27 research outputs found

    Forecasting Indoor Environment using Ensemble-based Data Assimilation Algorithms

    Get PDF
    Forecasting simulations of building environment have attracted growing interests since more and more applications have been explored. Occupant’s thermal comfort, safety and energy efficiency are reported to directly benefit from accurate predicted building physical conditions. Among all available research regarding forecasting indoor environment, there are substantially fewer studies relating to occupant safety and emergency forecasting and response than that of comfort and energy savings. This may due to the nature that the forecasting simulations associated with life safety concerns demand higher accuracy. Although the tasks of forecasting potential threats in the indoor environment are especially challenging, the benefits can be significant. For example, toxic contaminants such as carbon monoxide from fire smoke can be monitored and removed before the concentration reaches a harmful level. The sudden release of hazardous gases or the smoke generated from an accidental fire can also be detected and analyzed. Then, based on the results of forecasting simulations, the building control system can provide an efficient evacuation plan for all occupants in the building. However, by using traditional simulation tools that utilize one set of initial inputs to forecast future physical states, the predicted physical conditions may depart from reality as the simulation progresses over time. In this thesis, forecasting simulations of building safety management are improved by applying the theory of data assimilation where the simulation results are aided by the sensor measurements. Instead of studying methods that require high computational resources, this research focuses on affordable approaches, ensemble-based algorithms, to forecast indoor environment to solve various safety problems including forecasting indoor contaminant and smoke transport. The resulting models are able to provide predictions with noticeable accuracy by only using affordable computer resources such as a regular PC. Finally, a scaled compartment fire experiment is conducted to verify the real-time predictability of the model. The results indicate that the proposed method is able to forecast real-time fire smoke transport with significant lead time. Overall, the method of Ensemble Kalman Filter (EnKF) is efficient to apply to forecasting indoor contaminant and smoke transport problems. In the end of this thesis, suggestions are summarized to help those who would like to apply EnKF to solve other building simulation problems

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Bayesian Estimation of Transient Engine Exhaust Composition from Fourier Transform Infrared Spectroscopy Measurements

    Get PDF
    Mobile sources comprise a substantial portion of anthropogenic volatile organic compound (VOC) emissions worldwide. Many research efforts have sought to elucidate the relationships between VOC emissions and engine operating conditions, which are largely transient in real-world scenarios. However, the literature remains dominated by steady-state data and batch measurements of total emissions over entire driving cycles. Fourier transform infrared (FTIR) spectroscopy is a promising technique for obtaining instantaneous, time-resolved VOC measurements. However, FTIR measurements of chemically evolving samples are biased due to sample recirculation and signal non-stationarity. To extract accurate emissions profiles from biased FTIR measurements of transient emissions, an Unscented Kalman filter (UKF) is developed. The UKF is a model-based algorithm which incorporates sample mixing dynamics, a measurement model of non-stationarity effects, and noise statistics to infer instantaneous exhaust composition in a statistically optimal manner. The sample mixing model is developed and validated using computational fluid dynamics and mixing network simulations. Non-stationarity effects – which produce FTIR measurements that are unevenly weighted by spectral IR powers at/near the centerburst position of the modulating mirror – are mathematically and experimentally proven to emerge due to alternating scan directions. A numerical method is developed to estimate the degree of centerburst weighting on measurements of unique VOCs, which is mathematically shown to scale with spectral absorbance broadening. The UKF is experimentally validated by flowing transient, trace quantities of acetylene and propylene through a FTIR gas cell and filtering the resulting measurements. Average improvements of 58% and 51% are achieved for estimations of acetylene and propylene composition, respectively, compared to unfiltered FTIR measurements. The UKF is employed to investigate transient effects on emissions of various fuel component VOCs (cyclohexane, ethanol and pentane) and intermediates (1,3 butadiene, acetylene, ethylene, formaldehyde and methane) from a spark-ignited, port fuel-injected gasoline engine under various load ramps. Deterministic transient effects are evident, as emissions deviate from quasi-steady predictions by statistically significant quantities in 14 of the 21 species/load profile combinations explored. For the intermediate species, greater quasi-steady prediction errors correspond to faster ramp rates, while greater errors occur during moderate load ramps for fuel component species

    NON-RIGID BODY MECHANICAL PROPERTY RECOVERY FROM IMAGES AND VIDEOS

    Get PDF
    Material property has great importance in surgical simulation and virtual reality. The mechanical properties of the human soft tissue are critical to characterize the tissue deformation of each patient. Studies have shown that the tissue stiffness described by the tissue properties may indicate abnormal pathological process. The (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Traditional elasticity parameters estimation methods rely largely on known external forces measured by special devices and strain field estimated by landmarks on the deformable bodies. Or they are limited to mechanical property estimation for quasi-static deformation. For virtual reality applications such as virtual try-on, garment material capturing is of equal significance as the geometry reconstruction. In this thesis, I present novel approaches for automatically estimating the material properties of soft bodies from images or from a video capturing the motion of the deformable body. I use a coupled simulation-optimization-identification framework to deform one soft body at its original, non-deformed state to match the deformed geometry of the same object in its deformed state. The optimal set of material parameters is thereby determined by minimizing the error metric function. This method can simultaneously recover the elasticity parameters of multiple regions of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials undergoing large deformation) and particle-swarm optimization methods. I demonstrate the effectiveness of this approach on real-time interaction with virtual organs in patient-specific surgical simulation, using parameters acquired from low-resolution medical images. With the recovered elasticity parameters and the age of the prostate cancer patients as features, I build a cancer grading and staging classifier. The classifier achieves up to 91% for predicting cancer T-Stage and 88% for predicting Gleason score. To recover the mechanical properties of soft bodies from a video, I propose a method which couples statistical graphical model with FEM simulation. Using this method, I can recover the material properties of a soft ball from a high-speed camera video that captures the motion of the ball. Furthermore, I extend the material recovery framework to fabric material identification. I propose a novel method for garment material extraction from a single-view image and a learning based cloth material recovery method from a video recording the motion of the cloth. Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, I propose a method that can compute a 3D model of a human body and its outfit from a single photograph with little human interaction. My proposed learning-based cloth material type recovery method exploits simulated data-set and deep neural network. I demonstrate the effectiveness of my algorithms by re-purposing the reconstructed garments for virtual try-on, garment transfer, and cloth animation on digital characters. With the recovered mechanical properties, one can construct a virtual world with soft objects exhibiting real-world behaviors.Doctor of Philosoph

    Acoustic tomography imaging for atmospheric temperature and wind velocity field reconstruction

    Get PDF
    Owing to its non-invasive nature, fast imaging speed, low equipment cost, scalability for a variety of measurement ranges, and ability to simultaneously monitor both temperature and wind velocity fields, acoustic tomography has attracted considerable interest in the field of atmospheric imaging. This thesis aims to improve the reconstruction quality of the acoustic tomography system for temperature and wind velocity field imaging. Focusing on this goal, the contribution of the thesis can be summarised from the perspectives of data collection system development, robust and accurate TOF estimation method, and high-quality scalar and vector tomographic image reconstruction methods for temperature and wind velocity fields respectively. Details are given below. Firstly, in order to facilitate the experimental study of acoustic tomography imaging, the design and evaluation of the data collection system and TOF estimation method was presented. The evaluation results indicate that the presented data acquisition system and TOF estimation method has good quantitative accuracy in the lab-scale experiments. The temporal resolution is of great significance for the real-time monitoring of the fast-changing temperature field. To improve the temporal resolution, a novel online time-resolved reconstruction (OTRR) method is presented, which can reconstruct high quality time-resolved images by using fewer TOFs per frame. Compared to state-of-the-art dynamic reconstruction algorithms such as the Kalman filter reconstruction, the proposed algorithm demonstrated superior spatial resolution and preferable quantitative accuracy in the reconstructed images. These features are necessary for the real-time monitoring of the fast-changing temperature field. The forward modelling of most acoustic tomography problems is based on a straight ray model, which may result in large modelling errors due to the refraction effect under a large gradient temperature field. In order to reduce the inaccuracy of using the straight ray model, a bent ray model and nonlinear reconstruction algorithm is applied, which allows the sound propagation ray paths and temperature distribution to be reconstructed iteratively from the TOFs. Using acoustic tomography to reconstruct large-scale temperature and wind velocity fields, a fully parallel TOF measurement scheme is necessary. To achieve this goal, a set of orthogonal acoustic waveforms based on the filtered and modulated Kasami sequence is designed and a cross-correlation based TOF estimation method is used for data collection. Besides, to overcome the invisible field problem and improve the image quality of the wind velocity reconstruction, a divergence-free regularised vector tomographic reconstruction algorithm is studied. The proposed method is able to provide accurate tomographic reconstruction of the 2D horizontal wind velocity field from the TOF measurements. In summary, this thesis focuses on the improvement of acoustic tomography techniques for temperature and wind velocity fields, including the phase corrected Akaike information criterion (AIC) TOF estimation for accurate and robust TOF estimation, the online time-resolved reconstruction method for real-time monitoring of the fast changing temperature field, the nonlinear reconstruction based on the bent ray model to reconstruct the temperature field with a large gradient, and the divergence-free regularised reconstruction method to visualise the 2D horizontal wind velocity field

    On the use of autonomous unmanned vehicles in response to hazardous atmospheric release incidents

    Get PDF
    Recent events have induced a surge of interest in the methods of response to releases of hazardous materials or gases into the atmosphere. In the last decade there has been particular interest in mapping and quantifying emissions for regulatory purposes, emergency response, and environmental monitoring. Examples include: responding to events such as gas leaks, nuclear accidents or chemical, biological or radiological (CBR) accidents or attacks, and even exploring sources of methane emissions on the planet Mars. This thesis presents a review of the potential responses to hazardous releases, which includes source localisation, boundary tracking, mapping and source term estimation. [Continues.]</div

    Robust 3D IMU-LIDAR Calibration and Multi Sensor Probabilistic State Estimation

    Get PDF
    Autonomous robots are highly complex systems. In order to operate in dynamic environments, adaptability in their decision-making algorithms is a must. Thus, the internal and external information that robots obtain from sensors is critical to re-evaluate their decisions in real time. Accuracy is key in this endeavor, both from the hardware side and the modeling point of view. In order to guarantee the highest performance, sensors need to be correctly calibrated. To this end, some parameters are tuned so that the particular realization of a sensor best matches a generalized mathematical model. This step grows in complexity with the integration of multiple sensors, which is generally a requirement in order to cope with the dynamic nature of real world applications. This project aims to deal with the calibration of an inertial measurement unit, or IMU, and a Light Detection and Ranging device, or LiDAR. An offline batch optimization procedure is proposed to optimally estimate the intrinsic and extrinsic parameters of the model. Then, an online state estimation module that makes use of the aforementioned parameters and the fusion of LiDAR-inertial data for local navigation is proposed. Additionally, it incorporates real time corrections to account for the time-varying nature of the model, essential to deal with exposure to continued operation and wear and tear. Keywords: sensor fusion, multi-sensor calibration, factor graphs, batch optimization, Gaussian Processes, state estimation, LiDAR-inertial odometry, Error State Kalman Filter, Normal Distributions Transform

    Advances in Modeling of Fluid Dynamics

    Get PDF
    This book contains twelve chapters detailing significant advances and applications in fluid dynamics modeling with focus on biomedical, bioengineering, chemical, civil and environmental engineering, aeronautics, astronautics, and automotive. We hope this book can be a useful resource to scientists and engineers who are interested in fundamentals and applications of fluid dynamics

    Multi-sensor data fusion in mobile devices for the identification of Activities of Daily Living

    Get PDF
    Following the recent advances in technology and the growing use of mobile devices such as smartphones, several solutions may be developed to improve the quality of life of users in the context of Ambient Assisted Living (AAL). Mobile devices have different available sensors, e.g., accelerometer, gyroscope, magnetometer, microphone and Global Positioning System (GPS) receiver, which allow the acquisition of physical and physiological parameters for the recognition of different Activities of Daily Living (ADL) and the environments in which they are performed. The definition of ADL includes a well-known set of tasks, which include basic selfcare tasks, based on the types of skills that people usually learn in early childhood, including feeding, bathing, dressing, grooming, walking, running, jumping, climbing stairs, sleeping, watching TV, working, listening to music, cooking, eating and others. On the context of AAL, some individuals (henceforth called user or users) need particular assistance, either because the user has some sort of impairment, or because the user is old, or simply because users need/want to monitor their lifestyle. The research and development of systems that provide a particular assistance to people is increasing in many areas of application. In particular, in the future, the recognition of ADL will be an important element for the development of a personal digital life coach, providing assistance to different types of users. To support the recognition of ADL, the surrounding environments should be also recognized to increase the reliability of these systems. The main focus of this Thesis is the research on methods for the fusion and classification of the data acquired by the sensors available in off-the-shelf mobile devices in order to recognize ADL in almost real-time, taking into account the large diversity of the capabilities and characteristics of the mobile devices available in the market. In order to achieve this objective, this Thesis started with the review of the existing methods and technologies to define the architecture and modules of the method for the identification of ADL. With this review and based on the knowledge acquired about the sensors available in off-the-shelf mobile devices, a set of tasks that may be reliably identified was defined as a basis for the remaining research and development to be carried out in this Thesis. This review also identified the main stages for the development of a new method for the identification of the ADL using the sensors available in off-the-shelf mobile devices; these stages are data acquisition, data processing, data cleaning, data imputation, feature extraction, data fusion and artificial intelligence. One of the challenges is related to the different types of data acquired from the different sensors, but other challenges were found, including the presence of environmental noise, the positioning of the mobile device during the daily activities, the limited capabilities of the mobile devices and others. Based on the acquired data, the processing was performed, implementing data cleaning and feature extraction methods, in order to define a new framework for the recognition of ADL. The data imputation methods were not applied, because at this stage of the research their implementation does not have influence in the results of the identification of the ADL and environments, as the features are extracted from a set of data acquired during a defined time interval and there are no missing values during this stage. The joint selection of the set of usable sensors and the identifiable set of tasks will then allow the development of a framework that, considering multi-sensor data fusion technologies and context awareness, in coordination with other information available from the user context, such as his/her agenda and the time of the day, will allow to establish a profile of the tasks that the user performs in a regular activity day. The classification method and the algorithm for the fusion of the features for the recognition of ADL and its environments needs to be deployed in a machine with some computational power, while the mobile device that will use the created framework, can perform the identification of the ADL using a much less computational power. Based on the results reported in the literature, the method chosen for the recognition of the ADL is composed by three variants of Artificial Neural Networks (ANN), including simple Multilayer Perceptron (MLP) networks, Feedforward Neural Networks (FNN) with Backpropagation, and Deep Neural Networks (DNN). Data acquisition can be performed with standard methods. After the acquisition, the data must be processed at the data processing stage, which includes data cleaning and feature extraction methods. The data cleaning method used for motion and magnetic sensors is the low pass filter, in order to reduce the noise acquired; but for the acoustic data, the Fast Fourier Transform (FFT) was applied to extract the different frequencies. When the data is clean, several features are then extracted based on the types of sensors used, including the mean, standard deviation, variance, maximum value, minimum value and median of raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance and median of the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the five greatest distances between the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance, median and 26 Mel- Frequency Cepstral Coefficients (MFCC) of the frequencies obtained with FFT based on the raw data acquired from the microphone data; and the distance travelled calculated with the data acquired from the GPS receiver. After the extraction of the features, these will be grouped in different datasets for the application of the ANN methods and to discover the method and dataset that reports better results. The classification stage was incrementally developed, starting with the identification of the most common ADL (i.e., walking, running, going upstairs, going downstairs and standing activities) with motion and magnetic sensors. Next, the environments were identified with acoustic data, i.e., bedroom, bar, classroom, gym, kitchen, living room, hall, street and library. After the environments are recognized, and based on the different sets of sensors commonly available in the mobile devices, the data acquired from the motion and magnetic sensors were combined with the recognized environment in order to differentiate some activities without motion, i.e., sleeping and watching TV. The number of recognized activities in this stage was increased with the use of the distance travelled, extracted from the GPS receiver data, allowing also to recognize the driving activity. After the implementation of the three classification methods with different numbers of iterations, datasets and remaining configurations in a machine with high processing capabilities, the reported results proved that the best method for the recognition of the most common ADL and activities without motion is the DNN method, but the best method for the recognition of environments is the FNN method with Backpropagation. Depending on the number of sensors used, this implementation reports a mean accuracy between 85.89% and 89.51% for the recognition of the most common ADL, equals to 86.50% for the recognition of environments, and equals to 100% for the recognition of activities without motion, reporting an overall accuracy between 85.89% and 92.00%. The last stage of this research work was the implementation of the structured framework for the mobile devices, verifying that the FNN method requires a high processing power for the recognition of environments and the results reported with the mobile application are lower than the results reported with the machine with high processing capabilities used. Thus, the DNN method was also implemented for the recognition of the environments with the mobile devices. Finally, the results reported with the mobile devices show an accuracy between 86.39% and 89.15% for the recognition of the most common ADL, equal to 45.68% for the recognition of environments, and equal to 100% for the recognition of activities without motion, reporting an overall accuracy between 58.02% and 89.15%. Compared with the literature, the results returned by the implemented framework show only a residual improvement. However, the results reported in this research work comprehend the identification of more ADL than the ones described in other studies. The improvement in the recognition of ADL based on the mean of the accuracies is equal to 2.93%, but the maximum number of ADL and environments previously recognized was 13, while the number of ADL and environments recognized with the framework resulting from this research is 16. In conclusion, the framework developed has a mean improvement of 2.93% in the accuracy of the recognition for a larger number of ADL and environments than previously reported. In the future, the achievements reported by this PhD research may be considered as a start point of the development of a personal digital life coach, but the number of ADL and environments recognized by the framework should be increased and the experiments should be performed with different types of devices (i.e., smartphones and smartwatches), and the data imputation and other machine learning methods should be explored in order to attempt to increase the reliability of the framework for the recognition of ADL and its environments.Após os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis, como por exemplo os smartphones, várias soluções podem ser desenvolvidas para melhorar a qualidade de vida dos utilizadores no contexto de Ambientes de Vida Assistida (AVA) ou Ambient Assisted Living (AAL). Os dispositivos móveis integram vários sensores, tais como acelerómetro, giroscópio, magnetómetro, microfone e recetor de Sistema de Posicionamento Global (GPS), que permitem a aquisição de vários parâmetros físicos e fisiológicos para o reconhecimento de diferentes Atividades da Vida Diária (AVD) e os seus ambientes. A definição de AVD inclui um conjunto bem conhecido de tarefas que são tarefas básicas de autocuidado, baseadas nos tipos de habilidades que as pessoas geralmente aprendem na infância. Essas tarefas incluem alimentar-se, tomar banho, vestir-se, fazer os cuidados pessoais, caminhar, correr, pular, subir escadas, dormir, ver televisão, trabalhar, ouvir música, cozinhar, comer, entre outras. No contexto de AVA, alguns indivíduos (comumente chamados de utilizadores) precisam de assistência particular, seja porque o utilizador tem algum tipo de deficiência, seja porque é idoso, ou simplesmente porque o utilizador precisa/quer monitorizar e treinar o seu estilo de vida. A investigação e desenvolvimento de sistemas que fornecem algum tipo de assistência particular está em crescente em muitas áreas de aplicação. Em particular, no futuro, o reconhecimento das AVD é uma parte importante para o desenvolvimento de um assistente pessoal digital, fornecendo uma assistência pessoal de baixo custo aos diferentes tipos de pessoas. pessoas. Para ajudar no reconhecimento das AVD, os ambientes em que estas se desenrolam devem ser reconhecidos para aumentar a fiabilidade destes sistemas. O foco principal desta Tese é o desenvolvimento de métodos para a fusão e classificação dos dados adquiridos a partir dos sensores disponíveis nos dispositivos móveis, para o reconhecimento quase em tempo real das AVD, tendo em consideração a grande diversidade das características dos dispositivos móveis disponíveis no mercado. Para atingir este objetivo, esta Tese iniciou-se com a revisão dos métodos e tecnologias existentes para definir a arquitetura e os módulos do novo método de identificação das AVD. Com esta revisão da literatura e com base no conhecimento adquirido sobre os sensores disponíveis nos dispositivos móveis disponíveis no mercado, um conjunto de tarefas que podem ser identificadas foi definido para as pesquisas e desenvolvimentos desta Tese. Esta revisão também identifica os principais conceitos para o desenvolvimento do novo método de identificação das AVD, utilizando os sensores, são eles: aquisição de dados, processamento de dados, correção de dados, imputação de dados, extração de características, fusão de dados e extração de resultados recorrendo a métodos de inteligência artificial. Um dos desafios está relacionado aos diferentes tipos de dados adquiridos pelos diferentes sensores, mas outros desafios foram encontrados, sendo os mais relevantes o ruído ambiental, o posicionamento do dispositivo durante a realização das atividades diárias, as capacidades limitadas dos dispositivos móveis. As diferentes características das pessoas podem igualmente influenciar a criação dos métodos, escolhendo pessoas com diferentes estilos de vida e características físicas para a aquisição e identificação dos dados adquiridos a partir de sensores. Com base nos dados adquiridos, realizou-se o processamento dos dados, implementando-se métodos de correção dos dados e a extração de características, para iniciar a criação do novo método para o reconhecimento das AVD. Os métodos de imputação de dados foram excluídos da implementação, pois não iriam influenciar os resultados da identificação das AVD e dos ambientes, na medida em que são utilizadas as características extraídas de um conjunto de dados adquiridos durante um intervalo de tempo definido. A seleção dos sensores utilizáveis, bem como das AVD identificáveis, permitirá o desenvolvimento de um método que, considerando o uso de tecnologias para a fusão de dados adquiridos com múltiplos sensores em coordenação com outras informações relativas ao contexto do utilizador, tais como a agenda do utilizador, permitindo estabelecer um perfil de tarefas que o utilizador realiza diariamente. Com base nos resultados obtidos na literatura, o método escolhido para o reconhecimento das AVD são as diferentes variantes das Redes Neuronais Artificiais (RNA), incluindo Multilayer Perceptron (MLP), Feedforward Neural Networks (FNN) with Backpropagation and Deep Neural Networks (DNN). No final, após a criação dos métodos para cada fase do método para o reconhecimento das AVD e ambientes, a implementação sequencial dos diferentes métodos foi realizada num dispositivo móvel para testes adicionais. Após a definição da estrutura do método para o reconhecimento de AVD e ambientes usando dispositivos móveis, verificou-se que a aquisição de dados pode ser realizada com os métodos comuns. Após a aquisição de dados, os mesmos devem ser processados no módulo de processamento de dados, que inclui os métodos de correção de dados e de extração de características. O método de correção de dados utilizado para sensores de movimento e magnéticos é o filtro passa-baixo de modo a reduzir o ruído, mas para os dados acústicos, a Transformada Rápida de Fourier (FFT) foi aplicada para extrair as diferentes frequências. Após a correção dos dados, as diferentes características foram extraídas com base nos tipos de sensores usados, sendo a média, desvio padrão, variância, valor máximo, valor mínimo e mediana de dados adquiridos pelos sensores magnéticos e de movimento, a média, desvio padrão, variância e mediana dos picos máximos calculados com base nos dados adquiridos pelos sensores magnéticos e de movimento, as cinco maiores distâncias entre os picos máximos calculados com os dados adquiridos dos sensores de movimento e magnéticos, a média, desvio padrão, variância e 26 Mel-Frequency Cepstral Coefficients (MFCC) das frequências obtidas com FFT com base nos dados obtidos a partir do microfone, e a distância calculada com os dados adquiridos pelo recetor de GPS. Após a extração das características, as mesmas são agrupadas em diferentes conjuntos de dados para a aplicação dos métodos de RNA de modo a descobrir o método e o conjunto de características que reporta melhores resultados. O módulo de classificação de dados foi incrementalmente desenvolvido, começando com a identificação das AVD comuns com sensores magnéticos e de movimento, i.e., andar, correr, subir escadas, descer escadas e parado. Em seguida, os ambientes são identificados com dados de sensores acústicos, i.e., quarto, bar, sala de aula, ginásio, cozinha, sala de estar, hall, rua e biblioteca. Com base nos ambientes reconhecidos e os restantes sensores disponíveis nos dispositivos móveis, os dados adquiridos dos sensores magnéticos e de movimento foram combinados com o ambiente reconhecido para diferenciar algumas atividades sem movimento (i.e., dormir e ver televisão), onde o número de atividades reconhecidas nesta fase aumenta com a fusão da distância percorrida, extraída a partir dos dados do recetor GPS, permitindo também reconhecer a atividade de conduzir. Após a implementação dos três métodos de classificação com diferentes números de iterações, conjuntos de dados e configurações numa máquina com alta capacidade de processamento, os resultados relatados provaram que o melhor método para o reconhecimento das atividades comuns de AVD e atividades sem movimento é o método DNN, mas o melhor método para o reconhecimento de ambientes é o método FNN with Backpropagation. Dependendo do número de sensores utilizados, esta implementação reporta uma exatidão média entre 85,89% e 89,51% para o reconhecimento das AVD comuns, igual a 86,50% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão global entre 85,89% e 92,00%. A última etapa desta Tese foi a implementação do método nos dispositivos móveis, verificando que o método FNN requer um alto poder de processamento para o reconhecimento de ambientes e os resultados reportados com estes dispositivos são inferiores aos resultados reportados com a máquina com alta capacidade de processamento utilizada no desenvolvimento do método. Assim, o método DNN foi igualmente implementado para o reconhecimento dos ambientes com os dispositivos móveis. Finalmente, os resultados relatados com os dispositivos móveis reportam uma exatidão entre 86,39% e 89,15% para o reconhecimento das AVD comuns, igual a 45,68% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão geral entre 58,02% e 89,15%. Com base nos resultados relatados na literatura, os resultados do método desenvolvido mostram uma melhoria residual, mas os resultados desta Tese identificam mais AVD que os demais estudos disponíveis na literatura. A melhoria no reconhecimento das AVD com base na média das exatidões é igual a 2,93%, mas o número máximo de AVD e ambientes reconhecidos pelos estudos disponíveis na literatura é 13, enquanto o número de AVD e ambientes reconhecidos com o método implementado é 16. Assim, o método desenvolvido tem uma melhoria de 2,93% na exatidão do reconhecimento num maior número de AVD e ambientes. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um assistente digital pessoal, mas o número de ADL e ambientes reconhecidos pelo método deve ser aumentado e as experiências devem ser repetidas com diferentes tipos de dispositivos móveis (i.e., smartphones e smartwatches), e os métodos de imputação e outros métodos de classificação de dados devem ser explorados de modo a tentar aumentar a confiabilidade do método para o reconhecimento das AVD e ambientes
    corecore