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ABSTRACT 

BAYESIAN ESTIMATION OF TRANSIENT ENGINE EXHAUST COMPOSITION FROM 

FOURIER TRANSFORM INFRARED SPECTROSCOPY MEASUREMENTS 

 

 

David Wilson, M.S.M.E 

 

Marquette University, 2019 

 

 

 Mobile sources comprise a substantial portion of anthropogenic volatile organic 

compound (VOC) emissions worldwide.  Many research efforts have sought to elucidate the 

relationships between VOC emissions and engine operating conditions, which are largely 

transient in real-world scenarios.  However, the literature remains dominated by steady-state data 

and batch measurements of total emissions over entire driving cycles.  Fourier transform infrared 

(FTIR) spectroscopy is a promising technique for obtaining instantaneous, time-resolved VOC 

measurements.  However, FTIR measurements of chemically evolving samples are biased due to 

sample recirculation and signal non-stationarity.  To extract accurate emissions profiles from 

biased FTIR measurements of transient emissions, an Unscented Kalman filter (UKF) is 

developed.  The UKF is a model-based algorithm which incorporates sample mixing dynamics, a 

measurement model of non-stationarity effects, and noise statistics to infer instantaneous exhaust 

composition in a statistically optimal manner.  The sample mixing model is developed and 

validated using computational fluid dynamics and mixing network simulations.  Non-stationarity 

effects – which produce FTIR measurements that are unevenly weighted by spectral IR powers 

at/near the centerburst position of the modulating mirror – are mathematically and experimentally 

proven to emerge due to alternating scan directions.  A numerical method is developed to 

estimate the degree of centerburst weighting on measurements of unique VOCs, which is 

mathematically shown to scale with spectral absorbance broadening.  The UKF is experimentally 

validated by flowing transient, trace quantities of acetylene and propylene through a FTIR gas 

cell and filtering the resulting measurements.  Average improvements of 58% and 51% are 

achieved for estimations of acetylene and propylene composition, respectively, compared to 

unfiltered FTIR measurements.  The UKF is employed to investigate transient effects on 

emissions of various fuel component VOCs (cyclohexane, ethanol and pentane) and intermediates 

(1,3 butadiene, acetylene, ethylene, formaldehyde and methane) from a spark-ignited, port fuel-

injected gasoline engine under various load ramps.  Deterministic transient effects are evident, as 

emissions deviate from quasi-steady predictions by statistically significant quantities in 14 of the 

21 species/load profile combinations explored.  For the intermediate species, greater quasi-steady 

prediction errors correspond to faster ramp rates, while greater errors occur during moderate load 

ramps for fuel component species. 
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CHAPTER 1 INTRODUCTION 

 Combustion is currently the primary source of power for transportation and will likely 

remain so during the next few decades due to its considerable power density and our current 

infrastructure.  Despite its advantages, combustion produces harmful greenhouse gases such as 

carbon dioxide, oxides of nitrogen and volatile organic compounds (VOCs) which impact the 

radiative properties of the atmosphere, resulting in adverse effects on the climate.  While 

substantial emissions reductions have been achieved over the past few decades, more progress is 

needed to meet future regulations and mitigate/reverse unfavorable climate trends that have 

already emerged.  Despite the fact that engines are primary greenhouse gas emitters, and that real-

world engine operation is predominantly transient, the relationships between engine speed/load 

history and emissions are currently not well understood.  This is especially true of speciated VOC 

emissions, which are difficult to accurately measure in a time-resolved manner.  Presented herein 

is the development, validation and application of an Unscented Kalman filter (UKF) for obtaining 

time-resolved, comprehensive estimations of transient engine exhaust composition from Fourier 

transform infrared spectroscopy (FTIR) measurements.  The UKF is a model-based Bayesian 

estimator which effectively filters out transient biasing effects that arise during FTIR 

measurements of chemically evolving samples due to recirculation and signal non-stationarity.  

By improving the fidelity of transient speciation measurements, clearer insights into the 

relationships between engine operation conditions and VOC emissions can be uncovered.   

 This dissertation is outlined as follows.  First, background information regarding transient 

VOC emissions is provided in Chapter 2.  This includes specific atmospheric impacts and 

existing experimental investigations of VOC emissions, as well as an overview of diagnostic 

techniques capable of comprehensive speciation.  FTIR spectroscopy is then introduced, followed 

by a discussion the biasing effects of sample recirculation and signal non-stationarity, which limit 

the applicability of this technique to transient analysis.  This discussion motivates the 
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development of a UKF for effectively filtering out transient biasing effects within FTIR 

measurements.  The UKF is initially formulated in Chapter 3, which begins with a discussion of 

the underlying theory of Bayesian estimation and the fundamental equations within the UKF.  

This is followed by the development of a simple model of the mixing dynamics within a FTIR 

gas cell, which is validated using computational fluid dynamic and mixing network simulations.  

The mixing model is incorporated within the UKF to combat recirculation effects by estimating 

inlet composition according to the evolution of FTIR gas cell composition measurements.  

Chapter 4 exclusively addresses signal non-stationarity effects, which were unknown at the onset 

of this work.  The chapter begins with an experimental illustration of non-stationarity bias, which 

introduces artificial oscillations into measured transient composition profiles.  These oscillations 

are shown to be caused by uneven weighting of composition values that occur when the moving 

mirror within the Michelson interferometer is near the centerburst position, and alternating scan 

directions.  A mathematical proof of uneven weighting during transient measurements confirms 

these observations, which is expanded to predict centerburst weighting values for unique species.  

The UKF is modified to include the effects of centerburst weighting.  Experimental validation of 

the modified UKF is performed by flowing known, transient quantities of acetylene and 

propylene through a FTIR, and filtering the resulting measurements.  Chapter 5 details an 

experimental investigation of transient effects on the emissions of various VOCs (such as 

cyclohexane, ethanol, pentane, acetylene, ethylene, formaldehyde and methane) from a gasoline 

engine using FTIR spectroscopy and the UKF.  The findings from each chapter are then 

summarized in Chapter 6, which also provides future research suggestions.  These include 

opportunities for improving the UKF and potential experimental investigations where the UKF 

could provide important insight. 
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1.1 Original Contributions 

 A brief summary of the original research contributions of this dissertation are outlined 

below. 

• Development and validation of a Bayesian estimator for filtering out transient biasing 

effects from FTIR measurements. These biasing effects emerge due to sample 

recirculation and signal non-stationarity of the incident IR beam.  This tool improves 

estimated engine exhaust composition from FTIR measurements during transient 

operation. 

• Identification of period-dependent artifacts in FTIR measurements of chemically 

evolving samples.  These artifacts occur due to non-stationarity of the incident IR beam, 

which results in the measured/calculated IR spectrum being unevenly weighted by 

spectral intensities during low levels of optical path difference.  The magnitude of these 

artifacts alternate for every other measurement, and depend on whether the moving 

mirror within the interferometer is scanning in the forward direction (increasing optical 

path difference) or backward direction (decreasing optical path difference). 

• Mathematical proof that the Fourier transform of an interferogram from a non-stationary 

IR beam is unevenly weighted by spectral intensities that occur at low levels of optical 

path difference, and that the degree of weighting scales with spectral broadening.  Thus, 

centerburst weighting magnitude varies from species to species, with greater centerburst 

weighting occurring for measurements of broadly absorbing species.  These mathematical 

formulations are corroborated by experimental observations. 

• Experimental evidence that volatile organic compound emissions from a spark-ignited, 

gasoline engine are substantially influenced by transient and historical operation, with the 

degree of influence depending on the particular species and whether it’s a fuel component 

or combustion intermediate. 
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CHAPTER 2 BACKGROUND AND MOTIVATION 

2.1 Volatile Organic Compound Emissions 

 VOCs are a group of carbon-based, gaseous compounds that participate in atmospheric 

photochemical reactions [1].  VOC emissions substantially influence the radiative properties and 

quality of the atmosphere, most notably by reacting with nitrous oxides (NOx) to produce 

tropospheric ozone, a potent greenhouse gas and fundamental component of smog [2].  

Atmospheric lifetimes of other greenhouse gases are also increased in the presence of VOCs, due 

to competition for oxidants [3].  Furthermore, VOCs form secondary aerosols which scatter 

sunlight and promote cloud formation [4], [5].  The extent to which particular VOCs influence the 

atmosphere depend on many factors such as atmospheric lifetime, reactivity, and reaction 

mechanisms [6], [7].  For example, numerous studies have found that aromatics and alkenes 

possess high ozone creation potential relative to other VOC groups [8]–[10].  Certain VOCs are 

also highly toxic [11].  For instance, exposure to benzene and 1-3 butadiene is linked with 

elevated cancer risk [12]–[15].  Thus, species distribution should be considered when addressing 

the impact of anthropogenic VOC emissions. 

 According to the National Emissions Inventory, vehicles were responsible for over 23% 

of anthropogenic VOCs emitted in the U.S. in 2014, with the other major contributors being 

industrial processes and fires [16].  Even greater contributions from vehicles are typical in urban 

areas [17]–[21], where elevated levels of smog and poor air quality are common [22].  For 

example, approximately 71 and 80% of VOC emissions were attributed to mobile sources in an 

air quality study of two regions in Los Angeles [18].  Vehicle and marine vessel-related sources 

contribute 40-54% of the VOC emissions in Hong Kong in an air quality study that transpired in 

2006-2007 [19].  Furthermore, exhaust and evaporative emissions from gasoline vehicles were 

found to comprise 52% of the VOC emissions in Beijing from ambient composition 
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measurements conducted in August 2005 [20].  Thus, vehicles have become a primary target for 

reducing VOC emissions, as evidenced by the increasingly stringent regulations being placed on 

VOC emissions in the U.S.  The maximum allowable fleet average non-methane organic 

compound (NMOG)+NOx emissions for a light-duty vehicle manufacturer will decrease from 79 

to 30 mg/mile from 2018 to 2025 under the Tier 3 regulations of the U.S. EPA in the absence of 

policy change [23].  Similar reductions are in place for heavy-duty vehicles.  In 2012, the 

California Air Resources Board (CARB) implemented the LEV III emissions regulations, which 

tighten existing hydrocarbon emissions limits from vehicles.  Under LEV III standards, all new 

passenger cars (including light-duty trucks and medium-duty passenger vehicles) with model 

years between 2015 and 2019 must emit fewer than 160 mg/mile of (NMOG)+NOx and 4 mg/mi 

of formaldehyde [24].  Even stricter reductions are imposed for vehicles within the ULEV and 

SULEV ((Super) Ultra-Low Emissions Vehicle) categories.  Achievement of these VOC 

emissions reductions requires further progress in engine efficiency and control strategies.  Such 

progress necessitates elucidation of the relationships between engine conditions and the quantity 

and distribution of VOC emissions.   

 Numerous studies have explored the relationships between VOC emissions and engine 

speed/load.  Wang et al. measured the comprehensive composition of exhaust gas collected from 

three light-duty gasoline vehicles operating under the ECE and EUDC test cycles using gas 

chromatography-mass spectrometry (GC-MS) [25].  It was found that the VOC emissions under 

the ECE, an urban, low speed driving cycle are 16 times greater than the VOC emissions of the 

EUDC, a faster, suburban driving cycle.  In addition, aromatics and alkanes are the most emitted 

groups during ECE and EUDC tests, comprising 38 and 37% of the distribution, respectively.  

Higher levels of the carcinogens toluene and benzene were also detected in the EUDC tests.  

Nakashima et al. measured concentrations of 54 different VOCs from exhaust from three gasoline 

vehicles operating under nine different driving cycles using gas chromatography-flame ionization 

detection [26].  The distributions of alkanes, alkenes, aromatics and aldehydes vary according to 
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driving cycle.  For “cold” driving cycles, the alkanes and alkenes are present in roughly equal 

quantities in exhaust samples, while alkanes are dominant in “hot” cycles.  In a review of VOC 

emission studies in China, Wang et al. compares VOC distributions of emissions for vehicles 

operating at idle and a steady speed of 20 km/hr [27].  It was found that alkanes (66%) and 

alkenes (50%) are dominant during idle and steady operation, respectively.  Ethylene and 

propene, among a few other VOCs are present in high quantities in the idle tests, while VOC 

distribution is more uniform during steady operation. 

 The studies presented above illustrate that species distribution is a strong function of 

engine operating conditions.  This suggests that speed/load points can be strategically selected 

within engine control algorithms to achieve emissions with desired VOC distributions.  However, 

the development of such an algorithm requires a direct input-output relationship between engine 

speed/load and emissions.  The emissions data from the studies presented above are from batch 

measurements, which provide total emissions over an operational regime but provide no 

information on emissions at specific speed/load points.  Furthermore, previous research has 

shown that instantaneous and integrated engine emissions are a function of the speed-load history 

of an engine for real-world driving conditions [28]–[30], which are largely transient [31].  Thus, a 

thorough understanding of transient effects on VOC emissions is required to formulate a model 

that maps emissions to engine operational conditions.  While the literature currently lacks direct 

illustrations of transient effects on comprehensive VOC emissions, an abundance of time-

resolved, transient emissions data of major species, particulates and a few selective VOCs exist.  

A review of these studies is provided below.  

2.2 Transient Engine Emissions   

 Numerous research efforts have explored the differences between engine emissions 

during steady and transient operation in a given speed/load regime.  Some studies have gone a 

step further and attempted to model transient effects to ultimately predict emissions during a 
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given driving cycle.  However, few of these studies have investigated transient effects on VOC 

emissions distribution, despite ample evidence of these effects on individual VOCs, major species 

and particulates.  Thus, to illustrate the future opportunities for uncovering, predicting and 

controlling transient effects on VOC distribution, a general review of transient engine emissions 

is provided.  This includes an overview of experimental examinations of transient emissions, as 

well as existing modelling techniques that could be applied to predict transient VOC emissions 

given sufficient time-resolved measurement data.   

 Gullet et al. measured benzene and carbon monoxide (CO) emissions for cold starts of a 

medium duty diesel engine operating at power output of 45 kW [32].  The maximum benzene and 

CO emissions measured during startup are 20 and 3 times greater than the emissions during 

steady-state, respectively.  These elevated emissions during the cold start are indicative of 

incomplete combustion during the warm-up process, which is mostly attributed to reduced 

temperatures and greater fuel injection mass within the engine.  A cold start is an extreme 

example of a speed/load change.  Numerous examples of the influence of gradual or minor 

speed/load changes on emissions also exist in the literature.  Hagena et al. studied NOx and 

particulate emissions from a diesel engine for tip-ins from 1 to 9 bar at varying ramp rates [33].  

Particulate emissions during an instantaneous load change reaches values 10 times greater that of 

a tip-in spanning 5 seconds.  Furthermore, predictions from a quasi-steady engine map 

underpredict the peak particulate and NOx emissions by about an order of magnitude and 33%, 

respectively.  In another work, positive and negative speed and load ramps were applied to two 

turbocharged non-road diesel engines [34].  Unburned hydrocarbons (HC), CO and NOx 

emissions during the ramps differ significantly (by factors of 2 or 3 in some cases) from the 

steady-state emissions for a given speed/load point, with the magnitude of these differences 

scaling with ramp rate.  For most of the cases, emissions increase for both positive and negative 

ramps.  Increased emissions during ramps is partially attributed to a time-lag in the turbocharger, 

which supplies additional air to the engine during load increases.  This time-lag leads to non-ideal 
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equivalence ratios within the engine, and is a reoccurring problem in turbocharged diesel engines 

[35], [36].   

 Speed/load history has also been demonstrated to alter gasoline engine emissions.  In one 

study, benzene emissions were measured for a variety of gasoline-driven EURO-2 vehicles driven 

on the European UDC and U.S. FTP cycles using chemical ionization mass spectrometry [37].  

To quantify the effects of velocity/acceleration, the data were sorted into different velocity 

classes.  Emissions within identical velocity classes differ substantially for varying levels of 

acceleration, illustrating the influence of speed/load history.  Post-catalyst concentrations of 

benzene within the fastest velocity bin vary by more than 100% between different acceleration 

values.  For slower speeds, benzene emissions fluctuate between negligible and substantial (>20 

ppm) concentrations at negative and positive accelerations, respectively.  In work by Heeb et al., 

emissions of NO, nitrogen dioxide (NO2) and ammonia (NH3) from gasoline-fueled Euro-3 and 

Euro-4 passenger cars were measured using chemical ionization-mass spectrometry for 7 

different driving cycles [38].  It was found that acceleration, deceleration and gear shifts result in 

elevated emissions factors for NO and NH3.  Maricq et al. studied transient effects on mass and 

size distributions of particulate emissions from 21 gasoline vehicles under the FTP driving cycle 

[39].  Peaks in particulate emissions from this study correspond to periods of acceleration.  

 While time-resolved measurements of speciated emissions during transient operation are 

limited due to the difficulties associated with such measurements [40], there are a handful of 

techniques capable of transient speciation.  The following is a brief review of studies where 

transient speciation of engine exhaust is conducted.  In a study by CARB, a group of 20 light duty 

gasoline vehicles with classifications ranging from Tier 0 to partial-zero emissions (PZEV) are 

tested on the Unified Cycle (UC) [40].  Transient speciation measurements are executed at 

intervals of 6 seconds using proton-transfer-reaction mass spectrometry, which show that an 

overwhelming majority of total benzene, acetaldehyde and aliphatic compounds emissions during 

a driving cycle are emitted during the cold start.  Gierczak et al. also explored cold start emissions 
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of various VOCs using Fourier transform infrared spectroscopy [41].  They found elevated levels 

of ethanol, acetaldehyde, formaldehyde, and non-methane hydrocarbons during the first 100 

seconds of the FTP driving cycle.  In another study, compositions of benzene, toluene and C2-

benzene from emissions of various vehicles within the Swiss car fleet were measured during a 

driving cycle using chemical ionization-mass spectrometry [42].  Mixing ratios between these 

three species vary considerable throughout a driving cycle due to velocity and acceleration 

effects.  Lastly, emissions of 27 gas-phase species from a 1999 Toyota Sienna minivan were 

measured using a portable Fourier transform infrared spectrometer [43].  Emissions of each 

species behave differently throughout the driving cycle, although spikes in toluene and m-xylene 

emissions occur during the cold-start, and 1,3 butadiene and benzene emissions rise steadily 

throughout. 

 The studies outlined above clearly indicate that transient effects impact engine emissions.  

For future engine designs and control algorithms to be updated to reduce VOC emissions, these 

transient effects must be modelled.  Below is a review of various transient emissions modelling 

techniques that could be applied to predict VOC distributions given sufficient time-resolved, 

transient VOC measurement data.  

2.2.1 Emissions Modelling 

 Predictive modelling is a key element of engine design and operation optimization [44], 

[45].  Due to the vast number of operational points of an engine, it is extremely burdensome to 

experimentally optimize each operational parameter (i.e. fuel injection timing, injection mass, 

exhaust gas recirculation level and boost pressure for diesel engines, etc.) for a sufficient number 

of speed/load points.  This task is even more formidable if transient effects are to be captured, 

since experiments at the same speed/load point must be repeated for numerous speed/load 

histories.  Hence, models are often employed for this purpose.  Predictive engine models vary 

appreciably in approach and complexity.  One of the most common approaches is quasi-steady 
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engine mapping, where engine performance is optimized for a limited number of steady-state 

speed/load points, and the optimal parameters for the remaining points are estimated using 

binning or interpolation [46]–[49].  While this method is simple and efficient, it fails to account 

for speed/load history and provides an overly-simplified and inaccurate portrayal of the 

relationship between operating parameters and performance.   

 For example, in work by Ericson et al., quasi-steady maps of fuel consumption, CO, HC, 

NOx and particulate matter (PM) were developed for three Euro 3-class diesel engines using 

steady-state experiments [46].  These values are compared with fuel consumption and emissions 

from experiments for four different transient cycles.  Discrepancies of 60-70% between the 

transient experimental values and those predicted from the quasi-steady model are common.  

Turbocharger lag is believed to contribute to these discrepancies, as the resulting fuel-richness 

within the engine during a load ramp yields incomplete combustion.  To account for this effect, 

an empirical relationship between turbocharge delay and load rate was developed.  However, 

while this method improves transient CO emissions predictions significantly, little to no 

improvement is seen for PM and HC in most cases.  Other various modifications to the quasi-

steady model exist in the literature [46], [50]–[52].  In a study by Bishop et al., emissions maps 

for three different diesel-powered vehicles were generated using experimental data from transient 

driving cycles [50].  Each measured species from an experiment was binned according to the 

current speed and load.  The emissions value assigned to that speed/load bin is the average of all 

measured values whose speed/load lie within that bin.  Cumulative CO, CO2 and NOx predictions 

from this approach are shown to agree with experiments over entire driving cycles.  However, 

there are substantial errors in instantaneous emissions at most points.  These results are likely 

explained by the cumulative fashion in which emissions are treated.  While this method fails to 

account for the effects of specific speed/load trajectories, the resulting errors are cancelled out 

when integrated over entire driving cycles. 
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 In another approach, emissions predictions from steady-state maps are modified with a 

physics-based engine temperature model with empirically determined constants [52].  It is 

theorized in this work that emissions deviate from steady-state predictions according to 

temperature development within the engine.  A first order differential equation for the “warmth” 

of the engine is prescribed which accounts for heat addition and loss mechanisms.  This warmth 

parameter is ultimately used to modify the emissions prediction, with the steady-state and 

transient predictions being equal for a fully-warmed engine.  Predictions of HC, CO and NOx 

were compared to measured emissions from a Mercedes diesel and Saab gasoline engine over a 

LA4 and US06 driving cycle.  Improvements in instantaneous and integrated emissions 

predictions from this method are achieved in most cases.  However, the method has notable 

difficulty predicting HC emissions, with the modified method yielding significantly worse 

predictions than the steady-state map in some cases, especially for instantaneous emissions. 

   Due to the limitations of quasi-steady modelling and its modifications, more rigorous 

methods for predicting transient emissions have been pursued in the literature.  One such 

implementation is the artificial neural network (ANN) [53], which is a machine learning tool that 

optimizes the relationships between specific inputs and outputs by training a set of “artificial 

neurons” on existing input/output data [54].  In transient emissions modelling, current and 

historic engine operation parameters (such as speed, load, equivalence ratio, etc.) serve as the 

input data, while transient emissions measurements serve as the output.  Numerous 

implementations of ANN for predicting engine performance exist in the literature [55].  For 

example, an ANN for predicting transient NOx emissions from a Honda 2.2L i-DTEC diesel 

engine according to engine speed, injected fuel mass, air-to-fuel ratio, air mass flow, boost 

pressure and exhaust gas temperature was developed by Fischer [56].  The ANN was trained 

using a variety of transient driving cycles including the New European Driving cycle (NEDC) 

and the US06.  Cumulative estimations of NOx for the Artemis Urban test cycle are within 1.57% 

of the measured values.  Instantaneous NOx emissions agree well with measured values over 
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certain regions of the driving cycle, although the discrepancy over the entire cycle wasn’t 

quantified.  In work by Domínguez-Sáez et al., an ANN was used to predict CO2, NOx and 

particulate number concentration for a 2.0 Euro 4 diesel engine fueled with diesel fuel and animal 

fat using vehicle speed and acceleration, engine speed and torque, air intake temperature, boost 

pressure, mass air flow and fuel consumption [57].  The ANN was trained and validated over 4 

repetitions of the New European driving cycle and 5 steady state conditions.  Correlation (R2) 

values of 0.91, 0.78, 0.87 and 0.81 were achieved for CO2, NOx, particles concentration and 

geometric mean diameter between measured and predicted values. 

2.2.1.1 VOC Emissions Models 

 Currently, few engine emissions models of VOC speciation, or even individual VOCs 

exist in the literature.  Perhaps the most well-known model for predicting VOC emissions is the 

EPA Motor Vehicle Emissions Simulator (MOVES) [58].  However, MOVES primarily serves as 

a tool for estimating emission inventories at the national or regional level over a time span given 

vehicle population and travel data.  This tool estimates emissions in a bulk manner and isn’t 

appropriate for detailed prediction of engine performance with respect to operating conditions 

[59].  Steady state engine maps of VOCs such as methane, ethane and formaldehyde were 

composed from data from a zero-dimensional stochastic reactor model of a homogeneous charge 

compression ignition (HCCI) engine in a study by Maurya and Akhil [60].  The emissions were 

tabulated with respect to engine speed and indicated mean effective pressure (IMEP).  In work by  

Wei et al., formaldehyde and methanol emissions were measured from a three-cylinder spark-

ignited engine operating at various speeds/loads at steady-state [61].  At each speed/load, tests 

were conducted for a variety methanol-gasoline blends.  This data was used to formulate steady-

state maps of formaldehyde and methanol emissions for each fuel blend.  It is important to note 

that the two studies listed developed steady-state models.   
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 It is apparent that the literature lacks predictive models for VOC emissions during 

transient engine operation.  However, the development of such models requires 

training/validation with transient, time-resolved VOC speciation data from experiments.  Such 

data are also sparse within the literature, since there are few routine diagnostic techniques capable 

of continuously measuring VOC emissions during transient engine operation.  In the following 

sub-section, a brief review of exhaust gas speciation techniques and their limitations is provided.  

This is followed by an introduction to Fourier Transform Infrared (FTIR) spectroscopy, which 

measures VOC emissions in real-time and possesses the measurement frequencies necessary for 

time-resolved speciation, but is biased during transient measurements.  These transient biasing 

effects are discussed, which ultimately motivate the implementation of a Bayesian estimation 

model for filtering out these effects from FTIR measurements of engine exhaust. 

2.3 VOC Emissions Diagnostics 

 A variety of techniques are available for comprehensive speciation of VOC engine 

emissions during transient driving cycles.  However, most conventional methods measure 

composition from batch samples from entire driving cycles.  Thus, these techniques are limited to 

quantifying total emissions during lengthy driving cycles, and therefore provide scant information 

on transient effects.  One of the most prevalent batch techniques is gas chromatography-mass 

spectrometry (GC-MS) [62].  This technique involves continuously drawing exhaust sample into 

a bag via a constant volume sampler, diluting the mixture, and eluting the contents through the 

capillary tubes of a GC.  The GC separates each component of the sample according to its 

characteristic elution time, which is a function of its tendency to remain in the stationary phase of 

the capillary tubes.  Each component exits the GC and enters the MS, where the sample is 

ionized.  The mass-to-charge ratio of the ionized molecules – which indicate their chemical 

structure – is then determined by simultaneously accelerating the sample and exposing it to a 

magnetic field.  A detector with multiple channels senses the deflected ions and their relative 
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abundance, with the particular channel indicating the deflection of the ion, and therefore mass-to-

charge ratio [63].  While very accurate and sensitive due to the concurrent use of two separation 

techniques, the elution process is slow and there performed offline, preventing transient 

measurements.  A similar technique that is often employed is GC-Flame Ionization Detection 

(FID) [64], [65].  In this method, a FID is placed downstream of the GC, which measures the 

masses of each separated compound according the number of ions detected during oxidation of 

the sample with a hydrogen flame [66].  It should be noted that the FID itself is a fast-response 

technique, but requires a separation technique which may be slow (such as a GC), or only 

effective for certain compounds (such as a non-methane cutter) [67].  Instances of using high-

performance liquid chromatography (LC)-MS by reacting sample VOCs with an acid solution and 

measuring the resulting stable products are also found in the literature [68]. 

 Although less widespread than batch measurements, there are a few online techniques 

capable of time-resolved, transient speciation.  One such method is to eliminate the GC in the 

GC-MS system and simply perform mass spectrometry.  Such approaches usually employ 

chemical ionization by introducing the sample to a chemically-charged reagent gas [69], [70].  

This method is less prone to fragmentation of the sample VOCs than electron ionization [71].  

One disadvantage with chemical ionization-mass spectrometry (CI-MS) is that it detects 

components based on mass only, and therefore cannot differentiate isomers and isobaric 

compounds.  Furthermore, the species that can be detected with CI-MS are limited to those with 

sufficient affinity for ionization.  For example, a specific CI-MS method called proton-transfer-

reaction mass spectrometry (PTR-MS) utilizes hydronium (H3O+) as the reagent, which induces a 

proton transfer to species with proton affinities greater than that of water .  This prevents the 

detection of important alkanes (such as methane, ethane and pentane) and ethylene [72].  

Different reagents can be selected to relax these proton affinity restrictions.  However, using such 

reagents requires significant dilution of the sample to prevent depletion of the reagents from 

ionization of the substantial quantities of water/O2 in the sample [73].  Also, typical measurement 
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times of PTR-MS lie between 3 and 10 seconds [72], which may be inadequate to capture certain 

transients. 

 Another online technique used for transient speciation is tunable laser diode absorption 

spectroscopy (TDLAS).  As the name suggests, this method uses a tunable diode laser to emit 

modulated light over a relatively narrow wavenumber range (1-2 cm-1) by altering current 

injection density.  The light travels through the optically accessible sample and onto a 

photodiode, where its incident intensity is measured [74].  Incident intensity is indicative of 

absorbance and therefore sample concentration.  For engine exhaust applications, the sample is 

usually drawn through a White cell, which contains directly facing mirrors which increase the 

traversed distance of emitted light through the sample, thereby improving sensitivity [75].  While 

advantageous for transient and cycle-by-cycle analysis due to its exceptional measurement 

frequency (up to 10 GHz), each diode laser is capable of measuring only a single species due to 

its narrow frequency range.  Thus, the number of species that can be measured is limited to the 

number of mirror pairs that can fit within a White cell [76].  A similar transient speciation 

technique that also utilizes the characteristic light absorbance features of specific compounds is 

Fourier transform infrared (FTIR) spectroscopy.  FTIR spectroscopy and its applicability to 

transient speciation is a primary focus of this work.  Thus, its operating principles, advantages 

and drawbacks are discussed in detail. 

2.3.1 Fourier Transform Infrared Spectroscopy 

 FTIR spectroscopy utilizes broadband, infrared radiation to infer the light absorbance of a 

sample over a wide spectral range, permitting comprehensive speciation with a single 

measurement.  A FTIR determines absorbance by traversing an IR beam composed of broad 

spectral components through a sample and measuring the incident intensity.  The interference 

properties of light are utilized to modulate the IR beam in a predictable manner that allows its 

incident spectral components to be deduced from the resulting measurement via the Fourier 
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transform.   Figure 2-1 displays a general schematic of a FTIR.  A typical FTIR consists of a 

Michelson interferometer (right) which produces the modulated IR beam, a White gas cell (left) 

that contains the sample, and a detector for measuring the downstream incident intensity of the 

modulated IR beam. 

 

Figure 2-1:  General Schematic of an FTIR spectrometer.   

 The detailed operating principles of FTIR spectroscopy are as follows.  A source is 

heated to elevated temperatures (~1500 K) to induce the emittance of broadband, IR radiation at 

intensities near that of a blackbody.  This IR radiation is focused and directed toward a beam-

splitter, where half of the beam is reflected/transmitted toward a moving mirror, the other half 

toward a stationary mirror.  The two beams reflect off their respective mirrors and coalesce at the 

beam splitter having travelled separate optical path distances.  Due to constructive/destructive 

interference between photons of identical wavenumbers, the intensity of each spectral component 

within the IR beam modulates in a sinusoidal fashion as a function of optical path difference, with 

the wavenumber of these modulations equaling the wavenumber of the spectral component.  The 

modulated spectral components of the IR beam also interfere with one another, yielding a total 

beam intensity that is also a function of optical path difference.  The coalesced, modulated beam 

travels through the sample, contained within the gas cell, where its intensity is reduced due to 

absorption.  After making multiple passes through the gas cell, the coalesced beam reaches a 
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detector, where its intensity is measured.  This process is repeated for numerous optical path 

differences, beginning with the initial moving mirror position called the centerburst – where all 

light constructively interferes, yielding a “burst” of intensity – and ending with the maximum 

mirror position.  The measured intensity profile is Fourier transformed with respect to optical 

path difference to deduce the spectrum of incident intensity versus IR wavenumber.  This 

spectrum is subtracted from a background spectrum obtained from a non-absorbing sample 

(usually N2) to determine the intensity of IR absorbed at each wavenumber of interest.  Since 

certain species absorb IR at specific wavenumbers and the level of IR absorption scales with mole 

fraction via Beer-Lambert’s law, this information can be used to quantitatively determine the 

chemical composition of the sample.  A illustration of the composition quantification process is 

provided in Figure 2-2. 
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Figure 2-2:  Illustration of the process for inferring composition from FTIR measurements.  An 

interferogram (intensity with respect to optical path difference) is measured, which is Fourier 

transformed to yield the spectral components of the incident IR beam.  The resulting spectral 

absorbance is calculated using the baseline spectrum, from which compositions are inferred 

according to the known absorbance features of specific chemical species.   

2.3.2 FTIR Limitations for Transient Measurements  

 FTIR spectroscopy presents many advantages for engine exhaust characterization over 

other conventional techniques.  First, FTIR measurements are performed online and in real-time, 

permitting transient analysis.  Furthermore, typical FTIR measurements frequencies reach as high 

as 5 Hz, greatly exceeding the frequencies of CI-MS.  Secondly, each measurable species has a 

distinguished spectrum, allowing a wide range of VOCs to be measured simultaneously, unlike 

TDLAS.  Despite the advantages of FTIR spectroscopy, its suitability for studying engine 
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transients is limited.  A FTIR gas cell must have sufficient volume to allow multiple passes of the 

IR beam through the sample.  Because of its large volume, residence times within a gas cell can 

be significantly greater than the measurement period of a FTIR, with a time constant of 

approximately 500 ms for a flowrate of 10 slpm.  Consequently, FTIR data are obscured by 

historical emissions, preventing time-resolved analysis.  An illustration of how engine exhaust 

composition and an FTIR measurement at a given time can differ is shown in Figure 2-3.  This 

issue isn’t necessarily mitigated by simply increasing the sample flow rate through the gas cell to 

decrease residence times, as this can cause turbulence-induced scintillation which increases noise 

in the measured IR intensity [77], as well as reduce pressures within the gas cell, rendering 

absorbance calibrations invalid.  FTIR flow rates for engine exhaust characterization in the 

literature vary, but are typically between 1 and 12 liters per minutes (lpm) [41], [78]–[85].  

Another issue with transient FTIR measurements is that the spectral intensity calculated by the 

Fourier transform is unevenly weighted by spectral intensities at/near the centerburst optical path 

difference.  This bias is referred to herein as non-stationarity bias, since it’s caused by the 

intensity of certain spectral components being non-stationary due to evolving levels of 

absorbance during a scan.  This issue, which was unknown at the onset of this work, is discussed 

in detail and addressed in Chapter 4. 
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Figure 2-3:  Illustration of how average composition within an FTIR gas cell evolves due to a step 

change in inlet composition.  As shown, FTIR measurements can differ considerably from the 

composition of engine exhaust entering the FTIR gas cell at a given time.  

 One way to address sample recirculation effects on transient FTIR measurements is by 

estimating the instantaneous composition of exhaust entering the FTIR gas cell [86].  This 

requires a known/assumed relationship between gas cell inlet composition and total gas cell 

composition.  In previous research, the FTIR gas cell was modelled as a well-mixed system [81], 

[87].  The equation for the well-mixed model is given in 2-1. 

𝒁𝑐𝑒𝑙𝑙(𝑡) = 𝒁𝑖𝑛(𝑡 − 1) (1 − 𝑒
−
∆𝑡

𝜏 ) + 𝒁𝑐𝑒𝑙𝑙(𝑡 − 1)𝑒
−
∆𝑡

𝜏           (2-1) 

In the equation above, total gas cell mass composition and inlet gas cell mass composition are 

represented by 𝒁𝑐𝑒𝑙𝑙 and 𝒁𝑖𝑛, respectively.  These values can be vectors containing many species 

or a scalar for a single species.  Current and previous measurement times are represented by 𝑡 and 

𝑡 − 1, respectively.  The characteristic time scale (mass of sample inside the gas cell divided by 

mass flow rate) is given by 𝜏.  In work by Truex et al., the composition of exhaust entering the 
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gas cell during a measurement period (𝒁𝑖𝑛(𝑡 − 1)) is back-calculated according to Equation 2-1 

and the current and previous FTIR measurement (𝒁𝑐𝑒𝑙𝑙(𝑡) and 𝒁(𝑡 − 1)) [81].  While this method 

improves the overall trend in estimated instantaneous engine exhaust compared to raw 

measurements, noise from the FTIR measurements greatly exacerbates the noise of the estimated 

inlet composition, yielding considerable errors in instantaneous emissions estimates.  However, 

this issue can be mitigated by filtering the FTIR data with a Bayesian estimation model (BEM).  

BEMs calculate the most statistically probable values for system states (i.e. composition of 

sample entering a FTIR gas cell) using a system model and known/assumed measurement noise 

statistics [88].  This estimation technique uses a-priori knowledge of the underlying system 

dynamics to correct for errors in state estimations caused by measurement noise.  Since a FTIR 

gas cell can be modelled as a well-mixed system, and the degree of non-stationarity bias can be 

reasonably approximated (as discussed in Chapter 4), the problem of estimating the composition 

of sample entering a FTIR gas cell is well-suited for Bayesian estimation.  The work presented 

herein aims to develop and validate this BEM for obtaining time-resolved engine exhaust 

measurements.  A BEM which addresses sample recirculation effects is developed and 

computational validated in Chapter 3.  In Chapter 4, a mathematical derivation of non-stationarity 

bias for each measurable species is developed, which is incorporated into a modified version of 

the BEM.  This modified BEM is then experimentally validated.  Results from the application of 

the BEM to FTIR measurements of exhaust from a gasoline engine during transient load ramps 

are presented in Chapter 5. 
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CHAPTER 3 BAYESIAN ESTIMATOR OF COMPREHENSIVE ENGINE EMISSIONS  

 FTIR spectroscopy is an attractive diagnostic for time-resolved, comprehensive engine 

exhaust speciation due to its ability to measure concentration of individual VOCs from 

continuously replenished exhaust samples at high frequencies.  However, sample recirculation 

and evolving absorbance complicate the interpretation of FTIR measurements during transient 

engine operation.  This chapter is dedicated to the development and computational validation of a 

Bayesian estimation model (BEM), which extracts instantaneous exhaust composition from 

biased FTIR measurements of chemically evolving exhaust samples.  The BEM utilizes a simple 

sample residence time sub-model and measurement noise statistics to estimate the composition of 

sample entering a FTIR gas cell during a measurement period.  Only sample recirculation is 

addressed in the development of the BEM in this chapter, as this topic is extensive by itself.  

Furthermore, most of the analysis in this chapter, including the computational validation of the 

sample residence time sub-model and quantification of performance limits of the BEM can be 

performed while neglecting the effects of evolving absorbance.  The introduction of a modified 

measurement sub-model which accounts for these effects is reserved for Chapter 4, since its 

derivation is rigorous and constitutes a sizable fraction of the next chapter, and its implementation 

is necessary for the experimental validation portion of this work.   

 This chapter begins with a brief discussion of the fundamentals of Bayesian estimation in 

Section 3.1.  From this discussion, the Unscented Kalman filter (UKF), which is the Bayesian 

estimator employed for this work, is introduced.  The underlying approach of the UKF for 

optimal estimation is established, followed by the overview of its equations and estimation 

process.  Section 3.2 presents the development of specific UKF sub-models that pertain to 

estimating instantaneous exhaust composition from FTIR measurements.  This includes the state 

transition and measurement models (3.2.1) and process noise covariance model (3.2.2).   In 

Sections 3.3 and 3.4, computational methods for validating the UKF are presented.  
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Computational fluid dynamics (CFD) and mixing network (MN) models for simulating the flow 

of sample with transient composition through a FTIR gas cell are presented.  CFD simulations are 

used to validate the well-mixed assumption utilized in the state transition model (3.4.1), as well as 

generate synthetic FTIR measurements from which the lower limits of composition fluctuation 

duration that can be captured by the UKF are quantified (3.4.2).   Synthetic FTIR measurements 

of engine exhaust from driving cycles are generated from MN simulations.  These measurements 

are processed by the UKF and it is demonstrated that the UKF significantly improves 

instantaneous exhaust composition estimations compared to raw FTIR measurements (3.4.3).  

The relationships between UKF performance and inlet composition process noise are also 

explored. 

3.1 Bayesian Estimation 

 A Bayesian filter is a recursive algorithm that estimates the most probable states of a 

system at a given time based on predictions from a physical model of the underlying dynamics of 

the system and measurements.  Fundamentally, a Bayesian filter appropriately weighs model 

predictions and measurements, each with their inherent uncertainty distribution, to compose a 

statistically optimized estimation of the state with a smaller uncertainty distribution than the 

model predictions and measurements alone.  This is illustrated in Figure 3-1.  Bayesian filters are 

effective signal processing tools that increase confidence in state estimations from noisy 

measurements. 
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Figure 3-1: Illustration of the current state distribution calculated from a state model and 

measurement distribution using a Bayesian filter. 

 Bayesian filters ultimately emanate from Bayes theorem, which expresses the conditional 

probability of a set of states 𝑿𝑡 ≔ {𝒙(0),… , 𝒙(𝑡)} given a set of observations 𝒀𝑡 ≔

{𝒚(0),… , 𝒚(𝑡)} as the conditional probability of the observations given the states, and the 

unconditional probabilities of the states and observations. 

 Pr(𝑿𝑡|𝒀𝑡) =
 Pr(𝒀𝑡|𝑿𝑡)Pr(𝑿𝑡)

Pr (𝒀𝑡)
    (3-1) 

The use of Bayes theorem in measurement processing is motivated by the difficulty of calculating 

the conditional state distribution directly.  Conversely, each of the distributions on the right-hand 

side of Equation 3-1 are estimated with relative ease.  For typical measurement processing 

applications, the current state 𝒙(𝑡) is of primary interest.  Furthermore, it is advantageous if the 

conditional probability of the current state can be expressed using values at the 

current/immediately previous time step only, as this enables the algorithm to be recursive.  This is 

accomplished by invoking the first order Markov assumption, which states that the current state 

conditional distribution is independent of states prior to the immediately previous state.  The 

current observation conditional distribution is also assumed to depend only on the current state.  

Both assumptions are reasonable for most applications.   

Pr(𝒙(𝑡)|𝑿𝑡−1) → Pr(𝒙(𝑡)|𝒙(𝑡 − 1)) 
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Pr(𝒚(𝑡)|𝑿𝑡 , 𝒀𝑡−1) → Pr(𝒚(𝑡)|𝒙(𝑡)) 

 It can be shown that the application of the above assumptions results in the following 

form of Bayes theorem, which is the basis of recursive Bayesian algorithms. 

Pr(𝒙(𝑡)|𝒀𝑡)
⏞        
Posterior

=
Pr (𝒚(𝑡)|𝒙(𝑡))⏞        
Likelihood

  Pr (𝒙(𝑡)|𝒀𝑡−1)⏞          
Prediction

Pr (𝒚(𝑡)|𝒀𝑡−1)⏟          
Evidence

    (3-2) 

Equation 3-2 divides Bayes theorem into three key components: 

Prediction: Predicted conditional distribution of the current state given previous measurements. 

Likelihood: Conditional probability of the current observation given a current state. 

Evidence:  Normalizing factor for the prediction and likelihood. 

Although the prediction and evidence probabilities are conditioned on the complete set of 

previous measurements, it can be shown that both distributions are functions of distributions from 

the current/immediately previous time steps due to the Markov and measurement assumptions.  In 

fact, the evidence is the product of the prediction and likelihood integrated over all possible 

values of 𝒙(𝑡), and thus serves as a normalization value in Equation 3-2.  Thus, Equation 3-2 is 

recursive.   

 A Bayesian filter seeks the current state 𝒙(𝑡) that maximizes the posterior.  This is 

accomplished by estimating the distributions of the prediction, likelihood and evidence and 

applying Equation 3-2.  While each Bayesian filter approximates these distributions differently, 

most filters fall within two categories: particle filters and Kalman filters.  Particle filters 

represents each distribution with a set of discrete particles with distinct values.  Prior particles are 

transformed by the state transition and measurement models to approximate the prediction and 

likelihood distributions, respectively.  The evidence is also calculated from the transformed 

particles, and Bayes theorem is applied to yield a discrete estimate the posterior distribution.  

While particle filters are robust for a wide variety of systems, including those with exotic 
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distributions and non-linear transformations, they require a substantial number of particles and 

are therefore computationally expensive.   

 When the distributions are Gaussian and transformations are linear, the mean and 

variances of prediction, likelihood and evidence are known precisely.  These distributions form 

the basis from which the Kalman filter is developed.  The distributions are given in Equations 3-3 

through 3-5. 

 Pr(𝒚(𝑡)|𝒙(𝑡)) ~ 𝑁(𝑐[𝒙(𝑡)], 𝑹𝒗𝒗(𝑡))                (3-3) 

Pr(𝒙(𝑡)|𝒀𝑡−1) ~ 𝑁(�̂�(𝑡|𝑡 − 1), �̃�(𝑡|𝑡 − 1) )        (3-4) 

Pr(𝒚(𝑡)|𝒀𝑡−1) ~ 𝑁 (�̂�(𝑡|𝑡 − 1), 𝑹𝛏𝛏(𝑡))   (3-5) 

𝑐 → measurement model (relates states to corresponding observations) 

𝑹𝒗𝒗 → measurement noise covariance 

�̃� → state error covariance 

𝑹𝛏𝛏 → innovation covariance (covariance of error between the predicted and true measurement) 

The predicted states �̂�(𝑡|𝑡 − 1) are calculated from the state transition model, which transforms 

the prior expected states according to the underlying dynamics of the system, while the predicted 

measurements �̂�(𝑡|𝑡 − 1) are calculated by operating on the predicted state with the measurement 

model, which relates measurements to corresponding state values.  State error and innovation 

covariances are calculated by propagating the prior state error covariance through the state 

transition/measurement models as well, with added terms to account for deviations from the state 

transition model and measurement noise.  The Kalman filter is derived by plugging the 

distributions in Equations 3-3 through 3-5 into Bayes theorem, and then taking the derivative with 

respect to 𝒙(𝑡) to find the current state that maximizes the posterior.  Relative to particle filters, 

Kalman filters are simple and efficient, and therefore have a far-reaching influence in signal 

processing.  They are implemented in a wide range of applications, including global positioning 
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systems [89], real-time computer vision and image processing [90], prediction of electricity 

demand [91] and fault detection in gas turbines and other machinery [92]. 

 Despite the ubiquity of the Kalman filter, its application is limited to systems with linear 

state transition and measurement models.  When the transformations are non-linear, the 

distributions in Equations 3-3 through 3-5 can no longer be calculated directly and must be 

approximated.  Two primary extensions of the Kalman filter that apply to non-linear systems 

exist.  These are the Extended Kalman filter (EKF) and the Unscented Kalman filter (UKF).  The 

Extended Kalman filter approximates the distribution of non-linear transformations in the 

state/measurement models using first order linearization.  While the conversion of the standard 

Kalman filter to the EKF is straightforward, it is highly susceptible to discretization errors.  Thus, 

the EKF tends to perform poorly for transformations governed by highly non-linear functions, 

such as exponential functions, which deviate substantially from linear approximations.  However, 

EKFs remain relevant in signal processing due to their simplicity.  The UKF, on the other hand, is 

a more robust algorithm which achieves up to third order accuracy.  It uses a small set of 

deterministic sampling points to capture the first and second moments of the distributions given 

in Equations 3-3 through 3-5.  These sampling points are transformed individually by the state 

transition and measurement models to develop the prediction and likelihood distributions, 

ultimately leading to the posterior distribution of a system.  

 The state transition model that governs the evolution of composition inside of a FTIR gas 

cell is non-linear with respect to flow rate.  Since a non-linear Bayesian filter is required and high 

accuracy is desired for the estimation of transient emissions, the UKF is chosen as the filter for 

this work.   The UKF is implemented to estimate the instantaneous composition of sample 

entering the FTIR gas cell during a measurement period, permitting transient emissions profiles to 

be accurately resolved.  Therefore, the following section is devoted to describing the UKF in 

detail and providing its equations.   
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3.1.1 Unscented Kalman Filter 

 The UKF was developed based on the idea that approximating a Gaussian distribution is 

easier than approximating a non-linear transformation [93].  This statistical approximation is 

accomplished by deterministically sampling from a prior distribution.  The sampling points, 

called sigma points, are selected to capture the true means and covariances of the prior.  To 

estimate the statistics of a non-linear transformation of a prior state, each of the prior sigma points 

undergo the non-linear transformation.  The collective transformation of each sigma point is 

called an Unscented transformation (UT).  The resulting set of transformed sigma points provide 

an accurate approximation of the first and second moments of the transformed state, which are 

calculated by multiplying the value of each sigma point and its deviation from the mean by 

weights, respectively, and summing.  UTs are more effective than linearization (the EKF) at 

preserving the statistics during a transformation, since the distribution itself is transformed rather 

than estimated from a linearized trajectory from the prior expected values, which may accumulate 

discretization errors.  This benefit is demonstrated in Figure 3-2, where the sigma points and their 

associated resulting distribution are represented by the green circles and oval, respectively, and 

the distribution represented by a first order transformation is represented by the pink oval.  The 

first and second moments of the transformed distribution from an UT are captured to the third and 

second order of accuracy for Gaussian and non-Gaussian prior distributions, respectively [94].  

Thus, the UKF provides some relaxation in the requirement that the distributions in Equations 3-3 

through 3-5 be Gaussian, as long as the distribution can be decently characterized by its first two 

moments.  UTs are performed within the UKF to estimate the prediction and likelihood 

distributions, as will be shown in detail. 
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Figure 3-2: Illustration of Unscented transform and its comparison with the EKF.  Overall idea 

borrowed from [94]. 

   The UKF estimation process is divided into four main steps: prediction, measurement, 

gain and update.  In the prediction step, the initial set of sigma points representing the prior state 

distribution undergo a UT by the state transition model to predict the current state value.  The 

transformed state sigma points, along with the state propagation uncertainty (process noise) are 

used to estimate the state error distribution.  A new set of state sigma points are generated to 

reflect the estimated distribution, which are then transformed by the measurement model.  The 

measurement sigma points, along with the measurement noise covariance, are used to 

approximate the evidence distribution.  The correlation between the state and measurement sigma 

points are then approximated, which is used as a gain to update the posterior mean and 

covariance, just as in the standard Kalman filter.  Each step of the UKF will be now described in 

detail.  
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 First, the prior sigma points (𝙓) are generated using the state (�̂�) and covariance (�̃�) 

estimations from the previous time (𝑡).  If this is the first iteration of the filter, these state and 

covariance values are initial conditions.  Otherwise, they are calculated from the posterior of the 

previous time step.  For a Gaussian distribution, the minimum number of sigma points required to 

capture the first and second moments are 2𝑁𝑥 + 1, where 𝑁𝑥 is the dimensionality of the states. 

𝙓0 = �̂�(𝑡 − 1|𝑡 − 1)              (3-6) 

𝙓𝑖 = �̂�(𝑡 − 1|𝑡 − 1) + (√(𝑁𝑥 + 𝜅)�̃�(𝑡 − 1|𝑡 − 1))
𝑖
              (3-7) 

𝙓𝑖+𝑁𝑥 = �̂�(𝑡 − 1|𝑡 − 1) − (√(𝑁𝑥 + 𝜅)�̃�(𝑡 − 1|𝑡 − 1))𝑖
          (3-8) 

Above, 𝜅 is a scalar tuning parameter, and (√(𝑁𝑥 + 𝜅)�̃�)
𝑖
 is the 𝑖th column/row of the Cholesky 

square root of the state error covariance matrix multiplied by (𝑁𝑥 + 𝜅).  A 𝜅 value of 3 − 𝑁𝑥 is 

chosen for this work, since it yields a kurtosis that is identical to that of a Gaussian distribution.  

Each sigma points is assigned a corresponding weight (𝑊), which is derived so that the sum of 

the value of each weighted sigma point and its deviation from the mean match the first and 

second moments of a Gaussian distribution, as proven in [95]. 

𝑊0 =
𝜅

(𝑁𝑥+𝜅)
         (3-9) 

𝑊𝑖 =
1

2(𝑁𝑥+𝜅)
        (3-10) 

𝑊𝑖+𝑁𝑥 =
1

2(𝑁𝑥+𝜅)
          (3-11) 

Each prior sigma point is propagated through the non-linear state transition model (𝑎) to generate 

a new set of sigma points.  These new sigma points are multiplied by their corresponding weights 

and then added together to give the initial state prediction at the current time step. 

𝙓𝑖(𝑡|𝑡 − 1) = 𝑎[𝙓𝑖(𝑡 − 1|𝑡 − 1)] + 𝑏[𝒖(𝑡 − 1)]         (3-12) 

�̂�(𝑡|𝑡 − 1) = ∑ 𝑊𝑖𝙓𝑖(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0        (3-13) 
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The predicted state error covariance is then calculated according to the deviation of the sigma 

points from the mean and the uncertainty (noise) of the state transition model.  The uncertainty of 

the state transition model is quantified in the process noise covariance matrix (𝑹𝒘𝒘).  It should be 

noted that process noise refers to random error in the state propagation model, which is assumed 

to be Gaussian and white.  This differs from systematic error, which produces a consistent offset 

between the estimated and true state value.  The development of 𝑹𝒘𝒘 as it pertains to this work is 

presented in section 3.2.2 Process Noise Covariance Matrix. 

�̃�𝑖(𝑡|𝑡 − 1) = 𝙓𝑖(𝑡|𝑡 − 1) − �̂�(𝑡|𝑡 − 1)             (3-14) 

�̃�(𝑡|𝑡 − 1) = ∑ 𝑊𝑖�̃�𝑖(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0 �̃�𝑖′(𝑡|𝑡 − 1) + 𝑹𝒘𝒘(𝑡 − 1)    (3-15) 

The state sigma points are then updated to represent the predicted state error distribution at the 

current time. 

�̂�0 = �̂�(𝑡|𝑡 − 1)         (3-16) 

�̂�𝑖 = �̂�(𝑡|𝑡 − 1) + (√(𝑁𝑥 + 𝜅)�̃�(𝑡|𝑡 − 1))
𝑖
                (3-17) 

�̂�𝑖+𝑁𝑥 = �̂�(𝑡|𝑡 − 1) − (√(𝑁𝑥 + 𝜅)�̃�(𝑡|𝑡 − 1))𝑖
             (3-18) 

The sigma points are propagated through the measurement model (𝑐) to generate the 

measurement sigma points (𝜰).  Each measurement sigma point is multiplied by its corresponding 

weight and summed to yield the measurement prediction (�̂�), or the mean of the likelihood 

distribution. 

𝜰𝑖(𝑡|𝑡 − 1) = 𝑐[�̂�𝑖(𝑡|𝑡 − 1)]              (3-19) 

�̂�(𝑡|𝑡 − 1) = ∑ 𝑊𝑖𝜰𝑖(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0      (3-20) 

The likelihood covariance (𝑹𝛏𝛏) is then calculated according to the residuals of the measurement 

sigma points (𝛏) and the measurement noise.  𝑹𝒗𝒗 is the measurement noise covariance matrix.  

Like the process noise, measurement noise is assumed to be Gaussian and white. 

𝛏𝑖(𝑡|𝑡 − 1) = 𝜰𝑖(𝑡|𝑡 − 1) − �̂�(𝑡|𝑡 − 1)                    (3-21) 
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𝑹𝛏𝛏(𝑡|𝑡 − 1) = ∑ 𝑊𝑖𝛏𝑖(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0 𝛏𝑖′(𝑡|𝑡 − 1) + 𝑹𝒗𝒗(𝑡)       (3-22) 

The cross-covariance between the predicted state and measurement regressions is then calculated 

by multiplying the weighted state and measurement regression sigma points and summing.  This 

value is then multiplied by the inverse of the measurement residual covariance to yield the gain. 

𝑹�̃�𝛏(𝑡|𝑡 − 1) = ∑ 𝑊𝑖�̃�𝑖(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0 𝛏𝑖′(𝑡|𝑡 − 1)    (3-23) 

𝜥(𝑡) = 𝑹�̃�𝛏(𝑡|𝑡 − 1)𝑹𝛏𝛏
−1(𝑡|𝑡 − 1)                (3-24) 

The estimated measurement is then subtracted from the actual measurement (𝒚) at the current 

time to yield the innovation.  This quantity is multiplied by the gain and added to the prior state 

estimation to yield the posterior estimation at the current time.  The posterior state error 

covariance matrix is calculated as well.  Due to the Bayesian estimation strategy of incorporating 

model and measurement statistics, the confidence in the resulting posterior estimation is greater 

than that of the model and measurements alone.  In other words, the covariances within �̃�(𝑡|𝑡) 

are less than that of �̃�(𝑡|𝑡 − 1) and 𝑹𝛏𝛏(𝑡|𝑡 − 1), resulting in a statistically optimized estimation 

of �̂�(𝑡|𝑡). 

𝒆(𝑡) = 𝒚(𝑡) − �̂�(𝑡|𝑡 − 1)          (3-25) 

�̂�(𝑡|𝑡) = �̂�(𝑡|𝑡 − 1) + 𝜥(𝑡)𝒆(𝑡)               (3-26) 

�̃�(𝑡|𝑡) = �̃�(𝑡|𝑡 − 1) − 𝜥(𝑡)𝑹𝛏𝛏(𝑡|𝑡 − 1)𝜥′(𝑡)             (3-27) 

This completes a single iteration of the UKF.  In the next iteration, the current state and state error 

covariance become the initial conditions and the next model prediction and measurement are 

filtered.   

�̂�(𝑡|𝑡), �̃�(𝑡|𝑡)  → �̂�(𝑡 − 1|𝑡 − 1), �̃�(𝑡 − 1|𝑡 − 1)  

An overview of an entire iteration of the UKF is illustrated in Figure 3-3.  The sub-models within 

the UKF – the state transition model, measurement model and process noise covariance matrix – 

are introduced in the following sub-section. 
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Figure 3-3: Example flowchart of the Unscented Kalman filter estimation process for a system 

with two states and one observation. 

3.2 UKF Sub-Models for Exhaust Composition Estimation 

 In this section, the state transition model, measurement model and process noise 

covariance matrix within the UKF are formulated in detail.  These components of the UKF are 

specific to an application, and are therefore unique for each filter.  The sub-models in this work 
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are designed to ultimately yield accurate, instantaneous estimations of the exhaust gas emitting 

from an engine and entering a FTIR gas cell.  Thus, models and state variables are selected to 

connect FTIR measurements to gas cell inlet composition.  

3.2.1 State Transition/Measurement Models 

 The state transition model propagates the state values through time according to the 

systems dynamics.  It is a critical element of the UKF, as it provides the initial prediction for the 

current state values.  The system is described by 3 states: composition entering the FTIR gas cell 

(𝒁𝑖𝑛), total gas cell composition (𝒁𝑐𝑒𝑙𝑙), and mass flow rate (�̇�).  It should be noted that the 

dimensionality of 𝒁𝑖𝑛 and 𝒁𝑐𝑒𝑙𝑙 is equal to the number of species.  Total gas cell composition is 

modelled using the well-mixed assumption.  Mass flow through the gas cell is assumed to be 

quasi-steady.  The initial predictions for inlet composition and mass flow rate are the values from 

the previous time step.  These states are modelled this way because their values are influenced by 

factors outside of the system.  Essentially, these states are updated within the filter according to 

the measurements and total gas cell composition model.  The state-space equations are given 

below. 

 �̂�(𝑡|𝑡 − 1) = [

𝒁𝑖𝑛(𝑡|𝑡 − 1)

𝒁𝑐𝑒𝑙𝑙(𝑡|𝑡 − 1)

�̇�(𝑡|𝑡 − 1)
] = 𝑎 [

𝒁𝑖𝑛(𝑡 − 1|𝑡 − 1)

𝒁𝑐𝑒𝑙𝑙(𝑡 − 1|𝑡 − 1)

�̇�(𝑡 − 1|𝑡 − 1)
] =

[

𝒁𝑖𝑛(𝑡 − 1|𝑡 − 1)

𝒁𝑖𝑛(𝑡 − 1|𝑡 − 1) (1 − 𝑒
−

∆𝑡

𝜏(𝑡−1|𝑡−1)) + 𝒁𝑐𝑒𝑙𝑙(𝑡 − 1|𝑡 − 1)𝑒
−

∆𝑡

𝜏(𝑡−1|𝑡−1)

�̇�(𝑡 − 1|𝑡 − 1)

]      (3-28) 

 Here, 𝜏 represents the effective time constant the gas cell, or the mass divided by mass 

flow rate.  Mass within the gas cell is assumed to remain constant in this model.  It should be 

noted that total gas cell mass could be included as a state variable, since FTIRs measure 

temperature and pressure within the gas cell, and total gas cell molecular weight could be 

deduced from 𝑍.  Mass could therefore be calculated via the ideal gas law.  However, since FTIRs 
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control temperature and pressure to remain constant, and the main combustion products are 

usually relatively consistent, mass within the gas cell should remain nearly steady. 

 The measurement model describes the relationship between system states and 

measurement output.  Strictly speaking, a FTIR measures the incident intensity of the modulated 

IR beam relative to moving mirror position.  Chemical composition is deduced from this 

measurement by Fourier transforming the measured intensity, calculating spectral absorbance, 

and applying an algorithm which estimates composition from absorbance calibrations.  However, 

it may be impractical to include IR beam intensity within the UKF sub-models since it is 

measured at over 30,000 optical path difference points, and the noise statistics at each point 

would need to be known in addition to their propagation effects into the calculation of each 

species.  Furthermore, this would require the reverse engineering of the FTIR composition 

algorithm, which is proprietary.  Thus, the composition calculation from the FTIR algorithm itself 

is treated as a measurement.  As will be shown later, reasonable estimates of the composition 

noise statistics resulting from measurement noise can be obtained by various methods.  Since 

FTIRs are calibrated to yield mole fractions from spectral absorbance, the model for FTIR 

measurements is simply the element-wise conversion from total gas cell mass fraction to mole 

fraction.  It should be noted that later in the dissertation, the FTIR measurement model will be 

updated to account for non-stationarity effects.  The current version is introduced now for 

simplicity.  Mass flow rate is also treated as a direct measurement.  The equations for the 

measurement model are given below. 

�̂�(𝑡|𝑡 − 1) = [
𝒁𝑐𝑒𝑙𝑙(𝑡|𝑡 − 1) ∙

𝑀𝑊𝑚𝑖𝑥

𝑴𝑾

�̇�(𝑡|𝑡 − 1)
]     (3-29) 

𝑴𝑾 and 𝑀𝑊𝑚𝑖𝑥 represent the molecular weights of the species of interest and the molecular 

weight of the total gas cell sample, respectively. 
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3.2.2 Process Noise Covariance Matrix 

 In addition to measurement noise statistics, the statistics of unmodelled, stochastic 

fluctuations in the state values must be reasonably known for the UKF to perform optimally.  

These statistics are represented in the process noise covariance matrix 𝑹𝒘𝒘, which contributes to 

the total modeling uncertainty at the current time.  Reasonable approximations for physical 

fluctuation statistics are imperative for determining the relative contributions of true state value 

fluctuations vs. measurement noise for outlying measurements that disagree with model 

predictions. 

 In the approximation of 𝑹𝒘𝒘, it is assumed in that fluctuations originally occur in the 

inlet composition and mass flow rate due to influences outside of the system (namely engine 

transients).  These fluctuations are assumed to propagate throughout a measurement period to 

yield fluctuation in the total gas cell composition as well, via the well-mixed model.  The 

covariance matrix of these original fluctuations (Φ) is provided in Equation 3-30. 

Φ = [

Φ𝑍𝑖𝑛 0 0

0 0 0
0 0 Φ�̇�

]              (3-30) 

Here Φ𝑍𝑖𝑛 and Φ�̇� represent the stochastic noise variances for inlet composition and mass flow 

rate, respectively.  Fluctuations of these two states are assumed to be uncorrelated, although some 

correlation likely exists since they are both caused by engine transients.  However, correlations 

vary between species and with engine load ramp rate, and are therefore difficult to estimate.  

Furthermore, correlations between inlet composition and engine conditions are exactly what the 

implementation of the UKF is designed to uncover.  Making poor initial assumptions about these 

relationships could yield undesired bias in the estimations.   

 The propagation of these original fluctuations into total gas cell composition and the 

resulting covariances are estimated using sigma point transformations conveniently similar to 

those of the UKF.  This process is analogous to that of estimating the total model uncertainty in 
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equations 3-6 through 3-15.  First, a set of sigma points (𝙓𝑖,𝒘) are generated to represent the 

distribution of the states due to the original fluctuations in Φ. 

𝙓0,𝒘 = �̂�(𝑡 − 1|𝑡 − 1)            (3-31) 

𝙓𝑖,𝒘 = �̂�(𝑡 − 1|𝑡 − 1) + (√(𝑁𝑥 + 𝜅)Φ)𝑖                (3-32) 

𝙓𝑖+𝑁𝑥,𝒘 = �̂�(𝑡 − 1|𝑡 − 1) − (√(𝑁𝑥 + 𝜅)Φ)𝑖                         (3-33) 

These fluctuation sigma points are then transformed by the state transition model (𝑎) to yield a 

new set of sigma points that represent the distribution of fluctuations propagated throughout the 

measurement period.   

𝙓𝑖,𝒘(𝑡|𝑡 − 1) = 𝑎[𝙓𝑖,𝒘(𝑡 − 1|𝑡 − 1)]                                    (3-34) 

The variance of this distribution is then estimated by first subtracting each sigma point from the 

expected value of the sigma point population.  The matrix product of these sigma point deviations 

are then multiplied by their corresponding weights and summed to yield the values within 𝑹𝒘𝒘. 

�̃�𝑖,𝒘(𝑡|𝑡 − 1) = 𝙓𝑖,𝒘(𝑡|𝑡 − 1) − ∑ 𝑊𝑖𝙓𝑖,𝒘(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0        (3-35) 

𝑹𝒘𝒘(𝑡 − 1) = ∑ 𝑊𝑖�̃�𝑖,𝒘(𝑡|𝑡 − 1)
2𝑁𝑥
𝑖=0 �̃�𝑖,𝒘′(𝑡|𝑡 − 1)    (3-36) 

Estimated values for 𝑹𝒘𝒘 are recalculated at each iteration to reflect the new initial state values. 

 Another way to estimate 𝑹𝒘𝒘 is through propagating the original fluctuations throughout 

a measurement period via linearization.  To provide the reader with an idea of the process noise 

covariances in terms of  Φ𝑍𝑖𝑛 and Φ�̇�, the approximate covariances calculated by linearization 

are provided in Equation 3-37.  The linearized covariances are similar to those estimated from 

sigma point transformations, with the only differences occurring in the terms that include mass 

flow rate, which has a non-linear relationship with total gas cell composition. 
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𝑹𝒘𝒘 ≈

[
 
 
 
 
 Φ𝑍𝑖𝑛 Φ𝑍𝑖𝑛 (1 − 𝑒

−
∆𝑡

�̂� ) 0

Φ𝑍𝑖𝑛 (1 − 𝑒
−
∆𝑡

�̂� ) Φ𝑍𝑖𝑛 (1 − 𝑒
−
∆𝑡

�̂� )
2

+Φ�̇� [
∆𝑡

𝑚
𝑒−

∆𝑡

�̂� (�̂�𝑖𝑛 − �̂�𝑐𝑒𝑙𝑙)]
2

Φ�̇�
∆𝑡

𝑚
𝑒−

∆𝑡

�̂� (�̂�𝑖𝑛 − �̂�𝑐𝑒𝑙𝑙)

0 Φ�̇�
∆𝑡

𝑚
𝑒−

∆𝑡

�̂� (�̂�𝑖𝑛 − �̂�𝑐𝑒𝑙𝑙) 0 ]
 
 
 
 
 

 

(3-37) 

3.3 FTIR Simulations 

 To validate and determine the performance limitations of the UKF, simulations are 

performed of sample with transient composition flowing through a FTIR gas cell at a constant 

flowrate.  Two types of simulations are performed:  CFD and MN.   In the CFD simulations, the 

sample consists of nitrogen mixed with a tracer component with identical properties (density and 

viscosity).  The CFD simulations are used to verify the accuracy of the well-mixed model by 

comparing total gas cell composition calculated by the two models for identical inlet composition 

profiles.  Synthetic FTIR measurements are also generated from the total gas cell composition 

calculations from CFD, which are used to explore the limitations of the filter and how inlet 

composition process noise influences performance.  In the MN simulations, simulated engine 

exhaust from an FTP driving cycle flows through the FTIR gas cell.  The total gas cell nitric 

oxide (NO) composition calculated in these simulations is used to produce synthetic FTIR NO 

measurements.  MN simulations are used for cases involving simulated exhaust, since the FTP 

driving cycle lasts over 1800 seconds, a simulation time that would be computationally 

prohibitive for CFD.  Engine-out NO emissions are simulated using the model from [95], which 

determines emission levels for a given vehicle speed and acceleration.  The vehicle parameters 

used for this study are the same as those in [95].   An illustration of the process of generating 

synthetic FTIR measurements from the total gas cell composition values of the CFD/MN 

simulations is presented in Figure 3-4.  This process consists of adding random noise from a 

Gaussian distribution to total gas cell composition calculations. 
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Figure 3-4: An illustration of the process for generating synthetic FTIR measurements from 

CFD/MN simulations, which are subsequently filtered by the UKF to generate inlet composition 

estimations. 

 Sample flow rates of 10 and 25 lpm are explored for both types of simulations.  The 

lower flow rate is within the typical range used for FTIR experiments involving engine exhaust 

characterization.  However, simulations with a flow rate of 25 lpm are also conducted to quantify 

the improvements in inlet composition estimation when flow rate is maximized.  At higher flow 

rates, sample within the FTIR gas cell is displaced more quickly, yielding a total gas cell 

composition that more closely resembles the inlet composition and reduces the lagging effect 

between inlet and gas cell composition.  However, it should be reiterated that high flow rates can 

increase measurement noise, limiting the advantages of increasing flow rate beyond a certain 
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point.  Also, increasing flowrate reduces the pressure within the FTIR gas cell due to restrictive 

upstream particulate filters which are necessary to maintain the quality and reflectance of the 

mirrors within the gas cell.  The farther that gas cell pressure is from the calibrated pressures, the 

less reliable the measurements.  Furthermore, reducing pressure results in lower absorbance of the 

sample, diminishing sensitivity.  The details for the CFD and MN simulations will now be 

discussed.  

3.3.1 Computational Fluid Dynamics 

 The computational domain used for the CFD simulations is based on the gas cell of the 

MKS 2030 HS FTIR, which has a volume of approximately 200 mL and inlet/outlet pipes with 

diameters of 3/8”.  Unsteady, compressible, RNG k-ε turbulence simulations are performed using 

Converge CFD software.  The RNG k-ε model is chosen over the standard k-ε model, as the RNG 

k-ε outperforms the standard model for cases involving impingement [96], which occurs within 

the gas cell on the opposite wall from the inlet.  A temperature of 191°C is imposed at the domain 

boundaries and inlet, since the MKS 2030 is controlled to maintain this temperature.  Near-

boundary velocity is calculated using the law of the wall.  Flow through the gas cell is induced 

through pressure boundary conditions set at the inlet and outlet.  For the 10 and 25 lpm cases, 

approximately 70,000 and 250,000 cells are used, respectively.  Grid refinement is applied within 

the inlet jet and near the boundaries of the gas cell and surrounding pipes to resolve composition 

and velocity gradients.  Mesh independence is verified by increasing the number of computational 

cells until gas cell tracer composition changed by no more than 1% at any time during the 

simulation.  To allow the inlet flow to adequately develop, 2 inches of the inlet pipe are included 

in the computational domain.  Results from an additional simulation with a 4-inch inlet pipe at a 

flow rate of 25 lpm suggest that 2 inches is an adequate length, as the total gas cell tracer 

composition changed no more than 1% at any time.  3D and 2D diagrams of the computational 

domain are shown in Figure 3-5. 
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Figure 3-5:  a) 3-D schematic of the FTIR gas cell used for CFD simulations.  b) Top-down slice 

of the CFD computational grid, colored according to tracer mass fraction.  The snapshot is taken 

0.15 seconds after tracer is introduced at the gas cell inlet for the 25 lpm case. 

3.3.2 Mixing Network 

 The MN model is a combination of plug-flow and well-mixed systems which collectively 

represent the FTIR gas cell.  This model is designed to provide a simple yet accurate portrayal of 

the gas cell mixing dynamics and their effect on total gas cell composition.  Ultimately, the MN 

calculates total gas cell composition for a given inlet composition profile and flow rate by 

summing the composition of each system normalized by its respective size.  Figure 3-6 shows the 

layout of the MN.  As shown, the model consists of a well-mixed system, followed by two plug-

flow systems in parallel.  An additional well-mixed system follows one of the plug-flow systems.  

The initial well-mixed system (1) represents an arbitrary volume immediately adjacent to the gas 

cell inlet.  As shown in Figure 3-5, a well-mixed system is appropriate here, since the inlet sample 
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quickly mixes with the surrounding sample, as indicated by the steep gradients in tracer 

composition near the inlet.  The plug-flow system (2) accounts for sample from the well-mixed 

system that “short-circuits” or exits the gas cell without thoroughly mixing with the remaining 

gas cell contents.  Mixing effects between system 1 and the remainder of the gas cell are 

modelled with an additional well-mixed system (4).  The preceding plug flow system (3) creates a 

time delay for when sample exits system 1 and mixes into system 4, which is necessary to prevent 

inlet sample from immediately exiting the gas cell. 

 

Figure 3-6:  MN model used to determine composition inside FTIR gas cell. 

 To achieve accurate total gas cell composition calculations by the MN for a given inlet 

composition profile, the masses and flow rates of each system are optimized.  Specifically, the 

optimized parameters are the masses occupied by systems 1-4 (𝑚1, 𝑚2, 𝑚3 and 𝑚4), and the 

mass flow rate which passes through system 2 (�̇�pf).  Optimization is achieved with a genetic 

algorithm (GA).  The GA optimizes these parameters based on total gas cell tracer composition 

profiles from CFD simulations.  Fitness for a given population of parameters is calculated by 

summing the absolute deviation of the total gas cell composition between the MN and CFD 

simulations for identical inlet composition profiles.  Training is performed with two inlet 

composition profiles: a step change from nitrogen to tracer, and a tracer “impulse”, where tracer 

is introduced at the inlet for 0.2 seconds.  Population sizes of 100 with an elitism replacement and 
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mutation rate of 0.03 and 0.04 are utilized in the GA, respectively.  2000 generations are 

performed.  The optimal parameters for each flow rate are given in Table 3-1. 

𝑉̇̇  (lpm) �̇�pf/�̇� 𝑚1/𝑚 𝑚2/𝑚 𝑚3/𝑚 𝑚4/𝑚 

10 0.512 0.168 0.107 0.237 0.488 

25 0.483 0.152 0.106 0.227 0.515 

Table 3-1:  Optimized system masses and plug-flow pathway flow rates for the MN model. 

3.4 Computational Validation 

 This section is outlined as follows.  First, results from CFD, MN and the well-mixed 

model simulations are presented.  Total gas cell composition for the step and impulse tracer 

profiles are compared for each simulation type.  Next, inlet tracer composition profiles estimated 

by the UKF for the step change profile are presented, demonstrating how the performance of the 

UKF varies with respect to measurement noise and inlet composition process noise.  Estimated 

inlet tracer composition profiles for step and sine wave profiles of various frequencies are then 

presented.  These results illustrate the limitations of the UKF in terms of accuracy and response 

time in detecting instantaneous and gradual composition changes.  Next, UKF estimations of 

synthetic NO emissions for the FTP driving cycle are presented.  The improvement in the 

estimation of instantaneous NO emitted from an engine compared to raw, unfiltered FTIR 

measurements for different measurement noise levels is demonstrated.  Finally, the NO emission 

estimations from the UKF are compared to estimations from the well-mixed model uncoupled 

from the UKF, illustrating the importance of using a filter for mitigating measurement noise 

effects. 
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3.4.1 Evaluation of Well-Mixed Model 

 For the UKF to perform well, the well-mixed model must accurately represent how total 

gas cell composition changes with respect to time for a given inlet composition profile.  To verify 

the fidelity of the well-mixed model, total gas cell composition calculations from the well-mixed 

model are compared to compositions calculated by CFD simulations for various inlet profiles and 

flow rates.  Figure 3-7 shows the calculated total gas cell composition for the step and impulse 

inlet tracer composition profiles for flow rates of 10 and 25 lpm.  There is reasonable agreement 

between the well-mixed model and the CFD results in every case.  The maximum percent error 

for both step profiles is about 11%, while the maximum error for the impulse case for 10 and 25 

lpm are about 16% and 14%, respectively.  Maximum discrepancy between the two models for 10 

and 25 lpm occur at about 300 and 100 milliseconds after the tracer is introduced, respectively, 

for both the impulse and step cases.  In every case, the well-mixed model under-estimates total 

gas cell composition early after the onset of the composition change.   

 Discrepancy between the two models is explained by the plug-flow-like behavior 

predicted from the CFD.  The well-mixed model assumes that sample entering the gas cell mixes 

instantaneously with the remaining contents, which causes some of the entering tracer to 

immediately escape the gas cell.  However, the CFD results indicate that a finite minimum 

residence time exists within the gas cell.  This phenomenon is apparent in the impulse cases in 

Figure 4, where the well-mixed model calculates a sharp decrease in tracer fraction immediately 

after the impulse completes, while the tracer fraction from the CFD plateaus briefly before 

decreasing.  Despite their differences early on, the two profiles fall back into alignment within 

400 milliseconds of the time of maximum discrepancy.  Since the well-mixed model initially 

under-predicts the magnitude of total gas cell composition changes, the UKF initially over-

estimates the magnitude of inlet composition changes.  However, since the well-mixed model 

quickly falls back into agreement with the CFD results after the transient, the overshoot of inlet 
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composition estimation is momentary.  Furthermore, the overshoot issue is mitigated by adding 

process noise to the well-mixed model in the processor, which damps the response of the 

Bayesian estimation to measurement changes.  As will be shown in the remainder of the chapter, 

the well-mixed model is sufficient for the UKF. 

 Also shown in Figure 3-7 is the total gas cell tracer composition calculated by the MN 

model.  The MN profile closely mirros that of the CFD in every case.  Discrepancies between the 

two profiles are imperceptible in the figure.  This shows that the MN model accurately calculates 

total gas cell composition and is suitable for generating synthetic FTIR data for a given emissions 

profile. 

 

Figure 3-7:  Calculated FTIR gas cell tracer composition for different inlet composition profiles 

and flow rates.  a-b) step profile, c-d) “impulse” profile. 
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3.4.2 Filtered Tracer Data 

 To explore the effects of process and measurement noise on the response of the UKF to 

FTIR measurement changes, synthetic FTIR data is generated from the CFD calculations for the 

10 lpm, step inlet profile case.  The measurements are produced by adding white Gaussian noise 

to the calculated total gas cell tracer composition at intervals of 200 ms, which is the 

measurement period of the MKS 2030 HS FTIR.  These synthetic measurements are processed 

with the UKF, which produced estimates for the inlet tracer composition.  Figure 3-8 shows the 

estimated inlet tracer composition for various inlet composition process noise (𝑤𝑍𝑖𝑛) and FTIR 

measurement noise (𝑣𝑍) values.  The inlet composition process noise term determines how 

readily the estimate for inlet composition is adjusted by the UKF.  A higher value makes inlet 

composition estimations more sensitive to changes in measured gas cell composition.  In this 

analysis, it is assumed that the measurement noise covariance is known, and the covariances of 

𝑹𝒗𝒗 in Eq. 3-22 are equal to the covariances of the Gaussian noise used to generate synthetic 

measurements.  Higher measurement noise results in the UKF estimations being less sensitive to 

measurement changes, since outlying measurements are more likely to be due to noise than true 

composition changes.  In Figure 3-8, the inlet composition process noise standard deviations are 

varied between three values – 0.02, 0.07 and 0.12.  Measurement noise standard deviations are 

varied between 0.01, 0.025 and 0.05.  Mass flow rate noise is assumed to have a standard 

deviation of 1% of the flow rate. 

 The previously discussed trends associated with changes in inlet composition process 

noise and FTIR measurement noise are apparent in Figure 3-8.  As the inlet composition process 

noise increases, the response time of the inlet composition estimations decreases.  This is 

apparent in parts d and g of the figure, where the estimated inlet composition reaches the actual 

inlet composition within 3 measurement periods (600 milliseconds) after the step change.  

However, excessive process noise variance results in a noisy estimated inlet composition profile, 
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as shown in g, as estimations become overly sensitive to measurement noise.  The effects of 

measurement noise are apparent when comparing the estimated inlet composition on a column-

by-column basis.  Plots toward the right correspond to cases with greater measurement noise.  As 

measurement noise increases, the lagging effect on the inlet composition estimations worsen.  

The case with the highest measurement and lowest process noise (c) results in an inlet 

composition estimation that deviates from the actual inlet composition further than the raw FTIR 

measurements.  A standard deviation of 7% of the range of inlet composition values provides a 

satisfactory combination of response time and stability, and is therefore used as the process noise 

for the remainder of the UKF response time analysis.   

 

Figure 3-8:  Inlet tracer composition estimations by the UKF for various process and 

measurement noise values.  �̇� = 10 lpm. 
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 To quantify the limits of the UKF in terms of response time, synthetic FTIR 

measurements are generated for step changes in inlet tracer composition at varying frequencies.  

These measurements are processed with the UKF, and the results are shown in Figure 3-9.  Parts 

a and c of the figure show estimated inlet tracer composition for a step wave with a frequency of 

1.25 Hz for flow rates of 10 and 25 lpm, respectively.  This frequency is half the highest 

frequency that can be accurately sampled by the FTIR – which measures at 5 Hz – according to 

the Nyquist theorem.  At this frequency, the UKF estimates a reasonably accurate profile for the 

inlet composition, although greater accuracy is achieved for the higher flow rate.  The reason 

better estimations are attained at higher flow rates is explained by the rate at which sample is 

replenished within the gas cell.  For example, at lower flow rates, less sample enters/exits the gas 

cell during a measurement period.  Therefore, substantial changes in inlet composition result in 

relatively modest changes in total gas cell composition/FTIR measurements.  Consequently, these 

modest changes in FTIR measurements can be of comparable magnitude as measurement noise, 

preventing the UKF from detecting the inlet composition changes.  Parts b and d of Figure 3-9 

show estimated inlet tracer composition for a step changes at the Nyquist limit (2.5 Hz) for flow 

rates of 10 and 25 lpm, respectively.  As shown, the overall measurement trend do not reflect the 

true changes in inlet composition.  Thus, the UKF estimations are also poor at the Nyquist limit 

regardless of flow rate.  These results illustrate that dramatic changes with duration less than 400 

milliseconds may not be accurately detected. 
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Figure 3-9:  Inlet tracer composition estimations by the UKF for inlet composition step wave 

profiles at various frequencies and various flow rates.  The standard deviation of the measurement 

noise (𝑣𝑍) is 0.01.  a) �̇� = 10 lpm, 𝑓 = 1.25 Hz; b) �̇� = 10 lpm, 𝑓 = 2.5 Hz; c) �̇� = 25 lpm, 𝑓 = 

1.25 Hz; d) �̇� = 25 lpm, 𝑓 = 2.5 Hz. 

 Thus far, only Bayesian estimation results for instantaneous changes in composition have 

been presented.  Since composition profiles are likely to contain gradual changes, the UKF is 

applied to synthetic data generated from sine wave tracer composition profiles with frequencies 

of 1.25 and 0.4 Hz.  The results are shown in Figure 3-10.  In all cases, the estimated inlet 

composition lags the actual inlet composition.  This lagging effect is due to the quasi-steady 

nature of the UKF.  Since the profile of the inlet composition between measurements is unknown, 

the UKF assumes that inlet composition remains constant during a measurement period and 

calculates its estimation accordingly.  The estimation lag is more pronounced for sine waves with 

higher frequency, since the inlet composition evolves more rapidly between measurements.  This 

can be seen by comparing the first column and second columns of plots in Figure 3-10, which 

have inlet composition frequencies of 1.25 Hz and 0.4 Hz, respectively.  Just as in the step wave 

cases, better estimations are achieved for higher flow rates, which can be seen by comparing the 
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plots on a row-by-row basis.  Despite the lag in estimated inlet composition, nearly every 

estimation is closer to the true inlet composition than the raw FTIR measurement.  Moreover, the 

overall profile of the estimated inlet composition resembles the actual inlet composition more 

closely than the profile of the FTIR measurements in every case. 

 

Figure 3-10:  Estimated inlet tracer composition for inlet composition sine wave profiles at 

various frequencies and various flow rates.  The standard deviation of the measurement noise 

(𝑣𝑍) is 0.01.  a) �̇� = 10 lpm, 𝑓 = 1.25 Hz; b) �̇� = 10 lpm, 𝑓 = 0.4 Hz; c) �̇� = 25 lpm, 𝑓 = 1.25 Hz; 

d) �̇� = 25 lpm, 𝑓 = 0.4 Hz. 

3.4.3 Filtered Synthetic Emissions Data 

 To evaluate how the UKF may perform when processing emissions data, synthetic NO 

emissions from the FTP driving cycle are generated using the emissions model from [95].  These 

synthetic NO measurements are then processed with the UKF, and the resulting NO estimations 

are compared with the true synthetic NO emissions at each measurement time.  The emissions 

model is calibrated to estimate emissions of a limited number of species given vehicle speed, 
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acceleration, and parameters (such as mass and drag coefficient).  The vehicle parameters used to 

produce the synthetic NO measurements are identical to the parameters used to generate the 

example data in [95].  MN simulations are conducted with the synthetic NO emissions data used 

as the gas cell inlet composition profile.  Synthetic FTIR measurements are produced by adding 

white Gaussian noise to the total gas cell NO composition calculated from the MN simulations.  It 

should be noted that although the MN model yields more accurate calculations of gas cell 

composition than the well-mixed model, the well-mixed model is still preferred as the state-

transition model for the UKF, since the system masses and pathway flow rates of the MN model 

are optimized for specific total flow rates and gas cell geometry of this work, are not likely not 

generally applicable to other FTIRs.  Another key point to be noted is that the UKF is equally 

applicable to all other measurable species (aside from non-stationarity and spectral noise effects, 

which can vary between species and are discussed in more detail in Chapters 4 and 5, 

respectively).  NO is selected arbitrarily, as the purpose of this analysis is to simply demonstrate 

how the UKF combats sample recirculation effects for more realistic emissions profiles.  This 

task can be accomplished with any of the species within the emissions model.  Inlet composition 

process noise covariance (Φ𝑍𝑖𝑛) is set as the covariance of NO emissions fluctuations between 

consecutive measurement times over the entire driving cycle. 

 Figures 3-11 and 3-12 show a snippet of the NO emissions profiles estimated by the UKF 

for sample flow rates of 10 and 25 lpm, respectively.  The snippet of the driving cycle from 20 to 

40 seconds is presented since it contains a combination of gradual and abrupt transients, as well 

as a steady-state portion.  Estimated NO emissions are presented for a range of measurement 

noise levels, since noise levels vary according to a wide range of factors such as the absorptivity, 

the quantity of the species of interest and the presence of interfering compounds [97].  The UKF 

generally improves the estimation of the simulated NO emissions compared to raw FTIR 

measurements, although this improvement becomes more modest as measurement noise 

increases.  As shown in the top subplots of both figures, when the standard deviation of the 
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measurement noise is 10 ppm, the estimated NO profile closely follows the actual profile and 

accurately captures transients.  However, for a measurement noise standard deviation of 80 ppm, 

the estimated inlet composition and raw measurements are of comparable resemblance to the 

actual NO profile, as shown in the bottom subplots.  The UKF provides greater improvement 

from raw measurements for the lower flow rate.  This is due to residence times within the gas cell 

being shorter at higher flow rates, reducing the lagging effect of historic emissions on the total 

gas cell composition.  In other words, measurements at higher flow rates have less room for 

improvement.  However, some improvement in NO estimation is still present at the higher flow 

rate case, especially for smaller measurement noise values. 

 

Figure 3-11:  Estimated NO emissions from an FTP driving cycle from 20 to 40 seconds for a 

FTIR flow rate of 10 lpm. 
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Figure 3-12:  Estimated NO emissions from an FTP driving cycle from 20 to 40 seconds for a 

FTIR flow rate of 25 lpm. 

 The improvement in estimated emissions from the UKF compared to raw FTIR 

measurements is quantified in terms of instantaneous and integrated emissions in Figures 3-13 

and 3-14, respectively.  As shown Figure 3-13, the UKF improves the estimation of instantaneous 

NO emissions by more than 40% on average compared to raw FTIR measurements for the lowest 

measurement noise presented.  As measurement noise increases, this improvement declines.  At a 

measurement noise standard deviation 80 ppm, the UKF provides modest improvement in 

instantaneous emission estimates for either flow rate.  Decreased performance of the UKF for 

high measurement noise values is explained by the contribution of noise to measurement error, 

and the fact that measurement noise desensitizes the NO emission estimates to measurement 
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changes.  At measurement noise standard deviations as high as 80 ppm for these emissions 

profiles, the contributions of noise to measurement changes regularly exceed that of true gas cell 

composition changes, completely masking the true gas cell composition profile.  Another 

significant contributor to the average instantaneous NO estimation error is the noisiness of the 

estimations during steady-state.  In fact, the raw FTIR measurements often resemble the actual 

NO emissions during steady-state more closely than the UKF estimations for noise standard 

deviation of 10 and 20 ppm.  The noisiness of the estimations during steady-state is due to slight 

oversensitivity to measurement noise, which is ultimately caused by high inlet composition 

process noise.  However, high process noise is necessary since it permits NO estimations to be 

properly adjusted during steep transients.  Further improvement in performance of the UKF could 

be achieved by using an adaptive process noise covariance matrix, where process noise would 

increase during transients and decrease during steady-state [98], [99].  This would allow the UKF 

to readily adjust emissions estimations during abrupt transients, while providing stability for 

gradually evolving or steady emissions.   

 Figure 3-14 shows the error in integrated NO emissions with respect to time over the 

entire driving cycle from the UKF and raw FTIR measurement.  Again, the UKF yields 

significantly improved integrated emissions calculations compared to raw data, especially for low 

measurement noise levels.  However, the integrated emissions calculated from FTIR 

measurements are also accurate, with the greatest percent error being less than 3%.  The lower 

errors for integrated emissions compared to instantaneous emissions are due to the cancellation of 

positive and negative errors in instantaneous emissions during integration. 
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Figure 3-13:  Average absolute percent error of instantaneous NO emissions calculated from 

estimations from the UKF (red) and raw synthetic FTIR measurements (black) for different flow 

rates and measurement noise levels. 

 

Figure 3-14:  Percent error of integrated NO emissions calculated from estimations from the UKF 

(red) and raw synthetic FTIR measurements (black) for different flow rates and measurement 

noise levels. 
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 To prove the necessity of a Bayesian filter for accurately estimating emissions, NO 

estimations calculated from the UKF are compared to estimations from the well-mixed model 

uncoupled from a filter for the FTP driving cycle.  The stand-alone well-mixed model estimates 

the inlet composition solely by deducing the inlet composition from measurement changes and 

takes no account of measurement noise.  Comparisons of estimated NO composition between the 

two models for two different flow rates and measurement noise values are shown in Figure 3-15.  

The stand-alone well-mixed model yields noisy estimations which oscillate above and below the 

true NO emissions, although the degree of estimation noise depends on flow rate and 

measurement noise.  Emissions estimations become noisier as measurement noise increases and 

flow rate decreases.  For the 10 lpm, 40 ppm noise standard deviation case, emissions estimations 

are chaotic and contain many erroneous oscillations that are not present in the true emissions 

profile.  By comparison, the UKF and stand-alone well-mixed model perform similarly for the 25 

lpm, 20 ppm case, although the stand-alone model still produces a few erroneous spikes, which 

are very apparent during the steady-state.  Overall, it is clear that the Bayesian filter becomes 

more impactful as measurement noise increases and flow rate decreases. 
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Figure 3-15:  Estimated NO emissions from an FTP driving cycle from 20 to 40 seconds from the 

UKF and the well-mixed model uncoupled from a filter for various noise levels and FTIR flow 

rates. 

 To quantify the performance differences between the UKF and the stand-alone well-

mixed model, errors in instantaneous and integrated NO emissions from each model are 

presented.  Figure 3-16 shows the average error in instantaneous NO emissions for the entire FTP 

driving cycle for different flow rates and measurement noise values.  As expected given the 

results in Figure 3-15, errors in instantaneous NO emissions are significantly greater for the 

stand-alone well-mixed model compared to the UKF for a flow rate of 10 lpm.  For noise 

standard deviations of 20 and 40 ppm, the average errors of the uncoupled well-mixed model 

calculations are nearly double and triple the errors of the UKF calculations, respectively.  At the 
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higher flow rate, performance improvements by the UKF over the stand-alone well-mixed model 

are less significant.  For the 25 lpm, 20 ppm noise standard deviation case, the UKF achieves a 

mere 20% relative improvement over the stand-alone well-mixed model, and the error of the 

stand-alone model itself is already low at 8%.  Again, the favorable results at higher flow rates 

are due to short residence times within the gas cell, which makes inlet composition estimates less 

sensitive to measurement noise.  However, it should be noted that the lagging effect becomes 

more impactful as the frequencies of inlet composition oscillations increase.  For a more erratic 

emissions profile with oscillation durations that rival gas cell residence times, the Bayesian filter 

would become more essential.  It should be reiterated that there is an upper limit on the allowable 

sample flow rates of FTIR measurements due to noise and pressure effects.  The purpose of 

presenting results for higher flow rates is to demonstrate the benefit of maximizing flow rate up 

until the introduction of these additional sources of error.   

 Figure 3-17 shows the error in integrated emissions from the UKF and the stand-alone 

well-mixed model.  Interestingly, the integrated emissions from the stand-alone well-mixed 

model are more accurate in every case, despite the instantaneous emissions estimations from the 

stand-alone model being consistently worse than those from the UKF.  Again, lower integrated 

emissions errors compared to instantaneous errors are due to the cancellation of positive and 

negative errors during the integration process.  The superiority of the integrated emissions from 

the stand-alone model is attributed to the fact that its estimations contain the unaltered effects of 

measurement noise.  Since mean measurement noise approaches zero over many measurements, 

noise effects are more efficiently cancelled over integration of the entire driving cycle.  

Conversely, the UKF filters noise effects in a complicated way that may introduce biases that 

result in non-zero error means.  Another possible culprit for this trend is error introduced from 

filter lag, where emerges due to the quasi-steady model.  Nevertheless, the UKF substantially 

improves instantaneous emissions estimations, while errors in integrated emissions remain low 

for both the UKF and stand-alone well-mixed model. 
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Figure 3-16:  Average percent error of instantaneous NO emissions calculated from estimations 

from the UKF (red) and the well-mixed model uncoupled from a filter (green) for different flow 

rates and measurement noise levels. 

 

Figure 3-17:  Percent error of integrated NO emissions calculated from estimations from the UKF 

(red) and the well-mixed model uncoupled from a filter (green) for different flow rates and 

measurement noise levels. 
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3.5 Chapter Summary 

 In this chapter, a UKF is developed for processing FTIR measurements to obtain accurate 

estimations of instantaneous engine exhaust composition during transients.  The UKF addresses 

the biasing effects of sample recirculation by utilizing a well-mixed model, as well as estimated 

measurement noise and emissions fluctuation statistics to infer FTIR gas cell inlet composition 

from consecutive measurement changes.  To validate the UKF and explore its performance 

limitations, synthetic FTIR measurements are generated for transient tracer gas flow sequences 

and simulated NO engine exhaust data from the FTP drive cycle.  These synthetic measurements 

are processed by the UKF, which is shown to yield improved estimations of instantaneous 

composition compared to the raw, unfiltered FTIR measurements, although the degree of 

improvement depends on the magnitude of measurement noise, sample flow rate, and the 

magnitude and frequency of emissions oscillations and trajectory changes.  For measurement 

noise standard deviations of 10, 20, 40 and 80 ppm, the UKF achieves improvements in estimated 

instantaneous NO emissions of 39.6%, 21.1%, 6.3% and 4.1%, respectively, compared to raw 

FTIR measurements for a sample flow rate of 10 lpm.  For a sample flow rate of 25 lpm, 

improvements of 38.4%, 18.9%, 4.9% and 6.2% are respectively achieved by the UKF.   

 The computational results presented in this chapter show promise for the Bayesian 

approach for combating residence time effects to improve engine emissions estimations from 

FTIR measurements during transients.  However, for the UKF to yield accurate results in an 

experimental setting, it must also address biasing effects due to signal non-stationarity.  Signal 

non-stationarity refers to the evolution of spectral power of the modulated IR beam during a FTIR 

measurement due to evolving concentrations within the FTIR gas cell.  The subsequent chapter is 

devoted to describing the stationarity effects on FTIR measurements in more detail, as well as the 

augmentation of the UKF developed in this chapter to account for these effects.  Experimental 

validation of the augmented UKF is also presented. 
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CHAPTER 4 EXPERIMENTAL VALIDATION OF BAYESIAN ESTIMATOR 

 The work presented in this chapter addresses the biasing effects of signal non-stationarity 

that are shown to be present during FTIR measurements of chemically evolving samples.  Such 

effects must be addressed and factored within the UKF to achieve reasonable inlet composition 

estimations in experimental applications.  Non-stationarity biasing effects arise from the fact that 

in FTIR spectroscopy, an interferogram is Fourier transformed to estimate spectral IR intensity, 

which is indicative of chemical composition.  While reliable when spectral intensity (and 

therefore composition) is constant, the Fourier transform is biased when spectral intensity is non-

stationary, resulting in calculated spectral intensities that are disproportionately weighted by 

intensity measurements at/near the centerburst location.  Coupled with the fact that the moving 

mirror alternates scanning directions, this biasing effect creates anomalous oscillations in FTIR 

measurements that obscure true composition profiles.  The modified UKF developed in this 

chapter accounts for non-stationarity biasing while estimating gas cell composition, mitigating 

these anomalous oscillations.  Experimental validation of the modified UKF is performed by 

flowing mixtures with transient, trace concentrations of acetylene and propylene through the 

FTIR, and filtering the resulting measurements with the UKF.  The UKF is shown to yield 

substantially improved estimations of transient inlet composition compared to raw, unfiltered 

FTIR measurements. 

 This chapter is outlined as follows.  First, the biasing effects of spectral IR non-

stationarity are discussed, including its causes and implications.  This is followed by a 

mathematical derivation of the Fourier transform of an interferogram generated by a uniformly 

broadened, linearly evolving spectral line.  Such a simplified spectrum and power profile 

provides an analytical solution to the Fourier transform, which is used to explore the relationships 

between centerburst weighting and factors such as scan length and spectral broadening width.  

This mathematical analysis is expanded to produce a numerical method for estimating the degree 
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of centerburst weighting for FTIR measurements of unique species.  Centerburst weighting values 

for various species are then calculated and incorporated into the modified UKF, which is 

augmented to deduce gas cell composition from biased FTIR measurements.  The procedure for 

experimentally validating the modified UKF is then described, and the chapter is concluded with 

a presentation and discussion of experimental results.   

4.1 Non-Stationarity Bias 

 FTIRs are typically calibrated to map spectral IR absorbance to gas cell concentration, 

which are directly related through the Beer-Lambert law [100].  Spectral absorbance of a sample 

is estimated by Fourier transforming the measured interferogram, and comparing the resulting IR 

intensity spectrum to a background spectrum from a non-absorbing sample.  While these 

calibrations are valid when composition is relatively steady and spectral absorbance is stationary, 

the relationships between the measured/calculated spectral absorbance and gas cell concentration 

become increasingly complicated for transient compositions.  The Fourier transform calculates a 

single IR intensity spectrum, whether or not the spectrum is truly stationary throughout an 

interferogram.  However, the spectral intensity of broadened absorption lines calculated by the 

Fourier Transform is NOT the average value of spectral intensity during a moving mirror scan, 

but rather is biased according to the profile of the spectral intensity with respect to optical path 

difference (OPD) of the split beams within the interferometer, which varies with moving mirror 

position.  To further complicate things, the direction of the moving mirror scan alternates each 

measurement period in many commercial FTIRs.   While this doubles the measurement frequency 

of the instrument (the repositioning of the moving mirror to the initial location is utilized as an 

additional scan), the profiles of moving mirror position relative to time are reversed for each 

measurement.  This convolutes the task of determining composition profiles with respect to time 

from FTIR measurements. 
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 To illustrate the complexities of FTIR measurements during transients, consider Figure 4-

1 which shows FTIR measurements during step changes in inlet tracer composition of acetylene 

and propylene from approximately 70 to 170 ppm at sample flow rates of 12 slpm.  Overall, the 

FTIR measurements follow approximately an exponential curve as expected.  However, the 

measurements exhibit period-dependent behavior, where the composition output alternates 

between significant and gradual rise.  These anomalous oscillations in the FTIR measurements 

cause the estimated inlet composition values from the UKF to oscillate as well, yielding severe 

errors.  Furthermore, the severity of these errors is greater for propylene than acetylene.  The 

cause of these oscillations is the alternation of the moving mirror direction for each measurement.  

Mathematical analysis, outlined in detail in the section 4.2, reveals that for a broadened spectral 

line with linearly changing ensemble-averaged intensity, the values calculated by the Fourier 

transform are heavily weighted by the intensity at/near the centerburst location.  Here, the 

centerburst location is defined as the initial moving mirror position where it is equidistant from 

the beamsplitter as the stationary mirror, resulting in complete constructive interference between 

the split beams and zero OPD.  The effect of centerburst weighting is illustrated in Figure 4-2.  

For a forward scan (from centerburst to maximum OPD), the centerburst occurs at the beginning 

of the scan.  Therefore, the measured composition for a forward scan is heavily weighted by the 

composition near the beginning of the scan for a transient measurement.  Conversely, the 

centerburst occurs at the end of the scan when the mirror moves in the backward direction, 

yielding a measured composition that is heavily weighted by the composition at the end of the 

scan.  This alternation between weighing composition measurements more heavily at the 

beginning and ends of mirror scans is what causes the oscillatory behavior.  Periods of gradual 

rise in the FTIR measurements in Figure 4-1 occur between successive backward/forward scans, 

since the centerburst position for these two scans occur closely together in time.  Conversely, 

periods of significant rise occur for successive forward/backward scans, due to the centerburst 

locations being separated by two full scans. 
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Figure 4-1:  Estimated tracer inlet composition from the modified (red) and original (black) UKF.  

The modified UKF accounts for period dependent behavior of FTIR measurements. 
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Figure 4-2:  Illustration of how scan direction affects FTIR output.  The upper figure shows an 

example IR spectrum with linearly increasing intensity (𝐼) at various wavenumbers (𝜈).  Different 

spectral intensities are calculated by the truncated, apodized Fourier transform depending if the 

mirror is scanning in the forward or backward direction.  The variables 𝑥 and 𝛿 represent OPD 

and maximum OPD, respectively. 
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4.2 Mathematical Model 

 To mathematically confirm that the period-dependent behavior observed in the FTIR 

measurements from Figure 4-1 are indeed due to centerburst weighting/alternating scan 

directions, Fourier transforms of synthetic interferograms generated from non-stationary 

frequency components are performed.  First, the Fourier transform of an interferogram from a 

single, uniformly broadened spectral line with linearly evolving power with respect to OPD is 

derived.  The resulting calculation for this spectrum and power profile is analytical, permitting the 

quantification of centerburst weighting with respect to maximum OPD and spectral broadening 

width.  This analysis serves as a basis for the subsequent derivation of a numerical method for 

estimating centerburst weighting for practical FTIR measurements.  The derivation utilizes true 

calibrated absorbance spectra for specific species, as opposed to a single, arbitrarily broadened 

spectral line.  Again, the resulting absorbance spectrum from the Fourier transform of an 

interferogram generated as absorbance evolves linearly is calculated.  The resulting spectrum is 

compared to the centerburst/maximum OPD spectra to determine centerburst weighting for each 

species. 

4.2.1 Uniformly Broadened Spectral Absorbance Line 

 To provide an analytical illustration of centerburst weighting in Fourier transforms of 

interferograms of non-stationary spectral components, the Fourier transform of a simple, uniform 

spectrum with linearly evolving power with respect to OPD is derived.  An illustration of this 

spectrum and its intensity profile is provided in Figure 4-3.   
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Figure 4-3:  A uniformly broadened spectral line with linearly diminishing amplitude with respect 

to OPD. 

 Intensity (𝐼) of the broadened spectral line takes on a value of 𝛽 at the centerburst 

location (0).  It evolves with a slope of 𝛾 with respect to OPD (𝑥), whose maximum value is 𝛿.  

Since only the region containing the broadened spectral line is of interest, intensities outside this 

region are assigned a value of zero to simplify analysis.  The interferogram that this transient, 

broadened spectral line would produce within an interferometer can be expressed as an inverse 

Fourier transform of the spectrum, given in Equation 4-1.  By neglecting phase errors within the 

interferogram, which are usually corrected for in commercial FTIRs [100], the inverse Fourier 

transform becomes equivalent to the inverse cosine transform. 

𝐼(𝑥) = (𝛽 + 𝛾𝑥) ∫ 𝛱𝜈1,𝜈2(𝜈) cos (2𝜋
∞

−∞
𝜈𝑥)𝑑𝜈 = (𝛽 + 𝛾𝑥)

sin(2𝜋𝜈2𝑥)−sin(2𝜋𝜈1𝑥)

2𝜋𝑥
        (4-1) 

𝛱 is the square function, which has a value of 1 when the wavenumber (𝜈) is between the two 

subscripted values and is zero otherwise. 

 Fundamentally, the Fourier transform is only valid for an interferogram generated from a 

spectrum with stationary power (constant 𝐼𝜈 throughout a scan).  This fact is intuitive, since the 

Fourier transform returns a single, time-invariant spectrum.  While the Fourier transform can still 
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be applied to interferograms generated from non-stationary spectrums, the calculated spectrum 

will be heavily influenced by profile of the spectral power with respect to OPD.  Consider the 

Fourier transform of the non-stationary interferogram given in Equation 4-1. 

𝐼𝜈(𝜈) =  2 ∫ (𝛽 + 𝛾𝑥) 
∞

0

sin(2𝜋𝜈2𝑥)−sin(2𝜋𝜈1𝑥)

2𝜋𝑥
cos (2𝜋𝜈𝑥)𝑑𝑥               (4-2) 

Here, the hat (^) symbol refers to the fact that this is a calculated/estimated spectrum, as the true 

spectrum is time-varying.  It is well known that the Fourier transform of the product of two 

functions is the convolution of the Fourier transform of each function.  Thus, the calculated 

spectrum can be simplified further. 

𝐼𝜈(𝜈) =   2 ∫ (𝛽 + 𝛾𝑥)
∞

0
cos(2𝜋𝜈𝑥)𝑑𝑥   ∗    2 ∫

sin(2𝜋𝜈2𝑥)−sin(2𝜋𝜈1𝑥)

2𝜋𝑥
cos (2𝜋𝜈𝑥)𝑑𝑥

∞

0
     (4-3) 

The right side term is recognized as the Fourier transform of an interferogram generated from a 

stationary unit square, and is therefore simply the unit square function.   For a FTIR 

measurement, only a finite maximum OPD can be achieved.  Therefore, the upper limit of the 

integral on the left side of Equation 4-3 is 𝛿 for a truncated interferogram.  Furthermore, 

commercial FTIRs multiply the interferogram by an apodization function to mitigate spectral 

artifacts that emerge due to truncation.  Apodization turns out to contribute significantly to the 

centerburst weighting effect, and is therefore included in this analysis.  The triangular apodization 

function (1 −
𝑥

𝛿
) is employed due to its abundance in the literature and similarity to more 

complicated functions that are used in commercial FTIRs, such as the Norton-Beer functions.  It 

should be noted that centerburst weighting is still prevalent in the absence of an apodization 

function.  The calculated spectrum from an FTIR interferogram generated by the broadened line 

in Figure 4-3 is given in Equation 4-4. 

𝐼𝜈(𝜈)  =  2∫ (𝛽 + 𝛾𝑥) (1 −
𝑥

𝛿
)

𝛿

0

cos(2𝜋𝜈𝑥)𝑑𝑥   ∗   𝛱𝜈1,𝜈2(𝜈) 

                = [
(𝛽−𝛾𝛿)−(𝛽+𝛾𝛿)cos(2𝜋𝜈𝛿)

𝛿𝜋2𝜈2
+
𝛾 sin(2𝜋𝜈𝛿)

𝛿𝜋3𝜈3
]  ∗   𝛱𝜈1,𝜈2(𝜈) 

    = ∫
(𝛽−𝛾𝛿)−(𝛽+𝛾𝛿)cos(2𝜋𝜈′𝛿)

𝛿𝜋2𝜈′2
+
𝛾 sin(2𝜋𝜈′𝛿)

𝛿𝜋3𝜈′3
 𝑑𝜈′

𝜈−𝜈1
𝜈−𝜈2

       (4-4) 
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The final equation for the Fourier transform of the non-stationary spectrum given in Figure 4-3 is 

obtained by evaluating the convolution in Equation 4-4. 

𝐼𝜈(𝜈) =
𝛽

𝜋
[𝑆𝑖(2𝜋𝛿(𝜈 − 𝜈1)) − 𝑆𝑖(2𝜋𝛿(𝜈 − 𝜈2))] +  

𝛽

2𝜋2𝛿
[
𝑐𝑜𝑠(2𝜋𝛿(𝜈−𝜈1))

𝜈−𝜈1
−
𝑐𝑜𝑠(2𝜋𝛿(𝜈−𝜈2))

𝜈−𝜈2
]            

+ 
𝛾𝛿−𝛽

2𝜋2𝛿
[
1

𝜈−𝜈1
−

1

𝜈−𝜈2
]  +  

𝛾

4𝜋3𝛿
[
𝑠𝑖𝑛(2𝜋𝛿(𝜈−𝜈2))

(𝜈−𝜈2)
2 −

𝑠𝑖𝑛(2𝜋𝛿(𝜈−𝜈1))

(𝜈−𝜈1)
2 ]         (4-5) 

 Here, 𝑆𝑖 represents the sine integral.  While complicated, this equation offers some 

interesting insight into the effects of Fourier transforming a truncated, non-stationary 

interferogram.  For example, it is well-known that truncation leads to “ringing”, which are mild, 

artificial oscillations that emerge outside of the absorption region.  Ringing is responsible for the 

sine and cosine terms in Equation 4-5.  Furthermore, this equation demonstrates that for an 

infinite scan length (𝛿=∞) and a stationary spectrum (𝛾=0), the true spectrum at the centerburst is 

returned.  This is expected, since infinite scan length and stationarity result in a fundamentally 

sound Fourier transform.  However, the equation also shows that as scan length becomes finite 

and decreases, the power returned by the Fourier transform diminishes.  Thus, the spectral power 

calculated from a FTIR is lower than the true spectral power of the infrared beam.  The most 

important piece of insight from Equation 4-5 with regards to non-stationarity is that as broadening 

increases, the calculated spectrum is more heavily weighted by the centerburst spectrum than the 

spectrum at the conclusion of the scan.  This is because as the spectral line broadens, the leading 

term becomes dominant and the impact of the final three terms – which contain the broadening 

width in their denominators – diminishes.  This leading term contains the spectral power at the 

centerburst (𝛽), but contains no information on the transient profile of the true spectral power (𝛾). 

4.2.1.1 Simulations 

 To illustrate the effects of truncation and non-stationarity on the spectrum calculated for a 

Fourier transform, interferograms from uniformly broadened, linearly evolving spectral lines are 

simulated and their resulting Fourier transforms are calculated using Equation 4-5.  The 
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parameters within Equation 4-5 are selected to resemble true FTIR spectra.  Simulations are 

performed for three different spectral widths (𝜈2-𝜈1): 0.5, 1 and 2 cm-1.  The center of the spectral 

region is selected to be 950 cm-1, as this is the center analysis region for acetylene in the 

composition algorithm of the FTIR utilized in this study.  The maximum OPD for the FTIR in 

this work is 2 cm.  Thus, this value is assigned to 𝛿.  Finally, the spectral power profile with 

respect to OPD is formulated so that the power within the spectral region has a value of 0.5 at the 

centerburst, and reaches a value of 1 at the conclusion of the scan.  This results in 𝛽 and 𝛾 being 

0.5 and 0.25 cm-1, respectively.  To compare the non-stationary and stationary cases and illustrate 

the effects of centerburst weighting, truncated Fourier transforms of stationary spectra with 

powers of to 𝛽 and 𝛽+ 𝛾𝛿 (which are equal to the powers at the centerburst and maximum OPD 

positions for the transient case, respectively) are also calculated.  These are represented by 𝐼𝜈,0 

and 𝐼𝜈,𝛿 and are given in Equations 4-6 and 4-7, respectively.  Throughout the remainder of this 

sub-section, the calculated spectral power for the non-stationary case will be referred to as 

𝐼𝜈,𝑡𝑟𝑎𝑛𝑠. 

𝐼𝜈,0(𝜈) =  2𝛽 ∫
sin(2𝜋𝜈2𝑥)−sin(2𝜋𝜈1𝑥)

2𝜋𝑥
cos (2𝜋𝜈𝑥)𝑑𝑥

𝛿

0
                     (4-6) 

𝐼𝜈,𝛿(𝜈) =  2(𝛽 + 𝛾𝛿) ∫
sin(2𝜋𝜈2𝑥)−sin(2𝜋𝜈1𝑥)

2𝜋𝑥
cos (2𝜋𝜈𝑥)𝑑𝑥

𝛿

0
                (4-7) 

The calculated spectra for each case are shown in Figure 4-4. 

 The insights from Equation 4-5 are apparent in the figure.  A truncated maximum OPD of 

2 cm results in calculated powers of roughly 95% and 50% of the true values at 950 cm-1 for the 

stationary cases for spectral widths of 2 and 0.5 cm-1, respectively.  These relative reductions in 

power apply to both 𝐼𝜈,0 and 𝐼𝜈,𝛿.  For the narrow spectral width case, the calculated power is 

reduced substantially, demonstrating that truncation inhibits the detection of narrow spectral 

peaks.  The calculated spectra for the non-stationary cases resemble that of 𝐼𝜈,0, especially for the 

broader spectra.  For the widest spectral width case (2 cm-1), the calculated power at 950 cm-1 for 
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𝐼𝜈,𝑡𝑟𝑎𝑛𝑠 is 0.5.  Comparing this value to the calculated power for 𝐼𝜈,0 (0.475) and 𝐼𝜈,𝛿 (0.95) 

illustrates that the calculated spectrum for non-stationary cases is more significantly influenced 

by its power at/near the beginning of a scan.  The calculated power at 950 cm-1 for 𝐼𝜈,𝑡𝑟𝑎𝑛𝑠 only 

reaches approximately 5% of the difference between the 𝐼𝜈,0 and 𝐼𝜈,𝛿 at this spectral position, 

indicating a 95% centerburst weighting.  For the 0.5 cm-1 case, the centerburst weighting is milder 

with a value of approximately 68%.  Nevertheless, centerburst weighting is present for each 

profile and in no case is the calculated spectra equal to the average power (considering the effects 

of truncation) during a scan as is often implicitly assumed in analysis of FTIR measurements. 

 

Figure 4-4:  An illustration of centerburst weighting using simulated uniformly broadened 

spectral lines of varying widths with linearly diminishing amplitudes.  Calculated spectral 

intensity from the truncated, apodized Fourier transform for the linearly diminishing cases 

(𝐼𝜈,𝑡𝑟𝑎𝑛𝑠) more closely resemble the calculated spectra at the centerburst (𝐼𝜈,0) than that at 

maximum OPD (𝐼𝜈,𝛿), especially for highly broadened spectra.  For the results above, 𝛿 = 2 cm, 𝛽 

= 0.5 and 𝛾 = 0.25 cm-1. 

 The analysis presented in this sub-section contains important implications for the 

interpretation of FTIR spectra from engine exhaust measurements during transients.  First, it 
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provides a mathematical explanation for the bias observed in the FTIR measurements of transient 

quantities of acetylene and propylene and demonstrates how standard mapping techniques, which 

assume a stationary signal and a quasi-steady gas cell composition, can produce erroneous 

emissions profiles.  On a positive side, these results also imply that if the absorbance/composition 

transients follow an approximately linear profile with respect to OPD (or some other known 

transient profile), then the effect of centerburst weighting can ultimately be taken into account to 

deduce the true spectrum (and therefore true composition) from biased FTIR measurements.  

Thus, the effects of centerburst weighting can be incorporated into the measurement model in the 

UKF, which relates a measured value to a corresponding state value (which is the gas cell species 

composition in our case).  This technique is built upon the idea that the true composition profile 

follows a linear trend more closely than a stationary, or zero-order trend.  Furthermore, no 

additional error is introduced if a measurement is indeed stationary case, since the spectral 

intensity slope with respect to OPD becomes zero and the Fourier transform is reduced to its 

fundamental form.  However, Equation 4-5 also indicates that the degree of centerburst weighting 

is unique to a spectrum, as greater broadening results in greater centerburst weighting.  The 

shapes of absorption spectra vary considerably between species and even between spectral 

regions for a single species.  Furthermore, spectral lines broaden in a Lorentzian profile, not 

uniformly.  Thus, the ability of Equation 4-5 to predict the contributions of centerburst weighting 

in FTIR measurements is limited.  This issue is addressed in the following sub-section with the 

derivation of a new equation which estimates the magnitude of centerburst weighting for true 

FTIR measurements of a species using calibrated absorbance spectra for known, stationary 

compositions. 

4.2.2 Calibrated Absorbance Spectra 

 To determine how centerburst weighting impacts the measurements of absorbance spectra 

– and therefore species composition – in FTIR spectroscopy, a similar analysis to that of the 
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previous section is performed.  However, the centerburst weighting for linearly evolving 

absorbance values are calculated for actual calibration spectra from absorbing species, as opposed 

to an arbitrary, uniformly broadened spectrum.  In FTIR spectroscopy, calibrations are conducted 

to map measured spectral intensity within a specific absorbed spectral region – referred to as the 

analysis region –  to composition of a species of interest.  These calibrations are performed by 

introducing a sample with known composition into the FTIR gas cell and measuring the 

corresponding intensity/absorbance within the analysis region.  A key difference between this and 

the previous analysis is that the true spectrum is unknown, since calibrations are altered by the 

effects of truncation and apodization.  Consider the equation for the calibrated spectral intensity 

within a spectral analysis region 𝐼𝜈,𝑐𝑎𝑙 as it relates to the true interferogram for a particular 

apodization 𝐷 and composition, given in Equation 4-8. 

𝐼𝜈,𝑐𝑎𝑙(𝜈) =   2 ∫ 𝐼(𝑥)𝐷(𝑥) cos(2𝜋𝜈𝑥)𝑑𝑥
𝛿

0
        (4-8) 

 Now consider the case where the composition at the centerburst position of a FTIR scan 

is equal to the composition used in the calibration in Equation 4-8.  However, the spectral 

intensity evolves linearly with a relative slope of 𝛾 with respect to OPD (due to changing 

concentration of the absorbing species within the gas cell).  The spectral intensity that would be 

measured for this case is given in Equation 4-9. 

𝐼𝜈(𝜈) =   2 ∫ (1 + 𝛾𝑥)𝐼(𝑥)𝐷(𝑥) cos(2𝜋𝜈𝑥)𝑑𝑥
𝛿

0
                   (4-9) 

Strictly speaking, the interferogram 𝐼(𝑥) in the formula above refers only to the contribution of 

the spectral analysis region to the interferogram, since that is the only portion that is linearly 

evolving.  However, due to the linearity of the Fourier transform, this analysis still stands for a 

general interferogram.  Intensity from other spectral regions should only contribute to measured 

spectral intensity within those regions, aside from the contributions of ringing which are 

neglected in this analysis.  Also, Equation 4-9 assumes that each spectral component evolves with 

the same slope 𝛾. 
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 To deduce how the spectral intensity transient alters the final measured spectral intensity, 

it is advantageous to present Equation 4-9 in terms of the original calibration spectrum.  This is 

accomplished by rewriting the equation as the convolution of the transient profile with the 

original interferogram and apodization function.  The latter term in this convolution is the original 

calibration spectrum. 

𝐼𝜈(𝜈) = 2∫ (1 + 𝛾𝑥) cos(2𝜋𝜈𝑥)𝑑𝑥
𝛿

0
 ∗  2 ∫ 𝐼(𝑥)𝐷(𝑥) cos(2𝜋𝜈𝑥)𝑑𝑥

𝛿

0
      

= 2∫ (1 + 𝛾𝑥) cos(2𝜋𝜈𝑥)𝑑𝑥
𝛿

0
 ∗ 𝐼𝜈,𝑐𝑎𝑙(𝜈)                                                  (4-10) 

The preceding term can be evaluated analytically, leading to the final equation for measured 

spectral intensity for a linearly evolving spectrum in terms of a calibration spectrum. 

𝐼𝜈(𝜈) =   
1

𝜋𝜈
((1 + 𝛾𝛿) cos(2𝜋𝜈𝛿) +

𝛾𝑠𝑖𝑛(𝜋𝜈𝛿)2

𝜋𝜈
)  ∗ 𝐼𝜈,𝑐𝑎𝑙(𝜈) 

= ∫
1

𝜋(𝜈−𝜈′)
((1 + 𝛾𝛿) cos(2𝜋(𝜈 − 𝜈′)𝛿) +

𝛾𝑠𝑖𝑛(𝜋(𝜈−𝜈′)𝛿)2

𝜋(𝜈−𝜈′)
)

∞

−∞
𝐼𝜈,𝑐𝑎𝑙(𝜈′)𝑑𝜈′           (4-11) 

Before the above equation can be utilized to determine the degree of centerburst weighting for the 

FTIR measurement of a specific species, some caveats associated with FTIR spectroscopy must 

first be taken into account.   

 First, since FTIR absorption/intensity is nearly impossible to describe analytically, 

Equation 4-11 must be evaluated numerically.  Second, species mole fraction 𝑋 only indirectly 

impacts spectral intensity through its direct relationship with absorbance (𝐴𝜈) via the Beer-

Lambert law. 

𝐴𝜈(𝜈) =  𝑙𝑜𝑔 (
𝐼𝜈,𝑏𝑎𝑠𝑒

𝐼𝜈
) = 𝛼𝑒𝑓𝑓𝑋                              (4-12) 

Here, 𝛼𝑒𝑓𝑓 is an effective absorptivity that accounts for the pathlength of the IR beam and the 

volume of the gas cell.  Since the baseline spectral intensity 𝐼𝜈,𝑏𝑎𝑠𝑒 varies between FTIRs and 

may even change within a short timeframe for a single instrument due to degradation, calibrations 



75 

 

are performed in terms of absorbance.  Thus, to make this analysis generally applicable, Equation 

4-11 is transformed to absorbance space.   

�̂�𝜈 = ∫
1

𝜋(𝜈−𝜈′)
((1 + 𝛾𝐴𝛿) cos(2𝜋(𝜈 − 𝜈′)𝛿) +

𝛾𝐴𝑠𝑖𝑛(𝜋(𝜈−𝜈′)𝛿)
2

𝜋(𝜈−𝜈′)
)

∞

−∞
�̂�𝜈,𝑐𝑎𝑙(𝜈′)𝑑𝜈′       (4-13) 

Here, 𝛾𝐴 refers to the slope of spectral absorbance with respect to OPD, which replaces spectral 

intensity slope of Equation 4-11.  It should be mentioned that fundamentally, this transformation 

is only valid if the relationship between 𝐴𝜈 and 𝐼𝜈 is linear and the base intensity 𝐼𝜈,base is 

uniform.  However, at small levels and moderate changes of absorbance, the relationship between 

𝐴𝜈 and 𝐼𝜈 can be reasonably approximated as linear.  Also, base intensity is usually relatively 

uniform within typical spectral widths of analysis regions (~100 cm-1). 

  A value for the slope of the spectral absorbance (𝛾𝐴) must be selected for each species to 

apply Equation 4-13.  In this analysis, 𝛾𝐴 is selected so that the absorption spectrum at the 

conclusion of the scan (𝑥 = 𝛿) is equal to that of a second calibration 𝐴𝜈,𝑐𝑎𝑙,2.  This is 

accomplished with the following equation for 𝛾𝐴.  

𝛾𝐴 =   
𝐴𝜈,𝑐𝑎𝑙,2(𝜈)−�̂�𝜈,𝑐𝑎𝑙,1(𝜈)

𝐴𝜈,𝑐𝑎𝑙,1(𝜈)𝛿
             (4-14) 

It should be noted that although the absorbance calibrations are vectors, 𝛾𝐴 is assumed to be a 

scalar.  Said differently, it is assumed that the absorbance at each spectral position evolves with 

the same relative slope.  This is a reasonable assumption, since absorptivity is relatively constant 

with respect to absorbance, especially for moderate changes in absorbance.  However, slight 

differences between different spectral positions exist, and a weighted average at each spectral 

position is used to calculate 𝛾𝐴.  It should also be noted that although Equation 4-14 uses the 

calibration spectra - which are effected by apodization and truncation – to estimate the slope of 

the true absorbance evolution, the resulting value will still be accurate and represent the true slope 

as long as 𝛾𝐴 is indeed a scalar.  Proof of this postulation is provided in the Appendix under 4.2.2 

- Proof of Validity of Absorbance Evolution Slope Calculation of Equation 4-14. 
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 To finally estimate the magnitude of centerburst weighting on FTIR measurements of a 

given species during a linearly evolving case, Equation 4-13 is applied to simulate the measured 

spectrum.  This spectrum is fed to the algorithm within the FTIR software to calculate a 

corresponding composition, denoted as �̂�𝑐𝑎𝑙,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡.  The algorithm within the FTIR software is 

a modified version of Classical Least Squares, which selects the composition that achieves the 

minimal level of spectral errors with respect to calibrations.  �̂�𝑐𝑎𝑙,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 is compared to the 

compositions at the centerburst and maximum OPD positions (�̂�𝑐𝑎𝑙,1 and �̂�𝑐𝑎𝑙,2), which 

correspond to calibrated spectra �̂�𝜈,𝑐𝑎𝑙,1 and �̂�𝜈,𝑐𝑎𝑙,2.  The magnitude of centerburst weighting 𝑐𝑤 

is given in Equation 4-15.  

𝑐𝑤 =   
�̂�𝑐𝑎𝑙,2−�̂�𝑐𝑎𝑙,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡

�̂�𝑐𝑎𝑙,2−�̂�𝑐𝑎𝑙,1
               (4-15) 

 Centerburst weighting varies between values of 0.5 and 1.  For the former value, the 

calculated spectrum is equally influenced by the centerburst and maximum OPD spectra, and 

therefore yields a composition value directly in between the two calibrations.  The latter value 

corresponds to a case where the calculated transient spectrum closely resembles the initial 

calibration spectrum �̂�𝜈,𝑐𝑎𝑙,1, and is minimally influenced by the true spectral profile with respect 

to OPD.  An illustration for the process for determining the degree of centerburst weighting for 

each species is provided in Figure 4-5. 
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Figure 4-5:  An illustration of the process for determining the degree of centerburst weighting in 

FTIR measurements for a given species.  1) Identify two calibration absorbance spectra that 

correspond to known compositions.  2) Simulate the measurement of a linearly evolving 

absorbance spectrum that begins as spectrum 1 at the centerburst, and ends as spectrum 2 at the 

conclusion of a scan.  Estimate the slope of absorbance evolution with respect to OPD.  3) Apply 

numerical convolution (Equation 4-13) to calculate the estimated spectrum according to the 

Fourier transform for the transient case in step 2.  4) Convert the transient spectrum to a 

corresponding composition.  Compare the transient composition to that of the calibration spectra 

to determine centerburst weighting 𝑐𝑤. 
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 The process illustrated in Figure 4-5 is performed to determine the degree of centerburst 

weighting for each engine exhaust component within the gasoline/ethanol FTIR recipe used in 

this work.  This recipe is used within the modified Classical Least Squares algorithm to estimate 

compositions from the measured spectra.  Centerburst weights for each species are listed in Table 

4-1.  The degree of centerburst weighting varies substantially between species, with some species 

displaying complete centerburst weighting (cyclohexane, ethanol and isopentane) and nitrogen 

oxide displaying equal weighting between composition at the centerburst and maximum OPD.  

However, it should be noted that fundamentally, a centerburst weighting of 0.5 should only be 

achieved for an infinitesimally narrow absorption region.  While the absorption peaks of N2O are 

indeed relatively thin, the lower-than-expected value for centerburst weighting is likely due to the 

fact that absorptivity for N2O decreases as absorbance increases.  Thus, for a case where 

composition increases linearly with respect to OPD during a FTIR scan, the slope of the 

absorbance spectrum decreases as the scan progresses.  This contradicts the assumption in the 

formulation of Equation 4-13 that the evolution of the absorbance spectrum is linear, and leads to 

an overprediction of measured absorbance (and an underprediction of centerburst weighting).  

Future work in this area should address the effects of absorbance non-linearity displayed by some 

narrow absorbing species. 
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Species Centerburst Weight 

1,3 butadiene (C4H6) 0.99 

Acetaldehyde (C2H4O) 0.98 

Acetylene (C2H2) 0.74 

Ammonia (NH3) - Cal 1 0.89 

Ammonia (NH3) - Cal 2 0.75 

Benzene  (C6H6) 0.97 

Carbon Monoxide (CO) 0.73 

Carbon Dioxide (CO2) 0.71 

Cyclohexane (C6H12) 1.00 

Ethane (C2H6) 0.73 

Ethanol (C2H5OH) 1.00 

Ethylene (C2H4) 0.90 

Formaldehyde (CH2O) 0.83 

Water (H2O) 0.70 

Isobutylene (C4H8) 0.97 

Isopentane (C5H12) 1.00 

Methane (CH4) 0.81 

Methanol (CH3OH) 0.88 

MTBE (C5H12O) 0.98 

Nitric Oxide (NO) 0.68 

Nitrogen Dioxide (NO2) 0.59 

Nitrogen Oxide (N2O)  0.50 

Pentane (C5H12) 0.98 

Propylene (C3H6) 0.92 

Toluene (C7H8) 0.97 
Table 4-1:  List of calculated centerburst weights for each species within the gasoline/ethanol 

FTIR recipe used in this work. 

 As suggested by the analysis performed in Section 4.2.1, the degree of centerburst 

weighting appears correlated to the magnitude of spectral broadening within an absorbed region.  

To illustrate this point, Figure 4-6 displays the two stationary calibration spectra �̂�𝜈,𝑐𝑎𝑙,1 and 

�̂�𝜈,𝑐𝑎𝑙,2, as well as the calculated spectrum for the linearly evolving case �̂�𝜈,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 for 

acetylene and propylene, which have centerburst weighting values of 0.74 and 0.92, respectively.  
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The analysis spectra of acetylene contain numerous narrow peaks with widths less than 1 cm-1.  

Conversely, the spectra of propylene are characterized by approximately uniform absorbance 

spanning roughly 60 cm-1, with relatively narrow absorbance peaks on the ends of this uniform 

region.  For acetylene, the peak values of the narrow absorbing regions within �̂�𝜈,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 reach 

nearly halfway between the corresponding peaks for �̂�𝜈,𝑐𝑎𝑙,1 and �̂�𝜈,𝑐𝑎𝑙,2.  This supports the idea 

centerburst weighting is less pronounced for narrow peaks, and explains the moderate value 

calculated for acetylene.  Conversely, �̂�𝜈,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 for propylene closely resembles �̂�𝜈,𝑐𝑎𝑙,1, 

especially in the broad, uniform absorbance regions.  In fact, the differences between the two 

spectra are practically imperceptible aside from the two peaks near 910 and 990 cm-1, where the 

maximum values are slightly greater for �̂�𝜈,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 as expected.  Thus, propylene measurements 

contain significant centerburst weighting due to its predominantly broad absorption spectrum.  If 

not for the two relatively narrow absorbance peaks near 910 and 990 cm-1, the value for 

centerburst weighting would likely be very close to 1.  The fact that the two relatively narrow 

absorption peaks display less centerburst weighting than the remainder of propylene spectrum 

provides further support to the idea that centerburst weighting scales with broadening.  These 

results also corroborate the experimental differences in periodic bias observed in the measured 

acetylene and propylene compositions in Figure 4-1.  Propylene displays significantly greater 

centerburst weighting, as indicated by the minuscule measurement changes that occur every other 

period.  This is supported by its higher centerburst weighting calculation relative to acetylene. 
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Figure 4-6:  The calibration and calculated transient absorbance spectra used to determine the 

centerburst weighting (𝑐𝑤) for acetylene and propylene.  As predicted by Equation 4-5 and 

demonstrated in Figure 4-4, broad absorbance peaks are subject to greater centerburst weighting 

during transients (propylene), while narrow absorbance peaks are more heavily influenced by the 

absorbance history during a scan (acetylene). 

 Information about the degree of centerburst weighting for each species can be used to 

create a more accurate measurement model within the UKF.  The measurement model, which 

describes the relationship between measurements and system states, estimates the composition 

within a FTIR gas cell from a measured value.  Since FTIR measurements are biased during 
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transients due to non-stationarity, the measurement model must be updated to account for this 

bias to accurately deduce the gas cell composition.  The following section is devoted to 

introducing these modifications to the UKF. 

4.3 Modified UKF Sub-models 

 To account for the effects of centerburst weighting in FTIR measurements of sample with 

transient composition, the UKF state transition and measurement models are updated.  As proven 

extensively in the previous subsection, a FTIR measurement is a function of how the composition 

evolves during a mirror scan.  Assuming that the profile of absorbance/composition evolution 

with respect to OPD is linear, a FTIR measurement of a given species can be described as a 

function of the composition values at the centerburst and maximum OPD mirror positions.  This 

is analogous to �̂�𝑐𝑎𝑙,𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 from the previous subsection being a function of the initial and final 

calibration compositions (�̂�𝑐𝑎𝑙,1 and �̂�𝑐𝑎𝑙,2), which are present at the centerburst and maximum 

OPD, respectively.  As shown previously, this function is determined by the magnitude of 

centerburst weighting.  

 Assuming that measurements are reported at the conclusion of a scan, and that the 

subsequent scan begins immediately afterward, then the compositions at the beginning and end of 

a scan correspond to the previous and current measurement times, respectively.  In an analogy 

using the composition values from the analysis in the previous subsection, the gas cell has a 

composition of �̂�𝑐𝑎𝑙,1 at time 𝑡 − 1 (at the end of the previous scan/beginning of current scan), 

and a composition of �̂�𝑐𝑎𝑙,2 at time 𝑡 (at the end of the current scan).  Thus, the UKF state 

transition model is modified to include the previous inlet and total gas cell compositions (at 𝑡 −

1), and the measurement model is modified to include weighting from the previous composition. 



83 

 

4.3.1 State Transition Model 

 The modified state transition model is identical to that of Chapter 3 aside from the 

additions of inlet and gas cell composition at the previous time (�̂�𝑖𝑛,𝑡−1 and �̂�𝑐𝑒𝑙𝑙,𝑡−1, 

respectively).  Current inlet composition �̂�𝑖𝑛 remains modelled as steady, and gas cell 

composition remains described using the quasi-steady, well-mixed model.  �̂�𝑖𝑛,𝑡−1 and �̂�𝑐𝑒𝑙𝑙,𝑡−1 

are simply modelled using the previous values of inlet and total gas cell composition  (�̂�𝑖𝑛(𝑡 − 1) 

and �̂�𝑐𝑒𝑙𝑙(𝑡 − 1)), respectively, since the two quantities are identical by definition.  �̂�𝑐𝑒𝑙𝑙,𝑡−1 is 

included within the UKF models since, as shown previously, current FTIR measurements can be 

described as functions of the composition at both the previous and current times.  �̂�𝑖𝑛,𝑡−1 is also 

included, as it serves as an updated estimate for previous inlet composition that is more accurate 

than �̂�𝑖𝑛(𝑡 − 1) since it can be informed from both the previous and current measurements.  

Using �̂�𝑖𝑛,𝑡−1 to describe the emissions profile is especially important for species with substantial 

centerburst weighting during forward scans, since such measurements are largely weighted by 

previous composition values.  Thus, estimations of �̂�𝑖𝑛(𝑡) (and �̂�𝑐𝑒𝑙𝑙(𝑡)) during a forward scan 

will have low confidence (high variance) by themselves.  However, the additional update during 

the subsequent backward scan provides additional information about these states, reducing 

uncertainty.  The entire state transition model is given in Equation 4-16. 

𝒙(𝑡|𝑡 − 1) =

[
 
 
 
 
 
�̂�𝑖𝑛(𝑡|𝑡 − 1)

�̂�𝑖𝑛,𝑡−1(𝑡|𝑡 − 1)

�̂�𝑐𝑒𝑙𝑙(𝑡|𝑡 − 1)

�̂�𝑐𝑒𝑙𝑙,𝑡−1(𝑡|𝑡 − 1)

�̂̇�(𝑡|𝑡 − 1) ]
 
 
 
 
 

=

[
 
 
 
 
 
 

�̂�𝑖𝑛(𝑡 − 1|𝑡 − 1)

�̂�𝑖𝑛(𝑡 − 1|𝑡 − 1)

�̂�𝑖𝑛(𝑡 − 1|𝑡 − 1) (1 − 𝑒
−

∆𝑡

�̂�(𝑡−1|𝑡−1)) + �̂�𝑐𝑒𝑙𝑙(𝑡 − 1|𝑡 − 1)𝑒
−

∆𝑡

�̂�(𝑡−1|𝑡−1)

�̂�𝑐𝑒𝑙𝑙(𝑡 − 1|𝑡 − 1)

�̂̇�(𝑡 − 1|𝑡 − 1) ]
 
 
 
 
 
 

  (4-16) 

At first glance, it may appear that �̂�𝑖𝑛,𝑡−1 is unrelated to current or previous gas cell composition 

within the state transition model, and therefore may not be updated properly according to 

measurement changes.  However, the reader should be reminded that the UKF also calculates 

covariances between variables.  Since �̂�𝑖𝑛,𝑡−1 and �̂�𝑐𝑒𝑙𝑙,𝑡−1 are highly correlated, �̂�𝑖𝑛,𝑡−1 is 
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indeed updated according to updates in �̂�𝑐𝑒𝑙𝑙,𝑡−1, which are informed by both the current and 

previous FTIR measurements. 

4.3.2 Measurement Model 

 The measurement model within the UKF is updated to account for the effects of non-

stationarity/centerburst weighting.  In the modified measurement model, FTIR composition 

measurements are described as a function of �̂�𝑐𝑒𝑙𝑙,𝑡−1 and �̂�𝑐𝑒𝑙𝑙 and the centerburst weighting 

value for a given species provided in Table 4-1.  Since the relative time throughout a scan at 

which the moving mirror arrives at the centerburst position depends on scan direction, different 

measurement models are applied to forward and backward scans.  For a forward scan, the 

centerburst position is the initial position, and occurs approximately at the previous measurement 

time.  Thus, the centerburst weighting 𝒄 is applied to �̂�𝑐𝑒𝑙𝑙,𝑡−1, and the remaining weight to �̂�𝑐𝑒𝑙𝑙.  

Conversely, the centerburst position is reached at the end of a scan – when the current 

measurement is reported – for a backward scan.  Thus, the centerburst weighting is applied to the 

current composition �̂�𝑐𝑒𝑙𝑙 for a backward scan. The measurement model for mass flow rate 

remains the same as in Chapter 3.  The collective modified measurement models are shown in 

Equation 4-17. 

�̂�(𝑡|𝑡 − 1) =

[
 
 
 
{
[𝒄𝑤 ∙ 𝒁𝑐𝑒𝑙𝑙,𝑡−1(𝑡|𝑡 − 1) + (1 − 𝒄𝑤) ∙ 𝒁𝑐𝑒𝑙𝑙(𝑡|𝑡 − 1)] ∙

𝑀𝑊𝑚𝑖𝑥

𝑴𝑾
      forward scan  

[(1 − 𝒄𝑤) ∙ 𝒁𝑐𝑒𝑙𝑙,𝑡−1(𝑡|𝑡 − 1) + 𝒄𝑤 ∙ 𝒁𝑐𝑒𝑙𝑙(𝑡|𝑡 − 1)] ∙
𝑀𝑊𝑚𝑖𝑥

𝑴𝑾
     backward scan  

�̇�(𝑡|𝑡 − 1) ]
 
 
 

     (4-17) 

 The updated models above are utilized for the FTIR measurements of tracer 

hydrocarbons and engine emissions conducted in this work.  The remainder of this chapter is 

dedicated to experimentally validating these updated UKF sub-models to ensure that they yield 

accurate estimations of inlet composition.  It should be noted that scan direction is currently 

determined empirically, as filtering with the opposite measurement models produces obviously 

erroneous oscillations in the composition estimations that are easy to detect. 
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4.4 Experimental Validation 

 Experimental validation of the modified UKF presented in the previous section is 

performed by flowing known quantities of tracer gas with different transient profiles through the 

FTIR.  Two tracer gases are selected for experimental validation: acetylene and propylene.  These 

two gases are chosen due to their vastly different absorption spectrums, and therefore different 

magnitudes of centerburst weighting.  As shown in Figure 4-6 acetylene contains numerous 

narrow absorption peaks which yields a moderate degree of centerburst weighting in its 

measurements.  Conversely, the propylene spectrum contains significant broadening and uniform 

absorbance over a substantial portion of the spectrum, yielding significant centerburst weighting 

in propylene measurements.  Validating the modified UKF with two gases with centerburst 

weightings near the upper and lower limit increases the confidence that the UKF can be applied to 

a wide range of species.  These tracer gases are mixed with room air, which is pulled through the 

FTIR at a set flow rate.  Experiments are conducted at sample flow rates of 12 and 25 slpm.  The 

former flow rate is typical for FTIR measurements of engine exhaust in the literature.  However, 

residence times within the FTIR gas cell are shorter at higher flow rates, reducing historical 

effects and resulting in measurements that more accurately reflect true transient emissions 

profiles.  Experiments are conducted at the higher flow rate to demonstrate this benefit.  More 

information on the specific profiles investigated are presented in section 4.4.2.  Values of 100 

ppm and 0.25 slpm are used for inlet composition process noise variance (Φ𝒁𝑖𝑛) and mass flow 

rate process noise variance (Φ�̇�) in this analysis.  The former is chosen as a middle-ground value 

that is equally applicable to the significant and modest inlet composition fluctuations explored in 

this work.  Mass flow rate process noise variance is chosen from previous observations.  

Composition measurement noise variance is approximated by filling the gas cell with 

approximately 100 ppm of acetylene and propylene and taking continuous measurements over a 

3-minute span.  The measurement noise variance for each species is approximately 1.5 ppm.    
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4.4.1 Experimental Setup 

 Experimental validation of the UKF requires an architecture for controlling tracer flow 

and a FTIR spectrometer for measuring composition.  The FTIR utilized for this study is the 

MKS 2030-HS.  The MKS 2030-HS has a gas cell with a volume of approximately 200 mL and 

measures at a high frequency of 5 Hz, allowing transient composition profiles to be reasonably 

captured.  However, the extent to which transient profiles can be captured is limited by the factors 

previously outlined; namely residence time effects and non-stationarity of the intensity of the IR 

beam.  The MKS 2030-HS has a spectral resolution of 0.5 cm-1 and an IR pathlength of 5.11 

meters.  A low spectral resolution allows absorption lines in close proximity to be resolved, while 

the long pathlength permits low-level detectability.  The FTIR is equipped with a silicon carbide 

radiation source at 1200°C, a liquid nitrogen-cooled mercury cadmium telluride detector, and a 

helium neon laser for generating a reference interferogram.  A temperature of 191ºC is 

maintained within the FTIR gas cell and the upstream sample line with the aid of a controller.  

Temperature and pressure within the gas cell are measured and reported at a frequency of 5 Hz. 

 A diagram of the setup is shown in Figure 4-7.  The tracer gases chosen for these 

experiments are acetylene and propylene.  Tracer gas is introduced into the FTIR using MKS 

GM50A mass flow controllers (MFC) with a 0 to 40 sccm flow range.  The flow controllers are 

accurate to within 1% from 20% to 100% full scale and have a reported settling time of less than 

750 ms.  Flow rate commands are received by the MFCs from LABVIEW at approximately 50 

ms intervals.  The MFCs are connected to a manifold, which also draws in room air due to suction 

from a pump downstream of the FTIR.  Tracer gas/air is drawn into the FTIR, where the tracer 

mole fraction within the FTIR gas cell is measured.  Downstream of the FTIR is a valve, which is 

used to set the flowrate, followed by a MKS GM100A mass flow meter (MFM).  The MFM is 

capable of measuring flow rates from 2 slpm to 100 slpm, with 0.2% accuracy from 2 to 20 slpm, 

and 1% accuracy from 20 to 100 slpm.  Tracer mass fraction of the sample is calculated by 
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dividing the tracer flow rate from the MFCs by the total sample flow rate measured by the MFM.  

To directly compare estimated FTIR inlet composition from the UKF with the known 

composition from the MFC/MFM data, the time-lag between the introduction of tracer from the 

MFCs to the tracer reaching the FTIR must be considered.  This time-lag is estimated by dividing 

total volume of the line between the MFC and FTIR by the volume flow rate, corresponding to 

time-lags of approximately 0.5 and 0.25 seconds for flow rates of 12 and 25 slpm, respectively.   

 

Figure 4-7:  Experimental setup for UKF validation. 

4.4.2 Results 

 Presented in this subsection are experimental results for the validation of the modified 

UKF.  Estimated tracer composition from the UKF is compared to the known composition 

profiles.  It is shown that the UKF yields significant improvements over unfiltered FTIR 

measurements, which are susceptible to residence time and stationarity issues.  The UKF is 

validated over a wide range of transient profiles to ensure its robustness.  First, results for wave 

profiles at frequencies ranging from 0.75 to 1.5 Hz are presented.  Different frequencies are 

investigated to explore the relationship between filter performance and transient duration and to 

determine the duration limit at which a fluctuation in emissions can be adequately captured.  The 

amplitudes of these waves are varied from 10 to 100 ppm to explore the relationship between 

filter performance and magnitude of emissions fluctuations, and how measurement noise can 

mask fluctuations of smaller magnitude.  To simulate the irregularities of real-world emissions 
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profiles, experiments are conducted for spline tracer profiles, where the tracer set points are 

randomly selected from a distribution.  The results of these experiments demonstrate the ability of 

the UKF to predict complicated emissions profiles.  To explore the effects of duration and 

magnitude of emission fluctuations on estimates from the UKF, experiments are conducted for 

spline profiles with varying scales and time between set points, respectively.  More detail on the 

spline profiles is provided in Section 4.4.2.2.  Experiments for each tracer composition profile are 

conducted at flow rates of 12 and 25 slpm to investigate the effects of flow rate on estimation 

accuracy. 

 Although engine emissions profiles in real-world driving scenarios vary considerably 

according to engine type, fuel and driving cycle, the magnitudes of emissions fluctuations 

explored in this work resemble those of some engine studies found in the literature.   For 

example, Gierczak et al. measured VOC emissions from a flex-fuel vehicle during a FTP cold 

start, and found that acetaldehyde, ethanol and formaldehyde emissions varied from 0 to 

approximately 150, 100 and 10 ppm, respectively [41].  In an investigation of VOC emissions 

from a gasoline engine operating with different blends of alcohol during the NEDC driving cycle, 

propylene and ethanol emissions spiked on the order of 100 ppm during the first transient event, 

while formaldehyde, 1-3 butadiene, benzene and toluene spikes ranged between 30 and 70 ppm 

[101].  Acetaldehyde and formaldehyde emissions from a 4-stroke gasoline-powered motorcycle 

regularly fluctuated on the order of 100 ppm during a transient driving cycle in work by Penteado 

et al. [102].  The durations of emission fluctuations also vary substantially in the literature.  For 

example, measurements of total HC emissions from a GDI engine under the NEDC driving cycle 

using a fast response chemiluminescence detector showed fluctuations on the order of thousands 

of ppm with durations ranging from milliseconds to several seconds [103].  The experiments in 

this work cover an intermediate portion of this duration range, as the lowest duration at which a 

transient event can be measured is limited by the FTIR measurement frequency, which is 5 Hz.  

Furthermore, previous analysis demonstrated that inlet composition profiles that fluctuate at 
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frequencies greater than 1.25 Hz are inadequately captured at this measurement frequency, as 

demonstrated in Chapter 3.  This finding guided the selection of the transient profiles explored 

here. 

4.4.2.1 Wave Profiles 

 Shown in Figures 4-8 and 4-9 are results for wave profiles with frequencies ranging from 

0.75 to 1.5 Hz at a sample flow rate of 12 slpm for acetylene and propylene, respectively.  

Generally, the estimated inlet composition from the UKF follows the true composition more 

closely than unfiltered FTIR measurements for both species.  The unfiltered FTIR measurements 

fail to capture the extremes and lag the inlet composition profiles due to residence time effects.  

The UKF, however, leverages measurement changes and state/measurement models to accurately 

calculate changes in inlet composition.  In most cases, better estimations are obtained when the 

inlet profile has greater amplitudes and lower frequencies.  For example, comparing Figures 4-8a, 

e and i, which correspond to amplitudes of 100, 25 and 10 ppm for the lowest frequency 

acetylene cases, respectively, it is seen that as amplitude decreases more erroneous estimations 

appear.  Although accurate estimations of amplitude are attained in 6e, there are a few artifacts in 

the estimated profile, such as the sudden, slight increase in composition near 4.5 s when the true 

composition is at a trough.  At about 4.5 s in Figure 4-8i, the estimated inlet composition 

increases prematurely as the true composition is still at a trough.  These anomalous estimations 

occur because as amplitude decreases, the magnitude of measurement changes become 

comparable to that of the measurement noise, masking the true composition profile.  

Nevertheless, the UKF improves the estimations of inlet composition and provides more accurate 

estimations of the extremes of the profile, even for some of the 10 ppm cases.  It should be noted 

that the true inlet composition for the smaller amplitudes, especially the 10 ppm cases, appear 

relatively noisy.  This is due to resolution and settling time limitations of the mass flow 
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controllers that prevent accurate control for small set points changes and may contribute to some 

of the measurement/estimation errors seen for these cases.   

 As frequency increases beyond 0.75 Hz, the quality of the estimations from the UKF 

generally deteriorate and the peaks of the inlet composition profile are less accurately estimated.  

The fact that better estimations are obtained for lower frequencies is partly attributed to the 

relatively large residence times of sample within the gas cell, which causes the total gas cell 

composition (or FTIR measurements) to lag the inlet composition.  This lagging effect becomes 

more significant as inlet composition frequency increases, since the total gas cell composition 

profile has less time to catch up with inlet composition profile before it changes trajectory.  This 

is seen in Figure 4-8d and 4-9d, where the amplitudes of the measurement profiles are 

significantly less than that of the inlet composition profile for the 100 ppm, 1.5 Hz cases.  

However, it should be noted that lagging effects are less severe for the modified UKF, since 

previous inlet composition values are updated by current measurements.  The ability to estimate 

high frequency transients is also limited by the measurement frequency.  As the ratio between 

inlet composition and measurement frequency increases, the magnitude of sampling errors 

become greater.  Nevertheless, the UKF generally yields better estimations of the inlet 

composition profile than the raw measurements, even for the higher frequency cases. 

 All other factors being equal, the performance of the UKF with respect to species appears 

relatively consistent.  However, the effects of sampling errors on estimated inlet composition 

appear more prevalent for propylene compared to acetylene at high composition frequencies.  At 

a frequency of 1.5Hz, the propylene estimations/measurements display an interesting pattern 

where the composition profile alternates between being adequately and poorly captured at periods 

of approximately five seconds.  This tendency is clearly illustrated in Figure 4-9d, where the 

FTIR measurements are out of phase with the peaks of the composition profile for the first two 

seconds, resulting in a flat-lined estimated composition profile.  Afterwards, the measurement 

profile gradually realigns with the composition peaks, yielding improved estimations.  While 
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present for both species, these phase effects appear more regularly for propylene.  This may be 

due the elevated levels of centerburst weighting for propylene measurements, which decreases the 

amount of new information acquired about the composition profile during a forward scan (since 

forward scan measurements are heavily weighted by the previous composition value).  The 

reduction of the importance of forward scans effectively reduces measurement frequency, 

increasing the prevalence of sampling errors.  For comparison, complete centerburst weighting 

would effectively cut the measurement frequency in half, which pushes the oscillation frequency 

in the 1.5Hz profile above the Nyquist limit. 
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Figure 4-8:  Estimations from the UKF of acetylene inlet composition vs FTIR measurements. 

The frequencies and amplitudes of the transient composition profiles vary from 0.75 to 1.5 Hz, 

and 10 to 100 ppm, respectively. The sample flow rate is 12 slpm. 
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Figure 4-9:  Estimations from the UKF of propylene inlet composition vs FTIR measurements. 

The frequencies and amplitudes of the transient composition profiles vary from 0.75 to 1.5 Hz, 

and 10 to 100 ppm, respectively. The sample flow rate is 12 slpm. 
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 Figures 4-10 and 4-11 show data for wave inlet composition profiles for experiments 

conducted at a sample flow rate of 25 slpm for acetylene and propylene, respectively.  Many of 

the trends from the 12 slpm cases are also seen in these figures, namely that lower frequency and 

higher amplitude result in better estimations.  However, more accurate estimations of the 

amplitudes of the transient inlet composition profiles are generally obtained for the 25 slpm cases 

when compared with their counterparts in Figures 4-8 and 4-9.  This is due to residence time 

being reduced at higher flow rates.  With a lower residence time, old sample within the gas cell is 

displaced more quickly and the total gas cell composition profiles resemble the inlet composition 

profiles more closely.  This is seen by comparing the measurements in Figures 4-8d and 4-10d, 

which correspond to the 100 ppm, 1.5 Hz cases for acetylene.  For the higher flow rate case, the 

extremes of the measurement profile are closer to those of the inlet composition profile, which 

results in the extremes of the inlet composition profile to be more accurately calculated in 

general.  However, even at the higher flow rate, the effects of lagging are still apparent and 

measurement frequency limitations still apply.  This is especially true for the high frequency inlet 

composition cases.  Furthermore, sampling error effects for propylene remain exacerbated by 

elevated centerburst weighting values at the higher flow rate, as evidenced in Figures 4-11d and  

4-11h which display results for the 1.5Hz, 100 and 25 ppm cases, respectively.  Distinct regions 

of accurate estimations and aliasing are apparent in both figures, which are caused by the 

effective sampling frequency reduction from centerburst weighting. 
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Figure 4-10:  Estimations from the UKF of acetylene inlet composition vs FTIR measurements. 

The frequencies and amplitudes of the transient composition profiles vary from 0.75 to 1.5 Hz, 

and 10 to 100 ppm, respectively. The sample flow rate is 25 slpm. 
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Figure 4-11:  Estimations from the UKF of propylene inlet composition vs FTIR measurements. 

The frequencies and amplitudes of the transient composition profiles vary from 0.75 to 1.5 Hz, 

and 10 to 100 ppm, respectively. The sample flow rate is 25 slpm. 
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4.4.2.2 Spline Profiles 

 Emissions profiles from vehicles undergoing real-world driving cycles, which contain 

irregular periods of acceleration and deceleration, likely do not resemble to the wave profiles 

from the experiments presented in Figures 4-8 through 4-11.  To simulate more realistic 

emissions profiles, experiments are conducted for inlet composition spline profiles generated 

from randomly selected set points within a distribution.  Two sets of five spline profiles are used 

for these experiments, totaling 10 profiles.  In the two sets of profiles, set points are separated by 

0.4 and 1 s, respectively.  Profiles with distinct set point separations (𝑡𝑠) are used to investigate 

how performance of the UKF changes with respect to the duration of composition fluctuations.  

To ensure that the composition profile is relatively smooth and contains minimal steady-state 

portions, one interpolation point is used midway between set points.  This is especially necessary 

for the set of profiles where 𝑡𝑠 is 1 s, as this is less than the settling time of the mass flow 

controllers.  To avoid having two consecutive set points within the resolution limit of the flow 

controllers, a set point remains unchanged if its randomly selected value is within 1/3 of a 

standard deviation of the previous set point.  This ensures stability of the flow controller.  The 

spline profiles are presented in Figure 4-12.  Green and grey lines correspond to profiles where 𝑡𝑠 

is 0.4 and 1 s, respectively.  To investigate how the magnitude of emissions variations affect filter 

performance, two sets of experiments with different scales are conducted for each spline profile.  

The standard deviations of the set points (𝜎𝑍𝑖𝑛) for both experiments are 15 and 45 ppm, 

respectively.  Thus, inlet composition in the figure is expressed as the difference from the mean 

inlet composition in terms of standard deviations.  As in the wave profile cases, two sets of 

experiments are conducted for each profile/magnitude combination at sample flow rates of 12 and 

25 slpm, respectively. 
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Figure 4-12:  Transient inlet tracer composition spline profile set points expressed in terms of 

standard deviations from the mean. 

 Figures 4-13 and 4-14 shows results for inlet composition profile 1 of the 0.4 s interval 

cases for each inlet composition standard deviation and flow rate combination for acetylene and 

propylene, respectively.  In general, the estimated inlet composition from the UKF follows the 

true inlet composition profile more closely than the unfiltered FTIR measurements.  Similar 

trends as those found in wave profiles are also found in the spline profiles.  The peaks and 

troughs of the unfiltered FTIR measurements are more representative of that of the inlet 

composition profiles for the higher flow rate cases, due to decreased residence time.  As a result, 
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the peaks and troughs of the estimated inlet composition profiles for the high flow rate cases are 

more accurate as well.  This is apparent, for example, when comparing estimations of the first 

peak from Figures 4-13c and 4-13d, which correspond to the 12 slpm and 25 slpm cases where 

𝜎𝑍𝑖𝑛 is 45 ppm for acetylene as the tracer gas.  The estimation in the low flow rate case reaches 

only about 70% of the true apex, while the high flow rate estimation reaches within a few percent.  

Qualitatively, fewer anomalous oscillations in estimated inlet composition appear for the cases 

with higher flow rates and magnitudes of inlet composition changes.   This is seen when 

comparing Figure 4-13a (the 15 ppm, 12 slpm case) with the remaining cases in the figure.  

Measurement noise is ultimately responsible for these oscillations.  Cases with lower flow 

rates/composition fluctuations are more susceptible to measurement noise effects since the ratios 

between measurement changes and noise are lower.  Estimations of propylene composition 

appear slightly qualitatively worse.  For example, when comparing Figure 4-13a with 4-14a (the 

15 ppm, 12 slpm cases), it is seen that the estimated inlet composition profile fails to capture 

some of the peaks.  Again, this is likely due to effective measurement frequency reduction due to 

centerburst weighting.  Nevertheless, the UKF improves estimated composition for both species. 

 Shown in Figures 4-15 and 4-16 are results for inlet composition profile 1 of the cases 

where 𝑡𝑠 is 1 s for acetylene and propylene, respectively.  Many of the same observations from 

the spline cases with lower duration between set points can be discerned from the data in Figures 

4-15 and 4-16.  Peaks and troughs are more accurately captured in the high flow rate cases and 

the effects of measurement noise are appreciable for the 15 ppm, 12 slpm case.  The key 

difference between the results from the two sets of profiles is that the lag between inlet 

composition and FTIR measurement profiles is less significant for the 1 s interval cases, resulting 

in more accurate overall estimations for inlet composition.  Since the inlet composition changes 

trajectory less frequently for these cases, the total gas cell composition/FTIR measurements have 

more time to respond to inlet composition transients.  Furthermore, differences in estimation 

accuracy between acetylene and propylene are less discernable at the slower inlet composition 
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frequency, due to reduced ratios of inlet composition to effective measurement frequency which 

weaken the aliasing effect of high centerburst weighting.  

 

Figure 4-13:  Estimations from the UKF of acetylene inlet composition vs FTIR measurements 

for the first 12 s of spline profile 1 of the 𝑡𝑠 = 0.4 s set. Each window presents results for distinct 

values of �̇� and 𝜎𝑍𝑖𝑛. 
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Figure 4-14:  Estimations from the UKF of propylene inlet composition vs FTIR measurements 

for the first 12 s of spline profile 1 of the 𝑡𝑠 = 0.4 s set. Each window presents results for distinct 

values of �̇� and 𝜎𝑍𝑖𝑛. 
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Figure 4-15:  Estimations from the UKF of acetylene inlet composition vs FTIR measurements 

for the first 12 s of spline profile 1 of the 𝑡𝑠 = 1 s set. Each window presents results for distinct 

values of �̇� and 𝜎𝑍𝑖𝑛. 
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Figure 4-16:  Estimations from the UKF of propylene inlet composition vs FTIR measurements 

for the first 12 s of spline profile 1 of the 𝑡𝑠 = 1 s set. Each window presents results for distinct 

values of �̇� and 𝜎𝑍𝑖𝑛. 

 To quantify the performance of the UKF for the spline inlet composition profiles and 

support some of the qualitative observations made in previous paragraphs, data from the spline 

experiments is consolidated according to flow rate, inlet composition magnitude and duration 

between set points.  These data are presented in Figure 4-17, which shows the average absolute 
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error in estimated inlet composition over all experiments for each category for acetylene and 

propylene as tracer gases.  Average absolute differences between FTIR measurements and true 

inlet composition is also presented, which serves as a benchmark to which inlet composition 

estimations are compared.  The UKF significantly improves the estimation of the transient inlet 

composition profiles compared to the raw FTIR measurements in every case for both acetylene 

and propylene.   For the acetylene cases, a maximum relative improvement of 68% is achieved 

for the case where �̇� = 12 slpm, 𝜎𝑍𝑖𝑛 = 45 ppm and 𝑡𝑠 = 1 s, while the case with minimum 

improvement is the �̇� = 25 slpm, 𝜎𝑍𝑖𝑛 = 15 ppm and 𝑡𝑠 = 1 s case at 50%.  Propylene shares the 

same case of maximum relative improvement as acetylene, whose value is 65%, while the case 

with minimum improvement is the �̇� = 12 slpm, 𝜎𝑍𝑖𝑛 = 15 ppm and 𝑡𝑠 = 0.4 s case at 32%.  

Relative improvements by the UKF for the experimental results generally exceed those of the 

synthetic FTIR measurements presented in Chapter 3.  This is partially due to the modified UKF 

using current measurements to inform and update previous inlet composition estimations, which 

mitigates the lagging effect by considering the inlet composition trajectory.  Also, inlet 

composition fluctuation frequencies for the experimental results generally exceed those of the 

synthetic results, resulting in greater overall measurement error and therefore more opportunity 

for improvement by the UKF. 

 Figure 4-17 also illustrates UKF performance trends with respect to the various 

categories.  Lower measurement and estimation errors are achieved for the transient profiles with 

a 𝑡𝑠 value of 1 s compared to that of 0.4 s.  The average deviation between FTIR measurements 

and true inlet composition values is 11.01 and 14.65 ppm for 𝑡𝑠 values of 1 and 0.4 s, 

respectively.  For transient profiles with fluctuations of shorter duration, FTIR measurements 

have less time to respond to these fluctuations which leads to estimations with greater error.  The 

UKF is also more effective for cases where inlet composition fluctuations are of greater 

magnitude.  On average, the UKF improves the estimated composition profile by 50% and 59% 
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for the cases where 𝜎𝑍𝑖𝑛 is 15 and 45 ppm, respectively.  This is expected, since measurement 

noise is more comparable to the magnitude of FTIR measurement fluctuations for the 15 ppm 

cases, resulting in greater masking of the true composition profile.  Increasing flow rate from 12 

to 25 slpm decreases measurement and estimation errors by 16% and 17% on average, 

respectively.  At higher flow rates, residence times within the gas cell are shortened, reducing the 

lagging effect and resulting in measurements and estimations that more accurately reflect the true 

inlet composition.   

 Perhaps the most interesting tendency emerges when comparing between results for 

acetylene and propylene.  For the 𝑡𝑠 = 0.4 s cases, the UKF consistently achieves lower relative 

improvements for propylene.  However, estimation improvements between species are similar for 

the 𝑡𝑠 = 1 s cases.  The average improvement percentages by the UKF for acetylene and 

propylene over all 𝑡𝑠 = 0.4 s cases are 57% and 47%, respectively.  By comparison, these 

respective improvements are 57% and 55% for 𝑡𝑠 = 1 s.  This performance decline for propylene 

at shorter composition trajectory durations is likely due to increased levels of effective aliasing 

due to centerburst weighting.  Centerburst weighting – which is more substantial for propylene 

measurements – reduces the amount of new information acquired during a forward scan, since the 

resulting measurement is highly correlated to the composition acquired during the previous 

backward scan.  For absolute centerburst weighting, the effective Nyquist frequency is reduced to 

1.25 Hz.  This frequency exceeds that of the composition fluctuations during the 𝑡𝑠 = 1 s cases 

but not the 𝑡𝑠 = 0.4 s cases, explaining the slight degradation in estimation accuracy for the latter. 
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Figure 4-17:  Average error in instantaneous acetylene and propylene inlet composition calculated 

from the UKF (red) and unfiltered FTIR measurements (black) for distinct values of 𝑡𝑠, �̇� and 

𝜎𝑍𝑖𝑛 . 

4.5 Opportunities to Improve the Modified UKF 

 Despite the demonstrated ability of the modified UKF to improve sample composition 

estimations from transient FTIR measurements, many simplifying assumptions are invoked in its 

construction.  These assumptions may be inaccurate for certain species and composition profiles, 

imposing restrictions on the amount of improvement that can be attained by the UKF.  These 

limitations are worth discussing to guide future advancements of the UKF.  Each simplifying 

assumption is listed below in italics, followed by an explanation of the ramifications of the 

assumption and a discussion of potential solutions if available. 

 

Composition/absorbance/intensity for each species evolves linearly with respect to OPD during a 

moving mirror scan. 
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 To calculate a centerburst weighting value for a chemical species, the calibrated 

absorption spectrum of that species is convolved with a linearly evolving power profile with 

respect to OPD.  This provides an estimation of the relationship between the true, transient 

spectrum during a FTIR scan and the resulting spectrum from the Fourier transform of the 

interferogram.  While the assumption of a linear power profile provides superior composition 

estimations compared to the standard Fourier transform – which assumes a stationary power – 

true composition profiles are more complex and time-varying.  However, it is difficult to know 

the exact transient power profile with respect to OPD a-priori.  Therefore, one must be assumed, 

the simplest of which is a linear one.  However, it is known that when inlet composition is 

constant, total gas cell composition evolves with an exponential profile.  This information could 

be used to develop more accurate power profiles.  However, further analysis is needed to 

determine if such considerations would result in improvements that warrant adding such 

complexity. 

 Along similar lines, it is implicitly assumed within the measurement model of the UKF 

that time and OPD are linearly related, or that scan speed is constant.  Such an assumption is 

necessary to extract the composition profile with respect to time.  In reality, moving mirrors have 

periods of acceleration and deceleration at the beginning and end of a scan, respectively.  

However, these effects could be easily incorporated into the UKF if the position/velocity profile 

of the moving mirror with respect to time is known, although it would create a more complicated 

convolution.  Again, such complex modifications may result in modest improvements.  Further 

analysis is required to determine if this is so. 

 

Composition/absorbance/intensity are linearly related. 

 The calculation of centerburst weighting is originally formulated based on the assumption 

that IR intensity evolves linearly with respect to OPD.  To estimate the effects of centerburst 

weighting in terms of composition in a simplified manner, it is further assumed that intensity, 
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absorbance and composition are linearly related.  However, absorbance is log-based function of 

intensity (see Equation 4-12) which is highly non-linear at high levels of absorbance.  

Furthermore, the relationship between absorbance and composition is non-linear for many 

narrowly absorbing species due to non-constant absorptivities [104], resulting in underestimations 

of centerburst weighting.  A more rigorous centerburst calculation would identify a specific gas 

cell composition profile with respect to time/OPD, and calculate a corresponding absorption 

profile using the Beer-Lambert law and/or absorbance calibrations.  This absorption profile would 

then be transformed to an intensity profile according to Equation 4-12 using base intensities 

specific to a FTIR, which may vary with respect to wavenumber.  The resulting biased intensity 

spectrum due to evolving power would then be calculated according to modified a version of 

Equation 4-11, which would then be converted to back to an absorbance spectrum and ultimately 

a composition via the FTIR’s modified least-squares algorithm.  If even more rigor is desired, the 

modified version of Equation 4-11 may account for variations in the power profile with respect to 

wavenumber (i.e., 𝛾 becomes a function of wavenumber), although the derivation of such an 

equation would be exceedingly complicated.  This convolution could even be included within the 

measurement model itself and performed for each measurement sigma point.  Such a modification 

would increase the accuracy of the measurement error distribution and corresponding 

composition estimation.  However, it would require access to the FTIR’s proprietary least-squares 

algorithm, or the creation of a separate algorithm that maps absorbance and composition.  

Furthermore, it may add complexity that outweighs the associated benefits. 

 

Interference is negligible.  

 The analysis regions within FTIR calibrations for a single species are typically selected to 

minimize interference from other species.  However, a certain amount of cross-talk between 

species is inevitable.  While accounted for within the FTIR’s least squares algorithm for deducing 

gas cell concentration from spectral absorbance, interference effects are neglected in the 
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calculations of centerburst weighting for the UKF.  This is important to note, since the effects of 

interference likely manifest themselves differently between stationary and non-stationary 

measurements.  For example, the least squares algorithm within the FTIR likely accounts for 

interference by simply subtracting out the predicted absorbance levels of interfering components 

according to their measured compositions.  However, if the composition of the interfering 

component itself is transient, the calculated interfering absorbances are also biased by centerburst 

weighting, creating additional bias in the resulting composition calculation.  This issue could 

perhaps be addressed by including the convolution itself within the measurement model, as 

discussed above.  However, the convolution would be performed for the entire spectrum, so that 

the effects of transients for multiple species and their resulting cross-talk could be accounted for. 

 

 Clearly, a lot of opportunity remains for further improvement of the UKF.  Future work 

should address the three key simplifying assumptions outlined above and attempt to implement 

some of the proposed solutions. 

4.6 Chapter Summary 

 The UKF is augmented to combat the biasing effects of non-stationarity on FTIR 

measurements for the ultimate purpose of attaining time-resolved estimations of the composition 

of engine emissions.  Non-stationarity and its biasing effects on FTIR measurements of 

chemically evolving samples are introduced, discussed and exemplified in experimental FTIR 

data.  Mathematical analysis is laid out which proves that centerburst weighting and alternating 

scan direction are indeed a result of non-stationarity and responsible for biases observed in FTIR 

measurements.  This mathematical analysis is expanded to predict the magnitude of centerburst 

weighting of FTIR measurements of specific species using calibrated absorbance spectra.  These 

centerburst calculations are then incorporated into the UKF, which is modified to deduce gas cell 

composition from FTIR measurements that are biased by non-stationarity.  Experimental 
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validation of the modified UKF is performed by flowing trace, controlled amounts of acetylene 

and propylene through the FTIR, which have different magnitudes of centerburst weighting.  The 

modified UKF is experimentally demonstrated to overcome biasing effects due to sample 

recirculation and non-stationarity to accurately infer inlet tracer gas cell composition from FTIR 

measurements.  The following is a list of conclusions from the experimental results presented in 

this chapter. 

• The modified UKF is shown to consistently reproduce wave composition profiles at 

frequencies up to 1.25 Hz and amplitudes down to 10 ppm from biased FTIR 

measurements.  Amplitudes of estimated composition profiles from the UKF are closer to 

the true amplitudes than those from unfiltered FTIR measurements, which lag the true 

profile due to residence time effects. 

• The UKF yields quantitative improvements in the estimated sample profile for spline 

profiles of varying average amplitudes and fluctuation duration.  On average, the UKF 

yields a 58% and 51% improvement in estimated acetylene and propylene inlet 

composition, respectively, over unfiltered FTIR measurements across all spline profiles 

and flow rates tested.  More accurate estimations are obtained for profiles with 

fluctuations of greater duration and magnitude, due to residence time and measurement 

noise effects, respectively. 

• Measurement and estimated inlet composition improvements of 16% and 17% are 

achieved on average for the spline profiles, respectively, when increasing flow rate from 

12 to 25 slpm.  An overwhelming majority of the emissions measurement literature 

reports flow rates near 10 slpm.  The results from this study indicate that for future 

emissions measurements, sample flow rate should be maximized while still maintaining 

appropriate pressures within the FTIR gas cell and avoiding turbulence effects. 
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• Greater estimation accuracy for highly transient composition profiles is achieved for 

acetylene relative to propylene.  This is due to the effective measurement frequency 

reduction induced by elevated centerburst weighting associated with propylene 

measurements.  Perhaps future FTIR recipes should maximize the number of narrow 

absorbing regions within an analysis region to minimize centerburst weighting. 

• Three key simplifying assumptions in the formulation of the centerburst weighting 

calculations and the modified UKF and their potentially negative implications are 

discussed in detail.  These include the assumptions of linearly evolving composition 

within the gas cell, a linear relationship between intensity/absorbance/composition, and 

the negligibility of interference effects.  Future modifications to the UKF should address 

these assumptions. 

With the UKF developed and experimentally validated, the following chapter will detail a study 

of engine emissions from a gasoline engine during transients that utilizes the UKF. 
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CHAPTER 5 EXPLORATION OF HYSTERESIS IN SPECIATED EMISSIONS 

 Detailed in this chapter is an experimental investigation of transient effects on emissions 

from a gasoline engine under transient load profiles using the modified UKF.  As discussed 

extensively in the background and motivation portion of this dissertation, there is currently a 

severe shortage of time-resolved, transient VOC emissions data in the literature.  The literature is 

currently dominated by steady-state data or batch reports of total emissions over an entire driving 

cycle.  While batch reports are useful for assessing the performance of an engine during real-

world driving conditions, they provide minimal information on the relationships between specific 

engine operational conditions and emissions and therefore little insight into opportunities for 

improving engine design and operation.  Furthermore, while such information can be obtained 

from emissions measurements during steady-state operation at various speeds and loads, such 

measurements are absent of transient effects and are therefore unrealistic. 

 Thus, to address the lack of time-resolved, transient VOC emissions data in the literature 

and elucidate the relationship between species distribution of emissions and engine operational 

points, exhaust composition from a spark-ignited, port fuel-injected gasoline engine under various 

transient load ramps is measured and analyzed.  Positive and negative ramp load profiles with 

brake mean effective pressures (BMEP) ranging from 2 to 7 bar at a constant speed setting of 

1500 rpm are explored.  Emissions are additionally explored at 2000 rpm, and the results are 

displayed in the appendix.  To investigate acceleration and short term transient effects on VOC 

emissions, ramp durations are varied between 1 and 5 seconds.  Periodic ramp waves lasting up 

30 seconds are also investigated to explore long term historical effects.  Emissions from these 

experiments are compared to predicted emissions from a quasi-steady model, which utilizes an 

emissions map generated from experiments conducted at various constant speeds and loads.  To 

gauge whether differences between experimental emissions and those predicted by the quasi-

steady model are due to deterministic, repeatable transient effects or stochastic and/or non-
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repeatable emissions fluctuations, the magnitudes of the stochastic/non-repeatable component of 

each emissions measurement are estimated.  Stochasticity standard deviation is calculated from 

the emissions data from the steady-state experiments.  To address sample recirculation and 

spectral IR intensity stationarity issues associated with FTIR measurements of sample with 

rapidly evolving composition, the modified, experimentally validated UKF from Chapter 4 is 

employed to filter FTIR measurements.  The UKF infers the true gas cell inlet composition from 

biased FTIR measurements, thereby enabling time-resolved, accurate estimates of comprehensive 

emissions.  

5.1 Experimental Methods 

 Outlined in this subsection are the experimental architecture and methods used to 

measure and analyze transient engine emissions in this study.  These include engine, 

dynamometer and FTIR specifications, as well as greater detail on the transient load profiles and 

generation of the steady-state emissions map and emissions stochasticity estimations.  Also 

discussed are additional considerations for applying the UKF to emissions data that are not 

previously covered, such as estimations of the process and measurement noise covariance 

matrices. 

5.1.1 Experimental Setup 

 A layout of the experimental setup is provided in Figure 5-1.  Experiments are conducted 

on a 1.5L Kubota WG1605 four-cylinder, port fuel-injected, spark-ignited engine.  This engine 

provides a maximum power output of 55 hp (41 kW) and operates at speeds between 750 and 

3200 rpm and brake torques between 0 and 120 lb-ft (13.3 bar in mean effective pressure).  A 100 

hp (74.5 kW) AC dynamometer from Powertest Inc. is coupled to the engine shaft to impart 

resistive loading.  Control of engine speed and dynamometer load is achieved using the PowerNet 

LT software package from Powertest.  A Bosch LSU 4.9 exhaust wideband oxygen sensor is 
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employed to measure air-to-fuel equivalence ratio downstream of the engine.  Equivalence ratio 

measurements are reported at intervals of approximately 50 ms.  Emissions measurements are 

performed using the same MKS 2030-HS FTIR spectrometer as the work presented in the 

previous chapter.  For convenience, its specifications are briefly reiterated.  The MKS 2030-HS 

measures at a frequency of 5 Hz, a spectral resolution of 0.5 cm-1 and an IR pathlength of 5.11 

meters.  The MKS 2030-HS is also equipped with a silicon carbide radiation source at 1200°C, a 

liquid nitrogen-cooled mercury cadmium telluride detector, and a helium neon laser is used to 

generate a reference interferogram.   

 

Figure 5-1:  Engine test cell schematic. 

5.1.2 Engine Load Profiles 

 Emissions measurements from the Kubota engine are conducted for two sets of engine 

load profiles.  The first set consists of positive and negative load ramps between 2 and 7 bar (in 

BMEP) with durations of 1, 2.5 and 5 seconds.  Different ramp rates are explored to investigate 

how acceleration and short-term speed/load history influences emissions.  To examine the impact 
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of long-term historical effects on emissions, a second set of periodic load ramps are imposed on 

the engine.  The load in these profiles oscillates between the same extrema at the same durations 

as the single load ramps.  These load oscillations are executed for approximately 30 seconds to 

allow possible long-term emissions trends to develop.  The initial load point is maintained for 

approximately 2 minutes before the first load change to eliminate prior transient effects on the 

emissions.  Experiments are conducted at two constant engine speed settings: 1500 and 2000 rpm.  

For brevity, only the results for engine speeds of 1500 rpm are presented within this chapter.  The 

results for 2000 rpm are provided in the appendix, as most of the emissions patterns and 

discerned transient effects are qualitatively similar for both speeds.  Two trials are performed for 

each load profile/engine speed combination to ensure repeatability.  The transient load profiles 

are illustrated in Figure 5-2.   

 

Figure 5-2:  Illustration of the transient engine load profiles. 
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 To quantify the transient and historical effects on emissions, each emissions measurement 

is compared with an estimation from a quasi-steady model.  The model calculates each quasi-

steady estimation using an emissions map created from experiments at constant speeds and loads.  

Figure 5-3 shows the speed/load points within the map.  Speed ranges from 1000 to 2500 rpm 

with an interval of 250 rpm, while load (in BMEP) ranges from 2 to 7 bar with an interval of 1 

bar.  Measurements are taken for a total of three minutes at each speed/load point to determine the 

corresponding emissions value.  Linear interpolation is used to estimate the emissions at 

intermediate speed/load points.  To determine if discrepancies between quasi-steady predictions 

and experimental emission are due to transient effects (load/speed ramp rate) as opposed to 

stochastic/non-repeatable fluctuations, the standard deviation of emissions during each steady-

state test is calculated for each speed/load point within the steady-state map.  These calculations 

serve as an approximation for the stochasticity standard deviation at each speed/load point, and 

are used to generate a similar map for stochasticity.  To deconvolve measurement noise effects 

from the calculated stochasticity, the steady-state measurements are filtered with the UKF before 

standard deviations are calculated.  It should be acknowledged that transient effects may 

influence stochasticity.  Thus, second trials are also consulted to judge whether a given emissions 

fluctuation is mostly stochastic, while stochasticity calculations serve as first approximations.  

Illustrations of the steady-state emissions and emission stochasticity standard deviation maps are 

provided in the appendix under 5.1.2 – Emissions Maps. 
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Figure 5-3: Speed/load points on the steady-state emissions map used to formulate the quasi-

steady model. 

5.2 Emissions Analysis using UKF 

 FTIR spectroscopy is an attractive diagnostic for comprehensive speciation due to its 

ability to distinguish individual VOCs according to their IR absorption spectra.   However, as 

thoroughly discussed throughout this dissertation, FTIRs are susceptible to biasing effects that 

complicate the interpretations of measurements of chemically evolving samples: namely sample 

recirculation and non-stationarity.  These limitations associated with transient FTIR 

measurements are addressed with the implementation of the modified UKF from Chapter 4.  The 

UKF couples model predictions with FTIR measurements to obtain statistically optimized 

estimations of the instantaneous engine emissions/gas cell inlet composition, thereby providing 

accurate, time-resolved emissions profiles.  Employed within the UKF is a sample recirculation 

model which relates total gas cell composition to inlet composition, and a measurement model 

which deduces the true gas cell composition from FTIR measurements during transients that are 

biased due to centerburst weighting.  The centerburst weighting values utilized for this analysis 
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are the same as those reported in Table 4-1.  An overview of the UKF estimation process for 

estimate engine emissions from FTIR measurements is provided in Figure 5-4. 

 

Figure 5-4:  UKF flow chart for optimally estimating engine exhaust composition from FTIR 

measurements. 

5.2.1 Process Noise Distribution 

 As discussed in Chapter 3, a key component of the UKF are the process and measurement 

noise covariance matrices.  Distributions within these matrices guide the UKF when 
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discriminating between measurement noise effects and true state value fluctuations.  Reasonable 

estimations for these values is essential for obtaining statistically optimized emissions 

estimations.  Process noise within the state transition model of the UKF is assumed to originate 

from fluctuations in inlet composition and mass flow rate, whose variances are represented by 

Φ𝑍𝑖𝑛 and Φ�̇�.  The propagation of these fluctuations on total gas cell composition is estimated 

using the sigma-point transformation process outlined in Section 3.2.2.  It is difficult to determine 

Φ𝑍𝑖𝑛 and Φ�̇� a-priori, as the magnitudes of inlet composition/emissions fluctuations with respect 

to engine operation are the exactly what these experiments are designed to discover.  However, 

reasonable first approximations can be attained using available steady-state emissions data.  Thus, 

Φ𝑍𝑖𝑛 for each species is estimated using the squared difference between the maximum and 

minimum emissions value within the steady-state map divided by 4.  For species for whom this 

value is less than 5 ppm, the emissions fluctuation is set to 5 ppm.  Estimating the emissions 

fluctuation variances in this way provides appropriate scaling between species, as species whose 

emissions cover greater ranges on the steady-state map are expected to have greater fluctuations 

during transients.  Other methods which converge on optimal process noise values to reduce 

estimation uncertainty could also be implemented for this purpose.  This method is chosen for 

simplicity.  The emissions fluctuation variance for each species is listed in Table 5-1.  The value 

used for Φ�̇� is the same as in Chapter 4 – 0.25 slpm.  This value is a reasonable approximation of 

the fluctuations occur during load changes.  Estimating the variance in composition 

measurements of engine exhaust due to noise is slightly more involved, and is detailed in the 

following subsection. 

5.2.2 FTIR Composition Measurement Noise Distribution 

 For the UKF to accurately deduce the composition of engine emissions from FTIR 

measurements, the measurement noise statistics must be reasonably estimated.  Since the UKF is 

expressed in terms mass/molar compositions, it is necessary to express the noise in terms of 
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composition (as opposed to signal level) as well.  However, typical FTIR algorithms – which 

convert the measured spectral intensity to chemical composition – use the intensity at several 

wavenumbers to infer composition to reduce noise effects.  Moreover, for a given level of signal 

noise, the corresponding composition noise becomes greater as absorbance (composition) 

increases due to the decreasing signal-to-noise ratio.  Even more, two or more species may absorb 

in the same spectral regions, and FTIR algorithms must be somewhat complex to account for this 

cross-talk.  Thus, analytically determining the statistics of composition measurement noise is a 

difficult task, and is not as simple as using the signal-to-noise ratio at a single wavenumber.   

Therefore, composition measurement noise is estimated in this work using a Monte-Carlo-like 

method. 

 The first step in this method is to select one or more measurements for which the noise 

statistics are of interest.  For this work, a measurement at approximately the midpoint of the 

engine load transient for the 1500 rpm, 2.5s upward load ramp is selected.  Due to the tediousness 

of this method, it is only performed for this single measurement and the resulting statistics are 

applied to all remaining measurements.  This measurement is selected since it occurs at the 

midway point of the loads explored in this work and is from an experiment with moderate ramp 

rate.  In the second step, a series of FTIR noise measurements are conducted.  In these 

measurements, the FTIR gas cell is filled with an unabsorbing gas (such as nitrogen), so that 

differences in spectral transmittance between each measurement are due to noise only.  Thus, the 

spectral transmittance noise for a single measurement can be estimated by subtracting the average 

spectral transmittance from all measurements with that of the single measurement.  Detector noise 

is the dominant form of noise in most commercial FTIRs [100].  Since detector noise is additive 

[100], the effects of measurement noise can be simulated by adding each transmittance noise 

spectrum to the transmittance spectrum from the measurement of interest.  The resulting 

composition noise variance for each species is then estimated by operating on each synthetic 

spectrum with the FTIR algorithm to calculate a corresponding composition.  The variance of the 
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composition distribution is then calculated.  A diagram of the process for estimating composition 

measurement noise is provided in Figure 5-5.  For this work, approximately 1500 noise spectra 

are utilized.  This number of spectra is determined to be sufficient, as analysis with 750 spectra 

changes the composition variance by less than 5% for each species.  Measurement noise variance 

for each species is provided in Table 5-1 below. 

 

Figure 5-5:  Illustration of process for estimating magnitudes of FTIR noise effects on measured 

species.  
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Species 

Inlet Composition 

Process Noise Variance          

(Φ𝑍𝑖𝑛) (PPM) 

Measurement Noise 

Variance              

(𝑹𝑣𝑣,𝑍𝑐𝑒𝑙𝑙) (PPM) 

1,3 butadiene (C4H6) 5.00 4.60 

Acetylene (C2H2) 63.50 1.48 

Benzene  (C6H6) 5.00 78.52 

Cyclohexane (C6H12) 5.00 0.29 

Ethanol (C2H5OH) 31.76 6.52 

Ethylene (C2H4) 94.92 1.39 

Formaldehyde (CH2O) 6.69 0.47 

Methane (CH4) 25.65 0.37 

Pentane (C5H12) 235.37 10.64 

Toluene (C7H8) 8.86 63.60 

Table 5-1:  Estimated inlet composition process noise, FTIR measurement noise values used 

within the UKF for each species.  

5.3 Results and Discussion 

 The emissions of various species with respect to engine speed, load and equivalence ratio 

for each transient profile are presented in this section.  Transient engine emissions are estimated 

from FTIR measurements using the UKF.  Predicted emissions from the quasi-steady model are 

presented alongside the estimated transient emissions for comparison.  To determine if the 

differences between estimated transient emissions and quasi-steady predictions are statistically 

significant, the UKF estimations are presented with error bars which represent emissions 

uncertainty to one standard deviation.  For clarity, error bars are only present for every other 

estimation.  Quasi-steady predictions are also presented with a surrounding shaded region that 

represents the predicted standard deviation of stochastic emissions fluctuations.  Such information 

provides an idea of whether the differences between the quasi-steady predictions and estimated 

emissions are simply due to stochastic fluctuations, or if there is a deterministic component of the 

transient emissions that can be predicted with a more sophisticated model.  It should be noted that 
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the quantified stochasticity in this analysis includes the possible effects of air-to-fuel equivalence 

ratio oscillations on emissions, which may be considered deterministic since these oscillations are 

the result of the engine control working to maintain stoichiometry.  However, such effects are 

difficult to separate from other factors that may be considered stochastic and contribute to quasi-

steady model errors in the same way.  Furthermore, the timing of these oscillations with respect to 

the load profile may be considered random or stochastic.  Air-to-fuel equivalence ratio 

measurements are presented for each speed/load profile.  It should also be noted that since quasi-

steady model predictions are ultimately derived from FTIR measurements, both the transient 

estimations (from the FTIR measurements and UKF) and the quasi-steady model predictions 

should be subject to similar systematic errors.  Thus, discrepancies between the two should be 

indicative of transient effects, regardless of offsets due to systematic error. 

 A series of three fuel components and four reaction intermediates are plotted for each 

transient profile.  The fuel components presented are cyclohexane, ethanol and pentane, while the 

intermediates presented are acetylene, ethylene, formaldehyde and methane.  Due to the low 

concentrations and high measurement noise of benzene and toluene in this work, the ability to 

form substantial conclusions regarding the transient emissions of these species is limited.  Thus 

results for these species are not presented, but a discussion of the factors that contribute to their 

elevated levels of measurement noise is provided in the last subsection of the chapter.  Emissions 

of 1,3 butadiene are presented and discussed separately from the other species, as it is the only 

species where its emissions appear mostly dominated by stochasticity.  Emissions for the 2000 

rpm cases are included in the appendix under 5.3 – Experimental Emissions Data at an Engine 

Speed of 2000 RPM. 

5.3.1 Single Ramp Profiles   

 Figure 5-6 displays the emissions profiles for the fuel components for the downward load 

ramp cases, along with engine speed/load and equivalence ratio (λ).  Transient effects are 
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apparent, as experimental emissions vary significantly from quasi-steady predictions in most 

cases, although the degree of variance differs according to load profile and species.  The 

emissions profiles for cyclohexane, ethanol and pentane are qualitatively similar in each case.  

For each of these species, the emissions at the onset of the load ramp drop for both the 

experimental values and quasi-steady predictions.  However, the rate of decline is more 

significant for the experimental emissions, and the two profiles are significantly separated at the 

trough of the drop, as the error bars of the experimental emissions are outside of the area 

representing the stochastic effects of the quasi-steady emissions.  Furthermore, while the 

experimental profiles eventually settle upward toward the quasi-steady values, the settling 

appears delayed by roughly a second after the conclusion of the load ramp.  It is interesting to 

note that significant differences between transient emissions and quasi-steady predictions exist 

despite air-to-fuel ratio being maintained at near stoichiometric quantities throughout the load 

ramps, aside from the 1s load ramps which exhibit oscillations with a magnitude of 

approximately 0.05.  Although it is difficult to speculate the exact causes and their relative 

contribution to these differences, some important transient effects can be listed.  These include 

developing levels of residual exhaust gases within the engine cylinder (due to changing throttle 

positions and volumetric efficiency) and developing temperature levels. 
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Figure 5-6:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the downward ramp load profile, 1500 rpm case.  Error bars reflect the uncertainty 

standard deviation of a transient emissions estimation from a FTIR measurement.  The shaded 

area surrounding the quasi-steady predictions represents the estimated standard deviation of 

stochastic emissions fluctuations for the current engine speed/load. 
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 Shown in Figure 5-7 are the experimental emissions and quasi-steady predictions of the 

intermediate species for downward load ramp cases.  Again, significant discrepancies exist 

between the two emissions profiles for certain species and load ramp rates.  However, unlike the 

fuel component emissions which each display qualitatively similar profiles between species, 

considerable variability exists between the emissions of intermediate species.  For acetylene and 

methane, a 1s load ramp causes a significant upward spike in emissions that exceeds the 

magnitude predicted by the quasi-steady model by a factor of about 2.  This is followed by a brief 

downward spike whose level is captured relatively well by the quasi-steady model.  For the 2.5 

and 5s load ramp cases, a brief uptick in the emissions of acetylene and methane occur after the 

conclusion of the load ramp.  The upticks appear statistically significant for both species, as the 

error bars of the estimated emissions lie outside of the shaded region surrounding the quasi-steady 

predictions, which represents the estimated magnitude of stochastic fluctuations.  These upticks 

indicate a historical influence on emissions for these two species, since they occur after the end of 

the load ramp.   

 Experimental ethylene and formaldehyde emissions behave in an opposite manner as the 

quasi-steady predictions.  The load ramp results in decreased emissions, while the quasi-steady 

model predicts an increase.  Interestingly, ethylene emissions do not respond immediately to the 

load ramp.  Instead, they remain relatively steady for about a second after the initiation of the 

load ramp, regardless of the ramp rate.  For the 1s ramp case, there is a brief downward spike of 

about 10 ppm that occurs after the load ramp but before the engine speed settles.  A similar 

downward spike is predicted in the quasi-steady model, although its magnitude is smaller (<5 

ppm).  The 2.5 ramp rate case also contains an initial brief downward spike followed by a steep 

upward ramp near the conclusion of the load ramp.  Overall, the quasi-steady model fails to 

predict these downward spikes, and predicts an emissions rise that precedes that of the 

experimental data.  It should be noted that ethane emissions (which are omitted for brevity) also 

display a similar lagging effect with respect to downward load ramps.  Formaldehyde arguably 
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displays the most interesting trend of all the species.  For the 1s ramp case, the magnitude of the 

rise predicted by the quasi-steady model (~10 ppm) is equally matched by a descent in the 

experimental emissions.  Furthermore, the spike in the experimental emissions precedes that of 

the quasi-steady predictions, and does not settle to its final value until about 5 seconds after the 

conclusion of the load ramp.  It is also interesting to note that the trough of the descent aligns well 

with the peak air-to-fuel equivalence ratio.  For the 2.5 and 5s load ramps, the experimental 

emissions gradually descend by about 5 ppm before rapidly ascending to their final, steady-state 

values at approximately 5 and 6 seconds, respectively.  Interestingly, both of these rapid 

ascensions occur after their respective load ramps are finished, indicating a historical influence on 

formaldehyde emissions. 
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Figure 5-7:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the downward ramp load profile, 1500 rpm case.  Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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 Figures 5-8 and 5-9 show emissions of fuel components and intermediates during the 

upward load ramps, respectively, along with engine speed/load and equivalence ratio.  Overall, 

the discrepancies between the quasi-steady predictions and experimental emissions are moderate 

compared to the downward load ramp cases.  However, significant disagreement persists for 

some species, particularly cyclohexane and pentane.  As shown in Figure 5-8, the quasi-steady 

model underpredicts the magnitude of the cyclohexane and pentane spikes for both the 1 and 2.5s 

load ramps.  Furthermore, the downward settling of the experimental emissions lag those of the 

quasi-steady model by at least half a second.   Additionally, the peak of the experimental 

emissions of pentane for the 5s ramp case is greater than the peak of the quasi-steady model by a 

statistically significant quantity.  The low end of the uncertainty of the experimental peak lies 

approximately 2 ppm above to the concurrent stochastic region of the quasi-steady prediction.  It 

is interesting to note that the most significant lag between the experimental and predicted 

emissions occurs for the 2.5s ramp case for both cyclohexane and pentane; yet virtually no lag 

exists for the 5s ramp case.  This indicates a complex historical effects on emissions, and suggests 

that a sophisticated model may be needed to accurately predict the emissions of species.  

 Experimental ethanol emissions generally agree with the quasi-steady predictions well for 

the upward load ramp cases.  The initial emissions spikes during the load ramps are predicted 

well by the quasi-steady model, with only a few experimental points lying outside of one 

uncertainty standard deviation from quasi-steady region.  The most glaring discrepancy occurs 

after the load ramps, as the experimental emissions settle at a composition that is several ppm 

greater than the quasi-steady prediction.  This is likely not an error in the steady-state map.  

Recall that the final setpoint for the upward load ramps are the same as the initial setpoint for the 

downward ramps cases.  In these former cases, the initial ethanol emissions agree well with the 

quasi-steady predictions.  Another interesting feature of the transient emissions is that they 

remain slightly elevated following the upward load ramp, indicating historical effects.  
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Figure 5-8:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the upward ramp load profile, 1500 rpm case.   Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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 Shown in Figure 5-9 are the emissions profiles of the intermediate species for the upward 

load ramp cases.  As in the downward load ramp cases, the profile for each intermediate species 

is relatively unique.  For acetylene, the quasi-steady predictions agree reasonable well with the 

experimental emissions.  The only glaring discrepancy occurs for 1s ramp case, where the 

experimental profile features an upward spike of approximately 7 ppm that begins nearly halfway 

through the load ramp, and doesn’t settle back down until after the two second mark.  An upward 

spike is absent in the quasi-steady predictions.  Reasonable agreement exists between the quasi-

steady predictions and experimental emissions for ethylene as well.  For the 5s ramp case, each 

experimental emissions point is within one uncertainty standard deviation of the stochastic region 

for the quasi-steady predictions, indicating that the quasi-steady model is adequate for predicting 

ethylene composition at this load rate.  The trough of the experimental emissions profile for the 

2.5s ramp case lies just outside of one uncertainty standard deviation from the quasi-steady 

stochastic region.  However, all remaining points lie sufficiently close to the quasi-steady 

predictions.  The 1s load ramp is arguably the only case where the quasi-steady model yields 

significant error, as it underpredicts the magnitude of the emissions drop by roughly 5 ppm.  

However, when considering the experimental emissions uncertainty and stochastic effects, the 

true error may be as little as 1 or 2 ppm. 

 For formaldehyde, significant discrepancy exists between the quasi-steady and 

experimental emissions, although the degree of discrepancy is milder than that of downward step.  

The experimental emissions profile for the 1s ramp case consists of initial positive and negative 

spikes at approximately 1 and 1.75 seconds, respectively, followed by 5s period of high 

emissions.  Interestingly, none of these features are predicted by the quasi-steady model.  

Similarly, the formaldehyde emissions for 2.5s and 5s load ramp cases contain numerous 

statistically significant oscillations during and after the load ramp that the quasi-steady model 

fails to predict.  The most notable of these is the positive spike of ~10 ppm midway through load 

transient for the 5s ramp case.  It is difficult to discern an obvious relationship between 
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formaldehyde emissions and engine operation/equivalence ratio from this data, as emissions 

oscillations do not immediately appear to correspond to changes in load or speed in a consistent 

way.  However, these complex emissions patterns are statistically significant and repeatable, 

indicating that they are indeed deterministic.  Repeatability for formaldehyde emissions is 

demonstrated in Section 5.3.3. 

 Non-repeatable effects are apparent within the methane emissions, as the stochastic 

region surrounding the quasi-steady predictions spans 10 ppm at the initial load and the 

experimental emissions display substantial variation.  However, a deterministic positive spike in 

methane emissions can be discerned near the end of the 1s load ramp.  Furthermore, a significant 

portion of the emissions following the load ramp oscillate below the stochastic region 

surrounding the quasi-steady predictions.  While the exact timing of these oscillations is not 

repeated in the other trial, the overall magnitudes are.  This suggests that stochastic effects (or 

effects outside of engine speed and load) may be greater than initially estimated for methane for 

this load ramp.  It is possible that the stochasticity statistics are also affected by historical engine 

speed/load, and that stochastic fluctuations temporarily increase in response to the rapid load 

ramp.  For the other two load ramps, the experimental emissions appear mostly within the 

predicted regions by the quasi-steady model.  However, for the 2.5s ramp case, two positive 

emissions spikes during the load transient exist that are substantially outside the region predicted 

by the quasi-steady model.  

 It also appears possible that these fluctuations may not be truly stochastic, but may be due 

to fluctuations in air-to-fuel ratio.  As will be shown in the wave profile data, there is reason to 

believe that methane emissions are more sensitive to equivalence ratio than other species.  More 

analysis is needed to elucidate the relationships between methane emission and air-to-fuel 

equivalence ratio and determine if there are correlations between the two. 
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Figure 5-9:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the upward ramp load profile, 1500 rpm case.  Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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5.3.2 Wave Profiles 

 To determine if there are any long-term relationships between emissions and engine load 

that are not discernable from single load ramp experiments, experiments with load ramp waves 

are conducted.  As in the single load ramp experiments, emissions of fuel components and 

intermediates are presented separately, which are shown in Figures 5-10 and 5-11, respectively.  

For clarity, only the experimental emissions are presented and error bars are removed.  No long-

term trends are easily discernable in the emissions for any fuel component or intermediate 

species, as the emissions trends appear relatively stationary throughout each cycle.  This suggests 

that historical effects on emissions, while significant as evidenced from the single load ramp 

experiments, do not extend beyond several seconds.  This is important information for future 

emissions models, as it suggests an approximate limit on the amount of historical data needed to 

properly train or develop these models. 

 For the most part, emissions during the wave load ramps behave as expected given the 

data from the single load ramps.  However, some subtle differences exist.  For example, the 

cyclohexane composition peaks during the 1s load ramp waves are consistently greater than those 

of the other ramp rates by roughly a ppm, although differences often lie within the uncertainty. 

Conversely, the peaks of the cyclohexane emissions during the single upward load ramps are all 

within a ppm.  For cyclohexane, ethanol and pentane during the 2.5 and 5s ramp waves, the 

emissions display an interesting pattern where a peak is reached midway through the upper load 

ramp, followed by a steady, modest drop that is capped off with an upward inflection at the end of 

the ramp.  Furthermore, as the emissions begin to drop during the downward load ramp, the 

trough is reached well before the load ramp’s end.  In the context of the results for the single 

upward and downward load ramps, these results make sense.  Recall that cyclohexane and ethanol 

emissions during the single upward load ramp also contain an early peak followed by a temporary 

downward inflection, while the downward load ramp results in an early trough that occurs just 
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midway through the load ramp.  Arguably the only profound difference is that for the 5s load 

ramp, the inflection for the cyclohexane emissions during the load waves are greater than that of 

the single upward load ramp.   

 

Figure 5-10:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the wave load profile, 1500 rpm case. 

 Overall, emissions of intermediate species appear to display greater stochasticity than the 

fuel components emissions for the wave load profiles, although some general relationships with 
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engine parameters can still be perceived.  Acetylene emissions behave mostly as expected given 

the single load ramp cases, as emissions peaks correspond to load troughs and vice versa.  

However, moderate dips followed by steep upward spikes are observed following the emissions 

peaks for the 2.5s ramp case.  This contradicts the single upward load ramp case where the 

emissions fall relatively steadily.  These oscillations may be caused by a historical effect from the 

previous downward load ramp.  As in the single load ramp experiments, ethylene emissions 

display interesting patterns that contrast the emissions of other intermediate species.  The dc 

component (or average) of the ethylene emissions during the wave load profiles drops as the load 

ramp rate increases.   Average composition for the 1s and 5s load ramps are approximately 75 and 

85 ppm, respectively.  This is due to the lagged response of ethylene emissions to downward load 

ramps, as illustrated earlier in Figure 5-7.  Ethylene emissions drop due to the initial upward load 

ramp, and remain at/near the trough for the remainder of the wave profile, as emissions fail to rise 

during the downward load ramp.  Interestingly, this effect is more pronounced for the shorter load 

ramps, revealing a historical effect that is not observed in the data from the single load ramps.  

While the overall emissions profiles appear somewhat correlated to load for the 2.5 and 5s ramp 

cases, there are many oscillations that appear stochastic.  The emissions for the 1s ramp case are 

dominated by stochastic fluctuations, as many of the peaks and troughs do not correspond to 

specific points in the speed/load profiles.  It should also be noted that ethane emissions, while 

present in smaller quantities (~10 ppm), also display similar trends. 

 Formaldehyde emissions, as illustrated in the single load ramp results, have a 

complicated relationship with engine parameters.  However, the emissions profile for the 1s load 

ramp case displays a simple wave pattern, although amplitude of the wave is 5-10 ppm lower than 

expected given the single load ramp data.  The emissions profile for the 2.5s case displays a 

complicated, albeit repeatable pattern consisting of two moderate spikes surrounding a central, 

significant upwards spike.  The emissions for the 5s ramp case make the most sense in the context 

of the single load ramp data, as peaks occur midway through the upward load transient, and 
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emissions are relatively constant during the downward load transient.  While deterministic 

patterns are present in formaldehyde emissions, clearly a complex model is needed to predict 

them.  Interestingly, the methane emissions for the 1s ramp wave case have values that far exceed 

that of the single step cases.  Some of the methane peaks reach compositions greater than 90 ppm, 

while 65 ppm is the maximum reached for either of the single load ramp cases.  Coincidentally, 

air-to-fuel equivalence ratio peaks reach much higher values during the wave ramps (~1.15) than 

for the single step load ramps (~1.05).  Spikes in methane emissions and equivalence ratio also 

happen to coincide in time.  This, along with repeated fluctuations in the methane emissions with 

similar frequencies as equivalence ratio oscillations, suggest that methane emissions may be more 

sensitive to air-to-fuel ratio than other species.  For the other two load ramp rates, stochasticity 

appears dominant as fluctuations seem uncorrelated with changes in engine parameters. 
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Figure 5-11:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the wave load profile, 1500 rpm case. 

 The standard error between the experimental emissions and quasi-steady predictions for 

each species during the wave load ramp profiles are plotted in Figure 5-12.  To determine if the 

quasi-steady prediction errors are statistically significant, the estimated stochasticity standard 
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deviation and experimental emissions standard uncertainty are also plotted for each species and 

load profile.  Reduced chi-square statistics for the deviations between experimental and predicted 

emissions relative to stochasticity and uncertainty statistics are calculated for each case and 

presented above their corresponding bars in Figure 5-12.  Higher chi-square statistics corresponds 

to higher likelihood that there are deterministic discrepancies between experimental and predicted 

emissions, and that these discrepancies are due to transient effects, as opposed to noise and 

random fluctuations.  As seen from the figure, the standard prediction errors are greater than 

standard uncertainty and stochasticity in all cases, suggesting that transient and historical effects 

indeed influence emissions in a compelling way.  Chi-square statistics are greater than 3.84 

(which corresponds to 95% confidence) in 14 of the 21 cases, with the exceptions being all the 

cyclohexane cases, ethanol at 1s load ramps, acetylene at 2.5 and 5s load ramps, and ethylene at 

5s load ramps.  Cyclohexane emissions are contained within single digits in every load profile.  

At such small quantities, deterministic fluctuations are expected to rival uncertainty.  The 

remaining exceptions are consistent with the overall tendencies observed in the data, which are 

discussed below.   

 For the intermediate species, quasi-steady prediction error increases as load ramp rate 

increases.  It is anticipated that the magnitude of transient effects should scale with load ramp 

rate.  However, for all the fuel component species, the quasi-steady model performs the poorest 

for the 2.5s load ramp, and the best for the 1s ramp.  It is difficult to speculate as to why the 2.5s 

ramps yield the greatest deviation between experimental emissions and quasi-steady predictions 

for fuel components.  One possible explanation is that for the faster ramps, historical effects have 

insufficient time to fully materialize, yielding emissions that are closer to the average values.  

Nevertheless, these results indicate that there are indeed transient, deterministic effects on VOC 

emissions during speed and load changes, suggesting that the emissions of these species can be 

predicted with a sufficiently complex model.  It should be noted that some of the quasi-steady 

prediction error may be attributed to additional stochasticity introduced by the load ramps.  For 
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example, the methane emissions for the 1s single load ramp cases appear more stochastic than 

predicted by the stochasticity from the quasi-steady model.  Coincidentally, the greatest quasi-

steady prediction error is for methane for the 1s load ramp case.  However, this additional 

stochasticity is likely only consequential for a few species and load profiles, as most of the 

statistically significant deviations in this study are repeatable, as discussed and illustrated in the 

next subsection. 

 

Figure 5-12:  Standard error between experimental emissions and quasi-steady predictions for 

various species and profiles, compared with estimated standard deviation of stochastic 

fluctuations, as well as standard uncertainty of experimental emissions for the wave profile, 1500 

rpm cases.  Calculated reduced chi-square statistics lie above each bar, indicating the statistical 

significances of quasi-steady prediction errors relative to stochasticity and uncertainty. 

5.3.3 Repeatability 

 To demonstrate the repeatability of some of the deterministic fluctuations identified in the 

experimental emissions, formaldehyde emissions from both trials for each upward, downward 

and wave load ramp case are presented in Figure 5-13.  Formaldehyde is chosen for this purpose 
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as experimental formaldehyde emissions contain frequent fluctuations that contradict the quasi-

steady model, some of which appear completely uncorrelated to engine conditions at first glance.  

Thus, repeatability improves confidence that these discrepancies are indeed deterministic and due 

to transient effects.  Also, the quality of repeatability in formaldehyde emissions is similar to that 

of the other species aside from the stochastic methane fluctuations identified earlier.  

Repeatability is apparent in all the initial fluctuations at the onset of the load transients.  For the 

upward, 1s load ramp, the initial upward and downward oscillations for the two trials practically 

overlap one another in this region, as do the initial emissions drops for the downward 1s load 

ramp.  The spike near 2 seconds for the 5s upward load ramp is also repeated in each trial, 

although the magnitudes of the spikes disagree by a few ppm.   Even the intricate patterns in the 

2.5s ramp wave profile are repeated, such as the brief uptick near 2 seconds.  The only aspect 

where repeatability is not observed is in the timing at which long-term emissions fluctuations 

settle to their final, steady values.  For example, the emissions profile for the 1s, upward load 

ramp begins descending toward its final value near 6 seconds for the first trial, while the 

emissions remain near 45 ppm past the 8 second window for the second trial.  A similar, less 

dramatic discrepancy in settling time exists for the 5s downward load ramp case.  This difference 

in settling time is unique to formaldehyde, and its cause may be stochastic and/or difficult to 

predict given conventional engine data such as load, speed and equivalence ratio. 
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Figure 5-13:  Emissions of formaldehyde from the first and second trials for the upward, 

downward and wave ramp load profiles for the 1500 rpm case.  Error bars reflect the uncertainty 

standard deviation of a transient emissions estimation from a FTIR measurement. 

5.3.4 1,3 Butadiene, Benzene and Toluene Emissions 

 The emissions of 1,3 butadiene, benzene and toluene are notably absent from the analysis 

above, despite the fact that each of these species are identified as toxins by the California Air 

Resources Board [105].  While these species are indeed measured in this work, 1,3 butadiene 

emissions are completely dominated by stochasticity and minimally influenced by engine load, 

while measurement noise and low compositions prevent a legitimate analysis of benzene and 

toluene emissions.  The chaotic measurements obtained for benzene and toluene are corroborated 
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by the Monte-Carlo analysis for estimating measurement noise presented in Section 5.2.2.  

Estimated measurement noise variances for benzene and toluene are 78.5 and 63.6 PPM, 

respectively.  For reference, the next highest measurement noise variance is 10.6 PPM for 

pentane, while the remaining species lie between 0.3 and 6.5 PPM (see Table S1 in the supporting 

information).  The exacerbated noise of these species are caused by a combination of low 

absorptivity, low concentration, and the strong presence of highly interfering major combustion 

products.  To illustrate this point, the analysis absorption spectra of toluene and benzene at 18.63 

and 93.17 ppm (the lowest calibrated compositions), respectively, are presented in Figure 5-14 

along with the absorption spectra of carbon dioxide and water at typical compositions within 

combustion products.  First, it is shown that moderate compositions of these species produce 

modest absorbances (<<0.05) that are somewhat comparable to noise levels.  To worsen the 

problem, the analysis spectra of these species are almost completely engulfed by the absorbance 

spectra of water and/or carbon dioxide.  As absorbance increases in a spectral region, the power 

of the available signal diminishes, increasing the relative effects of noise.  Thus, the presence of 

these major combustion products further reduces the fidelity of benzene and toluene 

measurements.  While benzene and toluene measurements are impaired for the low compositions 

encountered in this work, it should be mentioned that FTIR measurements of these species remain 

valid at higher quantities. 
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Figure 5-14:  Calibrated spectral absorbances for a) benzene at a composition of 93.17 ppm and 

b) toluene at a composition of 18.63 compared to absorbance spectrums of water and carbon 

dioxide at compositions that are typical within combustion products. 

 Shown in Figure 5-15 are 1,3 butadiene emissions for the upward, downward and wave 

load ramp profiles, along with error bars located near 1s which represent the standard uncertainty 

for the experimental emissions throughout each experiment.  Clearly, any deterministic 

relationships between 1,3 butadiene emissions and engine load are overshadowed by stochasticity 

and obscured by high measurement noise as indicated by the sizeable uncertainty error bars.  The 

standard deviation of stochastic component of 1,3 butadiene emissions is predicted to cover a 

span of approximately 2 ppm, which mirrors the fluctuations observed in the experimental 

emissions during the transient load profiles and eclipses the predicted deterministic changes in 

emissions due to load (~1 ppm).  However, it is somewhat difficult to differentiate between 

stochastic vs. deterministic components of emissions due to elevated uncertainty standard 
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deviations, which cover a span of approximately 4 ppm.  Thus, unlike the species presented 

previously, it’s difficult to form conclusions about the 1,3 butadiene emissions patterns with 

respect to load with high confidence.  However, it should also be noted that the composition 

range covered by the experimental emissions (including uncertainty) spans around 10 ppm, which 

is modest.  Thus, it can be said with a moderate degree of confidence that 1,3 butadiene emissions 

are overall relatively unaffected by engine speed and load compared to other species (aside from 

cyclohexane). 
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Figure 5-15:  Emissions of 1,3 butadiene for the upward, downward and wave ramp load profiles 

for the 1500 rpm case.  Error bars reflect the uncertainty standard deviation of a transient 

emissions estimation from a FTIR measurement.  The shaded area surrounding the quasi-steady 

predictions represents the estimated standard deviation of stochastic emissions fluctuations for the 

current engine speed/load. 

5.4 Chapter Summary 

 Emissions of various fuel component and reaction intermediate VOCs from a 1.5L 

Kubota WG1605 four-cylinder, port fuel-injected, spark-ignited engine are measured for a 

collection of transient load profiles.  These load profiles consist of single upward and downward 

load ramps and waves spanning durations of 1, 2.5 and 5 seconds.  Emissions are measured using 

FTIR spectroscopy, and measurements are processed with a previously developed UKF to 
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mitigate the biasing effects of sample recirculation and signal non-stationarity.  These emissions 

estimations are compared to predictions from a quasi-steady model - which predicts emissions 

according to the current engine speed/load – and estimated magnitudes of the stochastic 

component of emissions fluctuations.  The data shows that emissions during speed/load transients 

generally deviate from quasi-steady predictions to a degree that cannot be explained by 

stochasticity and/or equivalence ratio fluctuations alone, indicating that transient effects such as 

speed/load history significantly influence VOC emissions.  Conclusions from this study are 

summarized in the following bullet point list.   

• Greater deviations between the quasi-steady predictions and experimental emissions occur 

for the downward load ramp cases compared to upward ramps for all species, with 

deviations higher than 2, 10 and 30 ppm encountered during the downward load ramps for 

cyclohexane, ethanol and pentane, respectively.  The quasi-steady model predicts upward 

fluctuations during the load ramps for these species, while the experimental emissions drop 

significantly. 

• Emissions of the fuel components cyclohexane, ethanol and pentane are well correlated 

with one another, displaying peaks/troughs at similar times. 

• Intermediate species display greater variations in their responses to load transients.  

Formaldehyde possesses the most complicated, albeit deterministic relationship with 

engine conditions during transients, as multiple emissions fluctuations emerge that result 

in quasi-steady prediction errors as high as 15 ppm.  Ethylene emissions display unique 

characteristics that include a lagged response to downward load ramps by several seconds.  

This characteristic is shared by ethane emissions, which are unreported. 

• For the wave profiles, standard quasi-steady prediction errors surpass the combined effects 

of stochasticity and uncertainty by statically significant quantities (p>95%) in 14 out of 21 
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cases according to reduced chi-square statistics.  This indicates the presence of transient 

and historical effects on VOC emissions. 

• Steeper load ramps result in greater quasi-steady prediction error for intermediate species.  

Interestingly, moderate ramp rates (the 2.5s ramp cases) result in the greatest deviation for 

cyclohexane, ethanol and pentane.   

• Conclusions cannot be formed for benzene and toluene due to low quantities and excessive 

measurement noise. 

• 1,3 butadiene emissions are affected minimally by engine load/speed and appear dominated 

by stochasticity. 

Since VOC emissions are shown to be influenced by transient effects in a deterministic fashion, 

future work should entail developing a model to predict these emissions, which could play a key 

role in answering the question of whether control methods can be implemented to mitigate 

selective VOCs.  However, this works shows that relationships between engine parameters and 

emissions are complicated; and the elucidation of these relationships may require a machine 

learning method (such as a neural network) or a detailed consideration of engine physics. 
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CHAPTER 6 DISSERTATION SUMMARY 

 This dissertation details the development, validation and application of a UKF for 

filtering FTIR measurements of VOC emissions during transient engine operation.  

Anthropogenic VOC emissions, which lead to tropospheric ozone formation and contribute to the 

greenhouse effect, are comprised largely of engine exhaust.  While FTIR spectroscopy is a critical 

technique for speciating VOC emissions from engines, it is susceptible to biasing effects when 

emissions are non-steady, impairing its applicability to studying emissions during practical, 

realistic engine operation.  These biasing effects include sample recirculation within a FTIR gas 

cell, which effectively reduces the time-resolution of measured emissions profiles due to 

historical influences on current FTIR measurements.  This issue motivates the development of the 

UKF, which addresses sample recirculation by estimating the instantaneous gas cell inlet 

composition according to the evolution of FTIR measurements.  The UKF utilizes a simple model 

of the mixing dynamics within the gas cell, as well as measurement noise and inlet composition 

fluctuation statistics to achieve its estimations.  A second biasing effect of transient FTIR 

measurements is identified in this work: non-stationarity.  Non-stationarity refers to the evolution 

of the spectral power of the IR beam during a FTIR scan due to changing concentrations within 

the gas cell.  The resulting calculated IR spectrum from such a measurement is heavily weighted 

by the true IR intensity at/near the centerburst location.  Coupled with the alternating scanning 

directions of the FTIR moving mirror, non-stationarity produces artificial oscillations in measured 

emissions profiles.  The original UKF is augmented to account for centerburst weighting to 

deduce the true gas cell compositions corresponding to biased FTIR measurements.  With the 

UKF fully formulated to combat both biasing effects, it is utilized to study transient effects on 

VOC emissions from a spark-ignited, port fuel-injected engine during transient load sequences.  

This study reveals that transient effects are indeed substantial, as deviations between 

experimental emissions and quasi-steady predictions exceed the estimated contributions of 
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stochastic emissions fluctuations.  The findings presented in each chapter are summarized in 

greater detail in the remaining paragraphs.  

 In Chapter 3, the original UKF for addressing sample recirculation is developed.  The 

UKF’s equations and specific sub-models pertaining to FTIR measurements are introduced.  CFD 

and MN models are used to rigorously simulate the mixing dynamics within the FTIR gas cell to 

evaluate the fidelity of the well-mixed sub-model within the UKF.  The well-mixed model is 

shown to adequately represent the relationship between inlet and gas cell composition to allow 

accurate estimations of inlet composition.  Synthetic NO emissions are generated for the FTP 

driving cycle using an emissions model, and corresponding FTIR measurements with various 

noise levels are simulated using total gas cell composition calculations from the MN model.  

These NO measurements are filtered with the UKF, which is shown to improve emissions 

estimations by 38.4%, 18.9%, 4.9% and 6.2% for measurement noise standard deviations of 10, 

20, 40 and 80 ppm, respectively, compared to unfiltered FTIR measurements for a sample flow 

rate of 25 lpm.  It is also demonstrated that greater sample flow rate reduces residence times, 

resulting in improved estimations. 

 The effects of non-stationarity on FTIR measurements and the ensuing adaptations of the 

UKF are the focus of Chapter 4.  First, period-dependent patterns in FTIR measurements of 

transient concentrations of acetylene and propylene are identified, with these patterns being more 

apparent for propylene measurements.  The Fourier transform of a length power signal (i.e. 

synthetic interferogram) composed from a uniform, finitely broadened spectrum with linearly 

evolving power is derived.  This calculation reveals that the Fourier transform weighs spectra 

at/near the centerburst location more heavily than those at further OPDs, with the degree of 

weighting scaling with spectral broadening width.  Centerburst weighting is proposed as the cause 

of the period-dependent oscillations in FTIR measurements.  This analysis is extended to practical 

FTIR measurements to determine unique values of centerburst weighting for individual species 

using their calibrated absorption spectra.  These calculations for centerburst weighting are 
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incorporated into the UKF, and the fidelity of these modifications are validated using 

measurements of transient acetylene and propylene compositions.  The modified UKF is shown to 

improve estimations of acetylene and propylene composition for various transient profiles by 

58% and 51% on average, respectively, compared to unfiltered FTIR measurements.  These 

profiles consist of composition fluctuations of 0.5Hz or 1.25Hz.  The UKF yields greater relative 

improvement for faster composition changes, due lagging effects in the measurements.  Lagging 

effects are shown to be more prevalent in propylene measurements, due to greater effective 

aliasing from elevated centerburst weighting. 

 In Chapter 5, the UKF is utilized to study transient emissions of various fuel component 

and intermediate species from a spark-ignited, port fuel-injected gasoline engine under transient 

operation.  Experimental emissions during upward, downward and alternating load ramps – which 

are determined by filtering FTIR measurements with the UKF – are shown to differ from steady-

state map predictions by a magnitudes that exceed estimated stochastic fluctuations, indicating 

the presence of significant transient effects on VOC emissions.  Downward load ramps yield the 

greatest deviations from predicted emissions compared to other profiles, with differences for 

cyclohexane, ethanol and pentane surpassing 2, 10 and 30 ppm, respectively.  Transient emissions 

for the fuel components are shown to be highly correlated, while the emissions profiles displayed 

by intermediate species acetylene, ethylene, formaldehyde and methane are unique.  

Formaldehyde emissions arguably possess the most intricate relationship with engine operation, 

as frequent emissions fluctuations emerge during and after load transients that yield quasi-steady 

prediction errors as high as 15 ppm.  Of the 21 combinations of species/wave load profiles 

explored in this study, emissions from 14 deviate from quasi-steady predictions in a statistically 

significant manner according to reduced chi-squared statistics.  The cases of insignificant 

deviation consist primarily of intermediate species at gradual load ramps and fuel components at 

steep load ramps.  1,3 butadiene emissions are shown to be minimally affected by engine 

speed/load, while benzene and toluene measurements are dominated by noise. 
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 Future work motivated by this dissertation includes addressing the three simplifying 

assumptions invoked in the calculations of centerburst weighting for FTIR measurements 

outlined near the end of Chapter 4.  While these assumptions permit a clear, tractable derivation 

of centerburst weighting for practical FTIR measurements using existing calibrations, they could 

lead to errors in cases of significant absorbance evolution, non-constant absorptivity and 

significant spectral interference.  Chapter 5 clearly indicates the presence of transient effects on 

VOC emissions.  This work could be extended by identifying, quantifying and modelling these 

effects with the ultimate purpose of determining if control and/or design strategies for reducing 

the emissions of selective VOCs are possible.  The procedures executed in this work can also be 

applied to other engines and transient load profiles.  Such a study would be especially interesting 

if applied to advanced combustion strategies such as gasoline direct injection, which is known to 

emit elevated quantities of VOCs [106].   
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APPENDIX 

4.2.2 – Proof of Validity of Absorbance Evolution Slope Calculation of Equation 4-14 

 To estimate the magnitude of centerburst weighting during a FTIR measurement, a 

normalized absorbance slope (𝛾) with respect to OPD must be selected to simulate the effects of 

non-stationarity.  In Equation 4-14,  𝛾 is calculated so that absorbance is initially equal to the 

spectrum 𝐴𝜈,𝑐𝑎𝑙,1 at the centerburst position, and evolves to become the final spectrum 𝐴𝜈,𝑐𝑎𝑙,2 at 

the maximum OPD (𝛿).  However, Equation 4-14 uses the calibrated versions of these spectra 

(�̂�𝜈,𝑐𝑎𝑙,1 and �̂�𝜈,𝑐𝑎𝑙,2) – which are altered by the effects of truncation and apodization –  to 

calculate these slopes, as the true spectra are unknown.  However, as long as the relative slopes 

across wavenumbers are consistent (i.e. 𝛾 is a scalar), Equation 4-14 yields the true value for 𝛾.  

The following is a proof of this conjecture. 

 Consider the following equation relating the true initial and final spectra and the 

absorbance slope 𝛾.  This equation fulfills the requirements laid out in the previous paragraph. 

𝐴𝜈,𝑐𝑎𝑙,2(𝜈) − 𝐴𝜈,𝑐𝑎𝑙,1(𝜈) =   𝛾𝛿𝐴𝜈,𝑐𝑎𝑙,1(𝜈)                   (A-1) 

Since both sides of Equation 4-1 are themselves spectra, they can be convolved with the 

truncation/apodization spectrum 𝐷(𝜈).  This spectrum simulates the effects of 

truncation/apodization. 

(𝐴𝜈,𝑐𝑎𝑙,2(𝜈) − 𝐴𝜈,𝑐𝑎𝑙,1(𝜈))   ∗    𝐷(𝜈) =   𝛾𝛿𝐴𝜈,𝑐𝑎𝑙,1(𝜈)  ∗    𝐷(𝜈)            (A-2) 

The convolution operation is distributive, allowing the both spectra on the left-hand side to be 

convolved with 𝐷(𝜈) separately.  Furthermore, convolutions are also associative with respect to 

scalars, allowing the total, relative power evolution to be pulled from the convolution.  These 

updates are applied in Equation A-3. 

𝐴𝜈,𝑐𝑎𝑙,2(𝜈) ∗  𝐷(𝜈) − 𝐴𝜈,𝑐𝑎𝑙,1(𝜈) ∗  𝐷(𝜈) =   𝛾𝛿 (𝐴𝜈,𝑐𝑎𝑙,1(𝜈) ∗  𝐷(𝜈))      (A-3) 
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Each true spectra in A-3 is convolved individually with the truncation/apodization spectrum, 

yielding the known calibration spectra as shown in Equation A-4.  Notice that this equation is 

identical to Equation A-1, with the only exception being that true absorbance spectra are replaced 

by calibrations. 

�̂�𝜈,𝑐𝑎𝑙,2(𝜈) − �̂�𝜈,𝑐𝑎𝑙,1(𝜈) =   𝛾𝛿�̂�𝜈,𝑐𝑎𝑙,1(𝜈)                (A-4) 

Thus, the scalar absorbance slopes calculated from calibration spectra are identical to the true 

absorbance slopes during a FTIR scan.   

𝛾 =
𝐴𝜈,𝑐𝑎𝑙,2(𝜈)−𝐴𝜈,𝑐𝑎𝑙,1(𝜈)

𝐴𝜈,𝑐𝑎𝑙,1(𝜈)𝛿
 =  

𝐴𝜈,𝑐𝑎𝑙,2(𝜈)−�̂�𝜈,𝑐𝑎𝑙,1(𝜈)

�̂�𝜈,𝑐𝑎𝑙,1(𝜈)𝛿
                   (A-5) 

Therefore, as long as 𝛾 is indeed somewhat consistent across wavenumbers, Equation 4-14 should 

yield reasonable approximations of absorbance profiles with respect to OPD for linearly evolving 

compositions during FTIR scans. 
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5.1.2 – Emissions Maps 

 Presented in this section are illustrations of the steady-state emissions maps used to 

formulate the quasi-steady emissions and emissions stochasticity models for each species from 

Chapter 5.  These maps are generated using the average and standard deviation of emissions 

during each steady-state experiment at each speed/load point. 
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Figure A-1:  Steady-state emissions maps for each species with respect to engine speed and load.  
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Figure A-2:  Map of estimated stochastic emissions fluctuation standard deviation for each 

species with respect to engine speed and load. 



167 

 

5.3 – Experimental Emissions Data at an Engine Speed of 2000 RPM 

 Provided herein are experimental emissions data and quasi-steady predictions from 

Chapter 5 for experiments where the engine speed setting is 2000 rpm.  This data is omitted from 

the body of the dissertation due to its similarity to the 1500 rpm data and to maintain concision.  
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Figure A-3:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the downward ramp load profile, 2000 rpm case.  Error bars reflect the uncertainty 

standard deviation of a transient emissions estimation from a FTIR measurement.  The shaded 

area surrounding the quasi-steady predictions represents the estimated standard deviation of 

stochastic emissions fluctuations for the current engine speed/load. 
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Figure A-4:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the downward ramp load profile, 2000 rpm case.  Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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Figure A-5:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the upward ramp load profile, 2000 rpm case.   Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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Figure A-6:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the upward ramp load profile, 2000 rpm case.  Error bars reflect the uncertainty standard 

deviation of a transient emissions estimation from a FTIR measurement.  The shaded area 

surrounding the quasi-steady predictions represents the estimated standard deviation of stochastic 

emissions fluctuations for the current engine speed/load. 
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Figure A-7:  Emissions of various fuel components, engine speed/load and air-fuel equivalence 

ratio for the wave load profile, 2000 rpm case. 
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Figure A-8:  Emissions of various intermediates, engine speed/load and air-fuel equivalence ratio 

for the wave load profile, 2000 rpm case. 
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