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Abstract—Recent trends in wearable applications demand 
flexible architectures being able to monitor people while they 
move in free-living environments. Current solutions use either 
store-download-offline processing or simple communication 
schemes with real-time streaming of sensor data. This limits the 
applicability of wearable applications to controlled environments 
(e.g, clinics, homes, or laboratories), because they need to 
maintain connectivity with the base station throughout the 
monitoring process. In this paper, we present the design and 
implementation of an opportunistic communication framework 
that simplifies the general use of wearable devices in free-living 
environments. It relies on a low-power data collection protocol 
that allows the end user to opportunistically, yet seamlessly 
manage the transmission of sensor data. We validate the 
feasibility of the framework by demonstrating its use for 
swimming, where the normal wireless communication is 
constantly interfered by the environment. 

Keywords—body sensor networks; wearable sensors; data 
collection; data analysis 

I.  INTRODUCTION 
Body sensor networks and wearable devices are being 

widely used in health and sport applications to monitor both 
physiological parameters and kinematic motion of subjects [1]. 
Micro electro-mechanical systems (MEMS) based wearable 
accelerometers have now been introduced widely in healthcare 
for activity recognition [2]. For patients with chronic diseases 
such as diabetes and chronic pulmonary disease, mobility, 
metabolic energy expenditure and activity profiling are 
important indices for guiding clinical management decisions 
[3]. In orthopaedics and rehabilitation, gait analysis through 
wearable sensing is employed to track the patient recovery 
progress and detect possible complications and deteriorations 
[4], [5]. In sports, they are used to support the training of elite 
athletes [6], [7], [8]. 

Early generations of wearable sensors mainly rely on store-
download for post-processing or analysis/visualisation. The 
introduction of low-power communication hardware and 
protocols has enabled wider use of wireless communications, 
allowing real-time streaming or periodic uploads of data. Thus 
far, the use of wearable sensors generally involves the use of a 
wireless link to communicate with a base station (e.g., a 
PC/laptop [9], a tablet [10], a mobile phone [11], or a 
customised embedded system [12]). Continuous monitoring of 

patients is achieved through real-time streaming of sensor data. 
In this arrangement, wearable sensors need to maintain 
connectivity with the base station throughout the monitoring 
process, thus limiting their applicability to controlled 
environments such as homes, clinics or laboratories. In sports, 
real-time measurement of athlete parameters is mainly 
performed in dedicated setups [13]. However, these cannot 
always recreate the experience in natural training environment 
(e.g., the differences in the kinematics between treadmill and 
overground running are well-known [14]). For certain 
applications, reliable wireless communication is not always 
possible. For example, in the case of swimming, real-time 
wireless streaming of sensor data is problematic because of the 
water disturbing the communication [15]. Some wearable 
devices use their own storage unit (e.g., flash memory [7] or 
SD-micro cards [16]) to record sensor values, which can be 
downloaded to a computer afterwards, through a wired 
connection, for data analysis. However, such tethered systems 
are not practical, as users often demand seamless data 
integration and online data analysis. 

There is a need for flexible architectures, being able to 
monitor patients or athletes in free-living or natural training 
environments. These applications require a reliable and 
seamless method of data communication. For example, in 
sports, sensor data needs to be transmitted immediately after 
the training session. Data needs to be transmitted reliably and 
swiftly, so that athletes could benefit from prompt information 
feedback from the coach to optimise the training strategy. 

This paper presents a communication framework that 
addresses these needs. It is designed to simplify both the 
adoption and usage of wearable technology in practical 
deployments with due consideration of power usage during 
wireless transmission. The framework relies on an 
opportunistic asynchronous data collection (OADC) protocol 
through which the user—that can be a trained clinician or 
coach—opportunely triggers the transmission of data (e.g., 
when the subject wearing the sensing device is close enough to 
the base station). We use the ear-worn activity recognition (e-
AR) sensor as our wearable sensing platform, which has been 
already used successfully in both medical and sport 
applications [5], [7], to demonstrate the proposed concept. 

We introduce the e-AR sensor technology and illustrate the 
general architecture of the framework in Section II, outlining 



its behaviour and providing some implementation details. We 
present the OADC protocol in Section III. In Section IV, we 
evaluate the framework in terms of transmission efficiency and 
reliability. In Section V, we demonstrate the feasibility of the 
proposed framework for swimming performance monitoring, 
and also show the results of example post-processing data 
analysis, enabling a prompt feedback to the swimmers. Finally, 
the paper is completed by concluding remarks in Section VI. 

II. SYSTEM OVERVIEW 

A. Sensor Hardware 
The e-AR sensor is a miniaturised ear-worn device, which 

reduces the discomfort experienced by the subject wearing it. 
At the core of the device is a Nordic nRF24LU1P 
microcontroller [18] (8-bit 8051 compatible microcontroller, 
referred as nRF24 from now on). The nRF24 is mainly used to 
control a built-in 2.4 GHz RF transceiver, and is coupled with 
a TI MSP430F2274 microcontroller [19] (16-bit MSP430 
RISC microcontroller), which performs data sampling and in-
node processing operations. The e-AR sensor is equipped with 
a 3D accelerometer (Analog Devices ADXL330) having a 
range in SI unit from -3g to 3g, a Spansion S25FL128P 16MB 
flash memory, which provides extensive storage capability (15 
hours of 100 Hz data), and a 55mAhr Li-Polymer battery. The 
device is waterproof and weighs 7.4 grams, thus allowing for 
an easy way of using it both in the water and in free-living 
environments.  

B. System Architecture 
The e-AR sensor and the other main components of our 

framework are illustrated in the overall system architecture, 
shown in Fig. 1. The e-AR sensor runs two different programs 

in parallel on its two microcontrollers and operates in two 
different modes: recording and transmitting. In the 
recording mode, the nRF24 is initially switched off, while 
the program running on the MSP430 performs two tasks. First, 
it samples the 3D accelerometer data and stores them into the 
flash memory. Second, it periodically switches the nRF24 on to 
check for incoming commands from the user, according to our 
OADC protocol, as described in Section III.  

The e-AR sensor switches to transmitting mode on 
demand or when opportunistically detects there is a reliable 
window for transmission. In that case, the MSP430 program 
stops, while the program running on the nRF24 starts to read 
the sensor data from the flash memory and send them over the 
radio. The reception of a command by the nRF24 is signalled 
to the MSP430 through a shared port. The two microcontrollers 
could also exchange data through the internal SPI bus, thus 
enabling the implementation of real-time monitoring 
applications, where sensor data are sampled and transmitted 
straight away. Both programs are written in embedded C. 

The base station allows for data collection, user interaction, 
online data visualisation and analysis. It runs a receiver 
application—currently implemented in C++—that lets the user 
send download commands (requesting data transmission) to the 
e-AR sensor through a graphical user interface (GUI). An 
nRF24 module controls the wireless transceiver and is 
connected to the base station via USB. It runs an embedded C 
program that forwards commands coming from the receiver 
application to the e-AR sensor, and forwards sensor data 
coming from the e-AR sensor to the receiver application. The 
data handler then stores the sensor data in a log file. The GUI 
also allows the user to write the log file during the actual 
observation period (e-AR sensor in recording mode) to 
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Fig. 1. System architecture of the proposed framework. 



annotate local timestamps (time annotations), which can be 
used to track specific events (e.g., in a swimming application, it 
might be useful to annotate the timestamps as the swimmer 
pushes off the pool wall in order to calculate the lap times). 
The log file is then analysed offline locally (alternatively, it 
could be sent to a back-end system and cloud service for 
remote analysis or storage). Finally, the user interprets the 
analysis results, in charts and/or textual output file. 

We implement a lossless differential pulse code modulation 
(DPCM) compression scheme [20] in order to save memory on 
the e-AR sensor and speed up the transmission time. DPCM 
stores only the difference between two consecutive samples in 
the flash memory of the e-AR sensor, and is particularly suited 
for health monitoring and sport applications. Such applications 
usually require a high sampling rate, and the values of 
differences between two consecutive samples are smaller than 
those of the original samples. Our scheme uses 8 bits to store 
the differences, which means that our accelerometer samples—
represented in 16 bits—are compressed 2 to 1. Original data 
are then reconstructed by the receiver application. In the 
current implementation, the user could enable DPCM 
compression on both the embedded programs and the receiver 
application at compilation time. 

III. OADC PROTOCOL 
Energy efficiency is a major requirement for sensor 

networks and wearable embedded devices, since limitation on 
energy resources directly affects the system lifetime. Therefore, 
the design of low power communication protocols is required, 
as it controls the transceiver operation, which is often the most 
energy-consuming component in a sensor node [21]. 
Significant effort has been devoted by the research community 
to the development of medium access control (MAC) 
protocols, especially designed for sensor networks [22]. 
Among them, asynchronous protocols relying on the preamble 
sampling techniques (see [23], [24]), also called low power 
listening (LPL), are widely used because of their simple design 
and energy saving capabilities [25]. They link together a sender 
with data to a receiver that is duty cycling. When the sender 
has data, it transmits a preamble that is at least as long as the 
sleep period of the receiver. The latter only wakes up to sample 
the medium, that means listening to the radio channel for a 
very short duration (e.g., time to receive a packet): if the 
channel is found idle, the receiver goes back to sleep; if a 
preamble is detected, the receiver continues to listen until the 
packet is received. Such protocols drastically reduce idle 
listening, a state of the node when the radio is turned on and in 
receive mode, but not receiving any packets. 

The proposed OADC protocol regulates the communication 
between the base station and e-AR sensor and follows the LPL 
wake/sleep schedule. Specifically, our approach is a simplified 
version of the MX-MAC [26], according to which the sender, 
instead of transmitting a long preamble, transmits repetitions of 
the data message. In our case, the LPL scheme is only used 
when the e-AR sensor is in recording mode, while we keep 
the radio always on when in transmitting mode. The base 
station acts as the sender, while the e-AR sensor acts as the 
receiver. Before proceeding with the description of the 

protocol, let us describe the main operating modes of the 
nRF24 radio transceiver: 

• POWER DOWN, the transceiver is disabled with minimal 
current consumption; 

• RX, the transceiver is used as a receiver, listening to the 
channel and trying to demodulate signals; 

• TX, the transceiver is transmitting packets. 

 
Fig. 2. The OADC protocol timeline between the e-AR sensor and base 
station. 

A schematic representation of the OADC protocol is shown 
in Fig. 2. The base station transceiver is always on, by default 
in RX mode. At start-up, the e-AR sensor is in recording 
mode, and its transceiver is in POWER DOWN mode. The 
transceiver wakes up to sample the radio channel (transceiver 
switches to RX) with a constant period TW. On the other hand, 
the base station transceiver switches to TX as soon as it 
receives a download command from the user. Hence, it starts 
transmitting repetitions of the command, until the e-AR sensor 
ACKs the packet. At that point, the base station transceiver 
switches to RX, while the e-AR sensor transceiver switches to 
TX. The e-AR sensor—now in transmitting mode—stops 
recording data, and starts transmitting all the sensor data 
recorded so far to the base station, as fast as it can, without 
duty-cycling.  

In the current implementation, when all the data is sent, the 
e-AR sensor transceiver switches to POWER DOWN mode.  The 
e-AR sensor starts recording data again, as well as listening to 
the radio channel according to the described LPL scheme. It is 
possible that the e-AR sensor loses the connectivity during 
transmission. In this case, retransmission needs to be initiated. 
The e-AR sensor transceiver periodically wakes up, but now it 
switches to TX mode and sends a specific beacon over the radio 
channel in order to check if the base station is in range. When 
an ACK is received, the transmission of the most recent sensor 
data starts again. The proposed protocol greatly simplifies the 
use of a specific wearable technology in practical deployments, 
as the user opportunely triggers data collection. Although we 
use the e-AR sensor as our sensing platform, the protocol could 
be exploited by any other sensing device with flash storage 
capabilities. 
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IV. SYSTEM EVALUATION 
The performance of the communication framework is 

assessed in order to show how the system achieves the overall 
goal of ensuring a reliable and relatively fast data 
transmission. Experiments were conducted in an open space 
laboratory by also evaluating the effect of DPCM compression 
on the performance. Firstly, we compare the system with and 
without DPCM compression w.r.t. data transmission time. 
Then, we analyse the reliability of data collection at different 
distances between the e-AR sensor and the base station. In all 
the experiments, we set TW = 5 seconds and use a sampling 
frequency of 100 Hz. 

Fig. 3. Data transmission efficiency of the OADC protocol with and without 
DPCM. 

We define data transmission time as the time interval from 
when the download is triggered to when the last data sample is 
received by the receiver application. We run 7 sets of 
experiments to evaluate the data transmission time w.r.t. the 
experiment times of 20, 40, 60, 120, 300, 480, and 600 
seconds. The experiment time indicates the time interval that 
the e-AR sensor is in recording mode. For each set of 
experiments, we execute 3 runs of data collection with and 
without DPCM compression. We then compare the results 
with those obtained by theoretical models, deduced by the data 
transmission rate captured by the receiver application. 
Specifically, data transmission rate is 6.72:1 without DPCM 
compression, and 8.1:1 with DPCM compression. In other 
words, with DPCM scheme, 8.1 seconds of sensor data are 
transmitted in 1 second. The receiver application runs on a 
Windows 8 PC, which acts as the base station. Results are 
illustrated in Fig. 3. It is worth noting that effective data 
transmission times measured during the experiments are not 
the same as predicted by theoretical models. These only 
provide lower bounds for the transmission times with and 
without DPCM. In fact, data transmission times in the 
experiments have a random overhead falling in the range 0-5 
seconds, due to TW. However, the overhead becomes less 
influential to the transmission times when the experiment 
sessions are longer.  

Although the DPCM scheme doubles the information 
carried in a single packet, in our practical case it only 

increases the data transmission rate by 20%. This is due to 
operation overhead of the compression algorithm implemented 
on the embedded microcontrollers. Therefore, theoretical 
models of data transmission time—with and without DPCM—
indicate that it is convenient to employ DPCM compression 
when the experiment time is longer than ~198 seconds. In 
such cases, the effective data transmission time with DPCM 
will be lower than the predicted one without DPCM. If we 
consider a 10-minute experiment with DPCM compression, 
we are able to transmit all the data recorded in less than 80 
seconds, which is sufficient for most wearable applications. 
For example, in an application deployment for swimming 
performance monitoring, the transmission time is comparable 
with the rest intervals required by swimmers between repeats. 

 
Fig. 4. Packet loss rate vs. distance of the OADC protocol. 

To analyse the reliability of data collection, we evaluate 
the packet loss rate (PLR) at different distances between the e-
AR sensor and the base station. It is worth noting that PLR 
analysis of the system with and without DPCM compression is 
the same, since the latter is a lossless scheme. Figure 4 shows 
that the PLR increases with the distance. Specifically, PLR is 
stable in the range of 0-1 meter, where its value is 0.001%. At 
two meters distance, PLR=0.01%. Between 2 and 7 meters 
PLR increases substantially, until reaching 100% at 8 meters, 
which means that the devices are completely out of their 
communication range. We do not use retransmissions to 
recover packets lost. However, PLR less than 0.01% and a 
distance between the base station and the wearable sensor less 
than two meters are acceptable in most wearable scenarios. 
For example, in a swimming application, a PLR less that 
0.01% does not affect the accuracy of the stroke detection 
algorithm, as discussed in the next section. Further, a distance 
of two meters is reasonable between the swimmer and the 
coach during data transmission.  

V. EVALUATION WITH SWIMMING PERFORMANCE MONITORING 
In this section, we describe a real-world deployment of the 

framework in order to show how it is used as a training 
support tool for swimming performance monitoring. In our 
scenario, the swimmers wear the e-AR sensor that collects the 
head motion at a frequency of 100 Hz during different 
swimming styles. A Windows 8 tablet acts as the base station, 
and is used by the experiment conductor (referred as the coach 



from now on) to collect data from the e-AR sensor, whenever 
wireless transmission is possible (e.g., when the swimmer is 
out of the water and close to the tablet). Therefore, the coach 
can see the swimming data immediately after each swimming 
session and process them through a lightweight on-tablet data 
analysis. Finally, he could provide a feedback to the swimmers 
in order to support their training strategy. 

A. Experiment Design 
Two male subjects wearing e-AR sensor were recruited in 

our swimming experiments. Although the e-AR sensor can be 
secured around ears by itself, they both wore the sensor under 
the cap for extra security and waterproof, as shown in Fig. 5.  
The subjects both swam in breaststroke style and freestyle for 
performance comparison. For each style, the subjects try to 
use different stroke rates and body positions in order to 
simulate different swimming performance. 

 

   
      (a)                (b) 
 

Fig. 5. (a) Subject wearing the e-AR sensor; (b) Subject in the pool. 
 

B. Data Analysis for Performance Feedback 
The data collected from the e-AR sensor is in the format of 

raw Analog-to-Digital (ADC) values. This data is firstly 
calibrated using Newton-Raphson method [27] and converted 
to g’s. The calibrated data is then low-passed at 0.3Hz to 
capture only the static trend for inclination information. The 
pitch and roll angles of the head can thus be computed using 
trigonometry rules [7]. We consider that each stroke is 
associated with a distinctive head movement (e.g. lifting up in 
breaststroke style and turning to the side in freestyle), thus the 
stroke rate can be extracted by peak detection algorithm from 
the head angle signals, shown in Fig. 6. Stroke rate per minute 
is expressed after the swimming cycles are segmented: 
 

𝑠𝑡𝑟𝑜𝑘𝑒  𝑟𝑎𝑡𝑒   =   
60

  𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑠𝑡𝑟𝑜𝑘𝑒    𝑡𝑖𝑚𝑒
                                                   1    

Stroke length is then extrapolated knowing the pool lane 
length and the number of strokes per swimming session.  

𝑠𝑡𝑟𝑜𝑘𝑒  𝑙𝑒𝑛𝑔𝑡ℎ =   
𝑝𝑜𝑜𝑙  𝑙𝑎𝑛𝑒  𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑠𝑡𝑟𝑜𝑘𝑒𝑠  𝑝𝑒𝑟  𝑙𝑎𝑝
                      (2) 

Finally, swimming speed is computed as: 

            𝑠𝑝𝑒𝑒𝑑   =   𝑠𝑡𝑟𝑜𝑘𝑒  𝑟𝑎𝑡𝑒 ∗ 𝑠𝑡𝑟𝑜𝑘𝑒  𝑙𝑒𝑛𝑔𝑡ℎ                            (3) 

 
Fig. 6. Swimming cycle segmentation. 

Equation (3) shows that swimming speed is proportional to 
both stroke rate and stroke length, with the latter two 
parameters competing with each other. We use a radar plot to 
visualise the relationship among the above three parameters. 
This allows the coach to read the chart, consider a 
performance optimisation strategy, and eventually provide 
prompt feedback to the swimmers. As an example, the overall 
radar plot in Fig. 7 shows the performance of the two 
swimmers’ breaststroke, considering that they used three 
different body positions during the swimming session to 
simulate different swimming performance (in our experiments, 
higher values of the swimming speed correspond to better 
performance). 

 
Fig. 7. Radar plot of swimmers’ performance as expressed in terms of speed, 
stroke length, and stroke rate. 

VI. CONCLUSION 
In this paper, we have presented a monitoring framework 

aimed at simplifying the use of a specific wearable technology 
in practical deployments. The framework relies on the OADC 
protocol that allows the end user to opportunely trigger the 
transmission of sensor data. We evaluate the system w.r.t. the 



overall goal of ensuring reliable and fast data transmission in 
order to highlight its use in practical applications. To further 
demonstrate the feasibility of the framework and highlight the 
benefits of the OADC protocol, we also deployed an 
application for swimming performance monitoring. Finally, we 
have shown the results of example post-processing data 
analysis for online swimming performance assessment, 
allowing prompt feedback to the swimmers to support their 
training strategy. 
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