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Lay Summary 

Acoustic tomography is an imaging technique to visualize the internal structure 

of the sensing area based on time-of-flight (TOF) measurements. Compared 

to other sensing techniques, acoustic tomography has the advantage of non-

invasive nature, fast imaging speed, low equipment cost, scalability for a 

variety of measurement range, and ability to simultaneously monitor the 

temperature and wind velocity fields. Therefore, it has been widely used in 

various applications including seismic imaging, ocean currents monitoring, 

forestry, industrial processing tomography, and meteorology for the 

atmospheric imaging of the temperature and wind velocity fields. 

This thesis aims to improve the reconstruction quality of the acoustic 

tomography system for temperature and wind velocity fields imaging. Focusing 

on this goal, the thesis demonstrates the design and implement of acoustic 

tomography, from the perspective of data collection system development, 

robust and accurate TOF estimation method, high-quality scalar and vector 

tomographic image reconstruction methods for temperature and wind velocity 

fields respectively. Their performance will be validated through simulation and 

experimental study.   
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Abstract 

Owing to its non-invasive nature, fast imaging speed, low equipment cost, 

scalability for a variety of measurement ranges, and ability to simultaneously 

monitor both temperature and wind velocity fields, acoustic tomography has 

attracted considerable interest in the field of atmospheric imaging. This thesis 

aims to improve the reconstruction quality of the acoustic tomography system 

for temperature and wind velocity field imaging. Focusing on this goal, the 

contribution of the thesis can be summarised from the perspectives of data 

collection system development, robust and accurate TOF estimation method, 

and high-quality scalar and vector tomographic image reconstruction methods 

for temperature and wind velocity fields respectively. Details are given below. 

Firstly, in order to facilitate the experimental study of acoustic tomography 

imaging, the design and evaluation of the data collection system and TOF 

estimation method was presented. The evaluation results indicate that the 

presented data acquisition system and TOF estimation method has good 

quantitative accuracy in the lab-scale experiments. 

The temporal resolution is of great significance for the real-time monitoring of 

the fast-changing temperature field. To improve the temporal resolution, a 

novel online time-resolved reconstruction (OTRR) method is presented, which 

can reconstruct high quality time-resolved images by using fewer TOFs per 

frame. Compared to state-of-the-art dynamic reconstruction algorithms such 

as the Kalman filter reconstruction, the proposed algorithm demonstrated 

superior spatial resolution and preferable quantitative accuracy in the 

reconstructed images. These features are necessary for the real-time 

monitoring of the fast-changing temperature field. 

The forward modelling of most acoustic tomography problems is based on a 

straight ray model, which may result in large modelling errors due to the 

refraction effect under a large gradient temperature field. In order to reduce 

the inaccuracy of using the straight ray model, a bent ray model and nonlinear 

reconstruction algorithm is applied, which allows the sound propagation ray 
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paths and temperature distribution to be reconstructed iteratively from the 

TOFs.  

Using acoustic tomography to reconstruct large-scale temperature and wind 

velocity fields, a fully parallel TOF measurement scheme is necessary. To 

achieve this goal, a set of orthogonal acoustic waveforms based on the filtered 

and modulated Kasami sequence is designed and a cross-correlation based 

TOF estimation method is used for data collection. Besides, to overcome the 

invisible field problem and improve the image quality of the wind velocity 

reconstruction, a divergence-free regularised vector tomographic 

reconstruction algorithm is studied. The proposed method is able to provide 

accurate tomographic reconstruction of the 2D horizontal wind velocity field 

from the TOF measurements. 

In summary, this thesis focuses on the improvement of acoustic tomography 

techniques for temperature and wind velocity fields, including the phase 

corrected Akaike information criterion (AIC) TOF estimation for accurate and 

robust TOF estimation, the online time-resolved reconstruction method for 

real-time monitoring of the fast changing temperature field, the nonlinear 

reconstruction based on the bent ray model to reconstruct the temperature 

field with a large gradient, and the divergence-free regularised reconstruction 

method to visualise the 2D horizontal wind velocity field. 
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Chapter 1 Introduction  

 

1.1 Background and motivation 

The principle of acoustic tomography is similar to that of X-ray computed 

tomography (CT), which is to send acoustic signals through the sensing area 

and visualise the internal structure based on the corresponding interactions 

with the received signals. There are three major interactions amenable to 

acoustic measurements: including the sound speed, the attenuation, and the 

scattering [1]. Among these interactions, the sound speed distribution is the 

most critical property, which can be reconstructed based on acoustic Time-of-

Flight (TOF) measurements. With a small number of acoustic sensors placed 

around the sensing area, multiple TOF measurements along different acoustic 

propagation ray paths can be used for the tomographic reconstruction of the 

2D or 3D sound speed distribution. 

Acoustic tomography has proved to be an effective sensing technique for a 

variety of applications. Relevant cases include the large scale ocean currents 

[2-5], the seismic imaging of the geometrical properties of the subsurface at 

depth [6], medical ultrasound imaging for breast cancer detection [7-11], the 

non-destructive testing for tree decay detection [12] and stored grain 

deterioration detection [13].  

In addition to these applications, acoustic tomography also gains a great deal 

of interest in atmospheric imaging to monitor the temperature and wind velocity 

distributions of air. Reported research on atmospheric imaging based on 

acoustic tomography includes the atmosphere vertical temperature structure 

monitoring using acoustic waves from powerful explosions on the ground [14, 

15], the horizontal temperature and wind velocity field monitoring of the near 

surface atmosphere [16, 17], the indoor climate monitoring system [18-21], and 

the furnace or boiler temperature field monitoring system [22-24].  
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Among all the acoustic tomography application areas, the work described in 

this thesis mainly focuses on exploiting the acoustic tomography technique for 

atmospheric imaging, including the large-scale (from tens to several hundred 

metres) wind velocity imaging system, the small-scale (from several metres to 

tens metres) and lab-scale (within 1 metre) air temperature imaging system. 

There are several efforts in developing robust and accurate temperature and 

wind velocity measurement techniques. For the non-invasive temperature 

measurement device, laser-based techniques, such as the Rayleigh scattering 

technique with the aid of particle image velocimetry and laser Doppler 

velocimetry, have the disadvantages of being expensive and difficult to be 

implemented. Passive optical tomography with a multi-camera tomography 

system is able to provide non-invasive 3D flame monitoring and 

characterization on laboratory scale furnaces with good spatial resolution. 

However, it also requires the object to be luminous and translucent in order to 

get the side view measurements [25]. For the wind velocity measurement, 

SODAR (SOund Detection And Ranging) and LIDAR (LIght Detection And 

Ranging), the two remote sensing techniques which both employ the Doppler 

effect to acquire wind observations, have the disadvantages of being 

expensive, relatively power hungry [26] and difficult to implement for small 

scale measurement setups. Despite its advantages of having a non-intrusive 

nature, high-speed, and low equipment cost, acoustic tomography has two 

major benefits compared to other temperature and wind velocity measurement 

techniques: (1) acoustic tomography is one of few techniques that can deliver 

accurate quantitative estimation results of the temperature and wind velocity 

fields simultaneously; and (2) acoustic tomography has a scalable sensing 

area, which ranges from a few metres to hundreds of metres.  

1.2 Aims and objectives 

Aiming at improving the performance of acoustic tomography for the 

atmospheric imaging of temperature and wind velocity fields, the primary 

targets of this thesis are to develop robust and accurate TOF estimation 

algorithm, scalar tomographic reconstruction algorithm for temperature field 
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imaging, and vector tomographic reconstruction algorithm for wind velocity 

field imaging. An acoustic tomography system is developed to validate the 

proposed methods in lab-scale applications. Due to the implemental limitation, 

simulation study is conducted to investigate the large-scale wind velocity field 

reconstruction. To accomplish these targets, the following research objectives 

were established: 

• To develop a lab-scale acoustic tomography system with a transducer 

array which are capable of providing multiple ray paths for TOF 

measurements, configurable transmitter excitation, and received data 

acquisition, denoising and storage. 

• To improve the accuracy of the TOF estimation against noise and 

interference to ensure that the relative root mean square error (rRMSE) 

of the TOF estimation is no more than 0.4% (in order to meet the 

requirement that tomographic reconstruction error is no more than 5%) 

• To improve the performance of scalar tomographic reconstruction 

algorithms for effective reconstruction of two specific temperature field: 

one with a dynamic characteristic where the frame rate of the 

conventional system is not sufficient; and another with a large gradient 

where the commonly used straight ray model and linear reconstruction 

algorithm cannot be used. 

• To investigate the vector tomographic reconstruction algorithm for 

effective reconstruction of the large-scale 2D horizontal wind velocity 

field.  

1.3 Main contributions 

The main contributions of this PhD study are summarised as follows: 

• The data acquisition system for acoustic tomography. The key features 

of the presented system include: (1) a transducer array, which consists 

of 16 acoustic transmitters and 16 acoustic receivers around the 
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sensing area, to provide 192 TOFs for each frame’s reconstruction; (2) 

a switching circuit for the semi-parallel data acquisition scheme; (3) the 

National instruments data acquisition card (NI DAQ) for excitation signal 

generation and received waveform measurement; and (4) a central 

control software for system configuration, received waveform 

monitoring and data storage.  

• An improved TOF estimation method based on the AIC detection. Two 

improvements are studied in comparison with the conventional 

weighted AIC TOF estimation methods to reduce crosstalk interference 

and sound reflections: (1) an adaptive window is applied for accurate 

AIC TOF estimation; and (2) a phase correction method is developed to 

further improve the temporal resolution and noise robustness of the 

TOF estimation. 

• A novel online time-resolved reconstruction method using fewer TOFs 

per frame. Firstly, by exploiting the redundancy of information in the 

temporal domain, a temporal regularisation is designed based on an 

adaptive auto aggressive (AR) model to reduce the required amount of 

TOF data per frame. A sliding overlapping window is applied to further 

improve the reconstruction accuracy. Secondly, a non-iteration scheme 

is used for the time-resolved reconstruction. Instead of conducting an 

iterative calculation upon each data set until convergence, the recursive 

reconstruction process performs a sliding iteration over each data 

segment. For the reconstruction of each frame, the online computation 

is non-iterative. 

• A nonlinear reconstruction method is used to visualise a temperature 

field with a large temperature gradient. Instead of using the straight ray 

model and linear reconstruction algorithm, the bent ray model and the 

nonlinear reconstruction algorithms are applied. This allows the sound 

propagation ray paths and temperature distribution to be reconstructed 

iteratively from the TOFs. During the nonlinear reconstruction process, 
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the ray tracing process is greatly accelerated using fast marching 

method (FMM). Compared to the conventional shooting method ray 

tracing, which can only provide the ray path between one transmitter 

and one receiver, the FMM can calculate all the ray paths from one 

transmitter to all the receivers at the same time.  

• A set of orthogonal acoustic waveforms based on the filtered and 

modulated Kasami sequence and the divergence-free regularised 

vector tomographic reconstruction method. The orthogonal excitation 

waveforms are used for the fully parallel data collection scheme to 

accelerate TOF measurements for large scale acoustic tomography. 

The divergence-free regularised vector tomographic reconstruction 

method is studied to overcome the invisible field effect of vector 

tomography problem. The 2D horizontal wind velocity field can be 

reconstructed with good accuracy using TOF measurements only. 

1.4 Overview of the Thesis 

The thesis is composed of 7 chapters and the remaining parts are structured 

as follows. Following the introductory part in this chapter, Chapter 2 reviews 

the foundations of acoustic tomography, the existing acoustic tomography 

systems for atmospheric imaging, the state-of-the-art acoustic tomography 

reconstruction algorithms, and the emerging applications of acoustic 

tomography where the TOF estimation method and image reconstruction 

methods can also be used. 

In the first part of Chapter 3, the details of the lab-scale acoustic tomography 

system are presented. This includes the design and implementation of the 

transducer array, switching circuit, excitation and data collection, and the 

central control software. The second part of the chapter illustrates the phase 

corrected AIC TOF estimation method in terms of adaptive window selection, 

weighted AIC TOF estimation, phase correction, and ray length calibration. 

The performance of the data acquisition system and TOF estimation method 

is evaluated in the experiments. 
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Chapter 4 proposes a novel online time-resolved reconstruction algorithm for 

acoustic tomography. Details about the reconstruction algorithm are presented 

including: (1) a temporal regularisation based on an adaptive AR model to 

reduce the required amount of TOF data per frame; (2) a sliding overlapping 

window is applied to further improve the reconstruction accuracy; and (3) a 

recursive calculation scheme for non-iterative online reconstruction. The 

performance of the proposed online time-resolved reconstruction method is 

evaluated in the simulations and experiments. 

Chapter 5 presents a nonlinear acoustic tomographic reconstruction algorithm 

using a bent ray model, when the temperature field has a large gradient and 

the refraction effect cannot be ignored. The reconstruction algorithm has 

following steps: (1) using the nonlinear conjugate gradient descent method to 

solve the nonlinear inverse problem; (2) fast acoustic ray tracing given the 

sound speed distribution using FMM; and (3) a line search for optimal step size. 

The performance of the proposed nonlinear acoustic tomographic 

reconstruction method is evaluated in the simulations. 

Chapter 6 consists of two parts. The first part discusses the parallel TOF 

measurements using the cross-correlation TOF estimation and the design of 

the acoustic excitation signal based on the filtered and modulated Kasami 

sequence. The second part studies a vector tomographic reconstruction 

algorithm. The construction of the inverse problem applies the divergence-free 

regularisation and the vector Laplacian regularisation. The inverse problem is 

solved with the alternating direction method of multipliers (ADMM). The 

performance of the proposed reconstruction method is evaluated in the 

simulations. 

Chapter 7 summarises the scientific contributions of the thesis and discusses 

the potential work in the future with an emphasis on further development on 

the basis of the developed acoustic tomography system and tomographic 

reconstruction algorithms. 
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Chapter 2 Review of acoustic tomography 

 

2.1 Introduction 

This thesis focus on the development of the TOF estimation and image 

reconstruction methods of acoustic tomography. The specific application area 

is the atmospheric imaging of temperature and wind velocity fields. Following 

the introduction, a detailed illustration is first given about the foundations of 

acoustic tomography, including the basics of acoustic wave propagation and 

the corresponding acoustic tomography forward problem. On that basis, a brief 

description about the acoustic tomography system will be presented and the 

state-of-the-art acoustic tomography systems for atmospheric imaging will be 

discussed. Furthermore, recent advances in acoustic tomography image 

reconstruction algorithms are briefly summarised. Finally, a brief review on 

other acoustic tomography applications will be given, where our TOF 

estimation and image reconstruction methods can also be used. 

2.2 Foundations of acoustic tomography 

Acoustic tomography can deliver accurate quantitative reconstruction of the 

covered temperature and wind velocity distributions with low equipment cost. 

With a small number of acoustic sensors placed around the sensing area, the 

TOF measurements can be obtained. Subsequently, the temperature image 

can be derived from the TOF measurements, since the group velocity of the 

sound in the sensing area is correlated with the temperature and wind velocity 

of the imaged medium. The TOF   of ray path   is given by: 

 
dl

u




=   (2.1) 
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where u denotes the group velocity of sound wave, and l  represents the unit 

vector of the sound ray path, which is given by u=l u . 

The group velocity of sound in air is primarily affected by the Laplace sound 

speed (the speed of sound in ideal gas) Lc and the wind velocity v along the 

ray path. 

 Lc= +u n v  (2.2) 

 

where n denotes the unit vector normal to the wave front. A brief illustration 

of sound wave propagation in a moving inhomogeneous medium is given in 

Figure 2-1, where U represents the phase velocity (the velocity of the wave 

front) and Φ is the wave front.  

 

Figure 2-1: The sound wave propagation in inhomogeneous medium 

 

According to [27], Lc in the atmosphere is given by  

 
Lc RT=  (2.3) 

 

where =1.4  is the ratio of specific heats for dry air, 
2 2R 287.085 m (s K)= is the 

gas constant for dry air, and T denotes the temperature distribution. 

For equation (2.3), the effect of humidity on sound speed is ignored. The 

reason is twofold: (1) the effect of humidity on the Laplace sound speed is 
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relatively smaller than that of the temperature; and (2) this thesis mainly 

focuses on the applications of atmosphere imaging in dry air environment, for 

instance, the combustion chamber, the furnace and the near surface 

atmosphere.  

Substituting equation (2.2) into equation (2.1), a nonlinear deterministic 

observation model can be used. 

 
( )L

dl

c




=
+ n v l

 (2.4) 

 

The sound propagation ray path depends on the unknown distribution of the 

Laplace sound speed and the wind velocity. As a result, the line integral in 

equation (2.4) becomes nonlinear. This creates a lot of difficulty for the 

reconstruction. Throughout the literature, the straight ray model has been 

widely used to approximate the true propagation ray path with a straight line 

connecting the transmitter and receiver.  

The modelling error for using the straight ray model was quantitatively 

investigated in 2001 [28]. This research shows that the straight ray model can 

be applied for small-scale measurement setups (where the maximum ray 

length is less than a few hundreds of metres). As concluded, the straight ray 

model may lead to large modelling error due to the refraction effect, the 

presence of a large horizontal and vertical gradient in the temperature 

distribution, or the presence of a relatively large wind velocity field compared 

to Laplace sound speed Lc . Specifically, for ocean tomography, which uses the 

acoustic tomography principle to study the ocean current temperature, 

refraction due to the vertical gradient of Lc cannot be ignored. Example are 

listed below.  

• For ultrasonic tomography designed for breast cancer detection, the 

large gradient of sound speed in the fat layer in the breast will causes a 

refraction effect to bend the ray path [7, 29]. The same issue happens 
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in the furnace environment and the combustion chamber, where the 

temperature field may have a relatively large gradient and the refraction 

effect cannot be ignored.  

• For ocean tomography designed to monitor the ocean temperature and 

current, the vertical gradient of the sound speed will also result in 

multiple curved ray paths between transmitters and receivers [3]. Under 

these circumstances, the bent ray model should be used. This may 

require priori knowledge for the sound speed map, i.e. the sound speed 

profile for depth in ocean tomography. Alternately it would require a 

nonlinear reconstruction method which can reconstruct not only the 

distribution from the TOF measurements, but also the corresponding 

ray paths. 

Given the sound propagation ray path, the relationship between the TOF 

measurements and the unknown temperature and wind velocity distribution 

can be determined.  

For the application of temperature reconstruction where the wind velocity v can 

be ignored, the vectors n  and l coincide since
/

/

c

c

+
= =

+

n v
l n

n v
. Therefore, 

equation (2.4) can be linearised as  

 L

L

dl
s dl

c


 

= =   (2.5) 

 

where 1/L Ls c= denote the sound speed slowness distribution. 

Due to the limitation of a finite number of TOF measurements, the 

reconstruction process of acoustic tomography is only able to recover a finite 

number of unknowns. In this thesis, the square mesh is used to divide the 

sensing area into N pixels. Therefore, for both of the linearised line integrals 

given in equation (2.5), the forward problem should be written in discrete form 

as 
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 τ = As  (2.6) 

 

where 1Ns  describes the slowness distribution. M NA  is the ray length 

matrix and its element ,i ja is the segment length for the i-th ray path across 

the j-th pixel. 1M  represents the TOF measurements. N is the number of 

pixels and M is the number of TOFs 

For the application of simultaneously reconstructing the temperature and wind 

velocity distributions, the linearization is different. Given 0c and Lc are the 

reference mean value and the perturbation of the Lc , respectively. Therefore 

equation (2.4) can be linearised as: 

 

( )( )

( )

( )( )( ) ( )( )( )
( )

( ) ( )

( )

( )

Γ

0Γ

0

Γ 0 0

0

2 2

Γ 0

( )

2

0 0Γ Γ

0 2

0 Γ

τ

 

( )

1
τ  

L

L

L L

L

L

a
L

L

ds

c c

c c d

c c c c

c c d

c c

c dd s

c c

c d
c

=
+ +

− −
=

+ + − −

− −
=

− +

+
 −

 − +







 



Δ n v s

n Δ n v s

Δ n v s Δ n v s

n Δ n v s

ns Δ ns vs

Δ n v s

ns ns

Δ n v s

 (2.7) 

where in (a) we assume that group velocity perturbations caused by 

temperature and wind velocity changes Lc +Δ n v  should be much smaller than 

0c .  

which can be simplified to 

 ( ) ( )2

0 0- Lc c d 


=  + n v s  (2.8) 
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Based on this straight line assumption, reciprocal tomography is employed in 

the acoustic tomography system and the influence brought by LcΔ n  and v

can be separated using the back and forth measurements  +  and  − . 

 
( ) 2

0

2
L

c
c ds

 + −



+
=   (2.9) 

 
( ) 2

0

2

c
d

 + −



−
=  v s  (2.10) 

 

The discretisation of equation (2.9) is similar to equation (2.6) and for equation 

(2.10), it can be discretised as  

 l = SV  (2.11) 

 

where 𝒍 ∈ ℝ𝑁, its elements are 
( ) 2

, , 0

2

i i

i

c
l

 + −−
=  and N is the number of ray 

paths;  𝑉 = [𝑽𝒙; 𝑽𝒚], 𝑉 ∈ ℝ2𝑀 , 𝑽𝒙, 𝑽𝒚 ∈ ℝ𝑀, and M is the number of pixels; 𝑺 =

[𝑺𝒙; 𝑺𝒚] , and 𝑺𝒙, 𝑺𝒚 ∈ ℝ𝑁∗𝑀  are the directional ray length matrix whose 

elements are 𝑠𝑖,𝑗cos(θ) and 𝑠𝑖,𝑗sin(θ) respectively. 

2.3 Acoustic tomography system  

2.3.1 System architecture and function 

An acoustic tomography system is generally composed of three sub-systems, 

i.e., an acoustic transducer array, the central control system, and the 

tomographic image reconstruction system. The acoustic transducer array 

consists of several transmitters and receivers placed at the boundary of the 

sensing area. They form multiple transducer pairs for the TOF measurements. 

The central control system consists of four modules, including the excitation 

signal generation module, the data acquisition module, the digital signal 

processing module and the TOF estimation module. The obtained TOF 

measurements will be sent to the tomographic visualization system for image 
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reconstruction, visualization and analysis. In this thesis, the development of a 

lab-scale acoustic tomography system will be demonstrated in chapter 3. 

 

Figure 2-2: Functional system diagram 

2.3.2 Existing acoustic tomography system 

This review mainly focuses on the application of atmospheric imaging, which 

uses the acoustic tomography system to reconstruct the temperature and wind 

velocity fields. Several tomographic systems listed in Table 2-1 have been 

developed to perform imaging in this area, including the large-scale (from tens 

to several hundred metres) atmospheric imaging system, the small-scale (from 

several metres to tens metres) indoor climate and combustion chamber 

monitoring system, and lab-scale (within 1 metre) acoustic tomography system. 

For large scale system, the number of acoustic transducers is very limited 

(usually less than 10) due to high implemental cost of data acquisition system. 

The signal frequency is less than 2kHz for long sound propagation distance. 

On the contrary, increased number of transducers and high frequency of 

acoustic signals can be used in the small scale and lab scale system, which in 

return improve the tomographic reconstruction quality. 

The first acoustic tomography system for large-scale atmospheric imaging was 

developed at Pennsylvania State University at the beginning of the 1990s[16]. 

Their transducer array consists of three speakers and five microphones placed 

a few metres above the ground. This transducer array covers a square sensing 

area with a side length of 200 m and provide 15 TOFs for reconstruction. The 

transmitted signals are frequency modulated waveforms with their frequencies 

swept from 100 to 1000 Hz over a duration of 0.1 seconds. In the mid-1990s, 
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a portable array for acoustic tomography of the atmosphere surface layer (ASL) 

was built at the Institute of Meteorology, University of Leipzig, Germany. In this 

array, 8-12 speakers and microphones were mounted on tripods 2 m above 

the ground. The size of the sensing area varied from tens to several hundreds 

of metres. The transmitted acoustic signals were two short bursts of 1 kHz 

sinusoid wave separated by 20 ms. In 2008, [30] at New Mexico State 

University, an acoustic tomography system with a three-layer transducer array 

was built, which consisted of three transmitter and five receiver towers 

covering a square sensing area with side length of 80 m. In each tower, 

transmitters or receivers were placed at three levels ranging from 3 to 9 m, 

which allowed the measurement of TOFs between transmitters and receivers 

at different levels. In total, this three-layer array can provide 56 TOF 

measurements for reconstruction. 

The small-scale acoustic tomography system used for the gas boiler was first 

discussed in Green’s work in 1986 [31]. Since then, numerous efforts have 

been made to improve the acoustic tomography system for the boiled furnace, 

the combustion chamber and many other applications. In 1996, the PYRA 

system was developed for temperature imaging inside power plant boiler [22]. 

This used 7 acoustic transceivers operating at 1800 Hz to cover a 5.929 by 

5.313 m sensing area, and 13 TOF measurements were used for 

reconstruction. The North China Electric Power University developed an 

acoustic tomography system for the online monitoring of the coal-fired boiler 

[24] and Ash fouling [23]. Their transducer array consisted of 4 loudspeakers 

and 8 microphones whose frequency swept from 500 Hz to 8000 Hz over a 

duration of 0.1 seconds.  
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Table 2-1: Comparison of some recent acoustic tomography systems for atmospheric imaging. 

Researchers Date Receiver Transmitter Frequency Sensing area Ray path 
Spatial 

resolution 

Wilson et al. 1994 5 3 100 to 1000 Hz 200200 m2 15 50 m 

Bramanti et al. 1996 1 1 1800 5.9295.313 m2 13 0.5 m 

Ziemann et al. 1997 4 6 1000 Hz 200260 m2 15 20 m 

Ziemann et al. 2002 12 8 1000 Hz 300440 m2 79 75 m 

Holstein et al. 2004 4 8 1000 Hz to 10 kHz 1520 m2 32 4 m 

Jovanovi ć et al. 2008 12 12 40 kHz 1 m2circular 72 0.15 m 

Ostashev et al. 2008 15 9 Non mentioned 300440 m2 36 75 m 

Yan et al 2012 16 16 500 to 2000 Hz 1.191.19 m2 96 0.06 m 

Zhang et al 2015 8 4 500 to 8000 Hz 18.8917.85 m2 12 1.2 m 

Liu et al 2017 20 20 40 kHz 
0.2150.215 m2 

circular 
100 0.07m 
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Later, various lab-scale acoustic tomography systems have been developed 

to measure room temperature distribution [18, 20, 32, 33] and the wind velocity 

of a wind tunnel [19, 34, 35]. Compared to the acoustic tomography system for 

large scale atmospheric and small-scale boiler monitoring, the lab-scale 

acoustic tomography system usually has a smaller sensing area (varying from 

0.3 to 2 m) and consists of a large number of transducers (more than 16). The 

small sensing area results in a higher TOF estimation accuracy on the short 

ray path, therefore transducers with higher operating frequency (40 kHz) are 

used. Benefiting from the low implementation cost, the lab-scale system is able 

to use more acoustic transducers placed on the boundary. This can provide 

more ray paths for TOF measurements, and an improved reconstruction with 

higher image quality. However, previous lab-scale acoustic tomography 

system utilized a sequential data collection scheme, which increased the data 

collection time per frame and reduce the temporal resolution. Besides, the 

commonly used piezoelectric transducers has a relative small beam angle, 

which reduced the number of ray paths for the tomographic reconstruction. 

2.4 TOF estimation  

The major challenge in employing acoustic tomography for temperature field 

monitoring is to achieve high TOF measurement accuracy. An accurate TOF 

estimation is also essential in other applications, for example, ultrasonic 

ranging, positioning and synchronisation systems [36, 37], ocean tomography 

[3], ultrasonic breast cancer detection [7], and seismic wave arrival time 

estimation. To date, a number of TOF estimation methods have been 

developed in other disciplines.  

Methods based on cross-correlation are usually used for TOF estimation. Such 

methods assume that the received signal is the time-shifted replica of the 

reference signal. The TOF is considered as the time delay [38, 39]. However, 

measurement accuracy is limited because 1) the received signal is corrupted 

by White Gaussian Noise (WGN) and interference due to channel crosstalk 

and sound reflections; and (2) the received signal waveform is not a time-
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shifted replica of the reference signal due to waveform distortion under a 

complex internal structure of the medium. 

Estimating the TOF through parametric approximation through envelope 

extraction [38, 40, 41] has been widely used in ultrasound ranging and non-

destructive testing. The received signal is usually modelled as a delayed 

Gaussian echo signal, and the TOF can be estimated after its envelope is 

extracted [42]. However, this Gaussian echo model is based on the 

assumption that the received signal is a backscattered echo from a flat surface 

reflector. 

Numerous automatic arrival time estimation methods have been developed for 

seismic wave data analysis in geophysical applications. Short and long time-

averaged ratio (STA/LTA) [43], phase arrival identification- kurtosis (PAI-K) [44] 

and other window-based methods calculate the characteristic function 

(waveform energy, absolute amplitude, kurtosis values, and many other 

characteristic functions) within a predetermined window. The arrival times are 

estimated based on the maximum value of the derivative. Variations of the 

aforementioned methods are the modified energy ratio (MER) [45], the 

modified Coppens’ method (MCM) [46], and the short-term or long-term 

kurtosis ratio (S/L-Kurt) [47]. These methods calculate the characteristic 

function from post- and pre-sample windows. The temporal index associated 

with the maximum ratio represents the arrival time. There are also numerous 

hybrid approaches based on these algorithms that attempt to more accurately 

estimate the TOF and these include the wavelet transform approaches [48] 

and the joint energy ratio (JER) [49].  

The Akaike Information Criterion (AIC) and autoregressive (AR) techniques 

were first applied to TOF estimation of seismic wave data [50]. The arrival time 

is considered as a transition point that separates the signal into two different 

stationary processes. Therefore, the AIC function can be used to determine 

the transition point while the minimum AIC value indicates the optimum TOF 

estimate.  However, the AR model's order should be determined heuristically 

and considering the noise level. To overcome this problem, Zhang [48] 
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proposed a wavelet–AIC picker in which the AIC values are calculated directly 

from the seismogram using Maeda's formula [51], the latter of which computes 

the AIC directly from the waveforms without using the AR model coefficients. 

With some modification, the algorithms used in seismology can be applied to 

ultrasound signals [8].  

Two issues remain before the AIC TOF estimation method is applied to our 

acoustic TOF tomography data. Firstly, the accuracy of the AIC TOF estimation 

method is affected by crosstalk interference and reflection echoes, both of 

which manifest in the received ultrasound signal. Secondly, the method is not 

robust against random noise, especially for the noise in close temporal 

proximity to the arrival time. 

To solve these two problems, a modified phase corrected AIC TOF estimation 

method (PCAIC) is proposed for the acoustic tomography system. Two 

improvements are developed compared to the conventional weighted AIC TOF 

estimation methods; the first improvement is an adaptive window applied to 

the received ultrasonic signal to reduce the effect of crosstalk interference and 

reflection echoes. The second one is phase correction to improve the temporal 

resolution and accuracy of the TOF measurements. 

2.5 The state-of-art image reconstruction algorithm 

The acoustic tomography reconstruction is a process to calculate an unknown 

distribution from a limited number of TOF measurements. In this section, a 

review of the fundamentals of acoustic tomography reconstruction will be given. 

Reconstruction methods are based on the forward problem defined in 

equations (2.6) and (2.11), which use a straight ray model to approximate the 

true ray path. The nonlinear reconstruction for a bent ray model will be 

discussed later in Chapter 5.  

Although the forward problem of the acoustic tomography can be considered 

as the Radon transform if the straight ray model is used, the transform-based 

reconstruction method, including the inverse Radon transform, the Fourier 



19 
 

slice theorem, and the filtered back projection, are not discussed in this section. 

This is because the transform-based method requires full knowledge of the 

line integral measurements (TOF) from all lines and direction. In fact, for a 

typical acoustic tomography system set up, the number of TOFs is very limited 

and the transform-based reconstruction may suffer from the lack of quantitative 

accuracy[52].  

2.5.1 Algebraic-based algorithms 

The algebraic-based algorithms are the most widely used approach throughout 

the literatures [13, 17, 18, 20, 21, 28, 32, 33, 53-56]. Generally, this approach 

minimises a cost function to evaluate the mismatch between the unknown 

distribution (
Lc , v ) and the TOF measurements. For the algebraic-based 

method, the measurement noise is usually modelled as the additive white 

Gaussian. If accurate knowledge about the noise distribution is available, for 

instance, the Poisson noise model, the statistical-based algorithm should be 

used to formulate the inverse problem. Therefore, the inverse problem of the 

acoustic tomography can be formulated as a simple least square problem as 

follows: 

 
2

2
min
x
y - Ax  (2.12) 

 

where 1My denotes the TOF measurement, 1Nx represents the 

unknown distribution ( Lc or v  for specific application) and M NA  is the 

corresponding ray length matrix as is defined in equation (2.6). The least 

square equation (2.12) has the explicit solution lsx .  

 ( )ls

-1
T Tx = A A A y  (2.13) 

 

However, there are two difficulties before this least square solution is applied. 

Recall the forward problem of acoustic tomography, the TOF measurements 

take the form of Fredholm integral equations of the first kind. Therefore the 

corresponding inverse problem defined in equation (2.12) is ill-posed, and the 
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solution in equation (2.13) is very sensitive to measurement noise. Small 

perturbations in the TOF measurement will incur large artefacts in the 

reconstructed image.  

Besides, the inverse problem is usually under-determined, which means the 

number of TOF measurements M is much smaller than the number of 

unknowns N. It is difficult to recover the desired distribution with good spatial 

resolution from the limited number of TOFs.  

Numerous algebraic-based reconstruction methods are developed to solve 

this under-determined and ill-posed inverse problem, which can be divided into 

two categories, the subspace projection method [13, 34, 57-59], and the 

regularisation method [1, 17-19, 28, 29, 32, 53, 60-62]. Both of these 

approaches are able to: (1) improve the ill-posedness of the inverse problem 

and provide tomographic images which are less sensitive to noise; and (2) 

improve the image quality in terms of spatial resolution, temporal resolution 

and quantitative accuracy by incorporating priori knowledge of the target image. 

Subspace-projection  

The general idea of the subspace projection method is to consider a suitable 

basis of function to approximate the target distribution with fewer parameters. 

The reconstruction accuracy relies on the assumption that there exists a 

potentially low-dimensional basis set to capture the key feature the dominant 

features of the desirable image. The optimal basis function can be obtained 

from priori knowledge [20] or learned from the available data set [10]. But in 

most cases, the radial basis function (RBF) can be used for simplicity [13, 34, 

54, 57, 58].  

For the RBF representation, it takes the form as 

 
2

1

( )
K

k

k

x b e
−

=

= cr -r
r  (2.14) 

 

Equation (2.14) in matrix form: 
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 =x Φb  (2.15) 

 

where 1Kb is the RBF weights and N KΦ  is the matrix form of the RBF 

representation operator. K is the number of RBF functions used for 

representation, usually in most applications K is much smaller than the number 

of pixels N. kb is the unknown RBF weights, c
r represents the centres position 

of RBF, and in this thesis the RBF centres are uniformly distributed inside the 

sensing area.  is the shape parameter of the RBF function. 

Combining equations (2.12) and (2.14), equation (2.12) becomes a low 

dimensional inverse problem 

 
2

2
min
b
y - AΦb  (2.16) 

 

With the use of RBF basis functions, the number of unknowns has been 

reduced to K, which is usually much less than the number of measurements. 

The inverse problem defined in equation (2.16) has become an over-

determined problem. However, the use subspace projection, i.e. RBF, may 

lead to a rank deficient inverse problem [52]. The new system matrix AΦ  has 

a dispersed singular value and results in a larger condition number compared 

to A . The solution to equation (2.16) is very sensitive to noise.  

Then the modified inverse problem with fewer unknowns can be solved with 

the truncated singular value decomposition (TSVD) method, which supresses 

the noise effect by discarding the image component corresponding to the 

smaller singular value. Besides, a regularisation method can be used to solve 

the ill-posed inverse problem, and a discussion will be given in next subsection. 

And the solution using RBF subspace projection and TSVD reconstruction 

is[63]: 

 
1

rbf p

−= T
x ΦVΣ U y  (2.17) 
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where T
AΦ =UΣV  and M MU ,

( )

1 2[ ( , ,..., ), ]M K M

Mdiag     −=Σ 0  and 

K KV . p is the number of largest singular values kept for reconstruction. 

The inverse matrix of singular value is given by: 

 
1 ( )

1 2

1 1 1
[ ( , ,..., ), ]M K P

p

p

diag
  

−  − = 0  (2.18) 

 

In summary, the subspace projection method utilises the priori knowledge to 

solve ill-posed inverse problem. From equation (2.18) it can be seen that the 

small singular values, which has i p  , are discarded in the reconstruction. 

Consequently, the reconstruction will be less sensitive to noise.  

Regularisation method 

Another approach to solve the ill-posed and underdetermined inverse problem 

is to add a regularisation in the cost function. A general form of the cost 

function consists of two functions, the data fidelity term that measure the 

distance between the measurements y and the back-projected image Ax ; 

and a regularisation term which penalises the potential solution with an 

undesired property. The solution to the inverse problem can be obtained by 

solving the convex minimisation problem as shown in equation (2.19). 

 
2

2
min ( )R+
x
y - Ax x  (2.19) 

 

where ( )R x is the regularisation term built based on the priori  knowledge for 

the unknown distribution x .  is the regularisation weight. Regularisation is 

used for two reasons:  

• The regularisation term enforce regularity to suppress the unwanted 

noise component and make the reconstruction less sensitive to noise.  

• The regularisation term interprets the priori knowledge of the 

distribution, which may help to improve the spatial resolution and reduce 

the reconstruction error of the reconstruction result. 
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Typical selections of the regularisation term are the 2l  regularisation for 

smoothness constraints, the 1l  regularisation for sparsity constraints, and the 

nuclear norm regularisation for low-rank structure constraints.  

For the 2l  regularisation, which is used as a smoothness constraint, the 

general form is defined below: 

 
2

2
( ) =R x Fx  (2.20) 

 

where F is the regularisation matrix. The matrix F can be the identity matrix (

F = I ) as the Tikhonov regularisation [63]. Besides, the regularisation matrix 

can be built based on other differential operators to enforce smoothness of the 

reconstructed image. An example is the four-connected region second-order 

Laplacian operator matrix (F = L ) for the Laplacian regularisation [64].  

The solution to the 2l  regularised inverse problem is 

 ( )2l = +
-1

T T Tx A A F F A y  (2.21) 

 

The regularisation parameter   is usually chosen empirically, which is to 

ensure (1) the matrix +T T
A A F F  is full-ranked with an smaller condition 

number, and (2) the reconstruction can provide desired results . The solution 

2lx  is therefore more robust against random noise. 

For better image quality, the 2l  regularised inverse problem can also be solved 

iteratively through many well-established optimization algorithms such as 

gradient descent, conjugate gradient descent, and quasi-newton methods. The 

gradient descent optimization, which in the acoustic tomography field is 

commonly known as the simultaneous iterative reconstruction technique 

(SIRT) [19, 62], can be expressed below 
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1 1

1 2

1 2

( )

(1 ,1 ,...,1 )

(1 ,1 ,...,1 )

T

i i i

N

M

diag LP LP LP

diag LR LR LR

 − −= − − −

=

=

T
x x PA W Ax y PF Fx

P

W

 (2.22) 

 

where i denotes the iteration index and  represents the step size, in our case 

it can be set as 1. Generally, a step size of max2 ( )  A , where ( )max

denotes the maximum singular value of matrix. ,

1

N

i i j

i

LP a
=

= which denotes the 

total length of all the ray paths cross the i-th pixel. ,

1

M

j i j

j

LR a
=

=  which represent 

the length of j-th ray path. The diagonal preconditioner P is used to improve 

the reconstruction convergence performance and the geometrical weight 

operator W is used so that the TOFs for the rays that traverse longer paths can 

tolerate larger errors. 

For the 
1l  regularisation, the general form is defined as: 

 
1

( ) =R x Fx  (2.23) 

 

where the regularisation matrix F can be the identity matrix( F = ) as the 

sparsity regularisation, with priori knowledge that the target distribution of 

temperature and wind velocity has sparse representation using a specific 

model [4, 60]. The commonly used are the sparsity regularisation (F = I ) and 

TV regularisation ( TV( )F = , ( )TV is the 2D total variation norm operator) for 

ultrasound tomography for medical imaging [10, 65] for edge preserving 

property.  

The 
1l regularised inverse problems are usually solved iteratively, based on a 

number of well investigated methods, such as the Gradient Projection [66, 67], 

the iterative shrinkage-thresholding algorithms (ISTA) [68, 69], the Proximal 

Gradient [70, 71], and Augmented Lagrange Multiplier [72]. For the widely 
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used iterative shrinkage-thresholding algorithm (ISTA), the iteration process 

for sparse regularised inverse problems (F = I ) is expressed as: 

 ( )1 12 ( )T T

i t i i − −= − −x P x A A x y  (2.24) 

 

where the thresholding operator is defined as 

 ( )( ) sgn( ) 
+

= −P x x x  (2.25) 

 

The nuclear norm regularisation is mainly used for the dynamic imaging of the 

temperature and wind velocity fields, based on the low rank structure of several 

successive scans. The low rank structure can be expected if successive 

tomographic images are stacked as the columns of a temporal-spatial image 

matrix. The similarities between the successive tomographic images ensure 

that the corresponding temporal-spatial image matrix is a rank deficient matrix. 

This low rank property can be used as the priori knowledge to reduce the 

number of measurements required per frame or to enhance the quality of the 

follow up images. Since the rank penalty is nonconvex, it is often replaced with 

the nuclear norm, which is the closest convex relaxation [73]. Generally, the 

inverse problem can be defined as: 

 *
arg min +

F
=

X

X Y - AX X  (2.26) 

 

where the TOFs and images for all the frames of the tomographic images are 

stacked as columns and denoted as  =
1 2 T

X x , x , ..., x  and  1 2 T
Y = y , y , ...y , 

F
•  is the Frobenius norm, 

*
•  represents the nuclear norm and T is the 

number of frames. Then, the forward problem can be written asY = AX , where 

the block diagonal matrix A  is given as { }diag=
1 2 T

A A ,A , ..., A . 

The solution of the nuclear norm regularised inverse problem is computed 

iteratively based on the iteratively hard thresholding method (IHT) [74]. 
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( )

i

r



=

T

i+1 / 2 i

i+1 i+1 / 2

X = X - A (AX -Y)

X P X
 (2.27) 

 

( )rP X computes a rank-r approximation as 

 ( ) = T

r rP X UΣ V  (2.28) 

 

where T
X =UΣV and N NU ,

( )

1 2[ ( , ,..., ); ]N T T

Tdiag    − =Σ 0  and T TV . 

r is the number of largest singular values kept for reconstruction. The 

shrinkage matrix of singular value is given by: 

 
( )

1 2[ ( , ,..., ); ]N r r

r rdiag    − =Σ 0  (2.29) 

 

Table 2-2: Iterative hard thresholding algorithm for low rank reconstruction  

Input:Y A  IterNo, r,  

Ourput: X  

Initialise: 
0X = 0  

For i=1 : IterNo  

i
T

i+1/ 2 iX = X - A (AX -Y)  

1/2( )i+=
i+1 r
X P X  

 If 1i i F
+ − X X break 

End  

 

2.5.2 Statistical-based algorithms 

The statistical-based reconstruction methods have been developed to solve 

the acoustic tomography inverse problem since decades ago [35, 55, 75-77]. 

Generally, this approach considers the tomographic inverse problem in the 
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framework of Bayesian statistics, that all the variables in the model are random 

variables and the solution is calculated based on the Maximum a posteriori 

(MAP) estimator[78]. Compared to the algebraic-based method, especially the 

regularisation method, this allows for better modelling of the priori knowledge 

for both the measurement noise distribution and the unknown distribution. This 

review mainly focuses on the additive noise model, which is preferred 

throughout literatures.  

 =y Ax+ n  (2.30) 

 

where the measurement contaminant with zero mean Gaussian additive noise

( , )nN n 0 I . 

Then the MAP inversion is defined as: 

  arg min log( ( ))MAP P= −
x

x x | y  (2.31) 

 

According to the Bayesian theory,
( ) ( )

( )
( )

P p
P

P
=

y | x x
x | y

y
. Since the 

measurement data y is given, ( ) 1P =y , then equation 错误!未找到引用源。 

become 

  arg min log( ( )) log( ( ))MAP P P= − −
x

x y | x x  (2.32) 

 

where ( )P y | x is the conditional probability of y given x, which is the likelihood 

function. ( )P x is the priori probability of the x.  

The construction of the likelihood function is the key of statistical inversion. 

The likelihood function comprises the forward model of the measurement 

process as well as the information about the measurement noise. For the most 

frequent case, the additive noise, a brief illustration is given below. 
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Assume the noise probability distribution ( )noiseP n  is known, and the noise n  is 

independent with the target distribution x , then the conditional probability of 

y given x is distributed like n . 

 ( ) ( )noiseP P=y | x y - Ax  (2.33) 

For the commonly used zero mean Gaussian noise model, 

 
2

2 2

1
( ) exp

2
noise

n

P


 
 − 

 
n n  (2.34) 

 

Therefore, the corresponding likelihood function becomes 

 
2

2 2

1
( ) exp

2 n

P


 
 − 

 
y | x y - Ax  (2.35) 

 

Considering the special case that the priori model is ignored and x  follow a 

uniform distribution, then the MAP inversion defined in equation 

错误!未找到引用源。 becomes the standard least square problem defined in 

equation (2.12), which is underdetermined and ill-posed.  

The construction of the priori probability ( )P x will help to improve the 

reconstruction accuracy and image quality. Different construction methods 

have been developed and used successfully in tomographic inverse problems. 

Their priori probability models are listed in Table 2-3. This section focuses on 

the Gaussian priori model, since it is undoubtedly the mostly used probability 

density for statistical inversion. 

Let the target distribution x and measurement noisen  be mutually independent 

Gaussian random variables 

 
0( , )

(0, )

N

N

x

n

x x Γ

n Γ
 (2.36) 
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where 
N NxΓ and 

M M

n

Γ are the covariance matrix of x and n

respectively. 
0
x denotes the mean vector. According to [78] the posteriori 

probability become 

 
1

21
( ) exp

2 post

P
−

 
 − 

 
x | y x - x  (2.37) 

 

Table 2-3: Priori probability models 

Method ( )P x model 

Gaussian priori ( ) ( )

2

11 1
( ) exp

2 2

N

T
P



−
   

= −       
0 0x x - x Γ x - x

Γ
 

Impulse priori ( )
N

1
( )= exp

2
P x




 
− 

 
x  

Discontinuity 2 2

1
( )

1 ( )

N

j j-1

P
x - x



 

 
=  

+ 
x  

Total variation ( ) exp( ( ))P  −x TV x  

 

Under this purely Gaussian assumption, the condition mean x  is 

simultaneously the MAP estimator  

 
MAP = -1 T -1 -1 T -1 -1

x n n x 0
x = x (Γ + A Γ A) (A Γ y+ Γ x )  (2.38) 

 

and 

 
-1 T -1 -1

post x n
Γ = (Γ + A Γ A)  (2.39) 

 

The problem can be further simplified by setting 2=xΓ I and 2=nΓ I , and 

both the target distribution x  and n  are zero mean Gaussian distribution. In 

this case,  
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 ( ) ( )
1 1

2 2 2 2=T T T T

MAP    
− −

+ +x = A AA I y A AA I y  (2.40) 

 

where =





is the ratio of the noise and priori variances. The solution defined 

in equation (2.40) is known as the Wiener Filter solution, which was first used 

in acoustic tomography reconstruction in 1994 by Wilson, known as stochastic 

inversion (SI) [16]. This method was extended to the time-dependent 

stochastic inversion (TDSI) in [75], which uses the spatial-temporal covariance 

to incorporate the data set at different times for dynamic reconstruction. The 

SI and TDSI methods assume that the target distribution, the temperature and 

wind velocity, are statistically homogeneous in space, which allows us to use 

the zero mean Gaussian model to approximate the priori and noise distribution 

and therefore use the Wiener Filter solution for reconstruction. 

Besides, these Wiener filter based reconstruction algorithms are actually the 

same as the classical Tikhonov regularised inversion, a brief illustration based 

on SVD is given in (2.41) 

 

( )

( )

( )

( )

( )

( )

1
2

1
2

1
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1
2 2

1
2

=
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T T
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T

T T

tik













−

−

−

−

−

+

=

=

= +

= +

= +

=

2

-1
2 2 T

T

T

x A AA I y

VΣU UΣ U UU y

VΣ Σ + I U y

V Σ I ΣU y

V Σ I V VΣU y

A A I A y

x

 (2.41) 

 

Recently, an improved statistical-based method was introduced for acoustic 

tomography reconstruction. It formulates the tomographic inverse problem as 

a state estimation and employs an unscented Kalman filter (UKF) to 

reconstruct the temperature and wind velocity fields [77, 79]. This Kalman filter 

method has the advantages of (1) dynamic reconstruction, which is able to 
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track the dynamic feature of the temperature and wind velocity fields; and (2) 

computational efficiency, which has the potential for online implementation. 

Details about this Kalman filter reconstruction will be given in the Chapter 4.  

2.5.3 Waveform tomography reconstruction 

The advancement of computing power enables us to solve the wave equation 

directly instead of constructing the forward problem based on ray theory. Not 

only the sound speed but also the attenuation can be reconstructed [80, 81], 

based on the waveform tomography reconstruction. The waveform 

tomography reconstruction records the boundary acoustic pressure 

measurements to fully reconstruction wave information, compared to TOF 

measurements for the ray theory reconstruction.  

Furthermore, the rise of high throughput data acquisition hardware leads to the 

potential of the tomographic fully parallel data collection systems containing 

large numbers of transducers [82]. The improvement of the data collection 

system provides a large amount of data for better reconstruction accuracy 

using waveform tomography reconstruction method.  

There are various advantages of the waveform tomography reconstruction, 

compared to the reconstruction method based on ray theory, including (1) 

better reconstruction accuracy when large diffraction as well as refraction 

occurs; and (2) better image resolution by using the full information of the wave 

propagation.  

There are two ways to formulate the waveform tomography reconstruction 

methods, depending on whether the inverse problem is formulated in the time 

domain or in the frequency domain. Among the waveform reconstruction 

methods in the time domain, remarkable work includes the Propagation and 

Back Propagation method (PBP) [83, 84] and GPU implemented 

reconstruction [9]. In the frequency domain, they are split-step Fourier 

propagator [80] and Frequency-Domain Waveform Inversion [85]. Although 

this method is currently mostly discussed and investigated within the area of 
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medical imaging and seismology, it has the potential to be used for 

atmospheric imaging area in the future. 

2.6 Acoustic tomography applications 

In the past decades, acoustic tomography using TOF measurements has been 

continuously gaining interest in seismic imaging [6], medical ultrasound 

imaging [7-11], atmospheric imaging [17-19, 32, 34, 57, 58], ocean current 

monitoring [2-4] and many other areas [13, 86]. Examples of the acoustic 

tomography applications and the corresponding operating frequency ranges 

are listed in Table 2-4.  

Table 2-4: Examples of the acoustic tomography applications 

Application Imaging targets 
Transducer 
frequency 

Civil infrastructure Flaws 1-500 kHz 

Forestry Tree decay 10-100 kHz 

Ocean tomography Ocean currents 100-200 kHz 

Atmosphere Temperature and wind velocity 40 kHz 

Agriculture Spoilage/insects 0.5-3 kHz 

Geophysical Oil 1 Hz -2 kHz 

Medical Tissues 1-5 MHz 

 

Among these applications, acoustic tomography, or more precisely ultrasound 

tomography has drawn much attention in the area of medical imaging. When 

the ultrasonic wave propagates through the tissue, the sound speed 

distribution can be reconstructed from TOF measurements. This sound speed 

distribution can be used to describe the tissue structure, which is similar to the 

acoustic tomography for atmospheric imaging the temperature and wind 

velocity. An important application of ultrasound tomography is breast cancer 
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detection, where the sound speed is used to detect cancerous tissue from 

normal breast tissue [80].  

2.7 Summary 

This chapter briefly reviewed the acoustic tomography technique from the 

perspectives of existing systems and applications, to fundamental theory, and 

to the cutting-edge acoustic tomography image reconstruction algorithms. The 

purpose of the chapter was to help understand the state-of-the-art acoustic 

tomography techniques, and the emerging or potential applications with 

maximum utilization of the many merits of acoustic tomography. The 

innovative work and scientific contribution of the thesis from these 

perspectives will be demonstrated subsequently in the following chapters. 
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Chapter 3 System design for lab-scale acoustic 

tomography system 

 

3.1 Introduction  

In this chapter, the design of the data acquisition system for acoustic 

tomography is presented first. The key features of the presented system 

include: (1) a transducer array, which consists of 16 acoustic transmitters and 

16 acoustic receivers around the sensing area, to provide 192 TOFs for each 

frame’s reconstruction; (2) a switching circuit for the semi-parallel data 

acquisition scheme; (3) NI DAQ for excitation signal generation and received 

waveform measurement; (4) a central control software for system control, 

received waveform monitoring and data storage. Secondly, an improved TOF 

estimation method based on the Akaike Information Criterion (AIC) is 

developed. Two improvements are studied in comparison with conventional 

weighted AIC TOF estimation methods to reduce crosstalk interference and 

sound reflections: (1) an adaptive window is applied for accurate AIC TOF 

estimation; (2) a phase correction method is developed to further improve the 

temporal resolution and noise robustness of the TOF estimation. The 

performance of the data acquisition system and TOF estimation method is 

evaluated in the lab-scale experiments.  

3.2 Data acquisition system  

3.2.1 System architecture 

Figure 3-1 illustrates the block diagram of the acoustic tomography system 

architecture. The system consists of four parts, including the ultrasound 

transducer array, the switching circuit, and excitation and data collection 

module based on NI DAQ and the central control software on the PC. The 

ultrasound transducer array contains 16 transmitters and 16 receivers, placed 

with uniform spacing around the boundary of the sensing area. The 120° beam 
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angle (-12 dB) of the transducers allows the ultrasound signals from each 

transmitter to reach all 12 receivers on opposite boundary side. They form 

16*12=192 different transducer pairs which are used to measure the TOFs. 

The switching circuit connects the transducer array with the NI DAQ card with 

a multiplexer array. Through the multiplexer array, a semi-parallel scanning 

scheme is applied that all transmitters are selected sequentially and 

waveforms from the receivers are measured simultaneously in two group. The 

NI DAQ card is used to provide the digital control signal for the multiplexer 

array of the switching circuit from the digital output (DO) channels. It also 

provides one analogue output (AO) channel for the excitation signal and 6 

analogue input (AI) channels for received signal measurement. The central 

control software provides the switching scheme control, the received signal 

sampling, the excitation waveform generation and other measurement 

parameters can be setup in the central control software. The TOF estimation 

is then processed in the host computer. 

Received
waveformUltrasound 

transducer array
Switching

Circuit

DAQ cardPC

Analogue
input

Digital 
control

Analogue
output

Parameters

Measured 
waveform

Excitation  

Figure 3-1: System diagram  

 

3.2.2 Transducer array 

The measurement setup of the transducer array is illustrated in Figure 3-2. 

Piezoelectric transducers model 400ST120 and 400SR120 were used to 

generate and receive the ultrasound signals respectively. The 120° beam 

angle (-12 dB) of the transducers allows the ultrasound signals from each 

transmitter to reach all 12 receivers on opposite boundary side, even for the 

transducer-receiver pair with large departure and arrival angle, for instance, 

the ray path between transmitter 4, and receivers 5 and 16. Besides, although 
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in each spot a pair of transmitter and receiver are placed next to each other, 

the corresponding back and forth ray paths cannot be considered as the same 

path. An example is the two ray paths, one from transmitter 4 to receiver 5 and 

the other from transmitter 5 to receiver 4. It can be seen from Figure 3-2 that 

these two ray paths cover different pixels. Therefore, a complete measurement 

for each temperature field comprises 192 TOF measurements from all 

transmitter-receiver pairs.  

 

Figure 3-2: The transducer array with 16 transmitters (blue box) and 16 
receivers (red box), which provides 192 ray path for TOF measurements. 

 

The transducers operate at a resonant frequency of 40 kHz with 2 kHz 

bandwidth and the ultrasound transmission distance between the transducer 

pairs is up to 1.2 m in the experiment. To ensure the received waveforms have 

good SNR for TOF estimation, a 40 kHz sinusoid pulse with 20 Vpp amplitude 

and 200 µs duration, is used to activate the transmitter. Besides, for the TOF 

estimation for each transducer pair, the repetition period of two successive 

ultrasound transmission should be more than 20 ms. This 20 ms repetition 

period should be able to cover the travel time which varies from 1 ms to 5 ms 

for different ray distances, and the received ultrasound signal duration, which 

is about 15 ms (2 ms for the width of the received waveform main lobe and 12 
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ms for possible reflection echoes). If the repetition period is less than 20 ms, 

there will be considerable interference from the previous signal sent from 

another transmitter. An example of the excitation signal and the received signal 

is shown in Figure 3-3. 

 

  (a) (b) 

Figure 3-3: An example of the excitation signal (a) and corresponding 
measured received signal (b).  

 

3.2.3 Switching circuit  

The switching circuit of the data collection system is a customised PCB. It 

provides a power supply connector, multiplexers connected to the NI DAQ for 

excitation signal generation and received waveform measurement, a sensor 

block for connection with all the transducers. The PCB is powered by a Tenma 

power supply. 

 

Figure 3-4: The experiment rig 

The multiplexers perform the switching for the transmitters and receivers. The 

switching scheme is illustrated in Table 3-1. All transmitters are connected to 
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the analogue output (AO) channel through a 16-to-1 multiplexer and the 

excitation signal is sent to a selected transmitter sequentially. The maximum 

sampling frequency of the NI DAQ analogue input channel is 1.4 MHz, while 

the 40 kHz received signals require 200 kHz sampling frequency for each input 

channel. Therefore, only 6 waveforms can be measured at the same time using 

the NI DAQ, while there are 12 waveforms to be measured for each transmitter. 

In the experiments, all the transmitters are activated twice in a 40 ms time slot. 

During this 40 ms time slot, all the received waveforms at different receivers 

are measured in two groups. The total measuring time for each frame is 40 ms 

*16=640 ms.  

Table 3-1: The semi-parallel switching scheme.  

AO AI1 AI2 AI3 AI4 AI5 AI6 

T1-T4 
R5 R6 R7 R8 R9 R10 

R11 R12 R13 R14 R15 R16 

T5-T8 
R1 R2 R3 R4 R9 R10 

R11 R12 R13 R14 R15 R16 

T9-T12 
R1 R2 R3 R4 R5 R6 

R7 R8 R13 R14 R15 R16 

T13-T16 
R1 R2 R3 R4 R5 R6 

R7 R8 R9 R10 R11 R12 

 

As shown in Table 3-1, the analogue output (AO) is connected to all 16 

transmitters and each of the 6 analogue inputs (AI) channels are connected to 

4 specific receivers. For the transmitter selection, a 16-to-1 analogue 

multiplexer (AD7506) is used to channel the excitation signal from the DAQ 

analogue output channel to each transmitter. The transition time is around 0.7 

µs. For the receiver selection, 6 4-to-1 differential analogue multiplexers 

(MPC509A) are used. The transition time of MPC509A is around 0.5 µs and 
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the connection between the input channels of differential multiplexers and the 

ultrasound receivers is shown in Table 3-2. 

Table 3-2: Connection between the input channels of differential multiplexers 
to ultrasound receivers 

 MUX1 MUX2 MUX3 MUX4 MUX5 MUX6 

In 1 R1 R2 R3 R4 R5 R6 

In 2 R5 R6 R7 R8 R9 R10 

In 3 R7 R8 R9 R10 R11 R12 

In 4 R11 R12 R13 R14 R15 R16 

 

The multiplexers are digitally controlled by the NI DAQ card using 11 I/O ports 

P0.0 to P0.10. It is worth noting that the pairs of multiplexers 1 and 2, 3 and 4 

and 5 and 6 can share 2 bits digital control variable. Therefore, among the 

control digits, there is a 1 bit enabling variable for all 7 multiplexers, ports (P0.1 

to P0.4) for the control of the 16-to-1 transmitter multiplexer and ports (P0.5 to 

P0.10) for the control of 6 4-to-1 receiver multiplexers. The digital control ports 

are updated every 20 ms. The connection between the digital output and the 

multiplexer is shown in Figure 3-5. 
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Figure 3-5: The connection of the between NI DAQ, the multiplexers and the 
transducers. 

3.2.4 NI DAQ and central control software 

The NI DAQ module used in this system is NI 6353, which coordinates the 

switching control, excitation signal generation and data collection of the 

ultrasound received waveform. The DAQ card has a multi-channel sampling 

rate up to 1.25 MS/s and 16 bits ADC resolution for the voltage reading of the 

received waveforms. Its analogue output channel, with the sampling rate of 

2.86 MS/s and voltage range of ±10 V, generates the excitation signal for the 

ultrasound transmitters.  

The central control software is programmed in the NI LabVIEW 2016 and NI 

6353 DAQ card. Explanation of the key part of the system control and data 

collection module is based on the graphical user interface (GUI) shown in 

Figure 3-6.  
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Figure 3-6: The front panel of the GUI 

 

The top-level structure of the software is a state machine, which consists of 4 

states, Configuration, Measurement, Display and Exit. Configuration is the 

default state and the software is waiting for the new command sent from the 

GUI. The state transition control is shown in Figure 3-7.  

 

Figure 3-7: The control of the state transition 

 

In the configuration state, the input waveform measurement, the excitation 

signal generation, the digital control signal generation, and other measurement 
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parameters are configured at the first time. Except for the channels’ names 

and the receiver number ‘RxNum’, all other parameters can be modified and 

updated with a frequency of 500 ms, if the measurement process is complete. 

The excitation signal waveform generation is controlled by several parameters 

including the pulse width, time slot duration, sinusoid pulse central frequency 

and amplitude, and slot number. The generated excitation signal is displayed 

in the front panel and all the 32 pulses are directed to 16 transmitters during 

the measurement state. The frame delay controls the measured frame rate. 

The maximum frame rate is achieved if the frame delay is set to be 0. The start 

triggers of the two output channels, including the analogue out for excitation 

signal and the digital output for the control signal, are controlled by the start 

trigger of the analogue input channel. Therefore, the two output channels are 

synchronised with the analogue input channel.  

In the measurement state, Producer/Consumer design pattern is used. After 

all the channels are configured, the data acquisition is executed in the producer 

loop. Then the data acquired in the producer loop are thrown into the queue. 

In the consumer loop, all the waveform data are saved into a text file. The 

Producer/Consumer design pattern provides a buffered communication 

between the data acquisition and data storage process, which helps to 

minimise the data loss. 

Once the display button is pressed, the data acquisition in the producer loop 

is stopped immediately. After all the waveform data are saved in the consumer 

loop, the application turns to the display state. All the measured waveforms 

from different channels of different frames can be selected and displayed. 

Based on the displayed waveforms, the extent of the waveform distortion and 

the measurement SNR can be roughly estimated for system hardware 

debugging.  

After the exit button is clicked, the repetition loop of the whole program is 

stopped. If the exit button is clicked during the measurement process, both the 

data acquisition loop and the data saving loop are stopped immediately. 
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3.3 Improved AIC TOF estimation 

3.3.1 TOF estimation for acoustic tomography system 

The major challenge in employing acoustic tomography for temperature field 

monitoring is to achieve high TOF measurement accuracy. An accurate TOF 

estimation is also essential in other applications, for example, ultrasonic 

ranging, positioning and synchronisation systems [36, 37], ocean tomography 

[3], ultrasonic breast cancer detection [7], and seismic wave arrival time 

estimation. To date, a number of TOF estimation methods have been 

developed in other disciplines.  

Methods based on cross-correlation are usually used for TOF estimation. Such 

methods assume that the received signal is the time-shifted replica of the 

reference signal. The TOF is considered as the time delay [38, 39]. However, 

measurement accuracy is limited because 1) the received signal is corrupted 

by White Gaussian Noise (WGN) and interference due to channel crosstalk 

and sound reflections; and (2) the received signal waveform is not a time-

shifted replica of the reference signal due to waveform distortion under a 

complex internal structure of the medium.   

Estimating the TOF through parametric approximation through envelope 

extraction [38, 40, 41] has been widely used in ultrasound ranging and non-

destructive testing. The received signal is usually modelled as a delayed 

Gaussian echo signal, and the TOF can be estimated after its envelope is 

extracted [42]. However, this Gaussian echo model is based on the 

assumption that the received signal is a backscattered echo from a flat surface 

reflector. 

Numerous automatic arrival time estimation methods have been developed for 

seismic wave data analysis in geophysical applications. Short and long time-

averaged ratio (STA/LTA) [43], phase arrival identification- kurtosis (PAI-K) [44] 

and other window-based methods calculate the characteristic function 

(waveform energy, absolute amplitude, kurtosis values, and many other 
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characteristic functions) within a predetermined window. The arrival times are 

estimated based on the maximum value of the derivative. Variations of the 

aforementioned methods are the modified energy ratio (MER) [45], the 

modified Coppens’ method (MCM) [46], and the short-term or long-term 

kurtosis ratio (S/L-Kurt) [47]. These methods calculate the characteristic 

function from post- and pre-sample windows. The temporal index associated 

with the maximum ratio represents the arrival time. There are also numerous 

hybrid approaches based on these algorithms that attempt to more accurately 

estimate the TOF and these include the wavelet transform approaches [48] 

and the joint energy ratio (JER) [49].  

The Akaike Information Criterion (AIC) and autoregressive (AR) techniques 

were first applied to TOF estimation of seismic wave data [50]. The arrival time 

is considered as a transition point that separates the signal into two different 

stationary processes. Therefore, the AIC function can be used to determine 

the transition point while the minimum AIC value indicates the optimum TOF 

estimate.  However, the AR model's order should be determined heuristically 

and considering the noise level. To overcome this problem, Zhang [48] 

proposed a wavelet–AIC picker in which the AIC values are calculated directly 

from the seismogram using Maeda's formula [51], the latter of which computes 

the AIC directly from the waveforms without using the AR model coefficients. 

With some modification, the algorithms used in seismology can be applied to 

ultrasound signals [8].  

Two issues remain before the AIC TOF estimation method is applied to our 

acoustic TOF tomography data. Firstly, the accuracy of the AIC TOF estimation 

method is affected by crosstalk interference and reflection echoes, both of 

which manifest in the received ultrasound signal. Secondly, the method is not 

robust against random noise, especially for the noise in close temporal 

proximity to the arrival time. 

To solve these two problems, a modified phase corrected AIC TOF estimation 

method (PCAIC) is proposed for the acoustic tomography system. Two 

improvements are developed compared to the conventional weighted AIC TOF 
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estimation methods; the first improvement is an adaptive window applied to 

the received ultrasonic signal to reduce the effect of crosstalk interference and 

reflection echoes. The second one is phase correction to improve the temporal 

resolution and accuracy of the TOF measurements. 

3.3.2 Conventional AIC TOF estimation 

The TOF of an ultrasound pulse from the transmitter to the receiver is 

considered as a temporal transition point dividing the signal into two different 

stationary processes. The received signal is modelled as an autoregressive 

process (AR), and an AR-AIC TOF estimator was developed [50], which is 

defined as: 

 AIC 2 2log( ( , , ))P L P s k= −  (3.1) 

 

Where P denotes the number of AR coefficients and ( , , )L P s k  is the likelihood 

function for the received signal s, and transition point k. 

Later, Maeda directly calculated the AIC function without using the AR 

coefficients [51] to determine the transition point. The AIC function is defined 

as follows and the minimum AIC value indicates the optimum TOF estimate. 

 AIC( ) log(var( (1, ))) log(var( ( 1, )))k k s k N s k N= + +  (3.2) 

 

where N is the number of data samples in the received signal, (1, )s k and

( 1, )s k N+ are the signal segments before and after the k-th point. The terms

var( (1, ))s k  and var( ( 1, ))s k N+ represent the variances of the two signal 

segments.  

An example of AIC TOF estimation is shown in Figure 3-8. The corresponding 

true arrival time is determined based on the sound speed at room temperature 

and the distance between the transmitter and the receiver. The AIC value was 

calculated from the signal within an adaptive temporal window for better AIC 

estimation performance. The enlarged figure shows that the true and 
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calculated TOFs are not identical. From Figure 3-8, it can be seen that the AIC 

function is not smooth and contains several local minima resulting in unreliable 

TOF estimation. Errors in the TOF estimation will exacerbate reconstruction 

errors. This is due to the fact that the reconstruction of acoustic tomography is 

an ill-conditioned inverse problem, whose solution is sensitive to small input 

perturbations [63]. 

 

 

Figure 3-8: An example of AIC TOF estimation. The dashed vertical lines 
indicate the global minimum of the AIC value (blue), the weighted AIC value 

(red) and the true arrival time (black). 

 

A weighted-average model was introduced by [8], to further improve the TOF 

estimation accuracy and noise robustness compared to using the global 
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minimum of the AIC function. The AIC weight is utilised to stabilise the 

estimation [87]. The normalised AIC weight is defined as follows. 

 

1

exp{ ( )}
( )

exp{ ( )}
N

i

AIC k
w k

AIC i
=

−
=

−

 (3.3) 

 

where  

 AIC( ) AIC( ) AIC(min)k k = −  (3.4) 

 

Then the weighted AIC (WAIC) TOF picker WAICk  is calculated from the 

weighted average as shown in equation (3.5). A TOF estimation example 

using WAIC is shown in Figure 3-8. 

 
1

( )
N

WAIC k
k w k k

=
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 (3.5) 

 

However, as stated previously, two problems remain unsolved. Firstly, the 

WAIC TOF picker cannot accurately determine the TOF as crosstalk 

interference and multiple reflection echoes will temporally shift the WAIC picks. 

In this work, crosstalk interference is located at the beginning of the received 

signal due to ghosting effects in the data acquisition system. More specifically, 

a multiplexer array was used to switch between the transmitters and receivers. 

Due to the high switching rate and relatively large voltage swings (20 Vpp for 

transmission and 2-10 mVpp for reception), residual signals transfer across 

sequential channels. An example of TOF measurement using WAIC is shown 

in Figure 3-9. Without a proper temporal window to exclude the crosstalk 

interference, as shown in the top figure, the WAIC TOF estimation result will 

have a large estimation error. Similarly, when the reflection echoes are 

included for the WAIC TOF estimation, as shown in the bottom figure, the 

WAIC picks will not represent the correct first arrival time of the ultrasound 

pulse.  
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Moreover, the WAIC TOF estimation method is still not robust against random 

noise, especially against noise near the arrival time. Since the AIC picker finds 

the first arrival time by separating two locally stationary segments, it is difficult 

to decide which segment local noisy data samples belong to. Consequently, 

the TOF estimation error and variance increase. Figure 3-10 shows a 

histogram of WAIC TOF estimation results from 180 measurements when the 

travel distance and speed of sound are known. The standard deviation is 7.6 

μs, and the relative root mean-square error (rRMSE) is 0.721%. According to 

the simulation results, a good reconstruction accuracy with image error less 

than 2% (with respect to Kelvin degree), requires that the rRMSE of the TOFs 

estimation should be no more than 0.4%. Therefore, the performance of the 

WAIC TOF estimation method must be further improved. 

 

 

Figure 3-9: An example of WAIC TOF estimation, when there is crosstalk 
interference (top) or reflection echoes (bottom). The solid black line indicates 

the true arrival time whereas the blue dashed line represents the TOF 
estimation result. 
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Figure 3-10: An example of WAIC TOF estimation results. The dashed blue line 
indicates the true TOF given the travel distance and sound speed. 

 

The WAIC TOF estimation is improved in two aspects: (1) an adaptive window 

is employed to determine the search region before the WAIC estimation; and 

(2) a phase correction using time-domain interpolation is applied to further 

improve the accuracy and noise robustness. Details of these improvements 

are discussed in the following sections. 

The SNR of the received waveform can be estimated using the ratio of the 

power of the two signal segments within the window, separated by the obtained 

TOF picks. Assuming the noise within the window is stationary and 

uncorrelated with the ultrasound signal, the SNR is defined as follows: 

 

10

var( ( 1, ))
SNR=10log ( )

var( (1, ))

s k N

s k

+  (3.6) 

 

This SNR is determined by the TOF estimation results, and it can be used to 

eliminate unreliable TOF picks. When the SNR is lower than an experimental 

pre-defined threshold, 30 dB for the data set in this study, the corresponding 

TOF picks are discarded.  

3.3.3 Adaptive window 

The objective of the AIC estimation is to maximise the statistical feature 

difference between the signal segments received before and after the first 
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arrival time. Crosstalk and reflection interference should be reduced before 

AIC TOF estimation. Since reflection interference can be easily discriminated 

from the first arrival time, an adaptive window is designed primarily for the 

crosstalk interference. The adaptive window should include sufficient data 

samples around the time of arrival and exclude the crosstalk interference at 

the beginning of the received signal waveform.  

An example of the window selection is shown in Figure 3-11. The received 

signal envelope ( )A  is extracted based on the Hilbert transform and its 

highest peak can help to find the signal’s main lobe which corresponds to the 

first pulse arriving. The right side boundary of the search window, right , is set 

to coincide roughly with the peak of the main lobe to exclude the reflection 

echoes. The left side boundary, left  is set to exclude large crosstalk 

interference. Assuming that the maximum temperature inside the sensing area 

is maxT and the corresponding TOF measurement is min , a temporal point 

following the crosstalk interference event can identified as left . To mark the 

onset of crosstalk interference, the instantaneous instSNR of the signal is used. 

The instantaneous instSNR is defined as follows: 

 ( )
( ) 20 log( )

( )

p

inst

A
SNR

A





=

 (3.7) 

 

where ( )pA  is the peak value of signal amplitude in the main lobe, and ( )A  is 

the local sample amplitude at time . 

The left boundary can be determined by searching for the point that left  is the 

furthest away from min . All data samples within the interval min[ , ]left   should 

have 25instSNR dB . 

The adaptive window is determined using the following steps. 

Step 1: Extract the signal envelop 𝐴(𝜏) based on the Hilbert transform. 
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Step 2: Find the peak amplitude and set its corresponding arrival time 

as the right side boundary right of the adaptive window. 

Step 3: Calculate min from the known distance between transmitter and 

receiver and the maximum temperature measurement using 

equation(2.3). 

Step 4: Calculate the instantaneous signal SNR within the temporal 

interval min[0, ] . 

Step 5: Search for the left side boundary left . Initially, let 0left = , then 

advance to the right until all the data samples within min[ , ]left  have an

25instSNR dB . If such a point cannot be found, for example, if the 

received signal’s SNR is very poor within the interval min[0, ] , then set

minleft = . 

 

Figure 3-11: An example of the adaptive window selection. The data samples 

within [ , ]left right  are selected for TOF estimation. 𝝉𝒎𝒊𝒏 indicates the earliest 

arrival time of the ultrasound pulse. 

3.3.4 Phase correction 

The random noise in the temporal vicinity of the arrival time will affect the AIC 

estimation accuracy. Qu [11] took advantage of the similar characteristics of 

waveforms captured by  neighbouring receivers and developed an AIC 
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neighbour cross correlation (AICNCC) method to improve the noise 

robustness of the TOF estimation. However, the transducer array in our 

experiment rig cannot provide the reference signal from neighbouring 

receivers to achieve the TOF estimation using cross-correlation. The phase 

information at the arrival time is exploited instead, which is not previously 

utilised by any AIC TOF estimation methods. Since the initial phase of the 

source signal is zero, the initial phase of the first arrival pulse should be zero 

as well. Therefore, the time of arrival is taken as the point closest to the AIC 

TOF pick whose instantaneous phase is zero. The temporal shift according to 

the instantaneous phase is subtracted from all estimated AIC TOF 

measurements to give the temporal index for the zero-phase points, i.e. the 

phase corrected AIC (PCAIC) TOF picks. As a result, the TOF estimation 

variance caused by the random noise is greatly suppressed. 

The instantaneous phase estimation is also sensitive to the random noise. An 

example is shown in Figure 3-12 and Figure 3-13, respectively illustrating the 

instantaneous frequency and phase of the received signal. With reference to 

Figure 3-11, the signal segment before the main lobe contains wide-band 

random noise. The signal SNR of the data samples around the time of arrival 

is relatively low, thus the accuracies of the instantaneous frequency and phase 

are limited by the random noise. Therefore, it is challenging to use the 

instantaneous phase of the samples around the time of arrival for TOF 

correction. Instead, the phase offset of the main lobe can be used to find the 

zero-phase point for the PCAIC TOF estimation. The main lobe of the first 

arrival pulse represents a relatively narrowband signal having a frequency 

variation centred on the ultrasonic sensors’ centre frequency 𝑓𝑐 of 40 kHz. Its 

phase is changing periodically. The main lobe formulated by ( ) cos(2 )cA f t  +  

can be decomposed using the Hilbert transform into a temporal envelope ( )A 

and a temporal fine structure cos(2 )cf t + [88]. The phase offsetof the main 

lobe can be determined by calculating the phase delay between the temporal 

fine structure and the reference waveform cos(2 )cf t .  
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Moreover, it is possible to further improve the TOF estimation accuracy using 

interpolation techniques for data samples having a high SNR, especially within 

the signal’s main lobe [89]. In order to improve the temporal resolution of the 

TOF estimate, time-domain interpolation is applied. Commonly used 

interpolation up-sampling methods cannot be directly used to improve the 

temporal resolution in this study as they rely on an antialiasing filter to reduce 

the artificial TOF variance [89]. Such an antialiasing filter will smooth the edge 

of the ultrasound pulse at the time of arrival, which results in undesirable 

estimation error for the TOF picker.  

 

Figure 3-12: The instantaneous frequency (red) of the received signal (blue) 
around the arrival time. The signal is sampled at 200 kHz. 

 

 

Figure 3-13: The instantaneous phase (red) of the received signal (blue). 
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Interpolation is only applied to the main lobe after the time of arrival for phase 

correction because: (1) within the main lobe, the signal segment has the 

required high SNR, and (2) the edge of the ultrasound pulse will not be 

smoothed. For the narrowband signal here, time-domain interpolation by a 

factor of 10 is applied using zero-padding and the Fast Fourier Transform (FFT) 

method.  

The phase correction of the AIC TOF estimation is implemented in the 

following steps. An example is shown in Figure 3-14. 

Step 1. Use a window-scaled Hilbert transform to extract a noisy, 

instantaneous phase ( )t  from the signal’s main lobe (start from the 

TOF point determined by the AIC estimation).  

Step 2: Calculate the temporal fine structure ( ) cos( ( ))cs   = . Apply the 

time-domain interpolation to increase the temporal resolution by a factor 

of 10. 

Step 3: Build the reference cosine wave ( ) cos(2 )ref cs f  = . Calculate 

the phase delay  between ( )cs   and ( )refs   using the cross-

correlation method. 

Step 4: Correct the TOF using the phase delay
2

AIC

cf


 




= −   
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Figure 3-14: An example of phase correction of the AIC TOF estimation result.  

 

3.4 Experimental evaluation  

3.4.1 Ray length calibration 

In the reconstruction procedure, the transducers are modelled as an equivalent 

point-transducer. Knowing the exact position of the transducers in the practical 

measurement setup plays a key role in achieving accurate tomographic image 

reconstructions. The transducer’s acoustic centre, which is the location of the 

equivalent point-transducer, is not the same as the geometric centre. 

Therefore, it is difficult to measure the centre-to-centre distance 𝐿𝑐𝑐 between 

the transducers by measuring their physical separation. Instead, the TOFs can 

be exploited to estimate the centre-to-centre distance between transducers. 

The TOFs are measured 20 times using a constant and known speed of sound. 
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The averaged TOFs 𝜏̅ and the corresponding speed of sound 𝑐 (calculated 

based on the temperature) are used to calculate the distance ccL c= . 

It is difficult to calculate the ray length matrix 𝑨 based on the transducer centre-

to-centre distance ccL . Alternatively, the ccL  can be used to correct the TOFs. 

The actual ray path (according to the centre-to-centre distance obtained from 

calibration) and the ideal ray path (according to the ray length matrix 𝑨 used 

in the tomographic reconstruction) are usually within close physical proximity. 

Therefore, it is assumed that both actual and ideal ray paths traverse the same 

pixels inside the sensing area and as such, the measured TOF of the actual 

ray paths can be used to calculate the ideal model TOFs.  

Along each ray: 

 
ideal

ideal meas

cc

L

L
 =

 (3.8) 

 

where 𝐿𝑖𝑑𝑒𝑎𝑙 is the ideal model ray length used in the inverse problem, 𝐿𝑐𝑐 is 

the transducer centre-to-centre distance calculated from the measurement 

𝜏𝑚𝑒𝑎𝑠. 

In summary, during the calibration procedure, accurate transducer centre-to-

centre distances 𝐿𝑐𝑐 are calculated from averaged TOFs measurements 𝜏̅. In 

the measurement procedure, the 𝐿𝑐𝑐 of all the ray paths are used to estimate 

the ideal model TOFs,  𝜏𝑖𝑑𝑒𝑎𝑙 . Then, 𝜏𝑖𝑑𝑒𝑎𝑙 instead of 𝜏𝑚𝑒𝑎𝑠  is used for the 

tomographic image reconstruction procedure. 

The calibration accuracy is determined by the TOF estimation accuracy and 

the thermal couple measurement accuracy. The standard deviation is 

 2 2
2

c c
Lcc ccL

c c

 
 


 

   
= + +   
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where 𝜏̅ is average TOF calculated from 20 times measurement and 𝜎𝜏̅ is the 

standard deviation of  which is around 0.05 us, c is sound speed calculated 

based on the thermal couple temperature measurement and 
c  is the 

standard deviation, which is about 1.16 m/s. Calibration is conducted under 

the room temperature (296.13 K), where 344.96 m/sc = . The standard 

deviation 
L  depends on the ray distance, and for the shortest ray ( the ray 

length is around 0.28 m), 0.946Lcc mm = . 

 

Figure 3-15: The diagram for calibration process 

3.4.2 TOF estimation results  

To assess the performance of the PCAIC TOF picker, the results using PCAIC 

is compared with those using the WAIC TOF picks. The tomographic system 

was tested on a known constant and uniform temperature field, and the true 

TOFs are calculated based on the temperature measured by thermal couple. 

A total of 200 waveforms were acquired from 4 receivers for the TOF 

estimation. The receivers were located at different distances and had a 

different angular orientation. The first 20 waveforms were used for calibration 

in both TOF estimation methods.  

The examples of the TOF estimation from the received waveforms are shown 

in Figure 3-16. The adaptive window is able to locate the searching region 

excluding multiple reflection echoes and crosstalk interference. Sufficient data 

samples are selected using this adaptive window, enabling successful TOF 

estimation using both WAIC and the PCAIC methods.  
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Figure 3-17 shows the TOF picks histogram for the 180 waveforms from 4 ray 

paths. Compared to the WAIC picks, the PCAIC picks are more resilient to 

noise. The PCAIC method also achieves a significantly reduced estimation 

variance for all 4 ray paths. The improved performance is attributed to the 

phase correction procedure applied to the AIC TOF picks.  

 

Figure 3-16: TOF estimation at 4 receivers (5th, 8th, 11th and 14th) from the 1st 
transmitter. 

 

Table 3-3: TOF estimation comparison between WAIC and PCAIC method 



59 
 

Receiver WAIC PCAIC 

 rRMSE(%) Std(ms) rRMSE(%) Std(ms) 

5th 0.547 0.0128 0.163 0.00137 

8th 0.358 0.0118 0.129 0.00101 

11th 0.214 0.0063 0.127 9.1e-04 

14th 0.573 0.0083 0.331 8.9e-04 

 

Further details concerning the calibration results, the TOF estimation relative 

mean square error and standard deviation are listed in Figure 3-16. 

Generally, the improved AIC TOF estimation method achieves better 

quantitative accuracy compared to the WAIC TOF picker in these experiments. 

As listed in Table 3-3, the rRMSE of the new method is much smaller than that 

of WAIC TOF methods. Furthermore, as shown in Figure 3-17, all TOFs picked 

by the PCAIC picker are within 1 sample point (5 μs) from the calculated TOF, 

whereas the TOFs picked by the WAIC method are spread over the range of 

4-6 sample points. The standard deviation listed in Table 3-3 also suggests 

that our method has improved the noise robustness of the TOF estimation. 
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Figure 3-17 TOF picks histograms of WAIC and PCAIC methods using 180 
waveforms from four ray paths measurements. 

 

3.4.3 Tomographic reconstruction results  

The performance of the proposed PCAIC TOF estimation method is validated 

experimentally. The regularisation parameters is set to be 0.1 for the 

experiments in this thesis. Using the corrected TOF measurements (after 

calibration) and the ray length matrix representing the ideal sensor array 

geometry, the Laplace’s speed of sound distribution and the corresponding 

temperature field within the sensing area can be reconstructed.  

In the experiments, two deterministic temperature fields were set up for 

reconstruction. In the first instance, an electric infrared heater was placed in 

the sensing area to heat the air slowly and create a smooth temperature field. 

In the second instance, a hair dryer was used to create a smaller hot spot in 

the sensing area. The acoustic tomography system was then used to 

reconstruct the temperature field. 



61 
 

It was difficult to evaluate the quantitative accuracy of the reconstruction 

results since the thermocouple was also heated by the infrared radiation, 

leading to a higher reading than the real temperature of the air. The heater was 

set at three power levels (400/800/1200W), heated the air for 5 minutes and 

then acquired measurements for each power level. Figure 3-18 shows the 

reconstructed temperature field. All reconstructions succeed in localising the 

heat source. The increasing air temperature is distinguishable as a function of 

increasing heater power. Using the TOF measurements based on the WAIC 

method, the reconstructed temperatures at the centre of the heated area are 

28.86°C, 34.32°C and 35.48°C. Using the TOF measurements based on the 

PCAIC estimation method, the corresponding temperatures are 28.77°C, 

29.86°C and 30.6°C. In line with our expectation, the tomographic 

reconstructions using the PCAIC method have fewer artefacts compared to 

the WAIC method. 

In the second instance, a hair dryer was placed 5 cm above the sensing plane 

to blow hot air downwards into the sensing area and create a hotspot. A 

thermocouple was placed 5 cm beneath the sensing plane and at the centre 

of the heated air stream to compare the temperature reconstruction accuracy. 

After switching on the hair dryer and waiting until the temperature stabilised 

(34.8°C when the room temperature is 24.4°C), several measurements (20 

frames) was taken to test the repeatability of the temperature field 

reconstruction. Figure 3-19 shows three consecutive reconstructions. The 

results indicate that the tomographic system has a good spatial resolution to 

resolve the small hot spot. The relative mean square error is 16.92% (with 

respect to Celsius) or 1.91% (with respect to Kelvin degree) at the centre of 

the reconstructed hotspot using TOF measurements based on the WAIC 

method. On the other hand, the relative means square error is significantly 

reduced using the PCAIC method; 5.12% (with respect to Celsius) or 0.58% 

(with respect to Kelvin degree). The standard deviation is 2.2 K using the WAIC 

method and 0.7 K using the PCAIC method. In conclusion, the proposed 

PCAIC TOF method can provide much better temperature field imaging 

performance. 
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Figure 3-18: Reconstructed temperature fields at different heater power 
settings. From left to right, the power levels are 400 W, 800 W and 1200 W. The 
first row used the WAIC method and the second row used the PCAIC method. 

The dashed square indicates the physical position of the electric heater. 

 

 

Figure 3-19: Three consecutive temperature field reconstructions using a hair 
dryer as a heater. The first row used the WAIC method and the second row 

used the PCAIC method. The dashed circle indicates the physical position of 
the heater. 
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3.5 Summary 

In this chapter, the design of the data acquisition system and the TOF 

estimation method are presented. Their performance is thoroughly evaluated 

in terms of TOF estimation accuracy and image reconstruction quality. The 

data acquisition system provides 192 TOF measurements for each frame’s 

reconstruction. The measuring time is 640 ms with the semi-parallel scanning 

scheme. The proposed PCAIC picker provides TOF estimation with a good 

quantitative accuracy (overall rRMSE less than 0.2%), high temporal resolution 

(0.25 µs) and robustness against the crosstalk interference and additional 

random noise. The TOF obtained from experimental data and using the 

proposed PCAIC method yielded temperature field reconstructions with 

improved quantitative accuracy and fewer image artefacts. In summary, the 

data acquisition and the proposed PCAIC picker together can produce 

accurate TOF data for the tomographic reconstruction of the lab-scale 

temperature field. 
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Chapter 4 Online time resolved reconstruction 

 

4.1 Introduction  

Concerns have been raised that the acoustic tomography system may lack a 

sufficient temporal resolution to reconstruct the dynamic features of some fast-

changing temperature fields. Currently the system temporal resolution is 640 

ms. The temperature changes during the 640 ms measuring time of each 

frame, for example, the motion of heat source, will blur the tomographic image 

and affect the temperature reconstruction accuracy. Research has tended to 

focus on accelerating the data acquisition process to improve the temporal 

resolution, with the use of broadband acoustic transducers and parallel data 

collection. Unfortunately, due to hardware limitations and the high implemental 

cost of the air ultrasonic transducers, it is generally difficult to apply a fully 

parallel data acquisition of measuring the TOFs along all transmission ray 

paths simultaneously. However, for large scale system, broadband acoustic 

transducers can be used for fully parallel data collection, details will be 

presented in chapter 6.  

Besides, the minimum data acquisition time for each ray path is limited by the 

speed of sound and the size of sensing area. For our lab-scale experimental 

setup, the 1 m2 sensing area requires a minimum of 20 ms measuring time for 

the longest ray path to propagate. 

Besides reducing the data acquisition time, an alternative way is to use a 

smaller number of TOFs per frame and reconstruct an under-sampled 

tomographic image of the temperature field. Consequently, the measuring time 

per frame is largely reduced and the temporal resolution can be greatly 

improved.  

Under-sampled reconstruction with fewer TOFs can improve the temporal 

resolution, but it also brings aliasing artefacts in image space. Compared to 

the conventional fully sampled tomographic reconstruction, this under-
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sampled reconstructed image suffers from the lack of spatial resolution to 

resolve the temperature field distribution [73]. Fortunately, the redundancy of 

information in the temporal domain can be employed to solve this problem.  

The temporal redundancy provides additional information for the tomographic 

reconstruction of each frame. Serval time-resolved image reconstruction 

methods were developed [73, 90-94]. These time-resolved imaging algorithms 

were able to reconstruct the high-quality tomographic image from under-

sampled data sets and resolved the dynamic changes which could not be 

recognised by the conventional fully-sampled tomographic reconstruction. 

Generally, these time-resolved reconstruction methods can be categorised 

into three main branches. 

In the first branch, the temporal redundancy across consecutive frames is used 

to build different regularisation term in the algebraic-based reconstruction. 

These regularisations are designed for specific application, such as temporal 

smoothness regularisation for general cases, spatial-temporal total variation 

for the temporal piecewise constant data, temporal non-local means 

regularisation for the structural similarity between frames, and nuclear norm 

regularisation for the low rank structure of a time series data [92, 93, 95]. These 

methods are able to reconstruct images with good quantitative accuracy using 

very few data. However, most of the methods require iterative reconstruction, 

which is more suitable for offline reconstruction rather than online 

reconstruction for real-time monitoring.  

Another approach of the time-resolved reconstruction method is based on the 

Karhunen Louve transform (KLT), where the temporal redundancy information 

is extracted from the data [73, 96-98]. It utilises the sparse representation of 

image series under KLT domain with the temporal basis functions. The 

temporal basis functions can be obtained from under-sampled reconstructed 

images. However, these methods rely on the implicit assumption that the 

principal basis functions estimated from the low-resolution data closely 

approximate the original KLT basis functions. Clearly, this approximation 

requires sufficient number of measurements in the training data. Besides, it is 



66 
 

also an offline iterative reconstruction method and not suitable for real-time 

monitoring. 

Thirdly, there is also a statistical approach of time-resolved reconstruction 

based on the Kalman filter or the unscented Kalman filter [77, 79]. The 

tomographic reconstruction problem is formulated as a state estimation 

problem and the temporal redundancy can be interpreted into the state 

transition model of the Kalman filter. It has the advantages of fast 

reconstruction and online reconstruction potential. However, there is still a 

problem with this approach. The Kalman filter reconstruction is optimal 

estimator only when all the error is Gaussian and the mean and standard 

deviation of the error are known, but it is not always the case[99]. Besides, to 

solve the inverse problem here, it is not necessary to use the unscented 

Kalman filter. 

In this chapter, a novel online time-resolved reconstruction (OTRR) method is 

presented, which is able to reconstruct high quality time-resolved images using 

fewer TOFs per frame. Our main novelties can be summarised as follow. Firstly, 

by exploiting the redundancy of information in the temporal domain, a temporal 

regularisation is designed based on an adaptive AR model to reduce the 

required amount of TOF data per frame. A sliding overlapping window is 

applied to further improve the reconstruction accuracy. Secondly, a non-

iteration scheme is used for the time-resolved reconstruction. Instead of 

conducting iterative calculation upon each data set until convergence, the 

recursive reconstruction process performs a sliding iteration over each data 

segment. For the reconstruction of each frame, the online computation is non-

iterative. 



67 
 

4.2 Online time-resolved reconstruction (OTRR)  

4.2.1 Problem statement 

The forward problem of acoustic tomography establishes the relationship 

between the TOF measurements and the speed of sound which is dependent 

on temperature. The forward problem for frame t is defined as: 

 
t t t
y = A x

 (4.1) 

 

Here 
1N

t

x  denotes the tomographic image vector which describes the 

travel speed reduction distribution and 𝑁 is the pixel number. 
1M

t

y as the 

TOFs measurement vector and M is the measurement number for each frame 

The temporal resolution of the acoustic tomography system can be greatly 

improved if fewer TOFs are used for the reconstruction per frame. However, 

the resolution is improved at the cost of spatial resolution. Reconstruction with 

fewer TOFs will introduce aliasing artefacts in the image space. To solve this 

problem, temporal regularisation is applied in the proposed time-resolved 

tomographic reconstruction method and more details are presented below. 

The TOFs and images for all the frames of the tomographic images can be 

stacked as columns and denoted it as  =
1 2 T

X x , x , ..., x  and  1 2 T
Y = y , y , ...y , 

where T is the number of frames. Then the forward problem can be written as

Y = AX , where the block diagonal matrix A  is given as { }diag=
1 2 T

A A ,A , ..., A . 

The regularised inverse problem is defined below. 

 

1 22
1

min +
T

F
t

 
=

+ t
X
Y - AX Fx R(X)

 (4.2) 

 

where t 2
Fx is used to enforce spatial smoothness for each frame, and F is a 

linear differential operator, which is built based on the 3 by 3 differential kernel 



68 
 

0 1 0

1 4 1

0 1 0

− 
 
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 
 − 

 [62]. R(X) is used to enforce temporal regularity for the time 

series. 
1 and

2 are two predefined regularisation parameters.  

4.2.2 Temporal regularisation 

Various temporal regularisation methods have been developed to improve the 

spatial resolution for the time-resolved tomographic reconstruction. For 

example, in the case of Electrical Resistance Tomography (ERT) where the 

consecutives frames can be well approximated by a piecewise constant 

function, the spatial-temporal Total Variation (TV) regularisation is selected for 

the tomographic reconstruction [92]. With dynamic MRI used for medical 

imaging, where the MRI sequence can be approximated by a low rank matrix, 

the nuclear norm can be used for tomographic reconstruction [95]. Another 

case is the 4D CT, where the structure similarity across consecutive frames is 

used to build the non-local mean regularisation for reconstruction. However, 

these regularisation are not suitable to be used here for two reasons: (1) the 

dynamic temperature field is generally smooth on the time domain, and it does 

not have the aforementioned features; and (2) spatial-temporal TV, non-local 

mean regularisation and low rank regularisation methods require iterative 

computation, which is not be suitable for fast online reconstruction. 

Temporal smoothing regularisation is applied in the proposed Online time-

resolved reconstruction (OTRR) method based on the assumption of similarity 

of the reconstructed frames [90]. Apart from this temporal smoothing 

regularisation, no other priori knowledge is used for any specific target 

temperature field. Generally, the temporal regularisation is designed based on 

the difference among successive frames. 

 2

22

T

t=
= t t -1

R(X) x - x
 (4.3) 

 

In the cases when the dynamic characteristics happen within the region of 

interest and the motion is hard to predict, using more frames instead of only 
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adjacent time frames will significantly improve the reconstruction quality [90]. 

Here an adaptive AR model is applied. For a group of time series 

 =
1 2 T

X x , x , ..., x  the AR prediction for frame t 
*

tx is defined as  

 
1

( )
T

tk
w k

=
= =*

t k t
x x Xw

 (4.4) 

 

where
1Ttw is a normalised AR weights defined as: 

 2
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 (4.5) 

 

𝑇 is the number of frames within the group and 𝜌 is the smoothing parameter. 

Therefore, a penalty term based on this AR model is defined as 

 

2
1 1

( )
T T

t t t

t t= =

= = − R(X) R x Xw x
 (4.6) 

 

4.2.3 Iterative reconstruction 

To solve the inverse problem, the inverse problem is firstly divided into two sub 

problems based on the forward–backward splitting method (FBS) [68]. 

 
1/2

1 2
1

arg min
T

i

t

t

+

=

= + F
X

X Y - AX Fx
 (4.7) 

 1 1/2

2arg mini i

F
+ += − +

X

X X X R(X)
 (4.8) 

 

Sub-problem 1 involves the data fidelity and spatial regularisation term and 

does not include the temporal regularisation term. Therefore, each frame can 

be reconstructed independently.  

 
1/2

12 2
arg mini

t t
x

x + = +t t ty - A x Fx  (4.9) 

It can be solved by the modified SIRT method [62], which is defined in 

equation(2.22). 
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 1/2, 1/2, 1 1/2, 1 1/2, 1( )i m i m T i m i m

t t t t t t + + − + − + −= + − − T
x x PA W y A x PF Fx

 (4.10) 

 

P is the diagonal preconditioner 1 2(1/ ,1/ ,...,1/ )Ndiag LP LP LP=P , and W is the 

Normalised weight operator 1 2(1/ ,1/ ,...,1/ )Mdiag LR LR LR=W , where

,1

M

j i ji
LP a

=
= ,

,1

N

i i jj
LR a

=
= . m denotes the inner iteration index for sub 

problem 1 and step size  is set to 1. 

Then the images are stacked as: 

 1/2 1/2 1/2 1/2

1 2, ,...,i i i i

T

+ + + + =  X x x x
 (4.11) 

 

Which can be used to solve the sub-problem 2. 

For the sub-problem 2 
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 (4.12) 

 

Once the image series 𝑿𝒊+1/2 is obtained, the sub-problem 2 can be solved 

using one step gradient descent. This is because that there is no need to solve 

this sub-problem 2 very precisely for each i-th outer iteration. 

 1 1/2 1/2

2( )i i i

t t t tx+ + += + −x x Xw
  (4.13) 

Then  

 1 1 1

1 ,...,i i i

T

+ + + =  X x x
 (4.14) 

 

In summary, the reconstruction process is illustrated in Table 4-1. 
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4.2.4 Segmentation for large group of data set 

For the reconstruction of a large number of tomographic images, it is 

necessary to divide the whole data set into smaller segments and the reason 

is twofold. Firstly, the abovementioned time-resolved imaging method yields 

iterative procedures considering all the TOFs are measured and stored in 

advance, which will result in large computational cost. Secondly, it is not 

necessary to use all time frames to calculate the temporal regularisation term 

since the similarity between frames with large temporal distance is very weak. 

In this study, each data segment consists of 16 frames’ TOFs, and the frames 

of each segment can be reconstructed separately. 

Table 4-1: The iterative reconstruction process to solve equation (4.7) and 
(4.8) 

Input:Y A  IterNo,F , w,K,  

Ourput: X  

Initialise: 0
X = 0  

For i=1 : IterNo  

 
For t=1:K 

1/2, 1/2, 1 1/2, 1 1/2, 1( )i m i m T i m i m

t t t t t t + + − + − + −= + − − T
x x PA W y A x PF Fx  

 
End 

1/2 1/2 1/2 1/2

1 2, ,...,i i i i

T

+ + + + =  X x x x  

1 1/2 1/2 1/2

2( )i i i i

t t t tx+ + + += + −x x X w  

1 1 1 1

1 2, ,...,i i i i

T

+ + + + =  X x x x  

 If 1i i

F
X X + −  break 

End  
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However, with the use of AR weights for temporal regularisation, the 

reconstructed images at both ends of the segments will have a larger 

reconstruction error compared to the images in the middle. An example of the 

reconstruction errors of 16 frames within one segment is given in Figure 4-1. 

It is clear that the reconstruction errors of the middle frames are much smaller 

than the frames at both ends.  

 

Figure 4-1: An example of the reconstruction image errors within the first 
segment of 16 frames. 

 

Figure 4-2: Data segmentation based on a sliding window.  

 

For better reconstruction accuracy, it is necessary to make sure that all the 

frames are reconstructed when they are at the middle of the segments. 

Therefore, the overlapped windowing data segmentation is used instead of 

non-overlapped windowing. An example of the overlapped windowing data 

segmentation is shown in Figure 4-2. A sliding window with the length of 16 

and 50% overlapping is applied to the TOF data sets. The 8 frames within the 

middle of each segments (i.e. the frame 5-12 for the window 1 and frame 13-
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20 for the window 2) will be reconstructed, since they are considered to have 

lower reconstruction error. Special cases are the first and last segments, 

where the reconstruction outputs will also contain the frame in the beginning 

and ending. Due to the 50% overlapping sliding window, most of the frames 

are reconstructed when they behave as the middle frames of different 

segments. A comparison is shown in Figure 4-3. By using the overlapping 

window, the reconstruction errors of the frames at both ends of non-

overlapping window are reduced.  

 

Figure 4-3: The comparison of the reconstruction error with non-overlapping 
segmentation (red) and 50% overlapping segmentation (blue) 

 

The overlapping percentage is adjustable. A larger overlapping percentage 

helps to improve the temporal smoothness and continuity for the time series 

images, whereas, it also increases the computational cost. An appropriate 

overlapping percentage should be chosen for each specific application.  

4.2.5 Non-iterative online reconstruction 

Iterative computation is conducted to solve the two sub-problems on each data 

segment (  =
1 2 T

Y y , y , ..., y ) until convergence, which is not suitable for online 

monitoring system due to the large computational cost. To accelerate the 

reconstruction process, a recursive online reconstruction is applied. As shown 

in Figure 4-4, the general idea is to use the reconstruction results of the 



74 
 

previous data segment as the initial guess to reconstruct the frames in next 

segment. Higher overlapping percentages help to improve the temporal 

correlation between segments. As a result, the outer loop iteration number 

IterNo in Table 4-1 and the computational cost can be greatly reduced. In this 

chapter, the overlapping percentage can be set to the highest level. For the 16 

order AR model here, the overlapping percentage is increased to 

15/16=0.9375, which enables us to cancel the outer loop and set the IterNo to 

one. Since both sub-problems are solved non-iteratively, the reconstruction of 

each data segment becomes non-iterative. A special case is the first segment, 

since it is solved iteratively.  

 

Figure 4-4: The recursive reconstruction process 

 

4.3 Connection with previous works 

The dynamic tomographic reconstruction method using the Kalman filter has 

been successfully applied in acoustic tomography, electrical tomography, 

dynamic MRI and etc [77, 79, 95, 100]. Different from algebraic-based 

algorithm, the Kalman filter reconstruction is a statistical-based method, which 

formulates the tomographic inverse problem as a state estimation. In the 

reconstruction the temperature distribution utilises both the information from 

TOFs measurements and the priori knowledge from the temporal evolution 

from the state transfer model [100]. Similar to the OTRR methods, this method 

also has the advantages of time-resolved imaging and non-iterative 

TOF data 
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reconstruction. Generally, the state transfer and measurement equations are 

presented below 

 t t -1 t
x = Px + w  (4.15) 

 t t t
y = A x + n  (4.16) 

vwhere 𝑷 = 𝑰 is the random walk state transition matrix, which describes the 

relationship between consecutive frames [35]. For the estimation of 

temperature field is to minimise the following cost function: 

 
1

2 2

1 |
min n

t t
t t t C tX

x
+

−
= + −t t ty - A x x Px  (4.17) 

where the measurement noise n  is considered as a Gaussian white noise, so 

its covariance matrix is set as ( )n

t ndiag =Γ , and 
n  is a predefined parameter. 

The prediction error 𝑤𝑡 is considered as a Gaussian white noise too, so its 

covariance matrix is set as ( )w

t wdiag =Γ and 
w  is another predefined 

parameter. 1|t t+C is the time update covariance matrix, which is updated for 

each frame. The reconstruction for each frame is completed in two steps. 

Step 1: Update in measurement 

 1

| 1 | 1( )T T

t t t t t t t t t

−

− −= +K C A AC A Γ
 (4.18) 

 
| | 1[ ]t t t t t t−= −C I K A C  (4.19) 

 
| 1 | 1( )t t t t t t t t− −= + −x x K y A x  (4.20) 

 

Step 2: Update in prediction 

 
1| |

T w

t t t t t+ = +C PC P Γ
 (4.21) 

 
1|t t t+ =x Px  (4.22) 

 

For the initial guess of the reconstruction, 1|0x = 0  and 1|0C = 0 . 

Compared to the algebraic time-resolved reconstruction, it also uses a 

temporal smoothing regularisation. The difference is that (1) only adjacent 
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frames are used to calculate the temporal regularisation; and (2) the temporal 

regularisation is weighted by the state transfer error covariance.  

However, the Kalman filter reconstruction has a slow convergence, that the 

reconstruction error of a few frames in the beginning is relatively large. In 

comparison, the new method has the flexibility to modify the reconstruction 

process of the first segments to be iterative, which will significantly improve the 

reconstruction error at the beginning. 

4.4 Results and discussion 

4.4.1 Numerical simulation  

In this section, the performance of the proposed method is evaluated with a 

series of numerical simulations. The sensor array setup is illustrated in Figure 

3-2. The data collection is based on the semi-parallel scheme described in 

section 3.2. In this simulation, the temperature field changes are assumed to 

take place during each 120 ms repetition period and 36 TOFs from 3 

transmitters are used for the reconstruction of each frame. As a result, the 

measuring time per frame is reduced to 120 ms. The proposed method is 

compared with the Kalman filter reconstruction. Although optimal parameters 

can be used to improve the reconstruction quality, all the tomographic 

reconstruction results in this section are obtained using the same parameters. 

These empirical reconstruction parameters are given in Table 4-2. The 1x1 m 

sensing area is segmented into 400 pixels in the image reconstruction process 

and the dimension of each pixel is 5x5 cm, as shown in Figure 3-2.   
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Table 4-2: Reconstruction parameters used in simulation 

Parameter Method Value 

N OTRR/Kalman 400 

M OTRR/Kalman 36 

α1 OTRR/Kalman 0.01 

α2 OTRR 0.1 

T OTRR 16 

IterNo OTRR 200 

ϵ OTRR 1e-10 

σ1 Kalman 1e-12 

σ2 Kalman 1e-13 

 

Three representative dynamic phantoms of the temperature field are simulated 

to evaluate the reconstruction performance, including the temperature field of 

a point heat source with periodic rapid temperature change, diffusive 

expanding shape change and rotational position change. There are 200 

frames in total to be reconstructed, and the repetition period of the dynamic 

changes is 32 frames (3840 ms). The first 16 frames of the three simulated 

phantoms are shown in Figure 4-5. 

To quantitatively evaluate the overall reconstruction quality using the two 

methods, image relative error (IE) is adopted. Besides the relative image error 

for tomographic reconstruction, another three metrics are used to evaluate the 

accuracy of the reconstructed temperature field.  
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Figure 4-5: The three temperature phantoms of heating process of 
temperature field (top) heat source expanding (mid) and heat source rotation 

(bottom)  

 

Dislocation (DL) evaluates the ratio of the distance between the heat source 

centre of the reconstructed and original temperature phantoms to the size of 

the sensing area. DL evaluates the performance of the time resolved 

reconstruction method on localising the centre of the heat source. As small DL 

shows that the reconstruction method has the ability to resolve the motion of 

the heat source.  

Peak value (PV) evaluates the relative error of the reconstructed peak value 

of the temperature field to the original phantom. PV measures the quantitative 

accuracy of the temperature field reconstruction. As small PV shows that the 

reconstruction method can resolve the dynamic temperature changes.  

Widening (WD) evaluates the ratio of the reconstructed heated area to the 

original heated area. The average temperature is used as a threshold to extract 

the heated area from the temperature field images. WD measures the 
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consistency of sizes of the estimated and target heated area. A high WD shows 

that the reconstruction method can resolve the dynamic heat source diffusion 

and expanding changes. Ideally, DL, PV and IE should be close to 0 but WD 

should be close to 1. 

In this simulation, the measurement SNR is set to be 35 dB, which is close to 

the measurement noise level of the lab-scale acoustic tomography system. 

The mean values of the 4 quantitative metrics are presented in Table 4-3. The 

convergence performance with respect to the image error is shown in Figure 

4-6. The evolution of all the four metrics with respect to different measurement 

noise level is plotted in Figure 4-7. The reconstructed images of the first 16 

frames are shown in Figure 4-8 and Figure 4-9. 

Firstly, for reconstruction image error of all three phantoms, the proposed 

OTRR method has much better performance compared to the Kalman filter 

method. Notably, both methods have smaller reconstruction IE for phantom 2 

than the other two phantoms. The reason is that the dynamic changes of the 

expanding phantom here are much smaller than the other two phantoms, and 

the temporal redundancy of this phantom 2 was utilised by the two time-

resolved methods for a better reconstruction accuracy.  

Secondly, for the DL metric, the proposed OTRR method outperforms the 

Kalman filter method as well. Especially for phantom 3, where the dynamic 

change is mainly the rotation of the heat source. The OTRR method can 

accurately locate the dynamic heat centre with 4.57% location error. In 

comparison, the DL of Kalman filter method is 13.72%.  

Thirdly, for the PV metrics, both methods lack the accuracy to provide 

quantitative reconstruction of the dynamic temperature change of the heat 

centre. Although the OTRR has a slightly better performance for phantom 3, 

where the peak value of temperature doesn’t change over time, its PV for the 

other two phantoms are larger than 8%. The possible reason for this PV 

inaccuracy is due to the over-smoothing on the temporal domain. Temporal 
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regularisation helps to reconstruct the temperature field images with fewer 

TOFs, but it also results in bias error in the reconstruction. 

Table 4-3: The quantitative reconstruction metrics 

 Phantom1 Phantom2 Phantom3 

IE (%) 
Kalman 7.3 4.34 7.67 

OTRR 4.25 2.99 4.21 

DL (%) 
Kalman 3.75 3.99 13.72 

OTRR 1.46 1.05 4.57 

PV (%) 
Kalman 12.79 11.65 15.93 

OTRR 8.82 8.86 5.92 

WD (%) 
Kalman 1.17 0.74 0.89 

OTRR 1.14 0.95 1.08 

 

For the shape metric WD, the OTRR method also has better performance, 

especially for the reconstruction result of phantom 2, where the dynamic 

characteristics of the temperature are mainly about the expanding shape 

change. The WD of the OTRR method is 0.95, compared to the 0.74 of the 

Kalman filter method. 

Figure 4-6 shows the convergence performance comparison of the two 

methods. Obviously, the OTRR method has a faster convergence compared 

to the Kalman filter method. This is because only the first segment is 

reconstructed iteratively using the OTRR method. As a result, it can converge 

much faster than the Kalman filter method. The averaged computational time 

for the OTRR method is 6.51 s, including 4.15 s used for the iterative 

computation of the first segment reconstruction, and 2.36 s for the 

reconstruction of the rest frames. The computation time for Kalman is 0.57 s 

for all 200 frames. Clearly the Kalman filter method has much lower 

computational time compared to the OTRR method. But consider that the time 



81 
 

duration of the 200 frames is 24 s, the 6.51 s computational time of the OTRR 

method is acceptable, even for the online monitoring system. 

 

Figure 4-6: The reconstruction image errors of each frame for phantom 1 (top) 
phantom 2 (mid) and phantom 3 (bottom) 

 

To evaluate the noise tolerance of the two methods, measurements at different 

noise level are used in the simulation. The averaged metrics under different 

SNR conditions are plotted in Figure 4-7. From the figure, it can be concluded 

the proposed OTRR method has a better noise tolerance than the Kalman filter 

method in terms of IE, DL and PV. For the shape metric WD, both methods 

have a good performance when the SNR is larger than 30 dB. 
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Figure 4-7: Quantitative metrics at different noise level 

 

Figure 4-8 and Figure 4-9 show the reconstruction images of the first 16 frames. 

The proposed OTRR method has much better performance compared to the 

Kalman filter method. As can be seen from the figures, the Kalman filter 

method has a large reconstruction error in the first few frames. The artefacts 

are reduced in the following frames, but the dynamic characteristic details are 

poorly preserved, especially for the phantom 3. From the reconstructed images, 

it is very difficult to accurately locate the heat centre, estimate the peak value 

and track the shape changes of the temperature field. Compared to the Kalman 

filter method, the OTRR method can resolve the dynamic changes for all three 

phantoms. The temperature peak value increase, the heated area expansion, 

and the rotational location change of the heat centre are clearly described in 

the reconstructed images. 
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Figure 4-8: Reconstruction of the first 16 frames using OTRR method 

 

In conclusion, the simulation results show that the proposed OTRR method 

has better reconstruction accuracy, better noise tolerance, and a faster 

convergence rate than the Kalman filter method. Although the OTRR method 

has a longer computational time, 6.51 s for 200 frames compared to the 0.57 

s of Kalman filter method. This computational time of OTRR is still fast enough 

for the online monitoring requirement. The OTRR achieved an improvement in 

temporal resolution. Compared to the fully sampled reconstruction, the 

measuring time per frame is reduced from 640 ms to 120 ms. 

4.4.2 Experimental results 

The performance of OTRR is further validated through real data experiments. 

A hair dryer was placed 5 cm above the sensing plane to blow hot air 

downwards into the sensing area and create a hotspot. The acoustic 

tomography system was then used to reconstruct the temperature field. During 

the experiment, the hair dryer was placed in 7 different positions. For each 
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position, after the hair dryer was switched on and the temperature had 

stabilised, several measurements (20 frames) were taken to test the 

repeatability of the temperature field reconstruction and record all the 192 

TOFs. Similar to the numerical simulations, the change in position took place 

during each 120 ms period. 36 TOFs from 3 transmitters were used for the 

reconstruction of the under-sampled frame. The fully sampled tomographic 

images using all the 192 TOFs will be reconstructed based on the conventional 

SIRT method.  

 

Figure 4-9: Reconstruction of the first 16 frames using Kalman filter method 

 

Figure 4-10: Fully sampled reconstruction results (first row) and the under-
sampled reconstruction using OTRR (second row) 
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The comparison between the fully sampled tomographic reconstructions and 

the under-sampled reconstructions are presented in Figure 4-10. The 

comparison indicates that the under-sample images using OTRR method is 

able to resolve the position change of the hot spot, but the reconstructed image 

has large distortion compared to the fully sampled images. Using the fully 

sampled reconstruction results as the ground truth, then the quantitative 

reconstruction metrics, the IE, PV, DL and WD can be calculated, which are 

shown in Table 4-4. From the table it is clear that the reconstruction accuracy 

in terms of PV is very close to the fully-sampled reconstruction, which is 0.96%. 

However, the averaged WD is relatively large (1.54), which shows that the 

OTRR method do not have the accuracy to reconstruct the shape of the heated 

area. The averaged IE and DL are 2.39% and 3.16% respectively, which is 

acceptable considering the temporal resolution improvement compromises the 

loss of spatial resolution. 

Table 4-4: The averaged quantitative reconstruction metrics of the experiment 
results. 

IE (%) PV (%) DL (%) WD  

2.39 0.96 3.16 1.54 

 

A thermocouple was placed 5 cm beneath the sensing plane and at the centre 

of the heated air stream to validate the temperature reconstruction accuracy. 

The relative mean square error is 16.92% (with respect to Celsius) or 1.91% 

(with respect to Kelvin degree) at the centre of the reconstructed hotspot using 

36 TOF measurements and the OTRR method. On the other hand, the relative 

mean square error is much smaller using 192 TOFs and SIRT method, which 

is 5.12% (with respect to Celsius) or 0.58% (with respect to Kelvin degree). 

4.5 Summary  

In this chapter, an online time-resolved reconstruction (OTRR) method is 

developed for real-time monitoring system. OTRR uses a reduced number of 
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TOFs for reconstruction of each frame. As a result, the measuring time per 

frame is reduced from 640 ms to 120 ms. Numerical simulations and 

experiments show the OTRR method provides satisfactory results in tracking 

the dynamic changes of the temperature field. Compared to the existing 

dynamic reconstruction method, such as Kalman filter reconstruction, OTRR 

has a higher quantitative accuracy, faster convergence rate and better noise 

robustness.  
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Chapter 5 Nonlinear temperature field 

reconstruction based on bent ray model 

 

5.1 Introduction  

As illustrated in section 2.2 of Chapter 2, geometric acoustic theory is used in 

the forward problem of the acoustic tomography. According to the geometric 

acoustic theory, the sound waves are considered to propagate along ray paths 

between transducer pairs. Provided the sound propagation ray paths and the 

corresponding TOF measurements are made along these ray paths, the 

temperature field can be reconstructed. 

The difficulty of the tomographic reconstruction is the dependency of the ray 

path on the unknown distribution of the temperature field. For simplicity, in 

some applications when the acoustic tomographic system is used in near 

surface atmosphere [1, 17-19, 54], acoustic propagations between the 

transducer pairs are approximated as straight paths. However, in some 

situations, like the combustion process in furnace environment[23, 24], the 

gradient of the temperature field can be relatively large, and the sound speed 

distribution is highly heterogeneous. The corresponding ray path will be curved 

around the heated area due to the refraction effect, and the commonly used 

straight ray model may cause large reconstruction error. 

This chapter focuses on reducing the reconstruction inaccuracy of using a 

straight ray model under the large gradient temperature field. Instead of using 

the straight ray model and linear reconstruction, the bent ray model and 

nonlinear reconstruction algorithm are applied, which allows the sound 

propagation ray paths and temperature distribution to be reconstructed 

iteratively from the TOFs. The reconstruction process consists of two parts: (1) 

the nonlinear conjugate gradient descent method to efficiently update the 

solution of the temperature field; and (2) the Fast Marching Method (FMM) to 

determine the corresponding ray paths given the temperature field estimation. 
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Numerical simulations have been carried out to validate the performance of 

the proposed method. 

5.2 Modelling error due to refraction effect 

The conventional acoustic tomographic reconstruction assumes that the ray 

path is known a priori. For example, the acoustic tomography system for near 

surface atmosphere imaging assumes that the ray paths are straight lines 

between transducers. For the ocean tomography, the ray paths are pre-

calculated based on the ocean characteristics [2, 3].  

However, for some furnace environments, the gradient of temperature 

distribution can be considerably large. As a result, the propagation ray path 

between transmitters and receivers will be curved due to the refraction effect. 

An example of the temperature field with a large gradient is simulated and its 

corresponding ray paths is shown in Figure 5-1.  

 

Figure 5-1: The temperature field and the corresponding ray paths 

 

Next, the example in Figure 5-1 can be used to quantitatively illustrate the 

inaccuracy due to the refraction effect. 𝒔𝝀 and 𝒔̃𝝀 represent the reconstructed 

temperature field using the bent ray model and the straight ray model 
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respectively. The modelling error of reconstruction is due to the refraction 

effect, more precisely the relative mean square error 
‖𝒔̃𝝀−𝒔𝝀‖2

‖𝒔𝝀‖2
 between 𝒔̃𝝀 and 

𝒔𝝀 shows how sensitive the solution is to the modelling error. For simplicity, the 

measurement noise is ignored. The reconstruction comparison of 𝒔̃𝝀 and 𝒔𝝀 is 

shown in Figure 5-2 below: 

 

Figure 5-2: The reconstructed temperature field using the bent ray model (𝒔𝝀) 

and the straight ray model (𝒔̃𝝀), the image errors are 2.73% and 12.74% 
respectively. The regularisation parameter 𝝀 = 𝟎. 𝟏 and the noise level is set to 

be 45 dB 

 

The reconstructed image results in Figure 5-1 demonstrate the significant 

increase of image error, from 2.73% of using the bent ray model to 12.74% 

using the straight ray model. Besides, the reconstructed image using the 

inaccurate straight ray model results in large distortion in the image space. 

Compared to the reconstructed image using the bent ray model, the shape and 

the heat centre position of the temperature field are not correctly reconstructed 

when the straight ray model is applied. It can be concluded that the modelling 

error of using the straight ray model when the temperature field has a large 

gradient will lead to a large quantitative image error and distortion. Instead of 

the inaccurate straight ray model, the bent ray model should be used in the 

reconstruction. 
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5.3 Nonlinear reconstruction 

5.3.1 Problem statement 

The use of straight ray model will affect the accuracy of the tomographic 

reconstruction. Instead, the bent ray model is applied here. In this case, the 

ray paths are unknown but the dependence between the paths and the 

unknown fields is acknowledged based on geo-acoustic theory. The forward 

problem of acoustic tomography is defined in equation(2.6), and the 

reconstruction process is to find the optimal slowness distribution 𝒔  which 

agrees with the TOF measurement through the nonlinear forward problem 

equation. 

For the tomographic reconstruction, the regularised least square solution is 

commonly used. The inverse problem is solved by minimising the objective 

function as is defined in equation(2.19). 

 

5.3.2 Nonlinear conjugate gradient descent  

The nonlinear conjugate gradient descent (NCGD) is an effective tool for 

solving the nonlinear inverse problem. It uses the gradient of the cost function 

alone to iteratively search for the local minimal value of the cost function. In 

each iteration, the slowness distribution 𝒔  is updated along the conjugate 

direction with a line searched step size.  

Generally, the nonlinear conjugate gradient descent solves the tomographic 

reconstruction problem in the form: 

 1k k k k+ = +s s d  (5.1) 

Every time, the search will continue along this conjugate direction until a line 

minimum is found. 

Here 𝒅𝑘 is the conjugate search direction to minimise the cost function and 𝜆𝑘 

is the appropriate step size to reach the line minimum along this direction. 
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To initialise the searching direction, the negative gradient of the cost function 

is used, which is the same as the Gauss-Newton method. Then all the 

searching directions 𝒅𝑘 are constructed to be conjugate to previous directions. 

As a result, the minimisation in this iteration will preserve previous work. This 

gives the following expression: 
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The calculation of the gradient is the key step when the conjugate searching 

direction is determined. The gradient is given by: 
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where 𝑱𝒓(𝒔𝒌) =
𝝏𝒓(𝒔𝒌)

𝝏𝒔𝒌
 is the Jacobian matrix and 𝒓(𝒔𝒌) = 𝝉 − 𝑨(𝒔𝒌)𝒔𝒌  is the 

residual term[29]. 

Recall the forward modelling equation in (2.5), the relationship between TOF 

and sound speed slowness is defined as: 
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where Γ𝑖(𝒔) is the i-th ray path according to the slowness distribution 𝒔 and 

τ𝑖(𝒔) is the TOFs for given slowness distribution along this ray path. 

Based on the Fermat’s principle, the travel time is stationary along the actual 

ray path [101].  

Let 𝒔 = 𝒔𝟎 + 𝚫𝒔,  
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Therefore, equation (2.5) can be rewritten as  

 0
0
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where 𝒂𝒊 is the i-th row of the ray length matrix.  

Therefore, the Jacobian matrix 𝑱𝒓(𝒔𝒌) around current solution is approximated 

using the corresponding ray length matrix 
kA ,  
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Therefore, the gradient is given by: 

 ( ) 2 ( ) 2 T

k k k k = +C s A r s Q Qs  (5.8) 

 

The ray length matrix is obtained by conducting the ray tracing given the 

slowness distribution 𝒔𝒌. Details will be presented in section 5.3.3. 

To ensure the directions 𝒅𝑘  are conjugate to all previous directions, the 

conjugate gradient parameter 𝛽𝑘 , based on Polak–Ribière method, is used 

here[102]. 
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The step size 𝜆𝑘 is obtained by the line search, and details will be presented 

in section 5.3.4. 

 min ( )
k

k k k k


 = +C s d  (5.10) 

 

The details of implementing the NCGD method to solve the inverse problem is 

illustrated in Table 5-1. 
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Table 5-1: The nonlinear conjugate gradient descent (NCGD) reconstruction 
method 

Algorithm 5-1: the nonlinear conjugate gradient descent method 

Initialise: 𝒔𝟎 = 𝟎, ϵ = 10−6, k = 0, 𝑛=1.4, 𝑅=287 

Iteration 

 Step 1: Do ray tracing based on the current slowness estimation 𝒔𝑘 
calculate the ray length matrix 𝑨𝒌  

 Step 2: Calculate the gradient 𝛁𝑪(𝒔𝒌) with  𝑨𝒌 

 Step 3: Calculate the conjugate gradient parameter 𝛽𝑘 and conjugate 
direction 𝒅𝑘 

 Step 4: Do line search and find the appropriate step size 𝜆𝑘 

 Step 5: Update the solution 𝒔𝑘+1 = 𝒔𝑘 + 𝜆𝑘𝒅𝑘 

Until the stopping criterion is satisfied 

‖𝒔𝑘+1 − 𝒔𝑘‖2

‖𝒔𝑘‖2
≤ ϵ 

Output the reconstructed temperature field  

𝑻 =
1

𝑛𝑅𝒔2
 

 

5.3.3 Ray tracing  

Given the sound speed distribution, the ray path of the sound propagation 

should be firstly determined using the ray tracing method. Then, the ray length 

matrix 𝑨𝒌 can be updated in each iteration for calculating the gradient 𝒈𝑘. The 

sound propagation between transmitter and receiver is governed by the wave 

equation: 

 

2
2

2 2

1

c t


 =



Φ
Φ  (5.11) 

 

where Φ is the wave scalar potential and 𝑐 is the sound speed.  
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The harmonic solution to equation (5.11), assume Φ = A(𝒓)e−iωt, leads to the 

Helmholtz equation. 

 2 0k + =A A  (5.12) 

 

where 𝑘 = 2𝜋 𝜆⁄  is the wave number. 

Focusing on the sound propagation ray path, where the amplitude solution 

A(𝒓) is defined as  

 ( )( ) ( ) iPA F e−= r
r r  (5.13) 

 

where 𝐹(𝒓)  and 𝑃(𝒓)  are the amplitude and phase functions. Substitute 

equation (5.13) into equation (5.12), and ignore the imaginary part,  

 ( )
2

2 2( ) 0
F

P k
F


−  + =r  (5.14) 

 

The high frequency assumption of the geometric ray theory indicates that  

𝑘2 ≫
∇2𝐹

𝐹
, which basically assumes that the sound speed is approximately 

constant over one wavelength. Therefore, equation (5.14) becomes the 

Eikonal equation  

 ( )
2 2( )P k =r  (5.15) 

 

The wave front is defined as the surface with constant phase and the sound 

propagation ray paths are perpendicular to the wave front. 

Using the notation 𝑃(𝒓) = ω𝑇(𝒓), equation (5.15) becomes 

 
1

( )
( )

T =r
c r

 (5.16) 

 

where 𝑇(𝒓) denotes the arrival time of the wave front, which is the TOF from 

the source to the current position 𝒓. Given the sound speed distribution and 
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the transmitter source position, TOF map is calculated by solving the equation 

(5.16). Based on the TOF map, the ray path can be determined. 

Several methods have been developed to solve the Eikonal equation (5.15). 

One of the most robust and computational efficient methods among those 

techniques is the fast marching method (FMM). Based on FMM, the discrete 

approximation of equation (5.16) is: 

 
2 2

, , , , 2

,
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max( , , 0) max( , , 0)x m n x m n y m n y m n

m n

T T T T
c

+ − + −  +   =  (5.17) 

 

where ∇𝑥
+ and ∇𝑥

− denote the discrete forward and backward differentials along 

the x direction, and so do the ∇𝑦
+ and ∇𝑦

−.  𝒄𝑚,𝑛
2  is the discrete sound speed and 

(𝑚, 𝑛) denotes the coordinates.  

The FMM ray tracing accuracy also depends on the meshing size of sound 

speed distribution. The reconstructed distribution mesh grids, with the use of 

192 TOFs for given transducer setup, will not be more than 40 by 40. Therefore, 

interpolation and up-sampling of the sound speed distribution is necessary 

before the ray tracing process. Here the RBF basis is used for interpolation 

with a factor of 10. 

The FMM method divides all the pixels into three categories: (1), the ‘known’ 

pixels, the TOF at this pixel determined and will not be changed later; (2), the 

‘narrow band’ pixels, the TOF may be changed later; and (3), the ‘far’ pixel, the 

TOF is not yet computed. 

Generally, given the sound speed distribution and the position of the 

transmitter and receiver, the FMM method is illustrated in Table 5-2.   
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Table 5-2: The fast marching method (FMM) for ray tracing 

Initial with the source point (transmitter), mark it as the ‘known’ with t = 0 

Iteration: 

 Step 1: Mark the nearest neighbours of the ‘known’ to ‘narrowband’ 

 Step 2: Calculate the arrival time t of the pixels in the ‘narrowband’ 
with equation (5.17) 

 Step 3: Extract the pixel in the ‘narrowband’ with minimum arrival time, 
mark it as the ‘known’ 

Until the all the receivers’ pixels are marked as ‘known’  

Compute the ray path using the Runge-Kutta gradient descent method on 
the arrival time field 

Output the ray path 

 

Usually the FMM approximates the gradient using the first order differential 

scheme. As a result, the FMM is not accurate along diagonal directions, and 

its computational complexity is not optimal. Therefore, the Multistencils Fast 

Marching (MSFM) is used to improve the accuracy. The main difference 

compared to the FMM is the way in which the discrete differentials are 

approximated. More details are described in [103]. 

Based on the MSFM, the ray paths from one transmitter to all the other 

receivers according to the current sound speed distribution can be determined, 

and an example is shown in Figure 5-3. 
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Figure 5-3: Ray paths from transmitter (0.6, 0) to all the other 12 receivers 

 

5.3.4 Line search for optimal step size 

During each iteration, the step size 𝜆𝑘 is obtained by solving a one dimensional 

minimisation problem, which is also known as the ‘line search in scalar form to 

search along the conjugate gradient direction 𝒅𝑘  for the best 𝒔𝑘+1 . The 

common line search method can be categorised into two main groups, the 

inexact line search and the exact line search. The exact line search is to find 

the optimal step size to minimise the cost function along 𝒅𝑘, which is defined 

as follows: 

 min ( )
k

k k k k


 = +C s d  (5.18) 

 

However, the exact line search to find the optimal step size is computational 

demanding. Instead, the inexact line search is preferred. During each step it is 

only necessary to approximately minimise the cost function along 𝒅𝑘 , or 

reduce the cost function sufficiently [104]. In particular, one simple and efficient 

line search procedure is the backtracking line search based on the Armijo’s 

rule, which is expressed in Table 5-3. Here the subscript t denotes the iteration 

index of the line search algorithm. 

Table 5-3: The backtracking line search method based on Armijo-Goldstein’s 
rule 
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Initialization: 0 < α < 0.5,0 < β < 1, 𝜆𝑘,0 = − 𝒈𝑘
𝑇𝒅𝑘 ‖𝒅𝑘‖2

2⁄  

Repeat 𝜆𝑘,𝑡 = β𝜆𝑘,𝑡−1 

Until the stopping condition: 

𝑪(𝒔𝑘) − 𝑪(𝒔𝑘 + 𝜆𝑘,𝑡𝒅𝑘) ≥ α𝜆𝑘,𝑡𝒈𝑘
𝑇𝒅𝑘 

Output the step size 𝜆𝑘,𝑡 

 

The use of Armijo’s inequality requires to guarantee that 

 ,( ) ( )k k t k k+ C s d C s  (5.19) 

 

For this reason, the algorithm is always a descent algorithm. Besides, it should 

be noted that an increased number of line search iterations helps to improve 

the line search accuracy, but at the same time it will also increase the 

computational cost to evaluate the cost function values (using the ray tracing 

method). There should be a balance between these two factors. And this 

balance can be obtained with appropriate selection of the two control 

parameters α and β. Typically, it takes γ ∈ [.5, .8] while c ∈ [.001, .1] with 

adjustments depending on the cost of function evaluation and degree of 

nonlinearity. 

5.4 Connection with previous works 

To solve the nonlinear inverse problem, another simple way is to use the 

nonlinear gradient descent (NGD) method. The reconstruction is based on the 

local linearity assumption to simplify the nonlinear inverse problem, which 

assumes that the small changes for the residual term are approximately linear. 

 1 1( 1) ( ) ( )k k k k k k k+ ++ = + − = −r s r s A s s A s τ  (5.20) 

During each iteration, the solution is given as: 

 
2 2

1 2 2
mink k

s
+ = − +s τ A s Qs  (5.21) 
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Therefore, with the use of local linear assumption, the update of 𝒔𝑘+1 requires 

only the ray length matrix 𝑨𝒌, which only depends on previous solution 𝒔𝑘, and 

can be calculated using the aforementioned FMM based ray tracing method. 

Then the reconstruction becomes a linear inverse problem as shown in 

equation (5.21), which can be solved by the GSVD or SIRT method. 

Generally, the nonlinear tomographic reconstruction is illustrated in Table 5-4. 

Compared to the NCGD method, the NGD method is quite simple and easy to 

understand. However, it has two drawbacks: (1) the reconstruction 

performance will be largely affected due to the complexity of the medium since 

the local linearity assumption is not valid when large perturbation of the ray 

length matrix occurs.; and (2) without the conjugate gradient direction and line 

search step size, the NGD method requires a much higher computational cost 

for more iterations, and its convergence performance is not guaranteed.  

Table 5-4: The NGD method to solve the nonlinear inverse problem 

Initiation: 𝐴0 is calculated based on the straight ray model, tolerance ε 

Iteration: 

 
Step 1: linear reconstruction; calculate 𝒔𝒌+𝟏 by solving equation 

(5.21) given 𝑨𝒌. 

 
Step 2: ray tracing; calculate the ray length matrix 𝑨𝒌+𝟏 given the 

slowness estimation 𝒔𝒌+𝟏. 

Until the stopping criterion is satisfied:  

 ‖𝝉 − 𝑨𝒌+𝟏𝒔𝒌+𝟏‖
2

2
< ε 

Output the reconstructed temperature field  

 𝑇 =
1

𝑛𝑅𝑠2
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5.5 Simulation results and discussion 

5.5.1 Simulation setup  

In this section, the performance of the proposed NCGD method is evaluated 

with a series of numerical simulations. The performance of NCGD was 

compared with that of the conventional SIRT method using the straight ray 

model (4.1), the NGD method (5.4) using the bent ray model which have been 

popularly applied in the acoustic tomography image reconstruction problems. 

The sensor array setup is illustrated in Figure 3-2. 

Three representative dynamic phantoms of the temperature field are used to 

evaluate the reconstruction performance, as shown in Figure 5-4. The first two 

phantoms feature one or two Gaussian peaks on top of a flat plane. These two 

temperature fields have a relatively large gradient, with a maximum gradient 

of 3.24 × 103 𝐾/𝑚 and 3.31 × 103 𝐾/𝑚 . The third phantom approximates a 

sectioning image of the flame temperature field in a combustion chamber, 

which has lower average temperature in the inner zone than the outer zone. 

The phantom has a smaller temperature gradient with 642.33 𝐾/𝑚. The 4th 

phantom is more complex than the other three phantoms. It has four Gaussian 

peaks with different shapes. The maximum temperature gradient is 

3.91 × 103 𝐾/𝑚. 

Figure 5-4 also gives the calculated ray trajectories for the three phantoms. 

For phantoms 1 and 2, the ray paths are bent towards the heat sources clearly 

due to the large temperature field gradient. For phantom 3, when the gradient 

is relatively small, the calculated ray path is much closer to straight lines. It is 

also noticeable that, due to the refraction effect, the ray trajectories are more 

likely concentrated around the heat sources. The acoustic rays prefer to travel 

through heated areas, therefore the TOF measurements are more sensitive to 

this area. 
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5.5.2 Reconstruction results  

To quantitatively evaluate the overall reconstruction quality, four metrics, 

namely, image relative error (IE), Dislocation (DL), Peak value (PV), and 

Widening (WD) are adopted. IE evaluates the overall quantitative accuracy of 

the image reconstruction, while PV focuses on the local reconstruction 

accuracy of the temperature peaks. DL evaluates the performance of the 

reconstruction algorithm on localising the centre of the heat source. WD 

assesses the extent of reconstruction image distortion in shape. Detailed 

definitions about these four image reconstruction metrics can be found in 

section 4.4.1. 

 

Figure 5-4: The four temperature field phantoms for simulation test 
(temperature in Kelvin) 

Phantom 1 Phantom 2 

Phantom 3 Phantom 4 
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In this simulation, the measurement SNR is set to be 40 dB for the simulation 

tests, which is close to the measurement noise level in the lab-scale 

experiments. The calculation of PV and DL is based on the heat centre 

information of the phantoms. To calculate WD, the median value of the 

reconstruction temperature field is used as the threshold. Simulation is 

repeated 20 times for each phantom and the mean values of the 4 quantitative 

metrics are presented in Table 5-5. The image reconstruction results are 

presented in Figure 5-5.  

Table 5-5: The quantitative reconstruction metrics 

  Phantom 1 Phantom 2 Phantom 3 Phantom 4 

IE (%) 

SIRT 14.01 18.38 1.65 10.08 

GD 5.88 8.53 1.35 6.44 

NCGD 4.05 5.84 0.64 3.42 

PV (%) 

SIRT 29.74 20.84 2.6 4.74 

GD 6.77 6.77 1.83 4.17 

NCGD 4.25 4.25 1.39 0.32 

DL (%) 

SIRT 7.07 37 43 0.14 

GD 5 19.6 17.4 0.1 

NCGD 5 6.3 3.5 0.05 

WD 

SIRT 2.52 2.05 1.19 1.89 

GD 1.32 1.23 1.03 1.06 

NCGD 1.21 0.73 1.06 0.97 
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Firstly, for the reconstruction results of phantom 1, both the proposed NCGD 

method and the NGD method achieved a significant improvement in the 

quantitative metrics compared to the conventional SIRT method. With the use 

of bent ray model, the NCGD and NGD can accurately recover the shape, heat 

centre location and peak value of the temperature field and the overall image 

error is reduced to 5.31% and 6.58% respectively for the IE for overall accuracy. 

On the contrary, due to the use of the straight ray model, large image distortion 

occurs in the SIRT reconstruction, which results in a large error in PV and WD.  

For the reconstruction of phantom 2, only the NCGD method can achieve 

satisfactory reconstruction results, that the overall IE is 6.04% and the shape, 

peak value and heat centre location can be accurately recovered. The NGD 

method can still provide good temperature field reconstruction with IE of 8.79%. 

However, it cannot be used to accurately locate heat centre and recover the 

shape of the heated area. The reconstruction performance of the NGD method 

is largely affected when the temperature field is slightly more complex.  
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 (a)  (b)  (c) (d) 

Figure 5-5: The original temperature phantoms (a) and the reconstructed 
image results with the noisy simulation data (SNR=40 dB) using the 

conventional SIRT method (b), the GD method (c), and the NCGD method (d) 
From top to bottom are the reconstruction results for phantoms 1, 2, 3 and 4 

respectively (temperature in Kelvin) 

 

The third phantom is a simple simulation for the temperature of the flame 

temperature, which is relatively lower in the inner zone. From the 

reconstruction results, the improvement of using NGD and NCGD is not 

obvious. All three methods have good accuracy for the temperature field 

reconstruction in terms of shape, peak value, heat centre location and overall 

image reconstruction accuracy. This is due to the fact that the original 
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temperature field has a much smaller gradient compared to the first two 

phantoms, and that the nonlinear reconstruction using the bent ray model may 

not have the advantage of better modelling accuracy since the ray paths are 

very close to straight lines.  

For the fourth phantom, both GD and NCG method are able to recover the 

general shape of the heated area, with WDs of 1.06 and 0.97 respectively. On 

the contrary, the reconstructed image using the SIRT method suffers from 

large image distortion, with a WD of 1.89. For the reconstruction of heat centre 

information, the NCG method outperformed other two methods in terms of DL 

and PV. The image errors for SIRT, GD and NCG are 10.08, 6.44, and 3.42 

respectively. Again, the NCG method provided a better image than other two 

methods. 

To evaluate the noise tolerance of the reconstruction methods, measurements 

at different noise levels are used in the simulation. The averaged metrics of 

the phantoms 1 and 2 under different SNR condition are plotted in Figure 5-6. 

The metrics of the phantoms 3 and 4 are not included.  

From the results shown in Figure 5-6, it can be concluded the proposed NCGD 

method has a better noise tolerance performance than the NGD method for IE, 

DL, and PV, especially for the noisy tests of SNR under 40 dB. For the shape 

metric WD, neither can provide an accurate estimation for low SNR cases. The 

SIRT method based on the straight ray model suffers from the large modelling 

error due to the refraction effect. It can be seen from the simulation results that 

the SIRT method cannot provide an accurate estimation of the temperature 

field, even with the use of a high SNR or noiseless measurements. 
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Figure 5-6: Averaged quantitative metrics for different noise level for phantom 
1 and 2 

 

The comparison of the computation times between SIRT, NGD and NCGD 

method is illustrated in Table 5-6. The reconstruction was performed using 

Matlab 2018b installed on a Windows desktop with an Intel Xeon CPU (E5-

1660 v3 @ 3GHz, 8 cores) and 32 GB RAM memory. The computation time 

using SIRT method is less than 1 seconds, which proves that the SIRT method 

is more suitable for real-time implementation of acoustic tomography system 

than the other two methods. Among the two nonlinear reconstruction methods, 

the computation time using NCGD is less than 40 seconds for the first three 

phantoms and less than 80 seconds for phantom 4, while the NGD method 

requires more than 100 seconds.   
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Table 5-6: Computation time of image reconstruction for each phantom 

Method 
Phantom 

1 
Phantom 

2 
Phantom 

3 
Phantom 

4 

SIRT 0.17 0.21 0.28 0.14 

NGD 219.71 235.41 145.73 477.47 

NCGD 31.95 39.73 38.11 79.10 

 

In summary, both NGD and NCGD, which use the bent ray model, achieve a 

significant improvement on the reconstruction quality when the temperature 

field has a large gradient, in terms of the overall quantitative accuracy, the 

shape of the heated area, the peak value and the location of the heat centre. 

However, for the temperature field with a small gradient, the improvement 

brought by the NGD and NCGD methods is very limited. Compared to the 

conventional regularised NGD method, the NCGD has various advantages: (1) 

the improved tolerance to measurement noise and ray length matrix 

perturbation; and (2) good convergence performance towards the local 

minimum. These features are important especially for the ill-conditioning of the 

ray length matrix here, as the conjugate gradient direction can follow narrow 

(ill-conditioned) valleys, whereas the NGD method slows down and follows a 

criss-cross pattern. 

5.6 Summary 

In this chapter, a nonlinear acoustic tomographic reconstruction algorithm 

using the bent ray model is developed. The proposed NCGD reconstruction 

algorithm advances (1) the nonlinear conjugate gradient descent method to 

solve the nonlinear inverse problem; (2) the fast acoustic ray tracing given the 

sound speed distribution using FMM; and (3) the line search for optimal step 

size. Simulation results show that, the NCGD method achieves a significant 

improvement on reconstruction image quality compared to the conventional 
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SIRT method. It also outperforms the commonly used NGD method in terms 

of image quality, noise robustness, and computation speed. 
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Chapter 6 Large scale acoustic tomography for 

wind velocity field reconstruction  

 

6.1 Introduction 

Improved knowledge of the wind velocity field of the near surface atmosphere 

is of great importance in many applications, such as the boundary layer 

meteorology, theories of turbulence, visualization of different dynamic 

processes, studies of sound wave propagation through a turbulent atmosphere, 

etc [30]. In order to reconstruct the wind velocity field without disturbing these 

meteorological quantities, remote sensing techniques are required. 

Acoustic tomography has proved to be an effective remote sensing technique 

for the near surface atmosphere monitoring [53, 77, 105]. The first 

implementation of this technique was in the early 20th century, where the 

vertical structure of the air due to powerful explosions was recorded based on 

acoustic tomography. Later, the acoustic tomography was used to investigate 

the audible zones, especially the atmospheric surface layer [17, 53, 57, 106, 

107]. The cross-sectioning image of the wind velocity field can be 

reconstructed from the TOF measurements. Compared to other remote 

sensing techniques, for instance, the conventional radar and the volume 

imaging Lidars [108-110], the acoustic tomography system has the 

advantages of having a low equipment and maintenance cost, scalable 

measurement range and the ability to simultaneously reconstruct both the 

temperature and the wind velocity fields.  

However, there remain two main problems before large-scale acoustic 

tomography can be applied for practical applications: 

(1) Compared to applications in the combustion chamber and the lab-scale 

indoor atmosphere environment, the sensing area of remote sensing acoustic 

tomography is relatively large. According to Barth’s study [105], the 
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investigation area varies from an extent of tens of square metres to hundreds 

of square metres. Therefore, one of the major challenges towards employing 

acoustic tomography for large scale monitoring is the temporal resolution. In 

order to capture the dynamical changes of the temperature and wind velocity 

fields, a fully parallel TOF measurement scheme should be used to reduce the 

measuring time per frame. Further, in order to separate the received 

waveforms and accurately measure their individual TOFs along different ray 

path, broadband acoustic waveforms with good auto-correlation property were 

used [18]. 

(2) Compared to the scalar field tomographic reconstruction of the temperature 

field, the vector field tomographic reconstruction of the wind velocity field is 

generally different. According to Norton’s research [111], the unique 

reconstruction of the bounded vector field required both the longitudinal and 

transverse line integral measurement, while in the acoustic tomography 

system, only the longitudinal integral measurements (TOFs) were available. 

Jovanovic [61] proposed an angle of departure/arrival measurements method 

to obtain the transversal measurements. However, this technique requires a 

specially designed transducer array, with three transmitters and receivers to 

form an acoustic tri-pole in each site, which is generally not practical for large 

scale monitoring. In this chapter, it will be illustrated that the 2D horizontal wind 

velocity field can be a divergence-free vector field. On the basis of this, a 

divergence-free regularised algorithm is used to recover the wind velocity field 

with good quantitative accuracy. 

The previous chapters have explained in detail about the temperature field 

reconstruction using acoustic tomography techniques, and for large-scale 

acoustic tomography, the reconstruction of the temperature field is similar. 

Therefore, this chapter mainly focuses on the fully parallel TOF measurement 

scheme and the wind velocity reconstruction algorithm. The orthogonal 

acoustic waveforms based on the filtered and modulated Kasami sequence 

and divergence-free vector field regularised reconstruction methods are 

studied to accelerate TOF measurements and improve wind velocity 
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reconstruction accuracy. Numerical simulations are carried out to validate the 

performance of the proposed methods. 

6.2 Large scale acoustic tomography system 

Acoustic tomography mainly utilises the strong dependence of sound 

propagation on the spatial distribution of air temperature and velocity. A typical 

setup for large scale acoustic tomography system is illustrated in Figure 6-1. 

The whole square sensing area is surrounded by 16 acoustic transceivers (for 

the large-scale sensing area, the transmitter and receiver are placed at the 

same spot). The TOFs between each transducer pairs are recorded along 96 

ray paths. Given the position of the transceivers and the TOF measurements, 

the corresponding wind velocity field can be recovered. The acoustic 

transducer array covers a sensing area of 100 by 100 m and the reconstructed 

image is a 20 by 20 vector field with 5 meter resolution.  

 

Figure 6-1: Acoustic tomography transducer array setup 

 

The forward problem has been defined in Chapter 2, which uses the back and 

forth TOF measurements τ+ and τ− to measure the line integrals of the wind 

velocity field, the forward problem in matrix form can be written as 

 l = SV   (6.1) 

 

The tomographic reconstruction of the temperature and wind velocity is to 

compute the optimal 𝑽 = [𝑽𝒙, 𝑽𝒚] using the TOF measurements.  
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6.3 Parallel TOF measurement  

In conventional acoustic tomography systems, each transceiver is switched on 

sequentially to transmit acoustic signals to the receivers. The interference for 

TOF detection is relatively small since acoustic signals from different sources 

are separated in different time slots at the receiver. However, the temporal 

resolution of the system is sacrificed, and it may not able to capture the 

dynamic temperature changes in the sensing area.  

To improve the temporal resolution for large scale monitoring, a fully parallel 

data collection scheme should be used. It requires all the transceivers of the 

acoustic tomography system to transmit and receive acoustic signals 

simultaneously. From the received waveforms at each receiver, TOFs 

according to all different transmitters are estimated separately with good 

quantitative accuracy. As a result, the measuring time is significantly reduced 

compared to the pairwise sequential measurement strategy.  

The challenging part of the parallel TOF estimation is how to separate the 

received signal waveforms from different transmitter. To solve this problem, all 

the waveforms from different transmitters are designed with special signature. 

Therefore, they are orthogonal to each other. Then TOFs can be estimated 

based on the cross-correlation method.  

6.3.1 Cross-correlation TOF estimation 

For the cross-correlation TOF estimation, the TOF is considered as the time 

delay of the received signal with respect to the reference source signal. This 

correlation-based method is very robust against uncorrelated additive noise. 

However, as mentioned before, to extract this time delay from the received 

signal, the following conditions must be met: (1) the received signal is 

embedded in White Gaussian Noise (WGN), and (2) the received signal is the 

time-shifted, amplitude-scaled replica of the reference signal.  

For the first condition, since the transmitted waveforms from different 

transmitters are considered to interfere with each other, it is required that all 
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the transmitted waveform should be uncorrelated to each other. For the 

second condition, a better acoustic air transducer should be used for robust 

sound propagation to reduce waveform distortion at the receiver.  

Using the fully parallel data collection scheme, each received signal is a 

summation of all other 12 delayed source signals.  

 ( ) ( ) ( )
12

,1
,j i i j ji

y t x t t n t i j
=

= − +    (6.2) 

 

where ( )jy t  refers to the received signal at j-th receiver, ( )ix t  is the source 

signal from i-th transmitter and ,i jt  represents their corresponding delay time, 

which is the TOF in i-th ray path. ( )jn t  is the local noise received at j-th 

receiver.  

The summed transmitted waveforms can be firstly separated at the receiver. 

Then their individual delay time ,k jt  can be estimated based on the cross-

correlation detection defined below. 
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  (6.3) 

 

where l denotes the correlation delay, P denotes the number of received 

waveforms, and the noise term 𝑛𝑗(𝑡) is uncorrelated with the source signal 𝑥𝑖, 

and 𝑥𝑘 is the 𝑘-th reference signal waveform for cross-correlation detection. 

𝑅𝑥𝑖𝑥𝑘
 denotes the cross-correlation function between 𝑥𝑖(𝑡) and 𝑥𝑘(𝑡).  

Qu [11] used the normalised correlation function for TOF estimation. Although 

this normalization process will help to provide a scale-free strength of the 

statistical dependence, in this research the received signal sequence isn’t 

normalised for two reasons: (1) the TOFs are determined by the maximum of 

the correlation coefficients, therefore their accuracy will not be affected by the 
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absolute value of the coefficients; and (2) the received signal contains different 

waveform components from different transmitters and their power levels are 

quite different from each other. It is actually difficult to scale these components 

with specific weights. 

The global maximum location of the cross-correlation 𝑅𝑦𝑗𝑥𝑘
(𝑙) indicates the 

delay time. The correlation-based TOF estimation is robust against additive 

random noise, therefore the conventional denoising technique is not necessary. 

However, the waveform distortion and interference will largely affect the TOF 

estimation accuracy. Therefore, a proper window is also necessary to prevent 

the miss-leading local maximum of the correlation values. 

6.3.2 Source signal design 

It is important to minimise the interference term ∑ 𝑅𝑥𝑖𝑥𝑘
(𝑙 − ∆𝑡𝑖,𝑗)12

𝑖=1,𝑖≠𝑗,𝑖≠k  and 

noise term  𝑅𝑛𝑗𝑥𝑖
(𝑙)  in the cross-correlation TOF estimation. All the source 

signal waveforms should have good correlation property, such as sharp auto-

correlation peak, but low cross-correlation value, for arbitrarily random 

delay ∆𝑡𝑖,𝑗 and uncorrelated to the noise at the receiver. 

The Maximum Length Sequence (MLS) has a good asynchronous orthogonal 

property, which could be used to separate different source signals with 

arbitrary delay at the receiver. However, when a large number of simultaneous 

acoustic sources have to be used, such as the 12 used in this case, the cross-

correlation property of the MLS is relatively poor. Selecting and combining the 

preferred pairs of the MLS together can improve cross-correlation property, 

like the Kasami sequence. In fact, the Kasami sequence has near optimal 

cross-correlation values close to the Welch lower bound[112]. 

Therefore, the Kasami sequence shown in Figure 6-2 is selected to generate 

acoustic signals for source signal separation and TOF detection. However, it 

is difficult to practically generate and transmit the Kasami sequence with the 

acoustic transceivers, because the spectrum of the Kasami sequence is 

arbitrarily wide with sharp edges and discontinuous in the time domain, but the 
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transceiver is restricted to a limited bandwidth around a certain frequency. 

Therefore, before transmission, the Kasami sequence is modulated with fixed 

carrier frequency, then a band-pass filter is used to smooth the Kasami 

sequence and control its bandwidth to fit into the transducer’s specifications.  

 

Figure 6-2: Kasami sequence (red) and the output signal (blue) after 
modulation and band-pass filter. 

 

 

Figure 6-3: Kasami sequence (red) and modulated and filtered output 
sequence (blue) in frequency domain. After modulation and band-pass filter, 

the bandwidth of output signal is limited and centred at the 500Hz carrier 
frequency. 

 

As shown in Figure 6-3, compared with the original Kasami sequence, the 

modulated and filtered Kasami sequence has a narrower bandwidth, which can 
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meet the transmission requirement for acoustic transceivers. However, 

modulation and filtering will also weaken the correlation property of waveform. 

The auto- and cross-correlation comparison is given in Figure 6-4 and Figure 

6-5 respectively. The auto-correlation coefficients of the filtered Kasami 

sequence is a smoothed version of the original correlation of Kasami sequence. 

The auto-correlation peak value is reduced while the cross-correlation value, 

which can be considered as the interference in TOF detection, is increased. 

Once the interference and noise overwhelm the auto-correlation peak value, it 

is impossible to detect an accurate travel-time delay from the received signal. 

Besides, at the receiver, it is difficult to build an inverse filter to remove the 

smooth effect, as many zeros exist in the impulse response of the band-pass 

filter. The only way to enhance the auto-correlation property is to increase the 

length of the Kasami sequence and to produce a sharp auto-correlation peak. 

Meanwhile a good temporal resolution must remain for the acoustic 

tomography system.  

 

Figure 6-4: Auto-correlation of Kasami sequence (red) and modulated and 
filtered output sequence (blue). The auto-correlation of the filtered sequence 
has larger sidelobes and lower peak value than that of the Kasami sequence.  
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Figure 6-5: Cross-correlation of Kasami sequence (red) and modulated and 
filtered sequence output (blue). The cross-correlation value of the filtered 

sequence is much larger than the Kasami sequence, which results in a larger 
interference in TOF detection. 

 

In summary, in order to improve the temporal resolution of TOF measurement, 

the wideband acoustic signal waveform is designed based on the modulated 

and filtered Kasami sequence, which allows simultaneous signal transmission 

and data collection from all the acoustic ray paths. Then, the accurate TOF 

measurements along each ray path can be calculated by correlation detection. 

6.4 Wind velocity field reconstruction 

6.4.1 Invisible field problem 

The reconstruction of the wind velocity field from TOF measurements is 

considered to be a vector tomography problem. According to theoretical 

analysis of vector tomography, a major challenge in vector tomography is the 

invisible field problem [57, 61, 111], that the curl-free component of the vector 

field is ‘invisible’ to the longitudinal integral measurements (TOFs) and that 

only the divergence-free component can be uniquely reconstructed. To 

illustrate the ‘invisible’ field effect more clearly, a brief description is given 

below: 
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Based on Helmholtz’s theorem, a bounded wind velocity field v  can be 

uniquely decomposed into three components. 

 s I H
v = v + v + v   (6.4) 

 

where solenoidal (divergence-free ∇ ∙ 𝒗𝑆 = 0) component 𝑣𝑆, irrotational (curl-

free ∇ × 𝑣𝐼 = 0 ) component 𝑣𝐼 , and harmonic ( ∇ ∙ 𝑣 = 0, ∇ × 𝑣𝐻 = 0 ) 

component 𝑣𝐻 .  

Apply this to equation (2.10) and use the potential function representation 𝑉𝐼 =

∇𝜙 and 𝑉𝑆 = ∇ × 𝜓,  
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 (6.5) 

 

Equation (6.5) shows that, for the irrotational component 𝜙, only the boundary 

value ( , ) ( , )r r t tsx sy sx sy −  has contribution to the longitudinal line integral 

measurements. In other words, the irrotational vector field inside the sensing 

area is invisible according to the TOF measurements, and thus cannot be 

recovered. For 𝑣𝑆 and 𝑣𝐻, which added up as a divergence-free vector field, 

do not has this invisible field problem. 

Besides, the 2D horizontal wind velocity field can be considered as a 

divergence-free vector field. This assumption is valid as the stratification in the 

atmosphere caused by gravity makes the horizontal velocity 𝒗𝒙𝒚 great than the 

vertical velocity 𝒗𝒛 by a factor of 10-100. Usually for the time-averaged data as 

is used here, 𝒗𝒛 can be ignored. Therefore 𝒗𝒙𝒚 becomes a divergence-free 

vector field.  
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Among the two divergence-free vector components, 𝑣𝑆  and 𝑣𝐻 , of the 

horizontal wind velocity field, it has been proved that [61], without any other 

information, both  can be uniquely recovered from the longitudinal integral 

measurements. 

6.4.2 Divergence-free regularised vector tomography 

The inverse problem for the velocity reconstruction has the general form: 

 
2

2
min ( )R+
V

l - SV V   (6.7) 

 

where ‖𝒍 − 𝑺𝑽‖2
2 is the data fitting term and λ𝑅(𝑽) is the regularisation term, 

which is constructed based on priori knowledge of the vector field.  

So far, we have shown that the wind velocity field reconstruction is to recover 

the divergence-free component, both the 𝑣𝑆  and 𝑣𝐻 ， from line integrals. 

Bringing this priori to the reconstruction equation (6.7), it can be further 

formulated as: 

 
2 2

2 1 2
min  +  +
V
l - SV V RV   (6.8) 

 

where ‖∇ ∙ 𝒗‖1   and ‖𝑹𝑽‖2
2 are the divergence-free regularisation term and the 

vector smoothness regularisation respectively. 𝜂  and λ  are the two 

regularisation parameter. 

A discrete 2nd order finite differential approximation is used inside the sensing 

area and a 1st order differential is used for the boundary pixel. 
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Therefore a divergence operator can be defined for linear operation as: 𝑫𝑽 =

∇ ∙ 𝒗 and 𝐃 = [𝑫𝒙 𝑫𝒚] is the divergence operator and 𝑫𝒙, 𝑫𝒚 ∈ ℝ𝑁∗𝑁 are the 

two directional discrete differentials built based on equation (6.9).  

The third term  λ‖𝑹V‖2
2 , is the vector smoothness constraints, and 𝑹 is the 

vector Laplace operator. The vector Laplace operator is defined as: 
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Therefore,  =  x x y y x x y y
R D D + D D , D D + D D  

6.4.3 Tomographic reconstruction  

The inverse problem can be rewritten as: 

 
2 2

2 1 2
min + = +
V

V l - SV DV RV  (6.11) 

 

Augmented pseudo-measurement and ray length matrix can be used to 

simplify the objection function: 

 
2

1
2

minV = +
V
l - SV DV  (6.12) 

 

where 
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To solve the inverse problem, the alternating direction method of multipliers 

(ADMM) strategy is used to split the inverse problem into easier sub-

problems[113]. By introducing an additional variable  Z . 

 

2

1, 2
min

s.t.

+
V Z

l - SV Z

Z = DV

 (6.14) 

 

The corresponding augmented Lagrangian function is 

 ( ) ( )2 2

2 1 2, ,L  = − + + − + −T
Z V γ l SV Z γ Z DV Z DV

 

 

where   is the positive constraints and γ  is the multiplexer.  

ADMM solves the inverse problem by iteratively solving three sub-problems, 

and the details are illustrated in Table 6-1.   
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Table 6-1: ADMM for solving the inverse problem in equation (6.14) 

Initialise: V0 , λ, η, ρ, α, ϵ 

Iteration   

 Step 1 solve the V sub-problem  

 ( )1 min , ,L+ =k k k
V

V Z V γ  

 Step 2 solve the Z subc-problem: 

 ( )1 1min , ,L+ +=k k k
Z

Z Z V γ  

 Step 3 update the multiplexer: 

 ( )1 1 1min , ,L+ + +=k k k
γ

γ Z V γ  

Until a stopping criterion is satisfied 

 2 2

1 2 2+ − k k kV V V  

Output the vector field 

 

For the first, the V  sub-problem is a quadratic minimisation problem.  

 ( )
2 2

1
2 2

min T

k k + = + +k k
V

V l - SV γ Z - DV Z - SV  (6.15) 

 

which can be easily solved with an exact gradient-based solution.  

 ( ) ( )
1

1k k k 
−

+ = + + +
T T

T T T
V S S D D S l D Z D γ  (6.16) 

 

The Z  sub-problem contains the divergence-free regularisation, which can be 

considered as a lasso problem in its Lagrangian form[114]. 

 
2
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T
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
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Z Z Z Z DV  (6.17) 
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It has a naive solution using a shrinkage operator. 

 ( )1 1 /k k k + += −Z DV γ  (6.18) 

 

2 2N N



 is the shrinkage operator defined by 

 ( )( ) sgn( ) 
+

= −Z Z Z  (6.19) 

 

Then the multipliers updated as: 

 1 1 1= ( )k k k k+ + +− −γ γ Z DV  (6.20) 

 

where   is the step size. 

Finally, several remarks on the reconstruction method are listed below: 

1) The horizontal wind velocity field can be considered as a solenoidal 

vector field due to stratification. This property is utilised as the priori 

knowledge and the divergence-free regularisation is applied to improve 

the reconstruction quality. 

2) Vector Laplacian regularisation is used as the smoothness penalty term. 

3) ADMM is used to divide the inverse problem into easier sub-problems, 

to iteratively solve the sub-problems with accuracy. 

6.5 Simulation results and analysis 

6.5.1 TOF estimation 

For the purpose of real-time measurement, the acoustic signal waveform is 

designed based on the modulated and filtered Kasami sequence. Correlation 

detection is used to estimate the TOF. In the simulation, all the transmitted 

signals reached the receivers with a pre-set delay. According to Jovanovic [61], 

if the measurement noise is considered to be white Gaussian noise for 
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simplicity, the Cramer-Rao lower bound for the cross-correlation TOF 

estimation is: 

 
( )

2

22 2 2 2

1 1 1 1 1

8 1 /12
t

c c
SNR TW f W f




=
+

 (6.21) 

 

where the measuring time of TOF is set to be 1 s. The courier frequency 

500?cf Hz= and the measurements SNR is set to be 50dB. Jovanovic claimed 

that the cross-correlation TOF estimator could touch the Cramer-Rao lower 

bound, which is true only when the following condition is met: (1) the number 

of samples is sufficiently large with sampling frequency  sf → ; and (2) the 

measurement noise is identical in all the acoustic receivers. However, the 

Cramer-Rao lower bound is used here to roughly estimate the optimal 

parameter, i.e. the bandwidth  W .  

In this simulation, the lower bound changes with the selection of bandwidth  W . 

The relationship between the TOF detection error and the normalised 

bandwidth W  is shown in Figure 6-6. Generally, compared with the pairwise 

TOF measurement process, the length of the transmitted signal is increased 

from 5 ms to 10 ms and the total measuring times for each transceiver pair 

increases from 10 ms to 20 ms. However, because the total measuring time 

per frame is reduced from 160 ms to 20 ms, therefore the system speed is 

improved from 6.25 frames per second to 50 frames per second. All the 

parameters of the transmitted acoustic waveform are listed in Table 6-2. An 

example of the received signal is shown in Figure 6-7, which is the summation 

of all 15 sources. The cross-correlation detection of the TOFs is shown in 

Figure 6-8, where the arrival times of transmitted signal from the transceiver 1 

to the transceivers 3, 5, 7 and 9 are indicated on the cross-correlation peaks. 

The overlaps between the pre-set delay and the detected delay demonstrates 

the excellent accuracy of the TOF detection. 
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Figure 6-6: Change of CLB for TOF estimation with respect to the normalised 
band-pass filter bandwidth 

 

Table 6-2: Parameters for generating acoustic waveform 

Sampling frequency 10 kHz 

Carrier frequency 500 Hz 

Band-pass filter bandwidth 300 Hz 

Filter normalised bandwidth 0.03 

Filter length 81 

Filter window Kaiser 

Total measurement time per image 1 s 

Pulse duration 0.5 s 

Kasami code polynomial 14, 13, 8, 4, 0 
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Figure 6-7: Received signal at one transceiver from all other 15 sources. All 
the transceivers send acoustic signals for 10ms. The measurement time for 

each image lasts for 20ms. 

 

 

Figure 6-8: Cross-correlation TOF detection results from simulation. The 
preset delay is marked with ‘*’ and the detected delay is marked in the red 

circles.  
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6.5.2 Reconstruction of typical vector field phantoms 

The performance of the proposed vector field reconstruction algorithm is tested 

on three typical vector field phantoms, including the pure solenoidal vector field 

Sv , the divergence-free vector field containing the harmonic component 

S Hv v+ , and at last, S H Iv v v+ + , which also contains the irrotational vector 

component when the vertical wind velocity cannot be ignored (much smaller 

than the solenoidal component by a factor of 10). The three components in the 

simulation are illustrated in Figure 6-9: 

 

Figure 6-9: Three vector field components, from left to right, the solenoidal 

vector field sv , the harmonic vector field Hv  and the irrotational vector field.

Iv . The wind velocity field unit is m/s 

 

The algorithm parameters, such as the weight parameter λ  and   for the 

divergence-free regularisation and vector Laplacian regularisation, are 

empirically determined based on a series of practices and the same 

parameters are applied to the test phantoms, which are 0.1 and 0.01 

respectively. To quantitatively evaluate the accuracy of the reconstructed 

vector field, the relative image error between the reconstructed wind velocity 

and the true phantom are employed, which is defined as follow: 
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 (6.22) 

 

In the simulation, all the TOF measurements contain white Gaussian noise 

with different SNR. For each SNR value, 40 reconstructions with different noise 



128 
 

vectors are performed. The averaged image reconstruction error is used to 

evaluate the reconstruction performance. 

Figure 6-10 illustates the wind velocity reconstruction results and the relative 

image error with 40 dB noise. The first phantom is designed to evaluate the 

reconstruction accuracy on a pure solenoidal vector field, where the velocity 

vanishes at the boundary. The reconstruction result correctly shows the vortex 

shape and center positions. There seems to be some artefacts and small 

discontinuities on the magnitude of the velocity field, and the relative 

reconstruction error is 8%, which may be related to the modelling error due to 

the discretisation of the domain and the lack of measurements (96 ray paths 

for 16 transceivers). 

The second phantom is designed to evaluate the reconstruction accuracy for 

the source-free vector field with non-zero boundary velocity, which is a more 

general case. The velocity field contains the harmonic components, which is 

both source-free and curl-free. Curl-free means that it also has an invisible field 

problem. Norton [111] has concluded that measurements of the normal 

velocity on the boundary can be used to resolve the ambiguity of the harmonic 

part, and therefore Sv  and Hv  can be recovered separately. Later, Jovanovic 

further proved that no extra measurements are needed to determine the 

source-free vector field S Hv v+ , although the separation of the two components 

is not capable in that case. The simulation results here prove this conclusion. 

The relative reconstruction of the simulation is 0.14, which is acceptable.  

The third phantom tests the velocity field when the irrotational component 

cannot be ignored. The relative image error increases to 0.16 in this case, and 

the reconstruction accuracy is slightly affected by the irrotational component, 

since the source-free component is much larger than the irrotational vector 

field by a factor of 10. This shows the potential of acoustic travel-time 

tomography, that it can be robust against the irotational wind velocity 

components be used for the horizontal slice of wind velocity in the stratified 

atmosphere, where the wind velocity is a 2D source-free vector field. 
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Generally, for the reconstruction of all three phantoms, the orientation of the 

recovered fields are similar to the correct field with very few small deviations 

and the same can be said about the magnitude when the additive 

measurement noise is not prominent. Specifically, the last case which is the 

most challenging has practical importance because it corresponds to the real 

horizontal slicing image of the wind velocity field.  

 

Figure 6-10: Simulation scenarios (first row) and reconstructed wind velocity 
fields (second row). The arrows represent the direction of the wind and the 

colours indicate its amplitude (m/s). 

 

To evaluate the noise tolerance of the proposed method, measurements with 

different noise levels are used in the simulation. The averaged reconstruction 

error under different SNR condition is plotted in Figure 6-11. From the figure, 

it can be concluded the proposed method has a better noise tolerance for the 

first phantom of the solenoidal vector field than the other two phantoms. The 

irrotational vector field Iv  will largely affect the reconstruction accuracy, 

especially for the low SNR cases. Besides, it should be noted that the harmonic 

vector field  Hv , which is both divergence-free and curl-free, behaves like  Iv and 

disturbs the reconstruction accuracy when the SNR is low. But when the SNR 

is larger than 45dB, the harmonic vector field  Hv  act as the solenoidal vector 
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field and reconstruction error is close to the error rate of the pure solenoidal 

vector field. 

In summary, the simulation results confirmed the performance of the proposed 

divergence-free vector field reconstruction under practical setup. The 

proposed method can generate high quality tomographic images especially for 

the applications requiring good spatial resolution and enhanced noise 

deduction performance. Although it aims to reconstruct the divergence-free 

wind velocity field, results show that the relatively small irrotational component 

will not affect the reconstruction accuracy too much.  

 

Figure 6-11: Evolution of reconstruction error with respect to different noise 
level 

 

6.5.3 Reconstruction of votex shedding wind velocity field 

Wind energy has become one of the fastest-growing renewable energy 

sources in the world for its cost-effective and environmental-friendly nature. As 

wind turbines are being installed at an ever-increasing rate today, power 

production optimisation and turbine reliability assessments have raised a 

growing demand for monitoring the wind velocity for the whole rotor blade area. 

Therefore, a novel wind velocity monitoring technique such as the acoustic 

tomography is highly desirable and will prove to be beneficial for wind energy 

systems. 
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In low turbulence, the tall wind turbine will create the Kármán Vortex Street 

due to the vortex shedding process, if the structure is uniform along its height. 

For the conventional wind turbine, the vortex shedding wind velocity field will 

affect the wake process and cause periodically varying aerodynamic loads on 

the blade structure of the turbines behind. In case of a severe resonance 

situation, extreme and destructive blade deflections might occur. For the 

bladeless turbine, it directly harnesses wind energy from the vortex shedding 

wind velocity field. Generally, knowing the vortex wind velocity field is of great 

importance for wind energy systems, because it can help to estimate working 

efficiency and assess the working risk in response to wind conditions more 

precisely. An example of the vortex shedding wind velocity field after a cylinder 

is shown in Figure 6-12, which is calculated using the Gerris Flow Solver’s 

Kármán vortex street example[115].  

 

Figure 6-12: The simulated shedding vortex velocity field behind a cylinder 
with 2 m radius. The cylinder is placed outside the acoustic sensing area at 

the position [-4,13]. This 2D wind velocity is calculated using the Gerris Flow 
Solver.  

 

In this simulation, the proposed vector field reconstruction algorithm is 

evaluated for the vortex shedding wind velocity field based on the setup 

illustrated in Figure 6-1. The original wind velocity field was split into 7 subfield 

frames for reconstruction, each covers a 25 m*25 m square area. This section 

bypasses the TOF estimation process and focuses on the vector field 

reconstruction. The TOFs are directly calculated using the line integrals of the 

wind velocity with a finer mesh, and then deliberately corrupted with additive 

white Gaussian noise. Then the proposed divergence-free vector field 

reconstruction method is applied, and the reconstruction quality is evaluated 



132 
 

by looking at the IE between the true and reconstructed sound speed 

distributions. 

The reconstruction for all 7 frames are shown in Figure 6-13, Figure 6-14, and 

Figure 6-15. The corresponding measurement noise levels are set to be 40 

dB. Generally, for the first 6 frames, the reconstructed wind velocity field 

successfully recovers the general structure of the original field. Especially for 

the middle frames from frame 2 to frame 5, the vortex is reconstructed with 

good quantitative accuracy. Large reconstruction error occurs in frames 1 and 

7. For the frame 1, the original wind velocity field contains a lot of details that 

cannot be resolved by the 16-transducer sensing array. Increasing the 

transducer number from 16 to 32 will improve the reconstruction quality, as 

shown in Figure 6-16. For the frame 6 and 7, the original wind velocity field is 

mostly the harmonic and irrotational vector field, which is very difficult to 

reconstruct using the simulated TOFs.  

 

Figure 6-13: The original (first row) and the reconstructed (second row) 
velocity field for the first three frames. From left to right are the frames 1, 2 

and 3.  
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Figure 6-14: The original (first row) and the reconstructed (second row) 
velocity field for the middle three frames. From left to right are the frames 4, 5 

and 6. 

 

Figure 6-15: The original (left) and the reconstructed (right) velocity field for 
the last frames.  

 

Figure 6-16: The original wind velocity field of frame 1 (left), reconstruction 
using 16-transducer array (middle) and reconstruction using 32-transducer 

array (left) 
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To evaluate the noise tolerance of the proposed method, measurements at 

different noise level is used in the simulation. The averaged reconstruction 

error under different SNR condition is plotted in Figure 6-17. It can be seen 

from the figure that the reconstruction results for frames 2, 3, 4 and 5 are much 

better compared to the other three frames for all noise levels. An interesting 

case is frame 5, which has a relatively large IE when the measurement SNR 

is low but a significant improvement in IE with higher a TOF measurement SNR. 

This is due to the harmonic component within the wind velocity field, which 

agrees with the conclusion of previous simulation.  

In summary, acoustic tomography using the proposed divergence-free vector 

field reconstruction method has the capability to recover the shedding vortex 

wind velocity field from the TOF measurements with good quantitative 

accuracy for most cases. However, there are limitations in the cases: (1) the 

wind velocity field contains a lot of details that cannot be resolved with a limited 

number of transducers; (2) the wind velocity field may contain an irrotational 

vector component, which largely affects the reconstruction accuracy; and (3) 

the wind velocity field may contain a large harmonic vector component which 

will also affect the reconstruction accuracy when low SNR measurements are 

used.  

 

Figure 6-17: Evolution of reconstruction error with respect to different noise 
level 
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6.6 Summary 

This chapter investigates the large scale acoustic tomography for wind velocity 

monitoring. Specifically, the 2D horizontal wind velocity of the near surface 

atmosphere. For this purpose, two approaches are presented: (1) reduction of 

processing time of TOF estimation; and (2) improving the reconstruction 

accuracy of the wind velocity field. For the first approach, the TOF measuring 

process for different paths is performed simultaneously based on cross-

correlation detection using code division techniques. For the wind velocity 

reconstruction, the inverse problem is modelled with a divergence-free and 

vector Laplacian regularisation, which efficiently utilises the underlying 

divergence-free and smoothness property of the horizontal wind velocity field. 

ADMM is used to solve the inverse problem with good quantitative accuracy. 

Simulation results show that, for the 2D horizontal wind velocity field, the 

proposed reconstruction method has a good quantitative accuracy by utilizing 

the divergence-free property.  
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Chapter 7 Conclusions and future work 

 

7.1 Conclusions  

Whist challenging, acoustic tomography is a promising sensing technique for 

atmospheric imaging with the advantages of being non-invasive, low-cost, and 

easy to implement. Acoustic tomography also has benefit of being able to 

simultaneously measure the air temperature and the wind velocity. The key 

challenges include obtaining an accurate TOF estimation, using an appropriate 

imaging temporal and spatial resolution, and the quantitative accuracy of 

reconstruction. Aiming at exploiting acoustic tomography for the atmospheric 

imaging of temperature and wind velocity fields, a comprehensive study was 

carried out by developing a lab-scale acoustic tomography system, 

investigating a TOF estimation algorithm, and designing a tomographic image 

reconstruction algorithm. The detailed work, contributed by this thesis, is 

summarised as follows: 

The foundations of acoustic tomography, the existing acoustic tomography 

systems for atmospheric imaging, the state-of-the-art acoustic tomography 

reconstruction algorithms, and the emerging applications of acoustic 

tomography, were firstly reviewed. The review helped to build understanding 

of recent developments in acoustic tomography systems and provided the 

background for the innovative work demonstrated in this thesis. 

The primary target of this thesis was to develop a lab-scale acoustic 

tomography system and further, develop a robust and accurate TOF 

estimation algorithm. The design of the acoustic tomography system was 

illustrated from the perspectives of the system architecture and the functional 

modules. The key features of the presented system include: (1) 192 TOFs per 

frame using the array of 16 transmitters and 16 receivers; (2) a semi-parallel 

data acquisition scheme using a switching circuit; (3) configurable excitation 

signal generation and received waveform measurement using the NI DAQ; and 
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(4) a central control software for system control, received waveform monitoring 

and data storage. In addition, a PCAIC TOF estimation method was developed. 

Two improvements were studied in comparison with conventional weighted 

AIC TOF estimation methods to reduce cross-talk interference and sound 

reflections: (1) an adaptive window was applied for accurate AIC TOF 

estimation; and (2) a phase correction method was developed to further 

improve the temporal resolution and noise robustness of the TOF estimation. 

Experimental study shows that the proposed PCAIC picker has good 

quantitative accuracy (with an overall rRMSE of less than 0.2%), high temporal 

resolution (0.25 µs) and robustness against the crosstalk interference and 

additional random noise. In summary, the acoustic tomography system and 

PCAIC TOF estimation method can be used to perform a lab-scale 

experimental study and validate different tomographic reconstruction 

algorithms. 

This thesis also worked on the improvement of the temporal resolution of 

acoustic tomography. A novel online time-resolved reconstruction method was 

proposed, which was able to reconstruct high quality time-resolved images by 

using fewer TOFs per frame. This method exploits the redundancy of 

information in the temporal domain and designs a temporal regularisation 

based on an adaptive AR model to reduce the required amount of TOF data 

per frame. A sliding overlapping window is applied to further improve the 

reconstruction accuracy Instead of conducting iterative calculation upon each 

data set until convergence, the recursive reconstruction process performs a 

sliding iteration over each data segment. For the reconstruction of each frame, 

the online computation is non-iterative. Based on the simulation results, the 

proposed OTRR methods have a higher quantitative accuracy, a faster 

convergence rate and better noise robustness compared to the conventional 

Kalman filter reconstruction method. From the experiments, the OTRR method 

provides satisfactory results in tracking the dynamic changes of the 

temperature field. 
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Moreover, another novel image reconstruction method named NCGD was 

presented. Instead of the commonly used straight ray model, this method uses 

the bent ray model to reduce the modelling error when the temperature field 

has a large gradient. During the reconstruction process, both the sound 

propagation ray paths and temperature distribution can be reconstructed 

iteratively from the TOFs. The reconstruction process of NCGD consists of two 

parts: (1) the nonlinear conjugate gradient descent method to efficiently update 

the solution of the temperature field; and (2) the FMM to update the 

corresponding ray path given the temperature field estimation. Numerical 

simulations have been carried out to validate the performance of the proposed 

method. Compared to the conventional SIRT method using the straight ray 

model, the proposed NCGD method has better performance in terms of the 

overall image quality, less distortion in the shape of the heated area, and the 

quantitative accuracy of the peak value and the heat centre location. 

Compared to the common NGD methods using the bent ray model, the 

proposed NCGD method has the advantages of using less computational time, 

better noise tolerance and better image quality. 

Thereafter this thesis continued with the study of applying acoustic 

tomography for large scale atmospheric imaging. To accelerate the data 

collection process, a parallel TOF measurement scheme was investigated, 

including the cross-correlation TOF estimation and the design of an orthogonal 

waveform set for the excitation signal based on the filtered and modulated 

Kasami sequence. Besides, a novel vector tomography reconstruction method 

was developed for the reconstruction of the wind velocity field. It efficiently 

uses the divergence-free property of the 2D horizontal wind velocity field as 

the priori knowledge and formulates the inverse problem with the divergence-

free regularisation and vector Laplacian regularisation for enhanced imaging 

performance. In order to solve the problem with a faster convergence rate, an 

accelerated alternating direction method of multipliers was applied. Simulation 

results show that the proposed reconstruction method has a good quantitative 

accuracy to reconstruct the 2D horizontal wind velocity field. 
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In conclusion, the methodologies developed in this thesis are very promising 

for enhancing the performance of acoustic tomography system, in terms of 

improving the TOF estimation accuracy and noise robustness using PCAIC 

TOF estimation method, improving the temporal resolution with the OTRR 

method, improving the image quality of large gradient temperature field using 

NCGD method, improving the image quality of 2D horizontal wind velocity field 

using the divergence-free regularised reconstruction method. There are also 

many further extensions and potential applications of these methods, which 

will be discussed in the next section.  

7.2 Future work 

Although this thesis has significantly improved the performance of acoustic 

tomography imaging with the developed techniques, investigation is still 

necessary to further advance this work in the following areas 

• With regards to the development of the acoustic tomography system, 

an improvement in the sampling frequency is worth studying. Currently, 

the 12 received waveforms are measured in two groups. A higher 

sampling rate would enable simultaneous data collection for all the 

received waveforms. Recording the received waveforms in each 

channel using a higher sampling rate would also help to improve the 

TOF estimation accuracy. 

• With regards to the transducer array, multiple acoustic transceivers 

should be used instead of standalone transmitters and receivers. For 

each transmitter, its corresponding receiver can be put nearby. 

However, the transmitter and the receiver cannot be considered to be 

at the same position for small scale experiments (1 m2 sensing area in 

this thesis). If each transmitter is at a different position compared to its 

corresponding receiver, then the back and forth sound propagations are 

along different ray paths. The use of transceivers enables reciprocal 

transmission of acoustic waves along the same ray path, and the time 

difference of the back and forth TOFs can be used for wind velocity 
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reconstruction. 

• As for the image reconstruction method based on the bent ray model, 

the presented NCGD method cannot provide good reconstruction on 

the complex temperature field. This is due to the lack of measurements. 

The spatial resolution of the reconstructed image is limited by the 

number of TOFs. The ray tracing accuracy will also be affected if the 

ray paths are computed based on an under-sampled sound speed 

distribution. Currently, the spatial resolution is just enough for the simple 

temperature fields, like the tested phantoms in Chapter 5. One way to 

solve this problem is to increase the number of TOFs by placing more 

transducers on the boundary. However, this will add to the 

implementation difficulty and the equipment cost. Another possible way 

to solve this problem is to incorporate appropriate information from the 

priori knowledge about the specific temperature field or the 

measurement information from other techniques. 

• The focus of this thesis has been to enhance the performance of 

acoustic tomography for atmospheric imaging, but these ideas are also 

applicable beyond this scope. The PCAIC TOF estimation methods can 

also be used for other applications, such as ocean tomography, 

ultrasound tomography for medical uses, arrival time estimation for 

seismic imaging, and ultrasound range detection. The OTRR method 

can also be used for reconstruction in other dynamic imaging 

applications, for instance, the 4D CT [116] and dynamic MRI [73]. 

• Finally, there is a need to extend the presented work for 3D imaging. 

With the use of multiple layers of transducer arrays, high throughput 

data acquisition hardware, and fast tomographic reconstruction 

algorithms, 3D tomographic images of atmospheric volumes can be 

obtained. 3D tomographic imaging can provide full knowledge of 

atmospheric volumes in the form of temperature profiles and wind 

velocity vectors. For instance, accurate 3D temperature profiles would 
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help to improve the understanding of the combustion process and help 

to ease the evaluation of combustion efficiency. 
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