102 research outputs found

    A Contextualized Spiral Approach for Teaching Programming in IT Vocational Secondary Education

    Get PDF
    INTRODUCTION: Brazilian vocational high school education in Computing faces problems such as course failure and dropout, plus dropout from the programs, factors that directly contribute to the deficit of such professionals. OBJECTIVE:  This paper reports an experience of a contextualized and spiral approach carried out with students of the technical program in Informatics. METHOD: The approach aims to facilitate learning and motivate students through the tools JES and PPlay, and the Python language. RESULTS: Learned lessons suggest the adequacy of Python as first language, and of contextualized activities, context reuse and challenges as factors contributing to motivation and learning. CONCLUSION: The use of contexts, languages and environments in sequential and spiral blocks fosters a more active posture of students regarding learning activities

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    Creative Computation in High School

    Get PDF
    In this paper we describe the success of bringing Creative Computation via Processing into two very different high schools that span the range of possibilities of grades 9-12 in American education. Creative Computation is an emerging discipline that requires a thorough grounding in both media arts and computing. We report on how contextualized computing that supports integration of media arts, design, and computer science can successfully attract and motivate students to learn foundations of programming and come back for more. The work of two high school teachers with divergent pedagogical styles is presented. They successfully adapted a college-level Creative Computation curriculum to their individual school cultures providing a catalyst for significant increases in total enrollment as well as female participation in high school computer science

    On the Use of Semantic-Based AIG to Automatically Generate Programming Exercises

    Full text link
    In introductory programming courses, proficiency is typically achieved through substantial practice in the form of relatively small assignments and quizzes. Unfortunately, creating programming assignments and quizzes is both, time-consuming and error-prone. We use Automatic Item Generation (AIG) in order to address the problem of creating numerous programming exercises that can be used for assignments or quizzes in introductory programming courses. AIG is based on the use of test-item templates with embedded variables and formulas which are resolved by a computer program with actual values to generate test-items. Thus, hundreds or even thousands of test-items can be generated with a single test-item template. We present a semantic-based AIG that uses linked open data (LOD) and automatically generates contextual programming exercises. The approach was incorporated into an existing self-assessment and practice tool for students learning computer programming. The tool has been used in different introductory programming courses to generate a set of practice exercises different for each student, but with the same difficulty and quality

    public class Graphic_Design implements Code { // Yes, but how? }: An investigation towards bespoke Creative Coding programming courses in graphic design education

    Get PDF
    Situated in the intersection of graphic design, computer science, and pedagogy, this dissertation investigates how programming is taught within graphic design education. The research adds to the understanding of the process, practice, and challenges associated with introducing an audience of visually inclined practitioners—who are often guided by instinct—to the formal and unforgiving world of syntax, algorithms, and logic. Motivating the research is a personal desire to contribute towards the development of bespoke contextualized syllabi specifically designed to accommodate how graphic designers learn, understand, and use programming as an integral skill in their vocational practice.The initial literature review identifies a gap needing to be filled to increase both practical and theoretical knowledge within the interdisciplinary field of computational graphic design. This gap concerns a lack of solid, empirically based epistemological frameworks for teaching programming to non-programmers in a visual context, partly caused by a dichotomy in traditional pedagogical practices associated with teaching programming and graphic design, respectively. Based on this gap, the overarching research question posed in this dissertation is: “How should programming ideally be taught to graphic designers to account for how they learn and how they intend to integrate programming into their vocational practice?”A mixed methods approach using both quantitative and qualitative analyses is taken to answer the research questions. The three papers comprising the dissertation are all built on individual hypotheses that are subsequently used to define three specific research questions.Paper 1 performs a quantitative mapping of contemporary, introductory programming courses taught in design schools to establish a broader understanding of their structure and content. The paper concludes that most courses are planned to favor programming concepts rather than graphic design concepts. The paper’s finding can serve as a point of departure for a critical discussion among researchers and educators regarding the integration of programming in graphic design education.Paper 2 quantitatively assesses how the learning style profile of graphic design students compares with that of students in technical disciplines. The paper identifies a number of significant differences that call for a variety of pedagogic and didactic strategies to be employed by educators to effectively teach programming to graphic designers. Based on the results, specific recommendations are given.Paper 3 proposes a hands-on, experiential pedagogic method specifically designed to introduce graphic design students to programming. The method relies on pre-existing commercial graphic design specimens to contextualize programming into a domain familiar to graphic designers. The method was tested on the target audience and observations on its use are reported. Qualitative evaluation of student feedback suggests the method is effective and well-received. Additionally, twenty-four heuristics that elaborate and extend the paper’s findings by interweaving other relevant and influential sources encountered during the research project are provided. Together, the literature review, the three papers, and the heuristics provide comprehensive and valuable theoretical and practical insights to both researchers and educators, regarding key aspects related to introducing programming as a creative practice in graphic design education

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers

    Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course

    Get PDF
    The purpose of this study was to define the competencies, programming languages, and assessments for an introductory computer science course at a small private liberal arts university. Three research questions were addressed that involved identifying the competencies, programming languages, and assessments that academic and industry experts in California’s Central Valley felt most important and appropriate for an introduction to computer science course. The Delphi methodology was used to collect data from the two groups of experts with various backgrounds related to computing. The goal was to find consensus among the individual groups to best define aspects that would best comprise an introductory CS0 course for majors and non-majors. The output would be valuable information to be considered by curriculum designers who are developing a new program in software engineering at the institution. The process outlined would also be useful to curriculum designers in other fields and geographic regions who attempt to address their local education needs. Four rounds of surveys were conducted. The groups of experts were combined in the first round to rate the items in the straw models determined from the literature and add additional components when necessary. The academic and industry groupings were separated for the remainder of the study so that a curriculum designer could determine not only the items deemed most important, but also their relative importance among the two distinct groups. The experts selected items in each of the three categories in the second round to reduce the possibilities for subsequent rounds. The groups were then asked to rank the items in each of the three categories for the third round. A fourth round was held as consensus was not reached by either of the groups for any of the categories as determined by Kendall’s W. The academic experts reached consensus on a list of ranked competencies in the final round and showed a high degree of agreement on lists of ranked programming languages and assessments. Kendall’s W, values, however, were just short of the required 0.7 threshold for consensus on these final two items. The industry experts did not reach consensus and showed low agreement on their recommendations for competencies, programming languages, and assessments

    Proceedings of the 2nd Annual CUNY Games Festival

    Full text link
    Proceedings of the CUNY Games Conference, held from January 16-17, 2015, at the CUNY Graduate Center and Borough of Manhattan Community College. Health Games - Language and Composition - Design: Classroom Considerations - Games in the Physical Environment - Games and Behavioral Science - Play, Politics & Economics - Gaming Curricula, Disciplines & Programs - Gaming and History - Institutional Programming with Games - Philosophy and Roleplaying - Ed. Game Design: Strategy & Tactics - Repurposing Game Genres - Narrative, Storytelling & Games - Community & Social Justice - Extemporaneity - Personal & Social Transformation - Cognition, Design & Play - Library Games - Gaming in the Discipline

    Impact of Scratch on the achievements of first-year computer science students in programming in some Nigerian polytechnics

    Get PDF
    To support the advancement of modern civilisation, our institutions of higher learning must produce the right pool of professionals, who can develop innovative software. However, the teaching and learning of the first programming language (CS1) remains a great challenge for most educators and novice computer students. Indicators such as failure and attrition rates, and CS1 student engagement, continue to show that conventional pedagogy does not adequately meet the needs of some beginning CS students. For its ease in introducing novices to programming, Scratch—a visual programming environment following the constructionism philosophy of Seymour Papert—is now employed even in some higher education CS1 classes with mixed evidence of its impact. Scratch captures the constructionist agenda by its slogan: “Imagine, Program, Share.” Therefore, this study explored the impart of using a constructionist Scratch programming pedagogy on higher education CS1 students’ achievements. This study also sought to compare the impacts of the two CS1 modes: the conventional class - involving textual programming language, lectures and labs, and the constructionist Scratch inquiry-based programming class. It further aims to discover if gender, academic level, age, prior programming, and visual artistic abilities moderate the effects of programming pedagogy on students’ achievements. To realize the study’s aims, the study employed a quasi-experimental pretest-posttest nonequivalent groups design, involving four intact CS1 classes of polytechnic students (N = 418) in north-central Nigeria. The investigation was conducted in phases: a pilot (n = 236) and main (n=182) studies lasting two academic sessions, with each study comprising one experimental and one control group. In each session, learning in both modes lasted for six weeks. In both studies, purposive sampling was employed to select institutions, and selected institutions were randomly assigned to treatment groups. Instruments employed included CS1 Student Profile Questionnaire (CSPROQ) and Introductory Programming Achievement Test (IPAT). To strengthen the research design, I employed Coarsened Exact Matching (CEM) algorithm—after conducting a priori power analysis—to generate matched random samples of cases from both studies. Thus, research data employed in the analysis include: from the pilot, 41 cases in each treatment group; from the main study, 42 cases in each treatment group. Descriptive and inferential statistics were employed to find answers to research questions and test the research hypothesis. Data from both studies satisfied the requirements for statistical tests employed, i.e., t-test and ANCOVA. The alpha level used in testing hypotheses was p = 0.05. The dependent variable is the IPAT post-test score, while the independent variables are treatment, gender, age, academic achievement level, prior programming, and prior visual art. The covariate was the IPAT pretest score. Statistical analyses were conducted using SPSS version 23. The t-test results from both pilot and main studies indicated that, both programming pedagogies had significant effects on student IPAT scores, although the effect of the constructionist Scratch intervention was higher. Results from the one-way ANCOVA analysis of both pilot and main study data—while controlling for students’ IPAT pretest scores—yielded the same outcome: There was significant main effect of treatment on students’ IPAT posttest scores, although the impact was moderate. Controlling for pre test scores, analysis of the main studies data yielded no significant main effects of: gender, age, academic level, prior programming and prior visual artistic ability. The result from the main study also reveals no interaction effect of treatment, gender, academic level, age, prior programming, and prior artistic ability. While the quality of CS1 students’ performance in each session varies as their IPAT achievements show, yet the results of this research revealed a consistent pattern: Students in the constructionist Scratch class outperformed those in the conventional class, although the impart was moderate. This finding implies college students without prior programming experience can perform better in a class following a constructionist Scratch programming pedagogy. The study recommends the use of Scratch, following a constructionist pedagogy with first-year students in colleges, especially those without prior background in programmingSchool of ComputingPh. D. (Computing Education
    • …
    corecore