1,639 research outputs found

    Building and Tracking Hierarchical Geographical & Temporal Partitions for Image Collection Management on Mobile Devices

    Get PDF
    International audienceUsage of mobile devices (phones, digital cameras) raises the need for organizing large personal image collections. In accordance with studies on user needs, we propose a statistical criterion and an associated optimization technique, relying on geo-temporal image metadata, for building and tracking a hierarchical structure on the image collection. In a mixture model framework, particularities of the application and typical data sets are taken into account in the design of the scheme (incrementality, ability to cope with non-Gaussian data, with both small and large samples). Results are reported on real data sets

    Building and Tracking Hierarchical Geographical & Temporal Partitions for Image Collection Management on Mobile Devices

    Get PDF
    International audienceUsage of mobile devices (phones, digital cameras) raises the need for organizing large personal image collections. In accordance with studies on user needs, we propose a statistical criterion and an associated optimization technique, relying on geo-temporal image metadata, for building and tracking a hierarchical structure on the image collection. In a mixture model framework, particularities of the application and typical data sets are taken into account in the design of the scheme (incrementality, ability to cope with non-Gaussian data, with both small and large samples). Results are reported on real data sets

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Linking Spatial Video and GIS

    Get PDF
    Spatial Video is any form of geographically referenced videographic data. The forms in which it is acquired, stored and used vary enormously; as does the standard of accuracy in the spatial data and the quality of the video footage. This research deals with a specific form of Spatial Video where these data have been captured from a moving road-network survey vehicle. The spatial data are GPS sentences while the video orientation is approximately orthogonal and coincident with the direction of travel. GIS that use these data are usually bespoke standalone systems or third party extensions to existing platforms. They specialise in using the video as a visual enhancement with limited spatial functionality and interoperability. While enormous amounts of these data exist, they do not have a generalised, cross-platform spatial data structure that is suitable for use within a GIS. The objectives of this research have been to define, develop and implement a novel Spatial Video data structure and demonstrate how this can achieve a spatial approach to the study of video. This data structure is called a Viewpoint and represents the capture location and geographical extent of each video frame. It is generalised to represent any form or format of Spatial Video. It is shown how a Viewpoint improves on existing data structure methodologies and how it can be theoretically defined in 3D space. A 2D implementation is then developed where Viewpoints are constructed from the spatial and camera parameters of each survey in the study area. A number of problems are defined and solutions provided towards the implementation of a post-processing system to calculate, index and store each video frame Viewpoint in a centralised spatial database. From this spatial database a number of geospatial analysis approaches are demonstrated that represent novel ways of using and studying Spatial Video based on the Viewpoint data structure. Also, a unique application is developed where the Viewpoints are used as a spatial control to dynamically access and play video in a location aware system. While video has been to date largely ignored as a GIS spatial data source; it is shown through this novel Viewpoint implementation and the geospatial analysis demonstrations that this need not be the case anymore

    Learning and mining from personal digital archives

    Get PDF
    Given the explosion of new sensing technologies, data storage has become significantly cheaper and consequently, people increasingly rely on wearable devices to create personal digital archives. Lifelogging is the act of recording aspects of life in digital format for a variety of purposes such as aiding human memory, analysing human lifestyle and diet monitoring. In this dissertation we are concerned with Visual Lifelogging, a form of lifelogging based on the passive capture of photographs by a wearable camera. Cameras, such as Microsoft's SenseCam can record up to 4,000 images per day as well as logging data from several incorporated sensors. Considering the volume, complexity and heterogeneous nature of such data collections, it is a signifcant challenge to interpret and extract knowledge for the practical use of lifeloggers and others. In this dissertation, time series analysis methods have been used to identify and extract useful information from temporal lifelogging images data, without benefit of prior knowledge. We focus, in particular, on three fundamental topics: noise reduction, structure and characterization of the raw data; the detection of multi-scale patterns; and the mining of important, previously unknown repeated patterns in the time series of lifelog image data. Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the feature of very high correlation in lifelogging image collections. Secondly, we show that study of equal-time Cross-Correlation Matrix demonstrates atypical or non-stationary characteristics in these images. Next, noise reduction in the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT) before Wavelet multiscaling is used to characterize the `most important' or `unusual' events through analysis of the associated dynamics of the eigenspectrum. A motif discovery technique is explored for detection of recurring and recognizable episodes of an individual's image data. Finally, we apply these motif discovery techniques to two known lifelog data collections, All I Have Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recurrent patterns of multiple-lifelogging users

    Organising and structuring a visual diary using visual interest point detectors

    Get PDF
    As wearable cameras become more popular, researchers are increasingly focusing on novel applications to manage the large volume of data these devices produce. One such application is the construction of a Visual Diary from an individual’s photographs. Microsoft’s SenseCam, a device designed to passively record a Visual Diary and cover a typical day of the user wearing the camera, is an example of one such device. The vast quantity of images generated by these devices means that the management and organisation of these collections is not a trivial matter. We believe wearable cameras, such as SenseCam, will become more popular in the future and the management of the volume of data generated by these devices is a key issue. Although there is a significant volume of work in the literature in the object detection and recognition and scene classification fields, there is little work in the area of setting detection. Furthermore, few authors have examined the issues involved in analysing extremely large image collections (like a Visual Diary) gathered over a long period of time. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. We present a number of approaches to setting detection based on the extraction of visual interest point detectors from the images. We also analyse the performance of two of the most popular descriptors - Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF).We present an implementation of a Visual Diary application and evaluate its performance via a series of user experiments. Finally, we also outline some techniques to allow the Visual Diary to automatically detect new settings, to scale as the image collection continues to grow substantially over time, and to allow the user to generate a personalised summary of their data

    Media aesthetics based multimedia storytelling.

    Get PDF
    Since the earliest of times, humans have been interested in recording their life experiences, for future reference and for storytelling purposes. This task of recording experiences --i.e., both image and video capture-- has never before in history been as easy as it is today. This is creating a digital information overload that is becoming a great concern for the people that are trying to preserve their life experiences. As high-resolution digital still and video cameras become increasingly pervasive, unprecedented amounts of multimedia, are being downloaded to personal hard drives, and also uploaded to online social networks on a daily basis. The work presented in this dissertation is a contribution in the area of multimedia organization, as well as automatic selection of media for storytelling purposes, which eases the human task of summarizing a collection of images or videos in order to be shared with other people. As opposed to some prior art in this area, we have taken an approach in which neither user generated tags nor comments --that describe the photographs, either in their local or on-line repositories-- are taken into account, and also no user interaction with the algorithms is expected. We take an image analysis approach where both the context images --e.g. images from online social networks to which the image stories are going to be uploaded--, and the collection images --i.e., the collection of images or videos that needs to be summarized into a story--, are analyzed using image processing algorithms. This allows us to extract relevant metadata that can be used in the summarization process. Multimedia-storytellers usually follow three main steps when preparing their stories: first they choose the main story characters, the main events to describe, and finally from these media sub-groups, they choose the media based on their relevance to the story as well as based on their aesthetic value. Therefore, one of the main contributions of our work has been the design of computational models --both regression based, as well as classification based-- that correlate well with human perception of the aesthetic value of images and videos. These computational aesthetics models have been integrated into automatic selection algorithms for multimedia storytelling, which are another important contribution of our work. A human centric approach has been used in all experiments where it was feasible, and also in order to assess the final summarization results, i.e., humans are always the final judges of our algorithms, either by inspecting the aesthetic quality of the media, or by inspecting the final story generated by our algorithms. We are aware that a perfect automatically generated story summary is very hard to obtain, given the many subjective factors that play a role in such a creative process; rather, the presented approach should be seen as a first step in the storytelling creative process which removes some of the ground work that would be tedious and time consuming for the user. Overall, the main contributions of this work can be capitalized in three: (1) new media aesthetics models for both images and videos that correlate with human perception, (2) new scalable multimedia collection structures that ease the process of media summarization, and finally, (3) new media selection algorithms that are optimized for multimedia storytelling purposes.Postprint (published version

    Event Based Media Indexing

    Get PDF
    Multimedia data, being multidimensional by its nature, requires appropriate approaches for its organizing and sorting. The growing number of sensors for capturing the environmental conditions in the moment of media creation enriches data with context-awareness. This unveils enormous potential for eventcentred multimedia processing paradigm. The essence of this paradigm lies in using events as the primary means for multimedia integration, indexing and management. Events have the ability to semantically encode relationships of different informational modalities. These modalities can include, but are not limited to: time, space, involved agents and objects. As a consequence, media processing based on events facilitates information perception by humans. This, in turn, decreases the individual’s effort for annotation and organization processes. Moreover events can be used for reconstruction of missing data and for information enrichment. The spatio-temporal component of events is a key to contextual analysis. A variety of techniques have recently been presented to leverage contextual information for event-based analysis in multimedia. The content-based approach has demonstrated its weakness in the field of event analysis, especially for the event detection task. However content-based media analysis is important for object detection and recognition and can therefore play a role which is complementary to that of event-driven context recognition. The main contribution of the thesis lies in the investigation of a new eventbased paradigm for multimedia integration, indexing and management. In this dissertation we propose i) a novel model for event based multimedia representation, ii) a robust approach for mining events from multimedia and iii) exploitation of detected events for data reconstruction and knowledge enrichment

    Expanding Data Imaginaries in Urban Planning:Foregrounding lived experience and community voices in studies of cities with participatory and digital visual methods

    Get PDF
    “Expanding Data Imaginaries in Urban Planning” synthesizes more than three years of industrial research conducted within Gehl and the Techno–Anthropology Lab at Aalborg University. Through practical experiments with social media images, digital photovoice, and participatory mapmaking, the project explores how visual materials created by citizens can be used within a digital and participatory methodology to reconfigure the empirical ground of data-driven urbanism. Drawing on a data feminist framework, the project uses visual research to elevate community voices and situate urban issues in lived experiences. As a Science and Technology Studies project, the PhD also utilizes its industrial position as an opportunity to study Gehl’s practices up close, unpacking collectively held narratives and visions that form a particular “data imaginary” and contribute to the production and perpetuation of the role of data in urban planning. The dissertation identifies seven epistemological commitments that shape the data imaginary at Gehl and act as discursive closures within their practice. To illustrate how planners might expand on these, the dissertation uses its own data experiments as speculative demonstrations of how to make alternative modes of knowing cities possible through participatory and digital visual methods
    • 

    corecore