estructurales y elcomportamiento ayudan a contextualizar los cambios en el desarrollo y sus ramificaciones conductuales

    Estimation of Axonal Conduction Speed and the Inter Hemispheric Transfer Time using Connectivity Informed Maximum Entropy on the Mean

    Get PDF
    International audienceThe different lengths and conduction velocities of axons connecting cortical regions of the brain yield information transmission delays which are believed to be fundamental to brain dynamics. A critical step in the estimation of axon conduction speed in vivo is the estimation of the inter hemispheric transfer time (IHTT). The IHTT is estimated using electroencephalography (EEG) by measuring the latency between the peaks of specific electrodes or by computing the lag to maximum correlation on contra lateral electrodes. These approaches do not take the subject's anatomy into account and, due to the limited number of electrodes used, only partially leverage the information provided by EEG. Using the previous published Connectivity Informed Maximum Entropy on the Mean (CIMEM) method, we propose a new approach to estimate the IHTT. In CIMEM, a Bayesian network is built using the structural connectivity information between cortical regions. EEG signals are then used as evidence into this network to compute the posterior probability of a connection being active at a particular time. Here, we propose a new quantity which measures how much of the EEG signals are supported by connections, which is maximized when the correct conduction delays are used. Using simulations, we show that CIMEM provides a more accurate estimation of the IHTT compared to the peak latency and lag to maximum correlation methods

    Characterization of Neural Activity using Complex Network Theory. Application to the Identification of the Altered Neural Substrates in Schizophrenia

    Get PDF
    La esquizofrenia es un desorden psiquiátrico caracterizado por alteraciones en el pensamiento y en la capacidad de respuesta emocional. Comprende una gran variedad de síntomas, sin embargo, no está claro que todos compartan un sustrato neurológico común. Por ello, el objetivo de esta Tesis Doctoral es desarrollar un marco de referencia desde la perspectiva de la Teoría de Redes Complejas para investigar las interacciones neurales alteradas de la esquizofrenia haciendo uso de la señal electroencefalográfica. Así, dos bases de datos independientes de registros electroencefalográficos fueron registras durante una tarea cognitiva. Nuestros hallazgos son consistentes con estudios previos al tiempo que muestran una hiperactivación del intervalo de estímulo previa a una reorganización neural disminuida durante la cognición, principalmente asociado a caminos neurales secundarios. Los hallazgos de esta Tesis ponen de manifiesto la gran heterogeneidad de la esquizofrenia, posiblemente asociada a la existencia de subgrupos dentro de la misma.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Towards a data-driven treatment of epilepsy: computational methods to overcome low-data regimes in clinical settings

    Get PDF
    Epilepsy is the most common neurological disorder, affecting around 1 % of the population. One third of patients with epilepsy are drug-resistant. If the epileptogenic zone can be localized precisely, curative resective surgery may be performed. However, only 40 to 70 % of patients remain seizure-free after surgery. Presurgical evaluation, which in part aims to localize the epileptogenic zone (EZ), is a complex multimodal process that requires subjective clinical decisions, often relying on a multidisciplinary team’s experience. Thus, the clinical pathway could benefit from data-driven methods for clinical decision support. In the last decade, deep learning has seen great advancements due to the improvement of graphics processing units (GPUs), the development of new algorithms and the large amounts of generated data that become available for training. However, using deep learning in clinical settings is challenging as large datasets are rare due to privacy concerns and expensive annotation processes. Methods to overcome the lack of data are especially important in the context of presurgical evaluation of epilepsy, as only a small proportion of patients with epilepsy end up undergoing surgery, which limits the availability of data to learn from. This thesis introduces computational methods that pave the way towards integrating data-driven methods into the clinical pathway for the treatment of epilepsy, overcoming the challenge presented by the relatively small datasets available. We used transfer learning from general-domain human action recognition to characterize epileptic seizures from video–telemetry data. We developed a software framework to predict the location of the epileptogenic zone given seizure semiologies, based on retrospective information from the literature. We trained deep learning models using self-supervised and semi-supervised learning to perform quantitative analysis of resective surgery by segmenting resection cavities on brain magnetic resonance images (MRIs). Throughout our work, we shared datasets and software tools that will accelerate research in medical image computing, particularly in the field of epilepsy
    • …
    corecore