2,091 research outputs found

    Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review.

    Get PDF
    Background: Wearable sensors are portable measurement tools that are becoming increasingly popular for the measurement of joint angle in the upper limb. With many brands emerging on the market, each with variations in hardware and protocols, evidence to inform selection and application is needed. Therefore, the objectives of this review were related to the use of wearable sensors to calculate upper limb joint angle. We aimed to describe (i) the characteristics of commercial and custom wearable sensors, (ii) the populations for whom researchers have adopted wearable sensors, and (iii) their established psychometric properties. Methods: A systematic review of literature was undertaken using the following data bases: MEDLINE, EMBASE, CINAHL, Web of Science, SPORTDiscus, IEEE, and Scopus. Studies were eligible if they met the following criteria: (i) involved humans and/or robotic devices, (ii) involved the application or simulation of wearable sensors on the upper limb, and (iii) calculated a joint angle. Results: Of 2191 records identified, 66 met the inclusion criteria. Eight studies compared wearable sensors to a robotic device and 22 studies compared to a motion analysis system. Commercial (n = 13) and custom (n = 7) wearable sensors were identified, each with variations in placement, calibration methods, and fusion algorithms, which were demonstrated to influence accuracy. Conclusion: Wearable sensors have potential as viable instruments for measurement of joint angle in the upper limb during active movement. Currently, customised application (i.e. calibration and angle calculation methods) is required to achieve sufficient accuracy (error < 5°). Additional research and standardisation is required to guide clinical application

    Features of Acceleration and Angular Velocity Using Thigh IMUs during Walking in Water

    Get PDF
    Ten participants were assessed while walking in water and on land with wearable inertial measurement units (IMUs) attached to the right thigh. Longitudinal acceleration, anterior-posterior acceleration, and frontal axis angular velocity were measured at 100 Hz, matched with video analysis sampled at 25 Hz during the walking trials. The longitudinal acceleration showed almost 1 g from initial heel contact to 70% of one cycle, and the anterior-posterior acceleration showed a sinusoidal pattern, synchronizing the approximate posture of the thigh in water. The frontal axis angular velocity fluctuated less while walking in water compared with on land, because thigh motion speed was slower in water than on land. The acceleration and angular velocity in water were stable and did not fluctuate. Walking exercises in water may be effective in individuals with knee- or thigh-related medical issues

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    © 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment

    Overcoming Bandwidth Limitations in Wireless Sensor Networks by Exploitation of Cyclic Signal Patterns: An Event-triggered Learning Approach

    Get PDF
    Wireless sensor networks are used in a wide range of applications, many of which require real-time transmission of the measurements. Bandwidth limitations result in limitations on the sampling frequency and number of sensors. This problem can be addressed by reducing the communication load via data compression and event-based communication approaches. The present paper focuses on the class of applications in which the signals exhibit unknown and potentially time-varying cyclic patterns. We review recently proposed event-triggered learning (ETL) methods that identify and exploit these cyclic patterns, we show how these methods can be applied to the nonlinear multivariable dynamics of three-dimensional orientation data, and we propose a novel approach that uses Gaussian process models. In contrast to other approaches, all three ETL methods work in real time and assure a small upper bound on the reconstruction error. The proposed methods are compared to several conventional approaches in experimental data from human subjects walking with a wearable inertial sensor network. They are found to reduce the communication load by 60–70%, which implies that two to three times more sensor nodes could be used at the same bandwidth

    Construction of a biosignal measurement device and its dashboard for swimming training

    Get PDF
    This research work draws on previous experimental research and aims to further develop and refine a biosignal measurement device that will allow the capture of a swimmer’s biosignals via Bluetooth. It also encompasses the construction of a dashboard that will allow a swimming instructor or coach to monitor and improve the athletes’ swimming practice.O âmbito deste trabalho incide no desenvolvimento/criação de um dispositivo de medição de biosinais (acelerometria, eletromiografia e eletrocardiografia) para que através de uma conexão via Bluetooth seja feita a captura destes valores num nadador. Abrange ainda o desenvolvimento de um dashboard que permite ao treinador acompanhar e melhorar os treinos de um atleta

    Master of Science

    Get PDF
    thesisComputing and data acquisition have become an integral part of everyday life. From reading emails on cell phones to kids playing with motion sensing game consoles, we are surrounded with sensors and mobile computing devices. As the availability of powerful computing devices increases, applications in previously limited environments become possible. Training devices in rehabilitation are becoming increasingly common and more mobile. Community based rehabilitative devices are emerging that embrace these mobile advances. To further the flexibility of devices used in rehabilitation, research has explored the use of smartphones as a means to process data and provide feedback to the user. In combination with sensor embedded insoles, smartphones provide a powerful tool for the clinician in gathering data and as a standalone training tool in rehabilitation. This thesis presents the continuing research of sensor based insoles, feedback systems and increasing the capabilities of the Adaptive Real-Time Instrumentation System for Tread Imbalance Correction, or ARTISTIC, with the introduction of ARTISTIC 2.0. To increase the capabilities of the ARTISTIC an Inertial Measurement Unit (IMU) was added, which gave the system the ability to quantify the motion of the gait cycle and, more specifically, determine stride length. The number of sensors in the insole was increased from two to ten, as well as placing the microprocessor and a vibratory motor in the insole. The transmission box weight was reduced by over 50 percent and the volume by over 60 percent. Stride length was validated against a motion capture system and found the average stride length to be within 2.7 ± 6.9 percent. To continue the improvement of the ARTISTIC 2.0, future work will include implementing real-time stride length feedback

    The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review

    Get PDF
    Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features—such as research design, scope, experimental settings, and applied context—were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field

    ISBS 2018 AUCKLAND CONFERENCE SPRINZ-HPSNZ-AUT MILLENNIUM APPLIED PROGRAMME

    Get PDF
    An interactive afternoon of sessions delivered by High Performance Sport New Zealand (HPSNZ) and AUT SPRINZ Biomechanists, Performance Analysts and other biomechanics relevant sport facing practitioners. The 11 sessions are at AUT Millennium (AUTM), which is a satellite site of AUT University and the Auckland training hub for many HPSNZ supported sports such as athletics, sailing, and swimming. These sports and others (cycling, rowing, snow sports etc.) will be represented in the line-up. The applied sessions involve practical demonstrations of aspects of analysis and/or tools used to deliver in the field to directly positively impact athletes performances on the world stage. Following these engaging sessions there will be tasting of New Zealand wine, allowing for further discussion and networking. Sir Graeme Avery will be acknowledged for his contribution to sport science. Mike Stanley is AUT Millennium Chief Executive & NZ Olympic Committee President will explain the partners in the facility. AUT Millennium is a charitable trust established to help New Zealanders live longer and healthier lives, and to enjoy and excel in sport through the provision of world-class facilities, services, research and education. Founded in 2002 as Millennium Institute of Sport and Health (MISH) by Sir Stephen Tindall and Sir Graeme Avery as a premium health and fitness facility for both athletes and the public alike. Partnered with AUT University in 2009, forming AUT Millennium, to expand research and education in the sporting sector. Professor Barry Wilson is an Adjunct Professor with SPRINZ at Auckland University of Technology and will be outlining the research and student opportunities. Martin Dowson is the General Manager Athlete Performance Support at High Performance Sport New Zealand and has overall responsibility for the programme. Simon Briscoe, AUT Millennium Applied Session Coordinator, is the head of the Performance and Technique Analysis discipline within HPSNZ. Simon is coordinating the applied sessions along with technical support from Dr Allan Carman, Research Fellow, AUT SPRINZ. Jodi Cossor and Matt Ingram will provide a demonstration of a multidisciplinary approach driven by biomechanical analysis for Paralympic swimmers. Justin Evans and Sarah-Kate Millar will provide a practical session assessing the athletes rowing stroke to assist the coach on technical changes. This session will demonstrate various rowing traits and how the biomechanist and coach can work together to optimise boat speed. Mike Schofield and Kim Hébert-Losier will provide a session looking at shotput and the evidence based approach to coaching. Dr Craig Harrison and Professor John Cronin will provide examples from the AUTM Athlete Development programme. Kim Simperingham and Jamie Douglas who work with high performance rugby athletes will outline sprinting mechanics in practice. Dr Bruce Hamilton, Fiona Mather, Justin Ralph and Rone Thompson will demonstrate the approach of HPSNZ and Cycling NZ performance health teams in the use of some specific tools for prevention of injury and optimisation of performance. Kelly Sheerin, Denny Wells and Associate Professor Thor Besier will provide examples of using IMU and motion capture methods for running and basketball biomechanics research, education and service. Dr Rodrigo Bini and Associate Professor Andrew Kilding will show how linking of biomechanics and physiology improves injury prevention and performance enhancement. Robert Tang, Andre de Jong and Farhan Tinwala discuss select projects developed by Goldmine, HPSNZ’s in-house engineering team, and how these innovations have enabled unprecedented levels of biomechanics feedback. Cameron Ross and Paul McAlpine demonstrate the technology being used at the Snow Sports NZ training centre in Cadrona to enhance load monitoring of athletes. This application allows greater insight into training performances and biomechanical loads than has been previously possible in the training environment. AUT Millennium tour guides are coordinated by Josh McGeown and include Enora Le Flao, Dustin Oranchuk, Erika Ikeda, Jono Neville, Aaron Uthoff, Andrew Pichardo, Farhan Tinwala, Shelley Diewald, Renata Bastos Gottgtroy, Jessica Yeoman, Casey Watkins, Eric Harbour, Anja Zoellner, Alyssa Joy Spence, Victor Lopez Jr, and Albert Chang

    Kinematics of the equine axial skeleton during aqua-treadmill exercise

    Get PDF
    Equine aqua-treadmills are increasingly applied within the industry for rehabilitation from injury and training. Research into aqua-treadmill exercise has been increasing yet there are still opportunities to further quantify the effect of water depth on locomotion in order to optimise aqua-treadmill protocols to see improved rehabilitation from injury or to exercise horses more effectively for their chosen discipline. Much of the current aqua-treadmill literature focusses on the effects of water on locomotory parameters in walk, thus providing an opportunity for investigation into the impact of water at trot. Trot is the favoured gait for effective quantification of lameness and symmetry studies so it was anticipated that there may be opportunities to make comparisons to previously published overground data. Effective schooling of horses overground includes training aids, such as side reins, to constructively develop a horse’s way of going and often to assist the horse in maintaining concentration. This provided a further opportunity for investigation into the use of side reins during aqua-treadmill exercise. This project therefore, aimed to quantify the effect of increasing water depths on pelvic and withers movement of horses trotting on an aquatreadmill and to analyse the impact the use of side reins has on these movements. Seventeen sound horses were habituated to aqua-treadmill exercise and subjected to one of two exercise protocols where data were collected either by optical motion capture (Qualisys©) or an inertial sensor system (Xsens©). The exercise protocol involved trotting on the aqua-treadmill at four increasing water depths, that of the third phalanx (P3), mid fetlock, mid third metacarpal (MC3), and mid carpus. Markers for optical motion capture were located on the poll, withers (T4/T5), mid thorax (T13), tuber sacrale, left and right tuber coxae, left and right tuber ischia. Inertial sensors were located on the poll, withers (T4/T5), mid thorax (T13), lumbar vertebrae (L4), tuber sacrale, left and right tuber coxae, and top of the tail (1st coccygeal vertebrae). Data were cut into strides with accelerations double integrated to generate displacement amplitudes, both vertical and mediolateral, for statistical testing. Pitch and roll data from the inertial sensors was also extracted and processed for analysis. Data were processed using custom written scripts (Matlab®) and repeated measures ANOVAs were performed throughout to test for significance with post hoc analysis where appropriate. Water depth was found to have a significant effect on vertical displacement amplitudes of the pelvis and withers with vertical displacements increasing with increasing water depth, and a greater displacement in the pelvis than the withers. Minimum and maximum positions of the pelvis and withers were found to decrease and increase accordingly with increasing water depth, with minimum values decreasing significantly indicating an increase in limb compression during stance. Maximum vertical positions also increased significantly indicating greater maximum lift out of the water as a result of the increased compression. Water depth had no effect on symmetry of horses trotting on an aquatreadmill and no effect on pitch amplitudes. Vertical displacements, pitch and symmetry were not altered with the addition of side reins, suggesting that the adoption of a different head and neck position whilst reaching comparable displacement amplitudes encourages further engagement of back muscles possibly providing stimulus for building greater strength through muscular development. Water depth was found to have no effect on mediolateral displacements of the pelvis or withers but with the withers exhibiting larger mediolateral displacements than the pelvis at lower water depths but reducing to an amount comparable to the pelvis at deeper depths suggesting that deeper water provides a stabilising effect on the front end of the horse. Side reins had no effect on mediolateral displacement amplitudes or on roll amplitudes. Mediolateral flexions of the spine were not affected by water depth or side reins, suggesting that the horse can be worked harder at greater water depths without over stressing the mediolateral capabilities of the spine. Vertical displacements of the pelvis were significantly increased when trotting on the aquatreadmill in a very low depth of water compared to measurements overground but this effect was not seen in the withers suggesting the front end of the horse can efficiently compensate for water depth by flexing at the carpus, although larger pitch amplitudes were reported at the withers suggesting a change in head and neck position to create a ‘jump up’ over the water. Side reins were found to decrease vertical displacement amplitudes in the withers overground but trotting on the aqua-treadmill in a small amount of water counteracted this effect suggesting that the addition of water may counteract a ‘downhill’ effect seen in horses wearing side reins overground. This project suggests that the aqua-treadmill is beneficial at increasing the workload for the horse that may possibly have a corresponding effect of increasing muscle mass, strength and condition, but without detrimental effects to cranial-caudal or mediolateral symmetry patterns and that side reins have a potential benefit in supporting these locomotory patterns. Knowledge of this primary scientific data will better assist professionals working with aqua-treadmills to more effectively benefit the horses with which they work. There is, however, an opportunity for further longitudinal research to further support the effective application of the aqua-treadmill as a tool for rehabilitation and training
    • …
    corecore