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Abstract 

Ten participants were assessed while walking in water and on land with wearable 

inertial measurement units (IMUs) attached to the right thigh. Longitudinal 

acceleration, anterior-posterior acceleration, and frontal axis angular velocity were 

measured at 100 Hz, matched with video analysis sampled at 25 Hz during the 

walking trials. The longitudinal acceleration showed almost 1 g from initial heel 

contact to 70% of one cycle, and the anterior-posterior acceleration showed a 

sinusoidal pattern, synchronizing the approximate posture of the thigh in water. The 

frontal axis angular velocity fluctuated less while walking in water compared with 

on land, because thigh motion speed was slower in water than on land. The 

acceleration and angular velocity in water were stable and did not fluctuate. 

Walking exercises in water may be effective in individuals with knee- or thigh-

related medical issues. 

Keywords: gait, immersion, health promotion, exercise therapy, underwater, 

wearable inertial sensor 

Introduction 

Walking is the most fundamental mode of locomotion for humans. Current research 

has revealed the mechanics of walking in children, elderly, and disabled persons 

(Gil-Agudo et al., 2013; Grabiner et al., 2001; Shultz et al., 2010). The most 

common method for investigating mechanics of walking is by using a motion 

analysis system and infrared cameras (Lee et al., 2013). This technique is highly 

reliable, produces minimal error about the target point, and captures human motion 

in almost real time. Although this system has merits for investigating human motion, 

the measurement environment is restricted to the capture area and the system is 

very expensive (Mayagoitia et al., 2002). In addition, the small zone of capture of 

such a system limits the analysis of walking to the participant using a treadmill 

machine or using a small number of cycles (Lee et al., 2010). Research has reported 
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differences between walking over ground and treadmill walking (Lee & Hidler, 

2008). As such, a motion monitoring system not limited by a small capture area is 

needed for measuring multiple cycles of walking. 

Currently, wearable inertial measurement units (IMUs) containing an 

accelerometer, gyroscope, and magnetometer have been used for monitoring and 

evaluating human motion. The IMUs are portable, being small and light in weight. 

This technology enables the measurement of human movement without the 

restricted capture area due to the wireless connection and/or logging system in the 

IMUs. The IMUs have been used in research for walking event identification 

(Lau & Tong, 2008; Saremi, et al., 2006), counting walking steps (Fortune et al. 

2014), motion classification (Little et al., 2013), and estimating energy expenditure 

during daily life activities (Crouter et al., 2006). Thus, research focus has been able 

to move from the traditional laboratory to the open field. 

Swimming and walking in the water also were researched using IMUs 

(James et al., 2011; Ohgi et al., 2014; Kaneda et al., 2014; Fantozzi et al., 2015). 

James et al. (2011) tried to develop a monitoring system for swimming which 

would be useful for swimmers and coaches providing stroke events such as wall 

push offs, turns, and lap times by attaching IMUs to the sacrum of swimmers. Ohgi 

et al. (2014) reported a stroke classification method using IMUs attached to the 

chest of swimmers. With respect to walking research, our team has also published 

an algorithm for the estimation of energy expenditure during walking in water from 

the acceleration data attached on the head of participants (Kaneda et al., 2014). 

Another research report described three-dimensional kinematic gait analysis in the 

water environment using IMUs (Fantozzi et al., 2015). The buoyancy and viscosity 

derived from water density affects human movement during exercise. To date, 

research has identified the biomechanical and kinesiological characteristics during 

walking in water in a similar manner to motion capture by video camera (Barela et 
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al., 2006; Degani & Danna-dos-Santos, 2007), ground reaction force (Barela et al., 

2006; Roesler et al. 2006), joint torque (Orselli & Duarte, 2011), and muscle 

activities (Barela et al., 2006; Miyoshi et al., 2006). As mentioned earlier, only one 

article has reported the use of IMUs for walking in water. It calculated a joint and 

segmental kinematic movement pattern (Fantozzi, et al., 2015). The raw data of 

acceleration from IMUs and gyroscope during walking in water has not been 

matched with video data analysis as used in previous studies (Barela et al., 2006; 

Degani & Danna-dos-Santos, 2007). In those previous studies, evaluations were 

made by targeting lower extremity motion during walking, and some differences 

were detected between walking on land versus in water. Therefore, using raw data 

from IMUs and targeting lower extremities may be effective in developing tools to 

monitor exercise or to evaluate motion for the prescription of health and 

rehabilitation training in water. 

The purpose of this study was to assess and compare the motion of walking 

in water with the motion of walking on land using data from IMUs attached to the 

thigh with the simultaneous data from a video camera. 

Method 

Participants 

Six men and four women ages 30 ± 6 years were recruited for this study. All 

participants were free from orthopedic conditions that might have affected the 

walking motion. Participants provided informed consent prior to participating in 

the research which was approved by the Human Research Ethics Committee at the 

University of the Sunshine Coast. 

Procedures 

The participants performed walking in water (WW) and on land (LW) at three 

walking speeds at their self-determined slow, moderate (comfortable) and fast pace. 

They walked along a 10 m walkway three times at each speed, and the first and 
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second trials were treated as practice, with the data from the third trial used for 

analysis. The experiments were carried out at the outdoor swimming pool at the 

university. The WW was conducted in the swimming pool. The depth of the 

swimming pool was 1.35 m which was between the levels of the xiphoid and the 

clavicle of each of the participants. The LW was conducted on the swimming pool 

deck. 

The IMUs, containing a tri-axial accelerometer, gyroscope, and 

magnetometer (LP-WS0904, 9DoF Wireless Motion Logger, Logical Product Co., 

Japan), were attached to the participant’s front side of the right thigh at the mid-

point. The IMUs measured acceleration and angular velocity at a sampling rate of 

100 Hz. The IMUs were waterproofed using a zip lock package and were attached 

to the thigh by adhesive double-sided tape and kinesio-tape. The video cameras 

used for each trial were DCR-TRV900 3CCD (SONY, Japan) for LW and Orca 

Swim Tracker) (Design Science, USA) for WW. Each camera was set at the right 

side of the participant with a sampling rate of 25 Hz. The cameras were set to 

capture the latter part of the walking trial. Using the accepted standard protocol 

(Miyoshi et al., 2004; Miyoshi et al., 2006), vinyl tape markers were attached on 

the lateral malleolus, lateral epicondyle, greater trochanter, and midpoint of the iliac 

crest of the participant’s right side to detect body position for analyzing the video 

files. 

From the acquired files, one walking cycle of the latter part of the third trial 

was identified based on one complete action between consecutive heel strikes. The 

hip and knee angles (from the lateral epicondyle to the midpoint of the iliac crest 

via the greater trochanter for hip angle and from the lateral malleolus to the greater 

trochanter via the lateral epicondyle for knee angle) of the sagittal plane were 

calculated by a two-dimensional direct linear transformation method. The 

digitization of the marker sets was processed manually, then the angle of the thigh 
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segment (from the lateral epicondyle to the greater trochanter) relative to the 

vertical (gravitational) axis of the sagittal plane also was calculated. The data from 

IMUs allowed acceleration and angular velocities of a given walking cycle to be 

calculated. In this study, the longitudinal and anterior-posterior acceleration (L-A 

and AP-A, respectively) and frontal axis angular velocity (F-AV) were used for 

analysis as the video data captured motion only in the sagittal plane. The thigh 

sensor was placed such that the positive value was delivered when standing 

stationary in L-A, when elevating the thigh (hip joint flexion) in AP-A, and when 

moving counterclockwise rotation (hip joint flexion) in F-AV. 

The IMUs and video data were synchronized with participant heel strike 

motion by viewing the frames on video camera and the acceleration spikes on the 

IMUs. After one cycle, video and IMU data were low-pass filtered at 6 Hz and 

normalized with one cycle from 0-100% based on the heel strike during walking. 

The data were then configured with LW and WW in each parameter. Walking speed 

was calculated from the greater trochanter data of the video data and then averaged 

for one cycle. The toe-off moment was also determined from video data and 

calculated the ratio of the stance phase.  

Analysis 

The normality of each data set was confirmed using a two-way ANOVA with 

Tukey’s post-hoc test applied to investigate any differences in the walking speed 

and the ratios of the stance phase. When significant interactions were not observed 

after two-way ANOVA analysis, a one-way ANOVA with Tukey’s post-hoc test 

was performed comparing the pace difference in each condition. The difference 

between WW and LW was tested using a paired t-test. The α was set at p < 0.05. 

Results 

Figure 1 showed the result of the walking speed and stance ratio in each trial. As 

expected, the statistical analysis revealed that walking speeds were significantly 
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faster on land than in water, and the speed was gradually faster in accordance with 

a pace set faster in both conditions. The stance ratio was shorter in the water. In 

addition, the ratio was shorter in accordance with a pace set faster in both conditions. 

The averaged knee, hip, and thigh angle patterns are depicted in Figure 2. 

The knee joint in water showed a more flexed position compared to that on land at 

the heel contact phase, and after the heel contact, while the knee joint tends to 

extend more, with this tendency being larger at the faster pace. In the swing phase, 

the knee angle was also more flexed in the water than on land. After that, the knee 

joint moved to extend toward to the heel contact. There was a peak extension phase 

near 95% of one cycle on the land. The hip joint was always in a flexed position 

throughout the cycle in the water compared with that on land, and the difference of 

the flexion peak in the swing phase between two conditions became larger at the 

faster pace. The angle of the thigh segment was almost the same at the heel contact 

between the two conditions. However, more angle fluctuation was observed in the 

water than on land. 

The L-A, AP-A, and F-AV patterns are shown in Figure 3. The L-A in the 

water showed mostly 1 g (gravitational acceleration) up to 70% of the cycle, and 

slightly decreased before moving back to 1 g toward the heel contact phase. This 

decrease becomes larger when walking at the faster pace. The AP-A in the water 

was negative after around 10% of the cycle, crossed the 0 g to positive around 

60%, then maintained the positive value to the end of the cycle. The pattern of the 

L-A and AP-A were very different between the two conditions, especially 

regarding the high g around the end of the cycle on land, which was not observed 

in the water. The negative F-AV was larger on land than in water in the stance 

phase, and the difference became larger when walking at the faster pace, and a 

larger positive F-AV was observed in the swing phase. There was no fluctuation 

across 0°/s in the water during the last part of the cycle. 
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Figure 1 

Walking speed and stance ratio in each condition and speed setting 

 

LW: walking on land, WW: walking in water. 
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Figure 2  

Knee, hip, and thigh angle in each condition and speed setting 

 

LW: walking on land, WW: walking in water. The solid line curve indicates mean value of all 

participants and shaded area indicates SD. 

Discussion 

This study investigated the characteristics of acceleration and angular velocity of 

the lower limbs especially in the thigh segments during walking in water and on 

land using IMUs synchronized to video analysis. This study is the first to express 

raw data of acceleration and angular velocity from IMUs synchronized with video 

analysis during walking in water. 
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Figure 3 

Acceleration and angular velocity in each condition and speed setting 

 

LW: walking on land: WW: walking in water; L-A: longitudinal acceleration: AP-A: anterior-

posterior acceleration: F-AV: frontal axis angular velocity. A solid line curve indicates mean value 

of all participants and shaded area indicates SD. 

The walking speed in the water was similar to that reported by Roesler et al. 

(2006). Other studies conducted by Barela et al. (2006) and Orselli & Duarte (2011) 

showed similar walking speeds both in water and on land. The stance time ratios 

decreased when the walking speed was faster and for water compared with on land 

(Kato et al., 2002; Kaneda, et al., 2008). The knee angle was also more flexed at 

the heel contact phase for the water than on land (Kaneda, et al., 2008; Miyoshi, et 

al., 2004). The fluctuation after the heel contact at the knee joint commonly called 

the “double knee action” almost disappeared in the water (Barela, et al., 2006; 
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Miyoshi, et al., 2004). A larger peak knee flexion angle in water than on land was 

observed at the swing phase (Degani & Danna-dos-Santos, 2007). A greater hip 

flexion angle for the water at the stance phase and a larger peak flexion angle in the 

swing phase were seen in the water than on land (Barela, et al., 2006; Degani & 

Danna-dos-Santos, 2007). Further, the L-A, AP-A, and F-AV on land showed very 

similar patterns to that described in previous studies (Bussmann et al., 2000; Lau & 

Tong, 2008; Saremi, et al., 2006). Therefore, the analyzed data obtained in this 

study was generalized to previous studies. 

This study mainly focused on examining the acceleration and angular 

velocity in relation to the sagittal plane; L-A, AP-A, and F-AV were analyzed. A 

key outcome observed was that the L-A in the water showed 1 g up to around 70% 

of the cycle in all speeds although the thigh posture by video analysis fluctuated 

more than on land. There may be some reasons for these variations. First, the double 

knee action observed during LW almost disappeared for WW. This did not generate 

any fluctuation influencing thigh posture around the initial part of the cycle. Second, 

the faster speed trials resulted in faster pushing off the ground on land than in water 

through the stance phase which may create increased centripetal or centrifugal force. 

It has been said gravitational acceleration, translational acceleration, centrifugal 

acceleration, and tangential acceleration are included within the acceleration data 

(Koyanagi & Ohgi, 2010). Therefore, it was speculated that the acceleration force 

from the thigh segment was reduced during walking in water. The decrement of the 

L-A in both conditions by 70-90% of the cycle would be mostly affected by the 

flexed hip joint where the gravitational effect was reduced. The smaller decrement 

of the L-A in the water than on land may be due to the slower motion speed in water 

than on land as seen in the F-AV in this study. 

The AP-A pattern for the water also showed sinusoidal behavior with a 

gradual decreasing and increasing curve throughout one cycle, whilst familiar 
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patterns were observed on land as reported in a previous study (Bussmann et al., 

2000). This could also be due to the slower walking speed and motion that identified 

the F-AV in this study. Bussmann et al. (2000) reported a computed gravitational 

component for the thigh during walking on land, and this was very similar to the 

AP-A pattern in water in this study. Thus, the AP-A could be a useful measure to 

monitor the posture of the attached segment in walking in the water. 

The common point in the L-A and AP-A was that of the high g around the 

end of the cycle on the land. This finding was not observed in the water. The peak 

acceleration observed on the land was also reported in previous studies (Bussmann, 

et al., 2000; Lau & Tong, 2008; Saremi, et al., 2006). Bussmann et al. (2000) 

suggested that the acceleration peak toward the end of the cycle (97% of the cycle) 

could be associated with the moment of heel strike (i.e. due to impact). In the 

present study, these were observed at 94% or 95% of the cycle. Interestingly, the 

knee extension peaks around the end of the cycle in the slow, comfortable, and fast 

pace were 95%, 97%, and 97% respectively. In addition, the F-AV crossed 0°/s at 

95%. These phenomena would indicate that there was an impact on the thigh 

segment by the swing motion of the shank segment where the segment stopped 

acutely at the peak extended position of the knee joint and then prepared for the 

shock absorption at the heel contact phase. Such an impact at the end of the cycle 

is a problem in people with a prosthetic leg and this is known as a “terminal impact” 

(Furse et al., 2011). In the water, the impact just before heel contact phase was not 

observed. This may be due to the high viscosity in the water environment where 

the motion of the shank swing was very slow and did not reach full extension and 

the knee joint was more flexed compared to the land (Barela, et al., 2006; Degani & 

Danna-dos-Santos, 2007; Kaneda, et al., 2008). The authors suggested there was no 

need to prepare for the impact force absorption while walking in the water due to 

the buoyancy effect and changes in lower limb speed (Miyoshi, et al., 2004). 

Therefore, the excess load for the knee joint can be reduced during walking in water. 

11

Kaneda et al.: IMUs during Walking in Water

Published by ScholarWorks@BGSU, 2020



 

 

The F-AV in the water was slower than on the land. The water viscosity 

influenced the motion speed and it was significantly slower in water than on land 

(Kaneda, et al., 2008; Roesler, et al., 2006). The end phase of a cycle transitioned 

smoothly for water but fluctuated across 0°/s on the land. This would strongly relate 

to the shank swing speed with the extended knee joint and an impact phase on land 

as mentioned previously in the L-A and AP-A discussions. The integration of 

angular velocity in three-dimensions may show a similar pattern with hip and/or 

thigh angles. Indeed, Fantozzi et al. (2015) calculated hip, knee, and ankle angle 

patterns from IMU data and indicated a similar tendency as reported by previous 

studies involving video capture data. Taking into account that water has been 

widely reported as an effective environment for rehabilitation training with less fear 

of crucial accidents during exercise (Sato et al. 2007), the authors believe this new 

research contributes to re-constructing human motion during walking during such 

rehabilitation training. 

From the results and discussions in the present study, we suggest that 

walking exercises in water may be applicable for persons who have reduced motion 

or pain in their knees or thighs. During walking in water, acceleration and impact 

force, which burden the thighs or knees just before the heel contact, are reduced. 

This suggests that walking in water may also be applicable for individuals who have 

a lower extremity prothesis because walking in water reduces the “terminal impact”. 

The present study did not have subjects with a prosthetic leg, and further studies 

are required to expand the observations for this population. 

Limitations 

A limitation of this study was the stated discrepancy of the sampling rate between 

IMUs and videos. The authors believe this would only reinforce our results and 

discussion made in the present study. Analyzing consecutive cycles of the walking 
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motion which is presently out of the scope of the camera may also provide 

additional value. 

Conclusion 

This study investigated acceleration and angular velocity during walking in water 

and on land using IMUs attached on the participant’s thigh. The pattern of data of 

one cycle in relation to the sagittal plane was analyzed and compared with video 

analysis. The following conclusions have been made: 1) acceleration of the 

longitudinal axis during water walking showed almost 1 g from heel contact to 70% 

of one cycle, 2) acceleration of the anterior-posterior axis showed a sinusoidal 

pattern which may follow thigh posture, and 3) the acceleration force and excess 

force observed at the thigh segment or knee joint was reduced during walking in 

water. The present study suggested that walking exercises in water might benefit 

individuals who have hip or knee issues. Finally, the motion during walking in 

water can be characterized accurately by IMUs matched to video cameras. 
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