90 research outputs found

    Channel Characterisation for Wearable LoRaWAN Monitors

    Get PDF

    Experimental Characterisation of Body-Centric Radio Channels Using Wireless Sensors

    Get PDF
    PhDWireless sensors and their applications have become increasingly attractive for industry, building automation and energy control, paving the way for new applications of sensor networks which go well beyond traditional sensor applications. In recent years, there has been a rapid growth in the number of wireless devices operating in close proximity to the human body. Wearable sensor nodes are growing popular not only in our normal living lifestyle, but also within healthcare and military applications, where different radio units operating in/on/off body communicate pervasively. Expectations go beyond the research visions, towards deployment in real-world applications that would empower business processes and future business cases. Although theoretical and simulation models give initial results of the antenna behaviour and the radio channel performance of wireless body area network (WBAN) devices, empirical data from different set of measurements still form an essential part of the radio propagation models. Usually, measurements are performed in laboratory facilities which are equipped with bulky and expensive RF instrumentation within calibrated and controllable environments; thus, the acquired data has the highest possible reliability. However, there are still measurement uncertainties due to cables and connections and significant variations when designs are deployed and measured in real scenarios, such as hospitals wards, commercial buildings or even the battle field. Consequently, more flexible and less expensive measurement tools are required. In this sense, wireless sensor nodes offer not only easiness to deploy or flexibility, but also adaptability to different environments. In this thesis, custom-built wireless sensor nodes are used to characterise different on-body radio channels operating in the IEEE 802.15.4 communication standard at the 2.45 GHz ISM band. Measurement results are also compared with those from the conventional technique using a Vector Network Analyser. The wireless sensor nodes not only diminished the effect of semi-rigid or flexible coaxial cables (scattering or radiation) used with the Vector Network Analyser (VNA), but also provided a more realistic response of the radio link channel. The performance of the wireless sensors is presented over each of the 16 different channels present at the 2.45 GHz band. Additionally, custom-built wireless sensors are used to characterise and model the performance of different on-body radio links in dynamic environments, such as jogging, rowing, and cycling. The use of wireless sensors proves to be less obstructive and more flexible than traditional measurements using coaxial cables, VNA or signal generators. The statistical analysis of different WBAN channels highlighted important radio propagation features which can be used as sport classifiers models and motion detection. Moreover, specific on-body radio propagation channels are further explored, with the aim to recognize physiological features such as motion pattern, breathing activity and heartbeat. The time domain sample data is transformed to the frequency domain using a non-parametric FFT defined by the Welch’s periodogram. The Appendix-Section D explores other digital signal processing techniques which include spectrograms (STFT) and wavelet transforms (WT). Although a simple analysis is presented, strong DSP techniques proved to be good for signal de-noising and multi-resolution analysis. Finally, preliminary results are presented for indoor tracking using the RSS recorded by multiple wireless sensor nodes deployed in an indoor scenario. In contrast to outdoor environments, indoor scenarios are subject to a high level of multipath signals which are dependent on the indoor clutter. The presented algorithm is based on path loss analysis combined with spatial knowledge of each wireless sensor

    Body-centric wireless communications: wearable antennas, channel modelling, and near-field antenna measurements

    Get PDF
    This thesis provides novel contribution to the field of body-centric wireless communications (BCWC) with the development of a measurement methodology for wearable antenna characterisation on the human body, the implementation of fully-textile wearable antennas and the on-body channel modelling considering different antenna types and user's dynamic effects. More specifically, a measurement methodology is developed for characterising wearable antennas on different locations of the human body. A cylindrical near-field (CNF) technique is employed, which facilitates wearable antenna measurements on a full-body solid anthropomorphic mannequin (SAM) phantom. This technique allows the fast extraction of the full spherical radiation pattern and the corresponding radiation efficiency, which is an important parameter for optimising wearable system design. It appears as a cost- effective and easy to implement solution that does not require expensive positioning systems to rotate the phantom, in contrast to conventional roll-over-azimuth far-field systems. Furthermore, a flexible fully-textile wearable antenna is designed, fabricated and measured at 2.4 GHz that can be easily integrated in smart clothing. It supports surface wave propagation and exhibits an omni-directional radiation pattern that makes it suitable for on-body communications. It is based on a multilayer low-profile higher-mode patch antenna (HMMPA) design with embroidered shorting vias. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that play an important role in generating the optimal mode for on-body radiation. The radiation pattern shape of the proposed fully-textile antenna was found to be similar to a copper rigid antenna, exhibiting a high on-body radiation efficiency of 50 %. The potential of the embroidery technique for creating wearable antennas is also demonstrated with the fabrication of a circularly polarised spiral antenna that achieves a broadband performance from 0.9-3 GHz, which is suitable for off-body communications. By testing the textile spiral antenna on the SAM phantom, the antenna-body interaction is examined in a wide frequency range. Finally, a statistical characterisation of on-body communication channels is undertaken both with EM simulations and channel measurements including user's dynamic movement (walking and running). By using antenna types of different polarisation, the on-body channels are examined for different propagation conditions. Four on-body channels are examined with the one part fixed on the waist of the human body while the other part located on the chest, back, wrist and foot. Channel path gain is derived, while large-scale and small-scale fading are modelled by best-fit statistical distributions

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    Reliable high-data rate body-centric wireless communication

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    • …
    corecore