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Abstract 

 

 

Wireless sensors and their applications have become increasingly attractive for 

industry, building automation and energy control, paving the way for new 

applications of sensor networks which go well beyond traditional sensor applications. 

In recent years, there has been a rapid growth in the number of wireless devices 

operating in close proximity to the human body. Wearable sensor nodes are growing 

popular not only in our normal living lifestyle, but also within healthcare and 

military applications, where different radio units operating in/on/off body 

communicate pervasively. Expectations go beyond the research visions, towards 

deployment in real-world applications that would empower business processes and 

future business cases. 

Although theoretical and simulation models give initial results of the antenna 

behaviour and the radio channel performance of wireless body area network 

(WBAN) devices, empirical data from different set of measurements still form an 

essential part of the radio propagation models. Usually, measurements are performed 

in laboratory facilities which are equipped with bulky and expensive RF 

instrumentation within calibrated and controllable environments; thus, the acquired 

data has the highest possible reliability. However, there are still measurement 

uncertainties due to cables and connections and significant variations when designs 

are deployed and measured in real scenarios, such as hospitals wards, commercial 

buildings or even the battle field. 

Consequently, more flexible and less expensive measurement tools are required. In 

this sense, wireless sensor nodes offer not only easiness to deploy or flexibility, but 

also adaptability to different environments.  In this thesis, custom-built wireless 

sensor nodes are used to characterise different on-body radio channels operating in 

the IEEE 802.15.4 communication standard at the 2.45 GHz ISM band. Measurement 

results are also compared with those from the conventional technique using a Vector 
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Network Analyser. The wireless sensor nodes not only diminished the effect of semi-

rigid or flexible coaxial cables (scattering or radiation) used with the Vector Network 

Analyser (VNA), but also provided a more realistic response of the radio link 

channel. The performance of the wireless sensors is presented over each of the 16 

different channels present at the 2.45 GHz band.  

Additionally, custom-built wireless sensors are used to characterise and model the 

performance of different on-body radio links in dynamic environments, such as 

jogging, rowing, and cycling. The use of wireless sensors proves to be less 

obstructive and more flexible than traditional measurements using coaxial cables, 

VNA or signal generators. The statistical analysis of different WBAN channels 

highlighted important radio propagation features which can be used as sport 

classifiers models and motion detection. 

Moreover, specific on-body radio propagation channels are further explored, with 

the aim to recognize physiological features such as motion pattern, breathing activity 

and heartbeat. The time domain sample data is transformed to the frequency domain 

using a non-parametric FFT defined by the Welch’s periodogram. The Appendix-

Section D explores other digital signal processing techniques which include 

spectrograms (STFT) and wavelet transforms (WT). Although a simple analysis is 

presented, strong DSP techniques proved to be good for signal de-noising and multi-

resolution analysis.  

Finally, preliminary results are presented for indoor tracking using the RSS 

recorded by multiple wireless sensor nodes deployed in an indoor scenario. In 

contrast to outdoor environments, indoor scenarios are subject to a high level of 

multipath signals which are dependent on the indoor clutter. The presented algorithm 

is based on path loss analysis combined with spatial knowledge of each wireless 

sensor. 
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Chapter  1 

Introduction 

The integration and connectivity of different electronic devices, such as home 

entertainment systems, using inter-operability guidelines of the Digital Living 

Network Alliance (DLNA), smart phones and even domestic appliances (intelligent 

refrigerators, microwaves, smart washing machines), have become part of our daily 

life. As a result, current devices offer not only human interaction, but also the inter-

connectivity of each of them. The electronic devices process and control unique 

applications which are transmitted through seamless wireless channels creating 

independent networks that operate at exclusive radio frequencies. As a result, 

wireless personal area networks (WPANs) are formed. 

In a similar way, different groups are taking advantage of these technological 

trends. For example, military institutions start using body-worn equipment to control 

and monitor soldier battlefield positioning [1].  In the case of the medical scenario, 

real-time monitoring systems for biological and biomechanical signals, such as 
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heartbeat variability, breath rhythm, blood pressure, perspiration and temperature, are 

testing the potential and reliability of current technologies [2].  

1.1.  Research Scope and Applications 

Next generation wearable sensors are expected to be autonomous self-powered 

systems stacked in fractional volumes of 0.1cm
3
 [3] (Fig. 1.1). They will also be 

equipped with a type of piezoelectric transducer for energy scavenging transforming 

mechanical energy, such as pressure, force, vibration and physiological processes 

and physical quantities of the human body for example kinetic, sound, thermal and 

internal acid fluids into a source of power [3-5].  

 

Fig. 1.1.System integration and development of 3D stacking technology, flex materials and full wafer-

scale for magnitude reduction in volume and enable smart unobtrusive autonomous sensor systems 

[3]. 

Moreover, the design and manufacturing process of forthcoming chips are 

evolving from the classical 2D manufacturing process (28 nm) to 3D 

implementations (22 nm) where the number of transistors is increased, thus 

increasing the computational speed and reducing the power consumption. 

A recent report made by ABI research predicts that over the next five years the 

market for wearable wireless sensors is set to grow to more than 400 million devices 

by 2014 [6]. These figures show the popularity of wearable sensors; but, at the same 

time pushes current technology trends towards new manufacturing designs where the 

integration of biocompatible and biodegradable materials together with flexible and 

organic electronics [7] will become a common standard for body-centric devices. 

Furthermore, recent implementations made use of conductive polymers, commonly 

carbon-based, to create light and flexible materials, where the traditional 
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combination of copper and silicon dioxide (silica) is unsuitable [7]. These materials 

will be used on a new set of wearable functions and thus extending the frontiers of 

current on-body applications. Such conductive polymers are expected to play an 

important role in emerging applications not only for body-centric environments but 

also for future building structures. Some examples of such technologies are the 

Google’s project glass [8] (Fig. 1.2a), electronic paper [9] (Fig. 1.2b), the flexible 

displays (OLED) [10] and the smart window (Eglass) [11] (Fig. 1.2c). 

 

Fig. 1.2.Photograph of (a) Google’s Project Glass [8], (b) Electronic Paper [9] and (c) flexible OLED 

display [10]. 

In the case of human microchip implants [12, 13], the electronic components will 

be made from biocompatible materials. Accordingly, implants that need to reside for 

short periods of time could be broken down and absorbed by the human tissues thus 

eliminating the need for additional surgery for the implant removal. Furthermore, 

new implantable devices will also include smart drug-release subsystems that enclose 

compact RF sub-sections for the wireless communication which empower the 

continuous monitoring of the patient during the recovery process. 
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It is evident that new technological trends will lead to new body-centric 

environments bringing about new areas of investigation, not only to control and 

monitor human physiology, but also to understand and model the behaviour of 

current and future designs when placed on-body. Moreover, wearable devices will 

become autonomous devices that are compact and conformal to the body and capable 

to harvest energy, sense physiological parameters and communicate between body-

worn nodes. 

The reliability of each on-body radio link depends on power constraints, body 

location, application environment and the wireless sensor architecture. Compact and 

conformal lightweight wearable devices usually house miniature antennas that have 

low gain, narrow bandwidth and low efficiency; thus, the on-body radio link is 

degraded [14]. Forthcoming body-worn antennas, including those with a greater 

coverage area, high efficiency, enhanced behaviour to the proximity of the human 

body and operation at different frequencies, are current topics of active research [14, 

15]. 

Currently, most of the Wireless Body Area Networks (WBAN) literature 

characterises on/off-body radio channels using standalone antennas (either single or 

multiple radiating elements) [14]. Even though the size of such antennas is large and 

non-conformal to the human body, they help to understand and model the 

electromagnetic wave propagation around the body using a combination of EM 

solvers and measurements of the scattering parameters. Traditionally, the scattering 

parameters of WBAN communication channels are measured with the aid of Vector 

Network Analysers (VNAs) or Spectrum Analysers (SA). Measured data is further 

post-processed in order to define propagation models for different on-body radio 

links.  

In contrast, the characterisation of WBAN communication channels using compact 

wireless sensor nodes is still limited and needs to be explored. At lower frequencies, 

the effects of active and passive elements barely influence the communication 

channel, but at high frequencies, the electromagnetic propagation properties 

alongside the human body are highly perturbed by external factors (e.g., the lossy 

tissues of the human body). 
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1.2.  Research Objectives 

The reliability of body-centric communication networks is highly influenced by the 

behaviour of the transmission path. The radiating element of an on-body wireless 

node radiates electromagnetic waves that propagate in free space and alongside the 

body surface where they are absorbed by the lossy human tissues. The latter and the 

inhomogeneous composition of the human body counteract the electromagnetic wave 

propagation and radiation of body-worn antennas, thus hindering the radio 

communication performance of functional prototypes.  

In order to design wearable devices, a thorough investigation on the causes of 

inefficiency in WBAN channels, due to antenna performance and the effect of full 

sensor structures (including ICs and lumped elements) on the wireless sensor 

operation, is required. For example, wireless modules that exclude the ground 

metallization underneath the antenna (e.g., designs using chip antennas) are 

drastically affected by the human tissue proximity. However, the radio efficiency of 

WBAN sensors is affected not only by the type or size of the antenna, but also by the 

body location, the posture, the user and the application itself. 

The thesis aims to understand, from simulation and empirical models, how body 

centric wireless communication (BCWC) parameters may change from the design of 

the antenna to the development process of the wireless sensor node. The study also 

introduces a new measurement technique to characterise on-body radio channels, 

using wireless sensor nodes. The data collected from on-body measurements are 

compared with traditional measurement techniques used in different WBAN studies, 

where VNA’s are connected through flexible or semi-rigid coaxial cables.  

On the other hand, it is also important to understand and model the variations of 

the radio propagation channels within dynamic WBAN environments which severely 

affect the received signal (i.e., fading effects), thus degrading the radio 

communication performance. The research work presented in this thesis describes the 

radio propagation characteristics of different dynamic scenarios, with respect to body 

position, through measurement campaigns using low-power wireless sensors. 

Additionally, statistical models are used to characterise and provide a framework of 

the on-body propagation channel and its behaviour with regards to dynamic 

environments.  
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Many studies have shown the potential of contactless sensors for the retrieval of 

different physiological signals for example breathing, heartbeat, gait pattern [16-18]. 

The biomechanical features are embedded in the reflected waves which present shifts 

on frequency and phase when compared to the transmitted signal, similar to the 

Doppler Effect. Although microwave sensors literature showed different contactless 

sensor prototypes, different sources of electromagnetic signals are propagating 

within the environment (e.g., Wi-Fi, GSM, GPS, Bluetooth, ZigBee) and hence 

human bodies are greatly exposed to them. Consequently, the radio propagation 

signal from each source can be used as a potential contactless sensing method. The 

thesis investigates the latter and the possibility of introducing an alternative sensing 

method by means of the recorded received signal strength (RSS) of low-power 

wireless sensors. The received signal of a particular on-body location is further 

analysed implementing frequency domain techniques with the aim to retrieve 

additional information embedded in the wave propagation.  

The interest in biomedical research is directed toward continuous monitoring and 

quantification of physiological body signals as well as on development of 

personalized healthcare devices [19, 20]. Tele-monitoring and tele-diagnostics 

systems in smart home environments provide a large amount of health related 

information from strategically placed body-worn sensors which sample, process, and 

transmit vital signs such as heart-rate, blood pressure, skin temperature, pH, 

respiration, oxygen saturation.  

Since people spend most of their time in indoor environments and as part of the 

monitoring system itself, indoor tracking service is in great public demand [21]. In 

outdoor environments, the global positioning system (GPS) can provide very 

accurate positioning. However, in the indoor environments, the radio signal of GPS 

satellite is too weak to penetrate most of the buildings, and thus GPS cannot provide 

desirable positioning accuracy. Based on this observation, the study takes advantage 

of the recorded RSS to introduce the concept of indoor RSS-based location tracking 

using the IEEE 802.15.4 standard. The proposed method combines the results of 

empirical indoor path loss models measured by custom-built WBAN sensors and 

TelosB which is a commercial wireless module. The radio propagation models are 

built from the received signal of individual sensors enabling the determination of the 

user location within indoor environments.  
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The analysis and interpretation of simulation and measurement campaigns form an 

essential part for the validation of the gathered data. Some of the important steps 

carried out in the following study are:  

 design of standard printed antennas for 2.45 GHz ISM band; 

 design and manufacturing of wireless sensor nodes for WBAN applications; 

 analysis of the antenna performance with/without the presence of passive and 

active elements;  

 evaluation of the wireless sensor node performance with/without the human 

body;  

 study of different on-body radio channels of different on-body locations, 

channel of operation, transmitted power;  

 comparison of WBAN measurements techniques:  

o using VNA with coaxial cables, 

o employing wireless sensor nodes; 

 measurement and characterisation of different dynamic WBAN scenarios 

using custom-built wireless sensor nodes; 

 post-processing and interpretation of recorded data using different digital 

signal techniques for the extraction of bio-mechanical features. 

 analysis of the radio propagation models for indoor location tracking 

o using custom-built wireless sensors, 

o using commercial wireless nodes (i.e., TelosB). 

1.3.  Thesis Outline 

Following this introductory chapter, the rest of the thesis is organised as follows: 

Chapter 2 introduces the different wireless technologies for Body-Centric 

Networks. The IEEE 802.15 Working Group is introduced, including the different 

task groups for WPAN and WBAN communications. A summary of low-power 

wireless standards, such as Bluetooth, Bluetooth-LE, ZigBee, is given, highlighting 

their main operational characteristics. The chapter also describes the newly published 

WBAN communication standard, the IEEE 802.15.6, which considers the effects on 

portable antennas due to the presence of a person. 
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Furthermore, fundamental theory for radio propagation characterisation and 

modelling of WBAN environments is discussed and analysed. A brief introduction of 

the interaction of human tissues with electromagnetic waves is also described, in 

addition to different methods to model and implement human phantoms which are 

used for EM studies. 

The last section presents a comprehensive literature review of wearable antennas 

highlighting the antenna topologies and their operation for WBAN applications at 

2.45 GHz ISM band. 

 Chapter 3 compares the ZigBee specification with the IEEE 802.15.4 standard 

and reviews advances and developments of different commercial wireless nodes 

operating at 2.45 GHz. The chapter defines rigorously the design, development and 

performance of in-house wireless sensor nodes for WBAN applications. The chapter 

explains the antenna design, the performance of matching network and ultimately 

custom-built wireless sensor nodes using IEEE 802.15.4 standard as a 

communication protocol. 

Chapter 4 provides an extensive and detailed literature review of different 

measurement techniques used to characterise the radio propagation properties of 

different WBAN channels.  

The chapter also introduces and defines a new measurement technique for body-

centric channels using wireless sensors. The results are compared with traditional 

methods using the Vector Network Analyser. 

Chapter 5 outlines dynamic on-body radio channel measurements. Three different 

scenarios are considered and it is shown that dynamic on-body radio channels 

contain rich biomechanical information. It is demonstrated that some physiological 

features, such as motion pattern and breathing process can, therefore, be identified 

using Fast Fourier techniques. 

Chapter 6 presents preliminary results for passive user tracking using the received 

signal strength of low-power wireless sensors for indoor scenarios. The chapter 

considers path loss models acquired from empirical scenarios which are commonly 

used in WBAN radio channel analysis. The study is mainly focused in a motionless 

subject.  

The conclusions of the study are drawn in Chapter 7. It also highlights the future 

research including the planned work for measurement campaigns using more 

compact wireless sensors embedded with different antenna topologies.
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Chapter  2 

Wireless Technologies for Body-

Centric Networks  

The IEEE 802.15 working group is responsible for the development of consensus 

WPAN and WBAN standards [22, 23], in order to have reliable wireless networks 

for wide market applicability. The group has established seven task groups, which 

are shown in Fig. 2.1, each working on specific components of the 802.15 

specification. Each task-group defines standards for the coexistence of different 

communication platforms and the improvement of signal mitigation and network 

sustainability. Thus, different low power wireless systems, such as portable devices, 

home appliances and body sensor networks can establish communication links, while 

they interact between each other, at different spectrum frequencies.  
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Fig. 2.1.Schematic representation of the IEEE 802.15 which is a working group of the Institute of 

Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee. The working group 

specifies Wireless Personal Area Network (WPAN) standards and it is sub-divided in seven task 

groups.[22, 24, 25].  

A different specification, defined by FCC and ETSI [26], is the Medical Implanted 

Communication Service (MICS), which is defined at 402 - 405 MHz. MICS rules 

apply to ultra-low power transmissions that support the diagnostic and/or therapeutic 

functions associated with implanted medical devices. 

The operation of different wireless systems at unlicensed frequency portions of the 

spectrum are not the same around different geographical areas. A summary of the 

frequency bands allocated for WBANs and WPANs around the world is listed in 

Table 2-1.  

2.1.  WPAN Standards 

A WPAN is a network of interconnected devices which are centred on an 

individual user workspace. Each device is connected wirelessly and allows 
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communication links within 10-100 meters range [22]. Moreover, WPANs enable 

electronic devices to communicate with other nearby equipment and exchange digital 

information. 

TABLE 2-1 

FREQUENCY BANDS ALLOCATED FOR WBANS AND WPANS AROUND THE WORLD [22, 

24, 25, 27] 

Specification 
Freq. Band 

MHz 

Max. Tx. Power  

dBm 
Location 

MICS 402.0 - 405.0 -16 Worldwide 

ISM 433.1 - 434.8 +7.85 Europe 

ISM 868.0 - 868.6 +11.85 Europe 

ISM 902.8 - 928.0 +36 w/ spreading
1
 Not in Europe 

MBAN 2360.0 - 2400.0 +36 w/ spreading US only 

ISM 2400.0 - 2483.5 +36 w/ spreading Worldwide 

WMTS 1395.0 - 1400.0 +22.2 US only 

UWB 3100.0 - 10600.0 see [28, 29] US, Europe and Asia 

 

Wireless communication around the user’s body or with other WBANs may be 

based on microwave radio links and even near-field communications [30, 31]. 

WBANs may communicate externally with other fixed networks, using one of a 

range of available wireless technologies. For short and medium communications, 

Bluetooth, ZigBee, UWB, Wireless LAN (Wi-Fi) and Wi-MAX communication are 

available, allowing a wide coverage area and offering the possibility of ubiquitous 

worldwide wireless mobility [25].  

Short-range devices and networks operate mainly in stand-alone configurations 

either in home and office environments or large enclosed public areas, while their 

integration into the wireless wide-area infrastructure like the cellular WANs or WiFi 

is still nearly non-existent; therefore, extensive work is targeting the capability for 

seamless coexistence, interoperability, and integration among different 

communication technologies. When designing future short-range wireless systems, 

the increasing pervasive nature of technology and computing must be accounted for. 

                                                 
1 Spectral spreading is accomplished by digital modulation at a high data rate or by direct sequence spread spectrum 

technique. 
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Bluetooth, Bluetooth Low Energy (BLE) and ZigBee (see Fig. 2.1) communications 

technologies are introduced and described in the next section. BLE and ZigBee are 

regarded as the most promising technology for WBAN applications and specially for 

their low-power consumption. 

2.1.1.  Bluetooth 

Bluetooth foundation core v1.1, also known as the IEEE 802.15.1 standard, is a 

wireless communication technology designed and optimised for power-conscious, 

battery-operated, low cost and lightweight personal devices communicate within 

short-range through point-to-point and point-to-multi-point connections (i.e. piconets 

or scatternet networks).  

The core structure is composed by: a radio unit, a link control unit, a support unit 

for link management and the host controller interface (HCI) functions. The latter 

provides the means for a host device to access Bluetooth hardware capabilities. The 

radio layer operates in the 2.4 GHz ISM band and uses frequency hopping spread 

spectrum (FHSS) for the coding; thus, a transmitter  will use 79 individual, randomly 

chosen frequencies (each channel of 1 MHz bandwidth) within a designated range.  

The modulation methods implemented are: Gaussian Frequency-Shift Keying 

(GFSK), for Basic Rate (BR); and both Differential quadrature phase-shift keying 

(π/4-DQPSK) and Differential phase-shift keying (8-DPSK), for Enhanced Data Rate 

(EDR). The two modes of Bluetooth, BR and EDR, can sustain data rates of 1 Mbps 

and 2-3 Mbps, respectively. Moreover, the output power levels are classified into 

three different classes [25, 32]: 

 Class 1 devices broadcast using 100 mW (20 dBm) of power, the maximum 

range is approximately 100 m; 

 Class 2 devices broadcast using 2.5 mW (40 dBm) of power, the maximum 

range is approximately 10 m; 

 Class 3 devices broadcast using up to 1 mW (0 dBm) of power, and a 

maximum range of approximately 5 m.  

Bluetooth eliminates the need for cable attachments and provides support to a wide 

variety of short range applications, such as: audio, data,  graphics and even video, 
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which are seamlessly connected to other portable or stationary Bluetooth devices as 

soon as they come into range forming  ad-hoc networks [32, 33]. 

2.1.2.  Bluetooth Low-Energy (BLE) 

One of the most recent versions of Bluetooth wireless technology is Bluetooth 

Low-Energy (BLE), also called Bluetooth v4.0 [32]. BLE introduces a new 

communication method, which is optimized for small packet sizes, integrating low 

energy and low latency features to the Bluetooth Core Specification. It targets short 

range communications for devices that do not need streaming data or high data 

throughput; thus, battery operated sensor nodes could last for months or even years 

[32]. 

Although the BLE specification keeps the frequency hopping transceiver through 

many FHSS carriers, albeit fewer than in the standard modes, which combat 

interference and fading, the lack of Direct Sequence Spread Spectrum (DSSS) on the 

modulation scheme results in a radio lacking in robustness and vulnerable to 

jamming and interference; thus, mesh network topologies are unavailable. The 

highlights of the main differences of Bluetooth wireless communication Core 

Specification and BLE are shown in Table 2-2.  

The new technology features of BLE, such as the infrequent sending of small data 

packets to a mobile phone and /or to a web service, are creating new opportunities 

for developers, manufacturers and applications, bringing to life entirely new markets 

for devices that are low-cost and operate with low power wireless connectivity. 

2.1.3.  ZigBee 

ZigBee technology is a low data rate, low cost and low power consumption 

wireless mesh network protocol targeted towards automation and remote control 

applications. The ZigBee stack protocol enables the connectivity of multiple wireless 

nodes using low data rates and long battery life [25, 34]. In addition, wireless mesh 

networks using ZigBee specification can be larger than Bluetooth networks. ZigBee 

compliant wireless devices are expected to hold communication links within 10 to 75 

meters, depending on the RF environment, and they operate in the unlicensed RF 

spectrum, as shown in Table 2-3.  
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TABLE 2-2  

COMPARISON OF BLUETOOTH COMMUNICATION TECHNOLOGY CORE SPECIFICATION 

AND BLUEETOOTH LOW-ENERGY [32, 33]  

Technical 

Specification 
Core Bluetooth Technology Bluetooth LE technology 

Distance/Range 100 m 50 m 

Over the air data 

rate 
1 - 3 Mbit/s 1 Mbit/s 

Application 

throughput 
0.7 - 2.1 Mbit/s 0.26 Mbit/s 

Active slaves 7 Not defined; implementation dependent 

Security 
56/128-bit and application layer 

user defined 

128-bit AES with Counter Mode CBC-

MAC and application layer user defined 

Robustness 
Adaptive fast frequency 

hopping, FEC, fast ACK 

Adaptive frequency hopping, 24-bit CRC, 

32-bit Message Integrity Check 

Latency  Typically 100 ms 6 ms 

Total time to send 

data  
100 ms 6 ms , < 3ms 

Voice capable Yes No 

Network 

topology 
Piconet, Scatternet Star-bus 

Power 

consumption 
1 as the reference 0.01 to 0.5 (depending on use case) 

Peak current 

consumption 
< 30 mA 

< 20 mA (max. 15 mA to run on coin cell 

battery) 

Service discovery Yes Yes 

 

TABLE 2-3 

ZIGBEE MAXIMUM TRANSMIT POWER LEVELS [34] 

Frequency band 

(MHz) 

Geographical  

Region 

Maximum conductive power/ 

radiated field limit 

2400 

Japan 10 mW/MHz 

Europe (except Spain and 

France) 

100 mW EIRP or  

10 mW/MHz peak power density 

United States 1000 mW 

Canada 
1000 mW (with some limitations 

on installation location) 

902–928 United States 1000 mW 

868  Europe 25 mW 
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Zigbee’s physical layer, defined in the IEEE 802.15.4 standard, uses DSSS coding 

to minimize data loss due to noise and interference [34]. The low band (868/915 

MHz) physical layer uses Binary Phase-Shift Keying (BPSK) modulation, whereas 

the 2.4 GHz physical layer uses Offset Quadrature Phase Shift Keying (O-

QPSK).The transmission data rate is 250 kbps at 2.4 GHz, 40 kbps at 915 MHz and 

20 kbps at 868 MHz [34]. 

 Parallel Sequence Spread Spectrum (PSSS) using Amplitude Shift Keying (ASK) 

and DSSS employing O-QPSK are optional modulation techniques at the low band 

(i.e., 868 and 915 MHz) [35] ), thereby achieving data rates of: 

 250 kbps when operating in the 868 MHz and 915 MHz bands if PSSS and 

ASK is implemented, 

 250 kbps when operating in the 915 MHz band if DSSS and O-QPSK is 

used, 

 100 kbps when operating in the 868 MHz band if DSSS and O-QPSK is 

used. 

ZigBee is built using the IEEE 802.15.4 standard and follows strict IEEE 

guidelines to ensure long-term sustainability and reliable operation. The IEEE 

802.15.4 standard mainly focuses in the bottom two layers of the protocol, physical 

layer and media access control (MAC) layer respectively. Moreover, the IEEE 

802.15.4 protocol can implement different communication network topologies such 

as star, mesh, and cluster tree; however, routing strategy mechanisms are not 

supported [34]. The top layers are driven by the ZigBee stack, where power 

conservation, low latency, radio link redundancy (elimination of single points of 

failure in mesh routing schemes) and security services are implemented.   

The specification is designed to provide smart network solutions not only to 

facilitate the interoperability of different multi-vendor devices, but also to improve 

the efficiency, security and reliability of different ZigBee applications assisting from 

building automation and smart energy control to health care and fitness.  

2.2.  BLE or ZigBee for WBAN Applications  

Both technologies offer many advantages with respect to Bluetooth Core v1.1, 

such as less power consumption, higher data rate, and scalability. 
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In the case of BLE, a quite simple network topology is usually implemented, a star 

network which is designed around portable devices like a smart phone (good for on-

body communications). This simple network topology causes the end of a 

communication or coming onto the network dynamically as they (or the central 

device) move in and out of range. It should be easy to add nodes, since they all 

connect to the central device. 

 ZigBee, by contrast, is designed to operate in a mesh network. The latter has two 

main characteristics: ZigBee sensor nodes can have a large coverage network area 

which is good for many off-body communications, and secondly it permits flexible 

routing to deal with situations where routing nodes may become unavailable for 

some reason. 

An advantage for Bluetooth core v1.1 and the new BLE is the huge installed 

infrastructure base of Bluetooth devices. Therefore, it is easier to implement the 

application and the communication with a device that already includes Bluetooth 

(mobile phone, PC, PDA, notebook). 

Power-wise, BLE devices use a synchronous connection for its connections; 

meaning that both master and slave wake up synchronously, which helps to keep 

power on both sides low. On the other hand, WBAN applications using ZigBee 

specification employ an asynchronous scheme which means that the routers stay 

awake all the time. The power consumption of the routers is then relatively high, but 

the end-nodes can wake up at any time, send their data and not have to wait for a 

specific time slot.  

Both standards are relatively similar in terms of complexity but wearable devices 

using BLE technology tend to have a longer battery life primarily due to the use of 

short packet overhead and faster data rates, and reduced number of packet exchanges 

for a short discovery/connect time, while body-worn sensor nodes with the Zigbee 

specification benefit from a longer range and better reliability with the use of a 

Direct Sequence Spread Spectrum with orthogonal coding [36, 37] as a modulation 

scheme and a mesh-like clustered star networking technology. The latter creates a 

robust and scalable network of different WBAN applications for both on body and 

off the body communications.  

It is evident that ZigBee and Bluetooth are quite different; nonetheless, the power 

consumption or energy saving is dependent on the type of application and usage 
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scenario. A comparison of each low power wireless communication technology is 

shown in Table 2-4. 

TABLE 2-4 

COMPARISON OF DIFFERENT LOW POWER WBAN COMMUNICATION STANDARDS – 

BLUETOOTH AND ZIGBEE [25, 32-34, 36, 37] 

Property Bluetooth ZigBee 

IEEE Standard 802.15.1 802.15.4 

Frequency Band -(GHz) 2.4 0.868 / 0.915 / 2.4 

Max. Tx. Rate 1 - 3 Mbps 20 / 40 / 250 Kbps 

Nominal Range-(m) 10 10-100 

Nominal Tx. Power-(dBm) 0-10 -25 -  0 

Number of RF Channels 79 1 / 10 / 16 

Channel BW-(MHz) 1 0.3 / 0.6 /  2 

Modulation Type GFSK / DPSK BPSK / BPSK / O-QPSK 

Spreading FHSS DSSS 

Coexistence Mechanism 
Adaptive Freq. 

Hopping 

Dynamic Freq.  

Selection 

 

2.3.  IEEE 802.15 Task Group 6 (TG6) – WBAN standard 

The advances in communication and electronic technologies have enabled the 

development of compact and intelligent devices which can be deployed in and 

around the human body. A network of wearable sensors distributed along a person’s 

body and wirelessly connected defines the concept of WBAN platforms. Different 

wireless sensors deployed around the user’s body offer routine diagnostic testing, 

such as EEGs (electroencephalogram), ECGs (electrocardiogram) and control, and 

monitoring of vital signals such as temperature, heart rate, oxygen, and blood 

pressure. It may also find use in automated drug delivery systems for treatment of 

chronic conditions such as diabetes, to interconnect a wearable or implanted glucose 

sensor. As an extension to these sensors, base units are deployed on or close to the 
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human body to collect information and relay command signals to the various sensors 

in order to perform specific tasks. The concept of WBAN communication systems 

and its applications is depicted in Fig. 2.2. 

 

 

Fig. 2.2.The concept of WBAN communications and its possible components [14, 23, 38]. Sensing 

and gathering data from individual wireless sensor nodes distribute around the human body. The 

collected information is transmitted to a healthcare server via the main gateway which can be a smart 

phone. 

However, the radio communication between peer devices depends on the 

geographical region which allocates different frequency portions of the spectrum for 

specific body-centric communications (see Table 2-1 and Table 2-3). Consequently, 

the interoperability of WBANs among other available on-body wireless nodes is not 

plausible (i.e., restrictions of the communication protocol).  

In order to create an international standard to serve a variety of applications, 

including medical and personal entertainment, the IEEE has designed and published 

the IEEE 802.15.6-2012 standard (approved on the 6
th

 of February 2012) [38]. IEEE 

802.15.6 is designed to support: 

 short-range communications,  

 extremely-low-power consumption, 

 data rates up to 10 Mbps, 
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 discovery and quality of service (QoS), 

 high reliable and re-configurable wireless networks,  

which are implemented in close proximity to, or inside, the human body (i.e., 

in/on/off the body wireless communication systems). The standard uses existing 

industrial scientific medical (ISM) bands as well as frequency bands approved by 

national medical and/or regulatory authorities [23, 24, 38, 39]. The frequency bands, 

the effective isotropic radiated power (EIRP) for non-low-power low-duty-cycle 

(LP/LDC) and the channel bandwidth of compliant devices that are able to support 

transmissions and reception using the IEEE 802.15.6 standard are listed in Table 2-5.  

TABLE 2-5  

COMPLIANT FREQUENCY BANDS FOR THE IEEE 802.15.6 [38] 

Frequency Band 

MHz 

Number of 

channels  

N 

EIRP
2
 for 

non LP/LDC  

dBm 

Channel 

Bandwidth 

MHz 

Information 

Data Rate 

 kbps 

402 - 405 10 -16 0.3 75.9 

420 - 450 12 -10 0.32 151.8 

863 - 870 14 -10 0.4 303.6 

902 - 928 60 -10 0.4 455.4 

950 - 958 16 -10 0.4 75.9 

2360 - 2400 39 -10 1 151.8 

2400 – 2483.5 79 -10 1 187.5 

 

The standard also includes the effects of the human body on portable antennas 

(which varies with male, female, skinny, heavy, etc.), radiation pattern shaping to 

minimize the specific absorption rate (SAR) into the body, and changes in 

characteristics as a result of the user motions. The main focus of the Task Group is 

low power devices which work at low data rates. 

Nonetheless, WBAN sensors can also be applied to other fields which include 

[40]:  

                                                 
2 Effective Isotropic Radiated Power (EIRP) is expressed in decibels. It is the power needed by an ideal antenna (one that 

radiates uniformly in all directions) to generate the same electrical field strength that the actual device produces at a 
particular distance. 
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 Military applications, including soldier location, tracking, image and video 

transmission, 

 Access & identification systems by using individual peripheral devices. 

 Navigation and support in the car or while walking, for example, access to 

emergency services, such as police, paramedics, fire fighters. 

2.4.  Radio Propagation and Antennas for WBAN communications 

The evolution of current and future wearable devices towards the use of radio 

frequency communications, instead of wired systems, has become popular on the 

design of compact antennas integrated into small body-worn modules. Each wireless 

sensor not only monitors specific physiological parameters [40, 41], but also enables 

the data exchange with a central unit. The communication channel may consist of a 

standard wireless technology that can be ZigBee or Bluetooth or a combination of 

both, and hence taking advantage of individual features such as network topology or 

high data rates.  

In order to establish on-body radio links, individual sensor nodes are dependent on 

antenna design, power consumption and body location. In terms of antennas and 

propagation, efficient design requires both good understanding of the properties of 

the propagation channel involved, and the development of small, lightweight 

antennas conformal to the human body. Therefore, individual antennas placed around 

the human body need to be electromagnetically characterised through numerical and 

experimental techniques. 

2.5.  Fundamental Parameters of Propagation Models  

Antennas are an essential part of any wireless communication system. An antenna 

is: part of a transmitting or receiving system that is designed to radiate or receive 

electromagnetic wave [42]. The topology of the antenna defines the wave 

propagation characteristics of a given wireless system; it also determines the 

frequency of operation and the reliability of individual radio links. In contrast with 

normal wireless systems, where the antenna’s output  impedance tend to be real, 

antennas for on-body applications present a highly reactive component inherit from 

the small design and the proximity to the lossy human tissues.  
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For the case of a simple transmitting antenna (without any lossy dielectric), the 

maximum power radiated is defined by (3.1). The terms Rr and RL in (2.1) represent 

the radiation resistance and the loss resistance of the antenna, respectively [42]. The 

VOutput-Trans. is the maximum voltage generated by the source. In order to achieve 

maximum power transfer, the input impedance of the antenna has to be equal to the 

conjugate impedance of the output impedance of the RF transceiver which is 

generally highly reactive [42, 43]. 

 

 
 

Output-Trans.

2

r
r 2

r L

V R
P =  

8 R +R
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 
 
    

 

In a free-space environment, the radio channel is modelled by the Friis 

transmission equation which is mathematically represented by (2.2) where: 

 Pt and Pr are the transmit power and received power, respectively;  

 Gt and Gr are the antenna gains (with respect to an isotropic radiator) of the 

transmitting and receiving antennas, respectively; 

 d is the separation distance;   

 λ is the wavelength at the frequency of operation. 

 
2

t t r
r 2 2

P G G λ
P = 2.2

(4π) d
 

 

The latter not only estimates the received signal strength, but also the range of the 

wireless system. Since the power is spread over the surface area of the sphere, which 

increases as d
2
, the available power at the receiver antenna decreases in proportion to 

d
2 

[42, 43]. The elements of a simple wireless communication system are illustrated 

in Fig. 2.3. 

The predicted received power decays as a function of the separation distance d, 

where d ≥ 2D
2
/λ (D is the largest dimension of either antenna. Beyond d=2D

2
/λ lies  
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Fig. 2.3. Elements of a simple Wireless Communication System [43]. 

the far-field region). For antennas using the same polarization, aligned to their 

maximum directional radiation and placed within a Line-of-Sight (LOS), (2.2) is still 

applicable. 

However, common radio channels do not necessarily meet these conditions; 

therefore, all these factors previously mentioned need to be considered. A complete 

transmission formula is given by (2.3) where: 

 t  and r  are the reflection coefficients at the input of the transmitting and 

receiving antennas, respectively; 

 
2

t r
ˆ ˆρ ×ρ is the polarisation

3
 matching factor between Tx. and Rx. antennas. 

 
2

2 2 2r
t r t r t r

t

P1 λ
ˆ ˆ= =(1- Γ )(1- Γ ) ρ ×ρ G G 2.3

PL P 4πd

 
 
   

 

The signal attenuation as a positive quantity is represented by the path loss (PL), 

which is defined in decibels (dB) as the difference between the effective transmitted 

power and the received power PL(dB)=Pt(dB) - Pr(dB). 

                                                 
3 The alignment of the electric field vector of a plane wave relative to the direction of the propagation defines the 

polarization of the wave. Linearly polarized antennas have the electric field vector in the same direction along the whole 
propagation. 
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2.5.4.  On-Body Radio Channel Modelling 

Analytical and empirical propagation models have been well covered in the 

literature [14, 44]. Measurements, for both indoor and outdoor environments, have 

shown that the average received signal is best characterised and modelled by 

lognormal distributions [14, 44]. The mathematical approximation of power loss as a 

function of distance is defined by: 

 

 
0rdBm tdBm dB σ

0

(d )
d

P = P  - PL  + 10γlog + 2.4
d


  
  

    

 

The term χσ in (2.4) represents distributed random variables modelled by a zero-

mean Gaussian function, γ defines the path loss exponent which indicates the rate at 

which the path loss increases with distance and PL(d0)dB is the initial path loss at 

reference distance d0 including antenna gains [45, 46]. Generally, the reference 

distance should always be in the far field of the antenna so that the near-field effects 

do not alter the reference path loss PL(d0)dB. The latter is calculated using the free 

space path loss formula given by equation (2.2) or through field measurements at 

distance d0. For the case of on/off-body communications (2.4) includes not only 

antenna characteristics, but also human body properties (shadowing which depends 

on the user) and average channel attenuation, which is defined by surrounding 

environment [47, 48].  

In order to encompass a detailed description of the wave propagation environment, 

path loss models have to be combined with other multiplicative and time-variant 

processes, which are categorised as short-term fading and long-term fading (see Fig. 

2.4). Long-term fading, often called shadowing, is caused by the change in path 

length due to the motion of transmitter and/or receiver relative to each other or due to 

an obstruction or shadowing in the propagation path. Some paths will suffer 

increased loss, while others will be less obstructed and have an increased signal 

strength. 

On the other hand, short-term fading is mainly caused by the superposition of 

multiple copies of the received signal, which are different in magnitude, phase and 

time. These happen due to a very common phenomenon in wireless communications 
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called multipath propagation where the signal from the transmitter to the receiver 

travels via more than one path, each having a different phase and attenuation factor. 

The received signal levels change so rapid that it can only usefully be predicted by 

statistical means. 

 

Fig. 2.4.An example of a received signal envelope with both the short-term and long-term fading 

(dotted line follows the long-term variation). Long-term fading is caused by the change in path length 

due to the motion of transmitter and/or receiver relative to each other. Short-term fading is caused by 

the superposition of multiple copies of the received signal. 

The contribution of each of these processes is frequently characterised by 

empirical methods, based on fitting curves (statistical distribution models), and 

deterministic propagation models, based on theoretical and computational models, 

such as ray tracing, method of moments (MoM) or full wave electromagnetic 

numerical techniques like the finite-difference time-domain (FDTD). 

In mobile communication, shadowing happens in large areas due to presence of 

buildings. However, in the case of on-body propagation channels, not only 

shadowing by the body but also changes in antenna direction and distance variation 

may contribute to the fading. Different statistical distributions have been fitted to 

model the WBAN path loss variation on data collected for a diverse set of activities 

[14, 47, 49-52]. It has been shown that a mobile WBAN radio link (dynamic channel 

with strong fast fading) is best characterised by Rician and Nakagami distributions, 

whereas a long term fading (often referred to as slow fading-shadowing) is best 

described by a Log-normal and Gamma distribution [53, 54]. 

A  procedure  for  statistical  model  identification,  which  is free  from  the  

ambiguities  inherent  in the  application, is the Akaike information criterion (AIC) 
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[55]. The Akaike’s Information Criterion (AIC) score model is used to compare and 

evaluate the goodness of the fitting distribution for each sport activity. Most of the 

studies use the second order AIC (AICc) model, which is given by (2.5), because the 

collected sample size is finite. The term  ˆln l(θ data )
 in (2.5) is the value of the 

maximized log-likelihood over the unknown parameters θ, given the data and the 

model, K is the number of parameters estimated for that distribution and n is the 

sample size. 

 
 

 
 c

2K K+1ˆAIC =-2ln l(θ data ) +2K+ 2.5
n-K-1

 

 

The criterion has been applied to evaluate the goodness of five different 

distributions commonly used in WBAN communications: normal, lognormal, 

Nakagami, Weibull, and Rayleigh that seem to provide the best fitting for the 

measurements. They are all two parameter distributions (K=2), except the Rayleigh 

(K=1). A smaller value of AICc means a better statistical model, and the criterion is 

used to classify the models from the best to the worse; to facilitate this process, the 

relative AICc (shown in (2.6)) is considered and results are normalized to the lowest 

value obtained where a zero value indicates the best fitness.  

 

   i c,i cΔ =AIC -min AIC 2.6  

2.6.  Electromagnetic Properties of the Human Tissues 

The wave propagation alongside the human body is not influenced only by the 

antenna design topology, the environment or the application, but also by the lossy 

dielectric tissues, which produce changes on the antenna’s input impedance, 

distortion-fragmentation of the radiation pattern, reduced gain and degradation of the 

radiation efficiency [24, 56]. 

Therefore, it is necessary to characterise the electromagnetic response of the 

antenna when operates in close proximity to the human tissue.  The rate of change of 

the electrical properties (conductivity and relative permittivity) of the latter needs to 

be quantified and hence the effects towards the antenna’s radiation performance are 
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understood. Human body tissues are generally lossy materials and their complex 

relative permittivity ( ε̂ ) is defined by (2.7): 

 ε̂ = ε' - jε'' 2.7

 

where: 

 ε' is the relative permittivity (εr) of the material, 

 rε' = ε 2.8  

 ε" is the out-of-phase loss factor associated with the tissue such that 

 
o

σ
ε'' = 2.9

ωε
 

In [57], measured values for a wide range of frequencies (10 Hz to 20 GHz) has 

been intensively studied and characterised. The frequency dependence of the 

complex permittivity of different biological tissues has been estimated using (2.10), 

which is a four-pole Cole-Cole model expression where: 

 ε∞ is the permittivity at field frequencies where ωτ ≫ 1 (i.e., the high 

frequency permittivity); 

 Δεn is the magnitude of the dispersion, described as Δε= εs - ε∞ (εs is the 

permittivity at ωτ ≪ 1); 

 τn is the relaxation time; 

 αn is a measure of the broadening of the dispersion; 

 σi is the conductivity due to ionic drift and the lower frequency polarization 

mechanisms (i.e., static ionic conductivity). 

 
n

4
n i

r (1-α )
n=1 n o

Δε σ
ε =ε + + 2.10

1+(jωτ ) jωε
 

 

 

The results show that relative permittivity at low frequencies (lower than 100 Hz) 

can reach values up to 10
6
-10

7
, but the permittivity decreases at high frequencies 

with respect to three main relaxation factors, known as: 

 α dispersion, in the high frequency region, due to the polarization of water 

molecules; 
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 β dispersion, in the hundreds of kilohertz region, a consequence of the 

polarization of cellular membranes; 

 γ dispersion, in the low frequency region, associated with ionic diffusion 

processes at the site of the cellular membrane. 

The measured permittivity and conductivity values for a number of human tissues 

for a frequency range of 0.5 GHz to 20 GHz are depicted in Fig. 2.5a and Fig. 2.5b. 

The results are obtained from a compilation presented in [58-60] which covers a 

wide collection of different body tissues and it also provides the appropriate 

dielectric values at a desired frequency. It can be seen that at lower frequencies, the 

permittivity is relatively high and the conductivity low; hence, the EM wave can 

propagate through the human body. At higher frequencies, the lossy effect is higher, 

so the skin depth decreases.  

 

 

Fig. 2.5.Relative permittivity (εr) and conductivity (σ) for specific human body tissues at different 

frequencies obtained from a compilation presented in [24, 58-60]. The results can help in producing 

modelling equation to determine the appropriate dielectric values at each desired frequency. 

(a) 

(b) 
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The current study is focused on the thoracic section of the human body, as it 

represents the main area for a variety of healthcare applications, such as cardiac 

monitoring, respiratory sensors, pacemakers, gastric band controllers, bladder 

implants and others. The trunk not only includes a great variety of organs, but is also 

anticipated to be the most complex and irregular environment for electromagnetic 

modelling and, hence, for on-body radio links. 

A summary of the electrical properties for human tissues at 2.45 GHz is described 

in Table 2-6 [57, 58, 60]. It can be seen that the human anatomy presents 

heterogeneous tissues with different electrical properties.  

TABLE 2-6 

ELECTRIC PROPERTIES OF SPECIFIC HUMAN BODY TISSUES USED FOR THE VISIBLE 

MAN MODEL PROJECT AT 2.45 GHZ. THE VALUES WERE TAKEN AT BODY 

TEMPERATURE USING AN IMPEDANCE ANALYSER [57, 58, 60]. 

Tissue  

Name 

Conductivity 

S/m 

Relative 

Permittivity 

Loss 

Tangent 

 

Blood 2.56 58.23 0.32 

Body Fluid 2.49 68.19 0.27 

Bone Marrow 0.096 5.29 0.13 

Fat 0.105 5.28 0.14 

Muscle 1.75 52.70 0.24 

Nerve 1.09 30.12 0.26 

Skin Dry 1.47 37.98 0.28 

 

In order to derive a generic on-body radio propagation model (either analytical or 

empirical), the human body anatomy is usually replaced by simplified phantom 

models which have the same electromagnetic properties of specific human tissues 

[61-67]. Most of the empirical, numerical and theoretical studies use a three layer 

model made of skin, fat and muscle. This type of phantom has shown good results 

for on/off-body communications; however, some particular studies such as in-body 

communications (implants) need to use specific body tissues for the EM modelling. 

 Different phantoms with different characteristics have been presented in the 

literature, from liquid [63, 65] and gel [64, 67], to semi-hard and solid [66, 68] 

models. An example of a three layer gel phantom used for the characterisation of 

implanted RFID tags [67] is displayed in Fig. 2.6. 



Wireless technologies for Body-Centric Networks 49 

 

 

 

 

 

Fig. 2.6.A three layer Gel Phantom used to mimic electrical properties of the human body for the 

characterisation of implantable RFID tags [67]. 

A homogeneous liquid phantom, made of a glycol solution that has the same 

electric properties of the human muscle at 2.45 GHz, was used to evaluate antenna 

performance and characterise over-the-body-surface communications using a variety 

of higher mode microstrip patch antennas (HMMPA) in [61, 62]. Although the 

empirical phantom model only used a single dielectric layer, the results showed that 

over-the-body communications are plausible if the antenna’s maximum gain is 

tangential to the body surface, thus maximising propagation through creeping waves. 

On the other hand, a theoretical study was presented in [69] for a 2D, three-layer 

human model (skin-fat-muscle) for over-the-body or surface communications. Their 

analytical study showed that TE waves are highly attenuated and TM Zenneck (non-

radiating energy) propagates for short distances, preventing the transmission and 

reception. 

2.7.  Antennas for Body-Centric Communications 

A wide variety of antenna designs can be found in the consumer market. Most of 

these radiating elements are integrated in commercial wireless systems such as the 

Wi-Fi hubs. Nonetheless, they still face constraints when on-body radio links are part 

of the applications. Antennas for on-body communications need to be further 

characterised taking into account the effects of the human tissue. Wearable antennas 
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also need to follow compact and lightweight designs that are conformal to the human 

shape. Different antenna models and the effects of the human body on their radiation 

properties are described in Table 2-7. 

TABLE 2-7 

ANTENNA DESIGN TOPOLOGIES FOR MICROWAVE FREQUENCIES 

Antenna 

Types 
Pros Cons 

On-Body  

Scenario 

PCB 

antenna 

▪ Low cost involved 

▪ Good performance for  

frequencies above 868 

MHz 

▪ Small designs at high 

frequencies 

▪ Standard design antennas 

widely available 

▪ Difficult to design 

small and efficient PCB 

antennas for 

frequencies below  433 

MHz 

▪ Potentially large size at 

low frequencies 

▪ If a ground plane is 

present alongside the 

human surface, they offer 

good performance. 

▪ Antenna radiation 

parameter do not change 

a lot 

Chip 

antenna 

▪ Very small in size 

▪ Solutions available on the 

consumer market 

▪ Very Low cost 

▪ Medium to Low 

performance 

▪ Depending on the 

substrate used the cost 

may varies 

▪ Most of them are fitted 

with coplanar ground 

planes. The non-presence 

of ground underneath the 

chip affects the antenna 

radiation response. 

Whip 

antenna 

▪ Good performance 

▪ Solutions available on the 

consumer market 

▪ High cost 

▪ Difficult to fit in many 

applications (large in 

size) 

▪ Too large for on-body 

applications 

▪ Difficult to wear them 

Wire 

antenna 
▪ Very low cost 

▪ Easy to manufacture 

▪ Mechanical 

manufacturing of 

Antenna 

▪ Low efficiency, higher 

losses 

▪ Large and uncomfortable 

to wear 

Customise 

antenna 
▪ Custom based design 

▪ (Intellectual Property-IP) 

▪ High cost involved 

compared to PCB 

antenna designs. 

▪ Good performance and 

reliable. 

 

Frequently, PCB antennas with ground planes facing the human body surface 

counteract the effects of lossy tissues producing strong electromagnetic fields around 

the antenna ground plane. The use of an antenna with a ground plane, for example a 

microstrip patch, reduces the interaction of the human tissue and the radiating 

element thus minimizing the absorption from the human tissues. If the size of the 

ground plane is λ/4 larger than the maximum length of the radiating element, the 

return loss (S11) of the antenna has less fluctuations, and hence good radiation 

performance; but, if the ground plane is smaller than λ/4, the radiating antenna 
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couples high reactive near fields which interact with the human body surface, thus 

producing significant energy losses. 

In contrast to the aforementioned design, antennas without a (significant) ground 

plane tend to be highly affected by the human body, which includes chip antennas. 

Although the antenna itself is compact in size, the designs are fitted with extended 

coplanar ground sections which form an essential part of the radiating antenna. The 

simulation results of a commercial chip antenna, the Antenova’s ‘Rufa’ antenna, and 

the effects of size reduction are described in Fig. 2.7 and Table 2-8 [24, 70, 71]. 

 

 

Fig. 2.7.Simulation results of a commercial chip antenna, Antenova's Rufa 2.4 GHz SMD Antenna 

module  [70, 71]. (a) Design model of the Rufa antenna implemented in CST Microwave Studio; (b) 

Effects of different PCB lengths on the reflection coefficient of the Rufa antenna; (c) 3D radiation 

pattern of the Rufa antenna with a maximum radiation pointing.  

 

     (a) 

 

         (b)          (c) 
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TABLE 2-8 

EFFECTS OF SIZE REDUCTION ON ANTENOVA'S RUFA 2.4 GHZ SMD ANTENNA 

MODULE 

Length 

mm 

Freq. 

GHz 

S11 

dB 

Gain 

dBi 

Effic. 

% 

50 2.44 -22.04 1.38 68.73 

40 2.41 -21.84 0.68 64.61 

30 2.45 -10.02 -1.30 41.68 

25 2.46 -6.97 -2.18 31.93 

2.8.  Optimised Antennas for WBAN operation  

The on-body communication literature includes several antenna topologies, from 

the simplest designs (printed monopole and printed dipole antennas) to more 

complex models (PIFAs, HMMPA, WIA antennas). Some of these antenna designs 

for WBAN applications are shown in Fig. 2.8 and Table 2-9 lists the layout 

dimensions for a couple of them [48, 61, 62, 72-74]. 

Many studies have been done on the operation of antennas located in close 

proximity of the body [72, 75, 76], as well as on the SAR [77, 78] and on the 

propagation on and off the body, for use in cellular networks [79]. In [72] a 

parametric study to evaluate how the antenna-body spacing affects the antenna 

performance has been presented. The farther the antenna is from the body, the lower 

is the absorption from the human body. The use of a lossy material to keep this 

spacing is beneficial, as it leads to SAR reduction because part of the radiating power 

is dissipated in the lossy material rather than in the body tissues.  

To enable the integration of wireless devices in garments, antennas made out of 

textile materials have been proposed [80-82]. In [80], a patch antenna integrated into 

protective clothing for fire-fighters was introduced. The antenna was printed on a 

flexible pad of foam, which is commonly used in protective clothing.  

In [83-85] narrowband antennas are printed above Electromagnetic Band Gap 

(EBG) structures to reduce the radiation towards the human body, and minimize the 

detuning effect. In [84], Langley et al. proposed a flexible dual-band patch antenna 

(2.45 and 5.5 GHz) printed on an EBG textile substrate made of felt. Results 

demonstrated that, introducing the EBG, the radiation into the body is reduced by 
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over 10 dB, and the antenna gain is improved by 3 dB. However, the antenna is big 

in size (120 mm x 120 mm).  

 

Fig. 2.8.Wearable Antennas designed for the radio channel characterisation of different WBAN links. 

(a) HMMPA antennas consist of a ground-plane and patch metallization on a dielectric substrate with 

εr = 2.33 (Taconic TLY-3, PTFE woven glass)[61]; (b) Printed-F antenna is constructed on 0.6 mm 

thick CER 10 substrate. The wearable integrated antenna (WIA) consists of a 3 mm diameter copper 

element embedded in a tapered Taconic CER 10 dielectric substrate (εr = 10.2).  Dimensions for each 

antenna can be found in [73]; (c) monopole with a small ground plane, (d) coil with small ground 

plane, (e) microstrip patch on a small ground plane, (f)Two element patch array with beam at 30 to 

give a broadside beam. Further details for figures (c)-(f) can be found in [48, 74]. 

TABLE 2-9 

ANTENNA TOPOLOGIES AND THEIR PHYSICAL DIMENSIONS FOR WBAN 

COMMUNICATIONS EXTRACTED FROM BODY-CENTRIC LITERATURE. THE LISTED BODY-

WORN ANTENNAS ARE DESIGNED TO OPERATE AT ISM BAND 2.45 GHZ [48, 61, 73, 74]. 

Antenna 

Type 

Size  

mm 

Monopole 

(see Fig 2.9c) 
H = 31; T = 0.5; D

ground 
= 50 x 0.4 

Loop 

(see Fig 2.9d) 
4 turns; D = 19;  L = 30 

Microstrip Patch 

(see Fig 2.9e) 
W =38; L = 29; Ground Plane = 48 x 48 

WIA 

(see Fig 2.9b) 
H= 12.5 x 0.5; Top Plate = 30 x 0.5 

HMMPA-10 

(see Fig 2.9a) 

L1 = 37; W1 = 30; h1 = 1; 

L2 = 18; W2 = 18; h2 = 9.5 

Printed-F  

(see Fig 2.9b) 
30 x 37 

   
(a)                                                              (b) 

      
      (c)     (d)              (e)    (f) 
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Scanlon et al. presented a set of higher mode microstrip patch antennas (HMMPA) 

operating at 2.45 GHz [62]. The antennas are excited at the higher TM21 resonant 

mode which has the advantage of having a vertical monopole-like radiation pattern. 

In this way, despite a total antenna height of only λ/20, the on-body coupling 

performance is comparable to that achievable with a quarter wavelength monopole 

and significantly better performance than that measured with a fundamental 

microstrip patch antenna. The improved performance is achieved thanks to the 

resonance of higher modes which generates a vertical monopole like radiation. 

A cavity slot antenna is proposed in [86] for communication at 2.45 GHz. The 

polarization of the antenna is normal to the body, thus leading to minimized path loss 

in the on-body link and relatively high efficiency (50%) when it is body-mounted. In 

[87], a patch antenna on a ceramic substrate with a high dielectric constant close to 

the human body was presented by Adel et al. It was concluded that, by choosing a 

thicker substrate, the radiation efficiency can be improved; and that an improvement 

of the radiation properties could be accomplished by using a substrate with a lower 

dielectric constant. Salonen et al. have presented a flexible planar inverted F antenna 

(PIFA) that can be applied for smart clothing intended for use with wearable 

computers as part of a WBAN [88]. 

A full and comprehensive literature review of wearable antennas is not possible 

due to space constraints. However, the above described some representative WBAN 

antenna models for different WBAN communication channels.  

2.9.  Discussion and Conclusion 

The chapter presented a brief overview of different communication standards, i.e., 

Bluetooth, BLE and Zigbee, for body-centric network communications. The 

advantages and main characteristics of each specification, such as bandwidth, 

modulation, power consumption, is also addressed, highlighting current regulations 

and their relevance for present and future WBAN applications. 

There will surely be some overlap in application areas, as there is always some 

tendency to try to broaden the scope of standards, but overall Bluetooth low energy 

and ZigBee target different areas. They each have their own strengths and 

weaknesses. BLE will be able to communicate with billions of Bluetooth devices, but 
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does not support mesh. ZigBee can cover large areas, but is not so well suited to ad-

hoc networking. 

The standardization of WBAN communications produced by IEEE802.15.6 not 

only demonstrates the potential of wearable sensors, but it also extends and provides 

a wide target sector from healthcare to sports, lifestyle and even military. The 

standard defines and characterises different body-centric topologies, maximizing the 

benefits and interoperability of different communication standards. 

The chapter also described the basics of antennas and radio propagation for 

BCWC. Propagation models traditionally used in mobile communications are 

adopted for the characterisation of body-centric communications. The on-body radio 

channel and fading effects are also described, highlighting several features that need 

to be studied, such as the dynamic nature of the body, the effect of the indoor 

environment, and the subject-specificity of the radio channel. 

 The electromagnetic properties of human tissues and the significance of human 

body modelling for the study of EM waves alongside the human body were also 

discussed. This latter task can be accomplished by developing physical phantoms, or 

digital phantoms loaded in numerical EM codes. In the first case, measurements are 

performed adopting physical phantoms or real subjects, while in the second case, 

digital body phantoms are embedded in numerical electromagnetic codes. 

A summary of different commercial antenna topologies (which are ready to use) 

was presented; but they still need additional parametric study for the operation within 

on-body scenarios. 

The last section presented a literature review on the state-of-the-art of wearable 

antennas for BCWC. On-body antennas are described from simplest structures to the 

most complex designs, such as textile and EBG antennas. 
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Chapter  3 

Design and Development of Body-

Centric Wireless Sensors using the 

IEEE 802.15.4 Standard 

Early research on wireless sensor networking grew out from technologies 

developed by defence programs and military applications. One of the first platforms 

targeting wireless sensor networks was TinyOS, which began as a project at UC 

Berkeley, funded by the Defence Advanced Research Projects Agency program 

(DARPA) [89, 90]. Other companies, such as Ember, Dust Networks and Sensicast 

Systems, have also started the development of wireless sensors, extending their 

applications to simple mesh networks. The high demand of industrial applications 

created an open market for wireless sensors; however, they were lacking a 

communication standard. In 2002, Phillips Technologies and Motorola developed the 
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first communication protocol called ZigBee. The evolution and use of the protocol 

have created a new area network, the low-power low-data-rate Wireless Personal 

Area Networks (WPAN), which covers such applications as Home and Building 

Automation, Smart Energy, and Health Care.  

3.1.  Understanding the IEEE 802.15.4 standard  

An overview of different communication standards for WPAN and WBAN 

technologies has been given in Chapter 2. One of the aforementioned wireless 

protocols, the ZigBee specification, is built upon the physical layer (PHY) and 

medium access control (MAC) defined in IEEE 802.15.4 standard (see Fig. 3.1).  

 

Fig. 3.1.Relation between the ZigBee Alliance specification and IEEE 802.15.4 standard when is 

compared to the OSI Communication Model.  

ZigBee’s upper layers manage various communication features, such as the 

network topology (where the routing protocols are defined), security, authentication, 

and encryption. The top layer is designated to application services that are driven by 

an application interface (API). The API is responsible to create applications objects 

for each end-user application. A predefined number of actions is easily implemented 

thanks to the ZigBee stack specification, which is recorded in the internal flash 

memory of the microcontroller. The specification not only yields a quick applications 

development, but also easily manages multiple sensor nodes (scalable network), thus 

allowing the functionality and inter-operability between different vendors’ products. 

Nowadays, highly integrated and compact ZigBee radio modules, housing low-

power electronics, can be found in the consumer electronics market. Most of them 
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integrate a type of microcontroller (e.g., Phillips, Atmel, Microchip) with flash 

memories between 60 kbytes to 256 kbytes, an RF transceiver (including the 

associated baseband circuitry) and a type of antenna. The antenna topology is usually 

small and compact, such as PCB printed (e.g., microstrip path, IFAs, PIFAs) or 

dielectric chip antennas. Moreover, other wireless modules may include a type of 

micro-miniature coaxial connector (MMCX) for the connection of an external 

antenna. A list of different ZigBee-ready solutions, highlighting individual design 

characteristics (e.g., board size, type of antenna, power consumption) is described in 

Table 3-1, and Fig. 3.2 illustrates some of those radio-modules.  

TABLE 3-1 

LOW POWER WIRELESS SSYSTEMS OPERATING AT THE 2.45 GHZ ISM BAND 

Manufacturer 
SOC/SIP 

Chip 

MCU 

core 
Antenna 

TX 

mA 

RX 

mA 

Tx-Power 

dBm 

Sensitivity 

dBm 

PCB Size 

mm x mm 

Atmel  

[91] 

AT86RF230 
AT86RF212 

8-bit 

ATmeg

a 1281v 

chip antenna or 
U.FL connector 

50 23 20 -104 38 x 13.5 

California 

Eastern 

Laboratories 

[92] 

Free-Scale 
MC13224V 

32-bit 
ARM7 

PCB Trace 

Antenna or 
MMCX 

connector 

193 30 20 -100 25.4  x 36.5 

Radiocrafts  

[93] 

Chipcon 

CC2420 

8-bit 

ATmeg

a 
1281L 

integrated, MM
CX or RF on 

pin   connector 

140 28 17 
-92 

 

16.5 x 35.6 

 

Jennic 

 [94] 
JN5139 

32-bit 

16 MH

z RISC 

SMA or U.FL 
connector 

125 45 19 -100 18  x41 

ST 
Microelectronics 

[95] 

SN260 
network 

processor 

16-bit 

XAP2b 

Integrated 

Murata antenna 
36 36 3 -95 25 x 13.7 

RF 

Monolithics 

Chipcon 
CC2430 

8-bit 
8051 

RF-IO pad 
built-in 

130 33 17 -95 47 x 21.2 

Radios, Inc. Ember 2420 

8-bit 
ATmeg

a 

1281L 

RF on pin 17.4 19.7 0 -94 25.4 x 18.4 

Radio 

Pulse 

MG2400-

F48 

8-bit 

8051 

SMA or 
receptacle 

connector 

95 29 14 -99 38 x 27 

Crossbow 

Technology 

[96] 

ATmega128

L + 
AT86RF230 

8-bit 

ATmeg
a1281 

Internal 
10  1

3  17 
16 

-17,  

-3, 
 3 

-101 58 x 32 

FlexiPanel Ltd. 

[97] 

Chipcon 
CC2420 

8 bit 

PIC18L

F4620 

Internal 25 25 0 -95 60 x30 

Panasonic MC13213 

8-bit 

16-bit 

12 MH

z RISC 

SMD RF out, 

ceramic antenna 
or U.FL 

202 45 20 -105 35 x 15 

MeshNetics 

[98] 
AT86RF230 

8-bit 
ATmeg

a 1281v 

RF output or 

U.FL connector 
50 23 20 -104 38 x 13.5 
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Fig. 3.2.Photograph of commercial wireless modules found in the consumer electronics market: (a) 

ultra-compact 2.4GHz ZigBee Module from MeshNetics [98]; (b) JN5139 wireless microcontroller 

from Jenic [94]; (c) SPZB260-ZigBee module from ST [95]; (d) Pixie from FlexiPanel Ltd. [97] and 

(e) Crossbow’s TelosB mote (TPR2400) IEEE 802.15.4/ZigBee compliant platform [96]. 

Most of the aforementioned commercial radio modules have been designed and 

optimized to operate on fixed locations for automation and/or control systems. A 

great majority of ZigBee ready modules, shown in Table 3-1,  offer compact designs 

with simple access routines and flexible programming tools (e.g., Crossbow 

Technology [96]). The radio-modules usually integrate small radiating elements, 

with the design structure of the wireless sensor as an essential part of the antenna’s 

radiation performance (see Chapter 2, Table 2-9), which are well described in terms 

of gain and radiation patterns.  

Although ZigBee radios are available for different frequency ranges (2.45 GHz, 

915 MHz, 868 MHz and the newly allocated spectrum from 2.36 GHz-2.4 GHz for 

medical Body Area Network (MBAN) applications), the thesis primarily focuses on 

the 2.45 GHz ISM band physical layer of the IEEE 802.15.4 standard as a 

(a) (b) 

(c) (d) 

(e) 
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communication protocol. The frequency band channel structure for 868 MHz, 915 

MHz and 2.45 GHz is shown in Fig. 3.3. The core characteristics of the latter were 

described in Chapter 2, Section 2.1.3.  

 

 

Fig. 3.3.Frequency bands and channel structure for the IEEE 802.15.4 standard. 

3.2.  Engineering wearable sensors for WBAN communications 

Similar to the formerly mentioned wireless solutions, on-body wireless sensors 

embed a smart core unit (the microcontroller [14, 15]) which drives/controls the RF 

radio unit (also called radio transceiver) and multiple sensors that monitor specific 

physiological quantities, such as temperature, cardiac rhythm, blood pressure. 

Although previous wireless modules may work in WBAN applications (which is a 

concept defined under the recently released IEEE 802.15.6 standard [23, 99]), none 

of them describe or address the effects of the human body in their design 

specifications. It is implicit that unique areas of the human body are formed by a 

compound of tissues (a heterogeneous multi-layer dielectric media) with unique 

properties (see Table 2-6). The effective media not only defines the behaviour of the 

electromagnetic wave propagation, but also the radio channel characteristics along 

the human body. Some common locations for WBAN sensors are illustrated in Fig. 

3.4.  

In order to design wearable devices, a thorough investigation on the causes of 

inefficiency in WBAN channels, due to antenna performance and the effect of full 

sensor structures (including ICs and lumped elements) on the wireless sensor 

operation, is required. For example, wireless modules that exclude the ground 
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Fig. 3.4.The main concept of Wireless Body Area Networks (WBANs) defined under the IEEE 

802.15.6 standard [23]. 

metallization underneath the antenna like the chip antennas are drastically affected 

by the human tissue proximity, the user and the application itself, thus hindering the 

reliability of WBAN communications.  

The latter has to be carefully modelled and characterised through simulations and 

empirical models which account for the resonance shift of the antenna or detuning, 

the fragmentation of the radiation patterns and the propagation loss due to the body 

shadowing. The results ought to highlight potential enhancement techniques on the 

design and manufacturing of forthcoming WBAN sensors. A compact wearable 

sensor developed by Phillips Research Laboratory is shown in Fig. 3.5.  

 

 

Fig. 3.5.Wireless Sensor prototypes for on-body communications manufactured by Phillips Research 

Laboratory [100]. 
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Even though wireless sensors using the ZigBee stack specification are directly set 

to implement end-user applications, the cumbersome access to internal registers, for 

example changing of communication channel, and tuning of internal parameters ( 

increase/decrease the receiver’s sensitivity) made them impractical for the current 

study.  

In addition, it was envisaged a complex process when trying to reproduce the 

associated antenna as an isolated element (i.e., stand-alone antenna) and evaluate its 

performance on on-body scenarios. The procedure evidently increases the number of 

uncertainties not only by the re-manufacturing process, but also by the lack of 

information on matching network and the losses produced when integrated as a 

whole wireless sensor. It certainly depicts an uncontrollable environment and hence 

the qualitative characterisation of on-body channels using wireless sensors.  

In order to address these limitations and have a better control of internal 

parameters of the transceiver, wireless sensor modules operating at the unlicensed 

frequency band 2.45 GHz were designed and developed as part of this work. Each 

module embeds a Texas Instruments (TI) transceiver, the CC2420 [101]. A diagram 

of main digital input/output signalling pins, voltage biasing terminals and antenna 

connection to/from the CC2420 is shown in the Appendix-Section A. 

The radio chip has a programmable RF output power between -25 dBm to 0 dBm, 

representing the maximum and minimum transmit power, respectively. During 

transmitting mode, the CC2420 typically consumes currents of 17.4 mA, and 18.8 

mA when programmed as a receiver [101]. The transceiver‘s main parameters are 

controlled and programmed using the Serial Peripheral Interface (SPI) interface, 

which is managed by a Microchip  ultra-low-power microcontroller, the PIC18F2620 

[102], in this design. The microcontroller programs the MAC layer of each wireless 

node according to the guidelines of the IEEE 802.15.4 standard [34]. The radio-

modules, which include the microcontroller module and transceiver module, were 

designed and modelled using Multisim-Circuit Designer Suite 10 and Ultiboard 

software from National Instruments. Further details of the layout designs can be 

found in the Appendix-Section A. 

Each in-house wireless module is powered by a 3.6V NIMH (Nickel Metal 

Hydride) battery, 25 mm x 15 mm in size, through external PCB terminals (see Fig. 

3.6). The pins serve as a programming interface of the microcontroller and data 
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retrieval of the recorded RSS levels from the internal flash memory. The 

manufactured PCB and the assembled prototype are illustrated in Fig. 3.6.  

 

 

Fig. 3.6.Design and implementation of the Microcontroller module that houses a low power 

Microchip component, the PIC18LF2620 [102]. 

3.2.1.  Antenna Impedance Matching 

The response of the matching network, between the transceiver output impedance 

and the 50 Ω input impedance of the antenna, impacts on the antenna’s radiation 

performance. Although the power loss is minimized, small reflections are produced 

in each transitional stage (see Fig.3.7). The CC2420 has a reactive output impedance 

(Zout = 95+ j187 Ω, value taken from the CC2420 datasheet), so a network of lumped 

elements is needed to transform the reactive impedance to a real 50 Ω impedance 

(i.e., the input impedance at the feeding point on the antenna). A passive LC 

matching network was simulated using Advanced Design Systems software (ADS) 

from Agilent. Simulation results of a 50 Ω transformer are presented in Fig.3.8. 

 

 

Fig. 3.7.Block diagram representation of the impedance matching network placed between the 

transceiver output impedance and the 50 Ω input impedance of the antenna. 
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The maximum power transfer occurs at 2.826 GHz, 0.374 GHz above the desired 

frequency, with a maximum transmission of -0.28 dB and a reflection coefficient 

magnitude of 0.25 ( 0.25  ). At the working frequency, 2.45 GHz, the 

transmission is -3.37 dB with a reflection coefficient magnitude of 0.73. 

The simulated design presented in Fig. 3.8 shows the initial response of the 

matching circuit, even though it only uses ideal connections (lossless lines). In order 

to properly assess the frequency performance, it is fundamental to include the 

transmission lines of each connection, thus the design is the closest to the 

implemented prototype. The response of the design implemented on each sensor 

node is shown in Fig. 3.9. 

 

 

Fig. 3.8.Simulation results of the 50 Ω Matching Network using lossless connections implemented in 

Advanced Design System (ADS) software from Agilent. 

At 2.45 GHz, the reflection coefficient is 0.48 and the maximum power delivered 

to the antennas is -1.26 dB; however, the best power transfer occurs at 2.48 GHz 

with a power transmission of -1.15 dB and a return loss of 6.76 dB ( 0.49  ). 

Within the whole bandwidth (83.5 MHz), maximum variations of 1 dB and 0.3 dB 

are observed for return loss (S11) and transmission (S21), respectively. Current results 

have better performance compared to the initial design, although it is not the best 

achievable. Moreover, the power provided after the LC matching network (second 

junction, see Fig. 3.7) is also dissipated at the connection terminal of the 50 Ω 
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transmission line, in the sensor module, to the antenna’s input feeding. The 

impedance mismatch produced at this point is assumed to be minimal when the 

antenna S11 parameter is below the -10 dB.  

 

 

Fig. 3.9.Simulation results of the 50 Ω matching network using transmission lines at the 2.45 GHz 

ISM band. 

3.2.2.  Antenna Design and Manufacturing 

Despite the fact that other wearable antennas, such as PIFA’s, WIAs or monopoles, 

could be used, microstrip patch antennas still present a favourable choice due to the 

full ground plane, which not only covers the back of the PCB board, but also 

provides a good shielding of the radiating element from the lossy human tissues. 

Wearable antennas with partial ground plane usually experience higher frequency 

detuning than the antennas with full ground plane.  

Moreover, the antenna gain increases in comparison with antennas having partial 

ground planes which usually are affected by the high power absorption of the 

reactive human tissues, thus producing a decay of antenna gain. The current study 

uses a pair of microstrip patch antennas printed on top of a FR-4 substrate layer with 

thickness of 1.6 mm. Antenna dimensions and prototypes are shown in Fig. 3.10a 

and Fig. 3.10b, respectively. The analytical description for its design and modelling 

can be found in the Appendix-Section A. 
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Fig. 3.10.Antenna used for custom-built wireless sensors and the characterisation of WBAN channels: 

(a) design layout of a microstrip patch antenna implemented in CST Microwave Studio; (b) 

manufactured microstrip patch antenna using FR-4 as a base substrate. 

The measured and simulated reflection coefficients for transmitter and receiver 

antennas are depicted in Fig.3.11a. The simulation results were acquired using CST 

Microwave Studio and the measurements were taken in Queen Mary’s Antenna lab 

using a Hewlett Packard 8720ES S-parameter Vector Network Analyser. The 

simulated 3D free-space radiation pattern, shown in Fig. 3.11b, proves that the 

maximum radiation is normal to the patch with no back or side lobes. The radiation 

is due to the fringing field between the periphery of the patch and the ground plane. 

The electric field in the centre of the microstrip patch is zero. For the rectangular 

patch shown in the Fig.3.10, there is no field variation along the width (32 mm) and 

thickness (FR-4 of 1.6 mm). The amount of the fringing field is a function of the 

(a) 

(b) 
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dimensions of the patch and the thickness of the substrate. Due to the effect of 

fringing fields waves travel both in substrate and in the air and hence the microstrip 

patch antenna would look electrically wider compared to its physical dimensions.  

A summary of each antenna’s radiation performance is presented in Table 3-2. 

Although each antenna has been manufactured using an identical design layout, it is 

understandable that the manufacturing and soldering procedure, such as the fitting of 

the SMA connector, would introduce some systematic errors within the antenna 

radiation performance. Hence, the two fabricated antennas are characterised 

individually. 

 

 

 

 

Fig. 3.11.Simulation and measured results for a pair of patch antennas, one for the Tx. node and the 

second for the Rx. node. (a) simulated and measured reflection coefficient, S11, for both microstrip 

patch antennas; (b) 3D free-space radiation pattern of the microstrip patch antenna implemented in 

CST Microwave Studio 

(a) 

(b) 
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TABLE 3-2  

PARAMETRIC COMPARISON BETWEEN ANTENNA DESIGNS IN FREE SPACE SIMULATION 

AND MEASUREMENTS IN AN ANECHOIC ENVIRONMENT IN QUEEN MARY’S ANTENNA 

LABORATOY 

Antenna 

Location 

Res. Freq.  

 GHz 

S11 

dB 

Gain 

dBi 

BW 

% 

Simulation 2.424 -26.52 3.8 2.39 

Measured Rx. Antenna 2.419 -16.87 2.13 1.98 

Measured Tx. Antenna 2.425 -17.32 2.15 1.96 

 

3.2.3.  Spectral Response of the transceiver modules and Performance of the 

wireless sensor nodes 

In a practical measurement scenario, one module is defined as the transmitter node 

and the second module is labelled as the receiver node (see Fig. 3.4). In the case of 

transmitter, the output power defines the amount of energy given to the antenna. For 

the receiver node, the sensitivity of the transceiver defines the capability to sense RF 

signals. Each transceiver was programmed to operate with a maximum output power 

of 0 dBm (output power at the output pins of the transceiver chip); they each have a 

maximum sensitivity of -95 dBm, with an adjacent channel rejection of 45 dB.  

The maximum output power at the antenna port of each wireless sensor was 

measured by a Rohde & Schwarz FSP 40 Spectrum Analyser while transmitting 

continuously. The frequency was centred at 2.42 GHz (frequency where is the best 

S11), with a span of 300 MHz and a resolution bandwidth of 3 MHz.  

In the case of the wireless sensor nodes, they were programmed to operate in 

channel 4; therefore, the operational frequency was effectively 2.42 GHz. This 

frequency was selected because the manufactured antennas had the best reflection 

coefficient at the same frequency. The measured power spectrum of each custom-

built module (Tx. sensor node and Rx. sensor node) is displayed in Fig. 3.12. A 

summary of the maximum output power measured using the max-hold function of 

the spectrum analyser over a length of time (~10 minutes) is described in Table 3-3. 

This enable the best node for transmission to be determined (greatest output power). 

The acquired results were also compared to Texas Instruments evaluation modules 

which also embed the CC2420 transceiver.  
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The use of λ/4 transmission lines for the 50 Ω impedance match on the Texas 

Instruments modules yields a better output power, -1.05 dBm; in contrast, the 

purposely-built modules utilize an L-C configuration outputting -3.02 dBm of initial 

power (see Fig. 3.12 and Table 3-3). Even though L-C networks make use of a 

smaller area on the PCB, they tend to introduce higher losses, which are consequence 

of component size, type of dielectric and thermal resistance [103]. 

The peaks observed below the spectrum envelope show the packet based 

transmission of each wireless sensor node.  A longer measurement (see Fig. 3.12c) or 

a reduced sampling rate of the spectrum analyser would significantly reduce the 

number of peaks.  However, the latter would not be present if a continuous wave 

signal was generated in the transceiver module.  

 

 

 

 

Fig. 3.12.Power spectrum response measured using the max-hold function of the Rohde & Schwarz 

FSP 40 Spectrum Analyser for: (a) custom-built wireless sensor node of a Rx. node, (b) Texas 

Instrument (TI) evaluation modules; (c) custom-built wireless sensor nodes transmitter and receiver 

nodes, respectively. 

(a)      (b) 

(c) 
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TABLE 3-3 

MEASUREMENT OF THE POWER SPECTRUM RESPONSE OF INDIVIDUAL CUSTOM-BUILT 

WIRELESS SENSOR NODES USED FOR ON-BODY MEASUREMENTS 

Wireless 

Modules 

Max. Output Power 

dBm 

Frequency 

GHz 

In-house Transmitter node -3.02 2.424 

In-house Receiver node -3.14 2.424 

TI Evaluation nodes -1.05 2.425 

 

A block diagram structure of each wireless module is shown in Fig. 3.13a and Fig. 

3.13b shows the implemented wireless sensor node, which was designed and 

simulated using CST Microwave Studio. The in-house wireless node, showing the 

battery is depicted in Fig. 3.13c, and Fig. 3.13d displays the TI evaluation module 

using a CC2420, which was controlled and programed with an in-house control 

board, and patch antenna.  

Each custom built wireless sensor (see Fig. 3.13b) has dimensions of 50 mm 

length, 40 mm width and 30 mm depth. The later could be significantly reduced if a 

micro-miniature coaxial connector was used. Nonetheless, the in-house wireless 

sensor node could still be connected to any type of antenna that has an SMA input 

connector.  

The TI evaluation board served two purposes in this thesis: first, to validate the 

performance of the in-house custom-built transceiver modules; and second, to 

provide an alternative system for use in the wireless-sensor-based measurements 

described in Chapter 4. This allows a degree of verification of the measurement 

technique: by having two physically-different systems, where differences between 

the two measurement techniques can be observed, whilst also considering the effects 

of the physical structure of the specific systems. 

The operation of each wireless sensor node is defined by the microcontroller which 

controls and programs the transmitting or receiving operation mode of the CC2420 

transceiver. The receiver node records an average of 8000-10000 samples of the 

received signal strength (RSS) at a rate of 14 ms per sample. The acquired data was 

stored in the internal flash memory of the microcontroller which was later extracted 

and further analysed. The data extraction port was used not only to program and 

extract data, but also to connect the battery. 
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Fig. 3.13.Wireless sensor modules used for WBAN measurements and Data Logging units: (a) 

internal wireless sensor structure; (b) implemented custom built wireless sensor node using a 

microstrip patch antenna; (c) custom-built wireless sensor node showing the battery placement; (d) 

alternative commercial wireless node using CC2420 evaluation modules from TI. 

In order to design the communication link between a pair of sensor nodes, it is 

necessary to quantify the power received by the receiver sensor node when the 

transmitting sensor node is positioned some distance away transmitting continuously 

a known amount of power. Mathematically, this is defined by the Friss transmission 
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equation which gives us the radiated power density as a function of radiated power 

and distance (see Chapter 2). For this particular test, the separation distance has to be 

in the far-field region of the designed antenna. In our case, the initial response of 

purposely-built wireless sensor nodes was evaluated for a separation distance of 30 

cm. All the measurements were taken in an Anechoic Chamber (simulated free-space 

environment) in Queen Mary’s Antenna Lab.  

The results have been compared with data obtained from the measurements of the 

microstrip patch antennas (stand-alone) using a Hewlett Packard 8720ES S-

parameter Vector Network Analyser (see Fig. 3.14). A summary of obtained results 

are presented in Table 3-4. 

 

 

Fig. 3.14.Measurement setup of a pair of microstrip patch antennas separated 30 cm in Queen Mary’s 

Anechoic Chamber Environment.  

TABLE 3-4  

RESPONSE OF THE WIRELESS SENSORS IN A FREE SPACE ENVIRONMENT AT A 

DISTANCE OF 30 CM 

Measurement 

Set-up 

Antenna 

Separation 

cm 

Frequency  

 GHz 

Output Power 

dBm 

S21 

dB 

Gain 

dBi 

Antennas CST Sim. 30 2.42 0 -22.02 3.8 

Antennas and VNA 30 2.42 0 -24.55 2.13 

Custom-Built 

Wireless Sensors 
30 2.419 0 -17.87 2.15 

 

d=30 cm 
Free-Space 
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The custom-built wireless nodes were placed on a rotational positioned (i.e., 

rotating turntable) in order to measure stand alone and on-body radiation patterns. 

The polar-pattern test setup is shown in Fig. 3.15. The latter was measured in a fully 

anechoic (simulated free-space) chamber environment with the aid of a Rohde & 

Schwarz FSP 40 Spectrum Analyzer that was connected to a Diagonal Dual 

Polarized Horn (i.e., ETS-EMCO Model 3164-04) acting as a receiver. The received 

power levels were measured as a function of angle and recorded in a personal 

computer.   

The normalized measured radiation patterns of the custom-built wireless sensors 

and when placed on the body in a free-space environment are shown in Fig. 3.16. It 

is apparent that the free-space patterns show more radiation in the left-half plane than 

the on-body results, as would be expected from the increased absorption by the body 

tissues. Good agreement between the patterns is seen for the right-half plane, for both 

polarizations. Differences are attributed to the body effect because the antenna is 

small with respect to the body size. Variations from the standard patch pattern are 

attributed to the presence of the wireless sensor node. 

 

Fig. 3.15.Measurement structure set up for the acquisition of radiation patterns of custom-built 

wireless sensor nodes. The measurement was performed in Queen Mary’s Anechoic Chamber. The 

wireless node, with dimensions of 50x40x30 mm, was positioned on top a rotational table. The 

rotational table and data acquisition was controlled by a computer which was synchronized with a 

Rohde & Schwarz FSP 40 Spectrum Analyser. 
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Fig. 3.16.Measured radiation patterns of custom-built wireless sensor nodes and when placed on-

body. The measurements were taken in an Anechoic Environment in Queen Mary’s Antenna Lab 

using a Rohde & Schwarz FSP 40 Spectrum Analyser. 
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3.3.  Discussion and Conclusion 

In this chapter, a review of low power wireless technology has been presented. 

Most of them made use of the ZigBee specification as the main communication 

platform.  In addition, different commercial wireless modules have been identified. 

Nonetheless, it was pointed out that ZigBee-ready solutions are not adequate for 

body-centric communications (WBAN scenarios), due to the lack of information of 

the antenna performance (when operating in close proximity to the human body). It 

also highlights the cumbersome access to different control registers and the high 

level of uncertainties due to re-manufacturing process which prove to be impractical 

for the current study. 

Purposely-built wireless sensor nodes are designed and implemented using the 

CC2420 as the core RF transceiver and the PIC28F2620 as a main control, monitor 

and storage unit. The implemented antenna of each wireless sensor is a microstrip 

patch design which mitigates the adverse effects of human body proximity such as 

the detuning of the antenna. The chapter also presented the initial response of each 

in-house wireless sensor in a free space environment and on-body.  

Measurements results show that designed antennas have their best operation at 

2.42 GHz. As a result, wireless sensor modules were programed to operate at this 

frequency band. Spectrum results of individual wireless nodes showed that the best 

output power to the antenna is -3.02 dB which shows the inherent effect of an LC 

matching network. 
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Chapter  4 

On-Body Channel Measurement 

using Wireless Sensors 

There has been rapid growth in the number of wireless devices operating in close 

proximity to the human body in recent years. The design of small antennas that can 

provide high efficiency, immunity to frequency detuning, immunity to pattern 

fragmentation and operation at different frequencies whilst close to, on or even 

within the body, are current topics of active research [15, 56]. Improving our 

understanding of the on-body propagation channel is central to being able to properly 

design antennas for the environment. 

Thus far, it has proved difficult to separate the observed on-body propagation 

channel and antenna characteristics, unlike in free-space environments. It has been 

recognised for some time that operation on or near the human body is far from a free-

space environment [56]; hence, to understand on-body behaviour, on-body 
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measurements must be taken. The standard methods for characterising propagation 

and antenna performance typically utilise a vector network analyser (VNA), or an RF 

source and spectrum analyser (SA). To date, most on-body measurements have 

continued to use the VNA or SA approach (e.g., [51], [104]). 

However, the coaxial cable connecting antenna and VNA can often introduce 

error, due to unwanted radiation from currents flowing on the outer surface of the 

cable, as well as errors from cable movements. Alternative techniques have been 

explored to mitigate this ‘cable effect’, including the use of fibre-optic systems (see, 

for example, [35, 105]; also [106-108]). Fibre-optic cables are essentially immune to 

electromagnetic interference (EMI) and radio frequency interference (RFI), which 

have a major impact on traditional on-body measurements (VNA and coaxial cables). 

In [109], off-body measurements were performed in an anechoic chamber and indoor 

environment using a fibre-optic system on a motionless test subject (see Fig. 4.1a-d). 

 

   

     

 

 

Fig. 4.1.Fibre-Optic system (a) a PIFA antenna connected directly to the electro-optic Field Sensor 

(OEFS); (b) a typical measurement set-up using a coaxial cable for body-worn antennas; (c) free-

space fibre-optic measurement set-up (close up of antenna taped to underside of foam block); (d) on-

body fibre optic measurement set up at the NPL’s SMART range facility [35, 105]. 

(a) 

(b)    (c)       (d) 
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The effect on measured data by the method of measuring can still be significant, 

especially when a dynamic human body scenario is considered (e.g., jogging). The 

motion may bend the fibre-optic cable, introducing changes in the polarization 

planes, as well as fluctuations in temperature, leading to changes in the sensitivity of 

the fibre-mounted sensor [110]. In addition, the fibre optic system usually contains 

an electrically large optical modulator/demodulator which can cause scattering to on-

body radio waves. 

Furthermore, the antenna will behave differently when measured in isolation and 

when integrated with a system, as required in any application (a fact that has 

influenced mobile phone antenna design for some time; see, for example, [111-113]), 

due to additional surface currents induced on the system structure. This will, in turn, 

affect the propagation channel data, due to the difficulty in decoupling the two 

aspects. In this chapter, a measurement technique is investigated that uses the 

commonly-available received signal strength (RSS) figure-of-merit to determine 

propagation characteristics for a number of wireless sensor modules, using two 

identical microstrip patch antennas to ensure the effect of the antenna is minimized. 

These measurements are compared to others made using the conventional VNA 

technique. The study described below evaluates the channel performance of each 

frequency carrier for IEEE 802.15.4 sensor nodes operating in the 2.45 GHz ISM 

band (2.40-2.4835 GHz). The effect of the carrier frequency and antenna radiation 

performance are also investigated from the system point of view. For this initial 

study, only a motionless (static) subject was considered; dynamic scenarios are 

considered in Chapter 6. 

4.1.  On-Body Communications and Related Work 

A noticeable evolution of technique can be traced in the history of on-body 

propagation channel measurements, whereby the measuring devices become smaller 

and the complete system is worn on-body. Early research into on-body wireless 

communications channels used standard measurement techniques, based around a 

VNA. One of the earliest papers [50] used flexible coaxial cables to connect two 

patch antennas to the VNA. The variation in cable loss due to body movements was 

estimated (by replacing the wireless link with semi-rigid coaxial cable) to be 0.1 dB 
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across the frequency band of interest. No reference was made to the cable effect; the 

radiation patterns of the two patch antennas used were only characterised off-body. 

In order to understand properly the effect of human motion on the channels, 

measurements were soon made with a Rhode and Schwartz FSH6 spectrum analyser 

with tracking generator, controlled by a small laptop, both carried by the subject in a 

small backpack  [48, 52]. Flexible coaxial cables were again used to connect the 

antennas to the measuring equipment, whilst noting the potential for error from the 

presence of the cables, due to scattering and the potential for surface currents on the 

outside of the cable. However, neither quantifying nor eliminating the error from the 

cables was deemed possible. It is noted that the measuring equipment is fairly bulky 

and prohibits the investigation of some human movement, due to its restrictive 

position and weight. 

In [114-117], on-body propagation models were investigated for indoor and 

outdoor scenarios, using body-worn sensors communicating at 868 MHz and 

2.45 GHz. The use of such sensors removed the need for cables on-body; the size and 

weight is also significantly less than SAs and laptops. The transmitter was placed at 

waist level and used a 2.0 dBi gain dipole antenna; the receivers, placed at different 

points on the body, were either based on Crossbow Mica2Dot wireless sensors (for 

868 MHz) [114, 115]; or they were based on Linear Technology LT5504 RF 

modules (for 2.45 GHz) [116, 117]. Their results show that on-body propagation 

characteristics are dependent on user state and environment; however, it is noted that 

the transmitter output power for the experiments at 2.45 GHz was +22 dBm, which is 

unrealistic for real-world applications. 

Furthermore, the transmitter used was a NovaSource G6 synthesized RF signal 

source, in continuous-wave mode, with an additional Hittite HMC-455LP3 amplifier 

for the 2.45 GHz experiments, rather than using a solution based purely on packet-

radio hardware. The NovaSource G6 is still a relatively bulky item, measuring 70 

mm x 102 mm x 19 mm (width by length by height) and weighing 170 g, not 

including the power supply and cables, with an aluminium case. The effect of this 

unit on the transmit antenna radiation pattern has not been discussed, either in free-

space or on-body. 

Other studies have been conducted over the past decade and reported in the 

literature. Most use either a VNA or Vector Signal Analyzer (e.g., [118-125]), or a 

source combined with a spectrum analyser (e.g., [126, 127]). In [128], Texas 



On-Body Channel Measurement using Wireless Sensors 80 

 

 

Instruments wireless nodes embedding CC2510 radio transceiver modules and an RF 

packet sniffer (i.e., TI smart RF04EB board) were used to characterise the interaction 

and the performance of the physical layer for on/off-body communication links. A 

few studies characterised on-body radio links using wireless sensor nodes ([129-

133]), but have not compared the obtained results with other measurement 

techniques, meaning sources of error remain uncertain.  

The thesis investigates the potential for improving measurement capabilities on-

body, by using small sensor nodes for both transmitter and receiver. A more realistic 

transmit power of 1mW (0 dBm) will be used and the measurements will be packet-

based, rather than continuous-wave. The CC2420 [101], an IEEE 802.15.4-compliant 

radio transceiver from Texas Instruments, will be used, with the modulation 

occurring on-chip. Comparisons with conventional measurements using a VNA will 

be made. One advantage of this approach is that it also provides insight into real-

world, rather than laboratory, scenarios. 

The current work is focused on the thoracic section of the human body, as it 

represents the main area for a variety of healthcare applications, such as cardiac 

monitoring, respiratory sensors, pacemakers, gastric band controllers, bladder 

implants and others. The trunk includes a great variety of organs, with the associated 

variability in dielectric characteristics; it is also anticipated to be one of the complex 

and irregular environment for electromagnetic modelling (because it is formed by 

heterogeneous multilayer tissues which have different electrical properties, see Table 

2-6) and, hence, for on-body radio links. It is noted that the characterisation of low 

power wireless channels depends upon many factors, some of which are not 

considered in this present study, for example different test subjects, different 

antennas or variety of designs (flexible electronics). These include the effect of 

individual subjects (for instance, short or tall, thin or fat), the surrounding 

environment, the type of activity and the application.  

4.2.  Measurement Procedures 

Measurements were performed on the trunk section of a male test subject (see Fig. 

4.2), measuring 170 cm in height and 78 kg in weight, standing motionless in an 

anechoic chamber. The transmitter antenna was placed on the right waist section of 

the body and the receiver antenna moved symmetrically along the trunk section. The 
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antennas are located 3 cm away from the body’s surface. The area was divided into 

30 different points (6 × 5 matrix points) using a 5 cm spacing, as shown in Fig. 4.2.  

 

 

Fig. 4.2.Location of transmitter and receiver antennas used for each on-body measurement in an 

anechoic environment. 

The study uses a pair of microstrip patch antennas. The antenna dimensions, 

together with and the measured and simulated reflection coefficients for transmit and 

receive antennas, are depicted in Chapter 3 (Fig. 3.11), and a summary of each 

antenna’s radiation performance is presented in Table 3-2.  

A large ground area underneath the patch antenna usually mitigates the effects of 

the lossy human body tissues. In [134], a patch antenna was fabricated on a 

RT/Duroid board of dielectric constant εr = 3 and thickness 1.524 mm and had a total 

board size of 60x65 mm
2
 (0.49λ× 0.53λ at 2.45 GHz

4
), reporting a 10 MHz detuning 

when placed on-body. As a result, the initial antenna parameters (antenna alone 

placed on body in a simulated free-space environment) are influenced by the large 

volumetric section of the human body, introducing continuous variations in return 

loss (S11 depth) and frequency (detuning). These effects are related not only to on-

                                                 
4 The free-space wavelength (λ) at 2.45 GHz is 122.45 mm 
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body location, but also to mechanical movement of different internal body processes, 

such as the active cycle of breathing.  The absolute variation of the reflection 

coefficient (S11) of the receiver antenna with respect to its position alongside the 

trunk section is illustrated in Fig. 4.3. A summary of the mean deviation in S11 and 

frequency, for both transmit and receive antennas is described in Table 4-1. 

 

Fig. 4.3.On-body absolute frequency detuning and return loss deviation of the receiver antenna at each 

point on the trunk section, compared with free-space measurements. Both sets of measurements were 

taken using a Hewlett Packard 8720ES Vector Network Analyser. 

TABLE 4-1  

DEVIATION OF ANTENNA PARAMETERS WHEN PLACED ON-BODY  

Antenna 

Location 

Freq. 

Detuning  

 % 

S11 Mean 

Deviation 

dB 

BW  

at -10 dB 

% 

Rx. Antenna 0.001 -0.62 2.16 - 2.36 

Tx. Antenna 0.0923 -2.69 2.06 

 

The -10 dB impedance-matched bandwidth of the receiver antenna varies by 

2.16% to 2.36%, clearly reflecting the presence of heterogeneous human tissue 

alongside the trunk. On the other hand, the transmitter antenna, which preserves its 

location during the measurement procedure, has a maximum detuning of 2.24 MHz 
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and a 2.06% bandwidth when on-body. It is evident that the variations at this point 

are lower than the receiver locations. These results are important for understanding 

the collected measurement data, discussed below. 

The wireless on-body radio channel measurements were divided into two groups, 

discussed below. 

4.2.1.  First Measurement Setup 

The first measurement set was made with the aid of a Hewlett Packard 8720ES S-

parameter Vector Network Analyser, calibrated using standard techniques. These 

measurements were sub-divided in two parts: 

 measurement of a stand-alone antenna (Fig. 4.4a), on-body, using coaxial 

cable (polystyrene foam was used for the mechanical support of the antenna, 

ensuring its separation is identical to the other tests that included the 

wireless sensor node); 

 measurement of the antenna when in close proximity to the embedded 

system (i.e., the two are positioned close together, as if connected, but the 

measurement equipment was still connected with coaxial cable and no direct 

connection between antenna and embedded system existed; see Fig. 4.4b). 

 

Fig. 4.4.Measurement of the microstrip patch antenna using a Hewlett Packard 8720ES Vector 

Network Analyser: (a) stand-alone antenna; (b) antenna with close proximity to the in-house wireless 

node. Note that the PCB SMA is not connected to SMA connector of the antenna (passive SMA). 

The frequency sweep was set from 2.4-2.5 GHz, with the maximum number of 

points (1601). The sweep time was 800 ms, with an output power of 0 dBm (1 mW). 
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Five different measurements were taken over a period of five days, in order to 

obtain an averaged response of the measured radiation properties of the antennas, and 

hence the on-body radio links. In each measurement, two sets of data were recorded. 

The path loss at each point is calculated from the average of the 10 different samples 

sets of data.  

These results are presented in Section 4.3, where they are combined with those 

obtained with the second measurement procedure (Section 4.2.2) to aid comparison 

and understanding. 

4.2.2.  Second Measurement Setup 

Two wireless sensor modules, shown in Fig. 4.5 and with a detailed description 

presented in Chapter 4, were used for the second measurement campaign.   

In order to decrease the error introduced by on-body position displacement (such 

as that introduced by conducting measurements over a period of five days), each 

wireless module was fitted using VELCRO tape to the trunk section of the subject; 

the grid of locations was marked on the T-shirt worn by the test subject, enabling the 

position to be recaptured reasonably accurately on each subsequent measurement. In 

each location, the modules acquired an average of 8000 samples of the received 

signal (RSS), recorded in the internal flash memory of the microcontroller. The 

obtained data was later extracted and analysed; results are presented in Section 4.3. 

 

 

Fig. 4.5.Custom-built wireless sensor node used for WBAN channel characterization. The design and 

development descriptions are presented in Chapter 3. 
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4.3.  Data Processing 

4.3.3.  Path Loss Analysis 

Analytical and empirical propagation models have been well covered in the 

literature [14, 44] . Measurements, for both indoor and outdoor environments, have 

shown that the average received signal decreases logarithmically with distance [45, 

46]. The mathematical approximation of power loss as a function of distance was 

defined by (2.4) in Chapter 2. 

For the case of on/off-body communications, (2.4) not only includes antenna 

characteristics, but also human body shadowing (which depends on the user) and 

average channel attenuation, which is defined by the surrounding environment [47, 

48]. A simplified path loss expression is defined by (4.1): 

 

0dB dB

0

(d) (d )
d

PL = PL  + 10γlog (4.1)
d

 
 
 

 

 

In our study, γ and PL(d0)dB are derived from measured data considering a 

reference distance of 15 cm (d0=15cm).  The reference distance should always be in 

the far field and it should be larger than the wavelength of operational frequency (at 

2.45 GHz the wavelength is 12.245 cm) in order to minimise the mutual coupling 

effect when antennas placed near each other.  Recorded data and least square (LS) 

fitting curves are shown in Fig. 4.6 for both VNA and wireless sensor-based 

measurements which were taken in an Anechoic Chamber. 

The human body torso is formed by curvatures in both longitudinal and horizontal 

directions, which increase the shadowing effect in the wave propagation (Fig. 4.6); 

therefore, the use of flat, cylindrical or uniform dielectric phantoms can lead to 

inaccuracies in the estimation of path loss exponent. 

Moreover, the use of directive antennas for on-body communications (microstrip 

patch antennas in our study) add to the spread of path-loss values around the linear fit 

(Fig. 4.6); therefore, the more directive the antenna is, the less linear is the relation 

between PL(d)dB and log(d/d0). Important statistical parameters for each on-body 

setup are presented in Table 4-2. 
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Fig. 4.6.Anechoic Chamber Measured Path and Power Loss values on the trunk section using LS 

linear fitting for: Stand Alone Antenna (see Fig. 4.4a), Antenna with close proximity to the in-house 

wireless sensor node (see Fig. 4.4b), in-house wireless sensor node with patch antenna (operating at a 

single frequency, see Fig. 4.5) and alternative wireless node using Texas Instruments evaluation 

modules (see Fig. 3.13d). 

TABLE 4-2  

STATISTICAL PARAMETERS OF MEASURED ON-BODY PATH LOSS AT 2.42 GHZ FOR AN 

ANECHOIC ENVIRONMENT  

Scenario 
Median 

dB 

Mean 

dB 

PL(d0) 

dB 
γ 

Root-MSE 

dB 

Stand Alone 

 Antenna  (Fig 4.11a) 
58.93 58.84 42.03 4.86 2.74 

Antenna with In- 

House System Behind  

(Fig 4.11b) 

58.65 58.77 41.09 5.11 5.06 

In-House Embedded Wireless 

System (Fig 4.11b) 
52.09 54.23 45.06 2.65 4.63 

Texas Instruments Evaluation 

modules (Fig 4.11d) 
49.74 49.54 36.08 3.89 3.27 
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The results for all systems show high path-loss components, a product of high 

electromagnetic absorption along the human trunk tissues and wave propagation 

alongside a non-uniform curvilinear surface. However, there is a noticeable 

difference between the results taken with the VNA and those made using the custom-

built wireless sensor nodes, discussed below. 

Although the projected path loss exponents differ between in-house wireless 

sensors and TI evaluation modules, 2.65 and 3.89 respectively, the values are 

comparable to the path loss exponents found by empirical, numerical and analytical 

methods reported in [135] (pair of microstrip patches), [120] and [136] (pair of 

dipoles), and [137] (pair of monopoles). Differences are attributed to the differences 

in size of the two systems (custom-built wireless sensors and TI evaluation boards; 

see Chapter 3, Fig. 3.13). 

The in-house embedded nodes have a better performance with distance (γ=2.65), 

but have more radiation losses compared to the TI evaluation modules. However, 

measurements of the stand-alone on-body antennas prove to have higher losses than 

those integrated with on-body systems. This may be due to measurement 

uncertainties, such as cable effects (e.g., the presence of common mode currents or 

reflections from the VNA). It is noticeable that the presence of the system has a 

minimal effect when using the VNA technique, which may imply that the cable 

effect dominates. 

The results in Fig. 4.6 show some discrepancies between those measured with the 

VNA and those using the wireless sensor modules, in terms of gradients (see also 

Table 4-2). It is thought that this difference is partly due to the fact that the wireless 

nodes operate in a single channel with a maximum bandwidth of 5 MHz, whereas the 

VNA measurements were performed over the whole ISM bandwidth (80.5 MHz). 

Other factors include the cable effect, potential scattering from the wireless sensor 

node structure and the internal bio-mechanical human processes. 

In order to further investigate possible causes of this effect, additional on-body 

measurements with the wireless nodes were performed at location 6 (being the 

largest distance on the human trunk, d=50.3 cm). The mean and standard deviation of 

the recorded sensor data, defined by (4.2) with N = 1 and N=2, respectively, are 

displayed in Fig. 4.7 and a summary is listed in Table 4-3. 
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Fig. 4.7.Channel performance of receiving node located at the largest distance (position 6), from the 

transmitter module. The mean value (line-plot) and standard deviation (red error bars plot) shows the 

variation of antenna radiation properties is related to long term fading effects, the motion produced by 

breathing process which also produces movements on the antenna orientation. 

Most of the channels experience variations of 0.5 dB to 2 dB on the received 

signal. Channels 4 and 10, operating at carrier frequencies of 2.42 GHz and 

2.45 GHz, respectively, define the best communication links, with the smallest mean 

path loss values of 57.7 dB and 58.6 dB, respectively (Table 4-3). Although the 
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antennas have the best power transfer around 2.42 GHz (Chapter 3, Fig. 3.11 and 

Table 3-2), the performance of channel 10 is still good enough at 30 MHz away from 

the best radiation performance of the antennas. 

TABLE 4-3  

MEAN AND STANDARD DEVIATION FOR EACH OF THE 16 CHANNELS IN THE 2.45 GHZ 

ISM BAND USING IN-HOUSE WIRELESS NODES FOR ON-BODY LOCATION 6  

Channel 

N° 
μ 

dB 

σ 

dB 

 

Channel 

N° 
μ 

dB 

σ 

dB 

1 68.49 0.69 9 61.64 1.37 

2 64.05 0.67 10 58.62 0.18 

3 62.43 0.57 11 67.29 2.50 

4 57.70 0.64 12 66.65 1.70 

5 61.37 0.63 13 65.91 2.73 

6 65.60 2.15 14 62.40 0.68 

7 63.78 0.97 15 65.69 0.74 

8 63.94 0.49 16 68.54 0.62 

 

On the other hand, channels 6, 11, and 13 exhibit average variations of 5 dB. For a 

wireless sensor programmed to operate at 2.43 GHz (channel 6), the variation in 

antenna radiation properties,  such as the 10 MHz detuning observed at point 6 (see 

Fig. 4.3), have produced a change in the antenna’s return loss magnitude, which must 

contribute to the worse performance in these channels. It is further conjectured that, 

over a given time frame, the cycle of the breathing process creates both LOS and 

NLOS propagation; thus, when the subject is stationary, long term fading or 

shadowing is the dominant fading observed, especially when the largest distance 

along the trunk is considered. The communication link on channel 6 is comparable to 

the mean path loss values of channels 1 and 16, despite being only 10 MHz away 

from the antenna’s operating frequency.  

In order to have a better understanding of the carrier-frequency dependence, on-

body measurements were extended further over 9 different points (Fig. 4.8) using the 

in-house wireless nodes. The recorded data was used to estimate path loss models for 
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each carrier frequency. Measured values and least-square (LS) fitted path loss curves 

are shown in Fig. 4.9a and Fig. 4.9b. Fig. 4.9c shows the performance of each  

 

 

Fig. 4.8.Different locations used for custom-built wireless sensor nodes to characterize the operation 

of the sensors at each carrier frequency. The receiver node was moved around trunk locations 

highlighted in red. The transmitter node was positioned at waist position.  

on-body radio channel and the main statistical parameters for each communication 

channel are described in Table 4-4. 

If a static radio propagation analysis is followed, channel 4 provides the maximum 

and optimum power transfer and, hence, is the best carrier frequency. However, for 

on-body communications, even when the subject is motionless, channel performance 

changes dynamically due to small variations caused by internal human body 

processes. Results show that channels 4 and 9 have the best communication links 

based on path loss exponents (γCH-4=2.73 and γCH-9=2.38, respectively); on the other 

hand, channels 6 and 12 have the highest path loss exponents (γCH-6=5.23 and γCH-

12=5.98, respectively). If we consider the reference path loss, however, channel 9 

exhibits the worst radio link (most loss) and 12 becomes the most suitable channel, in 

comparison to other adjacent channels. 

It is evident that different channels have different characteristics; channel losses 

are a consequence not only of the presence of tissues with high permittivities, but 

also of the irregular surface of the torso. When the dynamic nature of the 

environment is considered, it is evident that optimum performance may require some 

degree of intelligence, in order to select the most appropriate channel (e.g., in terms 

of link reliability or minimising energy consumption). 
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Fig. 4.9.Average Power Loss values using LS linear fitting for each frequency carrier at 2.45 GHz 

ISM band: (a) response of the first 8 channels; (b) response of the last 8 channels; (c) summary of 

statistical parameters of each frequency carrier. 
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TABLE 4-4  

SUMMARY OF STATISTICAL PARAMETERS OF 16 DIFFERENT CHANNELS USING LOW 

POWER SENSORS 

Channel 

N° 

Frequency  

GHz 
PL(d0) 

dB 
γ 

Root-MSE 

dB 

1 2.405 47.58 2.68 7.05 

2 2.410 42.22 3.57 4.23 

3 2.415 42.01 4.24 4.45 

4 2.420 45.56 2.73 3.88 

5 2.425 46.15 2.81 5.36 

6 2.430 40.40 5.23 5.25 

7 2.435 41.51 4.32 3.74 

8 2.440 40.70 4.65 3.11 

9 2.445 47.70 2.38 4.29 

10 2.450 36.67 4.74 5.07 

11 2.455 43.43 4.43 7.88 

12 2.460 34.97 5.98 5.99 

13 2.465 40.60 3.77 3.21 

14 2.470 40.90 4.64 3.40 

15 2.475 39.75 4.76 5.52 

16 2.480 44.71 3.12 4.61 

 

In order to evaluate the performance of wireless sensors over the whole 2.45 GHz 

ISM band, the mean power loss was found for the sixteen carrier frequencies. The LS 

linear fitting of this averaging, compared with the VNA-based measurements is 

depicted in Fig. 4.10 and Table 4-5 presents the statistical summary. 

4.3.4.  Cumulative Distribution Function 

In this analysis, the two different measurement techniques, using the VNA and 

using the wireless sensor modules, are compared on the basis of the cumulative 

distribution functions (CDF) as a function of average received power; these are 

shown in Fig. 4.11. 
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Fig. 4.10. Comparison of average path and power loss of: stand-alone antenna, antenna with close 

proximity to wireless boards, both measured using VNA equipment, and custom-built wireless sensor 

nodes operating at a single frequency, and the mean across the 16 channels which was recorded 

individually and mean was calculated after all channels were recorded. 

TABLE 4-5 

SUMMARY OF STATISTICAL PARAMETERS FOR PATH AND POWER LOSS MEASURED BY: 

THE VNA (2.45 GHZ ISM BAND) AND IN-HOUSE WIRELESS NODES (SINGLE CHANNEL 

2.42GHZ AND AVERAGE OF ALL 16 CHANNELS) 

Scenario 
Median 

dB 

Mean 

dB 
PL(d0) dB γ 

Root-MSE 

dB 

Stand Alone 

 Antenna 
58.93 58.84 42.03 4.86 2.74 

Wireless Sensors 

(Single Channel) 
52.09 54.23 45.06 2.65 4.63 

Wireless Sensor  

(Mean 16-Channels) 
54.83 55.69 42.18 4.00 3.4 

 

All parameters were calculated on a 95% confidence interval (CI), according to 

their maximum-likelihood (ML) estimates. The variation around the mean path loss 

is best described by a log-normal distribution (4.3) which is commonly used to 

model long-term fading (shadowing): 
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Fig. 4.11.Deviation of measurement from the average path and power loss acquired with VNA and 

custom-wireless sensor nodes, respectively. A wireless sensor node operating at a single frequency 

has different radio channel characteristics from a stand-antenna measured by a VNA and characterised 

over the whole bandwidth of operation. 

The mean and variance of the log-normal random variable are denoted μ and σ2
, 

respectively, and are given in Table 4-6 for each measurement setup. The data 

acquired by both VNA and wireless sensors shows compact behaviour in the first and 

third quartiles (below 52.15 dB and above 62.51 dB, respectively). However, the 

median quartile presents the most spread data. 
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This trend is caused by two factors: first, the wireless sensor nodes are coupled to 

an embedded antenna, usually integrated with active and passive elements also 

assembled on the dielectric substrate; thus, the combination radiates as a whole 

structure. On the other hand, the stand-alone antennas do not have an adjacent 

structure that shields the wave propagation from the effects of the human tissue. 

Second, the use of semi-rigid coaxial cables in the VNA measurements may 

introduce errors. For example, the excitation of surface currents on the outer metallic 

shield of coaxial cables (common mode currents) is unavoidable, causing pattern 

degradation. Furthermore, the presence of cables in the wave propagation path can 

scatter or even radiate electromagnetic waves, thus causing fragmentation, distortion 

of the antenna radiation pattern and signal variation from cable movements, even 

when not connected to the antenna. These may be exacerbated by the use of 

unbalanced antennas and designs with small ground planes. 

TABLE 4-6 

AVERAGE VALUE AND STANDARD DEVIATION OF LOGNORMAL DISTRIBUTION 

APPLIED TO PATH AND POWER LOSS FOR MEASUREMENTS TAKEN WITH THE VNA (2.45 

GHZ ISM BAND) AND IN-HOUSE WIRELESS NODES (SINGLE CHANNEL 2.42GHZ AND 

AVERAGE OF ALL 16 CHANNELS)  

Scenario 

Lognormal Fit 

μ  dB σ  dB 

Stand Alone 

 Antenna 
4.06 0.106 

Antenna with  

Sensor Behind 
4.06 0.133 

In-House Wireless 

Sensor (Single) 
3.98 0.098 

Wireless Sensor  

(Mean 16-Channels) 
4.00 0.136 

 

4.4.  Discussion and Conclusion 

On-body communication channels between two low-power IEEE 802.15.4 sensor 

nodes operating in the 2.45 GHz ISM band (2.40-2.4835 GHz) have been presented. 

Propagation measurements were performed on the trunk section of the human body 

in an anechoic environment, where multipath and scattering effects, usually present 

in an indoor environment, are negligible. 
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First, measurements were made using a standard VNA connected via coaxial 

cables. An alternative measurement technique for on-body antennas was then 

examined, utilising wireless sensors nodes. The latter not only diminished the effect 

of coaxial cables (scattering or radiation), but also provided a more realistic response 

of the radio link channel. Moreover, the radio communication for each of the 16 

IEEE 802.15.4 channels in the 2.45 GHz ISM band was measured at different points 

on the torso, using this technique. It was found that the wireless sensors operating at 

individual carrier frequencies have different responses; hence, system performance is 

influenced not only by the initial antenna response, but also by the channel selected. 

The limitations of the VNA approach are evident when comparing the results 

shown in Figs. 5.6 and 5.11 (also Tables XV and XIX), where the combination of 

cable effect and measurement bandwidth dominate over the physical proximity of a 

realistic system. The VNA measurements usually imply a path loss around 3 dB 

lower than that using the wireless sensor node approach, with equivalent differences 

in other measures. The path loss exponent is always found to be greater using the 

VNA method, often by a factor of 2. Hence, the value of the wireless sensor method 

can be seen in the more realistic data observed. Thus, the two techniques may be 

seen as complementary: the VNA approach has the benefits of greater speed and 

dynamic range, whilst the utilisation of sensor nodes allows a more detailed 

investigation of real-world scenarios. 
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Chapter  5 

Exploring Dynamic On-Body Radio 

Channels for Physiological Features 

The continuous development of compact and low-power circuits has enabled the 

miniaturization of hardware systems and, thus, led to wireless pervasive sensing. The 

connection of different wireless nodes on and around the human body defines a 

Wireless Body Area Network (WBAN) [14, 25]. It is evident that particular areas of 

the body have unique characteristics, thereby affecting the performance of the radio 

channel. Furthermore, external perturbations, such as human mobility and operation 

in cluttered backgrounds, result in a complex environment for the propagation 

characteristics of body-worn sensors [138, 139]. Usually, the latter embeds low-

power microcontrollers, tiny RF transceivers and compact antennas that have low 

gain and narrow bandwidth (low-profile antennas).  
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Different studies have shown the potential use of on-body wireless sensors during 

the healing process after surgery. Body-worn units housing accelerometers can 

monitor the level of activity of a patient, indicating an improvement or a decline in 

recovery process [140, 141]. As a result, the quality of care provided to patients is 

improved by the continuous monitoring, even those merely indicating general ‘well-

being’.  

The monitoring of human motion is frequently sensed by some combination of 

accelerometers, gyroscopes and inertial sensors, which are integrated with wireless 

communication standards, such as ZigBee or Bluetooth. In [142], a footwear-based 

activity monitor was implemented using accelerometers and pressure sensors to 

predict the energy expenditure associated with common daily postures and activities. 

In [143, 144], the received signal strength (RSS), an internal parameter of RF 

transceivers, was used to characterise limb movements for kinesiotherapy activities 

using Crossbow IRIS wireless modules. Their results show that learning techniques, 

such as a Support Vector Machine (SVM), can determine and classify limb 

movements based on information from the fading in the propagation signal path. 

In recent years, research has been focused on non-invasive technologies and its 

applications in healthcare environments, so that patients are no longer required to be 

attached to large, stationary monitoring equipment while their vital signals are 

recorded. This new trend, and the use of on-body wireless sensors within hospitals 

and home environments, can reduce healthcare costs and improve daily lifestyles. 

Many wireless systems have been proposed to accomplish this feat, with diverse 

solutions shown in [145, 146]. 

In this chapter, custom-built wireless sensor nodes (described in Chapter 3, Section 

4.2.3) are used to evaluate radio propagation characteristics of four on-body channels 

while different physical activities are executed. In addition, the collected radio 

propagation data is further post-processed, in order to investigate the ability to 

identify physiological markers, such as gait pattern, breathing process and heartbeat.  

5.1.  Measurement Procedure 

Measurements were performed on a 168 cm tall, 80 kg male test subject. The 

transmitter node was fixed in the right waist section and the receiver node was in 

four different locations in succession: the upper middle section of the thoracic cavity 
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(chest), the left ankle, the left wrist and the middle back (thoracic spinal cord). These 

locations were used for each physical activity. The receiver and transmitter locations 

are shown in Fig. 5.1.  

  

Fig. 5.1.Location of custom-built wireless sensors nodes used for dynamic WBAN radio channel 

characterization for each athletic activity. 

All the measurements were taken in Queen Mary’s Human Performance 

Laboratory (indoor environment). The jogging exercise was performed on a 

WOODWAY ELG treadmill machine which has a running surface of 70 x 244 cm 

[147]. The motorized treadmill, shown in Fig 5.2a, is also equipped with a digital 

display and an electronic console on the front panel. For our experiments, the tilt of 

the conveyor belt was set flat (no tilt), in order to simulate normal outdoor jogging.  

Cycling was carried out on a stationary sport medical training bike, the Lode 

Excalibur Sport with pedal force measurement [148] depicted in Fig. 5.2b. The 

resistance of the flywheel attached to the pedals was controlled by a digital control 

panel on the front of the bike. The test subject was seated with the body leaning 

forward and hands extended wide on the back part of the handlebar, simulating a 

normal outdoor pedalling. 

 In the case of the rowing scenario, a RowPerfect RP3 rowing ergometer was used 

[149] (see Fig. 5.2c). The rowing machine simulates as closely as possible the 
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dynamical and mechanical properties of a racing. This ergometer has an air 

resistance flywheel system called “floating” power head. The footplate with the 

power head unit and the seat are both mounted on the slide track and are thus free to 

move independently (see Fig 5.2c). The mass of the power head (about 17 kg) is 

similar to that of a section of a boat containing one oarsman. To simulate a fixed 

power head ergometer, the floating head was clamped at one end. The chain was 

placed on the larger of two cogwheels, and a 39 cm disc was used to set the 

resistance on the flywheel for all pieces. The rowing equipment is also fitted with a 

digital console control panel where a user can program different rowing scenarios. 

 

   

 

 

 

Fig. 5.2. Medical Sport Equipment used for the characterization of dynamic WBAN channels using 

custom-built wireless sensors. (a) WOODWAY ELG treadmill machine [147]; (b) Lode Excalibur 

Sport bike with pedal force measurement [148], and (c) Rowperfect RP3 rowing ergometer [149]. 

(a)     (b)  

(c) 
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The channel of operation of each wireless sensor node is programmed according to 

the performance of the antennas when placed on the body. The radiation properties 

of each antenna, Tx. antenna and Rx. antenna, were measured using a 

PNA-L 5230C which recorded the s parameters of each antenna for 13 minutes.  

The effect of motion on the antenna behaviour was evaluated for the jogging 

activity. During the first two minutes, the subject was in a resting position (standing 

on the treadmill); for the next 10 minutes, the subject was moving (jogging at 5 

km/h); and for the last minute, the subject was recovering (stop jogging). The 

performance of the transmit antenna (waist-location) for the aforementioned process 

is depicted in Fig. 5.3. The main statistical parameters are listed in Table 5-1.  

It is apparent that there are small fluctuations in the resonant frequency of the 

antenna related to the repetitive motion, but these variations are small in magnitude, 

compared with the bandwidth of the antenna. Additional information of the antenna 

design, and the spectrum response of each low power wireless sensor can be found in 

[150, 151].  

 

Fig. 5.3.  The plot shows the variation of the resonant frequency of the transmitting antenna while the 

test subject is resting, jogging and in a recovery process.  

For each activity, the receiver node records an average of 7000 samples of the 

received signal strength (RSS) at a rate of 14 ms per sample. In each activity, the 
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receiver node starts recording data only when the user has a constant speed of 5 km 

per hour (5 km/h), which was set and controlled by the digital control panel of each 

sporting machine. Acquired data is stored in the internal flash memory of the 

microcontroller which was later extracted and further analysed. 

In order to decrease location displacement due to the constant movement, 

VELCRO tape was fitted on the T-shirt and on the wireless sensors, the transmitter 

and receiver respectively. The performance at different locations (alongside the 

torso) and the operation at different carrier frequencies (within the 2.45 GHz band) 

of each custom-built wireless sensor node is described in[151]. 

TABLE 5-1  

VARIATION OF THE S11 RECORDED PRIOR THE SELECTION OF THE COMMUNICATION 

CHANNEL OF THE CUSTOM-BUILT WIRELESS SENSOR NODES 

Process 
Duration 

min 

Mean 

μ 

S.D. 

σ 

Resting 2 2.4288 0.000122 

Jogging 2 2.4301 0.00210 

Jogging 2 
No recorded 

Data 

No recorded 

Data 

Jogging 2 2.4313 0.00190 

Jogging 2 
No recorded 

Data 

No recorded 

Data 

Jogging 2 2.4314 0.00180 

Recovery 1 2.4298 0.00043 

 

5.2.  Data Analysis 

5.2.1.  Characterisation of On-body Radio Channels for dynamic scenarios 

On-body radio models, acquired from simulation and empirical methods, have 

shown that received signals are the combination of diffracted waves around the 

human body curvature, decaying creeping wave components and, to a high degree, 

scattered and reflected contributions (i.e., fast fading, multipath, shadowing) [152, 

153].  
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Initial studies in [50] reported peak-to-peak signal variations of 16 dB between belt 

and shoulder-worn antennas when changes in body posture occurred. In [154], the 

walking process in anechoic chamber, open office area and hallway environments 

was characterised. In the indoor scenarios, their results showed that the signal 

variations of different on-body channels were best described by a Nakagami-m 

distribution with a Level Crossing Rate (LCR) threshold of 20 dB below the median 

signal level.  

It is evident that the practice of any sport activity will produce a high level of 

fluctuations on the received signal, which are the consequence of the continuous 

movement of the human body. In the case of jogging, our results show these 

variations are ±15 dB from the average received signal; this is significantly greater 

than received signals of a motionless user in a free-space environment, where the 

variations are ±3 dB. The received signal of both scenarios, jogging and motionless 

is depicted in Fig. 5.4. The graph plots a 45 s window length of a waist-to-chest 

channel.  

 

 

Fig. 5.4.Recorded received signal strength (RSS) for a waist-to-chest channel recorded by custom-

built wireless sensor nodes when the test subject is jogging and motionless in Queen Mary’s Human 

Performance Laboratory. 

A simplified path loss expression was defined in Chapter 4, Section 4.3.3. In our 

study, the path loss exponent γ, and the initial path loss PL(d0)dB, are derived from 

measured data considering a reference distance of 15 cm (d0=15cm). The average 

power loss for each WBAN channel is described graphically as a function of box 

plots shown in Fig. 5.5. The non-parametric statistical plot describes the interquartile 

range of each WBAN activity. The spacing between the different parts of the box 

0 5 10 15 20 25 30 35 40 45
-100

-90

-80

-70

-60

-50

-40

-30

Time s

R
ec

ei
v

ed
 P

o
w

er
 d

B
m

Waist - Chest Channel

 

 

Free Space

Jogging



Exploring Dynamic On-Body Radio Channels for Physiological Features 104 

 

 

indicates the degree of dispersion (spread) and skewness of logged RSS data. The 

mean power loss and standard deviation for each on-body channel is summarised in 

Table 5-2.  

 

Fig. 5.5.Power loss for different on-body radio channels estimated from recorded RSS while test 

subject is under physical workout. The spacing between the different parts of the box indicates the 

degree of dispersion and skewness of the data. 

The results demonstrate that dynamic on-body channels present high variation 

amongst different links; however, the back location presents the most correlated data 

between different actions. The observed correlation is consequence of the reduced 

movement, in contrast to wrist and ankle locations. 

 In the case of the waist–ankle channel, data is highly correlated for two scenarios 

jogging and cycling, respectively. This behaviour is expected as a consequence of the 

constant speed of the user (5 km/h).  

On the other hand, the rowing scenario is an uncorrelated channel (compared with 

jogging and cycling), which is the outcome of the constant action of leaning forward 

and backward. At a given time instant, the legs are totally extended, positioning the 

receiver at the largest distance from the transmitter; hence, power loss is higher. 

These results suggest that the combination of data from two or three channels would 

be sufficient to determine the respective activity. However, the latter requires further 

investigation. 



Exploring Dynamic On-Body Radio Channels for Physiological Features 105 

 

 

TABLE 5-2 

STATISTICAL SUMMARY OF THE POWER LOSS VARIATION RECORDED BY CUSTOM-

BUILT WIRELESS SENSOR NODES 

WBAN 

channel 
Jogging Cycling Rowing 

Waist-to- Mean 
S.D 

(σ) 
Mean 

S.D. 

(σ) 
Mean 

S.D. 

(σ) 

Wrist 55.55 5.14 61.27 2.82 60.74 6.16 

Ankle 56.57 5.62 58.37 6.26 71.22 5.97 

Chest 47.17 5.27 59.66 5.95 55.55 6.32 

Back 59.23 6.46 61.31 4.37 61.05 6.23 

 

Second-order statistics are presented from each measurement campaign. The 

measured received signal was normalized according to the maximum received 

power. The statistical analysis uses the square root of this normalized receive power 

in order to find normalized received signal amplitude.  

The variation around the recorded received signal is modelled by four statistical 

distributions (Lognormal, Nakagami, Gamma and Weibull, namely) often used in 

WBAN communications. All parameters are calculated on a 95% confidence interval 

(CI) according to their maximum-likelihood (ML) estimates. 

In this study, different sports activities are compared. In our data analysis, we 

consider a time window of 45 s which states approximately 3215 samples (n3215), 

and all fitted distributions have a coefficient K=2. Estimated distribution parameters 

according to ML estimates are presented in Table 5-3 for the each sport application.  

The log-normal distribution has been commonly applied to describe static and off-

body WBAN communication channels [14, 114, 155]. In our study and according to 

the AICc scores, it was observed that the Nakagami and Weibull distributions, 

commonly used to model strong fast fading, are in general the best fit to the 

measured data. Plots of probability distribution functions (PDF) as a function of the 

normalized received power are shown in Fig. 5.6 and Fig. 5.7. The bin size of the 

histograms used to describe the PDF of the measured data is chosen according to the 

“Freedman- Diaconis” rule [156, 157].  
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TABLE 5-3 

ML ESTIMATED DISTRIBUTION PARAMETERS FOR DIFFERENT MOBILE WBAN 

CHANNELS AND DISTRIBUTIONS 
Jogging 

Waist - Wrist 

Lognormal μ=-1.57, σ=0.59 

Nakagami m=1.03, ω=0.074 

Gamma a=3.47 , b=0.069 

Weibull A=0.27 , B=1.96 

Waist - Chest 

Lognormal μ=-1.18 , σ=0.61 

Nakagami m=1.04, ω=0.16 

Gamma a=3.31 , b=0.11 

Weibull A=0.40 , B=2.1 

Waist - Ankle 

Lognormal μ=-1.81 , σ=0.65 

Nakagami m=0.89, ω=0.052 

Gamma a=2.93 , b=0.067 

Weibull A=0.22 , B=1.79 

Waist - Back 

Lognormal μ=-1.31 , σ=0.74 

Nakagami m=0.79, ω=0.15 

Gamma a=2.4 , b=0.14 

Weibull A=0.38 , B=1.73 

 
Cycling 

Waist - Wrist 

Lognormal μ=-0.97, σ=0.32 

Nakagami m=3.07, ω=0.17 

Gamma a=10.81, b=0.037 

Weibull A=0.44, B=3.86 

Waist - Chest 

Lognormal μ=-1.13, σ=0.68 

Nakagami m=0.85, ω=0.21 

Gamma a=2.67, b=0.15 

Weibull A=0.44, B=1.79 

Waist - Ankle 

Lognormal μ=-1.09, σ=0.72 

Nakagami m=0.95, ω=0.20 

Gamma a=2.78, b=0.14 

Weibull A=0.45, B=2 

Waist - Back 

Lognormal μ=-1.20, σ=0.50 

Nakagami m=1.29, ω=0.14 

Gamma a=4.45, b=0.076 

Weibull A=0.38, B=2.22 

 
Rowing 

Waist - Wrist 

Lognormal μ=-1.25, σ=0.71 

Nakagami m=0.80, ω=0.17 

Gamma a=2.51, b=0.14 

Weibull A=0.4, B=1.72 

Waist - Chest 

Lognormal μ=-1.69, σ=0.73 

Nakagami m=0.71, ω=0.079 

Gamma a=2.31, b=0.1 

Weibull A=0.26, B=1.57 

Waist - Ankle 

Lognormal μ=-1.31, σ=0.69 

Nakagami m=0.87, ω=0.14 

Gamma a=2.69, b=0.12 

Weibull A=0.37, B=1.82 

Waist - Back 

Lognormal μ=-1.52, σ=0.72 

Nakagami m=0.75, ω=0.11 

Gamma a=2.38, b=0.11 

Weibull A=0.31, B=1.63 
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Fig. 5.6.Probability Distribution Function (PFD) for a waist-to-back channel recorded by custom-built 

wireless sensor nodes operating at 2.45 GHz while the test subject was jogging at a constant speed of 

5km/h. 

 

Fig. 5.7.Probability Distribution Function (PFD) for a waist-to-ankle channel recorded by custom-

built wireless sensor nodes operating at 2.45 GHz while the test subject was rowing at a constant 

speed of 5km/h. 
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5.3.  Exploring On-Body Radio Channels for Embedded 

Physiological Features 

The previous section identified two statistical distribution models that describe the 

behaviour of dynamic on-body radio channels. It also showed that received signals 

are highly non-stationary due to the constant change of frequency, amplitude and 

phase with time. Although received signals present high amplitude variance, the use 

of wireless sensors certainly represents a flexible and sustainable solution for 

environments where freedom of movement is needed. 

The outlook of future infrastructures (hospitals, military services and care centres) 

supporting wireless sensing technology remains an essential and active part for 

patient awareness, not only to off-load demand of services, but also to promote 

autonomous and flexible monitoring solutions, especially for non-stationary 

scenarios. Active research has shown possible solutions for the latter offering non-

invasive sensing capabilities. For example, in 1975, a non-invasive procedure to 

monitor heartbeat and respiratory movements was introduced by Lin [158-160]. The 

microwave system transmitted continuous wave (CW) signals from 2.1-2.5 GHz and 

the periodic displacement of the thoracic cavity was recorded in the reflected wave, 

which was phase-modulated (PM) by the time-varying position of the chest (concept 

related to the Doppler Effect).     

Further advances in technology made possible the design of compact and 

lightweight systems, improving not only the detection accuracy, but also reducing the 

phase-noise of the receiving signal. In [161], Doppler systems operating at different 

microwave frequencies such as 2.4 GHz, 5.8 GHz, 10 GHz, 26 GHz and 60 GHz, 

respectively, were considered. The results showed that the use of high frequencies 

(short wavelengths) vastly improved the sensitivity to small variations exhibited in 

chest-wall movements. 

Other studies made use of double-sideband transmission systems and I/Q 

modulation (quadrature signals) in order to reduce the number of the null points, a 

problem in single channel Doppler systems, and enhance the detection of 

cardiopulmonary movement [162, 163]. Although most of these non-intrusive 

monitoring systems were studied and implemented in controlled environments using 

frequency domain techniques, signals recorded in time domain also embed external 
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information. In this context, the current section explores the on-body electromagnetic 

(EM) wave propagation, recorded by wireless sensor nodes, as a sensing method.  

The transmitting node antenna (at waist level) radiates EM waves that propagate 

through both free space and human body. The main radiation beam of the patch 

antenna is normal to the body; however, there are also EM waves travelling along the 

body’s surface that are mainly triggered by the fringing fields and backscattering 

energy, similar to the operation of radar transceivers. On-body transient simulations 

were implemented in CST Microwave Studio and the results, shown in Fig. 5.8, 

verify the aforementioned description.  

              

Fig. 5.8.Simulation results of the EM wave propagation alongside the trunk section of the Hugo model 

implemented in CST Microwave Studio. The radiating element was the designed microstrip patch 

antenna from Chapter 3  

In order to get the best results, the identification and extraction of physiological 

features, such as motion pattern, respiration rate or heartbeat, the study only 

considers waist-to-chest channels. The received signal strength for these channels is 

shown in Fig. 5.9, with mean values of -50.19 dBm, -62.68 dBm and -58.57 dBm, 

respectively.  

The use of powerful and robust digital signal processing techniques (e.g., template 

matching, blind source separation, wavelet transforms) is undoubtedly advantageous; 

however, the latter is beyond the current study, and hence a combination of digital 

filtering and spectral response is presented. 
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Fig. 5.9.Received Signal Strength (RSS) for waist-chest channels recorded with custom-built wireless 

sensor nodes from three different activities: (a) jogging; (b) rowing and (c) cycling. The 

measurements were performed in Queen Mary's Human Performance Laboratory   

5.3.2.  Physiological Information Parameters 

The number of breaths and heart-beats per minute varies with the subject’s body 

mass index (BMI) (i.e., the ratio of body’s weight and the square of height), age, 

gender and, of course, the activity level. The pulse rate of a resting adult has an 

average frequency of 1 to 1.5 Hz, or 60 to 90 beats per minute (BPM). On the other 

hand, the resting respiration rate is about 6 - 12 breaths/min [159, 164]. The 

mechanical processes of the cardiovascular and the respiration cycles produce 

abdominal displacements of 0.2 - 0.5 mm and 4-12 mm, respectively. 

During a normal walk, the pulse increases up to 95 BPM and the respiration rate 

varies between 12 - 18 breaths/min, while performing other athletic activities (such 

as running, swimming, rowing or cycling) causes the heartbeat rate to increase to 

almost twice that of a resting adult: 120 to 190 BPM (2 Hz to 3.1 Hz, respectively) 

[164].  

Considering an average heartbeat frequency of 2.6 Hz (fheart-beat= 2.6 Hz) for a 

workout activity of an adult, the minimum sampling frequency, defined by Nyquist-

Shannon theorem, should be 5.2 Hz (ts = 192 ms) in order to perfectly reconstruct the 

original signal. The average sampling rate of custom-built wireless sensors is 14 

ms/sample (71.4 Hz), a high margin from the minimum sampling rate.  
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The exercise testing and data acquisition was validated and executed on a 

computerised Cortex system that was controlled by a software application called 

MetaSoft Studio [165]. The application software manages and monitors 

electrocardiogram (ECG) recordings and jogging speed (5 km/h). The integrated 

system, shown in Fig. 5.10, was not used for cycling and rowing activities because 

the amount of cables across the body was restricting the normal workout process.  

 

 

Fig. 5.10.Queen Mary's Human Performance Laboratory, (a) integrated Cortex System synchronized 

with a treadmill machine and electrocardiograph, (b) 12-Lead electrocardiograph system Cardio-

Collect 12. 

The ECG recording device was a certified 12-Lead electrocardiograph, the Cardio-

Collect 12. The sampling frequency and the ADC resolution of the latter were 500 

Hz and 12 bits, respectively.  The cardiac recordings were taken for a resting position 

(standing on the treadmill machine) and jogging (constant speed of 5 km/h) while 

wireless sensor nodes record RSS values only when constant speed was achieved.  

The acquired ECG samples, which served as reference waveforms for cycling and 

rowing scenarios were described as normal sinus rhythm without any significant 

arrhythmias. A 10 s ECG sample frame for resting and jogging scenarios is shown in 

Fig. 5.11Fig. 5.11. In addition, heart rate variability for a time frame of 5 minutes is 

described in Table 5-4. 
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Fig. 5.11.Heartbeat signal of the test subject while is: (a) standing on the treadmill machine (resting 

stage). The average heartbeat was 86 BPM; (b) jogging at a constant speed of 5 km/h. The heartbeat 

rate was 106 BPM. 

TABLE 5-4    

HEART RATE VARIABILITY FOR A RESTING AND JOGGING SCENARIOS CALCULATED 

FROM A 5 MINUTE SEGMENT FRAME 

Scenario 
H.R. 

Mean 

H.R. 

S.D. (σ) 

Resting 86.07 4.83 

Jogging at 5 km/h 106.3 4.29 
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5.3.3.  Frequency Analysis of Time-Domain Channel Data 

The spectral estimation was performed for four different scenarios resting (0 

km/h), jogging, cycling and rowing (each at 5 km/h). Normalized received signals 

were filtered using a 10th order elliptic band-pass IIR filter (infinite impulse 

response filter). It was decided not to use FIR filter (finite impulse response filter) 

because the received data does not contain any phase information, and hence phase 

linearity was not necessary. The digital filter was computed on data segments of 45 

seconds ( 3215 samples).  

In order to avoid frequency component confusion, two different band-pass filters 

were implemented: the first filter with cut-off frequencies of the 0.1 Hz (lower 

frequency) and 0.8 Hz (higher frequency) for breathing analysis and the second filter 

with cut-off frequencies of 0.8 Hz (lower frequency) and 3 Hz (higher frequency) for 

heart-beat movement.   

The frequency domain analysis was based on the estimation of the power spectrum 

density (PSD) from filtered data. The PSD evaluation methods can be divided into 

parametric, e.g., Autoregresice (AR)-model, and non-parametric methods. The non-

parametric methods, for example the Welch’s periodogram, are, in general, faster to 

compute and, in the case of a Welch’s FFT method, it reduces the variance of the 

spectral density by averaging. This method divides the time series samples into 

overlapping sub-sequences. Each sub-sequence is windowed and then the estimated 

spectral density is averaged (our study uses a Hanning window).  

The use of a Hanning window (5.1) smooths uncorrelated data located at the edges, 

diminishing aliasing of different rooted information and minimizing the amplitude 

dispersion into other harmonics (reduced spectral leakage). Additionally, the window 

function limits the extent of the sequence providing a more stationary spectral 

characteristic. The terms n and N in (5.1) represent the discrete-time index and the 

length of the window, respectively. The window length was selected such that 

reasonable spectral performance was achieved. In the data analysis, N was limited to 

4096 samples (without zero-padding) with window sections of 1024 and window 

overlaps of 512.  

  5 1n

n
w =0.5 1-cos 2π for 0 n N .

N

  
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The spectral content of a resting scenario (test subject standing on the treadmill 

machine) was taken for five different locations, mainly along the upper chest section. 

The resulting plot, shown in Fig.5.12, depicts the main component at these locations, 

which occurs between 0.12 Hz and 0.13 Hz; this would be equivalent to a breathing 

rate of 7.2-7.8 breaths/min. The spectral results of the second filter (0.8 Hz -3 Hz) 

did not show any significant harmonics to be related with heart beat movement; 

therefore, it was not included.  

    

Fig. 5.12.Power spectral response recorded by WSNs for five different positions alongside the trunk 

section while the test subject is resting (standing on the treadmill machine). 

The aforementioned method was also applied to each RSS signal recorded while 

jogging, rowing and cycling. The spectral response of implemented digital filters is 

illustrated in Fig. 5.13.  The results of a jogging scenario (see Fig. 5.13a) shows a 

sub-harmonic at 0.14 Hz (lower frequencies), which could be regarded as the 

thoracic displacement produced by the breathing process (approximately 8.5 

breaths/min).  

At higher frequencies, two main harmonics are clearly defined: the first at 0.9 Hz 

and the second at 1.8 Hz. It is known that human locomotion depends on two main 

factors, stride length and stride frequency, both of which contribute to a jogging 

activity. The constant speed of 1.38 m/s and the average stride length of 1.5 m give 

rise to the first harmonic, 0.9 Hz. This is the fundamental component product of the 

periodic kinematic of the human body which is mainly dominated by the head and 

the thoracic cavity.  
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Fig. 5.13.Power spectral density response using Welch’s method for RSS signals while the test subject 

is (a) jogging; (b) rowing and (c) cycling. All the activities are performed at a constant speed of 5 

km/h. 
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The 1.8 Hz harmonic, which is twice fundamental frequency (0.9 Hz), could also 

be described by the quasi-synchronous movement of the arms and legs. If we 

examine the sequence (a)-(b)-(c), depicted in Fig. 5.14, the left-arm and the right-leg 

go up-front during the initial step succeeded by the right-arm and the left-leg, 

sequence (d)-(e)-(f), for the following step. The cyclic movement of the extremities, 

which is repeated during the entire jogging process, shadows the propagation 

channel, and thus producing a harmonic at 1.8 Hz.  

 

 

Fig. 5.14.Snapshot sequence of the human body movement during a jogging exercise, modelled in 

POSER: (a), (b), (c) represent the initial forward step and (d), (e), (f) correspond to the next forward 

pace.  

The frequency domain plot of a rowing activity has two main components at lower 

frequencies (namely, 0.17 Hz and 0.71 Hz) and two higher harmonics, at 1.43 Hz and 

2.18 Hz, respectively (see Fig. 5.13b).  

In order to explain the source of each harmonic, it is necessary to unfold the steps 

of a rowing process. A normal rowing technique is divided into four main phases: the 
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initial part of a stroke, where the body is pressed up to the legs and shins vertical, 

thus preparing for the next pull, is regarded as the catch (shown in Fig. 5.15a). The 

following phase, called the drive (Fig. 5.15b), is initiated when the body's main hip 

extensors (legs and glutes) push down as the body levers back, but the arms remain 

straight (transfer of power stage). The next state, where the legs are fully extended 

and flat, and the rowing handle is located at abdomen position, is defined as the 

finish position (Fig. 5.15c). The final part of a stroke, called the recovery process 

(Fig. 5.15d), is a slow slide back to the initial position (actions are in reverse order of 

the drive phase), thus returning to the catch position (Fig. 5.15e).  

 

 

Fig. 5.15.A common sequence during a rowing process: (a) the catch, (b) the drive, (c) the finish, (d) 

the recovery and (e) the return to catch. 

The component at 0.17 Hz is mainly attributed to the thoracic movement produced 

either by the human motion or the breathing process, which would relate to an 

average respiration rate of 10.2 breaths/min. During the rowing process, the test 

subject worked out at a constant speed of 5 km/h, covering an average distance of 

1.8 m for each stroke (catch-finish, finish-catch). The continuous levering backward 

and forward of the body from catch to finish position produces the fundamental 

component of 0.71 Hz. Similar to a jogging scenario, the 1.43 Hz describes the 2nd 

harmonic of the fundamental frequency; but, a close examination of the rowing 

process also shows that, amid each stroke, the rowing handle crosses the transmitter 

node twice (i.e., shadowing the free-space propagation), the first instance when the 
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body lays back to the finish stage and the second time when the recovery phase takes 

place, thus producing a 1.43 Hz component. 

The last spectrum plot corresponds to a cycling scenario (see Fig. 5.13c), where 

main components are observed at 0.16 Hz for the lower frequencies, and 0.9 Hz and 

1.81 Hz for the higher frequencies. The cycling process is mainly dominated by the 

pedalling sequence. Key snapshots of this routine are shown in Fig. 5.16a-c. The 

movement created by the rotation of the legs around the circumference of the pedal 

crank is defined by the sprocket-arm (length=0.20 m) and the bike ergometer’s speed 

(5 km/h). The angular movement of the right leg brings about periodic displacements 

of the transmitter node, which is located on the same side but at waist level, thus 

defining a cyclic translation of approximately 1.06 Hz and hence an angular speed of 

64 rpm. In addition, the link (Tx – Rx) is shadowed twice per cycle, or every π 

radians, thus defining a frequency of 1.81 Hz.  

 The motion observed during cycling is mainly dominated by the leg movement, 

whereas the chest area remains fairly motionless (i.e., leaning forward towards the 

handle-bar with relaxed arms; see Fig. 5.16Fig. 5.16a-c), in contrast to the other 

activities. This type of body posture creates a cavity section for the electromagnetic 

propagation which maximizes the number of waves travelling along the body and 

hence the 0.16 Hz harmonic is interpreted as a result of the respiration process which 

would be equivalent to 9.6  breaths/min.  

 

 

Fig. 5.16.Cycling at a constant speed of 5 km/h, (a)-(c) Snapshots of main movements of the human 

body while (Images are for illustration purposes only) and (d) normalized spectrum response of the 

received signal. 
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 The spectral response of recorded ECG signals (resting and jogging scenarios, see 

Fig. 5.10) are shown in Fig.5.17a-b. In both cases, the noise introduced by the mains 

was removed using a digital notch filter operating at 50 Hz to 60 Hz.  

The resulting plots show a main harmonic at 1.46 Hz (for a resting scenario) which 

defines a heart rate of 87.6 BPM. By contrast, the ECG from a jogging scenario 

depicts two main frequency components: the first at 1.04 Hz and the second at 1.71 

Hz. The former is mainly attributed to electrode movement due to the constant 

human motion and the latter may represent the cardiac signal, based on a comparison 

with the recorded ECG signal; it defines a heart rate of 102.6 BPM. 

 

 

 

 

Fig. 5.17.Power spectral density response using Welch’s method for recorded ECG signals while the 

test subject is (a) standing on the treadmill machine (resting stage); (b) jogging at a constant speed of 

5 km/h. 
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The transformation from time to frequency domain has introduced a HR deviation 

of 1.77% and 3.4% for resting and jogging scenarios, respectively. This deviation is 

mainly attributed to the FFT coefficient rounding errors and floating point arithmetic 

quantization errors. 

A summary of the spectral content of each scenario is presented in Table 5-5. The 

table includes sub-harmonics and main frequencies for each recorded activity, 

including the spectral components of the electrocardiograph. It can be seen that the 

2nd harmonics of jogging and cycling are similar to the main harmonics of the ECG; 

however, it is difficult to confirm the sensing of the latter. A more rigorous study is 

required considering important aspects such as different speeds and stride lengths. 

It is evident that the spectral content of the electrocardiogram maintains a high 

level of detail contrary to the spectral plot of the signal recorded by the wireless 

sensor node. In the case of the ECG, it mainly records electrical variation of the heart 

over a period of time across the electrodes, whereas the wireless sensor node detects 

the mechanical movement. Our results have shown that respiration rate could be 

estimated from the thoracic movement produced over a period of time (see Table 5-

5), but not heartbeat. 

TABLE 5-5 

SUMMARY OF MAIN HARMONICS FOR EACH PERFORMED ACTIVITY AND THE 

RECORDED ECG 

Activity 

Harmonics (Hz) 

Low Components 

 (0 Hz - 0.8 Hz) 

High Components 

(0.8 Hz - 3 Hz) 
ECG 

Sub-

Harmonics 
1st 2nd 3rd 

Resting 0.12-0.13 - - - 1.46 

Jogging 0.14 - 0.9 1.8 1.71 

Rowing 0.17 0.71 1.43 2.18 - 

Cycling 0.16 - 0.9 1.81 - 
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5.4.  Discussion and Conclusion 

The chapter presented the radio-channel characterisation of different on-body links 

for assorted body movements. It was first shown that the continuous movement of 

the human body, trunk and the limbs, for non-stationary scenarios (e.g., jogging 

exercise) shadows the line-of-sight propagation, thus producing signal fluctuations of 

±15 dB (maximum level from the average received signal).  

Comparison of the various radio channels considered (which not only include radio 

propagation characteristics, but also embed biomechanical information, such as the 

motion pattern and thoracic displacement, for the three activities showed noticeable 

differences in channel parameters. The fitted statistical distributions for each sport 

activity showed that dynamic radio channels are best described by Nakagami and 

Weibull distributions rather than lognormal distributions. 

Moreover, the analysis of the spectrum plots, for the waist-to-chest channel, 

identified distinct frequency components for each recorded exercise. These 

components are analysed in the context of the activities and physiological signals are 

observed. Thus, the on-body radio channel provides a model for activity 

classification and potential physiological feature extraction. The work proposed in 

this paper may open up a new possibility of non-invasive physiological monitoring 

based on EM sensing from on-body wireless sensor nodes. One potentially 

interesting avenue for future research is applying this technique to activities with 

more complex movements, for instance hurdling or climbing stairs. 
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Chapter  6 

RF Positioning using Body-Centric 

Low-Power Wireless Sensors 

Recent years have seen an increase in the number of wireless communication 

devices available for a variety of applications, both fixed and mobile. This trend is 

predicted to continue for the foreseeable future and will result in unprecedented 

opportunities, as well as considerable challenges [14]. These opportunities are in 

areas that include some of the more significant fields of our time, including tackling 

climate change, reducing energy consumption and improving various health and 

demographic problems [14, 166]. 

The move towards smart grids, intelligent transportation systems and smart house 

environments, particularly for assisted living, tele-monitoring and tele-diagnostics, as 

well as enhanced quality of life, to mention a few areas, is a strong driver in the 

growth of wireless device usage. The increased availability of such wireless 
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technologies, including the growth of smart-phone usage, as well as the proliferation 

of wireless sensor networks (WSNs), offers an opportunity for obtaining valuable 

localisation information for the efficient provision of services.  

In some scenarios, this information is fundamental to the operation of the system; 

in others, it may be an “optional extra” that provides enhanced quality of service. 

Body-centric communications has an important role to play in many of the 

applications discussed above, and it is an additional resource for providing 

localisation information. For example, in many assisted living and tele-health 

scenarios, the user will be wearing a device that communicates with an external 

system, for example a medical alert system where location is critical.  

The role of the body in RF positioning systems must, therefore, be understood, 

particularly in the context of indoor positioning systems. Whilst similar in principle 

to off-body communications, there are unique characteristics for positioning systems 

that have yet to be fully analysed in body-centric communications. This chapter 

discusses the use of WSNs to provide indoor location information, either as their sole 

function, or as a secondary aspect to their operation.  

6.1.  Review of Wireless Positioning  

There are numerous techniques for determining (and often tracking) the position of 

a target utilising RF technology. These can cover short distances (a few tens of 

metres, perhaps with accuracies up to a few millimetres) through to extremely large 

distances (thousands of miles, although accuracies can still be as high as a metre or 

even better) [167]. The focus here is on relatively short-range techniques, especially 

those applicable to indoor applications. 

Cellular telephone systems can act as a means of detecting position. First, the 

network records which base-stations a handset is communicating with; in urban 

areas, this can give relatively high resolution, as base-stations are more densely 

clustered, but the resolution in rural areas can be of the order of miles. 

Methods to enhance the positioning capability of cellular systems have been 

proposed, mostly taking advantage of signal timing knowledge; however, indoor 

positioning is not presently feasible [167]. 

However, the near-ubiquity of wireless networks (WLANs) in home, office and 

public places, together with the rise in popularity of smart phones containing WLAN 
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technology, provides a means of tracking WLAN-enabled assets that can be coupled 

to cellular technology to obtain near-universal coverage, albeit with differing levels 

of resolution in position.  

The caveat is that WLAN technology is relatively power-hungry, and there is no 

means of guaranteeing that the WLAN asset being tracked corresponds to the person 

of interest, in scenarios where that is important [167]. This can include health and 

assisted-living applications, as well as emergency response scenarios. Despite this, 

the use of WLAN technology provides a potential pre-built infrastructure for indoor 

location systems which was shown in [168-171].  In these location systems, a client 

device measures the RSS from different access points in given positions and uses this 

information to discover its own location. The estimation process is split into an 

offline phase (also called location fingerprinting or calibration phase) and an online 

phase (also called real-time phase). Commercial WLAN-based  location and tracking 

System for indoor environments are RADAR [168] and Ekahau [172]. 

Another commercially-available tracking system is Ubisense [20], which utilises a 

form of ultra-wide-band (UWB) technology for extremely accurate positioning by 

taking advantage of the large bandwidth. These positioning systems transmit ultra-

short pulses (typically < 1 ns), with a low duty cycle (typically 1:1000) over multiple 

bands of frequencies. Ultra-wideband location technologies exploit the 

characteristics of time-of-arrival techniques and the resilience to multipath 

propagation within indoor environments [173, 174]. 

Radio Frequency Identification (RFID) is another technology that offers the 

potential for tracking objects indoors. There are different types of RFID system, 

operating at different frequencies. RFID systems can also be classified according to 

the power source, as active (battery-powered), passive (harvesting energy from the 

RFID interrogation signal) and semi-passive (battery-powered for all operations apart 

from communications, which harvests energy as with the passive type). Some 

popular RFID positioning systems, shown in Fig. 6.1, are SpotON [21] and 

LANDMARC [175].  

Research in [67] has shown that the communication range for an implanted active 

RFID tag at UHF frequencies (868 MHz) is of the order of 10 m, for a relatively low 

transmit power of -20 dBm and line-of-sight operation. This used an optimised 

meandered planar inverted-F antenna (PIFA), with an implanted gain of about -17 

dBi at an implant depth of about 7 mm. This corresponds to a subcutaneous implant, 



RF Positioning using Body-Centric Low-Power Wireless Sensors  125 

 

 

below the skin layer and within the fat layer immediately beneath the skin. A 10 m 

range is sufficient for indoor positioning and tracking, with a resolution dependent on 

the number and location of RFID interrogators (also called readers). It can be 

assumed that a worn RFID tag will have a greater range, as it should experience 

reduced losses due to the body compared to an implanted tag. 

 

    

 

Fig. 6.1.Commercial RFID tags for indoor location (a) SpotON [21]; (b) LANDMARC [175]. 

Nonetheless, most of these systems require the target to carry, or wear, a tag that 

emits RF energy for positioning purposes. Some of these tags are purely used for 

positioning; other examples may provide positioning as a secondary function, for 

example an implanted RFID tag may be used for a different primary purpose, such as 

security, or as a simple wireless sensor for physiological data. In all cases, an 

understanding of WBANs is required. 

6.2.  Localization Techniques and Algorithms 

In general, location determination comprises two phases, distance estimation, 

which is commonly referred to as ranging, and position calculation. Distance 

estimation can be based on different measured parameters such as angle of arrival 

(AoA, where the direction of incidence, is obtained by the use of directionally 

sensitive antennas), received signal strength (RSS) and time of arrival (ToA, the 

absolute travel time of a signal from a transmitter to a receiver is computed which 

relies on a precise synchronization of transmitter and receiver clocks). Fig. 6.2 shows 

a basic functional block diagram of wireless positioning system. 

Positioning systems using all location metric parameters (e.g., ToA, AoA, RSS) 

offer high target location accuracy; however, the solution implies having high costs.  

 

(a)                                             (b)  
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Fig. 6.2.A functional block diagram of positioning system using some location metric parameters 

which include Time of Arrival (ToA), Angle of Arrival (AoA), RSS for indoor location estimation. 

In order to reduce costs, positioning and tracking literature describes different 

solutions to estimate an object’s location, and some of the popular solutions are 

summarised below [21, 167]:  

 Geometry-based techniques (see Fig. 6.3) compute the position from 

estimated angles or distances using algebraic relationships [176]. The 

distance estimation can be based on RSS, ToA or AoA of reference signals 

exchanged between the element to be located and some reference nodes.  

The most common techniques are triangulation [21] and trilateration[177]; 

however, other advanced approaches, such as least square minimization 

[178] and multidimensional scaling [174] are also implemented ; 

 

Fig. 6.3.Popular Localization techniques used for tracking and positioning systems (a) trilateration; (b) 

triangulation; (c) Maximum Likelihood Estimation 

(a)                             (b)                                    (c) 
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 Fingerprint methods rely on a set of location dependent characteristics 

(e.g., ToA, RSS) available in the radio access database. The number of 

measured parameters by known access points must be high enough to allow 

for a unique correspondence with a given location. These parameters must 

have low variability in time at any given position and they are location 

dependant; therefore, each RF fingerprint is associated with a specific 

location. Support vector machine and neural networks are well known  

database training techniques for fingerprinting-based positioning 

algorithms [179];  

 Bayesian techniques probabilistically estimates the position from past and 

present measurements using ToA, AoA and statistical models [180] (e.g., 

particle filters, Kalman filters).  

Localization techniques employing ToA and AoA as location-detection signal 

parameters present some drawbacks within indoor environments. The radio 

propagation in such environments would suffer from multipath effect, thus a LOS 

channel between the transmitter and the receiver may be difficult to find. The time 

and angle of an arrival signals would be affected by the multipath effect; thus, the 

accuracy of estimated location could be decreased. An alternative approach is to use 

an RSS-based method which attempt to calculate the effective signal path loss due to 

propagation. Theoretical and empirical models are used to translate the difference 

between the transmitted signal strength and the received signal into a range estimate 

for the object’s positioning as shown in Fig. 6.4. The following section aims to 

investigate and explore the capability of a positioning system based on RSS 

recordings (i.e. RSS-based indoor location) by low-power wireless sensors using the 

IEEE 802.15.4 communication standard.  

 

Fig. 6.4.Theoretical and empirical model used to translate the difference between the transmitted 

signal strength and the received signal into a range estimate for the object’s positioning.  The 

positioning is based on RSS, where PL1, PL2, and PL3 denote the measured path loss. 
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6.3.  RSS-based indoor location using low-power wireless sensors 

Most on-body research has probably been conducted at narrowband ISM bands 

which are typically used by communication standards such as Bluetooth and ZigBee. 

The studies frequently include antenna performance and channel propagation 

characteristics. In this chapter, most of the experiments are performed using the 

IEEE 802.15.4 communication standard at 2.45 GHz. The concept behind the 

empirical study is to use the RSS parameter as means of determining path loss 

estimation (using a fixed transmit power), which would change according to the 

distance separation between fixed and body-worn nodes. 

The experiment was divided in two scenarios:  

 the first scenario made use of custom-built body-worn nodes described in 

Chapter 3, which can potentially be used to provide positioning 

information, as a secondary function;  

 the second experiment used commercial wireless modules, the TelosB (see 

Fig. 6.7a). This experiment was sub-divided in two additional scenarios: (a) 

empty indoor environment and (b) occupied environment in which a person 

is standing in the middle of the room. 

Both experiments were performed in order to determine the expected path loss, 

multipath components and body-shadowing effects in an indoor environment. The 

results assess the performance of generic low-power WBAN wireless nodes for RF 

positioning systems. 

6.3.1.  First Experiment - Feasibility study using custom-built wireless sensors 

This experiment was performed using three fixed nodes which were wall mounted 

nodes and one body-worn node. The nodes were designed and fabricated in-house, 

rather than commercially-obtained. Each module used the same Texas Instruments 

CC2420 transceiver [101]. The transceivers are programmed and controlled by an 

ultra-low-power microcontroller, the PIC18F2620 [102] (see Chapter 3). The 

custom-built low power wireless sensor node is shown in Fig. 6.5a. Each wall 

mounted node recorded the RSSI value from a transmitting node that was placed on-

body (the data was transmitted at 14 ms per sample). The data was stored in the 

internal memory of each wall mounted sensor for a later retrieval and processing. 
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The nodes used channel 4 of the IEEE 802.15.4 communication standard, with a 

centre-frequency of 2.42 GHz. A simplified representation of the indoor layout is 

shown in Fig. 6.5b. Additional information is given in Table 6-1.  

 

 

 

 

 

Fig. 6.5.  (a) Implemented wireless nodes using a microstrip patch antenna; (b) simplified floor-plan 

of the Body-Centric Lab, with node positions and separations shown. Note the assumed orientations 

of the body along the path. 

(a) 

(b) 
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TABLE 6-1  

SUMMARY OF INFORMATION FOR THE FIRST EXPERIMENT (FEASIBILITY STUDY) 

Property 
Nodes 

x y z On-Body 

Height from the floor (m) 1.25 1.15 1.15 1.21 

Radiating Element Patch Patch Printed IFA Patch 

Gain (dBi) 2.13  2.13 1.1 2.15 

S11 (dB) 16.9  -16.8 -15 -17.3 

Transmit Power (dBm) N/A N/A N/A -3.02 

Rx Sensitivity (dB) -95 -95 -95 N/A 

 

The test subject followed an L-shaped path (dashed blue line in Fig. 6.5b), 

beginning near x and walking straight ahead, towards the end of the room containing 

y and z, before turning left when adjacent to y, and approximately 1.27 m away from 

it. The subject then walked until approximately 1 m from z, before turning and 

retracing the route. The walking process was repeated three times. The smoothed 

RSS in dBm for each communication link (on-body node to fixed node) is depicted 

in Fig. 6.6, where a moving-average filter was used with a window size of 50 

samples.  

 

Fig. 6.6 Smoothed received power in dBm for each node: x in blue; y in red; z in green. Sampling 

period was 14 ms; window-size for moving average filter was 50 samples. 

To evaluate the potential of this approach in determining the range to the user, 

equation (6.1) was solved for the position at the “corner” of the path (i.e., closest to 
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y), as this allowed line-of-sight between all three fixed nodes and the user. The terms 

Pr and Pt represent the received and transmit power, Gt and Gr are transmit and 

receive antenna gains, all are in decibels, and γ is the unknown path loss exponent. 

 

 r t r tP -G -G -P 10γ

λ
R= (6.1)

4π10  

 

This was done by identifying the samples where the received power at y was at its 

maximum and assuming this was equivalent to the corner position. The received 

powers for all three fixed nodes were then used to solve for the unknown γ values, 

for the known distances to the corner of the path. The mean of the path loss exponent 

(γ) was then found for each link and used to estimate the position of the user, given 

the same received powers, using (6.1). Selected results are summarised in Table 6-2.  

TABLE 6-2  

SUMMARY OF CALCULATED PATH-LOSS EXPONENTS AND ESTIMATED POSITIONS 

(NOTE: NEGATIVE ERRORS INDICATE UNDER-ESTIMATES; POSITIVE ERRORS INDICATE 

OVER-ESTIMATES.) 

Parameter 
Nodes 

x y z 

Sample 1 - Path loss exponent (γ) 2.52 2.07 2.50 

Sample 2 - Path loss exponent (γ) 2.39 2.02 2.76 

Sample 3 - Path loss exponent (γ) 2.29 1.90 2.76 

Mean path loss exponent    for all six samples 2.44 2.01 2.65 

Parameter 
Distance (m) 

x y z 

Known separation / m 3.87  1.28  5.63 

Sample 1 - Estimated separation using    4.72 1.50 3.92 

Sample 2 - Estimated separation using    3.46 1.32 7.34 

Sample 3 - Estimated separation using    2.64 0.98 7.46 

Parameter 
Error (%) 

x y z 

Sample 1 22.1 17.7 -30.2 

Sample 2 -10.6 3.3 30.6 

Sample 3 -31.6 -23.6 32.6 
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It was observed that the error in estimated position varies between around 3% and 

60%, for this first experiment. The real position is always within the error bounds, 

however, sources of error include the antenna positions (in particular, the variation in 

gain due to off-bore-sight operation and the differences in height has not been 

accounted for), as well as fading due to multi-path scattering and body shadowing.  

Obviously, this must be examined more systematically and rigorously before any 

firm conclusions may be drawn. The effect of multi-path scattering from the 

environment, as well as shadowing from the body, must be taken explicitly into 

account. Separating these two effects will aid in the design of such systems. 

6.3.2.  Second Experiment using Commercial Wireless Modules TelosB 

Commercial wireless sensor nodes, the TelosB [96], were used. The nodes are 

based around a low-power microcontroller and an IEEE-802.15.4-compatible radio 

transceiver, the CC2420 [101]. The board module integrates a printed IFA (PIFA), 

but the design allows an alternative antenna to be connected externally by attaching 

an SMA connector. The device can be powered by two AA-batteries or via USB. The 

wireless module is shown in Fig. 6.7a, together with a simplified CST Microwave 

Studio model of the wireless sensor node (Fig. 6.7b). The 3D antenna radiation 

pattern at 2.4GHz is shown in Fig. 6.8. The patterns show a peak gain of 3.1 dBi at 

2.42 GHz (elevation plane) with significant variation in gain with respect to angle. 

The azimuthal plane presents a fragmented radiation pattern which may be due to the 

battery socket. 

          

 

Fig. 6.7 (a) The Telos B sensor board, with integrated printed IFA, battery-pack, USB connector, and 

temperature and humidity sensors [96]; (b) simplified CST model of the TelosB wireless sensor. 

(a)                                        (b)                         
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Fig. 6.8. Free-space radiation patterns from CST Microwave Studio: (a) Gθ plane and (b) Gφ plane. 

Simulated results give an initial overview of the radiation performance of the 

integrated antenna. These factors must be considered in the analysis and post-

processing of the recorded radio channels. 

A representation of the experimental area is shown in Fig. 6.9. The latter was 

defined in the Body-Centric Laboratory at QMUL. Blue circles denote wireless 

nodes used as RF position and tracking sensors; the yellow circle denotes the master 

wireless node, used to control the experiment and collect the data. The dashed black 

line denotes a temporary partition, used to make a square cross-sectional area.  

The nodes run custom programs written for the experiment, based around the 

TinyOS embedded operating system [96, 181]. Each fixed and mobile node listened 

to the transmissions from the other nodes and recorded the RSS value for that packet. 

When it was allocated a transmission slot, a given node broadcasted a custom packet 

containing the most recent RSSI values for all other nodes, together with the 

associated node ID. The master node (see Fig. 6.9) was connected to a PC and 

listened to all packets transmitted by the fixed and mobile nodes, allowing RSS data 

to be recorded in real time. The characteristics of the experimental setup are: 

 Fixed node position – 16 nodes wall mounted; 

 Body-worn devices – 4 wearable nodes;  

 Frequency channel – channel 4 in the IEEE 802.15.4 communication 

standard for 2.45 GHz; 

 Transmit power – 0 dBm (i.e., maximum transmit level); 

(a)                                              (b)  
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Fig. 6.9. Second experiment setup based on commercial wireless sensor nodes, TelosB. (a) 

Experimental arrangement: the blue circles denote the positions of the fixed wireless sensor nodes; the 

green circles denote the positions of the on-body nodes; (b) wireless sensor nodes on the test subject 

 Receiver sensitivity – -95 dBm (i.e., maximum sensitivity level); 

 Antenna type – integrated Printed IFA (i.e., PIFA); 

 Distance from the floor (fixed nodes) – 112 cm to the centre of the TelosB 

board; 

 Floor-to-ceiling height – 330.5 cm; 

 Length and width of the experimental area – L=300 cm; W=332 cm. 

The initial experiment involved the test subject standing in the centre of the 

monitored zone. Representative time-series plots of the recorded RSS are shown in 

Master 

Node 

(a) 

(b) 
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Fig. 6.10 where the effects of the human body are explicit. The LoS node 2 is 

essentially unaffected, but the obscured node 10 shows greater variation (i.e., ±5 dB 

from the average received signal) and lower mean received power. Off-body radio 

links (i.e., body-to-wall and wall-to-body channels) are measured with the aim to 

inspect the relative received signal and the effects of multipath on the 

communication channel to each sensor node. The mean path loss for each off-body 

link is shown in Fig. 6.11, for both transmit and receive scenarios, taking nodes 17, 

18 and 19 as the reference. The variation in mean path loss (see Fig. 6.11a and Fig. 

6.11b) is related to the separation between nodes, but also includes multipath effects 

and body shadowing. 

 

 

 

 

Fig. 6.10.Representative RSS time-series plots (a) node 1-to- node 2; (b) node 1-to-node 10 

(a) 

(b) 

Line-of-Sight (node 2; fixed) 

Non-Line-of-Sight (node 10; fixed) 
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Fig. 6.11.Mean Path Loss values for off-body links in transmit and receive modes. (a) Path loss from 

the human body, (b) path loss from the wall mounted wireless sensors. 

The mean path-loss values also show that wireless nodes located on-body have 

different radiation performance when compared to wall mounted sensor nodes (i.e., 

fixed nodes). This effect is more evident on the sensor nodes located in the back and 

the left hip of the test subject. However, the radio channel performance of the 

module located in front of the test subject presented a similar behaviour in both 

scenarios (i.e., transmit and receive modes). The results showed that the wave 

propagation, namely free space and surface waves, is heavily affected by the 

surrounding media (i.e. human body and wall surfaces). Additionally, the strong 
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multipath propagation mechanisms including diffraction, refraction, reflection and 

scattering, and the radiation properties of the integrated antenna, which present 

variation in gain with respect to angle, mitigate the performance of different WBAN 

radio channels. 

Although previous results highlighted the effects of the human presence in indoor 

environments, they only show vague information of the subject positioning. In order 

to have qualitative results, it is important to characterise and understand the 

behaviour of the radio propagation when the indoor section to be monitored is 

without human presence (empty scenario), so that variations of the received signal 

can be compared to populated environments. A statistical analysis of individual radio 

channels (when a given sensor node is in transmitting mode) can point out which 

other sensor node(s) are greatly affected by the human presence.  

The mean path loss and standard deviation for a receiving and a transmitting mode 

of node 1 is listed in Table 6-3 and Table 6-4. The tables include experimental data 

for both scenarios empty and occupied environments. Differences are observed on 

both operating modes (i.e. transmit and receive modes). The largest variations, for an 

empty scenario, are accounted for nodes 4, 8 and 15 with σ = 3.92, σ = 2.8 and σ = 

2.5, correspondingly. Significant differences are also accounted for when both 

scenarios are compared. For instance, in Table 6-3, where node 1 is programmed in 

receiving node, the transmitting nodes 9 and 15 have standard deviations of σ = 2.96 

and σ = 2.69, respectively; whereas in Table 6-4, where node 1 is programmed in 

transmitting node, the receiving nodes 4, 13 and 15 have the largest received signal 

variations with σ = 3, σ = 3.06 and σ = 3.92, respectively.  

However, the listed results also show some ambiguity on mean path loss (PL) 

values. For example: in Table 6-4 (column for empty room), node 3 has a PL=58.54 

and node 4 has a PL=56.54 dB; however, node 3 is closer in distance than node 4 to 

the transmitting node 1. Similarly, Table 6-3 (column for empty room) show that 

node 9 (PL=57.85 dB) has reduced power loss than node 10 (PL=60.02 dB) even 

though node 9 has longer distance than node 10 to the transmitting node 1. These 

observed variations are a consequence of the reflected EM waves, within the indoor 

test-room, which create constructive and destructive signals which arrive to the 

receiving node from various paths.  

Although Table 6-3 and Table 6-4 give an initial knowledge of the indoor radio 

propagation, the behaviour of other radio-links (other transmitting nodes) ought to 
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contribute additional information of the overall EM propagation. Path loss plots for 

an empty and occupied environment when nodes 3, 7, 11 and 15 are operating as 

transmitting nodes are shown in Fig. 6.12 and the received signal variation for each 

receiving node is depicted in Fig. 6.13.  

TABLE 6-3  

MEAN PATH LOSS AND STANDARD DEVIATION FOR NODE 1 WHEN IT IS OPERATING IN 

A RECEIVING MODE 

Transmitting 

Nodes 

Mean Path Loss (dB) 
Standard Deviation 

(σ) 

Occupied Empty 
Node 1  

(Receiving mode) 

2 42.22 40.85 0.97 

3 59.28 56.69 1.83 

4 57.83 56.13 1.21 

5 57.66 58.89 0.87 

6 56.57 55.93 0.46 

7 55.98 56.46 0.34 

8 53.47 51.67 1.27 

9 62.03 57.85 2.96 

10 57.91 60.02 1.49 

11 54.54 55.10 0.40 

12 56.13 56.30 0.12 

13 62.81 63.91 0.78 

14 65.51 63.09 1.71 

15 59.74 55.94 2.69 

16 48.17 49.14 0.69 

 

TABLE 6-4  

MEAN PATH LOSS AND STANDARD DEVIATION FOR NODE 1 WHEN IT IS OPERATING IN 

A TRANSMITTING MODE 

Receiving 

Nodes 

Mean Path Loss (dB) 
Standard Deviation 

(σ) 

Occupied Empty 
Node 1 

(Transmitting mode) 

2 42.26 40.44 1.28 

3 60.14 58.54 1.13 

4 52.29 56.54 3.00 

5 60.44 63.53 2.18 

6 56.46 55.78 0.48 

7 56.67 57.23 0.39 

8 49.51 52.80 2.33 

9 62.72 59.87 2.02 

10 60.02 64.08 2.87 

11 53.07 53.54 0.33 

12 58.38 56.70 1.19 

13 63.09 67.41 3.06 

14 63.72 61.80 1.36 

15 61.95 56.40 3.92 

16 51.76 51.07 0.49 
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Fig. 6.12.Path loss comparison plots for an empty and occupied environment while sensor nodes 3, 7, 

11 and 15 are transmitting. 

 

 
Fig. 6.13.Standard deviation for transmitting nodes 3, 7 11 and 15 (the remaining nodes are operating 

as receivers). 
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The graphs show low received signal variation for receiving nodes 1-7 (σ ≪ 3) and 

high variations for nodes 10, 11 and 14 with σ = 9.87, σ =14 and σ=16.2, 

respectively. These results, together with previous suggest that an obstructing object, 

in this case the presence of a human subject, is expected within the local area. 

A more descriptive distribution of the path loss alongside the experimental area 

can be found by combining the Friss equation (Chapter 2) with indoor radio 

propagation models. Therefore, distances within the vicinity can be estimated using 

the prior knowledge of the received signal alongside the perimeter (i.e., trilateration 

concept using RSS values). Trilateration requires the coordinates of at least three 

reference nodes (xi, yi) and the distances between pre-positioned reference nodes 

(neighbour nodes). The distance between measured and estimated distances is 

defined by (6.2) where di is the distance between sensor node i and the target. 

Depending on the number of nodes equation (6.2) can be expanded to (6.3) where the 

term α represents the weight applied to each fi. The target’s position (x0, y0) is 

estimated using minimum mean square error (MSE) of a system of fi equations (6.3). 

   

 

2 2

i 0 0 i i 0 i 0

N
22

0 0 i i

i=1

f (x ,y )=d - x -x + y -y (6.2)

F(x ,y )= α f (6.3)
 

Moreover, the system of equations can be linearized so that a matrix solution can 

together with path loss and empirical indoor propagation models (e.g., path loss 

exponents derived from individual sensors) can be used to estimate the relative 

position of an object. In order to put in practice the concept, let’s consider node 1 as: 

 the reference point defined at position x = 0 and y = 0, and 

 the unique wireless sensor that is the source of radio signals. 

A matrix map of the different distances between node 1 and the neighbour nodes is 

shown in Fig. 6.14 (all the distances are represented in centimetres). The highlighted 

region (Fig. 6.14b and Fig. 6.14c) is the area that would require distance 

interpolation which can easily be found using geometry based calculations based on 

the outer distance values. The interpolated distance matrix (see Fig. 7.14c) yields 

estimated distance positions which could be described as empirical test points in the 

overall RF positioning system.  
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Fig. 6.14.Representation of (a) monitoring area layout; (b) distance matrix between neighbour nodes 

in cm and (c) interpolated distances. 

Initial calculations takes initial path loss exponent (γ) and reference path loss 

(PL(d0)dB) from indoor radio propagation literature [182-184] which yields γ = 3 and 

PL(d0)dB = 40. The estimated path loss within the highlighted area can be pre-

computed using as a reference the mean path loss values listed in Table 6-4.  

The estimated path loss values are depicted in Fig. 6.15 and a colour map plot, 

shown in Fig. 6.16, is computed for an empty and occupied environment. The initial 

results show the difference between both scenarios. It can be seen that an occupied 

scenario is perturbed by the human body presence (subject standing in the centre of 

the monitoring area) which not only shadows some of the communications links, but 

also creates additional multipath signals that mitigates some of the radio channels.  

 

63.53 55.78 57.23 52.80 59.87 

56.54 60.74 62.67 64.94 64.08 

58.54 56.22 59.64 62.96 53.54 

40.44 50.64 56.92 61.46 56.70 

0.00 51.07 56.40 61.80 67.41 

 
60.44 56.46 56.67 49.51 62.72 

52.29 64.04 61.17 60.40 60.02 

60.14 58.42 59.64 62.11 53.07 

42.26 52.84 56.92 63.76 58.38 

0.00 51.76 61.95 63.72 63.09 

 

Fig. 6.15.Estimated path loss values acquired from pre-calculated distances (a) empty room and (b) 

occupied room. 

(a) 

(b) 
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Fig. 6.16.Colour map contour plots of estimated path loss values. (a) empty indoor environment; (b) a 

test subject standing in the centre of the monitoring area. 

In our study, γ and PL(d0)dB were assumed from indoor radio propagation 

literature. Nonetheless, they can be derived from our own empirical data considering 

a reference distance of 50 cm (d0 = 50 cm). Recorded data and least square (LS) 

fitting curves are shown in Fig. 6.17 and a summary of the path loss exponent and 

the reference path loss for both scenarios is described in Table 6-5. 

 

  

Fig. 6.17.Measured Path values for an empty and occupied room using LS linear fitting 

1 2 3 4 5 6 7 8 9 10

35

40

45

50

55

60

65

70

75

80

 Empty Room

 Occupied Room

P
at

h
 L

o
ss

 (
d

B
)

10log(d/d
0
)

         (a)          (b)  



RF Positioning using Body-Centric Low-Power Wireless Sensors  143 

 

 

TABLE 6-5  

STATISTICAL PARAMETERS OF MEASURED PATH LOSS AT 2.42 GHZ FOR AN INDOOR 

ENVIRONMENT  

Scenario PL(d0) dB γ 

Empty Room 45.40 1.67 

Occupied Room 48.39 1.20 

 

Results show that an occupied environment has a better radio communication 

performance based on path loss exponent (γ = 1.20); on the other hand, an empty 

indoor environment presents lower reference path loss (PL(d0)dB = 45.40 dB) than a 

populated scenario (PL(d0)dB = 48.39 dB).  

The obtained radio propagation parameters are used to estimate path loss 

distributions within the monitoring area (see Fig. 6.18). Updated colour map plots are 

illustrated in Fig. 6.19. The latter shows highest changes in the areas nearest the Tx. 

and Rx. (nodes 3-5) and next highest changes in the line between Tx. and Rx. (nodes 

8-9). The RF attenuation plots not only show the path loss variation, but also the use 

of the radio channel measurements to infer the presence and position of the test 

subject. 

 

63.53 55.78 57.23 52.80 59.87 

56.54 56.94 58.02 59.28 64.08 

58.54 54.43 56.33 58.18 53.54 

40.44 51.32 54.82 57.35 56.70 

0.00 51.07 56.40 61.80 67.41 

 
 

60.44 56.46 56.67 49.51 62.72 

52.29 59.68 62.46 58.37 60.02 

60.14 59.78 62.25 59.57 53.07 

42.26 61.64 55.16 56.98 58.38 

0.00 51.76 61.95 63.72 63.09 

 

Fig. 6.18.Updated path loss matrix using information from the fitted path loss curves (a) empty room; 

(b) occupied indoor environment.  

 

(a) 
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Fig. 6.19.Colour map contour for calculated path loss values. (a) empty indoor environment; (b) a test 

subject in the centre of the monitoring area. 

6.4.  Discussion and Conclusion 

This chapter discussed the need for, and opportunities to provide, greater 

positioning information. Some of the available technologies for obtaining this 

information in an indoor environment have been reviewed, before a proposed 

measurement campaign was described. This is designed to assess the performance of 

generic low-power WBAN sensors as an RF positioning system, in order to gain an 

understanding as to the potential for such devices (expected to become more 

prevalent in coming years for various reasons, including the changing health needs of 

the population). Results from two different experiments were presented, indicating 

that indoor positioning using RSS-based and trilateration is viable, however various 

factors require further study.  

 

         (a)          (b)  
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Chapter  7 

Conclusions and Future Work 

7.1.  Discussion and Conclusion 

The thesis presented significant advancements in the characterisation and 

modelling of WBAN propagation channels (motionless and dynamic scenarios). In 

particular, the importance of developing flexible and more realistic modelling tools 

was highlighted, to be used in conjunction with simulations and measurements using 

standard RF instrumentation, for a comprehensive understanding of the propagation 

mechanisms of body area communications.  

From the empirical radio models of different on-body channels communicating at 

2.45 GHz, it was concluded that utilising wireless sensors nodes not only diminished 

the effect of coaxial cables (scattering or radiation), but also provided a more 

realistic response of the radio link channel. The limitations of the VNA approach are 

evident when comparing the results shown in Figs. 5.6 and 5.11 (also Tables XV and 
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XVIII), where the combination of cable effect and measurement bandwidth dominate 

over the physical proximity of a realistic system.  

The VNA measurements usually imply a path loss around 3 dB lower than that 

using the wireless sensor node approach, with equivalent differences in other 

measures. The path loss exponent is always found to be greater using the VNA 

method, often by a factor of 2. Hence, the value of the wireless sensor method can be 

seen in the more realistic data observed. Thus, the two techniques may be seen as 

complementary: the VNA approach has the benefits of greater speed and dynamic 

range, whilst the utilisation of sensor nodes allows a more detailed investigation of 

real-world scenarios. Moreover, the performance of the antenna (i.e., stand-alone 

antenna) differs when it is integrated in compact wireless modules 

Mean path loss values for a motionless test subject are dependent on the curvature 

of the human torso, which is subject-specific (and, for instance, can vary 

considerably between fat and thin subjects); this impedes LOS signals (strong 

signals) and, hence, the path-loss characteristics exhibit dominant shadowing effects 

(weak signal). 

During the measurement campaign of dynamic environments, the use of coaxial 

cables and VNA introduced a high degree of discomfort not only restricting the 

normal activity, but also the quality of the measuring procedure. On-body 

propagation models have been characterised using wireless sensor nodes which 

prove to be more flexible and easy to wear.  

The comparison of static and dynamic environments reported variations of ±15 dB 

from the average received signal. Moreover, dynamic scenarios were best fit by a 

lognormal distribution (i.e., the variation in the coefficients is relatively small), 

which has been commonly applied to static communications for on-body propagation 

links. 

The results also showed the potential use of on-body radio propagation models 

between low-power wireless sensor as a non-invasive technology to identify 

physiological features, such as gait pattern, and thoracic movement which embeds 

breathing process and heartbeat.  

 Following the concept of healthcare applications, a low-power RSS-based for 

indoor location system is introduced for tele-monitoring and tele-diagnostics 

purposes. Initial measurements suggest that directive antennas are desirable, because 

of large changes in the received signal amplitude (see Fig. 7.6 and Table XXVI)  
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Furthermore, the miniaturization of wearable systems increases the fluctuations of 

individual radio links, due to small and compact antenna designs. The new trend of 

wireless sensors with channel-sensing capabilities and radio performance algorithms 

are promising solutions; thus, channel and system performance can be optimized by 

dynamic scans between different channels linking different on-body nodes. 

 

7.2.  Key Contributions 

The major contributions in this thesis are described below: 

● An alternative measurement technique for on-body radio channels is 

introduced, utilising wireless sensors nodes. The latter not only diminished 

the effect of coaxial cables (scattering or radiation), but also provided a 

more realistic response of the radio link channel.  

 

● A comprehensive, in-depth examination of the physical layer behaviour of 

low-power IEEE 802.15.4-based wireless sensors operating at the 2.45 

GHz ISM band. The study uses packet-based received signal strength 

(RSS) figure-of-merit to determine propagation characteristics on all the 

channels of the IEEE 802.15.4 standard (i.e., 16 channels at the 2.45 GHz 

band). It also makes observations on the temporal trends of received signal, 

channel effects (i.e., fading and shadowing), and performance of IEEE 

802.15.4 links. 

 

● It is shown that the response at individual carrier frequencies is dependent 

not only on the initial antenna response, as determined by the on-body 

measurement in isolation, or the on-body location, but also by the channel 

selected (i.e., one of the 16 channels), and hence system performance is 

influenced. 

 

● Empirical and statistical models of narrowband (i.e., 2.40-2.48 GHz) on-

body radio communication channels are characterised for motionless and 

dynamic environments using custom-build wireless sensors. In the case of 
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dynamic scenarios, three different sport activities, jogging, rowing and 

cycling were modelled using statistical distributions.  

 

● Identification of biomechanical features from dynamic on-body radio 

channels. Frequency domain plots, spectrograms and multi-resolution 

analysis of the received signal acquired in the time domain embed gait 

pattern and thoracic movement produced by the human motion, the 

breathing process and the heart-beat.  

 

● Introduction of a low-power RSS-based indoor location system using IEEE 

802.15.4 for tele-monitoring and tele-diagnostic purposes.  Firstly, 

attenuation factors (due to human presence) and indoor radio propagation 

models from multiple sensors estimate the relative position of an object. 

Secondly, it addresses the effects of multipath on different receivers and 

their implications on the positioning system. 

7.3.  Future Work 

The work presented in this thesis focused on the use of wireless sensors, operating 

on the IEEE 802.15.4 communication standard, for the measurement and 

characterisation of different WBAN channels (i.e., motion-less, dynamic, free-space, 

indoor, RF indoor positioning). There is still a lot of scope for further work, in terms 

of the research carried out and the limitations of the work presented. The following 

research aspects are described as a potential and natural progression to previous 

work: 

● Optimization and miniaturization of custom-built wireless sensors for the 

connection of different wearable antennas, together with the design of 

compact and low-profile antennas; thus, the best body-worn antenna can be 

identified. Previous studies have demonstrated that body-worn antennas 

suffer of reduced efficiency, impedance mismatch, and frequency detuning. 

The nature of these drawbacks depends on the frequency of operation, the 

polarisation, and the physical constraints of the antenna itself. A 

parametrical and statistical analysis of these effects can help on the 

development of wearable sensor nodes. 
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● Extending the narrowband (i.e. 2.45 GHz ISM band) on-body propagation 

measurements to cover various common frequency bands (e.g., UWB) 

where the sensor nodes can be adapted to implement the concept of 

diversity antennas.  

 

● Design of antennas that radiate tangentially to the human skin surface, 

consequently strong surface waves propagate along the body (i.e., confining 

the radiated power in proximity of the body surface) which not only reduce 

the external interference (S/N ratio), but also improve the detection of 

thoracic movements (i.e., breathing process and heartbeat). The same 

concept can be extended to higher frequencies so the sensitivity is 

improved (e.g., 5.8 GHz, 10 GHz).  

 

● Design of wireless sensors using textile and fabric antennas, which exploits 

the potential of conductive and insulating materials; thus, the whole design 

is integrated in everyday clothing. Different combinations of e-textiles, 

substrate/conductor, etc., need to be investigated for providing optimised 

antennas with constant radiation characteristics. 

 

● The accuracy of the low-power RF positioning can be enhanced by 

implementing the radio channel models of the remaining nodes; therefore, 

updated path loss distributions and indoor propagation models will yield a 

much better localization result. Moreover, the post-processing of the data 

can be done directly in each sensor node producing a self-organizing and 

self-calibrating radio positioning system.  

 

● The localization technique can also be extended to dynamic scenarios 

where the test subjects would be moving continuously. To enhance the 

localization technique, fingerprinting models using MSE weights can be 

implemented and post-processed in each microcontroller of each sensor 

node. The results are expected to have significant improvement when 

compared to previous work.  
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Appendix A 

Prototyping a Wireless Sensor Node 

 

A.1. The microstrip patch antenna 

This type of antenna is mainly affected by two factors: design topology and 

substrate material. In order to assess the influence of substrate layers on the antenna 

design, a microstrip patch is designed, printed onto a single substrate layer. The 

antenna topology for 2.45 GHz ISM band is shown in Fig. A.1. 

 

Fig. A.1 Microstrip Patch Antenna on an FR-4 substrate 

The main design parameters to be considered for a successful prototype are:  

 width (W) of the radiator,  

 length (L) of the radiator,  

 thickness (h) of the substrate, and 

 the relative permittivity (εr) of the substrate.  

Patch radiator 
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The feed of the current design is matched to a 50 Ω transmission line of width ‘w’. 

The radiator width (W) and the effective permittivity (εeff) are calculated using (A.1) 

and (A.2), respectively. 
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1 2 c 2
W=  =

+
A.1

ε ε1 2f +12f μ ε
 

 r r
reff

ε ε
ε A.

+ 1 - 1 1 W=  +      only when     > 1         
h2 2 h

1+12
W

2

 
 
 
 
 
 

 

Additionally, if the design considers the effects of fringing fields on the microstrip 

patch, the effective length of the antenna is calculated using (A.3) and (A.4). The 

ratio of change of ‘W/h’, in (A.4), causes alterations on the calculated value of the 

effective permittivity 

 
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reff
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h
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W
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 
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 
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 
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Therefore, the previous analysis only defines the effective permittivity for a 

microstrip printed on a single substrate layer. If the antenna is on top of a multi-layer 

substrate for example, a stacked patch or a loaded patch antenna, equation (A.4) is no 

longer valid and does not represent a correct approximation for the effective 

permittivity. 
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A.2. CC2420 from Texas Instruments 

 
Fig. A.2. CC2420 core transceiver pin out [101]. 

A.3. Microcontroller board design and manufactured module 

 

 

Fig.A.3.Design and implementation of the Microcontroller module that houses a low power Microchip 

component, the PIC18LF2620. 
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A.4. Radio transceiver (CC2420) board design and manufactured 

module. 

 

(a) 

 

 
(b) 

Fig.A.4.Design and implementation of the RF radio transceiver boar module that houses a Texas 

Instruments transceiver, the CC2420. (a) design implemented using Ultiboard software from National 

Instruments; (b) manufactured and assembled module 



Appendix A 164 

 

 

A.5. Simulation models for the impedance matching network  

 

(a) 

 

(b) 

Fig.A.5. (a) Implemented design using ideal transmission lines (losless) modelled and simulated in 

Advanced Design System (ADS) software from Agilent; (b)implemented design using transmission 

lines model between passive components. 
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Appendix B 

The IEEE 802.15.4 MAC Frame 

Format 

B.1. The IEEE 802.15.4 MAC Frame Format  

 

Fig. B.1.Schematic view of the IEEE 802.15.4 Frame Format. 

 
Fig. B.2.Format of the Frame Control Field (FCF). 
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B.2 Steps to Configure CC2420 in transmitting mode 

 

Fig.B.3.Sequential steps for a successful configuration of the CC2420 in transmitting mode. 

 

B.3 Steps to Configure CC2420 in receiving mode 

 

Fig.B.4.Sequential steps for a successful configuration of the CC2420 in receiving mode.
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Appendix C 

Short-Time Fourier Transform for 

Non-Stationary Signals 

In chapter 6, FFT methods were used to describe the behaviour of the signal in the 

spectral domain; nonetheless, the truncation limits of the FFT integral and the 

integration over the whole time domain highlight the inherent drawback of the 

algorithm: the absence of the time information (local information).  

Although the FFT algorithm gives an initial representation of the frequency 

domain, it remains unsuitable for non-stationary signals, since it is difficult to 

discriminate frequencies that occur at different times. A qualitative representation of 

the spectrum response is acquired when the FFT is screened through a short-time 

window where the signal’s behaviour is assumed to be stationary or quasi-stationary. 

The screening of the FFT is accomplished by a Short-Time Fourier Transform 

(STFT), which for a continuous time-signal, x(t), with a real window, w(t)is defined 

by (C.1): 

   
+

-jωt

x

-

τ τ-t
1

STFT (t,ω)= x w e dτ (C.1)
2π






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The terms ‘t’ and ‘ω’ in (C.1) represent the translation and modulation parameters. 

The observation window, w(t), allows the localization of the spectrum in time, but it 

also smears the spectrum in frequency. The discretization of a continuous signal over 

a period of time is given by the sampling theorem (C.2): 

 
N-1

s

n

ˆx(t) x(t)= x(n)δ(t-nτ ) C.2 
 

 

where τs is the sampling period. Therefore, the discrete STFT is defined by (C.3) 

 

   
N-1

-j2πmk N

i i

m=0

(n,k) m-n mSTFT = x w e (C.3)
 

where the discrete spectrogram window is denoted as wi(n) and the discrete time 

signal as x(n). The implementation of STFT facilitates the analysis of variations of 

the signal spectrum as a function of time which are typically represented by time-

frequency plots called spectrograms  which are denoted as Cohen’s class 

distributions [185-187].

 
The time-varying spectral representation shows an intensity plot of the STFT’s 

magnitude. The resolution depends on the length of the window, a short time window 

provides good time resolution but poor frequency resolution, and a long time window 

provides good frequency resolution but poor time resolution; thus, the best 

representation depends on a trade-off of both.  

The time-frequency distributions for the radio channel of different sport activities 

from Chapter 6 are shown in Fig. C.1. The spectrogram of a recorded ECG when the 

test subject was jogging is depicted in Fig. C.1a. The plot shows high intensities 

(resonant frequencies) around 3.3 s, 6.1 s and 7.1 s and weak energy content at other 

times (e.g., 0.5 s, 2s, 5 s). These show the effects of the human motion; however, the 

combination of weak and strong energy contours over the 8 s window still identifies 

heart beats.  

In the case of the radio channel data recorded by custom-built wireless sensors, 

jogging and cycling spectrograms (see Fig. C.1b and Fig. C.1d, respectively) have 
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Fig. C.1. Spectrogram results while exercising at a constant speed of 5 km/h: (a) ECG recording, (b) 

jogging, (c) rowing and (d) cycling using a window size of (a) 256  and (b)-(d) 128  

(a) 

 

(b) 

 

(c) 

 

(d) 
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strong energy contours in the lowest frequency band with relative continuous 

harmonic change within 1–5 Hz. On the contrary, the recorded radio channel of a 

rowing scenario, shown in Fig. C.1c), indicates large amplitude variations, which are 

evenly distributed through both low and high frequencies (large frequency variation 

and time smear).  

The spectrogram plots of ECG and wireless sensor recordings for a jogging 

scenario have shown how the energy amplitude of the harmonics gradually decays at 

high frequencies. In a similar way, the spectrogram plot of a jogging scenario shows 

that most of the energy content is evenly distributed below 5 Hz, whereas rowing and 

cycling scenarios have complex energy contour distributions due to the large 

frequency variations.  

Spectrogram plots have shown the non-stationary behaviour of the recorded 

signals, which are accounted by the human motion including trunk and limb 

movement, breathing and muscle contractions of the heart. Although the time-

frequency plots of wireless sensor data identify peaks of energy content at different 

times, it is still complex to differentiate heart movement, thus it is necessary to 

employ other non-linear DSP methods. Time-frequency literature describes different 

digital signal processing (DSP) techniques that characterise and classify non-

stationary signals, such as the independent component analysis (ICA), the reduced 

interference distribution (RID), exponential distributions (ED) and wavelet-

transforms (WT).  
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Appendix D 

Wavelet Transform 

 

This section use wavelet-transform (WT) for de-noising purposes on received 

signals acquired by custom-built wireless sensors for different sports applications. 

The method uses variable frequency and time resolutions to different components, 

also known as multi-resolution analysis, thus reducing the interference factors (de-

noising). The analysis of the signal at multiple scales (variable time-frequency 

resolution) allows not only signal de-noising, but also pattern recognition. The multi-

resolution analysis relies on being able to dilate (squeeze or expand) and translate the 

wavelet function derived from a basis function called the mother wavelet 

mathematically represented by (D.1): 

 

 a,b (t)
1 t-b

Ψ = Ψ D.1
aa

 
 
   

 

The terms ‘a’ and ‘b’ represent the scale and translation parameters, respectively. 

In the case of a discrete time-sampled signal, the mother wavelet is represented by 

(D.2). The values of ‘a’ and ‘b’ are expressed by      and        for (   )  

   .  
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The discrete wavelet-transform (DWT) of a time-sampled signal x(n) is separated 

into a pair of transforms: the coarse coefficients or scaling coefficients which are 

related to low-frequencies and the detail coefficients, also known as wavelet 

coefficients for the high-frequencies. These terms are defined by (D.3) and (D.4), 

respectively. The term ‘N’ represents the length of the sample data, j is the level of 

the detail and approximation coefficients (j ≥ jo), ‘k’ is the scale index and       

      are the set of orthogonal functions. 

       

       

o oj ,k

n

ψ j,k

n

j ,k n n

j,k n n

1
W = x D.3

N

1
W = x ψ D.4

N

 


 

 

This section evaluates a one-dimensional DWT for de-noising and detection of any 

additional feature embedded in the radio channel of custom-built wireless sensors, 

specifically for sports applications. The process decomposes the signal into its 

orthogonal functions(          ). The detail coefficients are compared against a 

fixed-form threshold, Tx, denoted by (C.5), which mitigates noise coefficients. The 

quantification analysis uses a hard-threshold method, where coefficients below ‘Tx‘ 

are described as noise and they are set to zero (D.6). 

 

   

 
   

 
 

ψ ψ

ψ

ψ

j,k j,k

j,k

j,k

x

x

x

T =σ 2 log N D.5

W if W  > T
W = D.6

0 if W T




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The de-noising process is applied to each recorded activity. The results of the 

numerical DSP method are shown in Fig. D.1. It can be observed that each 

synthesized signal contains a series of energy peaks over the entire time window 

analysis. It is conjectured that the short peak-trains characterise the mechanical 

activity of the heart; even though, the beat-to-beat periods are consistent on small 
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time-frames (highlighted window size of 4 s, resulting in approximately 7 

heartbeats).  

The discontinuities on the retrieved signal are highly dependent on the 

quantification threshold. Hard-thresholding yields sharp transitions on signal levels, 

thus creating gaps in the reconstructed signal. Moreover, the human motion creates 

friction and, in many cases, a discontinuous attachment of the wireless sensor 

module from the human body.  

 

Fig. D.1.De-noising of the received signal using a one dimensional wavelet function for a) jogging, b) 

rowing, c) cycling. 

 

 

 


