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Samenvatting

Draadloze persoonsgerichte communicatie wordt gedefinieerd als communicatie

tussen kleine apparaten en sensoren die zich in, op of rond het menselijk lichaam

bevinden. Dit type communicatie geeft aanleiding tot een groot aantal toepassin-

gen in, onder andere, de gezondheidszorg, sport, computerspellen, veiligheid en

beveiliging. Voorbeelden hiervan zijn de communicatie van foto’s of videobeelden,

genomen via een endoscopie pil in de darm van een patient, naar een monitor die

zich naast het ziekenbed bevindt. Verder kan ook communicatie van biometrische-

en omgevingsgegevens tussen reddingswerkers onderling, of tussen reddingswer-

kers en een basisstation, op die manier gerealiseerd worden. Bij de ontwikkeling

van deze persoonsgerichte communicatiesystemen dienen de specifieke, fysische

eigenschappen van het draadloze kanaal in rekening te worden gebracht. Sig-

nalen die draadloze communicatie opzetten tussen het menselijk lichaam en de

buitenwereld ondervinden een grote verzwakking wanneer de elektromagnetische

golven zich voortplanten door spieren, botten, vezels en bloed. Bovendien is het

maximaal zendvermogen in het menselijk lichaam beperkt omwille van gezond-

heidsredenen. Daarom is het essentieel om belangrijke ontwerpparameters, zo-

als frequentie, bandbreedte en zendvermogen, zorgvuldig te kiezen. Bovendien

beïnvloeden deze parameters ook de maximale capaciteit van de draadloze links.

Hetzelfde geldt voor communicatie tussen twee personen onderling. De kwaliteit

van de verbinding is hier sterk afhankelijk van de variërende posities, oriëntatie,

afstand en lichaamshouding, welke multipad fading en schaduweffecten, ten ge-

volge van het menselijk lichaam, introduceren. Natuurlijk is er niet enkel nood

aan kleine, draagbare toestellen die persoonsgerelateerde gegevens verzamelen,

maar ook aan compacte antennes die deze persoonlijke data verzenden en ont-

vangen. Dit impliceert dat ook de antenne-topologie, de antenneposities, en het

aantal antennes zorgvuldig moeten worden gekozen om de betrouwbaarheid van

persoonsgerichte communicatie aan een hoog datadebiet te garanderen. Bij voor-

keur wordt gebruik gemaakt van lichte, flexibele textielantennas waarop eventueel

actieve elektronica kan worden geïntegreerd, om zo een compact systeem te reali-

seren. Het verzenden en ontvangen van gevoelige, persoonlijke informatie gebeurt

best op een versleutelde manier, zodat de privacy kan bewaard worden. Aangezien

er steeds meer gevoelige gebruikersinformatie wordt verzameld, door de groei van

het aantal draagbare apparaten, is een goede beveiliging van draadloze links tus-

sen verschillende personen essentieel. Daarom focussen we in dit werk niet enkel

op betrouwbare persoonsgerichte communicatie aan hoog datadebiet maar ook op

de beveiliging van deze draadloze communicatiekanalen.



x Samenvatting

In het eerste deel van dit proefschrift concentreren we ons op communicatie tus-

sen een draadloze endoscopie pil en een draagbaar multi-antennesysteem, geschikt

voor integratie in een jas die wordt gedragen door de patiënt. De eerder besproken

ontwerpparameters worden zorgvuldig gekozen of berekend om een betrouwbare

link aan hoog datadebiet te garanderen, vanaf iedere locatie in de darm van de

patiënt. Op die manier kunnen foto’s of video’s worden doorgestuurd naar een

specialist, ter ondersteuning van een grondige analyse van de gastro-intestinale

gezondheid van de patiënt. Het menselijk lichaam wordt nagebootst door middel

van een speciaal ontworpen bad, gevuld met een vloeistof die het menselijk spier-

weefsel simuleert. Deze experimentele configuratie komt overeen met het slechtst

mogelijke scenario aangezien de samenstelling van het spierweefsel de grootste

elektromagnetische verzwakking veroorzaakt. Om antennediversiteit te realiseren

worden acht textielantennes aan het bad bevestigd. Deze ontvangen elk afzon-

derlijk de signalen, afkomstig van een kleine dipoolantenne in het bad. Daarna

worden de ontvangen antennesignalen gecombineerd, op een constructieve ma-

nier, wat tot een hogere totale signaalsterkte leidt. Vervolgens wordt het minimaal

aantal ontvangsantennes bepaald welke samen een voldoende hoge signaalsterkte

garanderen om een draadloze videoverbinding te kunnen opzetten van een endo-

scopie capsule naar de monitor.

Persoongerichte communicatie tussen bewegende personen wordt uitgebreid be-

sproken in het tweede deel van dit werk. Twee bewegende brandweermannen,

uitgerust met meerdere textielantennes geïntegreerd in hun brandweerjas, boot-

sen een realistische interventie na in een kantoorgebouw. Tijdens dergelijke in-

terventie is er één brandweerman die, direct na het betreden van het gebouw,

de kantoren verkent op zoek naar eventuele slachtoffers terwijl de andere brand-

weerman simultaan de gang doorzoekt. Typisch aan dit soort interventies is dat

beide brandweermannen gedurende de volledige reddingsactie in elkaars buurt

blijven. Gedurende deze reddingsoperaties is de veiligheid van de brandweerman-

nen prioritair. Daarom streven we naar betrouwbare breedbandige persoonsge-

richte communicatie aan hoog datadebiet. Om het datadebiet op te drijven werden

de brandweermannen uitgerust met meerdere zend-en ontvangstantennes, welke

samen een Multiple Input Multiple Output (MIMO) antennesysteem vormen. Op

die manier kunnen meedere onafhankelijke datastromen simultaan, en zonder in-

terferentie, worden verzonden. Deze techniek, bekend als spatiale multiplexing,

verhoogt het totaal aantal bits dat per seconde kan worden doorgestuurd. Verder

wordt het breedbandig frequentieselectief kanaal opgesplitst in meerdere vlakke

deelbanden, wat de kans op Intersymbool Interferentie (ISI) drastisch verlaagt. Dit

impliceert dat meedere, onafhankelijke datastromen trager kunnen worden door-

gestuurd over de verschillende deelbanden zonder dat opeenvolgende symbolen

met elkaar interfereren. Aangezien er meerdere deelbanden beschikbaar zijn, zal

het totale datadebiet vergroten door het implementeren van deze methode, ge-

naamd Orthognal Frequency Division Multiplexing (OFDM). In het tweede deel

van dit werk, met name in de Hoofdstukken 4 tot en met 7, beschouwen we dus

MIMO-OFDM communicatiekanalen tussen twee bewegende brandweermannen.
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In eerste instantie onderzoekt Hoofdstuk 4 of de bestaande Long Term Evolution

(LTE) en, bij uitbreiding, de LTE-Device to Device (LTE-D2D) standaarden, kunnen

gebruikt worden in breedbandige lichaamsgecentraliseerde netwerken die focu-

sen op publieke veiligheid, een toepassing waarvoor ze oorspronkelijk niet wer-

den ontwikkeld. Hoofdstuk 5 analyseert of de capaciteit van breedbandige li-

chaamsgecentraliseerde MIMO-OFDM communicatiekanalen tussen twee brand-

weermannen voldoende hoog is om, naast biometrische- en omgevingsgevens, ook

camerabeelden te verzenden. Hierbij wordt een vergelijking gemaakt tussen Sin-

gle Input Single Output (SISO)-, Single Input Multiple Output (SIMO)-, Multiple

Input Single Output (MISO)- en MIMO-OFDM kanalen, waarbij maximaal twee

zend-en ontvangsantennes worden beschouwd. Naast een vergelijking tussen een

statisch en dynamisch meetscenario worden twee technieken besproken die de to-

tale MIMO-OFDM capaciteit verder kunnen verhogen. De eerste techniek verdeelt

het beschikbaar zendvermogen per subcarrier over beide MIMO-OFDM kanalen.

Dit impliceert dat, per subcarrier, het sterkste MIMO-OFDM kanaal meer vermo-

gen toegekend krijgt terwijl het zwakkere MIMO-OFDM kanaal vermogen inlevert.

Het totaal zendvermogen per OFDM subcarrier, berekend als de som van de ver-

mogens in beide MIMO-OFDM kanalen, blijft echter constant. De tweede tech-

niek verdeelt het totaal beschikbaar zendvermogen dan weer terzelfdertijd opti-

maal over beide MIMO-OFDM kanalen en over alle deelbanden. Dit impliceert

dat de sterke deelbanden van het sterkste MIMO-OFDM kanaal het meeste vermo-

gen toegekend krijgen. Hoofdstuk 6 beschijft een derde techniek om de MIMO-

OFDM capaciteit te verhogen. De modulatie per subcarrier kan gewijzigd worden

naar gelang de ontvangen signaalsterkte. Indien de signaalsterkte groot is, kan de

modulatie-orde worden verhoogd terwijl het aantal fout ontvangen bits beneden

een vooropgestelde waarde blijft. Een grote modulatie-orde per subcarrier im-

pliceert dat meer bits/symbolen worden doorgestuurd in die bepaalde deelband,

waardoor de totale MIMO-OFDM capaciteit verhoogt. Verder beschrijft Hoofdstuk

7 een nieuw ontworpen antennerooster, bestaande uit vier antenne-elementen, dat

spatiale- en polarisatiediversiteit combineert. Om de werking van het rooster te

valideren werd een 1×4 SIMO verbinding opgezet tussen twee bewegende brand-

weermannen, waarbij één brandweerman een enkelvoudige textilelantenne droeg

terwijl de antennerooster werd geïintegreerd in de rugsectie van de jas van een

tweede brandweerman. Het voordeel van dit nieuwe kruisrooster is tweevoudig:

de betrouwbaarheid van de MIMO-OFDM communicatielink verhoogt in combina-

tie met een verhoogd datadebiet, wanneer adaptieve subcarrier modulatie wordt

geïmplementeerd.

Door de verdere ontwikkeling van draagbare apparaten en sensoren, die op het

lichaam kunnen worden geplaatst, kunnen steeds meer mensen verbonden wor-

den met het internet en op die manier persoonlijke gegevens communiceren met

gewenste ontvangers. Naast het stijgend gemak en comfort voor de mensen zelf,

brengen deze nieuwe draadloze persoonsgerichte netwerken ook de noodzaak van

sterke encryptie-algoritmes met zich mee. Niemand wil namelijk dat deze per-

soonlijke gegevens onderschept worden tijdens de draadloze overdracht en op die
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manier in handen komen van ongewenste personen of openbaar worden gemaakt.

Eveneens mogen deze beveiligingsalgoritmes niet veel energie verbruiken om de

batterijgevoede draagbare apparaten een zo groot mogelijke autonomie te bezor-

gen. In plaats van bestaande batterijverslindende technieken aan de hand van

Pseudo-Noise sequenties kan het unieke, reciproke communicatiekanaal tussen

twee legitieme personen, Alice en Bob, benut worden om gezamenlijke willekeur

tussen beide te genereren. Als Alice een pakket stuurt naar Bob en Bob op zijn

beurt een pakket terugstuurt naar Alice, binnen de coherentietijd van het draad-

loze kanaal, dan zal de ontvangen signaalsterkte aan beide zijden ongeveer gelijk

zijn. Stel nu dat een indringer, Eve, het communicatiekanaal afluistert en dat zij

op haar beurt de ontvangen signaalsterktes berekent van de door haar ontvangen

pakketten, afkomstig van Alice of Bob. Dan zullen deze deze waardes totaal ver-

schillend zijn van de ontvangen signaalsterktes bij Alice en Bob. De appendix be-

schrijft een praktische toepassing van dit nieuwe encryptie-algoritme. Autonome

nodes werden op het menselijk lichaam geplaatst om geheime sleutels te genere-

ren, op basis van de ontvangen signaalsterktes, tussen twee bewegende legitieme

partijen bij aanwezigheid van een stationaire indringer. De sequenties van ont-

vangen signaalsterktes werden aan de hand van correlatie, mutuele informatie en

entropie geanalyzeerd en geschikt bevonden om te gebruiken in indoor en outdoor

draadloze persoonsgerichte netwerken.
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Wireless body-centric communication is defined as communication between small

devices and sensors located in, on or around the human body. This type of commu-

nication gives rise to a large number of applications in, among others, healthcare,

sports, gaming, safety and security. For example, pictures or videos, taken by an

endoscopy capsule in the patient’s bowel, may be wirelessly transmitted to a mon-

itor located near the hospital bed. Also the communication of biometrical- and

environmental data between rescue workers, or between a rescue workers and a

command post, is defined as body-centric communication. When developing this

kind of communication systems, the specific physical characteristics of the body-

centric radiowave channel should be taken into account. Signals setting up a wire-

less communication link from inside the human body to the outside world, or vice

versa, experience a large attenuation when the electromagnetic waves propagate

through muscles, bones, vessels and blood. Moreover, safety precautions impose

stringent requirements on the maximum transmit power inside the human body.

Therefore, it is essential to carefully choose important design parameters such as

frequency, bandwidth and transmit power. Next to the channel quality, also the

channel capacity of wireless links heavily depends on these design parameters.

The same holds for person-to-person communication. In this body-to-body sce-

nario, the quality of the wireless link heavily depends on varying positions and

body postures and on mutual orientation and distance. In addition to the environ-

ment, the aforementioned parameters influence multipath fading and shadowing

effects due to the human body. Next to the small, wearable, data-gathering de-

vices, compact antennas are indispensable to transmit and receive these personal

user data. This implies that also the antenna topology, the antenna positions and

the number of antennas should be chosen carefully to guarantee reliable, high-data

rate body-centric communication. Preferably, lightweight flexible textile antennas

are used on which active electronics can be integrated, realizing a compact sys-

tem. Because the user’s privacy is a major concern in body-centric communication

networks, sensitive, personal information should be encrypted when transmitted

over the wireless channel. Given that more and more user data are gathered,

due to the increasing number of wearable devices, the security of wireless links

between multiple persons is essential. Therefore, in this work, we focus on reli-

able and possibly encrypted high-data rate body-centric wireless communication.

ante In the first part of this dissertation, we concentrate on communication be-

tween a wireless endoscopy pill and a wearable multi-antenna system, suitable

for integration inside a jacket, worn by the patient. The design parameters, as de-

scribed earlier, are carefully chosen or calculated to guarantee a reliable, high-data

rate communication link, from anywhere inside the patient’s bowel towards the

multi-antenna system. This enables wireless communication of photos, or videos,
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towards a specialist, enabling a thorough analysis of the gastro-intestinal condi-

tion of the patient. The human body is mimicked by a specially designed bath,

filled with muscle-mimicking tissue. This experimental setup corresponds to the

worst-case scenario since the composition of the muscle tissue causes the largest

electromagnetic attenuation. By fixing eight textile antennas on the sidewalls or

bottom of the bath, antenna diversity is realized. These antennas receive, each

individually, the signals from a small dipole antenna inside the bath. Then, all re-

ceived antenna signals are combined constructively, leading to a higher total signal

strength. Subsequently, the minimum number of receive antennas is determined

that still guarantees a sufficiently high signal strength to set up a video link from

the wireless endoscopy capsule to a monitor.

Body-centric communication between moving persons is extensively described in

the second part of the work. Two dynamic firefighters, equipped with multiple

textile antennas integrated inside their jacket, replicate a realistic intervention in

an indoor office environment. During such interventions, the first firefighter starts

scanning the offices while the second firefighter simultaneously starts scanning

the hallway. Typically, both firemen stay in each other’s proximity during the en-

tire rescue operation. During such interventions, the safety of the firemen is the

top priority. Therefore, we strive for reliable, wideband, high-data rate body cen-

tric communication. To increase the data rate, the firemen were equipped with

multiple transmit and receive antennas, creating a Multiple Input Multiple Output

(MIMO) system. This allows simultaneous transmission of multiple, independent

data streams without interference. This technique, widely known as spatial multi-

plexing, increases the total number of bits per seconds that can be transmitted. The

wideband frequency-selective channel is divided into multiple frequency-flat sub-

carriers, drastically decreasing the probability of Inter Symbol Interference (ISI).

This implies that multiple, independent data streams could be sent, at a lower

transmit rate, over different subcarriers, without interference between consecu-

tive symbols. Given that multiple subcarriers are available, this method, called Or-

thogonal Frequency Division Multiplexing (OFDM), increases the total data rate.

Hence, in the second part of this dissertation, comprising Chapter 4 up to 7, we

consider MIMO-OFDM communication channels between moving firefighters.

First, Chapter 4 describes, in general terms, whether the existing Long Term Evo-

lution (LTE) and, by extension, the LTE-Device to Device (LTE-D2D) standards, are

suitable for wideband body-centric communication networks, focusing on public

safety, a purpose for which they were originally not designed. Chapter 5 ana-

lyzes whether the capacity of wideband body-centric MIMO-OFDM communica-

tion channels between two firefighters is sufficiently high to guarantee, next to the

biometrical- and environmental data, reliable and efficient transmission of camera

images. Therefore, we have compared Single Input Single Output (SISO)-, Single

Input Multiple Output (SIMO)-, Multiple Input Single Output (MISO) and MIMO-

OFDM channels, considering maximum two transmit and two receive antennas.

In addition to comparing a static and dynamic measurement scenario, two ca-

pacity enhancement techniques are described that could further increase the total
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MIMO-OFDM capacity. The first technique distributes the available transmit power

per subcarrier over both MIMO-OFDM channels. This implies that, on a subcar-

rier basis, more power is allocated to the strongest MIMO-OFDM channel while

the weaker MIMO-OFDM channel has to sacrifice some of its power. The total

power of each OFDM subcarrier, calculated as the sum of the subcarrier power in

both MIMO-OFDM channels, remains constant. In addition, the second technique

distributes the total available transmit power optimally over both MIMO-OFDM

channels and all subcarriers simultaneously. This implies that most power is allo-

cated to the strongest subcarriers of the strongest MIMO-OFDM channels. Chap-

ter 6 describes a third technique to further enhance the MIMO-OFDM throughput.

The modulation per subcarrier can be adapted, depending on the received signal

strength on that subcarrier. When the signal strength increases, the modulation

order can be increased while the number of errors remains below a preset value.

A higher modulation order per subcarrier ensures a higher throughput on the spe-

cific subcarrier, which increases the total MIMO-OFDM capacity. Chapter 7 further

describes a novel, four-element antenna array, which combines spatial and polar-

ization diversity. The antenna array’s performance is validated by setting up a 1×4

SIMO link between dynamic firefighters, where one firefighter was equipped with

a single textile antenna while the novel antenna array was integrated in the back

section of the second firefighter’s jacket. The benefit of the cross array is twofold:

the reliability of the MIMO-OFDM communication channel is increased in combi-

nation with throughput gain, when applying adaptive subcarrier modulation.

Given the further development of wearable devices and sensors, which can be de-

ployed on the human body, more people can be connected to the Internet and

wirelessly transfer personal information between desired recipients. Besides in-

creased users convenience and comfort, these new personalized wireless networks

also introduce the need for strong encryption algorithms, since nobody wants that

personal user data can be intercepted during wireless transmission and, hence,

fall into hands of undesired recipients. Moreover, to guarantee sufficient auto-

nomy, these encryption algorithms cannot consume a lot of energy of the battery-

operating wearable devices. Instead of existing battery-draining techniques that

rely on Pseudo-Noise sequences, the unique, reciprocal communication channel

between the two legitimate parties, Alice and Bob, is used to generate joint ran-

domness between them. If Alice sends a packet towards Bob and Bob retransmits

a packet back to Alice, within the coherence time of the wireless channel, the

received signal strength at both sides of the body-to-body channel will be approxi-

mately equal. Assume that an intruder, Eve, monitors the communication channel

and is able to calculate the received signal strengths of the packets sent by Alice

towards Bob, or vice versa. Then, the received signal strength values at Eve will be

totally different from the received signal strengths at Alice and Bob. The appendix

describes a practical application of this new encryption algorithm. Autonomous

nodes were placed upon the human body to generate the secret keys, based on

the received signal strengths between two dynamic legitimate parties in the pre-

sence of a stationary eavesdropper. The sequences of received signal strengths are
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analyzed in terms of the correlation, mutual information and entropy. They are

proven suitable for use in indoor and outdoor wireless boy-centric networks
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1
Introduction

✶✳✶ ❈♦♥%❡①%

Starting half a century ago, miniaturization of Integrated Circuits (IC’s) and elec-

tronic components have recently led to the rise of wearables, being small, elec-

tronic devices and sensors, which are worn on the human body. Moreover, by

further reducing the size of these data-collecting sensors, even smaller in-body de-

vices were designed, such as a camera pill which can be swallowed by a patient or

even injectable radios of only 10 cubic millimeters. Additionally, private, personal

data can be effectively communicated through compact on-body antennas, poten-

tially invisibly integrated into the user’s clothing, or through in-body antennas,

such as small dipoles for Wireless Capsule Endoscopy (WCE). With the emergence

of all these body-centric devices and antennas, the term ”body-centric commu-

nication” was introduced. Generally, body-centric communication is defined as

communication in-and around the human body. This term combines four different

communication scenarios. First, in-body communication involves communication

from inside the body towards a base station, located in the close proximity of the

human body, or vice versa. Applications for in-body communication are mainly

in healthcare, such as wireless transmission of high-resolution pictures, taken by

an in-body camera pill, towards a fixed monitor, observed by a doctor. Second,

off-body communication comprises communication from on-body devices towards

a fixed base station. For example, GPS data from football players, gathered us-

ing an on-body GPS tracker, is wirelessly sent towards a fixed computer at the

side-line of the pitch. Third, on-body communication is defined as communication

between wearable devices on the same person, such as a heart rate monitor and

a wrist watch. The transmitter, worn on the chest, sends the heart rate data to-

wards a sport watch, worn by the user. Finally, live video streaming between two

on-duty firefighters is defined as body-to-body communication, since two on-body
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devices, worn by different persons, communicate. As body-centric communication

introduces a large number of potential interesting applications, this dissertation

focuses on two specific scenarios: in-body communication between an endoscopy

capsule and a wearable multi-antenna system, and body-to-body communication

between two on-duty rescue workers.

✶✳✷ ▼♦%✐✈❛%✐♦♥

In healthcare and rescue operations, reliable communication of personal user data

can mean the difference between life and death. Imagine that communication with

a disoriented firefighter is lost, while the firefighter is trapped in a burning build-

ing. Or assume that the blood pressure and blood glucose values of patients with

diabetes are communicated incorrectly, misleading a doctor to detect dangerous

patient conditions. These worst-case scenarios should be avoided anywhere, at

any time, demonstrating the importance of reliability in body-centric communica-

tion. Additionally, by increasing the capacity and, hence, data rate of these body-

centric wireless communication channels, patients’ or rescue workers’ conditions

could be better interpreted and evaluated. For example, when combining low-data

rate sensor data with high-data rate pictures and/or videos, the rescue workers’

safety and situational awareness may be increased, which decreases the number

of casualties or deaths. Furthermore, when wirelessly communicating biometri-

cal data, gathered by wearable on-body devices, an encryption algorithm has to

avoid that third parties intercept personal user data. Hence, a reliable, low-power

and computationally simple encryption algorithm, programmed on the on-body

hardware, is essential for future Wireless Body Area Networks (WBANs). In sum-

mary, body-centric communication has to be reliable, supporting high data rates,

in combination with a low-power, simple encryption algorithm. Therefore, this

dissertation focuses on reliable and possibly encrypted high data-rate body-centric

wireless communication.

✶✳✸ ❈✉--❡♥% /%❛%❡ ♦❢ %❤❡ ❛-%

The emergence of actively controlled wireless endoscopy capsules allows special-

ists to steer camera pills to the specific region of interest. To fully exploit the

benefits of these camera pills, being the opportunity of live video streaming, in-

body communication standards should not only support low-data rate communi-

cation but also high-data rate in-to-out body communication, or vice versa. There-

fore, current channel modelling, characterization or simulations [1]–[7] should be

supplemented with real-life measurement campaigns. The same holds for indoor

safety networks. Current narrowband public safety networks, such as TETRA, al-

low voice communication between firefighters or between a firefighter and a base
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station. Of course, this is already a great improvement over analog radios, since

encryption and diversity techniques may now be implemented. However, the next

logical step is to evolve from low-data rate communication, such as voice or GPS,

towards high-data rate communication. By guaranteeing a high-capacity body-

to-body link, on-duty firefighters may communicate real-time information such as

sensor and environmental data, or even pictures and/or videos. Yet, earlier work

on body-to-body communication focused mainly on statistical characterization or

receiver diversity [8]–[10]. Moreover, when calculating capacity in body-to-body

networks [11], the users’ stringent requirements in terms of wearability and com-

fort, should be a major design concern. Additionally, further research into capacity

enhancement techniques for wideband body-to-body networks would be very use-

ful. Up to now, the encryption of such body-to-body links is implemented based on

a computationally complex setup using a Pseudo-Noise (PN) generator. By combin-

ing the personal data with this PN sequence, which is only known at the two legiti-

mate parties, a secure link can be guaranteed. However, generating a high-entropy

PN sequence, unknown to a potential eavesdropper, is computationally complex

and, hence, power consuming when implemented on battery limited wearable de-

vices. Therefore, a better alternative for encryption algorithms in WBANs should

be developed, focusing on the combination of low power and low computational

complexity, as theoretically described in [12]–[14]. However, practical measure-

ments, with autonomous on-body devices, should be performed to verify if this

low-power, low-computational complex algorithm would be suitable for the en-

cryption in future WBANs.

✶✳✹ ❖✇♥ ❝♦♥()✐❜✉(✐♦♥-

In this thesis, we have focused on practical implementations of multi-antenna sys-

tems for body-centric communication networks. Moreover, we have carefully repli-

cated real-life scenarios for both the in-body as body-to-body communication chan-

nels.

As we focus on reliable and high-data rate in-body communication, we propose

the Industrial, Scientific and Medical (ISM) band as a better alternative to both

the Medical Implant Communication Service (MICS) and Ultra-Wideband (UWB)

band. On the one hand, the ISM band provides a higher bandwidth compared

to the MICS band and, on the other hand, experiences less in-body signal atten-

uation than the transmit power restricted UWB band. Moreover, commonly used

high-speed wireless communication standards are commonly implemented in IC’s

operating in this ISM band. Furthermore, we have determined the minimum num-

ber of wearable on-body textile antennas, in the worst case scenario, necessary for

reliable and high-data rate in-body communication. The worst case scenario was

replicated by filling a standardized phantom with muscle-tissue-simulating liquid,

yielding the largest signal attenuation in the ISM band.



6 Introduction

Our analysis of wideband, indoor body-to-body communications could be of great

importance for the future development and standardization of indoor public safety

networks. By means of channel sounder experiments, accurately replicating a real

indoor firefighter intervention, detailed wideband body-to-body channel informa-

tion is analyzed and interpreted. Four cavity-backed slot textile antennas, imple-

mented in Substrate Integrated Waveguide (SIW) technology, were unobtrusively

deployed in the firefighters’ jackets, providing up to 2 × 2 Multiple Input Multi-

ple Output (MIMO) communication. Additionally, Orthogonal Frequency Division

Multiplexing (OFDM) is implemented, dividing the wideband channel into multi-

ple narrowband subcarriers. The wideband body-to-body MIMO-OFDM channels,

between two dynamic firefighters in each other’s proximity, are analyzed into great

detail in terms of standardization, capacity analysis, capacity enhancement tech-

niques and receiver diversity gain.

Up to now, the main deficiency of wearables is the device’s limited battery life.

Since the autonomy of these on-body devices has to be maximized, unnecessary

energy consumption should be avoided. This implies that, applied to the security

of body-to-body link, wearables should contain a low-power Pseudo-Noise (PN)

sequence generator with low computational complexity. Therefore, we propose to

not implement existing, power draining PN generators on wearable devices but to

use the unique body-to-body channel between two communicating parties to gen-

erate this PN sequence. The Received Signal Strengths (RSSs) at two legitimate

parties are highly correlated, due to reciprocity, if the round-trip-time of the sys-

tems is much below the coherence time of the body-to-body channel. However, the

RSS at an intruder/eavesdropper is expected to be virtually uncorrelated. There-

fore, in the appendix, we propose an algorithm that extracts equal secret keys at

Alice and Bob, based on their correlated RSS streams, but unknown to an eaves-

dropper Eve. This low-power, low-computational complex, RSS-based algorithm

is validated for encryption of indoor and outdoor body-to-body links between two

legitimate mobile users.

✶✳✺ ❖✉%❧✐♥❡

In Chapter 2, some typical phenomena of wideband indoor communication chan-

nels are explained. We briefly focus on three concepts that are frequently used in

the remainder of this book: multipath propagation, receiver diversity and OFDM.

Part I describes a practical implementation of a narrowband in-to-out body com-

munication link. The minimal number of on-body RX antennas is determined to

guarantee a sufficiently high Signal to Noise Ratio (SNR) for live video streaming

from anywhere in the patient’s bowel. From a practical point of view, patients could

be monitored by integrating the low-profile on-body textile antennas, coherently

combining signals through Maximal Ratio Combining (MRC), into a comfortable

jacket.
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In Part II, comprising Chapters 4 up to 7, we focus on the standardization, ca-

pacity analysis, capacity enhancement techniques and receiver diversity gain of

wideband, indoor body-to-body channels. In Chapter 4, the Long Term Evolution

(LTE) standard is proven very suitable for indoor public safety networks, a purpose

for which it was not originally designed. The first part of Chapter 5 presents the

capacity of wideband, indoor body-to-body MIMO channels for static and dynamic

measurement scenarios. Additionally, capacity enhancement techniques, such as

one- and two-dimensional waterfilling or Adaptive Subcarrier modulation are pre-

sented in the second parts of Chapters 5 and 6, respectively. Furthermore, the de-

sign of an ultra-wideband dual spatial, dual polarization antenna array, developed

for operation in the low duty-cycle restricted [3.4-4.8] GHz band is presented in

Chapter 7. Additionally, the cross array is proven very suitable to further increase

reliability, in combination with an increased throughput, of SIMO wideband body-

to-body links.

Indoor and outdoor narrowband body-to-body measurements between two legit-

imate parties, in the presence of a static eavesdropper, are presented in the ap-

pendix. Autonomous on-body textile sensors nodes are placed on all three parties

to collect the RSS values within the theoretic coherence time of the body-to-body

channels. Based on mutual information, entropy and correlation of the collected

RSS streams, a low-power, low-computational complex algorithm is validated for

the encryption of future WBANs.
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2
Body-centric communication

Indoor body-centric communication experiences a large influence from multiple

delayed copies of the signal, travelling along different paths between transmitter

and receiver, defined as multipath propagation [1]. This phenomenon is visual-

ized in Fig. 2.1 for one direct and three reflected paths. The multiple copies of

the transmitted pulse interfere constructively or destructively at the receiver and

introduce fading effects. For further analysis, the (simplified) two-ray model is

considered, involving one direct and one reflected path between transmitter and

receiver.
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Figure 2.1: Multipath propagation in indoor environments
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If the maximum delay of the reflected path, further defined as τ instead of τ1, is

much smaller than the symbol time TS , copies of the same symbols received along

multiple paths remain synchronized, as shown in Fig. 2.2.a. Yet, if τ > TS , symbol

n of the reflected path could interfere with, for example, symbol n+1 of the direct

path, introducing Inter Symbol Interference (ISI) [2].
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Figure 2.2: Analysis of the two-ray model for small and large delays

Even when τ << TS , being in case of flat fading, the quality of the wireless link

may deteriorate due to the propagation conditions. When both symbols of the di-

rect and reflected path add up destructively, because they are out of phase, the

Received Signal Strength (RSS) drops drammaticaly, causing a (deep) fading dip.

Additionally, shadowing can further degrade the average RSS strength if an object

blocks the direct path between the transmitter and receiver. Moreover, when focus-

ing on body-centric wireless communication, the human body can block the path

between a transmitter and an on-body RX antenna, introducing body shadowing

effects.

When only considering one receive antenna and one transmit antenna, the com-

bination of fading and (body) shadowing could cause temporary signal loss at the

receiver, making reliable communication impossible. However, when employing

multiple (on-body) receive antennas, it is likely that, when the signal at one RX

antenna experiences deep fading, the signal strength at the other receive antenna

remains sufficiently high for reliable communication, as seen in Fig. 2.3 at time

instance t = 1s. Therefore, receiver diversity can drastically increase reliability,

through diversity gain [3], if the signals at multiple receive antennas are suffi-

ciently decorrelated. The envelope correlation coefficient ρ, preferably well below

0.7 to exploit diversity gain, is calculated as:
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ρ =
E(X · Y)− E(X)E(Y)

q
�

E(X2)− (E(X))2
��

E(Y2)− (E(Y))2
�

. (2.1)

Decorrelation can be ensured by spatial and/or polarization diversity [4]–[6], as

also described in Chapter 7. As an example, when implementing Selection Com-

bining (SC) at the receiver, the total received Signal-to-Noise Ratio (SNR) is equal

to the highest SNR selected from all receive antennas at any give time instance, as

visualized on Fig. 2.3 for two receive antennas.
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Figure 2.3: Selection Combining and Maximal Ratio Combining in a fading environment

Assuming that the received signals of multiple (on-body) receive antennas are

coherently combined, the total received SNR could be increased through array

gain [3]. For example, when implementing Maximal Ratio Combining (MRC) [7],

the received SNR’s on the multiple receive antennas are added up, which results

in an increased total received SNR. As an example, assume two receive antennas

as in Fig. 2.3. Define s the transmitted symbol with E[|s|2] = 1, r0 and r1 the re-

ceived symbols, h0 and h1 the channel coefficients and n0 and n1 as Additive White

Gaussian Noise (AWGN) with n0 ∼ (0,σ2) and n1 ∼ (0,σ2), assuming equal noise

powers, defined as σ2, in both channels.

r0 = h0.s+ n0→ SNR=
|h0|

2

E
�

|n0|2
� =

|h0|
2

σ2
(2.2)

r1 = h1.s+ n1→ SNR=
|h1|

2

E
�

|n1|2
� =

|h1|
2

σ2
(2.3)
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Above equations are simplified to:

r= hs+ n (2.4)

with

h= [h0 h1]
T

n= [n0 n1]
T

r= [r0 r1]
T

The output signal, after MRC combining, is calculated as:

rMRC =wHr (2.5)

=wHhs+wHn (2.6)

The instantaneous SNR is calculated as:

γ=
|wHh|2

E
�

|wHn|2
� (2.7)

=
|wHh|2

E
�

wHnnHw
� (2.8)

=
|wHh|2

wH E
�

nnH
�

w
(2.9)

=
|wHh|2

σ2wH IN w
(2.10)

=
|wHh|2

σ2wHw
(2.11)

=
wHhhHw

σ2wHw
(2.12)

By choosing the weighting factors w equal to the channel coefficients h, the in-

stantaneous SNR is proven the sum of the SNR’s of both channels.

γ=
✟
✟hHhhHh

σ2
✟
✟hHh

(2.13)

=
hHh

σ2
(2.14)

=
|h0|

2 + |h1|
2

σ2
(2.15)
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Additionally, the increased SNR increases the maximum channel capacity, calcu-

lated using the Shannon-Hartley theorem [8] as:

C = B.log2

�

1+ SNR
�

, (2.16)

with C the capacity in bps, B the channel bandwidth in Hz and SNR the linear

Signal-to-Noise Ratio.

As described before, receive diversity can increase both reliability and capacity

through diversity and array gain, respectively. Additionally, when implement-

ing transmit diversity and, hence, creating a (NT X , NRX ) Multiple-In Multiple-Out

(MIMO) channel, as shown in Fig. 2.4.a, the reliability and channel capacity can

further be increased.
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Figure 2.4: Spatial mulitplexing of a (NT X , NRX ) MIMO channel by means of Singular Value

Decomposition (SVD) and a comparison of diversity, space-time codes (Alamouti) and spatial

multiplexing for 2× 2 MIMO systems

When applying diversity or space-time codes (STC), a total of NTX symbols are

sent over NTX time slots. However, when using space-time codes, redundancy is

implemented and all the copies of the received received signal are combined in

an optimal way, increasing reliability over simple transmit diversity. Alamouti pre-

sented an orthogonal 2× 2 MIMO space-time code in [7], as shown in Fig. 2.4.

The MIMO channel capacity can be increased by spatial multiplexing, transmitting

NTX symbols in only one timeslot. The channel matrix H of a (NT X , NRX ) MIMO
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channel is defined as:

H=









h11 h12 ... h1NRX

h21 h22 ... h2NRX

...
...

. . .
...

hNT X 1 hNT X 2 ... hNT X NRX









. (2.17)

By now applying a Singular Value Decomposition (SVD) [9], the channel matrix H

is decomposed into:

H= UΣVH (2.18)

with Σ, defined as the Singular Matrix, a diogonal matrix containing the corre-

sponding N singular values, with N =min(NT X , NRX ):

Σ =









σ1 0 ... 0

0 σ2 ... 0
...

...
. . .

...

0 0 ... σN









. (2.19)

The rank M of the Singular Matrix, defined as the number of non-zero singular

values, indicates the possibility to replace the (NT X , NRX ) MIMO channel, trans-

mitting one symbol in one timeslot, by M independent symbols in one timeslot.

This increases the total throughput and capacity of the MIMO system. In order to

properly estimate the performance of spatial multiplexing, the condition number

κ is defined as

κ(H) =
σmax

σmin

. (2.20)

If κ equals 1, all singular values are equal, which indicates an optimal scenario

for spatial multiplexing since M independent spatial streams can be transmitted

without interference at the receiver. Adversely, if κ increases, the MIMO chan-

nel conditions become worse for applying spatial multiplexing because of power

imbalance in the MIMO channel.

Moreover, the calculated eigenvalues [λ1,λ2...λN ], equal to [σ2
1,σ2

2...σ2
N
], are very

useful to optimize the power allocation on the different transmit antennas as de-

scribed in Chapter 5.

Equivalently, by performing the eigenvalue decomposition on H.HH , the same set

of eigenvalues is found:

!

H.HH
�

.V= λ.V (2.21)
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with V a full matrix whose columns are the corresponding eigenvectors and λ a di-

agonal matrix containing the eigenvalues [λ1,λ2...λN ], similar to the eigenvalues

found by means of the singular value decomposition.

As stated in Fig. 2.2, to avoid Inter Symbol Interference (ISI) in wireless commu-

nication systems, the symbol duration TS should be chosen sufficiently large. As a

rule of thumb, TS should be larger than the RMS delay spread τRMS , which is ex-

tracted from the power delay profile, as visualized on Fig. 2.5.a for the multipath

scenario in Fig. 2.1.
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Figure 2.5: Power Delay Profile (a) and Frequency Correlation Function (b)

For L multipath components, the RMS delay spread τRMS [10] is calculated based

on Ph(τ) using the mean delay τ̄ as:

τ̄=

L
∑

l=1

Pl τl

L
∑

l=1

Pl

, (2.22)

τRMS =

√

√

√

√

√

√

√

L
∑

l=1

Pl (τl − τ̄)2

L
∑

l=1

Pl

. (2.23)

If the calculated τRMS is not significantly smaller than the symbol duration TS ,

strong multipath components of symbol n could influence symbol n + 1, leading

to ISI. Moreover, delayed multipaths, arriving at the RX firefighter, introduce fre-

quency selective fading, which is analyzed by observing the correlation between

received signals at two different frequencies [2]. The frequency-selective of the

wideband channel is calculated by means of the frequency correlation function

RT (ν):
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RT (ν) =

+∞
∫

−∞

Ph(τ) e
− j2πντ dτ, (2.24)

The 50% correlation bandwith, as indentified on Fig. 2.5.b by the dashed line,

indicates that the signal received at frequency f0 is 50% decorrelated from signals

received at frequency f1. As a rule of thumb, the channel is considered frequency-

flat if the bandwidth is one-tenth of the 50% correlation bandwidth [10].

Chapter 4 presents a more detailed, practical example of calculating both wide-

band channel parameters.

✷✳✹ ❖❋❉▼

As described above, multipath propagation has a large influence on the perfor-

mance of indoor body-centric communication networks. Especially when τ > TS ,

Intersymbol Interference introduces frequency-selective fading, meaning that the

channel frequency response is not flat but frequency dependent. At first sight, sim-

ply increasing the symbol time TS looks a simple solution to combat ISI. However,

an increased symbol time decreases the data rate, which is a major drawback for

high-data rate indoor body-centric communication systems.

Frequency
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Figure 2.6: Principle of OFDM

Therefore, Orthogonal Frequency Division Multiplexing was introduced as a mod-

ulation scheme which is excellent in combatting frequency-selective fading [11],

[12]. When applying OFDM, the wideband frequency-selective channel is subdi-

vided into smaller orthogonal subcarriers, each transmitting data at a lower data

rate, as shown in Fig. 2.6. However, the combination of all lower data rate sub-

carriers will dramatically increase the overall data rate and capacity. Moreover, a



2.4. OFDM 19

fading dip in the frequency-selective wideband channel, marked by the red dashed

line on Fig. 2.6 a limited number of subcarriers while transmission on the other

subcarriers remains reliable.

In the time domain, it is important that two consecutive symbols on one subcarrier

do not interefere with each other. Therefore, a Cyclic Prefix (CP) is added at the

beginning of a symbol to create a so-called buffer against late echos in between

two consecutive symbols. This cyclic prefix is in fact a copy of the end of the next

symbol, as shown in green on Fig. 2.6. The minimal length of the cyclic prefix is

estimated as three times the RMS delay spread τRMS [10].

To ensure orthogonality of all subcarriers, the OFDM symbol duration Tu should

be a whole number of periods for each subcarrier. Defining ∆ f as the subcarrier

spacing, the shortest duration that meets this requirement is [13]:

Tu =
1

∆ f
. (2.25)

The total OFDM duration is then calculated as:

Ts = C P + Tu. (2.26)





References

[1] A. Molisch, “Technical challenges of wireless communications”, in Wireless

Communications. Wiley-IEEE Press, 2011, pp. 27–36.

[2] R. Janaswamy, Radiowave Propagation and Smart Antennas for Wireless

Communications (The Springer International Series in Engineering and Com-

puter Science). Springer, 2000, ISBN: 978-0-30-646990-9.

[3] L. Ordonez, D. Palomar, and J. Fonollosa, “On the diversity, multiplexing,

and array gain tradeoff in MIMO channels”, in Information Theory Proceed-

ings (ISIT), 2010 IEEE International Symposium on, Jun. 2010, pp. 2183–

2187.

[4] R. Nabar, H. Bolcskei, V. Erceg, D. Gesbert, and A. Paulraj, “Performance of

multiantenna signaling techniques in the presence of polarization diversity”,

Signal Processing, IEEE Transactions on, vol. 50, no. 10, pp. 2553–2562, Oct.

2002.

[5] J. Dietrich C.B., K. Dietze, J. Nealy, and W. Stutzman, “Spatial, polariza-

tion, and pattern diversity for wireless handheld terminals”, Antennas and

Propagation, IEEE Transactions on, vol. 49, no. 9, pp. 1271–1281, Sep. 2001.

[6] P. Van Torre, L. Vallozzi, C. Hertleer, H. Rogier, M. Moeneclaey, and J. Ver-

haevert, “Indoor off-body wireless MIMO communication with dual polar-

ized textile antennas”, IEEE Transactions on Antennas and Propagation, vol.

59, no. 2, pp. 631–642, Feb. 2011.

[7] S. Alamouti, “A simple transmit diversity technique for wireless communi-

cations”, Selected Areas in Communications, IEEE Journal on, vol. 16, no. 8,

pp. 1451–1458, Oct. 1998.

[8] C. Shannon, “A mathematical theory of communication”, Bell System Tech-

nical Journal, The, vol. 27, no. 4, pp. 623–656, Oct. 1948.

[9] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-

munications. Cambridge University Press, 2003, ch. 3, ISBN: 978-0-52-

182615-0.

[10] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005,

ISBN: 978-0-52-183716-3.

[11] R. Prasad, OFDM for Wireless Communications Systems. Artech House, Inc,

2004, ISBN: 978-0-52-183716-3.

[12] H. Bolcskei, “MIMO-OFDM wireless systems: Basics, perspectives, and chal-

lenges”, Wireless Communications, IEEE, vol. 13, no. 4, pp. 31–37, Aug.

2006.



22 Chapter 2. Indoor body-centric communication

[13] N. Marchetti, M. I. Rahman, S. Kumar, and R. Prasad, “New directions in

wireless communications research”, in, V. Tarokh, Ed. Boston, MA: Springer

US, 2009, ch. OFDM: Principles and Challenges, pp. 29–62.



PART I
In-body communication

About a decade ago, gastro-intestinal (GI) monitoring was equivalent to

pushing wide cables, connected to the monitoring device, into the bowel

of patients. Next to the limited monitoring area, due to the limited cable

length, this was a significantly traumatic and poorly tolerated experience

for patients. By the rise of CMOS technology and IC’s, swallowable cam-

era pills were developed, heavily increasing the patient’s comfort. How-

ever, since these camera pills were passive devices, the practical use was

somewhat limited. Therefore, research into actively controlled camera

pills increased exponentially, introducing concepts such as remote patient-

monitoring and real-time tele-operation. In an ideal scenario, low power,

active controlled swallowable camera pills ensure bidirectional in-to-out

communication, allowing improved locomotion, vision, telemetry, local-

ization and tissue manipulation tools. Therefore, this part focuses on the

telemetry, presenting an on-body multi-antenna system that guarantees

increased data rate for in-to-out body communication links. This allows,

among others, live video streaming from an in-body swallowable camera

pill to a remote base station.
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High-data rate wireless communication for in-body human implants is mainly

performed in the 402-405 MHz Medical Implant Communication System band

and the 2.45 GHz Industrial, Scientific and Medical band. The latter band

offers larger bandwidth, enabling high-resolution live video transmission. Al-

though in-body signal attenuation is larger, at least 29 dB more power may be

transmitted in this band and the antenna efficiency for compact antennas at

2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can

exploit the large surface provided by a garment by deploying multiple compact

highly efficient wearable antennas, capturing the signals transmitted by the

implant directly at the body surface, yielding stronger signals and reducing in-

terference. In this chapter, we implement a reliable 3.5 Mbps wearable textile

multi-antenna system suitable for integration into a jacket worn by a patient,

and evaluate its potential to improve the in-to-out body wireless link reliability

by means of spatial receive diversity in a standardized measurement setup. We

derive the optimal distribution and the minimum number of on-body anten-

nas required to ensure signal levels that are large enough for real-time wireless

endoscopy capsule applications, at varying positions and orientations of the

implant in the human body.

✸✳✶ ■♥%&♦❞✉❝%✐♦♥

Many studies about global aging show an increasing life expectancy in about every

continent [1], [2]. This trend is expected to continue in the near future, necessitat-

ing a renewed vision on medical healthcare. By enabling wireless communication

from inside the body towards the outside world (In-to-Out Body Communication),

a whole range of new possibilities arise. In particular, Wireless Capsule Endoscopy

(WCE) [3] is an important but technically demanding application. Current com-

mercial WCE systems (Given Imaging, Olympus EndoCapsule) propagate passively

through the intestine, and operate at low frame rates [4], [5]. Uncontrolled orien-

tation and movement as well as low resolution are considered a major drawback

of passive systems [6]–[8]. This resulted in research towards actively controlled

capsules, requiring higher frame rates and resolution to provide real-time video

feedback to the physician steering the capsule movement to interactively focus on

diagnostically important features [9], [10].

Frequency bands commonly used for wireless implant links are the 402-405 Medi-

cal Implant Communication System (MICS) band (or the 401-406 MedRadio band

[11]) as well as the 2.45 GHz Industrial, Scientific and Medical (ISM) band. The

maximum available bandwidth per channel in the MICS Band is 300 kHz [12], in

contrast to the much larger channel bandwidth of 20 MHz in the ISM band [13].

Therefore, the 2.45 GHz band is more suitable for WCE with high-resolution live

video transmission [14], [15]. The use of Ultra-Wideband (UWB) technology is

proposed for an in-to-out Body link suggesting high data rates, low power con-
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sumption and simple electronics [16]–[20]. However, only channel modeling and

characterization are described. To our knowledge, no measurements were per-

formed. UWB with diversity is proposed in [21] and [22], documenting a theoret-

ical approach based on simulations. Practically, UWB applications are mostly lim-

ited to implants requiring low signal penetration depth, such as cortical implants

[23], due to the very high signal attenuation and the limited available transmit

power [24]. As the in-body attenuation at 2.45 GHz is smaller than for the 3.4-

4.8 GHz low-UWB band [25], the ISM band combines sufficient bandwidth with

acceptable attenuation.

We propose a novel reliable high-data rate wearable higher-order diversity in-to-

out body communication system to fully compensate for the higher in-body attenu-

ation at 2.45 GHz by mitigating this attenuation using multiple wearable antennas

around the body. Diversity systems are realistic in the ISM band, thanks to the

much shorter wavelength and smaller dimensions of electrically full-size anten-

nas, compared to the MICS band. Hence, there is enough space for a wearable

multi-antenna system on the human body or in a garment. The proposed diversity

system enables the use of reliable wide-bandwidth/high-data rate wireless implant

links in the 2.45 GHz ISM band. The effect of 4th, 6th and 8th order spatial diver-

sity is examined for an x, y and z-oriented dipole and for different positions of the

wearable antennas capturing the signals transmitted by the implant at the surface

of a human body phantom.

In addition to applying diversity, the larger in-body attenuation present at 2.45 GHz

is partially compensated for by a three orders of magnitude higher allowed trans-

mit power in the ISM band. Regulatory standards limit the (in-body) radiation

to 25µW (-16 dBm EIRP) in the MICS band [26]. In the 2.45 GHz ISM band, the

European Telecommunications Standards Institute (ETSI) limits transmit power to

100mW (20 dBm EIRP). In addition, for the same ISM band a SAR limit of 2 W/kg

averaged over 10g tissue is specified by IEC 62209 [27]. Even if all RF-energy

would be absorbed by the 10g tissue directly surrounding the antenna, 20 mW (13

dBm EIRP) is allowed, resulting in at least 29 dB more available transmit power

in the 2.45 GHz ISM band, compared to the MICS band. Specifically for steerable

endoscopy capsules, the ISM band is a good candidate thanks to the larger band-

width for the high-data rate video downlink, combined with a possible MICS band

uplink for controlling the capsule without mutual interference.

Additionally, thanks to the shorter wavelength, compact yet electrically full-size

in-body antennas yield up to 10 dB additional antenna gain for the 2.45 GHz

ISM band [28], [29]. Multiple compact on-body antennas allow receive diver-

sity. Moreover, high-speed wireless communication standards are commonly im-

plemented in integrated circuits for this band, resulting in readily available system

components. These two advantages allow the design of compact low-power as

well as low-cost WCE devices.

In-to-out body communication is an active research topic and important previous

work was performed by many research groups. A detailed analysis of wave prop-
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agation and radiation efficiency in different human tissues (such as lungs, stom-

ach, liver, heart, skin and muscle), at different frequencies (402 MHz, 868 MHz

and 2.45 GHz) is presented in [30]–[33]. A number of advantages of using the

2.45 GHz ISM band instead of the 402-405 MHz MICS band are described in [31].

In [34], a comparison between the body worn antenna efficiency and pattern frag-

mentation at 418 MHz and 916.5 MHz is presented. Moreover, research on an

in-to-out body communication link through human muscle tissue in the 2.45 GHz

ISM band is presented in [35] and [36], where path-loss models are derived, with

and without inclusion of the antenna gain, respectively. Transceiver development

for implantable devices (MICS band) and medical endoscopy applications (ISM

band) is presented in [15] and [37], respectively, focusing on low power and high

data rates.

To evaluate the performance of our system, we rely on a standardized phantom,

compatible with the IEC 62209 standard within the frequency range 30MHz-6GHz,

as a means to assess system performance for a person of average size and weight.

It is well known that different types of body tissue have varying conductance and

permittivity. Yet, muscle tissue (σm = 1.7388 S/m [38]) causes the largest signal

attenuation at 2.45GHz. Therefore, the phantom was filled with muscle-simulating

liquid to validate the channel in worst-case propagation conditions in an average

body size. Recommendations of [29] were followed for human body modeling by

using muscle-like dielectric properties, providing standard and easy to reproduce

measurement conditions.

This chapter is further organized as follows. Section 3.2 describes the wearable

antenna system and the measurement setup. Section 3.3 details the results of the

different experiments, examining the performance of different diversity schemes.

Finally, the conclusions are presented in Section 3.4.
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A wearable multi-antenna system for integration into a jacket was developed, as

presented in Fig. 3.1. It consists of a set of wearable on-body textile patch an-

tennas, distributed such that they cover different areas of the body and oriented

towards the body to capture the signals transmitted by an in-body implant.

The on-body receiving textile patch antennas are designed to be matched to and ra-

diate into the human body, instead of radiating in free space away from the human

body [39]. These antennas exhibit a stable performance for changing parameters

such as different body morphologies, movement of the patient, and varying elec-

trical parameters of different organs. The rectangular ring antenna topology with

probe feed is shown in Fig. 3.2. Its dimensions are described in the caption of this
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Figure 3.1: Wearable multi-antenna system, with 6 side (1a, 2a, 3a, 1b, 2b, 3b) and 2 back

(4a, 4b) antennas, deployed on a patient and connected to the Signalion-HaLo 430 by means

of two switches

figure. The antenna substrate consists of very flexible closed-cell expanded protec-

tive foam (εr = 1.485, tan δ = 0.0243), and the ground plane and the patch are

fabricated using the 80 µm-thick e-textile Flectron (sheet resistivity 0.18Ω/sq at

2.45GHz). The foam spacer, used to physically separate the body from the conduc-

tive part of the antenna and ensuring 50Ω matching in all conditions, is fabricated

by means of a foam layer with thickness h2 = 7.92 mm.

By integrating several such on-body receive antennas at suitable locations into

a jacket, we obtain a multi-antenna system enabling highly reliable broadband

data communication with compact low-power implants. We set the critical level

required for highly reliable live wireless video streaming to 10 dB received signal-

to-noise ratio (SNR). Given the Shannon-Hartley theorem (2.16), this critical level

corresponds to a minimal bitrate of 3.5 Mbit/s within a bandwidth of 1 MHz, which

is sufficient for live wireless video streaming, for example, in wireless endoscopy-

capsule applications [40], this without the necessity of data buffering and thereby

data retransmission, still ensuring correct reception of the inbody signals for all

potential positions and orientations of the implant in the human body.

Fig. 3.3 depicts the measurement setup and Table 3.1 lists the dimensions of the

human body phantom (in cm). The coordinates of the points P1 to P8 are indicated

as (x, y).
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Figure 3.2: Patch Antenna Topology (W=40.9mm, L=48.7mm, Wg=8.8mm, Lg=13.2mm,

X f=7.8mm, Yf=18.5mm, h1=3.94mm, h2=7.92mm, d1=1.3mm, d2=5.5mm)

Table 3.1: Human body phantom dimensions

Human body phantom dimensions (cm) Scan points (x,y)

W1 65 A 8.5 A’ 31 P1 (0,0)

W2 59 B 5.2 B’ 17.6 P2 (385,0)

L1 41.5 C 5.1 C’ 14.9 P1 (0,215)

L2 39 D 6.5 D’ 13.8 P1 (385,215)

h 18.7 E 9.3 E’ 31 P1 (192,105)

hvl 10.2 F 7.5 F’ 19.9 P1 (385,105)

SW 11 G 9.5 G’ 17.2 P1 (192,150)

Sb1 15 H 13.8 H’ 13.8 P1 (385,150)

Sb2 13

In the measurement setup, the implant is represented by an insulated half- wave-

length dipole [35], resonating at 2.457 GHz as transmit antenna. The dipole is

coated by an insulation of polytetrafluorethylene (εr=2.07 and σ=0 S/m), as

shown in Fig. 3.4. The human body is simulated by an oval ELI flat phantom,

fabricated by Speag (Zürich, Switzerland), compatible with the IEC 62209 stan-

dard within the frequency range 30MHz-6GHz. This flat phantom is filled with

(MSL2450) human muscle tissue mimicking liquid (relative permittivity εr=50.8,

conductivity σm=2.01 S/m). Two 50Ω SP4T pin-diode switches (Mini-Circuits

ZSDR-425) select the signals, received from the different patch antennas, to be for-

warded to the Signalion-HaLo 430 measurement test bed, interfacing to Matlab.

A loopback connection is provided to guarantee reliable timing synchronization

during post-processing. Details of the transmitted signals and post-processing are
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described in [41]. Measurements were then performed for varying polarizations of

the insulated dipole antenna: an x-oriented horizontal polarization, a y-oriented

horizontal polarization and a vertical polarization as also used in [39]. For the x

and y orientation, area A was scanned, whereas for the vertical polarization, area

B was scanned, both with a step size of 5 mm. Each time, the depth (z-direction)

corresponds to a dipole-center position 4.3 cm underneath the liquid surface and

at 5.9 cm away from the bottom of the phantom. From the measurements along

these 3 axes, we determine the minimum SNR received from an implant with con-

stantly varying orientation, as occurring in WCE applications. The transmit power

is 10 mW, corresponding to half the allowed Specific Absorption Rate (SAR) limit

of 2 W/kg averaged over 10g tissue [IEC 62209].

✸✳✸ ❘❡$✉❧'$ ❛♥❞ ❞✐$❝✉$$✐♦♥
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The statistical parameters of the antennas, as viewed in Table 3.2, exhibit deep dips

in the SNR for every single on-body receive antenna. These signal dips are much

lower than the proposed 10 dB level, so, for a single wearable receive antenna, no

optimal position can be determined on the surface of the human body phantom. By

using multiple receive antennas, the probability that all antennas simultaneously

receive weak signals, strongly decreases. The maxima of the side-wall antennas

2a and 2b are clearly below the maxima of the other six antennas. This is caused

by the rectangular scan area in the oval phantom, where, due to the curvature of

the ELI phantom, the middle antennas 2a and 2b are located further away from

the edges of the scan area, as shown in Fig. 3.3.

Table 3.2: Statistical parameters of the stand-alone antennas (for an x-oriented dipole)

Max (dB) Min (dB) Mean (dB) Median (dB)

1a 46.68 -1.85 13.32 12.93

2a 24.96 -1.22 12.84 13.32

3a 49.83 -0.30 11.83 12.43

4a 41.87 -1.83 12.46 9.04

1b 40.87 -0.67 12.37 13.44

2b 24.57 -0.32 12.88 12.33

3b 38.80 -2.81 10.81 11.05

4b 38.91 -1.25 11.12 6.98

The envelope correlation matrix for the signal levels, as presented in Table 3.3,

demonstrates that all envelope correlation coefficients are far below 0.7, which

indicates that the signals, received on the multiple antennas, are strongly uncor-

related, leading to a significant gain when employing spatial diversity [42]. The
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Figure 3.3: Human body phantom (top view, front view, scan area A for an x-and y-oriented

dipole and scan area B for a z-oriented dipole)
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Figure 3.4: Transmitting insulated dipole (t=1mm, l=3.9cm)

negative correlation coefficient between the bottom antennas 4a and 4b, equal to

-0.04, indicates that these two antennas are complementary. However, they only

cover small non-overlapping parts of the complete scan area. Hence, if 2nd-order

spatial diversity is applied based only on these two bottom antennas, the critical

10 dB SNR level will not be guaranteed for the complete area, as further described

in Table 3.4. In contrast to the bottom antennas 4a and 4b, the side-wall antennas

2a and 2b have a significantly larger correlation coefficient, equal to 0.47. As these

two antennas are deployed at opposite sides, this means that these two side-wall

antennas cover a significantly larger area of the oval phantom, with overlap of the

covered regions. The correlation between, on the one hand, the side-wall antennas

2a and 2b and, on the other hand, the four other side-wall antennas 1a, 3a, 1b, 3b,

is almost negligible. This indicates that by going from 4th-order spatial diversity,

only considering corner side antennas 1a, 3a, 1b, 3b, towards 6th-order diversity,

where the center side antennas 2a and 2b are added to the diversity scheme, a sig-

nificant gain will be obtained, as proven further. Since most correlation coefficients

are low, mutual coupling between neighboring antennas is small.

By now evaluating an 8th-order receive diversity scheme and verifying if the design

requirement of a minimal SNR larger than or equal to 10 dB is fulfilled, some

conclusions can already be drawn. Fig. 3.5 shows the SNR (dB) as a function of

position, for an x-oriented transmit dipole, applying 8th-order diversity reception

using Maximal Ratio Combining (MRC).

Because of the fixed depth of the dipole, the perpendicular distance dbot tom−dipole

is equal to 5.9 cm, leading to a large SNR received by the bottom antennas (4a

and 4b) when the dipole is directly overhead. Note, however, that these antennas

only cover a small region of the total scan area. Moreover, the SNR never drops

below the critical 10 dB level, enabling live wireless video streaming. Hence, the

setup with diversity order 8 and an x-oriented dipole leads to a system that always
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Table 3.3: Envelope correlation matrix for the received signals (with x-oriented transmitting

dipole)

1a 3b 2a 2b 3a 1b 4a 4b

1a 1.00 0.16 0.00 -0.03 -0.02 -0.04 -0.02 0.01

3b 0.16 1.00 0.01 -0.01 -0.01 -0.04 -0.03 0.03

2a 0.00 0.01 1.00 0.47 0.01 -0.03 -0.01 -0.03

2b -0.03 -0.01 0.47 1.00 -0.01 -0.03 -0.04 0.02

3a -0.02 -0.01 0.01 -0.01 1.00 0.14 0.01 -0.03

1b -0.04 -0.04 -0.03 -0.03 0.14 1.00 0.07 -0.05

4a -0.02 -0.03 -0.01 -0.04 0.01 0.07 1.00 -0.04

4b 0.01 0.03 -0.03 0.02 -0.03 -0.05 -0.04 1.00

Figure 3.5: SNR (dB) as a function of the position for an x-oriented dipole (8th-order diversity,

all antennas included, scan area A)

ensures a sufficiently large SNR. Table 3.4 shows the relevant statistical figures

of merit for this setup. By reducing the diversity order from 8 to 6, two main

advantages arise. First, the patient comfort increases by removing the antennas

on the back (antennas 4a and 4b) and, second, the cost of the wearable antenna

system decreases. Figure 3.6 shows the SNR (dB) as a function of the position for

6th order diversity with an x-oriented dipole.

As expected, by removing the bottom antennas that contribute only in a small

area, the 6th-order diversity system still satisfies the important 10 dB SNR design

requirement. Table 3.4 shows the relevant statistical figures of merit for 8th-, 6th-,

4th- and 2nd-order diversity systems. For 8th-order diversity, all antennas were

considered, whereas for 6th-order diversity antennas 4a and 4b were excluded.

For 4th order diversity only antennas 1a, 3a, 1b and 3b were considered and for

2nd-order diversity, only bottom antennas 4a and 4b were taken into account. By

analyzing Table 3.4 for the x-oriented dipole, it is clear that a 2nd-order diversity

system does not result in a reliable multi-antenna system, as the minimal SNR
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Table 3.4: Statistical parameters for all dipole orientations and varying diversity orders, where

the gain is based on the 10% outage probability level of the CDF. Note the different scan area

size for the z-orientation, due to physical constraints (Figure 3)

Dipole Diversity Max. Min. Mean Median Gain

orientation order (dB) (dB) (dB) (dB) (dB)

X

8 49.84 17.80 26.44 25.24 13.8

6 49.84 16.30 23.00 25.24 12.5

4 49.83 11.85 20.90 20.04 9.5

2 41.87 4.30 18.91 20.48 2.1

Y

8 47.16 18.34 26.77 25.30 14.2

6 44.27 17.96 24.46 24.37 13.2

4 44.26 13.69 22.24 21.71 9.7

2 47.12 3.88 17.70 18.09 0.5

Z

8 27.99 10.85 16.89 17.32 9.25

6 11.83 8.74 10.25 10.16 7.65

4 10.97 6.87 8.69 8.56 6.15

2 27.92 3.34 14.40 16.34 2.45

Figure 3.6: SNR (dB) as a function of the position for an x-oriented dipole (6th order diversity,

bottom antennas 4a and 4b excluded, scan area A)

equals 4.30 dB, which is far below the 10 dB limit. By focusing further on the

minimal SNR, some tendencies can be extracted from Table 3.4. When increasing

the diversity order from 4 towards 6, the minimal SNR increases by 4.45 dB. This

significant gain is obtained thanks to the inclusion of antennas 2a and 2b, which

cover a large area. When further increasing the diversity order from 6 to 8, the

minimal SNR increases only by an extra 1.50 dB. Including the bottom antennas 4a

and 4b in the 8th-order diversity scheme only results in marginal improvements in

diversity gain, as they only partly cover the scan area. The Cumulative Distribution

Function (CDF) of the obtained SNR gives an indication about the gain obtained by
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applying different orders of diversity. This CDF, corresponding to P[X≤ SNR(dB)],

is shown in Fig. 3.7.

Figure 3.7: Cumulative Distribution Function (for an x-oriented dipole)

Fig. 3.7 shows the CDFs for different orders of diversity. In order not to overload

the plot, for the cases without diversity, realized by the single antennas, we only

display the results for the bottom-antenna with the highest SNR (4a), for the best

middle side-wall antenna (2a) and for the best corner side-wall antenna (3a). The

CDFs for the other five remaining antennas are shaped similar to their counterparts

located at equivalent positions. By focusing on the best-case scenario, the minimal

gain provided by implementing diversity is calculated.

Setting the criterion of an absolute minimum SNR of 10 dB guarantees continu-

ous live video transmissions at an acceptable data rate without missing packets

and without the need for a feedback link. However, the 10% outage probability

level indicates the minimal SNR level and corresponding data rate that may be fre-

quently obtained. On the condition that a channel feedback link is present, an en-

doscopy capsule can always use the currently available maximum data rate, which

is controlled through feedback from the receiver. The in-body implant then needs

to have memory to temporally buffer the recorded data and provisions should be

made to request retransmissions of potentially missed data packets. At the ex-

pense of higher power consumption and more complex hardware at both sides

of the links, such a scheme enables transmissions of higher quality video signals,

compared to a system without a feedback link.

The gains, obtained for different orders of diversity, are clearly visible as a shift to

the right in the CDFs of different orders. Focusing on the 10% outage probability

level, the 6th-order diversity performs 3 dB better than 4th-order diversity and

8th-order diversity performs 1.3 dB better than the 6th-order diversity system.

The minimal gain in terms of 10% outage probability, when comparing antenna

2a (which has the best single-antenna signal behavior) to 4th-, 6th- and 8th-order

diversity, is 9.5 dB, 12.5 dB and 13.8 dB, respectively.
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As seen on Fig. 3.7, antennas 3a and 2a have an equally shaped CDF. However, the

median of antenna 3a is 2 dB less than the median of antenna 2a, which illustrates

the larger coverage of the middle side-wall antennas 2a and 2b. The CDF of the

bottom antenna 4a exhibits a high SNR for only a small part of the scanned area.

The influence of these bottom antennas is clearly visible in the CDF of the 8th-

order diversity system, especially for the higher SNR values. It is clear that, for an

x-oriented dipole, the 4th-order multi-antenna system still satisfies the proposed

design requirement of the minimal SNR ≥ 10dB. Next, the results for a y and z-

oriented dipole are presented and compared with the previous results. From this,

the minimal diversity order, guaranteeing high-reliability data communication for

all potential dipole orientations, is derived.
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In the remainder, we focus on 8th-, 6th- and 4th-order diversity. To make a com-

parison with the x-oriented dipole, Figure 3.8 shows the SNR (dB) as a function of

the position, for a y-oriented transmitting dipole, with 6th order diversity reception

applied.

Figure 3.8: SNR (dB) as a function of the position for a y-oriented dipole (6th order diversity,

bottom antennas 4a and 4b excluded, scan area A)

Again, a 6th order multi-antenna diversity system satisfies the requirement of a

minimal SNR ≥ 10 dB. Table 3.4 shows the statistical figures of merit, for an 8th-,

6th- and 4th-order diversity system in case of a y-oriented dipole. Again, a 4th-

order diversity system provides a sufficiently large minimum SNR, more than 3 dB

higher than the critical 10 dB limit. The CDFs, as well as the correlation matrix,

show the same tendencies as in the case of an x-oriented dipole. When focusing

on the 10% outage probability for the CDF, the minimal gain, when comparing

reception by antenna 2a (which has again the best single-antenna behavior) to 4th-

, 6th- and 8th-order diversity, is equal to 9.7 dB, 13.2 dB and 14.2 dB, respectively.
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Hence, the minimal gain for each diversity order is slightly higher than for an x-

oriented dipole. As in the previous situation for an x-oriented dipole, a diversity

order of 6 seems to be optimal considering a balance between simplicity and/or

cost, on the one hand, and highly reliable data links, on the other hand.

✸✳✸✳✸ ③✲❖%✐❡♥)❡❞ ❉✐♣♦❧❡

Due to the small dimensions of the phantom, and the lengthy feeding part of the

dipole, only a limited area B could be scanned for a vertically oriented dipole.

This scan area B was also shown in Fig. 3.3. The most important region is in

the middle because of the critical low SNR’s that could occur when excluding the

bottom antennas. Given the x and y-symmetry of the phantom, conclusions can

be extended to the complete phantom. Table 3.4 presents the statistical figures

of merit for 8th-, 6th- and 4th-order diversity in the case of a z-oriented dipole

scanning the left-middle area of the bath (scan area B). The gain is again calculated

for the 10% outage probability level but now compared to reception by antenna

3b, which has the best single antenna behavior for the z-oriented dipole. Table

3.4 shows that 6th-order diversity doesn’t ensure a sufficiently large SNR, due to

the minimal SNR equal to 8.74 dB, which indicates that, for a z-oriented dipole,

8th-order diversity is necessary to guarantee a minimal SNR ≥ 10 dB. Because

of the large influence of bottom antenna 4b in scan area B, the bottom antennas

are excluded in Fig. 3.9, allowing more insight into the performance of the side-

wall antennas. Fig. 3.9 shows the SNR (dB) as a function of the position, for a

z-oriented transmitting dipole, with 6th-order diversity reception applied.

Figure 3.9: SNR (dB) as a function of position for a z-oriented dipole (6th-order diversity,

bottom antennas excluded, scan area B)

As Table 3.4 already indicated, the statistical values are below those of an x and

y-oriented dipole for the same diversity order. This is because of the limited scan

area B, where the distance to the side wall antennas is large compared to scan area

A. For 6th order diversity, as presented in Fig. 3.9, 34.2% of the scan points are
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below the critical 10 dB SNR limit. However, the applied TX power at the implant

is only half the allowed SAR limit [IEC 62209] hence when doubling the TX power

to 20 mW, the SNRs obtained with 6th order diversity increase by 3 dB. In that

case, the SNRs for the complete scan area would be above 10 dB, with a minimum

of 11.74 dB.

✸✳✹ ❈♦♥❝❧✉)✐♦♥

A multi-antenna system was developed for capturing high-data rate signals trans-

mitted by implants. All antennas in this wearable system are flexible and fully

fabricated using textile materials. Hence, the complete system can be easily and

unobtrusively integrated into a jacket or another type of garment. The system is

fully tested experimentally, by distributing the different antennas over the surface

of a human body phantom, in order to determine the optimal antenna positions

and the required diversity order for reliable high data rate communication with

the implant. When limiting the TX power to 10 mW, which is half the allowed SAR

limit, 8th-order spatial diversity is needed to allow live wireless video streaming

with a bandwidth of 1 MHz and a bit rate of 3.5 Mbit/s. When doubling the TX

power to 20 mW, 6th-order spatial diversity is sufficient to meet the imposed design

requirements in all cases. This improves patient comfort and allows the use of the

multi-antenna system even when a patient is lying in a (hospital) bed, which could

prove uncomfortable if two ’back’-antennas are deployed in the patient’s garment,

as in case of 8th-order diversity. An important conclusion is that spatial diversity

for an in-to-out body communication scenario allows the use of a simple transmit

antenna in the implant, such as a single dipole antenna. The on-body wearable

multi-antenna system then ensures a high-quality wireless link for any arbitrary

orientation and position of the implant. In the perspective of wireless-endoscopy

applications, the use of a simple antenna, operating at low power levels in the im-

planted capsule, decreases costs, size and complexity of wireless camera capsule

and increase its battery life.
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PART II
Body-to-body communication

Our analysis of indoor body-to-body communication is threefold. First,

we analyze whether the widely used Long Term Evolution (LTE) standard

is suitable for indoor public safety networks. As this LTE standard applies

Orthogonal Frequency Division Multiplexing (OFDM), we verify whether

the LTE’s Cyclic Prefix length (CP) and subcarrier bandwidth (∆ f ), as

briefly introduced in Chapter 2, are compatible with an indoor body-to-

body communication channel, as presented in Chapter 4. Second, since

we are focusing on high-data rate body-to-body communication, allowing

live video streaming between on-duty firefighters, we analyze the poten-

tial capacity of SISO, SIMO, MISO and MIMO-OFDM channels. Moreover,

we study capacity enhancement techniques as one-and two dimensional

waterfilling, presented in Chapter 5, and adaptive modulation per OFDM

subcarrier, as described in Chapter 6. Finally, in Chapter 7, the design

of an ultra-wideband dual-spatial, dual-polarization antenna array is

proven very suitable to further increase reliability, in combination with

increased throughput, of SIMO wideband body-to-body links.
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In this chapter, a wideband indoor body-to-body communication channel is

characterized and analyzed into detail by means of the RMS delay spread and

the 50% correlation bandwidth. These body-to-body channel parameters are

calculated based on high-resolution power delay profiles, directly provided by

the Elektrobit channel sounder, and are further analyzed using a ray tracing

algorithm. We have replicated a real-life rescue operation, performed by two

firefighters as part of the Rapid Intervention Team searching for potential vic-

tims, operating at the same floor of an office block. Both firefighters, who were

simultaneously moving around in the vicinity of each other, were equipped

with two cavity-backed Substrate Integrated Waveguide textile antennas un-

obtrusively integrated in the front and back section of their jackets, allowing

us to analyze four independent body-to-body links. Furthermore, we prove

that the Long Term Evolution (LTE) and, by extension, the LTE - Device to De-

vice (LTE-D2D) standard is compatible with this indoor body-to-body channel.

This could provide high-data rate indoor communication between rescuers, en-

abling multimedia broadcast and real-time communication of on-body sensor

data in public safety networks.
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State-of the art narrowband public safety networks, such as TETRA [1], provide a

wide variety of applications which help rescue workers to perform their jobs in an

efficient manner and, hence, decrease the number of casualties. However, broad-

band networks could further improve life-critical communication by allowing high

data rates, low latency and high spectral efficiency [2], [3], enabling multimedia

broadcast and efficient communication of on-body sensor data. By providing real-

time information to on-duty rescuers, their situational awareness increases, which

strengthens their decision-making process and, hence, decreases the response time

of operations. This can be of great importance when minutes, or even seconds,

count.

Long Term Evolution (LTE) [4] is seen as the future mainstream cellular based

network solution for public safety networks used by first responders. However,

since highly reliable communication between the rescuers is required at any time,

even when the cellular coverage fails or is not available, the LTE Device-to-Device

(LTE-D2D) standard could be more suitable for indoor body-to-body communi-

cation between rescuers. This extension of the general LTE standard is defined

as low-latency, energy-saving communication between two (on-body) User Equip-

ment (UE) devices, in the proximity of each other, using an LTE air interface to set

up a direct link without routing via an Evolved Node B (eNB) [5]. In this chap-

ter, we analyze if an indoor body-to-body network is compatible with LTE and,

by extension, the LTE-D2D standard. Therefore, we performed wideband, indoor,

body-to-body channel sounder measurements between two simultaneously moving

firefighters, equipped with two integrated textile antennas, providing a sufficiently

large set of reliable channel measurements to determine the wideband channel pa-

rameters, being the RMS delay spread and the 50% correlation bandwidth. These

wideband channel parameters are then used to determine the pertinent Orthogonal

Frequency Division Multiplexing (OFDM) parameters to verify the compatibility of

the indoor environment with LTE, and, by extension, LTE-D2D.

When focusing on body-to-body communication, [6] and [7] present channel char-

acterization for narrowband dynamic body-to-body communication channels at

2.45 GHz. Channel characterization of the wideband body-to-body transmissions

by means of static and dynamic measurements, not replicating real-life rescue sce-

narios, is described in [8]. Moreover, directional stacked patch antennas were

mounted on the human body instead of the antennas being unobtrusively inte-

grated into the clothing. To the authors’ best knowledge, this is the first work

which presents a detailed analysis of an indoor wideband body-to-body commu-

nication channel using high-resolution channel sounding measurements supple-

mented with ray-tracing results. Moreover, for the first time in literature, the

chapter validates, by means of real channel sounder measurements, that the LTE

standard is very suitable for indoor body-to-body links between on-duty rescuers.
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Two Ultra-Wideband cavity-backed slot antennas in Substrate Integrated Waveg-

uide (SIW) technology [9]were unobtrusively integrated inside the front and back

sections of rescuer workers’ garments, as shown in Fig 4.1. The fabricated an-

tenna is matched for the frequency band ranging from 3.33 GHz to 4.66 GHz, with

a -10 dB bandwidth of 1.33 GHz and a fractional bandwidth of 33%. Moreover,

this topology provides stable radiation characteristics when placed on different on-

body locations or even when the antenna is bent, which typically occurs in real-life

rescue operations. Furthermore, owing to the use of a groundplane, the antenna

radiates away from the firefighter while minimizing the backside radiation towards

the firefighter’s body which guarantees safe and energy-efficient operation and,

hence, makes this antenna topology very suitable for on-body usage. Additionally,

the fabricated SIW textile antenna is small, low-profile, lightweight and flexible.

This enables easy deployment inside a rescuer’s jacket.
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Figure 4.1: Front and back locations of the two integrated UWB SIW textile antennas, for both

the TX and RX firefighter.

A real-life rescue operation, performed by the Rapid Intervention Team looking for

potential victims, was replicated by mobile measurements during which both fire-

fighters were simultaneously moving around on the same floor of an office block.

When both firefighters enter a building, according to the commonly employed ”two

in - two out” principle, the RX firefighter, whose trajectory is marked by the short

dashed line on Fig. 4.2, starts scanning the offices whereas the TX firefighter,

whose trajectory is marked by the long dashed line, is simultaneously scanning

the hallway, while he remains in the vicinity of the RX firefighter. The markers A,

B and C, placed along both firefighter trajectories, indicate where the firefighters

are located at the same time instance during the one minute long measurement,

gathering 4650 measurement cycles. Measurements were performed using the

ULB-UCL Elektrobit channel sounder at 3.6 GHz center frequency with 120 MHz

useful bandwidth. The TX power was chosen equal to 20 dBm to obtain reliable

wideband channel measurements.
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Figure 4.2: Simplified indoor office model with the wideband body-to-body measurement scenario
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Indoor body-to-body communication is heavily influenced by multiple delayed

paths arriving at the RX firefighter, caused by several reflectors and scatterers in

the office environment. The time-varying power delay profiles Ph(τ), showing the

power and the corresponding delays of these multipath components together with

the power and the delay of the dominant, strongest path, are visualized in Fig. 4.3

for all four body-to-body links.
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Figure 4.3: Time-varying power delay profiles Ph(τ) for all four body-to-body links

A number of interesting features are observed for the Front to Front (F2F) link

when both firefighters are walking in the corridor (interval BC on Fig. 4.2) along

the same positive X direction towards the end of the corridor. The last arriving

multipath components, originating from the TX front antenna and impinging on

the RX front antenna, decrease in delay, as seen on Fig. 4.3A. The opposite holds

for the B2B link, as seen on Fig. 4.3D, in the same interval BC, where again, both

firefighters are walking in the corridor (interval BC) along the same positive X

direction towards the end of the corridor. Here, the dominant multipath compo-

nent, transmitted by the TX back antenna and impinging on the RX back antenna,

increases in delay and path length.
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By modelling the indoor environment using the AWE Communication - Winprop

ray tracing algorithm [10], we try to calculate the propagation paths of each mul-

tipath component in Ph(τ). Despite the fact that the office environment cannot

be modelled into great detail because of the large number of potential reflectors

and absorbers, such as computers, desks, people . . . , which cannot all be included

inside our model, a correlation coefficient of 0.91 is obtained between the power

delay profile of the last measurement cycle in interval BC and by the ray tracing

algorithm for the F2F as shown in Fig. 4.4. This good agreement is obtained by

incoperating the most important scatterers on the simplied indoor office model,

such as the metal and glass closets, windows, doors and walls, as also visible in

Fig. 4.2. Because of diffuse multipath component, which cannot be calculated by

high-resolution ray tracing algorithms, the normalized power of the ray tracer is

smaller than for the real-life measurements. Moreover, the dielectric parameters

of the materials are estimated and may differ in real environments.
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Figure 4.4: Comparison of Ph(τ) obtained by the channel sounder measurement and calculated

using the ray tracing algorithm for one cycle in interval BC for the F2F link

The ray tracing algorithm shows that the last two dominant peaks for the F2F link

are caused by multipath components that reflect on the metal closet and on the

walls at the end of the corridor, as shown in Fig. 4.2, leading to decreasing delays

when both firefighters are moving towards these reflectors, as in interval BC. For

the B2B link, the ray tracing algorithm indicates that the last dominant multipath

component corresponds to reflections on the window in the staircase leading to

increasing delay and path loss when both firefighters are walking away from these

reflectors, in the positive X-direction. For the F2B link, Ph(τ) changes dramati-

cally over time due to multiple reflections, diffractions and scattering. In contrast,

for the B2F link, one multipath component remains constant over time as shown

in Fig. 4.3C. The latter multipath component has a fairly constant delay because

both firefighters are walking in the positive X-direction (as indicated in Fig. 4.2) at

equal speeds, in a situation where the signal propagation occurs via double reflec-
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tion on objects situated behind and in front of of the TX firefighter in the floor plan.

Note that the power and delay of both the dominant path and multipath compo-

nents vary over time, depending on the constantly changing mutual orientation

and relative distance between the RX and the TX firefighters.

❘▼❙ ❞❡❧❛② (♣*❡❛❞

The RMS delay spread τRMS indicates the time domain spread of multiple delayed

copies of the transmitted pulse arriving at the RX firefighter. It is calculated for

every of the 4650 measurement cycles, for all four body-to-body links separately.

Define L the number of distinct multipath components, Pl the (linear) power of

a multipath component and τl the corresponding delay of that multipath compo-

nent, such that the RMS delay spread τRMS is calculated via the mean delay τ̄ as

[11]:

τ̄=

L
∑

l=1

Pl .τl

L
∑

l=1

Pl

, (4.1)

τRMS =

√

√

√

√

√

√

√

L
∑

l=1

Pl .(τl − τ̄)2

L
∑

l=1

Pl

. (4.2)

The excess delay τexcess is defined as the difference in delay between the first and

last arriving multipath of Ph(τ). It is calculated as:

τexcess = τL −τ1. (4.3)

Since τRMS not only depends on the delay but also on the power of the multipath

components, it is important to define the power ratio, in dB, as the ratio of the

direct path power P1 to the power summed over the other multipath components

Pl , extracted from Ph(τ).

PR= 10.log10









P1

L
∑

l=2

Pl









(4.4)

By considering the power ratio, it is possible to distinguish indoor scenarios that

lead to high and low τRMS values, such as in the interval BC for the F2B and the
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B2F link. As shown on Fig. 4.3B, for the F2B link, where the TX front and RX back

antenna are pointing away from each other, a lot of multipath components are

present in interval BC. The powers of these multipath components are only slightly

smaller than the power of the dominant path, leading to a small power ratio and a

large excess delay, which causes a high RMS delay spread, as shown in Fig. 4.5 and

numerically described in Table 4.1. In the same interval BC, the opposite holds for

the B2F link, where the TX back antenna is directly pointing towards the RX front

antenna. Now, the dominant, direct path is clearly stronger than the power in the

multipaths, corresponding to a high mean power ratio. Together with the smaller

excess delay, this leads to a smaller τRMS in interval BC. When comparing the F2F

and F2B link, we clearly notice the influence of the power ratio on τRMS . Despite

the fact that the excess delay is approximately equal, the lower PR for the F2B link

leads to a RMS delay spread that is 62% higher than for the F2F link, as described

in Table 4.1.
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Figure 4.5: RMS delay spread over time for the B2F and F2B link

Fig. 4.5 also shows that, in interval AB, τRMS is low and approximately constant

due to the lack of strong multipath components. Also note that τRMS , in Fig. 4.5,

is obtained by using a running average filter over 77 consecutive samples, cor-

responding to one second of measurement, in order to prevent a heavily varying

τRMS and to ensure that the trends are clearly visualized for all intervals.

Table 4.1: Mean power ratio, mean excess delay and mean RMS delay spread for interval BC

PR(dB) τexcess(ns) τRMS(ns)

F2F 1.94 204 24.09

F2B -5.51 201 39.18

B2F 14.61 115 6.85

B2B 2.32 159 18.11
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Previous extensive wideband indoor channel measurements, described in [12],

show that τRMS is environment- and frequency dependent with values generally

below 30 ns, except for very large rooms with large distances between potential

reflectors, as is the case in our indoor environment. A more general rule of thumb

indicates that τRMS is above 10 ns and under 50 ns [11] which largely matches the

results presented in Fig. 4.6, presenting the CDFs of τRMS for all four body-to-body

links, over the complete measurement duration.
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Figure 4.6: CDF of τRMS over the compelete measurement for all four body-to-body links

For this indoor scenario, τRMS is above 1.71 ns and below 58.02 ns during 98%

of all measurement cycles. Large variations in τRMS occur due to the constantly

changing mutual orientations and the relative positions of both firefighters, as well

as the varying distance between the two firefighters. The small τRMS values are

caused by sporadic high values of the power ratio (> 15dB), for example at the

starting point (marker A) where the back antennas of both firefighter are close to

each other, or by extremely low values of the excess delay (< 50 ns). Low values for

the excess delay sometimes occur when the received signal is very weak, leading

to a dominant peak power only few dB above the noise floor. This leads to only a

few multipath components exceeding the noise floor and hence to a small excess

delay and a small τRMS . For further calculations in Section 4.4, we make use of the

90% outage probability level, τRMS,90, defined as the maximum RMS delay spread

during 90% of the time and these values are numerically described in Table 4.2.

✺✵✪ ❝♦%%❡❧❛)✐♦♥ ❜❛♥❞✇✐❞)❤

If the calculated τRMS is not significantly smaller than the symbol duration TS ,

strong multipath components of symbol Xn could influence symbol Xn+1, leading

to Inter Symbol Interference (ISI). Moreover, delayed multipaths, arriving at the
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RX firefighter, introduce frequency-selective fading, which is analyzed by observing

the correlation between received signals at two different frequencies [11]. In this

case, the frequency correlation function is given by the Fourier Transform of Ph(τ):

RT (ν) =

τmax
∫

0

Ph(τ).e
− j2πν f τ.dτ. (4.5)

In this chapter, the 50% correlation bandwidth BC ,0.5 is defined as the minimal

bandwidth separation, resulting in 50% decorrelated signals. Note that, since the

useful channel sounder bandwidth is equal to 120 MHz and the 50% correlation

bandwidth is defined single-sided, the maximum computable bandwidth separa-

tion is limited to 60 MHz in our measurement setup.

If the indoor body-to-body channel only exhibits few weak multipath components,

the wideband channel is almost frequency-flat and the frequency separation is

large (> 60MHz). This is happening in the dashed red line in Fig. 4.7. In con-

trast, if the indoor body-to-body channel is composed of a lot of strong multipath

components, corresponding to low power ratios, the frequency selectivity of the

wideband channel increases because the delayed multipaths interfere with each

other. This leads to smaller frequency separation to ensure 50% decorrelation, as

happening for the solid blue line shown in Fig. 4.7, corresponding to to 13.81 MHz

frequency separation for a Power Ratio equal to -6.89 dB.
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Fig. 4.8 shows the CDFs of BC ,0.5 for all four body-to-body links over the com-

plete measurement. As stated before, the maximum computable BC ,0.5 is limited

to 60 MHz because the useful Elektrobit channel sounder bandwidth is equal to

120 MHz. For further calculations in Section 4.4, we define the 10% outage prob-
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ability level, BC ,0.5,10 as the minimum 50% correlation bandwidth during 90% of

the time. These values are numerically described in Table 4.2.
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Figure 4.8: CDF is BC ,0.5 over the complete measurement for all four body-to-body links

Table 4.2: 90% outage probability of the RMS delay spread (τRMS,90), 10% outage probability

of the 50% correlation bandwidth (BC ,0.5,10) and mean α

F2F F2B B2F B2B

τRMS,90(ns) 33.07 45.80 19.69 23.18

BC ,0.5,10(MHz) 8.62 3.92 11.37 8.24

ᾱ 3.28 4.30 3.56 4.55

As a final step of the wideband body-to-body channel characterization, we calculate

the parameter α which describes the inverse relationship between τRMS and BC ,0.5.

Its value depends on the environment as well as on the power ratio:

α=
1

τRMS .BC ,0.5

. (4.6)

Table 4.2 presents the mean α over all 4650 measurement cycles. Since α is gener-

ally between 1 and 10 for indoor environments [12], these values indicate that the

wideband, indoor body-to-body channel parameters are within the normal range.

✹✳✹ ▲♦♥❣ ❚❡(♠ ❊✈♦❧✉.✐♦♥ ✭▲❚❊✮

In this section, we analyze whether the LTE standard, and, by extension, the LTE-

D2D standard, would be suitable for an indoor body-to-body communication chan-

nel. As explained in Section 4.3, the symbol duration Ts should be sufficiently
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larger than the RMS delay spread to avoid ISI. However, increasing the symbol

duration Ts results in a lower data rate, which limits the possibility to transmit

multimedia or real-time on-body sensor data. Therefore, the frequency-selective

wideband channel is subdivided into N orthogonal and low-data rate subcarriers,

which enlarges the total data rate and avoids ISI by inserting a cyclic prefix be-

tween two succesive OFDM symbols on one subcarrier.

Define C Pmin to be the minimum cyclic prefix length that prevents ISI on all sub-

carriers for all four body-to-body link during (at least) 90% of the time. Based

on the maximum RMS delay spread, the minimal cyclic prefix length is generally

calculated as [13]:

C Pmin = 3.τRMS,max = 137.4ns. (4.7)

This cyclic prefix length is compatible with the LTE standard, which sets the cyclic

prefix length equal to 4.69 µs [14], being larger than the C Pmin.

✹✳✺ ❈♦♥❝❧✉)✐♦♥

This chapter presents a detailed wideband indoor body-to-body channel character-

ization by means of channel sounder measurements and a ray tracing algorithm.

The ray tracing results show good agreement with the actual measurement results

which indicates that our simplified indoor office model is reliable and, hence, use-

ful to further investigate indoor body-to-body propagation. The results of the mea-

surement campaign show that, the LTE, and, by extension, the LTE-D2D standard

is a potential standard for public safety indoor body-to-body networks, a purpose

for which it was originally not designed.



4.5. Conclusion 59

In contrast to a cellular based network, an indoor body-to-body link is subject to

fading and body shadowing at both ends of the link with additional highly variable

signal fluctuations due to the constant reorientation of both members of the Rapid

Intervention Team. It is of great interest to see that the LTE standard, designed for

communication with a fixed access point, is also suitable for indoor communication

between two simultaneously moving firefighters, experiencing these difficult radio

propagation conditions.

❆❝❦♥♦✇❧❡❞❣♠❡♥+
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Reliable, high-data rate indoor communication is essential to transfer crucial

information between firefighters for improving their safety and decreasing the

number of casualties caused by indoor fires. Since electronic monitoring sys-

tems, including antennas implemented inside the firefighter jacket, should pro-

vide high data rates, communication over a wideband channel is required. We

study an 80 MHz-wide body-to-body channel at 3.6 GHz between two firefight-

ers of a Rapid Intervention Team performing the primary search for victims,

by static and dynamic channel sounder measurements. Two Ultra-Wideband

Substrate Integrated Waveguide cavity-backed slot textile antennas were un-

obtrusively deployed in the front and the back sections of the firefighters’ jack-

ets, providing up to 2× 2 MIMO communication. We calculate the achievable

SISO-, SIMO-, MISO- and MIMO-OFDM capacities for realistic indoor broad-

band body-to-body communication channels between two firefighters. Further-

more, we analyze implementations of one-dimensional spatial waterfilling and

two-dimensional space-frequency waterfilling, studying their ability to further

enhance transmission of live sensor data, pictures or videos between mobile

firefighters.

✺✳✶ ■♥%&♦❞✉❝%✐♦♥

In 2012, according to the International Association of Fire and Rescue Services [1],

residential, indoor fires are the major origin of fire, both country-wide (49.5%) and

restricted to cities (50.9%). Additionally, in the year 2012 alone, thirteen US fire-

fighters died in an indoor environment [2]. Previous numbers demonstrate the

necessity of reliable indoor communication between rescue workers, at high data

rates, in potentially life-threatening situations. Such a wireless communication

system increases the rescue workers’ safety by providing efficient communication

of crucial information, such as sensor data, pictures or videos. Moreover, state-of-

the-art off-body communication has the potential to reduce costs, damage, time

of operation and the number of injured or deaths. Furthermore, a body-to-body

MIMO scenario is expected to be of great importance, especially from the prac-

tical point of view, for next generation communication systems that will see an

integration of antennas and devices into fabrics.

In this chapter, the first detailed analysis of the wideband body-to-body wireless

channel is presented between high-performance Ultra-Wideband (UWB) cavity-

backed Substrate Integrated Waveguide (SIW) textile antennas integrated in the

rescue workers’ garments. Based on these channel sounding measurements, de-

tailed wideband channel information, such as high-resolution power delay profiles,

is analyzed and interpreted for the first time. The channel sounding experiment

was performed during the accurate replication of a real firefighter intervention,

corresponding to the primary search of a Rapid Intervention Team (RIT) [3]. Dur-

ing the measurements, all procedures and techniques performed during a real in-
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tervention were carefully reproduced in real-time, such that the effect of body

postures, relative orientation and distance between the two members of the RIT

are reflected in the channel data. The specific contributions are:

1. The relevant Orthogonal Frequency Division Multiplexing (OFDM) parame-

ters are determined for both the static and dynamic body-to-body wireless

channel between 2× 2 on-body UWB-SIW antennas.

2. Next, the achievable SISO-, SIMO-, MISO- and MIMO-OFDM capacities are

evaluated for the first time for realistic broadband body-to-body communi-

cation channels with 80 MHz bandwidth.

3. The scenario where channel feedback is available is analyzed in detail, en-

abling one-dimensional spatial and two-dimensional space-frequency water-

filling. It is proven that, for the considered scenario, both the one- and two-

dimensional waterfilling capacity gains are relatively small compared to the

capacity obtained by simple, uniform MIMO.

From the measurement campaign and subsequent channel characterization, we

conclude that 2× 2 MIMO is largely sufficient for efficient communication of live

sensor data, pictures or videos between two firefighters during an intervention, and

that channel feedback and MIMO waterfilling schemes are not needed to achieve

the necessary data throughput and channel reliability. Although the measure-

ments are performed using an Elektrobit channel sounder operating at 3.6 GHz

center frequency with 80 MHz bandwidth, the results can be extended to both the

lower 2.45 GHz Industrial, Scientific and Medical (ISM) band [4] and the higher

5 GHz Wi-Fi band [5], making them applicable to wideband channels in the IEEE

802.11ac [6] and IEEE 802.11n [7] standards. In addition, they provide insight

into the performance of other networks that occupy less bandwidth, such as WiMax

[8]. First, a static Non-Line-of-Sight (NLoS) corridor-to-office measurement was

performed, followed by a dynamic measurement with both firefighters moving si-

multaneously in the office environment, replicating a real-life rescue operation.

For both measurements, two wearable UWB-SIW antennas are unobtrusively and

invisibly deployed inside each firefighter’s jacket, implementing up to 2×2 MIMO

communication.

A lot of work has been performed to improve the reliability and to increase the

channel capacity for body centric communication [9],[10] in Wireless Body Area

Networks (WBAN’s) [11]–[14]. MIMO channels may provide significant capac-

ity and diversity gain in narrowband on-body communication channels [15]–[17].

For narrowband off-body links, MISO provides diversity gain when the two off-body

channels are sufficiently decorrelated [18]. Moreover, SIMO [19],[20] and MIMO

[21],[22] increase reliability and performance. In wideband personal area net-

works, the potential use of MIMO to enhance performance is revealed in [23]. Also
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for static wideband channels, MIMO-OFDM has been extensively studied, for sev-

eral orders of MIMO systems in [24]–[30]. Yet, applied to WBANs, only [31] sim-

ulates performance gain when improving from SISO Multiband (MB)-OFDM over

MISO- to MIMO MB-OFDM from a body-surface node to an external node. In [32],

the optimum on-body locations for static and pseudo dynamic scenarios are deter-

mined for an MB-OFDM UWB body-centric wireless network. Yet, no research on

MIMO capacity gain was performed. When focusing on body-to-body communica-

tion, [33] presents a comprehensive statistical characterization for narrowband dy-

namic body-to-body communication channels at 2.45 GHz. Furthermore, receive

diversity, yielding 8.69 dB diversity gain, is successfully implemented by combining

four receiver branches using Maximal Ratio Combining (MRC). Also in [34], chan-

nel gains, small-scale fading and large-scale fading are statistically described for

narrowband, indoor body-to-body communication channels at 2.45 GHz. Channel

characterization of the wideband body-to-body transmissions by means of static

and dynamic measurements, not replicating real life rescue scenarios, is described

in [35]. In contrast to this chapter, no MIMO-OFDM capacity calculations were

performed and the directional stacked patch antennas were mounted on the hu-

man body instead of unobtrusively integrated into the clothing. Ref. [36] calcu-

lated the average channel capacity of body-to-body systems, with different printed

PCB antenna systems placed on the human body. However, due to the user’s strin-

gent requirements in terms of wearability and comfort, the rigid PCB antennas

should be compact when placed on the human body. In contrast, flexible textile

antennas exploit the large surface provided by the clothing to optimize the an-

tenna dimensions, without affecting user’s comfort, to maximize both the isolation

from the human body and the Front to Back Ratio (FBRT). Moreover, since this

design strategy ensures that power is radiated away from the human body, flexible

textile antennas are safer and more energy efficient, making them more suitable

for body-centric communication. Additionally, [36] only investigated the narrow-

band MIMO channel at 2.45 GHz, which does not allow to evaluate OFDM and its

specific wideband parameters in the specific rescue workers scenario under study.

To our knowledge, this is the first MIMO-OFDM capacity analysis for realistic in-

door broadband body-to-body communication channels between two simultane-

ously moving firefighters in an office environment. The chapter is structured as

follows. Section 5.2 details the measurement setup while Section 5.3 describes

the calculated OFDM parameters and the theoretic OFDM capacity calculations.

Section 5.4 presents the results and, finally, the conclusions are drawn in Section

5.5.

✺✳✷ ▼❡❛&✉(❡♠❡♥+ &❡+✉♣

Let us first describe the implemented UWB-SIW textile antennas, followed by the

outline of both the static and dynamic measurement scenarios. Finally, the Elek-

trobit channel sounder settings are discussed.
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Both the TX and RX firefighters are equipped with two UWB-SIW textile anten-

nas, unobtrusively integrated inside their firefighter jacket in the front and back

sections, as shown in Fig. 5.1. The antenna locations were chosen to guarantee

minimal influence on antenna characteristics caused by movement and equipment

worn by the firefighter during interventions, such as the oxygen bottle and buck-

les. Moreover, the rear antenna is vital for transmitting and receiving signals when

the firefighter lies, face down, on the floor and his body is completely blocking the

front antenna [37].
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Figure 5.1: Front and back locations of the integrated UWB-SIW textile antenna, for both

the TX and RX firefighter, applied for the broadband indoor body-to-body measurements. In

the actual measurements, the UWB-SIW textile antennas are effectively integrated inside the

firefighter jackets, between the inner liner and the thermal/moisture barrier.

UWB-SIW cavity backed slot antennas [38] provide excellent antenna-to-human

body isolation as they mainly radiate in the hemisphere pointing away from the

human body, whereas radiation towards the human body is minimized. This leads

to a higher radiation efficiency, on the one hand, and stable antenna characteristics

at different on-body locations, on the other hand. In addition, [38] also proves that

the antenna maintains its excellent performance under bending, as could be the

case in harsh environments, such as during rescue operations. Furthermore, they

guarantee a stable and high radiation efficiency over a very large -10 dB impedance

bandwidth. Additionally, next to the low-cost production process, the material

inside the firefighter jackets is reused as antenna substrate, limiting the cost of

such an integrated textile cavity-backed slot antenna to the cost of the copper-

coated nylon taffeta electro-textile and the copper eyelets, which act as an effective
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electric wall in the antenna design. Finally, they are low-profile, lightweight and

flexible, and, therefore easily deployable inside the firefighter jacket.
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Figure 5.2: (a) Measured free space and on-body |S11|, with respect to 50 Ω, (b) Measured

stand-alone and on-body radiation patterns in the H-plane (XZ-plane), (c) Measured stand-

alone and on-body radiation patterns in the E-plane (YZ-plane), at 3.6 GHz

First, we assess the antenna’s stand-alone and on-body performance in free-space

conditions in an anechoic room using an Agilent N5242A PNA-X Network analyzer.

For the on-body scenario, the real-life scenario was emulated where the SIW an-

tenna is deployed inside the front section of the firefighter jacket, worn by a 1.80

meter high male test person.

Fig. 5.2(a) depicts both the return loss characteristics of the stand-alone antenna

and the on-body setup, indicating that the human body is ’invisible’ to the antenna,

leading to stable and reliable performance for different on-body positions, as also

shown in [38]. The stand-alone antenna is matched in the frequency band rang-

ing from 3.35 GHz to 4.64 GHz, corresponding to a -10 dB bandwidth of 1.29 GHz.

For the on-body scenario, the antenna is matched from 3.45 GHz to 4.72 GHz, cor-

responding to a similar -10 dB bandwidth of 1.27 GHz. The same measurement

setups, combined with an Orbit/FR positioning system, were replicated to mea-

sure both the stand-alone and on-body radiation pattern at 3.6 GHz. Figs. 5.2(b)

and 5.2(c) depict both the measured stand-alone and on-body radiation patterns

in the H- and E-plane, respectively. Note that, the stand-alone and on-body radia-

tion patterns are in good agreement because the SIW antenna minimizes backside

radiation while strongly radiating in the opposite hemisphere. This leads to similar

gains along broadside, equal to 6.11 dBi and 5.94 dBi for the stand-alone and on-

body scenario, respectively. The backside radiation for the on-body SIW antenna

is reduced due to the presence of the human body, which absorbs radiation. How-

ever, since backward radiation is already very small in both setups, the difference
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is only marginal. Due to the larger slot dimensions in the XZ-direction compared

to the YZ-direction, as visible in Fig. 5.1, the SIW antenna is more directive in

the H-plane, leading to 3 dB beamwidth equal to 53◦ and 103◦ in the H-plane and

E-plane, respectively. More measurement results and detailed antenna dimensions

are extensively described in [38].

In real-life rescue operations, one firefighter is scanning the corridor while the

other firefighter is scanning the offices, looking for potential victims. This implies

that, most of the time, the firefighters have to deal with a Non Line of Sight (NLoS)

scenario such as a corridor-to-office scenario. Therefore, first, a static NLoS mea-

surement, as shown in Fig. 5.3, was performed in which the TX firefighter was

standing at the beginning of the corridor with his front antenna pointing along the

positive X direction and the RX firefighter was standing in office 2 with an open

door and his front antenna pointing along the positive Y direction towards the

office entrance.
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Figure 5.3: Static corridor-to-office NLoS scenario
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Second, mobile measurements were performed with both firefighters simultane-

ously moving around as part of a Rapid Intervention Team (RIT) performing the

primary search, looking for victims, in an office floor of a building [3]. We focus

on the communication between the members of this RIT team, typically composed

of two to four firefighters, operating on the same floor, in each other’s vicinity. The

replicated real-life primary search operation, according to the ”two-in, two-out”

principle, involves an intervention where two firefighters are entering a building

in which the first firefighter immediately starts scanning the hallway, using the

hand-search technique described in [39], while the second firefighter starts scan-

ning the offices using the same technique. For this dynamic measurement scenario,

the simplified floor plan and the TX and RX firefighter trajectories are shown in

Fig. 5.4. Applied to a real-life rescue operation, the TX firefighter, whose path is

marked by the long dashed line, is scanning the hallway while the RX firefighter,

whose path is marked by the short dashed line, is simultaneously scanning the of-

fices. The markers A to H, placed along the TX firefighter path as well as on the

RX firefighter trajectory, show where both firefighters are located at the same time

instance during the measurement.

For example, at marker B, the RX firefighter leaves office 1 while the TX firefighter is

approximately in the middle of the hallway. The subintervals ➀ to ➃, further used

to indicate specific scenarios of the dynamic measurements, correspond to different

propagation phenomena depending on the mutual position and orientation of both

firefighters. Practically, the RX channel sounder is positioned in a fixed location

and is connected to the RX firefighter, providing sufficient cable length to cover the

complete path. The TX channel sounder is also connected by means of cables to the

TX firefighter but the equipment is moving along with the walking TX firefighter

by means of a third person pushing the cart. Special care was taken that this third

person is located sufficiently far away from both the TX and RX firefighter during

the complete measurement, such that he is not influencing the measurements.

✺✳✷✳✸ ❈❤❛♥♥❡❧ *♦✉♥❞❡. *❡//✐♥❣*

The measurements are performed by the UCL-ULB Elektrobit channel sounder, con-

nected to multiple TX and RX antennas, as used in [40]. The channel sounder is

based on a switched-array and uses an up-converted and phase-modulated pseudo-

noise sequence to probe the channel. At the receiver side, after down conversion

and demodulation, Channel Impulse Responses (CIRs) are obtained [41]. The

Rubidium standard stabilized local oscillators inside both multi-antenna units are

synchronized by first minimizing the phase rotation and then performing a time-

tag synchronization during which a common absolute time reference is given to

both units. Table 5.1 lists the applied channel sounder settings.
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Table 5.1: Channel sounder settings

Center frequency 3.6 GHz

Bandwidth 200 MHz

Useful bandwidth 120 MHz

Delay resolution 2.5 ns

Code length 255 chips

# Samples/chip 4

# Samples/code 1020

Maximum delay 2.550 µs

# TX Antennas 2

# RX Antennas 2

Scan array time 102 µs

Channel sample rate 75.75 Hz

Transmit power 100 mW

Unfortunately, our channel sounder can only be tuned to a carrier frequency be-

tween 3.6 GHz and 4.2 GHz. Therefore, we have fixed the center frequency to

3.6 GHz, which is, on the one hand, an operating frequency for (indoor) WiMax

[42], and, on the other hand, approximately in the middle of the 2.45 GHz ISM

band, supporting the 802.11n standard, and the 5G Wi-Fi band, supporting both

the 802.11n and 802.11ac standard. Moreover, the Federal Communication Com-

mission (FCC) has recently proposed the 3.5 GHz for both licensed and unlicensed

Broadband Radio services with 150 MHz bandwidth, Priority Access and interfer-

ence protection [43]. The specific characteristics, which enable increased speed,

capacity and adaptability, make this ”3.5 GHz band of Innovation” also a potential

candidate for future Indoor Public Safety Networks. During measurements, the

transmit power was chosen equal to 100 mW to obtain reliable channel measure-

ments. However, for all calculations, the measurement results are rescaled for a

transmit power of 1.5 mW, as this corresponds to the required power to ensure that

the received Signal to Noise Ratio (SNR) on all four SISO links exceeds 5 dB during

90% of the time, guaranteeing reliable timing synchronization and frequency off-

set estimation in the MIMO-OFDM system [44]. Moreover, this critical SNR level

allows reliable demodulation and detection on a practical receiver.

✺✳✸ ❈❛❧❝✉❧❛(✐♦♥,

✺✳✸✳✶ ❖❋❉▼ ♣❛*❛♠❡-❡*.

In wireless communication, to avoid Inter Symbol Interference (ISI), the symbol

duration TS should be chosen sufficiently larger than the RMS delay spread τRMS ,

which is extracted from high-resolution power delay profiles. One such profile is
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shown in Fig. 5.5, for the back-to-back link in the dynamic measurement scenario

(interval AC).
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Figure 5.5: Time-varying power delay profile Ph(τ) for the back-to-back link in the dynamic

measurement scenario (interval AC), together with Ph(τ) at position C.

However, increasing TS leads to a decreasing data rate, which is a major drawback

when firefighters need to transmit live sensor data, pictures or video. Therefore,

to increase capacity while still preventing ISI, the wideband body-to-body channel,

which experiences frequency-selective fading, can be subdivided into N subcarri-

ers. The spacing between these orthogonal subcarriers is further defined as ∆ f .

To ensure that consecutive symbols on one subcarrier do not interfere, the cyclic

prefix CP should be chosen larger than three times τRMS , calculated using the mean

delay τ̄ as [45]:

τ̄=

L
∑

l=1

Pl τl

L
∑

l=1

Pl

, (5.1)

τRMS =

√

√

√

√

√

√

√

L
∑

l=1

Pl (τl − τ̄)2

L
∑

l=1

Pl

. (5.2)

Yet, inserting a cyclic prefix in an OFDM symbol causes overhead, given by

Ov =
C P

Ts

, (5.3)
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with the total OFDM symbol time determined as

Ts = C P +
1

∆ f
. (5.4)

For both the static measurement, based on 5000 measurement cycles over 65 sec-

onds, and the dynamic measurement, relying on 15000 measurement cycles over

197 seconds, τRMS is calculated for the four SISO body-to-body communication

links: front-to-front (F2F), front-to-back (F2B), back-to-front (B2F) and back-to-

back (B2B). However, for a practical implementation, only one value for the cyclic

prefix can be chosen, in the static or dynamic scenario. The selected value prevent

ISI, during 99% of the time, in all four SISO links. Therefore, a stringent limit, be-

ing the largest CP of the four SISO links, results in the OFDM parameters described

in Table 5.2.

Table 5.2: Calculated OFDM parameters for the static and dynamic scenario

CP TS Ov

Static 84.93 ns 1.680 µs 5.06%

Dynamic 150.03 ns 3.335 µs 4.50%

Note that, since the indoor scattering mechanisms for 2.4 GHz and 5.2 GHz are

proven very similar [46], the calculated channel parameters may be extrapolated

to the lower ISM band and the higher Wi-Fi band, as also proven in [47] for a wide

range of frequencies. Moreover, taking into account the limited mutual distance

between both firefighters, the Free Space Path Loss (FSPL) only slightly increases

when operating in the higher Wi-Fi band, compared to the channel sounder mea-

surements at 3.6 GHz. This implies that the MIMO-OFDM channel capacity will be

similar, although a slight decrease in range is possible when extending the results

to the higher 5G Wi-Fi band, supporting both the 802.11n and 802.11ac standard.

Logically, the results can also be extrapolated to the IEEE 802.11n standard, oper-

ating in the 2.45 GHz ISM band, given the decreased FSPL.

✺✳✸✳✷ ■❊❊❊ ✽✵✷✳✶✶♥✴❛❝

In both the wideband 802.11n and 802.11ac standard, the OFDM subcarrier band-

width is equal to 312.5 kHz and the smallest OFDM cyclic prefix length is equal to

400 ns, which is sufficient for this indoor office scenario. The length of the cyclic

prefix is fixed, and not changed in an adaptive manner, because no channel delay

information is available via common, simple channel feedback techniques. The

802.11n/ac OFDM parameters fulfill the requirements resulting from our chan-

nel sounding campaign, indicating the possibility to successfully implement the

802.11ac standard for broadband body-to-body links in a typical indoor environ-

ment. To assess the performance in a practical implementation, the OFDM capacity
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is calculated using the 802.11n/ac subcarrier bandwidth and cyclic prefix, leading

to an OFDM symbol time Ts equal to 3.6 µs and an overhead Ov equal to 11%.

The dynamic range of the channel sounder limits the useful OFDM bandwidth to

120 MHz. Therefore, we calculate the OFDM capacities for an OFDM bandwidth

equal to 80 MHz, which is the highest achievable bandwidth compatible with the

802.11ac standard.

✺✳✸✳✸ ❖❋❉▼ ❈❛♣❛❝✐,②

In this chapter, the wideband indoor body-to-body channel is subdivided into 256

frequency-flat subcarriers having different capacities, depending on the Signal to

Noise Ratio (SNR) at the receiver. The number of subcarriers depends on the

OFDM bandwidth and on the subcarrier bandwidth ∆f. It is found to be:

N =
  B

∆ f

£

=
  80MHz

312.5kHz

£

= 256. (5.5)

Let Pk define the transmit power allocated to subcarrier k, σ2 the noise power, Hk

the channel matrix of subcarrier k, NT X the number of transmit antennas, NRX the

number of receive antennas and Ov the overhead. Assuming constant TX power

with constant power spectral density and assuming that the channel is unknown

at the transmitter but perfectly known at the receiver, and therefore employing

uniform power allocation, the SISO-, SIMO-, MISO- and MIMO-OFDM capacity

per subcarrier k, in bps/Hz, is calculated as:

Ck = log2

�

det
�

INRX
+

Pk

NT X .σ2
.Hk.Hk

H
��

. (5.6)

Equivalently, since the MIMO channel can be subdivided into r equivalent SISO

spatial subchannels, with r =min(NT X , NRX ), the MIMO-OFDM subcarrier capacity

Ck is also calculated as the sum of r equivalent SISO spatial subchannel capacities.

These SISO spatial subchannel capacities are determined via eigenvalue decompo-

sition of Hk.Hk
H , leading to a column vector of eigenvalues λk = [λ1,kλ2,k ...λr,k]

T .

The equivalent MIMO-OFDM subcarrier capacity Ck, for uniform power allocation

of Pk over the r equivalent SISO spatial subchannels, in bps/Hz, is calculated as:

Ck =

r
∑

i=1

log2

�

1+
Pk

NT X .σ2
.λi,k

�

, (5.7)

leading to exactly the same MIMO-OFDM subcarrier capacity Ck as (5.6). The

eigenvalue decomposition, determined by the spatial correlation between the links

from any transmit to any receive antenna, gives an indication of the possible mul-

tiplexing gain, per subcarrier, when applying MIMO-OFDM. This implies that the
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spatial multiplexing gain per subcarrier, when applying 2 × 2 MIMO, is largest if

the two eigenvalues are equal, corresponding to fully uncorrelated spatial chan-

nels [48], and hence fully exploiting parallelism.

When the channel state information (CSI) is known at both receiver and transmit-

ter, via channel feedback, the MIMO-OFDM capacity can be increased by applying

waterfilling, allocating more power to the stronger subchannels [49], [50]. In

case of one-dimensional spatial waterfilling, the power per subcarrier Pk is spread

over r equivalent SISO spatial subchannels, with r = min(NT X , NRX ), allocating

more power to the strongest spatial subchannel. As a first step, eigenvalue de-

composition is performed on Hk.Hk
H , leading to a column vector of eigenvalues

λ1D,k = [λ1,k λ2,k ... λr,k]
T with λ1,k > λ2,k > ... > λr,k. Then, the following algo-

rithm is implemented for every subcarrier k [49]:

1. Set the iteration count p = 1

2. Calculate the water level as:

µ=
NT X

r − p+ 1

�

1+
1

σ2

r−p+1
∑

i=1

1

λi,k

�

(5.8)

3. Calculate the power allocated to the ith spatial subchannel of subcarrier k,

defined as:

γi,k =
�

µ−
NT X .σ2

Pk.λi,k

�

(5.9)

If now, min(γi,k)< 0, set p = p +1 and go to step 2 in the algorithm.

When the algorithm ends, the power on each spatial subchannel of subband k is

nonnegative, and the optimal power allocation, per subband, is found. The one-

dimensional spatial waterfilling MIMO-OFDM capacity for subcarrier k, in bps/Hz,

is calculated as:

Ck,1D =

r
∑

i=1

log2

�

1+
Pk

NT X .σ2
γi,k.λi,k

�

. (5.10)

For two-dimensional space-frequency waterfilling, the total transmit power PT X

is spread over the r equivalent spatial subchannels for all N subcarriers at once,

such that the power is optimally allocated over rN virtual parallel channels. There-

fore, the total channel matrix H is calculated as a diagonal matrix of all subcarrier

channel matrices Hk:

H=





H1 0 0

0
... 0

0 0 HN



 . (5.11)
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Next, eigenvalue decomposition is performed on H.HH , leading to a column vector

of eigenvaluesλ2D = [λ1λ2...λrN ]
T withλ1 > λ2 > ...> λrN . Subsequently, power

is allocated to all rN virtual channels whereby the power of the virtual channel i is

calculated as [51],[52]

pi =max
�

0,ε−
σ2

λi

�

. (5.12)

The starting value of ε is equal to PT X . Next, ε is iteratively decreased until the

power constraint is met, indicating that the power

PT X =

rN
∑

i=1

pi (5.13)

is optimally distributed over the rN virtual channels. The capacity per virtual chan-

nel i, in bps/Hz, is calculated as

Ci = log2

�

1+
pi .λi

σ2

�

. (5.14)

The OFDM capacity C̄OFDM, in bps/Hz, for uniform and one-dimensional MIMO, is

calculated as the average over all N subcarrier capacities [24], [53], [54], corrected

with the overhead Ov , caused by the cyclic prefix, yielding

C̄OFDM =

�

1

N

N
∑

k=1

Ck

�

�

1−Ov

�

. (5.15)

Note that the one-dimensional spatial waterfilling MIMO-OFDM capacity is cal-

culated in the same way by replacing Ck, derived from (5.6) or (5.7), by Ck,1D,

derived from (5.10). Moreover, the overhead is also taken into account for the cal-

culations of the SISO-, SIMO- and MISO-OFDM capacities. For two-dimensional

waterfilling, the total OFDM capacity C̄OFDM, in bps/Hz, is calculated as the sum

over all rN virtual channel capacities Ci , divided by the number of subcarriers N,

and corrected with the overhead Ov:

C̄OFDM,2D =

�

1

N

rN
∑

i=1

Ci

�

�

1−Ov

�

(5.16)

However, to compare the subcarrier capacity of 2 × 2 MIMO2D to uniform 2 × 2

MIMO and 2 × 2 MIMO1D, the 2N virtual subchannel capacities are recalculated

as N subcarrier capacities. Therefore, an eigenvalue decomposition is performed

on H.HH , producing a diagonal matrix D of eigenvalues and a full matrix V whose

columns are the corresponding eigenvectors so that (H.HH).V = V.D. Note that
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the column vector λ2D, as previously defined, contains the diagonal elements of

D in decreasing order. The matrix V, with dimensions 2N× 2N, contains only two

non-zero elements per eigenvector (or per column) located on row-index r and

row-index r+1, for odd row-indexes r. Moreover, for the first N eigenvectors of V,

the row-index r is unique with r ∈ [1 ... N − 1]. Yet, for the last N eigenvectors of

V, the same unique row-indexes are found, meaning that for only two (out of 2N)

eigenvectors, the non-zeros elements are located at the same row-indexes r and

r+1.

When, for example, the non-zero elements of eigenvectors vy and vy ′ , with vy ∈
[1 ... N] and vy ′ ∈ [N + 1 ... 2N], are located on the same row-indexes [rx , rx + 1],

the eigenvalues Dvy ,vy
and Dvy′ ,vy′

are used to recalculate the capacity on subcarrier

k with:

k =
rx + 1

2
. (5.17)

By finding Dvy ,vy
and Dvy′ ,vy′

in the sorted column vector λ2D, the indexes i and

j of the two virtual subchannels corresponding to subcarrier k are found, where

index i corresponds to spatial subchannel r = 1 and index j corresponds to spatial

subchannel r = 2. The MIMO2D subcarrier capacity is then calculated using (5.14),

yielding:

Ck,2D = Ci + C j . (5.18)

This algoritm calculates N subcarrier capacities out of 2N virtual subchannel ca-

pacities for two-dimensional space-frequency waterfilling, allowing to use (5.15)

to calculate the MIMO2D-OFDM capacity by replacing Ck by Ck,2D, yielding the

same MIMO2D-OFDM capacity as (5.16).

✺✳✸✳✹ ❙♣❛'✐❛❧ ❝♦,,❡❧❛'✐♦♥

For each of the 256 frequency-flat subcarriers, the complex correlation ρ between

channel coefficients of two physical channels from the MIMO system is calculated.

Because of the channel variations over time, in the 197 seconds long dynamic mea-

surement scenario, the complex correlation coefficient ρ is calculated, per subcar-

rier, within a window corresponding to 1 second of measurements. Taken into

account that both firefighters walk at 0.5 m/s, the path loss is expected to be con-

stant within this window and hence the complex correlation coefficient ρ only

comprises the shadowing and small-scale fading effects. Moreover, calculations

show that the path loss standard deviation is only 1.89 dB within this1s- window,

which is very small compared to the full measurement range, equal to 43.99 dB

received SNR.
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When calculating the correlation between, for example, the Front to Front (F2F)

and Front to Back link (F2B) link, a matrix of 256x197 complex correlation coeffi-

cients is obtained. Further analysis is performed by first finding the time-average

values of |ρ| for each OFDM subcarrier and second by finding the average value

over all subcarriers, as in [24]. Table 5.3 shows that the spatial correlation coeffi-

cients are below 0.7 which indicates that the channel coefficients on different sub-

carriers are sufficiently decorrelated. This implies that the MIMO-OFDM channel

capacity is expected to increase when applying transmit and/or receive diversity

on a subcarrier basis, for the dynamic measurement scenario.

Table 5.3: Amplitude of the correlation coefficient for the dynamic measurement scenario

F2F F2B B2F B2B

F2F 1 0.27 0.33 0.27

F2B 0.27 1 0.32 0.0.32

B2F 0.33 0.32 1 0.30

B2B 0.27 0.32 0.30 1

Table 5.4 presents the spatial correlation coefficients for the static measurement

scenario (Fig 5.3). The correlation among two physical channels is higher than

for the dynamic measurement scenario, which indicates that less MIMO-OFDM

capacity gain is expected.

Table 5.4: Amplitude of the correlation coefficient for the static measurement scenario

F2F F2B B2F B2B

F2F 1 0.79 0.86 0.39

F2B 0.79 1 0.83 0.38

B2F 0.86 0.83 1 0.40

B2B 0.39 0.38 0.40 1

✺✳✹ ▼❡❛&✉(❡♠❡♥+ (❡&✉❧+&

✺✳✹✳✶ ❙■❙❖✲ ❛♥❞ ▼■▼❖✲❖❋❉▼ ❝❛♣❛❝✐1②

The resulting OFDM capacities, achieved per measurement cycle, are time varying.

This behaviour is visualized by means of a Cumulative Distribution Function (CDF),

for both the static and dynamic scenario, as seen in Figs 5.6 and 5.7, respectively.

Consider the 10% outage capacity C̄OFDM,out,10 being the OFDM capacity guaran-

teed during 90% of the time [49]. The characteristics also provide an indication

of the capacity gain obtained by the different MIMO techniques, visible by a shift

to the right of the curves. Capacities of each SISO link vary independently of each

other due to the constantly varying mutual orientation and relative position of
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each firefighter as well as by people moving in the environment, resulting in a

time-varying capacity gain. However, the capacity gain of the MIMO systems is

only calculated for the 10% outage probability level [21]. We define ḠOFDM,out,10

as the 10% outage capacity gain, calculated by comparing the 10% outage MIMO

capacity to the median of the corresponding SISO links. To make the chapter more

concise, in the sequel we simply call C̄OFDM,out,10 outage capacity and ḠOFDM,out,10

outage capacity gain.

We now define the different MIMO schemes as:

• SIMO-F2F/B: TX front to RX front and back antenna

• SIMO-B2F/B: TX back to RX front and back antenna

• MISO-F/B2F: TX front and back to RX front antenna

• MISO-F/B2B: TX front and back to RX back antenna

• MIMO: TX front and back to RX front and back antenna

For the static scenario, the CDFs of all four SISO links, together with the SIMO-,

MISO-, and MIMO-OFDM channels, are shown in Fig. 5.6. Note that, in order

to not overload Fig. 5.6, the different CDFs are marked with a number or letter,

corresponding to the different SISO and MIMO schemes, described in Table 5.5.

The 10% outage capacity and the 10% outage capacity gain given are given in

Table 5.6. From Fig. 5.6, it is clearly visible that the SISO-F2F and SISO-F2B

links outperform the SISO-B2F and SISO-B2B link because the TX front antenna

is pointing towards the receiver whereas the TX back antenna is oriented away

from the RX firefighter, leading to smaller SNR and, hence, smaller capacity, in

the latter two scenarios. The steep curves of all CDFs indicate only small capacity

variations caused by people walking in the corridor and by small body movements

of the static TX or RX firefighters.

Table 5.5: All SISO and MIMO schemes with their corresponding graphical marker as a legend

for the calculated CDFs

SISO-F2F ➀ SIMO-F2F/B ➄ MIMO ➈

SISO-F2B ➁ SIMO-B2F/B ➅ MIMO-1D A

SISO-B2F ➂ MISO-F/B2F ➆ MIMO-2D B

SISO-B2B ➃ MISO-F/B2B ➇

As seen in Table 5.6, in the static scenario, SIMO-F2F/B, combining the strongest

two SISO links, obviously leads to higher outage capacity than SIMO-B2F/B, com-

bining the weakest two SISO links. In both SIMO scenarios, the outage capacities

are higher than the stronger of their two SISO links. For MISO-F/B2F and MISO-

F/B2B, combining a strong and weak SISO link, the outage capacities are smaller

than SIMO-F2F/B but larger than SIMO-B2F/B. In both MISO scenarios, the outage
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Figure 5.6: CDF of the calculated OFDM capacities, for all SISO and MIMO links, in the static

scenario. Note that the CDF of MIMO1D, indicated by A, is almost equal to the CDF of MIMO2D,

indicated by B

Table 5.6: Calculated 10% outage capacity (bps/Hz) and 10% outage capacity gain (bps/Hz),

compared to the median of the corresponding SISO links, for both the static and dynamic

scenario

Static scenario Dynamic scenario

C̄OFDM,out,10 ḠOFDM,out,10 C̄OFDM,out,10 ḠOFDM,out,10

SISO-F2F 4.51 - 0.80 -

SISO-F2B 4.27 - 1.04 -

SISO-B2F 1.14 - 1.45 -

SISO-B2B 1.43 - 1.21 -

SIMO-F2F/B 5.50 1.06 1.63 0.63

SIMO-B2F/B 2.09 0.75 2.32 0.84

MISO-F/B2F 3.77 0.86 1.79 0.28

MISO-F/B2B 3.64 0.67 1.77 0.22

MIMO 5.54 2.62 3.67 2.20

MIMO-1D 5.84 2.91 4.06 2.59

MIMO-2D 5.87 2.95 4.09 2.62

capacities are smaller than their stronger SISO link but larger than their weakest

SISO link. This is caused by equally distributing the total TX power over the two

TX antennas, meaning that the stronger SISO link has to sacrifice half its power to

the weaker SISO link, leading to a reduced capacity. Since the capacity gain is cal-

culated with respect to the median capacity of the two corresponding SISO links,

the outage capacity gains are comparable for both the SIMO and MISO scenario.
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For the uniform MIMO configuration, the outage capacity is higher than for all

SISO, SIMO and MISO configurations. Moreover, when applying one- and two di-

mensional waterfilling, the outage capacity increases by an additional 0.30 bps/Hz

and 0.33 bps/Hz, respectively, leading to the highest outage capacity, equal to 5.87

bps/Hz, as well as to the largest outage capacity gain, equal to 2.95 bps/Hz, when

applying two-dimensional waterfilling.

When improving from the strongest SIMO (F2F/B) and MISO (F/B2F) configu-

ration to the MIMO setup, the outage capacity gain is increased with 147% and

204% respectively, indicating that the outage capacity gain drastically increases

when applying MIMO. Moreover, when channel state information is available at

the transmitter, one- and two-dimensional waterfilling increase outage capacity

gain by an additional 11.21% and 12.55%.

For the dynamic scenario, the CDFs of the capacity of all four SISO links together

with SIMO-, MISO-, and MIMO-OFDM, are shown in Fig. 5.7. The outage capac-

ity and the outage capacity gain are presented in Table 5.6. Note that the four

SISO links, indicated by the solid lines, are comparable. Therefore, they are not

marked separately. In the dynamic scenario, the less steep CDFs indicate that the

OFDM capacity exhibits larger variations, compared to the static scenario, due

to the constantly changing distance, mutual orientations and relative positions of

both firefighters.

SIMO-F2F/B

SIMO-B2F/B

MISO-F/B2F

MISO-F/B2B

MIMO

MIMO-1D

MIMO-2D

SISO

5

6

7

8

B

A

9

9 A B

5

6

7

8

Figure 5.7: CDF of the calculated OFDM capacities, for all SISO and MIMO links, in the dynamic

scenario

Since the OFDM capacity between the single SISO links differs less than in the

static scenario, as seen in Table 5.6, both SIMO and MISO lead to higher outage

capacity than each single SISO link. The capacity gain for MISO is smaller than

for SIMO because the power per TX antenna is halved and all SISO links have
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approximately the same outage capacity. Therefore, the outage capacity gain is

larger when combining two links at full TX power (SIMO) than when combining

two links at half the TX power (MISO). As in the static scenario, MIMO with two-

dimensional waterfilling leads to the highest outage capacity, equal to 4.09 bps/Hz,

as well as to the largest outage capacity gain, equal to 2.62 bps/Hz. The outage

capacity gain is increased by 162% when comparing the SIMO-B2F/B and MIMO

channels and even by 686% when going from MISO-F/B2F to MIMO. Again, one-

and two-dimensional waterfilling increase outage capacity gain by an additional

17.76% and 19.25% respectively, compared to the MIMO outage capacity without

channel feedback.

For the dynamic measurement scenario, the multiplexing gain is expected to be

higher. At first sight, this contradicts the results of Table 5.6. However, for the

dynamic measurement scenario, the relative orientation of both rescue workers

constantly changes. As a result, all four SISO channels exhibit approximately the

same outage capacity. This implies that the 2.20 bps/Hz of outage capacity gain,

compared to the median of the four SISO links, is a good indication of the potential

multiplexing gain. In contrast, for the static measurement scenario, the positions

and relative orientation of both rescue workers remain constant. As a result, some

links will suffer more from body shadowing than others. The two weak SISO links,

being B2F and B2B, which are the most affected by body-shadowing at both ends of

the body-to-body channel, drastically decrease the median value of the four SISO

links. This increases the outage capacity gain to an overestimated high value, equal

to 2.62 bps/Hz. Therefore, we introduce the minimal multiplexing gain, calculated

by comparing the outage MIMO capacity to the strongest of the corresponding SISO

links. This minimal multiplexing gain is equal to 1.03 bps/Hz and 2.22 bps/Hz for

the static and dynamic measurement scenarios, respectively. These results corre-

spond to the expectations based on the spatial correlation coefficients presented

in Table 5.3 and 5.4.

✺✳✹✳✷ ▼■▼❖✲❖❋❉▼ ✇❛,❡.✜❧❧✐♥❣ ❝❛♣❛❝✐,② ❣❛✐♥

As mathematically described in (5.15), the MIMO-OFDM capacity per measure-

ment cycle is calculated as the average capacity over all N subcarriers. This im-

plies that the waterfilling capacity gain per measurement cycle, defined as Ḡ, is

calculated as the average of the subcarrier capacity gains Gk:

Ḡ =
1

N

N
∑

k=1

Gk. (5.19)

Since the subcarrier capacity gain Gk is limited, as described in the frequency do-

main subsection below, the capacity gain per measurement cycle Ḡ is also limited

when applying one- or two-dimensional waterfilling, compared to uniform MIMO,

as discussed in the time domain subsection. Define Ckr=1
and Ckr=2

as the spatial
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SISO subcarrier capacities for uniform MIMO, Ck,1Dr=1
and Ck,1Dr=2

as the spatial

SISO subcarrier capacities for MIMO1D. Finally, let Ck,2Dr=1
and Ck,2Dr=2

be the spa-

tial SISO subcarrier capacities for MIMO2D.

❋!❡#✉❡♥❝② ❞♦♠❛✐♥

Because of the frequency selectivity of the wireless channel, the MIMO, MIMO1D

and MIMO2D subcarrier capacities vary considerably over all N subcarriers, as seen

on Fig. 5.8. Fig. 5.8.a shows the 2×2 uniform MIMO subcarrier capacity Ck, indi-

cated by the thick blue line and calculated as the sum of the corresponding equiv-

alent spatial SISO subchannels capacities, Ckr=1
and Ckr=2

, as in (5.7). Fig. 5.8.b

presents the 2 × 2 MIMO1D subcarrier capacity Ck,1D, indicated by the thick blue

line and calculated as the sum of Ck,1Dr=1
and Ck,1Dr=2

(red curves), as in (5.10).

Fig. 5.8.c shows the 2×2 two-dimensional waterfilling MIMO2D subcarrier capac-

ity Ck,2D, indicated by the thick blue line and calculated as the sum of Ck,2Dr=1
and

Ck,2Dr=2
(green curves), as in (5.18). The black curves in Figs. 5.8.b and 5.8.c cor-

respond to the spatial SISO subchannels in case of uniform MIMO, extracted from

Figure 5.8.a. They are included to compare spatial subchannel capacities in case

of uniform MIMO with MIMO1D and MIMO2D, respectively. In all three subfigures,

the instantaneous subcarrier capacities are plotted for the first measurement cycle

in the static scenario. Note that the rather flat MIMO-OFDM capacity curve for

the strongest SISO subchannel r = 1, corresponding to the largest eigenvalue, is

caused by the logarithmic relationship between the SNR and capacity. Since the ef-

fect of relatively small SNR variations on the capacity is small, only small subcarier

capacity variations are noticeable for spatial SISO subchannel r = 1. The opposite

holds when the relative SNR variation is large, leading to the significantly varying

subcarrier capacity curve for the weaker SISO subchannel r = 2, corresponding to

the smallest eigenvalue.

For one-dimensional waterfilling, define the condition number for subcarrier k as:

κ(k) =
λmax

λmin

. (5.20)

Table 5.7: One-dimensional MIMO subcarrier capacity gains (over uniform MIMO), Gk,1D, for

different subcarriers, yielding different condition numbers κ(k)

r = 1 r = 2

subcarrier κ(k) Ck Ck,1D Ck Ck,1D Gk,1D

129 113 5.25 6.23 0.41 0 0.57

143 2420 5.70 6.69 0.03 0 0.96

182 12 6.10 6.21 2.68 2.57 0
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Figure 5.8: (a) 2× 2 uniform MIMO subcarrier capacity Ck, (b) MIMO1D subcarrier capacity

Ck,1D and (c) MIMO2D subcarrier capacity Ck,2D. Subcarrier capacities are indicated by thick

blue lines. The black curves in (b) and (c) correspond to the spatial SISO subchannels capacities

in case of uniform MIMO, extracted from Fig. (a)
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When κ(k)>> 1, the eigenvalue of the strongest spatial SISO subchannel is much

larger than the eigenvalue of the smallest spatial SISO subchannel. This indicates

that the subcarrier power Pk is completely allocated to the stronger of the two

equivalent spatial SISO subchannels, doubling the SNR of this stronger SISO sub-

channel and, hence, leading to a theoretical maximum MIMO subcarrier capacity

gain, on r = 1, equal to 1 bps/Hz. Yet, the total MIMO subcarrier capacity gain

when applying one-dimensional waterfilling, Gk,1D, depends on the capacity loss

on spatial subchannel r = 2, to which less power is allocated. The one-dimensional

waterfilling gain, over uniform MIMO, is calculated as

Gk,1D =
�

Ck,1Dr=1
− Ckr=1

�

−
�

Ck,1Dr=2
− Ckr=2

�

. (5.21)

This is further explained in Table 5.7, explaining the varying MIMO1D subcarrier

capacity gains for different subcarriers by the difference in condition number κ(k).

Subcarriers 129 and 143 exhibit a very large condition number. Therefore, the

subcarrier capacity gains on r = 1 equal 0.98 and 0.99 bps/Hz, respectively, but the

subcarrier capacity losses on r = 2 are equal to 0.41 and 0.03 bps/Hz, respectively.

Hence, the total MIMO subcarrier capacity gains when applying one-dimensional

waterfilling equal 0.57 bps/Hz for subcarrier 129, and 0.96 bps/Hz for subcarrier

143, strongly approaching the theoretical maximum. In contrast, when κ(k)→ 1,

the eigenvalues of both spatial SISO subchannels become more equal, indicating

more uniform power allocation over both SISO subchannels, and hence, producing

no MIMO subcarrier capacity gain Gk,1D, as for subcarrier 182.

In case of two-dimensional waterfilling, the subcarrier power is not limited to Pk.

This implies that, compared to MIMO1D, both the subcarrier capacities of r = 1

and r = 2 can increase, meaning that the MIMO subcarrier capacity gain could

exceed 1 bps/Hz. This phenomenon is visible on subcarrier 182, as indicated on

Fig. 5.8.c. When comparing MIMO and MIMO2D, the capacity of the strongest

spatial subchannel r = 1 rose from 6.10 bps/Hz to 6.85 bps/Hz while the capacity

of the weakest spatial subchannel r = 2 is also increased from 2.68 bps/Hz to

3.21 bps/Hz, leading to a total MIMO subcarrier capacity gain Gk,2D equal to 1.28

bps/Hz. This additional power allocation to the stronger subcarriers results in

less power allocated to other, weaker subcarriers. This could result in subcarrier

capacity loss (instead of gain) when comparing MIMO and MIMO2D. However,

the two-dimensional space-frequency waterfilling algorithm optimizes the power

allocation to ensure that the total MIMO2D-OFDM capacity, calculated as the mean

over all N subcarrier capacities, is larger than both the uniform MIMO-OFDM and

MIMO1D-OFDM capacities, as proven below.

❚✐♠❡ ❞♦♠❛✐♥

Since the calculated MIMO-OFDM capacity is time-varying, also the capacity gains

(per measurement cycle) for MIMO1D or MIMO2D vary over time, as shown in
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Fig. 5.9 for the dynamic scenario in interval AC. Fig. 5.9 indicates that, on the

one hand, both the one- and two-dimensional waterfilling gains depend on the

capacity already achieved by uniform MIMO, indicated by the solid blue line in

Fig. 5.9. The lower the uniform MIMO-OFDM capacity, the higher the potential

waterfilling gains, indicated by the two dashed lines on Fig. 5.9.

1

2 3 4

X-36s
Y-50s

COFDM

7.50 bps/Hz

Figure 5.9: Time-domain behaviour of 2×2 MIMO1D and 2×2 MIMO2D capacity gain, compared

to the uniform 2× 2 MIMO-OFDM capacity C̄OFDM, as calculated in (5.15), for interval AC in

the dynamic scenario.

On the other hand, for one-dimensional waterfilling, as described before, the sub-

carrier capacity gain Gk,1D depends on the condition number κ(k), indicating that

the mean waterfilling capacity gain over all N subcarriers, defined as Ḡ1D, also de-

pends on the mean condition number over all N subcarriers, defined as κ̄. This is

shown in Table 5.8 for two time instances with the same uniform MIMO-OFDM ca-

pacity. As the mean condition number over all N subcarriers, κ̄, is nine times higher

for time instance Y than for time instance X, the power, allocated to the strongest

spatial subchannel r = 1, is higher for time instance Y. This increases the one-

dimensional subcarrier capacity gains Gk,1D, increasing the mean one-dimensional

waterfilling gain Ḡ1D, from 0.11 to 0.35, when comparing time instant X with time

instant Y.

The two-dimensional waterfilling algorithm allocates equal power to the largest N

(of rN) eigenvalues or to the strongest N virtual channels, corresponding to spatial

SISO subchannel r = 1. The larger the ratio between the mean of the largest N

eigenvalues and the mean of the smallest N eigenvalues, defined by ν, the more

power the algorithm allocates to the strongest N virtual channels and, hence, the

larger the two-dimensional waterfilling gain Ḡ2D over uniform MIMO.

Table 5.8 shows that the ratio between the mean of the largest N eigenvalues and
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the mean of the smallest N eigenvalues, ν, is 45 times higher for time instance Y

than for time instance X. Therefore, the equal power allocated to the strongest N

virtual channels is higher for time instance Y than for time instance X, leading to

increased two-dimensional subcarrier capacity gains Gk,2D. This also increases the

mean two-dimensional waterfilling gains Ḡ2D, from 0.16 to 0.39, when comparing

time instant X with time instant Y.

Table 5.8: One-and two-dimensional mean waterfilling gains, Ḡ1D and Ḡ2D, in bps/Hz, for

different time instances, having the same uniform MIMO-OFDM capacity, C̄OFDM, in bps/Hz

Time C̄OFDM Ḡ1D Ḡ2D κ̄ ν

X = 36s 7.50 0.11 0.16 3.87 14.77

Y = 50s 7.49 0.35 0.39 34.36 666.95

In Fig. 5.9, the high MIMO-OFDM capacity in interval BC, when both firefighters

are walking in the corridor in the positive X-direction (Fig. 5.4), is caused by the

LoS link, leading to a strong B2F SISO link. Moreover, as indicated in Fig. 5.5,

in interval BC, also the B2B link is strong owing to the limited relative distance

between both firefighters. Also for subinterval ➀ in interval AC (Fig. 5.9), the high

MIMO-OFDM capacity is caused by a LoS link between the TX back and RX back

antenna, as visible in Fig. 5.5. Oppositely, the smaller MIMO-OFDM capacities in

subinterval ➁ to ➃, corresponding to a NLoS scenario, are caused by the absence

of a strong LoS link, since one firefighter is located in office 1 while the other

firefighter is located in the corridor.

✺✳✺ ❈♦♥❝❧✉(✐♦♥

In this chapter, real-life firefighter rescue operations were replicated by means of a

static and dynamic measurement campaign, from which the SISO-, SIMO-, MISO-

and MIMO-OFDM capacities are calculated for realistic indoor broadband body-

to-body communication channels. By considering the RMS delay spread and 50%

correlation bandwidth, derived from the channel impulse responses collected with

the Elektrobit channel sounder, it is found that the wideband IEEE 802.11ac and

IEEE 802.11n standards are good candidates for indoor body-to-body communica-

tion, a purpose for which they were originally not designed. Indoor body-to-body

communication is different from regular Wi-Fi links because the channel is highly

variable, especially in dynamic scenarios. Moreover, both ends of the body-to-body

link experience body-shadowing effects.

When no channel state information is available at the transmitter, data rates equal

to 443 Mbps and 294 Mbps are achieved, during 90% of the time, in the static

and dynamic scenario, respectively, with an OFDM bandwidth equal to 80 MHz, as

possible in 5 GHz Wi-Fi. These data rates, obtained at a transmit power equal to

1.5 mW, are definitely sufficient, even with a code rate of 1/2, to ensure efficient
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communication of crucial information between firefighters. When channel state

information is available at both the transmitter and receiver, allowing waterfill-

ing MIMO-OFDM by allocating more power to stronger channels, only a relatively

small 24 Mbps and 26.4 Mbps extra data rate are achieved, during 90% of the

time in the static scenario, for one- and two-dimensional waterfilling respectively.

Also in the dynamic scenario, only an extra 31.2 Mbps and 33.6 Mbps data rate

are obtained when applying one-or two dimensional waterfilling respectively. This

implies that implementing channel feedback, which increases system complexity,

is not essential to guarantee efficient communication of live sensor data, pictures

or videos between two firefighters of the Rapid Intervention Team. Moreover, by

implementing 2×2 MIMO, even without waterfilling and its channel feedback re-

quirements, the 10% outage MIMO capacity gain drastically increases, with a min-

imum of 147%, over SIMO and MISO, in both the static and dynamic scenario.

Considering the smaller bandwidth in the 2.45 GHz ISM band, equal to 20 MHz,

data rates of 111 Mbps and 73 Mbps are achieved in the static and dynamic sce-

nario, respectively, for simple 2× 2 MIMO without channel feedback. This implies

that, even for lower bandwidths, the obtained data rates are definitely sufficient for

transferring live sensor data, pictures and videos, between static or simultaneously

moving firefighters, with only two high-performance on-body antennas. Moreover,

because of the limited battery capacity of the on-body devices, an energy-efficient

2× 2 MIMO system may be more suitable for body-to-body communication than

higher-order MIMO systems, which provide higher data rates at the cost of larger

power consumption.

Two general conclusions can be drawn for real-life, indoor rescue operations where

a Rapid Intervention Team is performing the primary search, looking for any vic-

tims:

• High data rates are achieved with only limited transmit power and a limited

number of on-body antennas when a wideband channel is available.

• It is not beneficial to implement (complex) waterfilling algorithms in wide-

band indoor body-to-body channels.

❆❝❦♥♦✇❧❡❞❣♠❡♥+
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In this chapter, we present the Bit Error Rate characteristics for an in-

door, wideband body-to-body channel between two firefighters when using

IEEE 802.11 ac, which is proven a very suitable standard for future, wide-

band public safety networks. Moreover, the BER and throughput characteris-

tics, when applying both transmission blocking, fixed and adaptive, subcarrier

modulation are presented. These characteristics show an increased throughput

when applying adaptive subcarrier modulation. We have conducted a wide-

band, indoor channel sounder campaign at 3.6 GHz with 120 MHz useful

bandwidth, simulating real-life rescue operations performed by two simultane-

ously moving members of the Rapid Intervention Team. Both firefighters were

equipped with low-profile, lightweight and energy-efficient Ultra-Wideband

Cavity-Backed slot antennas in Substrate Integrated Waveguide technology,

unobtrusively deployed inside the front and back sections of their jackets, pro-

viding 2× 2 MIMO capability.
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Future Public Safety Networks, which support communication between on-duty

firefighters, are expected to evolve from narrowband towards wideband Wireless

Body Area Networks (WBANs) [1], [2]. By applying Orthogonal Frequency Divi-

sion Multiplexing (OFDM), these wideband, frequency-selective channels can be

subdivided into multiple frequency-flat, orthogonal subcarriers, increasing the to-

tal throughput compared to state-of-the-art narrowband public safety networks.

Moreover, the highest possible modulation order, which still guarantees a suffi-

ciently low Bit Error Rate (BER), may be applied per frequency-flat subcarrier.

This strategy increases the throughput on each subcarrier, and hence, maximizes

the total throughput. This high throughput, combined with a low BER, allows mul-

timedia broadcast and efficient communication of real-time on-body sensor data

between on-duty firefighters. Moreover, the rescue workers’ situational awareness

increases whereas the response time of operation decreases, which is a major ad-

vantage in indoor public safety networks where minutes, or even seconds count.

Therefore, a wideband indoor body-to-body channel sounder campaign, replicat-

ing real-life rescue operations performed by the Rapid Intervention Team (RIT),

has been carried out in an office environment. Both members of the RIT, typically

operating in each others vicinity, were equipped with two low-profile, lightweight

Ultra-Wideband (UWB) textile antennas [3], unobtrusively integrated in the front

and back sections of their firefighter jackets, providing a 2× 2 MIMO link.

Considering that the IEEE 802.11 ac standard [4] is proven very suitable for indoor

body-to-body channels, we analyze the BER performance of the four modulations

supported by this wideband standard, being 4-, 16-, 64- and 256 Quadrature Am-

plitude Modulation (QAM). Moreover, we prove that the 2× 2 MIMO wideband,

body-to-body channel can be subdivided into two independent, quasi-uncorrelated

spatial subchannels which simultaneously transmit data, providing multiplexing,

and, hence, throughput gain. The throughput of these two spatial subchannels

is further optimized by fixed or adaptive subcarrier modulation with transmission

blocking [5]. This optimization algorithm blocks transmission on subcarriers lead-

ing to a BER higher than the pre-set BER threshold while assigning the same, or

an adaptively changing, modulation to the other, active subcarriers that guarantee

a BER smaller than or equal to the pre-set BER threshold.

A simple adaptive modulation technique for individual subcarriers was already

proposed in 1996 by Czylwik [6], showing that the required power can be dramat-

ically reduced when applying adaptive, instead of fixed, subcarrier modulation.

Through the years, more complex adaptive modulation schemes were proposed,

focusing on trade-off between performance and throughput [7], maximizing spec-

tral efficiency [8] or minimizing transmission energy [9]. However, only [10] pro-

poses an adaptive scheme for the WBAN physical layer, concentrating on off-body

communication. Increasing BER performance and decreasing power consumption

are demonstrated. This chapter proposes, for the first time in literature, an anal-
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ysis of fixed and adaptive subcarrier modulation with transmission blocking for

indoor, wideband body-to-body channels. The scheme maximizes the potential

throughput and, hence, data rate in future wideband public safety networks.

✻✳✷ ▼❡❛&✉(❡♠❡♥+ &❡+✉♣

A real-life rescue operation, performed by the Rapid Intervention Team looking for

potential victims, was replicated by mobile measurements during which both fire-

fighters were simultaneously moving around on the same floor of an office block,

as shown in Fig. 6.1. Both the TX and RX firefighters were equipped with two

low-profile, lightweight and flexible Ultra-Wideband cavity-backed slot antennas

in Substrate Integrated Waveguide (SIW) technology [3]. These antennas pro-

vide stable radiation characteristics when placed on different on-body locations.

Moreover, they are unobtrusively integrated inside the front and back sections of

the firefighter jackets, as shown in Fig. 6.1, implementing 2 × 2 MIMO. When

both firefighters enter a building, the RX firefighter, whose trajectory is marked

by the short dashed line on Fig. 6.1, starts scanning the offices whereas the TX

firefighter, whose trajectory is marked by the longer dashed line, is simultaneously

scanning the hallway, while he remains close to the RX firefighter. The markers

A, B and C, placed along both firefighter trajectories, indicate where the firefight-

ers are located at the same time instant during the one-minute-long measurement,

collecting 4650 measurement cycles for all four body-to-body links. Measurements

were performed using the Elektrobit channel sounder at 3.6 GHz center frequency

with 120 MHz useful bandwidth. The TX power was chosen equal to 20 dBm to

obtain reliable wideband, body-to-body channel measurements.

✻✳✸ ▼■▼❖✲❖❋❉▼
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By means of the high-resolution power delay profiles, directly provided by the

Elektrobit channel sounder, the maximum RMS delay spread during 90% of the

time, defined as τRMS,90 is found for the Front to Back (F2B) link. We obtain

τRMS,90 equal to 45.80 ns. When employing OFDM, the wideband, frequency-

selective, body-to-body channel is subdivided into N lower data rate, orthogonal

subcarriers. When focusing on the time domain, a Cyclic Prefix (CP) is added in

between two consecutive OFDM symbols on one subcarrier to avoid Inter Symbol

Interference (ISI). The minimal CP length should be larger than, or equal to, 3

times the maximal RMS delay spread [11]. The calculated OFDM parameter is

compatible with the IEEE 802.11 ac standard, which sets the minimal cyclic prefix

length equal to 400 ns seconds, being larger than 137.4 ns. For further calculations,
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Figure 6.1: Simplified indoor office model with the wideband body-to-body measurement scenario together with the front and back locations of the

two integrated UWB SIW textile antennas, for both the TX and RX firefighter
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the wideband indoor body-to-body channel is subdivided into 256 frequency-flat

subcarriers, corresponding to a total OFDM bandwidth equal to 80 MHz.

✻✳✸✳✷ ❊✐❣❡♥✈❛❧✉❡ ❉❡❝♦♠♣♦2✐3✐♦♥

When employing MIMO-OFDM, the MIMO channel can be subdivided into r equiv-

alent SISO spatial subchannels, with r = min(NT X , NRX ). The received Signal to

Noise Ratio (SNR) of these SISO spatial subchannels is calculated via the eigen-

value decomposition of Hk.Hk
H , with Hk the channel matrix of subcarrier k. This

leads to a column vector of eigenvalues λk = [λ1,k λ2,k ...λr,k]
T . The received SNR

on subcarrier k for spatial subchannel i is then calculated as:

SNRi,k =
Pk

NT X .σ2
·λi,k, (6.1)

with Pk the transmit power allocated to subcarrier k, σ2 the noise power and NT X

the number of transmit antennas. The eigenvalue decomposition, dependent on

the spatial correlation between the links from any transmit to any receive antenna,

gives an indication of the possible multiplexing gain, per subcarrier, when applying

MIMO-OFDM. This implies that the spatial multiplexing gain per subcarrier, when

applying 2×2 MIMO, is largest if the two eigenvalues are equal, corresponding to

fully uncorrelated, equal-gain, spatial channels, and hence fully exploiting paral-

lelism. When using the method described in [12], the spatial correlation between

the F2F and B2B link is found equal to 0.17. This indicates that the channel co-

efficients are sufficiently decorrelated to ensure spatial multiplexing, and hence,

throughput gain per subcarrier when subdividing the 2× 2 MIMO-OFDM channel

into two independent, quasi-uncorrelated spatial subchannels.

✻✳✸✳✸ ❇✐3 ❊55♦5 ❘❛3❡

Define M the number of constellation points for a M-square constellation and the

Q-function such that, when employing Gray-mapping, the Bit Error Rate of sub-

carrier k for spatial subchannel i is calculated as:

BERi,k =
Nb

log2(M)
Q

�

√

√d2
min

2
· SNRi,k

�

, (6.2)

with:

Nb =
4
!p

M − 1
�

p
M

, (6.3)
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d2
min
=

6

M − 1
. (6.4)

Define L the number of measurement cycles, r the number of spatial subchannels

and N the number of frequency-flat subcarriers such that the mean received SNR

and mean BER are calculated as:

SNR=
1

L

L
∑

l=1

�

1

r

r
∑

i=1

� 1

N

N
∑

k=1

SNRl,i,k

�

�

, (6.5)

BER=
1

L

L
∑

l=1

�

1

r

r
∑

i=1

� 1

N

N
∑

k=1

BERl,i,k

�

�

. (6.6)

Fig. 6.2 presents the BER characteristics of the different modulations supported

by the IEEE 802.11 ac standard when employing uniform power allocation. Due

to body shadowing effects, 4QAM performs worse than the simulated 4QAM curve

for Rayleigh fading and diversity order 1. Also note that for the same SNR, the

higher order modulations lead to higher BER due to the reduced noise margin.

B
E

R

SNR (dB)

Body shadowing

Region of interest when 

applying Adaptive Modulation

4QAM

16QAM

64QAM

256QAM
Rayleigh, Div 1, 4QAM

Figure 6.2: Mean BER performance for two spatial subchannels, of all four modulations sup-

ported by the IEEE 802.11ac standard
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In this section, we analyze the performance of a wireless body-to-body system

which uses perfect Channel State Information (CSI) to ensure a BER ≤ BERthresh.

By means of channel feedback, transmission blocking is applied on subcarriers

which experience a SNR< SNRthresh, leading to a BER> BERthresh. These non-used

subcarriers are ”turned of”, without subcarrier power reallocation, so that the SNR

and BER on these non-used subcarriers are not defined whereas the throughput is

set to 0 bits/symbol. In contrast, all subcarriers who experience a SNR ≥ SNRthresh

leading to BER≤ BERthresh, are assigned the same subcarrier modulation leading to

a subcarrier throughput equal to log2(M) bits/symbol. The SNR threshold, defined

as the minimum subcarrier SNR which still guarantees BER ≤ BERthresh, on that

specific subcarrier, is calculated as:

SNRthresh =
Q−1
�

BERthresh.log2(M)

Nb

�2

d2
min

2

. (6.7)

For example, for a BER threshold of 1e-3, the subcarrier modulation may be in-

creased from 4-QAM to either 16-, 64- or 256-QAM, compatible with the 802.11ac

standard, when Eb/N0 per subcarrier is larger than 10.52 dB, 14.68 dB or 19.39 dB,

respectively. However, when Eb/N0 is lower then 6.78 dB, tranmission blocking is

applied. The Eb/N0-values are obtained from the theoretical BER characteristics

for AWGN, since adaptive modulation is applied on every time-invariant measure-

ment cycle.

The concept is graphically explained in Fig. 6.3. For spatial subchannel 1, when

using transmission blocking 4QAM subcarrier modulation, four subcarriers are

unused because their subcarrier SNR is lower than SNRthresh(4QAM), as yellow-

marked. This implies that, for further calculations, the SNR and BER on these four

unused subcarriers are not taken into account and that the throughput on these

subcarriers is equal to 0 bits/symbol. Additionally, the throughput on all active

subcarriers, marked with purple, is equal to 2 bits/symbol. Logically, when em-

ploying transmission blocking 16QAM subcarrier modulation, leading to a higher

SNR threshold equal to SNRthresh(16QAM), less subcarriers are used for the same

transmit power, as marked in blue for both spatial subchannels. Moreover, for

transmission blocking 64 -and 256QAM subcarrier modulation, only six and two

subcarriers are used for spatial subchannel 1, respectively, and no subcarriers are

used for spatial subchannel 2.

Also note the difference between a quasi-frequency-flat channel, as spatial sub-

channel 2, and a frequency-selective wideband channel, as spatial subchannel
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1, typically occuring due to body-shadowing effects. For the quasi-frequency-flat

wideband channel, only a small increase in SNR, visualized by the dotted blue

line, could bring all subcarriers above, for example, SNRthresh(16QAM). When ap-

plying the same increase in SNR for the frequency-selective wideband channel, some

subcarriers, which experience deep fading dips, remain under SNRthresh(16QAM).

This implies that less subcarriers are used and, hence, that the mean throughput,

defined as thr and calculated by means of Formula (6.8), increases slower with

increasing mean SNR.
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Frequency
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Unused subcarriers 4QAM

fading dip
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Figure 6.3: Concept of transmission blocking fixed subcarrier modulation
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When applying transmission blocking adaptive subcarrier modulation, the modu-

lation per subcarrier is not fixed but changes in an adaptive manner whether or not

the subcarrier SNR is above the SNRthr. More specifically, the highest possible mod-

ulation order, still guaranteeing a BER ≤ BERthresh, is chosen per subcarrier. This
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concept is graphically explained in Fig. 6.4 which shows the different subcarrier

modulations, depending on the subcarriers SNR’s. As an example, for spatial sub-

channel 1, the subcarrier SNR is above the SNRthresh(256QAM) for two subcarriers,

which implies that the throughput on these subcarriers is equal to 8 bits/symbol,

while the BER ≤ BERthresh. Also note that, when SNR < SNRthresh(4QAM), the

subcarriers are not used. For spatial subchannel 2, the subcarrier SNR is above

SNRthresh(16QAM) for nine subcarriers which implies that the throughput on these

subcarriers is 4 bits/symbol, while the BER ≤ BERthresh.
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Figure 6.4: Concept of transmission blocking adaptive subcarrier modulation

Fig. 6.5 presents the BER performance of the four modulations, supported by IEEE

802.11ac, when applying transmission blocking fixed subcarrier modulation, in-

dicated by the different blue markers, with BERthresh equal to 10−3. Additionally,

the BER performance for the transmission blocking adaptive subcarrier modula-

tion with BERthresh equal to 10−3, is visualized by the pink markers. Beyond point

A, the SNR of all subcarriers belonging to the strongest, quasi-frequency-flat chan-

nel is above SNRthresh(4QAM). Moreover, the strongest subcarriers of the weak-

est, frequency-selective spatial subchannel start exceeding SNRthresh(4QAM) and,

hence, start contributing to the BER and SNR. However, the SNR of these strongest
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subcarriers is only a few dB above SNRthresh(4QAM), which leads to a relatively

high BER, still below BERthresh, causing the flattening of the BER curve. At point

B, almost all subcarriers on both spatial subchannels are 4QAM modulated. The

effect of transmission blocking adaptive subcarrier modulation is clearly visualized

by the pink markers. Between point C and D, the subcarrier modulation switches

from 4QAM to 256QAM owing to increasing SNR. In this interval, the throughput

increases, within the same order of BER magnitude, by switching to higher order

modulations. At point C, the majority of subcarriers are still 4QAM modulated

whereas at point D, the majority of the subcarrier are 256QAM modulated.

B
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SNR (dB)

A

B

Influence weakest,

frequency-selective
spatial channel

Fixed 4QAM

Fixed 16QAM

Fixed 64QAM

Fixed 256QAM
Adaptive

C

D

Throughput 

Figure 6.5: Mean BER performance for all four modulations, supported by IEEE 802.11 ac,

when applying transmission blocking fixed subcarrier modulation and mean BER performance

when applying transmission blocking adaptive subcarrier modulation for a BER ≤ 10−3

Fig. 6.6 shows that the mean throughput, when applying transmission blocking

adaptive subcarrier modulation is always higher than, or equal to, the scenario

where transmission blocking fixed subcarrier modulation is applied. For low SNR,

the adaptive modulation performs the same as fixed 4QAM because no subcarrier

SNR is above SNRthresh(16QAM) and, hence, all active subcarriers are 4QAM mod-

ulated. Moreover, the adaptive modulation performs better than fixed 16-, 64- and

256QAM because, for these higher order modulations, the subcarrier SNR do not

exceed the corresponding threshold to ensure BER ≤ BERthresh. This implies that

transmission on all subcarriers is blocked, leading to a mean throughput equal to

0 bits/symbol. When increasing SNR, some subcarriers, which are fixed to 4QAM

for transmission blocking fixed subcarrier modulation, switch to 16QAM for trans-

mission blocking adaptive subcarrier modulation, which leads to a higher thr for

adaptive subcarrier modulation. When focussing on fixed 256QAM, the through-

put of adaptive subcarrier modulation is higher, for SNR ≤ 60 dB, because much

more subcarriers are used with a lower modulation order, leading to a higher thr.
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Figure 6.6: Mean throughput for all four modulations, supported by IEEE 802.11 ac, when ap-

plying transmission blocking fixed subcarrier modulation and mean throughput when applying

transmission blocking adaptive subcarrier modulation for a BER ≤ 10−3

From a practical point of view, when the transmit power of the 2×2 MIMO-OFDM

system is equal to only 1.5 mW, the received SNR on all four SISO links is high

enough to ensure reliable timing synchronization and frequency offset estimation.

This leads to a received mean SNR equal to 26.2 dB, corresponding to the mean

throughputs presented in Table 6.1. The total bitrate Rb, in bps, for the a MIMO-

OFDM system with transmission blocking is calculated as:

Rb = r.N .
thr

Ts

. (6.9)

Table 6.1 also presents the bitrate, for BERthresh equal to 10−3, when assuming 2×2

MIMO-OFDM with 80 MHz OFDM bandwidth, leading to r= 2 spatial subchannels

and N = 256 subcarriers. Moreover, the IEEE 802.11ac standard defines Ts equal

to 3.6 µs. Table 6.1 clearly shows that the mean throughput, and hence, the total

bitrate can drastically increase when employing adaptive subcarrier modulation.

The minimal bitrate increase is equal to 261 Mbps when comparing fixed 64QAM

(Rb = 343 Mbps) with adaptive subcarrier modulation (Rb = 604 Mbps).



108 Chapter 6. Adaptive subcarrier modulation

Table 6.1: mean throughput, in bits/symbol, and corresponding bitrate, in Mbps, when using

1.5 mW transmit power

4QAM 16QAM 64QAM 256QAM Adaptive

thr 1.59 2.41 2.17 0 4.25

Rb 226 343 309 0 604

✻✳✻ ❈♦♥❝❧✉(✐♦♥

This chapter shows that the throughput and, hence, data rate of a wideband indoor

body-to-body channel is drastically increased when using transmission blocking

adaptive subcarrier modulation compared to transmission blocking fixed subcar-

rier modulation. This allows on-duty firefighters to broadcast multimedia and real-

time, on-body sensor data which increases their safety when operating in wideband

public safety networks.

❆❝❦♥♦✇❧❡❞❣♠❡♥1
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The emergence of miniaturized flexible electronics enables on-duty first respon-

ders to collect biometrical and environmental data through multiple on-body

sensors, integrated into their clothing. However, gathering these life-saving

data would be useless if they cannot set up reliable, preferably high-data rate,

wireless communication links between the sensors and a remote base station.

Therefore, we have developed a four-element Ultra-Wideband textile cross ar-

ray, that combines dual-spatial and dual-polarization diversity, and is easily

deployable in a first responder’s garment. The impedance bandwidth of the

array equals 1.43 GHz, while mutual coupling between its elements remains

below -25 dB. For a maximal bit error rate of 1e-4, the array realizes a diver-

sity gain of at least 24.81 dB. When applying Adaptive Subcarrier modulation,

the mean throughput per OFDM subcarrier increases by an extra bit/symbol

when comparing fourth to second order diversity.
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✼✳✶ ■♥%&♦❞✉❝%✐♦♥

Highly reliable communication in indoor environments is vital for first responders’

safety. Indeed, ensuring safe working conditions by remotely monitoring their bio-

metrical and sensor data decreases response time and the number of casualties.

Transmit and/or receiver diversity by wearable on-body antenna arrays [1], [2]

drastically improves link reliability in Wireless Body Area Networks (WBANs) [3],

while wideband systems provide the data rates needed to wirelessly communicate

pictures and/or videos. Ref. [4] describes Ultra-Wideband spatial and polarization

diversity for two-element arrays on a rigid substrate. Furthermore, [5] presents a

four-element dual-spatial, dual-polarization broadband slot-coupled patch array

on an FR-4 substrate, with only 15 dB isolation between the antenna elements,

while [6] and [7] describe Substrate-Integrated Waveguide (SIW) cavity-backed

arrays with a single feed line, hence, without applying diversity. In [8], 20.8 mm

high metamaterial mushrooms walls increase isolation between neighbouring ele-

ments in a MIMO antenna system. Yet, this solution is not applicable for low-profile

on-body antenna arrays. Refs. [9] and [2] propose antenna diversity for off-body

communication channels at 2.45 GHz and 60 GHz, respectively. Up to now, re-

ceiver diversity in body-to-body scenarios is implemented by several, physically

separated on-body antennas [10], [11]. However, avoiding multiple fragile RF

cables in a first responder’s jacket, by deploying a single antenna array, improves

robustness and avoids EMC issues. Moreover, all active transceiver and signal pro-

cessing electronics may be stacked on a feed plane below its ground plane, yielding

a compact active antenna module.

Therefore, we propose a novel Ultra-Wideband four-element SIW textile antenna

array that exploits dual-spatial and dual-polarization diversity and operates in the

low duty cycle restricted [3.4-4.8] GHz band [12], while being unobtrusively and

invisibly integrated into the back section of a first responder’s jacket. Besides in-

creased reliability through diversity gain, the array realizes additional throughput

gain per Orthogonal Frequency Division Multiplexing (OFDM) subcarrier through

Adaptive Subcarrier modulation. Moreover, for the first time in literature, the an-

tenna array performance is validated by using it to set up wideband, dynamic SIMO

body-to-body links in an indoor office scenario. Section 7.2 describes the antenna

array design while Section 7.3 presents simulation and measurements results, to-

gether with the indoor measurement scenario and the calculated bit error rate

(BER) characteristics.

✼✳✷ ❆♥%❡♥♥❛ ❛&&❛② ❞❡1✐❣♥

Body-worn applications in the public safety segment impose stringent design re-

quirements to textile antennas, which must be unobtrusively integrated into the

first responders’ outfits, without hindering their movements nor adding weight.
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Good radiation characteristics and impedance matching are essential, even for a

textile antenna in close proximity of the human body. This performance must be

maintained when operating in harsh environments, to prevent life-threatening sit-

uations. SIW cavity-backed slot (CBS) antennas address these specific design chal-

lenges [13]. In this chapter, the ultra-wideband SIW antenna in [14] serves as the

basic building block for the novel four-element antenna array shown in Fig 7.1. To

obtain high radiation efficiency over an ultra-wide impedance bandwidth, in each

antenna element a non-resonant rectangular slot splits the rectangular SIW cavity

into subcavities A and B. By careful selection of the cavity and slot dimensions, a

50Ω grounded coplanar waveguide (GCPW) feed line excites two hybrid modes at

neighbouring frequencies. Impedance bandwidth enhancement [15] is obtained

by merging both modes.
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Figure 7.1: Four-element textile antenna array. (a) Front view with enlarged inset for the feed

section. (b) Cross-section.

Fig. 7.1 shows four of these linearly-polarized UWB SIW CBS antenna elements

(AEs), arranged such that the array exhibits fourfold rotational symmetry. Then,

subsequent AEs are orthogonally polarized, while equi-polarized AEs (1&3, and

2&4) are separated by a distance of 75.1 mm, being larger than half the wavelength

of the smallest operating frequency. In this way, this specific geometry optimally

exploits both spatial and polarization diversity by minimizing correlation between
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receive signals. In addition, cavity sidewalls are shared, while guaranteeing suf-

ficiently low mutual coupling by optimizing the tubelet-spacing s3 (Fig. 7.1). A

closed-cell expanded-rubber protective foam, typically applied as a protective layer

in first responder jackets, is adopted as antenna substrate (εr=1.495, tanδ=0.035

@ 3.9GHz), whereas the slot and feed layer are implemented in copper-coated

Tafetta fabric (surface resistivity 0.18 Ω/sq). Both conductive fabric layers are

glued to the substrate by thermally-activated adhesive sheets, after which brass

tubular eyelets are inserted to implement the cavities’ sidewalls. This specific com-

bination yields a flexible, low-profile and conformal broadband design that facili-

tates unobtrusive integration. An extensive computer-aided optimization process,

carried out in CST Microwave Studio, yields the antenna dimensions (Fig. 7.1)

that provide maximal impedance bandwidth (|S11| < -10 dB w.r.t. 50 Ω) within

the-low-duty-cycle restricted [3.4-4.8] GHz band, while keeping mutual coupling

between elements below -25 dB.

✼✳✸ ▼❡❛&✉(❡♠❡♥+ (❡&✉❧+&

✼✳✸✳✶ ❆♥&❡♥♥❛ ❛))❛② ♣❡)❢♦)♠❛♥❝❡

First, the array’s performance is validated in an anechoic chamber, by measuring

its S-parameters from 3.0 GHz to 5.0 GHz (Fig. 7.2) and its radiation pattern at 3.9

GHz (Fig. 7.3). Given the fourfold rotational symmetry, Fig. 7.2 only depicts the

array’s |S11|, as a measure for an element’s impedance matching, and its |S21| and

|S31|, representing the mutual coupling between elements. A very good agreement

between simulations and free-space performance is obtained in Fig. 7.2, with a

matching to Z0 = 50 Ω from 3.26 GHz to 4.7 GHz, hence a -10 dB impedance

bandwidth of 1.43 GHz, and a very high isolation (> 28.4 dB) between antenna

elements.

Furthermore, Fig. 7.3 reveals a stand-alone maximum gain of 4.0 dBi and a front-

to-back ratio (FTBR) of 9.6 dB, at 3.9 GHz. In addition, measurements yielded a

difference of 12.16 dB between co-polar and cross-polar components along broad-

side (positive z-direction). Given the fact that the AEs are linearly polarized and

that subsequent AEs are orthogonal, providing fourfold rotational symmetry (Sec-

tion 7.2), we conclude that subsequent AEs achieve polarization diversity. As the

array will be worn in close proximity of the human body, its performance was also

tested when deployed on the back of a male test person (l=1.79m, w=71kg) as de-

scribed in Section 7.3.2. Then, Fig. 7.2 reveals only slight changes in the measured

S-parameters, whereas Fig 7.3 shows a similar maximum gain of 4.6 dBi and an

increase in FTBR to 23.6 dB. Finally, the array’s S-parameters were also measured

when bent with a radius of 14.2 cm along bent-plane 1 and bent-plane 2 (Fig.7.1),

as expected in realistic scenarios. The array maintains its excellent performance

under these conditions (Fig.7.2). Note that, in all considered deployment scenar-
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Figure 7.2: S-parameters of the four-element antenna array under different conditions. (a)

Input impedance matching. (b) Mutual coupling between subsequent antenna elements. (c)

Mutual coupling between equipolarized antenna elements.
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Figure 7.3: Measured and simulated stand-alone radiation pattern together with the on-body

radiation pattern in the E-plane (a) and the H-plane (b), at 3.9 GHz

ios, the measured return loss exceeds 5 dB in the complete low duty cycle restricted

[3.4-4.8] GHz band. This makes our UWB antenna an ideal candidate to be worn

by a first responder. Moreover, the mean effective gain (MEG), calculated for the

indoor multipath environment described in [16], equals -2.8 dBi for AEs 1&3 and

-3.4 dBi for AEs 2&4, at 3.9 GHz, which indicates good diversity performance.

✼✳✸✳✷ ❇♦❞②✲)♦✲❇♦❞② ▼❡❛-✉/❡♠❡♥) ❙❝❡♥❛/✐♦

Wideband body-to-body measurements, replicating real-life rescue operations, were

performed in an indoor office scenario using the ULB-UCL elektrobit

channel sounder with 100 mW TX power, at 3.6 GHz center frequency with 120 MHz

useful bandwidth. While the first responder at TX side, equipped with a single SIW

textile antenna in the front section of his jacket, scans the hallway, the first respon-

der at RX side, equipped with the novel cross array in the back section of his jacket,

scans the offices. There was no Line of Sight (LoS) link between the TX front an-

tenna and the RX cross array at any time, corresponding to a true indoor Non Line

of Sight (NLoS) scenario. Measurements were repeated twice for both a vertically

and horizontally polarized TX antenna, yielding a total of 60.000 measurement

cycles.

✼✳✸✳✸ ❈♦//❡❧❛)✐♦♥ ❆♥❛❧②-✐-

For further calculations, the frequency-selective wideband channel is subdivided in

256 frequency-flat subcarriers with a bandwidth of 312.5 kHz, as in the 802.11ac
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standard [17]. For each of the 256 frequency-flat subcarriers, the complex corre-

lation coefficient ρ between channel samples of two physical channels from the

1 × 4 SIMO system is calculated. Four separate measurements, each lasting for

197 seconds and gathering 15.000 complex channel samples, are combined. The

correlation ρ is calculated based on an array of 60.000 time samples × 256 subcar-

riers × 4 SISO links. Because of the time-varying channel, the complex correlation

coefficient is evaluated per subcarrier within a measurement window of 1 s. Since

both firefighters walk at 0.5 m/s, the path loss remains constant within this win-

dow. Hence, the complex correlation coefficient ρ only comprises body shadowing

and small-scale fading. To calculate correlation between, for example, signals from

AE1 and AE2, a matrix of 60.000×256 complex correlation coefficients is first time-

averaged for each OFDM subcarrier, after the mean value is computed over all 256

subcarriers [18].

Table 7.1: Amplitude of the correlation coefficient

1 2 3 4

1 1 0.41 0.46 0.31

2 0.41 1 0.40 0.31

3 0.46 0.40 1 0.30

4 0.31 0.31 0.30 1

Table 7.1 shows that the correlation coefficients remain well below 0.7. Therefore,

the four SISO channels are sufficiently decorrelated to ensure that the SIMO-OFDM

channel reliability increases when applying receive diversity on subcarrier basis.

✼✳✸✳✹ ❇✐& ❊((♦( ❘❛&❡

Let Pk be the transmit power allocated to subcarrier k, σ2 the noise power and

Hi,k the channel matrix of subcarrier k from cycle i. Assume constant TX power

with constant power spectral density, while the channel is unknown to the trans-

mitter but perfectly known by the receiver. The Signal to Noise Ratio of subcarrier

k at cycle i, SNRi,k, is then calculated as Pk/σ
2 · Hi,kHH

i,k
for all four SISO links.

Furthermore, when applying Maximal Ratio Combining (MRC) per OFDM sub-

carrier, the subcarrier SNR (during cycle i) is calculated as the sum over SNRi,k

for the corresponding (two or four) AEs. 1 × 2 Spatial diversity combines two

equally-polarized AEs, such as AE1&3 or AE2&4 (Fig. 7.1), whereas 1× 2 polar-

ization diversity combines two orthogonally-polarized AEs, such as AE1&2, AE2&3,

AE3&4 or AE4&1. When applying 1× 4 spatial-polarization diversity, all four AEs

are combined simultaneously. The corresponding BER of subcarrier k at cycle i, for

4-QAM modulation, is calculated as Q
!
p

SNRi,k

�

. The mean SNR and mean BER

are then found as 1/L
∑L

i=1

!

1/N
∑N

k=1 SNRi,k

�

and 1/L
∑L

i=1

!

1/N
∑N

k=1 BERi,k

�

,

respectively. The mean SNR is further used to calculate the corresponding Eb/N0
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per RX antenna as
!

1/NRX

�

.
!

1/log2M
�

.SNR with NRX the number of AEs and M

the number of constellation points.
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Figure 7.4: Measured BER characteristics for uncoded 4-QAM modulation with equal channel

gains (after path loss removal)

Fig. 7.4 shows that 1× 4 spatial-polarization diversity is more reliable than 1× 2

spatial diversity or 1×2 polarization diversity. For example, for a BER upper limit

of 1e-4, the minimal required Eb/N0 per RX antenna equals 9.36 dB, 17.16 dB,

17.63 dB or even 34.17 dB for 1× 4 spatial-polarization, 1× 2 polarization, 1× 2

spatial and no diversity, respectively. Hence, when applying dual-spatial, dual-

polarization diversity for the 1×4 SIMO setup, the required Eb/N0 per RX antenna

is, at least, 24.81 dB lower than for the reference SISO case [19], at the same

maximal BER of 1e-4. Due to additional body shadowing, the channels perform

slightly worse than (simulated) Rayleigh fading. Note that the x-axis represents

Eb/N0 per RX antenna, to include both the effects of diversity and array gain.

✼✳✸✳✺ ❚❤&♦✉❣❤♣✉+

When channel state information is available at the transmitter, frequency selectiv-

ity can be exploited through Adaptive Subcarrier modulation, which increases the

subcarrier throughput for a given BER threshold. For example, for a BER threshold

of 1e-4, the subcarrier modulation may be increased from 4QAM to either 16-, 64-

or 256-QAM, compatible with the 802.11ac standard, when Eb/N0 per subcarrier

is larger than 12.19 dB, 16.49 dB or 21.18 dB, respectively. These Eb/N0-values

are obtained from the theoretical BER characteristics for additive white Gaussian

noise, since the subcarriers experience frequency-flat fading. The mean through-

put is calculated as the mean over N subcarriers and L measurement cycles.

Fig. 7.5 shows that 1× 4 spatial-polarization diversity increases (mean) through-

put compared to second-order diversity, when Eb/N0 per RX antenna is between
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Figure 7.5: Neasured mean throughput when applying Adaptive Subcarrier Modulation for

BER ≤ 1e-4 (after path loss removal)

5 dB and 30 dB. In this specific range, the modulation order of some subcarriers

may be increased for 1×4 spatial-polarization diversity versus 1×2 polarization-,

1× 2 spatial- and no diversity. Moreover, when assuming a received Eb/N0 equal

to 10 dB, which is sufficient for reliable timing and frequency offset estimation

on each receiver branch, the BER is above 1e-3 for 1 × 2 spatial or polarization

diversity (Fig. 7.4). However, for 1 × 4 spatial-polarization diversity, the corre-

sponding BER remains below the pre-set 1e-4 upper BER. This motivates the need

for a fourth-order receiver diversity system to guarantee reliable communication

at lower Eb/N0 values. Moreover, by applying Adaptive Subcarrier modulation,

an extra bit/symbol can be transmitted for 1× 4 spa.-pol. diversity compared to

second order diversity, when Eb/N0 equals 10 dB.

✼✳✹ ❈♦♥❝❧✉)✐♦♥

A new, compact four-element textile cross array that exploits dual-spatial and dual-

polarization receiver diversity was proposed. 1 × 4 spatial-polarization diversity

guarantees a minimum diversity gain of 24.81 dB, when assuming a maximal BER

of 1e-4. Additionally, when comparing fourth- to second order diversity, the mean

throughput per subcarrier was increased by an extra bit/symbol through Adaptive

Subcarrier modulation. This makes the novel antenna array topology suitable for

highly reliable, high-data rate body-to-body communication between first respon-

ders in indoor office environments.
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In this dissertation, we have presented some practical implementations of multi-

antenna systems for body-centric communication networks. Moreover, we have

carefully replicated real-life scenarios for both in-body and body-to-body commu-

nication channels.

In the first part of this book, we have set up an experimental link between a small

dipole antenna, placed inside a human body phantom filled with a muscle mimick-

ing tissue, and an eight-element multi-antenna system, placed on the outside of the

human body phantom. By fully exploiting spatial receive diversity, we guarantee a

sufficiently high Signal to Noise Ratio to enable live video streaming between the

insulated dipole antenna and the wearable multi-antenna system, consisting of six

sidewall and two bottom/back antennas. We have focused on high-data rate com-

munication between the dipole, potentially implemented in a wireless endoscopy

capsule, and the multi-antenna system, which can be integrated inside a jacket

worn by the patient. If the TX power is limited to only 10 mW, all eight receive

antennas are required to allow live video streaming. However, when doubling the

TX power to 20 mW, equal to the maximum allowed transmit power according to

the SAR specifications, only the six sidewall antennas are needed to guarantee live

video streaming with a bandwidth of 1 MHz and a bit rate of 3.5 Mbit/s. From a

practical point of view, the patient could wear a jacket with only six integrated side

antennas, avoiding two uncomfortable antennas at the back section, to guarantee

a high-quality in-to-out body link, regardless of the position and orientation of the

small dipole antenna in the wireless endoscopy capsule. Moreover, it is very inter-

esting to notice that a video link from an implantable device to a multi-antenna

system may be set up with only a single simple dipole antenna inside the implant.

This decreases costs, size and complexity of future in-body communication links

and increases the battery life of these autonomous devices.

The second part of this book, comprising Chapters 4 up to 7, discusses wideband,

body-to-body measurements between two dynamic firefighters in an indoor office

scenario. During these measurements, all procedures and techniques performed

during a real intervention were carefully reproduced in real time, such that all

the effects of body postures, relative orientation and distance between the two

members of the Rapid Intervention Team are reflected in the channel data. First,

we have developed a simplified indoor office model which is further used to ap-

ply a ray tracing algorithm. Owing to the good agreement between measurement

and ray tracing results, the simplified indoor office model is proven very accurate
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and, hence, very useful for dimensioning new communication systems in these

environments. Moreover, by considering the RMS delay spread and 50% correla-

tion bandwidth, the LTE, LTE-D2D, 802.11ac and 802.11n standards are proven

suitable for future wideband indoor body-to-body networks, a purpose for which

they were originally not designed. More in general, it is interesting to note that

these standards, designed for communication with a fixed access point such as

Wi-Fi, are suitable for indoor body-to-body networks, experiencing more difficult

radiowave propagation conditions. Next to the varying fading and body shadow-

ing effects at both ends of the link, also highly variable signal fluctuations are

experienced due to the constant reorientation of both members of the Rapid In-

tervention Team. Chapter 5 presents the calculation of SISO-, SIMO-, MISO- and

MIMO-OFDM capacities for realistic indoor broadband body-to-body communica-

tion channels, considering maximally two transmit and two receive antennas. With

only 1.5 mW transmit power, which is sufficient to guarantee reliable timing syn-

chronization and frequency offset estimation, and no channel-state information

at the transmitter, a 2x2 MIMO-OFDM channel capacity equal to 3.67 bps/Hz is

guaranteed during 90% of the time. When assuming only 20 MHz OFDM band-

width, which is the minimal OFDM bandwidth in the 802.11ac standard, this is

definitely sufficient, even with a code rate of 1/2, to ensure efficient communica-

tion of potentially life-saving information between firefighters. Additionally, when

channel state information is available at both the transmitter and receiver, en-

abling waterfilling MIMO-OFDM by allocating more power to stronger channels,

only a relatively small 0.39 bps/Hz and 0.42 bps/Hz extra channel capacity is ob-

tained when applying one- and two-dimensional waterfilling, respectively. This

implies that implementing complex channel feedback is not essential to guaran-

tee real-time, efficient communication between two dynamic firefighters in close

proximity of each other. Moreover, even at lower bandwidths, when only using two

high-performance on-body transmit and receive antennas, the achieved capacity

is already sufficiently high for transferring live sensor data, pictures and videos

between dynamic firefighters. Additionally, an energy-efficient 2 × 2 MIMO sys-

tem may be more suitable for indoor body-to-body communication networks than

higher-order MIMO systems, which provide higher data rates at the cost of larger

power consumption. In general, when a wideband channel is available, we can

conclude that high data rates are achieved with only limited transmit power and a

limited number of on-body antennas. Moreover, our numerical results show that

it is not beneficial to implement (complex) waterfilling algorithms in wideband

indoor body-to-body channels. Chapter 6 presents a subcarrier-based adaptive

modulation scheme that could increase the total throughput, given a maximal Bit

Error Rate. This technique, known as Adaptive Subcarrier modulation, adapts the

modulation order on a subcarrier basis depending on the subcarrier’s received Sig-

nal to Noise Ratio. This increases the number of bits/symbol that are sent over

one subcarrier and, hence, the total throughput. Moreover, the data rate could

be further increased when using transmission-blocking adaptive subcarrier mod-

ulation compared to transmission-blocking fixed subcarrier modulation. Finally,

in Chapter 7, we have shown that our novel four-element wideband antenna ar-
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ray, designed for use in the low duty-cycle restricted [3.4-4.8] GHz band, combines

dual spatial and dual polarization diversity. The impedance bandwidth of the array

equals 1.43 GHz, while mutual coupling between its elements remains below -25

dB. Additionally, by validating the antenna array’s performance through a dynamic

1 × 4 SIMO body-to-body link, we have shown that the array realizes a diversity

gain of at least 7.8 dB, for a maximal bit error rate of 1e-4. Moreover, when apply-

ing Adaptive Subcarrier modulation, the mean throughput per OFDM subcarrier

increases by an extra bit/symbol when comparing fourth to second-order diversity.

This makes the novel antenna array topology suitable for highly reliable, high-data

rate body-to-body communication between first responders in indoor office envi-

ronments.

❋✉"✉#❡ ♦✉"❧✐♥❡

This thesis serves as the basis for future research and development of practical wire-

less body-centric communication systems. Multiple improvements, extensions and

new ideas may be implemented to evolve towards real, autonomous transceivers

for, on the one hand, in-body and body-to-body communication systems and, on

the other hand, the encryption of wireless body-centric communication networks.

Considering in-to-out body communication, the on-body antenna positions and

topologies may be optimized to further decrease the required number of receive

antennas. This increases patient comfort and total system costs. Moreover, the

textile antennas should be unobtrusively integrated inside an actual jacket, worn

by the patient, instead of mounted on the human body phantom. Additionally,

the simple dipole antenna could be replaced by other, more efficient or smaller,

implantable antenna topologies, as already described in the work entitled Design

of an implantable slot dipole conformal flexible antenna for biomedical applications

by Dr. Maria Lucia Scarpello. Taking into account the high-data rate applications

for our public safety body-to-body networks, a new adaptive algorithm, combining

power reallocation and adaptive subcarrier modulation, could be developed. This

new algorithm further increases the throughput and, hence, the data rate in future

public safety networks, enabling real-time communication of sensor data, pictures

and videos. We could also analyze the performance of a new, simplified, adaptive

subcarrier modulation algorithm that adapts the modulation order of multiple sub-

carriers at once instead of each subcarrier individually. This decreases the amount

of link feedback and, hence, the system complexity. Furthermore, to create com-

pact, autonomous on-body transceivers, active electronics and energy harvesters

could be implemented on the feed plane of individual on-body antennas or of the

wideband antenna array. Future work concerning our new RSS-based encryption

algorithm, described in the appendix, involves more in depth-testing and analysis.

Moreover, the scenario with a mobile eavesdropper, located on the body of the

legitimate parties, should be tested to replicate the worst case scenario.
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Data security is an important issue in all fields of wireless communication.

When encryption is employed, the strength of the key determines the degree

of information security. Many encryption algorithms exist, but a high com-

putational complexity is often required to limit the vulnerability to attacks.

However, for wireless sensor nodes, a computationally less intensive algorithm

is desired, requiring less processing power. In case of body-to-body wireless

sensor communication, a highly unobtrusive node can be manufactured by

integrating electronic circuitry onto a textile antenna platform. The signal

propagation in case of body-to-body communication between walking persons

is highly influenced by changing path loss, shadowing by obstacles and the

human body, multipath fading, reorientation of the antennas and changes

in posture of the walking persons. All these factors contribute to a rapidly

fluctuating received signal level when persons are moving around while

communicating sensor data. If the transceiver units can switch between

transmit and receive modes fast enough, it is possible to communicate in

both directions well within the coherence time of the channel, guaranteeing

highly correlated RSS values. The channel-state information, available at

both sides of the link, is acquired by independent physical measurements.

These data are highly correlated and contain significant mutual information

owing to the physical properties of the body-to-body radio channel. Moreover,

channel-state information acquired by an intruder is substantially decor-

related, as soon as the distance to the intruder is more than a few wavelengths.

Moreover, given that the market of wearables is in so-called hypergrowth mode,

more and more of these on-body devices will interact with each other. These

body-to-body, device-to-device links should not only provide reliable but also

secure communication of personal user data. Therefore, we have analyzed

the potential of using the unique reciprocal body-to-body channel between two

legitimate parties, to create a high-level security key that is unknown to an

eavesdropper. Both randomly moving legitimate parties, typically called Al-

ice and Bob, were equipped with low-power wireless on-body sensor nodes,

which collect the Received Signal Strength values. Additionally, the eavesdrop-

per Eve, who is continuously sniffing the body-to-body channel using a third

sensor node, collects her own sequence of RSS values, which are expected to

be highly decorrelated from the RSS values from both Alice and Bob. Based

on a statistical analysis, applied to Received Signal Strength values to verify

the correlation, entropy and mutual information, the body-to-body link seems

very suitable for RSS-based secret key generation in indoor and outdoor Wire-

less Body Area Networks. Moreover, this practical and leightweight alternative

for secret key generation ensures low on-chip complexity and, hence, low com-

putational power consumption.
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In the near future, people will be connected to the internet through multiple wear-

ables which could autonomously communicate personal data towards desired re-

cipients, creating the Internet of People (IoP) [1], [2]. These new Wireless Body

Area Networks (WBANs) will go hand in hand with the Internet of Things (IoT)

concerning healthcare, fitness monitoring and lifestyle computing [3]. Of course,

for users’ safety and privacy, data protection is necessary to prevent that intrud-

ers could access personal, and hence, sensitive data when wireless data transfer

is in progress. Moreover, since power consumption is crucial for on-body devices,

the proposed secret key generation algorithm should require low computational

complexity with limited memory size and bandwidth [4]. Therefore, the unique

characteristics of the underlying reciprocal body-to-body channel between two mo-

bile legitimate parties are exploited to generate joint randomness between both.

We have performed several mobile body-to-body (Alice-to-Bob and vice versa)

measurements at indoor and outdoor locations, with a passive stationary eaves-

dropper (Eve) in the vicinity of both Alice and Bob. The legitimate parties, Alice

and Bob, are equipped with low-power wireless nodes, placed upon the human

body, to set up autonomous communication towards each other. Moreover, we

assume that the passive eavesdropper, represented by a third wireless node, is

only capable of calculating the Received Signal Strength (RSS) from intercepted

packets sent by Alice or Bob. If Alice transmits a packet towards Bob and Bob

retransmits a packet towards Alice within the coherence time of a fast fluctuating

wireless body-to-body channel, the RSS at Alice and Bob is expected to be ap-

proximately equal owing to reciprocity. In contrast, the RSS at the eavesdropper

is expected to be significantly different or decorrelated from the quasi-equal RSS

values received by Alice and/or Bob. These unique streams of RSS values at both

legitimate parties could further be used to generate a secret key, which is unknown

for an intruder. The collected RSS sequences are suitable for secret key generation

if the entropy and the Mutual Information (MI) between both legitimate parties

are high, whereas the mutual information between a legitimate user and an eaves-

dropper should be low. For an intruder, this complicates deciphering the secret key

and, hence, maximizes data security. Therefore, we have analyzed the correlation,

entropy and mutual information of all collected RSS sequences, for three indoor

and four outdoor measurement scenarios, indicating the potential to use unique

RSS sequences for secret key generation.

To the authors’ best knowledge, this is the first work where fully-autonomous low-

power nodes were placed upon the human body for RSS-based secret key gen-

eration, between two moving legitimate parties in the presence of a stationary

eavesdropper, and where the quality of the key was validated based on indoor and

outdoor measurements. Despite the fact that this is a relative new research do-

main, J. Jenssen et al. have already presented interesting work concerning secret
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key generation based on RSS values, albeit not in a body-centric context. Linked

to our work, [5] explores the effectiveness of using highly reconfigurable anten-

nas to generate varying channels which are used to establish secret encryption

keys. Additionally, [6] shows that sufficient (and random) movement is necessary

to generate high entropy keys between two mobile devices. The chapter is fur-

ther organized as follows. Section A.2 describes the measurement setup, scenario

and location, Section A.3 presents the statistical results and Section A.4 shows the

key-generating performance. Finally, in Section A.5, we outline potential future

work since this work is only the (fundamental) beginning of RSS-based secret key

generation for indoor and outdoor WBANs using on-body sensor nodes.

Wireless on-body sensor nodes, composed of a dual-polarized textile patch antenna

that serves as a platform for the flexible electronic circuits, were deployed on the

bodies of test persons [7]. The on-body sensor nodes placed upon Alice and Bob

operated fully-autonomous while Eve’s on-body sensor nodes was connected to a

laptop, which was used as the central storage for all RSS values of one measure-

ment: RSS from Alice to Bob (RSSAB), RSS from Bob to Alice (RSSBA), RSS from

Alice to Eve (RSSAE) and RSS from Bob to Eve (RSSBE). As visualized in Fig. A.1,

the dedicated embedded software was programmed as follows:
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Figure A.1: Measurement principle. The value RSSAB and the transmission from Alice to Eve

that includes RSSBA are only included for measurement purposes and not for the actual appli-

cations.
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1. Alice transmit a packet towards Bob who calculates RSSAB. Moreover, the

packet is also received by Eve who calculates (and saves) RSSAE.

2. Bob retransmits a packet towards Alice, who calculates RSSBA, and he in-

cludes, only for measurement purposes and not in the actual application,

RSSAB. Additionally, the retransmitted packet is received by Eve, who calcu-

lates RSSBE and saves both RSSBE and the included RSSBA on the laptop.

3. For measurement purposes only and not in the actual application, Alice re-

transmit a packet which includes RSSBA towards Eve, who stores this value

on the laptop.

In real-life scenarios, Alice and Bob do not (re)transmit packets which include

RSSAB or RSSBA because the secret key generation is based on these unique val-

ues. However, since only Eve could save the RSS values, this was necessary for

measurement purposes.

Three measurement scenarios, with legitimate parties Alice and Bob simultane-

ously moving around in the presence of a stationary eavesdropper Eve, were per-

formed at an indoor and outdoor location. At the indoor office location, a lot of

potential reflectors and scatterers were present in the close vicinity of Alice, Bob

and Eve. In contrast, at the urban outdoor location, all three parties were sur-

rounded by high buildings, on the one side, and high townhouses, at the opposite

side of the river, as shown in Fig. A.3. Note that no cars where passing by during

the outdoor measurements. In the first and second scenario, Alice and Bob, ran-

domly moving around, remained in Line-of-Sight (LoS) of each other, as shown

in Fig. A.2. However, in the first scenario, Eve is visible to both Alice and Bob

whereas, in the second scenario, Eve is at a NLoS position from Alice and Bob. In

the third scenario, Eve is visible to both Alice and Bob, who do not see each other.

Furthermore, one additional outdoor measurement, corresponding to scenario 1b

( Fig. A.3), was performed with Alice and Bob, being in each other’s LoS, randomly

moving around at the opposite side of the river with a LoS link towards Eve.

For one measurement scenario, we gathered one set of four RSS values every 100

milliseconds for a total of 15.000 sets of RSS values. If the received RSS value,

further digitized in an 8 bit value, was below the detection limit of the on-body

sensor, the value was dropped and a new packet was sent by Alice to gather 15.000

reliable sets of RSS values. Note that the round trip time between Alice and Bob

was only 5 milliseconds, and hence within the coherence time of the channel,

estimated as 6.12 milliseconds when both mobile perons are walking at 0.5 m/s:

fdM =
v · f

c
, (A.1)

Tcoh ≈
1

fdM

, (A.2)

with fdM the maximum Doppler frequency shift and c the speed of light.
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To create a highly-reliable security key from the RSS values, the envelope corre-

lation ρ between RSSAB and RSSBA should be high whereas the signal strengths,

received by Eve, should be sufficiently decorrelated from RSSAB and RSSBA.

With X and Y, being vectors containing 15.000 RSS samples (in dBm), the envelope

correlation is calculated as:

ρX,Y =
E(X · Y)− E(X)E(Y)

q
�

E(X2)− (E(X))2
��

E(Y2)− (E(Y))2
�

. (A.3)

As seen in Table A.1, which presents the envelope correlation ρ for all measure-

ment scenarios at both the indoor and outdoor measurement locations, the corre-

lation between AB-BA is significantly higher than the correlation with RSS values

received by Eve. This indicates that the received signal strength values may be

used to generate a high-level security key. Note that the correlation is calculated

on RSS samples in dBm since these values are directly provided by the on-body

sensor nodes. Moreover, based on these RSS samples (in dBm), quantization is

performed as shown in Section A.4. However, given the fact that correlation is

typically performed on linear samples, we should be carefull when drawing gen-

eral conclusions about the physical body-to-body channel.

Sc.1 Indoor Outdoor

Sc.2 Indoor Outdoor

Sc.3 Indoor Outdoor

Sc.1b Outdoor

Figure A.4: Level Crossing Rate (LCR) for the Alice-to-Bob link

At the indoor measurement location, a large number of potential reflectors are in

the close proximity of Alice and Bob. In contrast, at the outdoor locations, the



A.3. Results 135

potential scatterers contributing to the received signal at Alice or Bob are further

away from both legitimate parties. This implies that, when both Alice and Bob are

simultaneously and randomly moving around, the indoor body-to-body channel

could vary faster, compared to the outdoor body-to-body channel. For the Alice-

Bob link, this is verified by means of the Level Crossing Rate (LCR), as visualized in

Figure A.4. Additionally, the faster varying indoor body-to-body links decrease the

coherence time and, hence, increase the probability that RSSAB and RSSBA exhibit,

to a small extent, more decorrelation within the round-trip time between Alice and

Bob. Moreover, when focusing on the indoor measurements, the correlation be-

tween RSSAB and RSSBA is the smallest for scenario 3, because of the faster varying

channel, compared to scenarios 1 and 2, as shown in Fig. A.4. Given the NLoS link

between Alice and Bob in scenario 3, the correlation with Eve is somewhat higher

at both the indoor and outdoor locations, because communication between Alice

and Bob only happens via reflectors, which may be in the close vicinity of Eve.

Additionally, for outdoor scenarios 1 and 3, the correlation between AB-AE (and

BA-AE) is unexpectedly higher than the correlation between AB-BE (and BA-BE).

This could be caused by the fact that, during the (non-perfect) random walks, Bob

was regularly standing closer to Eve, compared to Alice. This increases correla-

tion between the Alice-Eve link and the Bob-Alice (and vice versa) link. However,

the correlation is still significantly lower than the correlation between Alice and

Bob. In contrast, this phenomenon is not noticeable for scenario 1b where the

distances Eve-Alice and Eve-Bob were approximately equal during the complete

measurement.

Table A.1: Envelope correlation

Link Indoor Outdoor

1 2 3 1 1b 2 3

AB-BA 0.878 0.912 0.704 0.970 0.975 0.968 0.984

BA-AE 0.032 -0.039 0.144 0.269 0.059 -0.042 0.390

BA-BE 0.044 0.034 0.141 0.077 0.099 -0.073 0.152

AB-AE 0.031 -0.037 0.138 0.270 0.062 -0.040 0.391

AB-BE 0.051 0.020 0.124 0.078 0.063 -0.073 0.149

AE-BE -0.050 -0.024 0.004 -0.063 -0.024 0.039 -0.064

❆✳✸✳✷ ❊♥&'♦♣②

The entropy indicates how many bits of the 8 bit RSS value could be used to gen-

erate a safe key towards intruders. It is calculated as:

H(X) =

N
∑

i=1

P(Xi) · log2

�

P(Xi)
�

. (A.4)
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In an ideal situation, all RSS values, within the detection range of the receiver,

have equal probability for every consecutive measurement. Theoretically, this cor-

responds to maximum entropy equal to 8 bits. For the on-body sensors nodes, the

detection limit is equal to -95 dBm whereas the saturation limit equals -35 dBm.

This sets the maximal entropy equal to log2(60) = 5.90 bits, when all RSS values

would have the same probability. However, since we are performing real-life mea-

surements, the Most Significant Bits (MSBs) of the 8 bit RSS value will vary slower

than the Least Significant Bit (LSBs), and are therefore more predictable. This im-

plies that data, secured with these MSBs, is easier to decipher by an eavesdropper.

Therefore, the bits that do not vary fast enough over time are not used to gener-

ate secret keys. The calculated entropy, presented in Table A.2, shows that H(X)

∈ [4.765, 5.399] bits or H(X) ∈ [5.295, 5.796] bits for the indoor and outdoor

location, respectively.

Table A.2: Entropy (bit)

Link Indoor Outdoor

1 2 3 1 1b 2 3

AB 5.248 5.391 4.765 5.551 5.796 5.633 5.297

BA 5.234 5.399 4.782 5.547 5.790 5.637 5.295

Table A.2 also indicates smaller entropy when Alice and Bob are inside. As de-

scribed before, at the indoor measurement location, a large number of possible

reflectors are in the close proximity of Alice and Bob. Moreover, these reflectors

are not only present on few specific locations, as for the outdoor scenario, but over

the full 360◦ range around Alice and Bob. This implies that, during most of the

time, many multipath components contribute to the RSS values, at Alice or Bob,

which leads to a narrower RSS distribution for the indoor measurement scenario,

as visualized in Fig. A.5 for measurement scenario 3. In contrast, the potential re-

flectors at the outdoor measurement locations are not equally distributed around

Alice and Bob. This implies that the RSS values could fluctuate more, heavily de-

pending on the orientation of both Alice and Bob, because the number of arriving

multipaths varies over time. This leads to a broader RSS range, as visualized in

Fig. A.5, and, hence, a higher entropy.

❆✳✸✳✸ ▼✉%✉❛❧ ■♥❢♦,♠❛%✐♦♥

Next to the correlation and the entropy, the mutual information is the third sta-

tistical parameter which indicates the potential strength of a secret key. The MI

depends on the correlation and the entropy and is calculated as:

MI(X,Y) =

N
∑

i=1

N
∑

j=1

P(Xi ,Y j) · log2

�

P(Xi ,Y j)

P(Xi) · P(Y j)

�

. (A.5)
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Figure A.5: RSS distribution for scenario 3 at both the indoor and outdoor measurement loca-

tion

The mutual information indicates how many information bits of the 8 bit RSSAB can

be estimated if the 8 bit RSSBA value is known, or vice versa. It measures how the

knowledge of RSSAB reduces uncertainity about RSSBA. Similar to the correlation,

the mutual information should be high between RSSAB and RSSBA and low between

RSSAB,BA and a potential eavesdropper. However, only a high correlation is not

sufficient to guarantee high-level secret key. The combination of high correlation

and low entropy, as for static body-to-body measurements, results in low MI. In

contrast, if both the correlation and entropy are high, the mutual information is

high, as for the AB-BA link in outdoor scenario 3, according to Table A.3.

Table A.3: Mutual Information (bit)

Link Indoor Outdoor

1 2 3 1 1b 2 3

AB-BA 1.398 1.572 0.667 2.386 2.535 2.440 3.053

BA-AE 0.139 0.113 0.108 0.216 0.149 0.096 0.266

BA-BE 0.120 0.110 0.112 0.190 0.172 0.169 0.154

AB-AE 0.133 0.110 0.110 0.214 0.152 0.097 0.261

AB-BE 0.118 0.114 0.108 0.193 0.170 0.173 0.158

AE-BE 0.093 0.700 0.083 0.146 0.084 0.070 0.122

Table A.3 indicates that at least one secret key bit, which will be the same at Alice

and Bob, can be generated out of the 8 bit RSS value. However, this will be more

difficult for the indoor scenario 3 where Eve is visible for both Alice and Bob, who

do not see each other. Because of the fast(er) varying body-to-body channel in this

specific scenario, the correlation and, hence, MI between RSSAB and RSSBA is lower.
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However, the correlation is expected to be higher if the round-trip time between

Alice and Bob could be decreased. The mutual information shared with Eve is, in

all scenarios, significantly lower than the mutual information between legitimate

parties Alice and Bob. This implies that, even when the MI equals (maximally)

0.266 as in outdoor scenario 3, Eve is not able to estimate one secret bit that is

shared by Alice and Bob [8]. Therefore, the unique received RSS sequences at

Alice and Bob are proven very suitable for secret key generation for both indoor

and outdoor WBANs.

As the RSS values are correlated in time, we employ the mutual information be-

tween the RSS sequence and its delayed version as a measure to estimate sufficient

independence of subsequent values, as to generate a high-entropy secret key [9].

The mutual information I(RSSi , RSSi+τ) is displayed in Fig. A.6, and drops below

0.5 bit per sample for a lag of 8 or more samples. We choose to decimate the

recorded RSS sequence by a factor 10, leaving 1500 RSS measurements for each

scenario.
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Figure A.6: Mutual Information between RSS and delayed RSS between legitimate parties;

I(RSSi , RSSi+τ) as a function of τ
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In the remainder, only the indoor measurements are evaluated.

❆✳✹✳✶ ◗✉❛♥(✐③❛(✐♦♥

Generating keys from the RSS data is a complex issue for which several approaches

can be chosen. We choose an RSS quantizer that delivers one key bit per RSS

sample, as suggested in [10] and outlined in Fig. A.7.
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dropped RSS value

accepted RSS value

used for quantization

Figure A.7: Quantizer, generating one secret key bit per RSS sample

The quantizer employs the moving average over a number of recent RSS values and

if the new value crosses the upper or lower threshold, a 1 or 0 key bit is generated,

respectively. This approach provides compensation for asymmetric system param-

eters, such as small differences in transmit power or receiver noise floor between

both legitimate parties.

It is important to note that this type of quantizer drops RSS values that do not cross

the threshold, which results in a reduction of the key-generation rate for higher

threshold values. In our case the threshold values are expressed in dB.

In a practical application, where Alice generates the reference key and Bob will

adjust his key to match her’s, Alice will have to inform Bob about which channel

samples were skipped, as otherwise their key bit sequences might be shifted with

respect to each other. Due to slight propagation channel variations during the

measurement, the RSS samples dropped by Alice will indeed not always be the

same ones that are also dropped by Bob.

The quantizer delivers binary keys to Alice and Bob, based on the RSSBA and RSSAB

sequences, respectively. However, although these binary sequences are highly cor-

related, they are not identical and a Key Error Rate (KER) can be defined. The key

error rate depends on the moving average length as well as on the threshold value.

Fig. A.8 displays the KER as a function of moving average length, without thresh-

old applied. In this case, each value of the decimated RSS series results in a key

bit, hence 1500 key bits are generated for each scenario. A minimum occurs for

all three scenario’s around a moving average length of 7 samples, a value which

will be employed for the remaining part of this appendix. Note that for all RSS sig-

nals measured by the eavesdropper, the resulting keys all exhibited a KER ≈ 0.5,

confirming the effectiveness of the secret key generation based on the propagation

between the legitimate parties.

To illustrate the importance of thresholding, Fig. A.9 displays a scatter plot of the

signal levels RSSAB and RSSBA. Without thresholding, each dot represents a secret

key bit. Red dots correspond to erroneous bits, where Alice and Bob made different
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Figure A.8: KER at a threshold of 0 dB as a function of moving average length

decisions in the quantization process. The graph clearly illustrates that employing

higher thresholds leads to a lower KER, as dots away from the center of the graph

are predominantly blue, corresponding to correct key bits.

A higher threshold lowers the KER a the cost of a lower key-generation rate, due

to dropped RSS samples. Hence, the threshold should be chosen just high enough

to generate an error free key after the error correcting process, further called key

reconciliation.
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Figure A.9: Correctness of key bits for Scenario 1. Erroneous bits are concentrated in the center

and are (partially) discarded by means of thresholding.
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The process of key reconciliation will adjust the keys on both sides of the link, in

order to make them match. This process inevitably reveals limited key information

over the channel, although this information can also be encrypted using a previ-

ously constructed key. A (15, 11)-Hamming code is used, with Alice’s secret key



A.4. Key-generating performance 141

taken as a reference. Bob’s key will be adjusted through forward error correction

to match the one of Alice. Alice’s key is interleaved to spread errors, which might

occur in burst form, over several blocks. The interleaved key is split into 11-bit

blocks, 4 check bits are calculated for each block and transmitted to Bob. Bob uses

these check bits to correct his own interleaved version of the key.

Revealing 4 check bits, reduces the number of valid 11-bit groups from 211 to 27,

which should be taken into account. Nevertheless,when choosing an appropriate

key length this should not be a problem. Note that keys can be updated regularly,

as channel variation is likely to occur during most of the communication time and

new key bits are generated continuously.

The KER after reconciliation is displayed in Fig. A.10 and the corresponding key

length is shown in Fig. A.11, both as a function of the threshold value employed

in the quantizer. An error free key is obtained at a threshold of 5 dB in scenarios 1

and 2, resulting in key lengths of 814 and 891 bits, respectively. For scenario 3, a

threshold of 7 dB is required and a much shorter key length of 275 bits results, due

to less favorable signal statistics and the higher threshold required consequently.
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Figure A.10: KER after reconciliation as a function of threshold, for the legitimate parties

Finally, the key generation and reconciliation is also evaluated for the eavesdrop-

per, assuming the eavesdropper has knowledge of the reconciliation algorithm and

successfully intercepts all check bits Alice transmits to Bob.

Table A.4: KER after reconciliation for the eavesdropper employing all possible signal combi-

nations

Link, from-to KER for scenario nr.

1 2 3

BA-AE 0.4727 0.5606 0.2987

BA-BE 0.5152 0.5000 0.3182

AB-AE 0.4628 0.5581 0.3409

AB-BE 0.5011 0.5108 0.3442
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Figure A.11: Key length as a function of threshold, for the legitimate parties

Table A.4 displays the results for keys generated by Eve, for all signal combinations,

employing thresholds of 5 dB for scenarios 1 and 2 and a threshold of 7 dB for

scenario 3. These thresholds resulted in error free keys for the legitimate parties.

Clearly the eavesdropper fails to extract the secret key. In scenarios 1 and 2, Eve’s

key is totally different. In scenario 3 some information is apparently captured but

the key contains too many errors to be of practical use.

❆✳✺ ❈♦♥❝❧✉)✐♦♥)

In a first part of the appendix, we have analyzed the correlation, entropy and mu-

tual information of RSS streams, collected using wireless on-body sensor nodes, be-

tween two mobile legitimate parties, Alice and Bob, and a stationary eavesdropper,

Eve. These statistics, calculated for three indoor and four outdoor measurements,

show that stream of RSS values could be used to create joint randomness between

two mobile legitimate parties, Alice and Bob. The generated secret key will be

(largely) unknown to a stationary intruder, called Eve, owing to the significantly

smaller mutual information between the RSS values, received by Alice of Bob, and

the RSS values received by Eve. Moreover, the mutual information between Al-

ice and Bob is maximized when both the correlation and entropy are high. From

our measurements, higher correlation is obtained for the outdoor measurement

scenarios because of the smaller level crossing rate, indicating a larger coherence

time. However, correlation in the indoor scenarios is expected to be higher if the

round-trip time between Alice and Bob could be decreased. Additionally, due to the

non-uniform distribution of potential scatterers in close vicinity of Alice and Bob

in the outdoor measurement scenario, the distribution of the RSS values between

two legitimate parties is broader, compared to the indoor RSS values for the same

measurement scenario. This implies that our outdoor locations could introduce

higher entropy, compared to indoor scenarios, which lead to a higher mutual in-
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formation, assuming high correlation. In the second part of the appendix, practical

key generation is performed, employing a computationally low-cost method, easy

to implement on the sensor node’s microcontroller. The results indicate that error

free keys are generated at a rate of approximately one key bit per two seconds for

the regular propagation scenarios and at a rate of one bit per six seconds for the

worst-case dynamic scenario. Although these key-generating rates are fairly low,

strong keys can be generated in a few minutes when legitimate parties are within

line-of-sight. A higher rate could be obtained by employing hardware that provides

signal strength indication at a higher resolution, although such a performance is

not available in current state-of-the-art low-cost wireless transceiver chips.
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