
PUBLIC CLASS
GRAPHIC_DESIGN
IMPLEMENTS CODE {
 // YES, BUT HOW?
}
An investigation towards bespoke Creative Coding
programming courses in graphic design education

A dissertation by Stig Møller Hansen · Student ID: au285478 · February 2019

Presented to:
Aarhus University
Faculty of Arts
School of Culture and Communication
Department of Digital Design and Information Studies
Supervisor: Martin Brynskov

Character count: 249.752 (104,1 standard pages of 2.400 characters)

ISBN: 978-87-7507-457-0
DOI: 10.7146/aulsps-e.340

 3

“Art and Technology—A New Unity”
Walter Gropius, 1923

 5

SUMMARY

Situated in the intersection of graphic design, computer science, and pedagogy, this dissertation
investigates how programming is taught within graphic design education. The research adds to the
understanding of the process, practice, and challenges associated with introducing an audience of
visually inclined practitioners—who are often guided by instinct—to the formal and unforgiving
world of syntax, algorithms, and logic. Motivating the research is a personal desire to contribute
towards the development of bespoke contextualized syllabi specifically designed to accommodate
how graphic designers learn, understand, and use programming as an integral skill in their vocational
practice.

The initial literature review identifies a gap needing to be filled to increase both practical and
theoretical knowledge within the interdisciplinary field of computational graphic design. This gap
concerns a lack of solid, empirically based epistemological frameworks for teaching programming to
non-programmers in a visual context, partly caused by a dichotomy in traditional pedagogical
practices associated with teaching programming and graphic design, respectively. Based on this gap,
the overarching research question posed in this dissertation is: “How should programming ideally be
taught to graphic designers to account for how they learn and how they intend to integrate programming
into their vocational practice?”

A mixed methods approach using both quantitative and qualitative analyses is taken to answer the
research questions. The three papers comprising the dissertation are all built on individual
hypotheses that are subsequently used to define three specific research questions.

Paper 1 performs a quantitative mapping of contemporary, introductory programming courses
taught in design schools to establish a broader understanding of their structure and content. The
paper concludes that most courses are planned to favor programming concepts rather than graphic
design concepts. The paper’s finding can serve as a point of departure for a critical discussion among
researchers and educators regarding the integration of programming in graphic design education.

Paper 2 quantitatively assesses how the learning style profile of graphic design students compares
with that of students in technical disciplines. The paper identifies a number of significant differences
that call for a variety of pedagogic and didactic strategies to be employed by educators to effectively
teach programming to graphic designers. Based on the results, specific recommendations are given.

Paper 3 proposes a hands-on, experiential pedagogic method specifically designed to introduce
graphic design students to programming. The method relies on pre-existing commercial graphic
design specimens to contextualize programming into a domain familiar to graphic designers. The
method was tested on the target audience and observations on its use are reported. Qualitative
evaluation of student feedback suggests the method is effective and well-received.

Additionally, twenty-four heuristics that elaborate and extend the paper’s findings by interweaving
other relevant and influential sources encountered during the research project are provided.

Together, the literature review, the three papers, and the heuristics provide comprehensive and
valuable theoretical and practical insights to both researchers and educators, regarding key aspects
related to introducing programming as a creative practice in graphic design education.

 7

RESUMÉ

Denne afhandling er placeret i krydsfeltet mellem grafisk design, programmering og pædagogik. Den
undersøger, hvordan der undervises i programmering på grafiske designuddannelser. Afhandlingen
bidrager til forståelsen af de processer, praksisser og udfordringer der er forbundet med at
introducere et publikum af visuelt orienterede praktikere – som ofte er styret af instinkt og
mavefornemmelser - til en formel verden styret af syntaks, algoritmer og logik. Afhandlingen er
motiveret af et personligt ønske om at bidrage til udviklingen af skræddersyede kontekstualiserede
programmeringskurser, der er specielt designet til at imødekomme, hvordan grafiske designere lærer,
forstår og bruger programmering som en integreret færdighed i deres erhvervsmæssige praksis.

Den indledende litteraturoversigt identificerer en mangel på både praktisk og teoretisk viden
inden for det tværfaglige område af programmeringsdrevet grafisk design. Særligt mangler der solide
empirisk baserede epistemologiske rammer for undervisning i programmering til ikke-programmører i
en visuel kontekst. Ydermere mangler der viden om, hvordan dikotomien i pædagogisk praksis
forbundet med undervisning i henholdsvis programmering og grafisk design kan håndteres. Baseret
på disse mangler er afhandlingens overordnede forskningsspørgsmål: "Hvordan skal grafiske designere
ideelt set undervises i programmering så der tages højde for, hvordan de lærer, og hvordan de har til
hensigt at integrere programmeringen i deres faglige praksis?"

Der anvendes en Mixed Method tilgang til at besvare forskningsspørgsmål gennem kvantitative og
kvalitative analyser. Afhandlingens tre artikler er alle bygget på individuelle hypoteser, som
efterfølgende bruges til at definere tre separate underforskningsspørgsmål.

Artikel 1 beskriver en kvantitativ kortlægning af nutidige introducerende programmeringskurser
fra designskoler, for at skabe en bredere forståelse for deres struktur og indhold. Artiklen
konkluderer, at de fleste kurser er planlagt så de favoriserer programmeringskoncepter frem for
grafiske designkoncepter. Artiklens resultater kan tjene som udgangspunkt for en kritisk diskussion
blandt forskere og lærere om integration af programmering i grafisk designuddannelse.

Artikel 2 vurderer kvantitativt grafiske designstuderendes læringsstilprofil sammenlignet med
læringsstilsprofilen for studerende i mere teknisk orienterede discipliner. I artiklen identificeres en
række væsentlige forskelle, der kræver fordrer brugen af anderledes pædagogiske og didaktiske
strategier for effektivt at kunne undervise grafiske designere i programmering. Baseret på
resultaterne gives en række specifikke anbefalinger.

Artikel 3 foreslår en praktisk erfaringsbaseret pædagogisk metode, specielt designet til at
introducere grafiske designstuderende til programmering. Metoden anvender allerede eksisterende
kommercielle grafiske designprodukter for at kontekstualisere programmering til et domæne, der er
kendt for grafiske designere. Metoden er afprøvet på målgruppen og observationer omkring dens
anvendelse rapporteres. Kvalitativ evaluering af feedback fra studerende tyder på, at metoden er
effektiv og godt modtaget.

Derudover indeholder afhandlingen 24 heuristikker, som uddyber og udvider undersøgelsens
resultater ved at inddrage andre relevante og indflydelsesrige kilder fra forskningsprojektet.

Tilsammen giver litteraturoversigten, de tre artikler samt heuristikkerne omfattende og værdifulde
teoretiske og praktiske indsigter til både forskere og undervisere om centrale aspekter i forbindelse
med introduktion af programmering som en kreativ praksis på grafiske designuddannelser.

 9

ACKNOWLEDGMENTS

Many people provided support and guidance through the development of this dissertation, and in the
following, I would like to express my gratitude:

I would like to thank my supervisor, Martin Brynskov, for his cooperativeness, indomitable
enthusiasm, and genuine interest in my work.

I am grateful that Maria Hellström Reimer kindly allowed me to participate in the Swedish Faculty
for Design Research and Research Education and thank her for her help in arranging my residency at
the School of Arts and Communication (K3) at Malmö University.

I would also like to thank many of my colleagues at The Danish School for Media and Journalism.
Thank you, Karen-Margrethe Österlin, for encouraging me to submit my application when the call for
PhDs was made. I send a collective thanks to my colleagues Eng Agger, Anne Danger Boisen, and
Karsten Vestergaard, who readily took my tasks upon themselves to let me focus on my study— IOU
big time. I extend thanks to Anne Mette Møller Hartelius for inviting me into her Creative Coding
courses; Thomas Rasmussen and Vibeke Borberg for their help in managing the many formalities
involved in a cross-institutional cooperation; my PhD peers at DMJX, Maria Eitzinger, Jørn Ullits Olai
Nielsen, Troels Østergaard, and Stig Brostrøm, for their support and openness in our meetings—I have
taken comfort in knowing that I had you to share my experiences with. I would also like to thank my
students at DMJX; without their openness, willingness to participate in my experiments, and
continuous feedback, this dissertation would not exist.

Thanks to all external graphic design and computer science educators and researchers for openly
sharing their thoughts, comments, ideas, teaching materials, and hard-gained experiences. I would
also like to thank my blind-peer reviewers, whoever they are, for their constructive, meticulous, and
well-intentioned feedback.

I would like to thank my mom and dad for their constant support and encouragement in letting me
pursue my interests in visual design and computers—little did you know what impact that Amiga 500
would have on my life.

Lastly, I owe a heartfelt thanks to my wonderful wife, Anne Gramtorp, for her passionate and
invaluable support during my four years as a PhD student: reading drafts, providing insightful
comments, letting me vent frustration, sharing my enthusiasm when on a roll, lending her ears when
things were tough, and reminding me to take care of myself. To my beloved kids, August and Bertil:
Yes, Dad has finally finished writing his dissertation—time to bring out the LEGO, crayons, and paper
planes!

A few notes on the text: This dissertation is written in American English. Quotations from British sources
have not been changed. Throughout the dissertation, the terms “teacher,” “educator,” and “instructor” are
used interchangeably, depending on the context. A glossary is provided for readers unfamiliar with some
of the scientific and technical terms used within this dissertation. No gender politics are intended in the
text, so if you prefer, please think “she” whenever you read “he.”

 11

CONTENTS

Summary .. 5
Resumé... 7
Acknowledgments ... 9
Chapter 1: Introduction ... 13

1.1 Overview ... 13
1.2 Background .. 13
1.3 Motivation .. 14
1.4 Subject field and position ... 14
1.5 Research gap ... 15
1.6 Thesis statement ... 16
1.7 Research questions .. 16
1.8 Dissertation structure .. 16
1.9 Contributions .. 17

Chapter 2: Literature review ... 19
2.1 Introduction ... 19
2.2 Graphic design ... 19
2.3 Programming ... 27
2.4 Pedagogy .. 33

Chapter 3: Methodology ... 41
3.1 Introduction ... 41
3.2 Mitigating viewpoint ambiguity .. 41
3.3 Paradigmatic position .. 42
3.4 Type of research .. 44
3.5 Research design ... 50
3.6 Order of execution ... 53
3.7 Validating results .. 53

Chapter 4: Research Contributions .. 55
4.1 Overview ... 55
4.2 Linking the papers .. 55

Chapter 5: Paper 1 ... 57
Chapter 6: Paper 2 ... 67
Chapter 7: Paper 3 ... 75
Chapter 8: Conclusions.. 87

8.1 Introduction ... 87
8.2 Answering research questions... 87
8.3 Theoretical implications ... 91
8.4 Practical implications .. 91
8.5 Limitations ... 91
8.6 Future Research ... 93

Chapter 9: Heuristics .. 95
Final Remarks ... 107
Glossary .. 109
Figures and tables .. 111
References ... 113

 13

CHAPTER 1: INTRODUCTION

In this chapter, I provide an overview of the study and describe my personal

background to explain how I approach this study. I also describe the

broader motivation behind the study, state the main thesis, and describe

the derived research questions. Lastly, I frame my research field and

describe my own position therein.

1.1 Overview
This research project is a study into how programming can be taught to graphic designers with the
aim of extending their skill set by the means of computation. The research will focus on pedagogical,
technical, and aesthetical issues as seen from the perspective of a graphic design educator trying to
establish a context for and an understanding of computation within the framework of creative, visual
practice. This is not a historical or cultural study of code, but a consideration of the complexities that
arise when teaching formal, word-based logic and numeracy skills to informal, visual, and intuitive
graphic design students. The intended audience for the research is graphic design educators who
teach, or wish to teach, computationally driven graphic design, a subset within the popularized term
Creative Coding, defined by Mitchell & Bown (2013, 143) as “a discovery-based process consisting of
exploration, iteration, and reflection, using code as a primary medium, towards a media artefact designed
for an artistic context.”

1.2 Background
My background is in graphic design and interactive design. My research has emerged from a personal
and professional interest in the use of code as a way to craft visual expressions. Instigated in the
early 1990s by my teenage experiences with programming languages such as AMOS and AmigaBASIC,
I became fascinated by the creative potential embedded in computers. During the early 2000s, I built
a professional career using programs such as Director and Flash to produce interactive multimedia
applications. When offered a position as educator at a design school 2007, I drew on my past
experience to argue that coding should be part of the students’ curriculum. By then, technological
advances, low computing costs, and a rise in code-based tools aimed specifically at visual designers
had given programming a renaissance, making my long-running love affair with code and design en
vogue and highly sought after by the industry. My approach to this research project, therefore, is that
of a formally trained graphic designer and auto-didact programmer who teaches coding in a visual
context to graphic design students in a Danish university college setting.

 14

1.3 Motivation
In today’s techno-centric, software-driven society, code plays an increasingly important role in our
lives (Manovich 2013; Rushkoff 2010). Recently, there has been a massive focus on promoting code
literacy, ranging from small-scale private initiatives, cultural grassroot movements, mainstream media
coverage, and educational activities by institutions and organizations, to political legislation.

In the decades following the desktop revolution of the 1970s, programming as an artistic practice
was mainly exercised by small communities of autodidactic computational artists (Reichardt &
Institute of Contemporary Arts 1969), self-proclaimed “hackers” (Florin 1985; Levy 2010), and
avantgarde demosceners (Majoros, Iván, & Matusik 2012; Carlsson 2009) who—in the style of true
craftsmen—stretched their hardware beyond its limits in extraordinary visual and audible
productions. The early 2000s saw programming move from a geeky subculture into mainstream
media as an audience of young creatives began to explore the potential of code as an artistic,
expressive medium (Manovich 2005). This renaissance of programming sparked a surge of open-
source software and user-contributed tutorials dedicated to making expressive output using code.
Today, it has never been easier for creatives to harness and utilize programming in their quest for
novel expressions. However, I have often wondered why programming has never caught on within
the graphic design community. Architecture, a closely related and also highly visuospatial domain,
has long adopted programming as a way to explore new ways of constructing buildings through
parametric, generative, and procedural computational methods (Cannaerts 2016). I can only
speculate about why graphic designers are lagging behind in their adoption of computationally
assisted formation, but the fact of the matter is that, while it is on the rise, only a few professional
graphic designers use code as an integral part of their workflow and products (Shim 2016a).

A valid question to ask at this point would be: Should designers code at all? This is a highly
debated question, and practitioners, educators, and scholars have many different views. Some argue
that graphic designers should stick to their primary vocation and leave programming to the
programmers (Cooper 2017). Some argue that graphic designers’ encounter with code is too
conceptual—because of the way they were taught higher order computational thinking skills—to be
applied in their existing domain-specific workflow (Panda 2016). Others argue that graphic designers
should be able to code their own programs as part of their ideation phase without having to enlist the
help of a trained programmer (Stinson 2017; Kolko 2012a).

I subscribe to the final viewpoint. In my Creative Coding courses, it has never been my mission to
make graphic designers fully-fledged programmers. That, I know, is never going to happen—nor
should it. By teaching graphic designers how to create visual output through the medium of code, I
hope to instill in them an understanding of how programming can be a highly versatile and useful
addendum to their skill set, not only as a practical tool, but also, in a meta-cognitive way, informing
how they think, plan, and execute visual communication. In my view, educating code-literate graphic
designers is essential for the continued development of graphic design as a discipline.

1.4 Subject field and position
This study concerns topics that exist in the intersection of graphic design as a vocational discipline,
programming as a theoretical and applied skill, and pedagogy as an instructional method to facilitate
knowledge transfer. Schematically, this can be visualized as shown in figure 1.1, with this
dissertation’s subject field located in the middle where the three research fields overlap and are
highlighted in black. Also shown in figure 1.1 is the my initial position approaching this study. As
described in section 1.2, I have a professional background in graphic design. Graphic design is the

 15

field in which I have accumulated
theoretical and applied professional
expertise over the span of two
decades. Graphic design is also the
central axis around which all inquiries
in this study are made. Finally, graphic
design is the field to which I aim to
contribute. This is not to say that
pedagogy or programming are less
important topics. Together, they form
the trinity that constitutes my subject
field. As described in chapter 2, some
scholars and practitioners have made
contributions to my subject field;
however, many of them have done so
with a personal background in either
pedagogy or computer science. My
personal profile allows me to evaluate
the existing body of knowledge in my
subject field through the lens of a
pragmatic graphic design practitioner
and educator.

1.5 Research gap
Technology has created unprecedented possibilities for designers to engage in digital media (Maeda
2004; Manovich 2013). Finding a way to manage the increasing complexity of technology within the
design curriculum is key to keeping design education relevant (Fleischmann 2013). While there are
other areas of research that look at associations between creative practices and computation (e.g.,
generative art, software art, digital craftsmanship, software education, digital design education, and
media computation) there is a lack of documented investigations into how expressive programming,
or Creative Coding, should be adapted and taught specifically to graphic designers to accommodate
their needs emerging from the mode d'emploi of their vocational practice. While practice-based
education and studio teaching have been studied philosophically or ethnographically (Schön 1983;
Cross 1982), the tacit and discursive learning essential to Creative Coding has yet to be
comprehensively discussed in the light of reflection on current pedagogies (Tzankova & Filimowicz
2017, 1). Finding texts that address pedagogy, curriculum, and educators’ professional development
in the richly diverse field of Creative Coding is challenging because teaching and learning are
considered to be marginal to the prevailing discourses (Tzankova & Filimowicz 2017, 2). Overall,
there is a scarcity of works that deal with the pedagogies of computational media and design from
practical and interdisciplinary perspectives (Tzankova & Filimowicz 2017, 2).

This research aims to contribute by filling this gap, providing both practical guidelines as well as a
starting point for the discussion of how programming can be successfully integrated into graphic
design curricula.

Figure 1.1: The subject field of this dissertation (marked in black),
position of the author (marked by X) and the research fields

covered in this study (highlighted in yellow).

 16

1.6 Thesis statement
To frame and guide my research, as well as state my initial position in relation to my investigation, I
have formulated the following thesis statement:

Contemporary Creative Coding courses teach programming as an artistic practice informed and
driven by technical affordances of the programming environments, leaving graphic designers
without a bespoke contextualized syllabus designed specifically to accommodate how graphic
designers learn, understand, and use programming as an integral skill in their vocational
practice.

1.7 Research questions
Based on my thesis statement, this study asks as its broad and overarching research question (RQ):

RQ: How should programming ideally be taught to graphic designers to account for
how they learn and how they intend to integrate programming into their
vocational practice?

Subdividing this question into its core constituents allows me to pose three specific research
questions (SRQs) which will be investigated in separate studies:

SRQ1: How is Creative Coding currently taught in graphic design education?
SRQ2: How should Creative Coding be taught to accommodate how graphic design

students learn?
SRQ3: How can graphic design students be motivated and supported as they are

introduced to programming?

The first specific research question aims to provide a snapshot of the current landscape of Creative
Coding courses, which establishes a foundation to inform the discussion on issues related to
pedagogic strategies and course content.

The second specific research question aims to investigate the ways in which graphic designers
learn, specifically focusing on how students use their existing domain-specific knowledge and
cognitive models (graphic design) to leverage knowledge and skill acquisition from another domain
(programming).

The third specific research question aims to investigate the consequences of contextualizing
Creative Coding assignments as a way to heighten students’ motivation and improve their attitude
towards learning to program.

Each of these are addressed individually in my papers (chapters 5–7), and are answered and
discussed together in chapter 8.

1.8 Dissertation structure
This dissertation is divided into nine chapters, each with its own specific objective:

Chapter 1 provides an overview of the study. It describes my personal background to aid in
understanding how I approach this study and explains the broader motivation behind the study. It
presents the main thesis and describes the derived research questions. Lastly, it frames my research
field and describes my own position therein.

 17

Chapter 2 reviews the literature relevant to my subject field and discusses current knowledge,
substantive findings, and contributions in areas where graphic design, programming, and pedagogy
intersect and overlap.

Chapter 3 describes my paradigmatic position and explains its influence on this study. It then
accounts for the research design used to answer the three specific research questions. Lastly, it
suggests means for validating my results.

Chapter 4 provides an overview of my research papers and discusses their interrelationship.
Chapters 5–7 each present a research paper along with a submission history and publication state.
Chapter 8 revisits the research questions, answering each of them individually. It discusses both

theoretical and practical implications of my research and considers its limitations. Finally, it suggests
future research to be conducted.

Chapter 9 aggregates the cumulative knowledge acquired during my study and distills my findings
in a list of pragmatic and applicable heuristics.

The paper concludes with a list of figures, tables, and references along with a glossary to explain
the scientific and technical terms used within this dissertation.

1.9 Contributions
This dissertation makes five major contributions:

• It provides a comprehensive snapshot of the current structure and content of Creative
Coding courses. This knowledge can offer a point of departure for discussion and inform
the debate among design educators about how best to incorporate programming in
graphic design curriculum.

• It presents two approaches to planning Creative Coding courses: code-first versus design-
first. These perspectives are useful both in discussions among educators and for individual
educators as means to reflect on how they plan their courses.

• It gives insight into the learning style profile of graphic design students, specifically
related to learning programming. This knowledge can be used by design educators to tailor
their teaching material to account for how graphic design students learn.

• It suggests a pedagogic method: deconstruction/reconstruction. This method can be used as
is by design educators who teach introductory programming to graphic designers.

• It offers a list of heuristics containing pragmatic and applicable guidelines and
recommendations for design educators who seek to improve their Creative Coding course.

If any of these contributions manages to find its way into Creative Coding classrooms in design
schools, then my work has not been in vain.

 19

CHAPTER 2: LITERATURE REVIEW

In this chapter, I review the literature relevant to my subject field. I discuss

current knowledge, substantive findings, and contributions in the areas in

which graphic design, programming, and pedagogy intersect and overlap.

2.1 Introduction
To facilitate an understanding of the relevance, importance, and challenges associated with teaching
programming in graphic design education, I present a survey of the current literature relevant to my
research field. This helps establish the solid foundation that has informed my research design and
methodology.

As explained in section 1.4, this study situates itself in the area in which graphic design,
programming, and pedagogy overlap and intersect. These three independent and well-established
research areas each comprise a vast body of knowledge; consequently, this literature review does not
intend to provide an in-depth description of the background, prevailing theories, and methods of
each of the three. Instead, it investigates and interweaves findings from each to offer a synergetic
and holistic framework for answering the research questions.

Methodologically, this literature review is not systematic in the sense of applying a set of defining
keywords to particular databases. While such an approach might theoretically improve my study, I
doubt whether it would yield better results in practice due to the varied terminology that is used in
discussions across my three research areas. Given the objectives of my study, I conducted the review
in an organic fashion, relying on ad-hoc searches, recursive examination of citations in key
references, and suggestions from fellow scholars.

In section 2.1, I review literature situated in the field of graphic design that discusses the role, use,
and implementation of programming in the graphic design industry and graphic design education.

In section 2.2, I review literature situated in the field of computer science that discusses
programming applied in visual creative practices and research into how programming can be taught
as an informal skill to non-computer science students.

In section 2.3, I review literature situated in the field of pedagogy that discusses general
pedagogic and didactic strategies suitable for supporting students’ acquisition of knowledge in
creative, technology-driven learning environments.

2.2 Graphic design
2.2.1 What is graphic design?

Graphic design is a relatively young and difficult-to-define discipline in the context of academic
research (Hannaford 2012). The term graphic design was first coined by Dwiggins in 1922 (Dwiggins
1922; Meggs & Purvis 2006) but did not gain widespread use until the 1960s. Before then, graphic

 20

design was known by the decidedly unacademic term of commercial art (Hannaford 2012). Today,
graphic design—also known as communication design—is defined by the industry’s leading
organization, the American Institute of Graphic Arts (AIGA), as “the art and practice of planning and
projecting ideas and experiences with visual and textual content. The form it takes can be physical or
virtual and can include images, words, or graphics.” (AIGA 2017). It encompasses a large and diverse
range of media and forms of communication; for example, visual identities, posters, advertisements,
packaging, book design, newspaper design, wayfinding, illustration, information graphics, data
visualizations, motion graphics, interactive graphics, web design, and app design (AIGA 2017).

Historically, graphic design was a manual trade learned by apprenticeship and carried out by hand
in a physical world using specialized analog and mechanical equipment (Jury 2012; Levit 2016).
Throughout history, designers have always implemented systems and logic in their work. Examples
include Albrecht Dürer’s Underweysung der Messung mit dem Zirckel und Richtscheyt (1525), the
Architype series by Doesburg and Albers (1920s), New Alphabet by Crouwel (1967), Gerstner’s
Programme entwerfen (1964) and Kompendium für Alphabeten: Systematik der Schrift (1972), Müller-
Brockmann’s Raster systeme für die visuelle Gestaltung (1981), and Programmiertes Gestalten (1980) by
Kapitzki. Despite their highly systemic nature, these examples were all manually executed. However,
in the 1970s, technological advances in production techniques provided graphic designers with
access to sophisticated electronic systems capable of automating the tedious and time-consuming
tasks of the past. Pioneers began to explore the potential of digital technology in graphic design
production, with Knuth’s TEX and METAFONT (1979) leading an inquiry regarding the impact of
automation in graphic designers’ systems (Shim 2016a).

2.2.2 The advent of computers in graphic design

Early use of computers by graphic designers dates back to the mid-1960s (Faison 1995, 145), but the
major breakthrough of computers in the graphic design industry occurred two decades later in the
1980s (Faison 1995; Maeda 2002; Dubberly 1990; King 1988; Meggs & Purvis 2006) and heralded a
paradigm shift from analog to digital production. Optimistic graphic designers praised the computer
as a major revolution in graphic arts (Heller 2002; Dubberly 1990; Maeda 1999). Less enthusiastic
graphic designers simply embraced it as another tool on their workbench (Blauvelt 2011, 23),
unaware of how it would soon eliminate the work of production artists, photomechanical technicians,
keyliners, paste-up artists, typesetters, color separators, and printers (Blauvelt 2011, 23). Skeptical
graphic designers, however, feared, rejected, and decried digital technology during its infancy (Faison
1995) and called designers who did explore it “the new primitives” (Meggs & Purvis 2006, 490). They
feared it would detract from creativity and depersonalize the work. As acclaimed graphic designer
Paul Rand once famously remarked: “They [computers] are just like pencils; nothing special.”

Known as “The Desktop Publishing Revolution” (Tucker 1988), computers quickly rendered
previous physical techniques obsolete and indicated a shift toward software as the dominant tool for
graphic design production, thereby simultaneously altering both the process and aesthetics of
graphic design (Richardson 2010, 46; Heller & Womack 2007, 17). This transition of epistemology in
the graphic design process saw tangible materials give way to virtual metamaterials (Manovich 2013)
with properties and attributes that escaped any physical limitations. As designers began to explore
these metamaterials, new creative possibilities emerged. An example thereof is Beowulf (1990) by
Blokland & Rossum, which used consciously manipulated PostScript code to create a dynamic, ever-
changing font.

In the mid-1980s, most graphic designers did not possess the necessary technical skills required
to explore the affordances of the digital medium. However, another group of people did. Considered

 21

a sub-culture back then, hackers, nerds, and demosceners (Florin 1985; Carlsson 2009) saw computers
as creative machines and challenged themselves to push the limited hardware to its boundaries.
Using code as their material, they created digital artifacts with a previously unseen and distinct digital
aesthetic that would soon make its way into popular culture and play a key role in defining the
aesthetics of the decade. Foreseen by Dubberly (1990), and following the rise of the Internet in the
mid-1990s, graphic designers began experimenting with HTML, Shockwave, Flash, and Java applets
(Pearson 2011; Watz 2010). Maeda saw computers as a new material for expression (Maeda 1999,
101), and in 1999, in an effort to make digital technologies available to design students, he
developed Design By Numbers (DBN) (Maeda 1999, 2004), a simplified environment to explore
programming in a visual context. In 2001, Fry, Reas, & Maeda (2007) evolved DBN into a more
versatile and extensible framework, changing its name to Processing in the process. DBN and
Processing paved the way for a multitude of new programming platforms aimed at designers and
artists (Lehni & Puckey 2011). By the turn of the millennium, programming had become trendy
(Manovich 2005, 3), and tools developed for technical use were gaining cachet in the digital arts
(Maeda 2002). As computers continued to evolve to form the core of graphic design processes,
design tools such as code editors and prototyping applications adopted a mode of processing known
as “if-then,” or conditional, logic (i.e., if this happens, then do that). For example, Blauvelt coined the
term if-then approach (Blauvelt 2008) to define this particular design approach, and he argued that
this process, mostly used by programmers, could also be beneficial to graphic designers.

Traditionally, graphic design had clear directions and a defined purpose (Davis 1998), but the
advent of digital media fostered a range of new tools, skills, and disciplines (e.g., interactive design,
media computation, and interface design), which, in turn, forced researchers, educators, and
practitioners to engage in a fundamental renegotiation of what comprised graphic design as a
discipline. However, amidst the turmoil caused by the paradigmatic changes, Meggs and Purvis
(2006) argued that the essence of graphic design, namely that of conveying messages though visual
means, remained unchanged.

2.2.3 The role of the post-computer graphic designer

Acknowledging the rapid shift towards digital production, graphic designers were forced to reflect on
how they would exercise their practice and how it affected their role as creators (Richardson 2006).
Following an investigation of how graphic design practitioners tackled the transition from analog to
digital production, Faison (1995) suggested fourteen new possible roles for graphic designers.
Interestingly, given the context of this dissertation, Faison did not discuss programming as an activity
to be undertaken by graphic designers. Later, representing those skeptical of computers, Kelly (2002)
admitted that computers were changing the definition and role of the graphic designer, but he
believed the nature of that change was still unclear. Unlike Kelly, Maeda (2002) saw a clear
distinction between the pre-computer designer and the post-computer designer. Maeda was
confident that designers would come to appreciate the computer’s unique role in the future of arts
and design (1999, 13), later arguing that “any designer that has not adapted to the computer is either
lying or out of work” (Maeda 2002). As time progressed, it became evident that graphic design would
increasingly rely on computers, made possible by cheap, accessible, and powerful hardware and
software. Hard-learned skills that once took years to master became available to everyone—including
non-designers—at the click of a mouse button. This democratization of graphic design practice was
criticized by Fleischmann (2013, 7), who believed it would blur the boundaries between amateur and
professional practice and promote amateurism. This view was shared by Tober (2017, 109), who
maintained that graphic designers should capitalize on the possibilities of new forms of practice;

 22

otherwise, non-designers would do so and create work that society recognized and accepted as
design (2017, 109).

2.2.4 Graphic designers as users of software

The prevailing discourse regarding graphic designers’ use of technology has tended to stigmatize
them as users of software in the shape of applications provided to them by commercial entities.
Maeda (1999, 19) strongly objected to pre-packaged software and argued that the computer industry
was misleading people to mistake software skills for design skills. Several other scholars and
practitioners also criticized the inherent boundaries of the commercial (Mittendorp 2000; Ward 2001;
Blokland cited in Hoxsey 2003; Mateas 2005; Terzidis 2009). Watz (2003) expressed the view “that
designers have become dependent on software […] forcing the designer to adapt her work to the decisions
and metaphors chosen by the programmer.” This was further problematized by Lehni (2008), who
accused Adobe’s monopoly in the graphic design software market to cause a lack diversity and
alternatives. Lehni & Puckey (2011) observed that predominant software applications exerted a
strong influence on the aesthetics of the products and that graphic designers rarely questioned their
role.

2.2.5 Teaching software packages in graphic design education

Graphic design education has always taught the tools used in the industry. As analog tools became
digital tools, design schools consequently began teaching software packages. Early on, critics raised
concerns about the potentially negative impact of teaching software packages in graphic design
curriculum (Maeda 1999, 2002; Kelly 2001). Continuing to teach software packages, Tober (2012b)
warned, would only help to perpetuate the unfortunate belief that these applications were
considered design. However, abandoning all commercial software has never been considered an
option, as they offer many advantages. Instead, several scholars (Maeda 2002; Pettiway 2012; Tober
2017; Lehni & Puckey 2011; Watz 2003) have seen programming as a solution to relinquish more
control over computer systems for graphic design practice. Establishing symbiotic relationships
between industry-standard tools and programming through exploration of scripting capabilities
would allow graphic designers to forge their own tools and use them in their existing workflow (Lehni
& Puckey 2011). Also, by adding programming to the graphic design curriculum, to supplement—not
replace—commercial software, design schools would fulfill Maeda’s early vision of “a future in which
designers are free to author their own software […] [making it] possible for designers to define the trends
today rather than wait for the industry to define the terms of an evolving expression” (Maeda 2002, 41).
Digital design continues to move from software to programming as a new kind of practice
(Richardson 2010). Technical proficiency is now to be measured in terms of a graphic designer’s level
of fluency in a variety of code-based technologies because mastery of various industry-standard
software applications is now presumed of any designer (Tober 2012b).

2.2.6 Should graphic designers learn to code?

A fundamental and much debated topic is whether designers should learn to code. Early on, several
scholars (Ursyn et al. 1997; Young 2001; Andersen et al. 2003) addressed the issue, all arriving at the
conclusion that art students would benefit from acquiring basic programming skills. Maeda (2002)
also argued that coding was an essential and valuable skill for graphic designers to learn and
advocated that the best way to do so was by directly engaging with it. Weiman (2001) and Zee
(2001), however, believed that a conceptual understanding of code was sufficient. Those who
opposed code and digital technology in general were many pre-computer era design educators,

 23

perhaps most famously Rand (cited in Kroeger 2013), who believed it to be the realm of engineers
and computer scientists. Today, the debate goes on, with scholars and practitioners making
arguments for and against why graphic designers should learn to code.

In favor teaching code to graphic designers is Fallman (2017) who believes that rudimentary
coding skills are key for any graphic designer in the digital space. Maeda (2018) sees coding as a
fundamental skill to be learned by what he refers to as a new breed of “computational designers.”
Kolko (2012a) has suggested the metaphor of “code as material” and argues that in order for graphic
designers to master it, they must experience it. Madsen (2015) has identified several reasons why
designers should learn to code, including the ability to question assumptions brought about by
existing design tools, and maintains that they should be able to build new tools to replace them. A
final proponent for code in the graphic design curriculum is Shim (2016a, 2016b); however, he
believes that instead of learning the syntax of code, focus should be placed on learning to build logic
with code.

Arguing against coding as a skill to be learnt by graphic designers is Cooper (2017), who believes
that code/design as a cross-disciplinary exercise serves no purpose. Instead, he argues for a strict
distinction between disciplines. Also skeptical, but less dismissive, is Atwood (2012), who has posited
that learning to code can be rationalized only if it helps one to perform his job better.

Accepting Atwood’s view and suggesting that coding is in fact helping graphic designers perform
their job better is Tober (2012b), who claims that coding has become a competency with significant
value for design in both professional practice and education. However, the most compelling
argument in favor of teaching programming to graphic designers originates from students
themselves. Inspired by the growing surge of graphic design products made entirely from using code,
more graphic design students request courses that teach them how to incorporate code in their work.
When students express an interest in exploring code, it would be unwise of design schools to deny
them this. Given the possibilities today, students would simply satiate their appetite for code
somewhere else, most likely without graphic design educators to help them contextualize and relate
coding to graphic design.

Regardless of one’s position in the debate, the fact is that graphic designers are increasingly
engaging in informal end-user programming activities, leading them to reconsider their own role by
asking “are we designers or developers?” (Johansson 2007). This blurring of the lines of professional
practice, caused by the convergence of graphic design and computer science (Reed & Davies 2006),
has prompted many scholars and practitioners to contemplate the possible need for new terms such
as “designoper,” “devigner,” “unicorns,” “designicorns,” “hybrid designer,” “computational designers,”
or “meta-designers.” The muddled terminology and the ensuing inability to unambiguously describe
their professional role illustrates the deficient self-understanding and identity crisis associated with
being a designer who also codes.

2.2.7 Integrating programming in graphic design education

Following programming’s surge of popularity in the design community at the turn of the millennium
(section 2.2.2), programming gradually gained a foothold in graphic design education as a creative
practice. Over time, several scholars and educators have argued strongly in favor of programming to
be included in the graphic design curriculum (Dubberly 1990; Maeda 2002; Pettiway 2012; Wasco
2008; Amiri 2011; Lehni & Puckey 2011; Tober 2017). Young (2001, 64) posited the argument that
programming would enable designers to “conceive new categories of solutions and provide the
technical ability to realize them.” Reas (quoted in Hoxsey 2003) argued that teaching designers
programming would allow them to develop a deeper understanding of code and software, which, in

 24

turn, would encourage a unique use of the computer medium. Similarly, Watz (2003), discussing
computational design, regarded programming as a way to provide designers with a new literacy in
digital media, which he believed to be mandatory to fully explore the possibilities of electronic
media. Sharing this view was Pettiway (2012), who posited that addressing the relationship between
graphic design and programming was paramount to encouraging designers to push the boundaries of
practice and theory. He has been joined in this view by Tober (2017), who has advocated a
comprehensive integration of code both in the foundation of and throughout a design curriculum,
and by Amiri (2011), who has warned that excluding programming from the graphic design curriculum
will restrict the generation of creative ideas as well as the students’ options in translating, expressing,
and converting their ideas into artifacts.

Generally, the literature agrees that technology and programming should be introduced in graphic
design education and considers it to be long overdue, causing design education to be largely stuck in
the past and out of date, with only a few innovative institutions to spearhead initiatives toward
integrating programming into the curriculum (Fleischmann 2013). Despite the many advocates,
involving students in programming activities as part of their studio-based practice is still a rare
occurrence (Knochel & Patton 2015), and explicit focus on the development of technical skills
remains taboo in many design programs (Tober 2012b). If design students are fortunate enough to be
exposed to programming at all, it is usually in the form of an ancillary elective course that serves only
as a basic introduction (Tober 2012b). The reason for this, Pettiway (2012) has conjectured, is that
graphic design education is at large perplexed, misguided, and constantly challenged as it tries to
maneuver programming into the curriculum and balance “a proportion of technology instruction to
problem-solving, visual studies, and theoretical issues.”

Introducing graphic design students to programming comes with its own set of challenges that
must be circumvented by understanding and accounting for the domain-specific context. This
requires adapting both instructional material and teaching style to fit the graphic designers’ actual
needs and their learning style preferences. As noted by Young as early as 2001, “programming is not
something that can be tacked on to an existing education“ (Young 2001, 64). Furthermore, it is
important to acknowledge that not all graphic designers feel inclined or able to learn programming.
Scott & Ursyn (2006) have claimed that students undertaking a design degree tend to be better in
either design or IT. This creates a gap between designers who are literate in code and those who are
not (Lehni & Puckey 2011), which has led Freyermuth (2016) to suggest that it must be left to
students to decide how much coding they need.

The main challenge is defining a role for programming in the curriculum and striking a balance
between technical and design skills (Amiri 2011). Amiri commented on this balance, asking that
design educators “find new ways of using and embedding technology in [the] curricula so that it is more
in harmony with art and design culture and its traditional creative practices” (2011, 208). Endorsing this
pursuit are Freyermuth (2016) and Madsen (2016), who have simultaneously warned that the long-
established fundamentals of the discipline should be maintained while understanding the changes
and needs of the discipline as it evolves in a new era.

2.2.8 Keep it a design education, not a computer science education

Kelly (2002) has likened the advent of computers in graphic design to the dilemma faced by the
Victorians: a sudden decrease of constraints with a corresponding increase in options because of new
technology. Kelly has also cautioned graphic designers not to become seduced by the technology like
the Victorians and disregard the “language of graphic design” (Poulin 2011) that has been
established and refined over centuries. Having observed the ease by which intricate and complex

 25

designs can be effortlessly created using computers, Kelly (2001, 152) argued that “complexity should
not be confused with quality” and cautioned students to exercise restraint to avoid creating “visual
gibberish and a hodge-podge of elements.” Similarly, specifically addressing the medium of code,
Madsen (2016) has asked his graphic design students to honor the legacy of the trade and refrain
from “smudging the canvas with a repetition algorithm” and “placing a bunch of stuff randomly across
your canvas.” In his programming course, Madsen (2016) has interwoven traditional graphic design
virtues with computational principles while maintaining a fundamental design perspective. Another
programming course by Bakse (2018) has also stayed true to established design tradition while
simultaneously exploring a range of new design approaches made possible only through
computation. Heller & Womack (2007, 12) have claimed that technology has so thoroughly altered
the way designers now practice that it is as necessary to be a technologist as it is to be an artist. In
that respect, both Madsen and Bakse have backgrounds in formal design training and several years of
programming experience, making them well-suited to teach programming to design students while
maintaining a design perspective. While Heller & Womack have claimed that the increasing focus on
technology in design education has tossed the traditional definitions of graphic design and beauty
aside (2007, 17), Kelly, on the other hand, has argued that good judgment in making design decisions
grows out of visual values or principles, which have not changed, only the technology that gives them
form (Kelly 2001).

The literature widely agrees that including computation and programming in the graphic design
curriculum is a prudent decision that is long overdue. As more design schools do so, it is important
that they keep their programming courses anchored in and related to the graphic design domain
(Amiri 2011, 207). Amiri (2011) has noticed a fundamental difference between teaching programming
to computer science students and to design students and has likened the difference to that of
teaching a foreign language to a linguist and to a tourist. Unlike courses in computing education,
learning to program in graphic design education is not a goal in itself; rather, it serves as a means to
achieve a higher purpose, namely that of crafting visual communication.

2.2.9 Design educators who can program

Successful integration of programming in the graphic design curriculum requires educators with a
profound practical and theoretical experience in the field of graphic design; however, they must also
possess an understanding of digital media and programming. Arguments for art and design educators
to investigate computers and programming appear in the design education literature around the late
1980s (Ettinger 1988; Dubberly 1990; Hausman 1991), with many contributions to literature made
since, most recently and notably by Tzankova & Filomowicz (2017). In 2002, Maeda described how
“design schools today employ an entire generation of disillusioned pre-computer design educators who
feel increasingly irrelevant [and] post-computer design educators [who] are scrambling to stay current
with tools and systems that are born to evolve on an hourly basis” (2002, 40), confirming similar
previous observations made by McCoy (1998, 11). As true now as it was in 2002, only a few art and
design educators have demonstrated expertise in programming (Knochel & Patton 2015, 22). They
have many other demands on their time, making it hard for them to muster the commitment, effort,
and consistent hands-on practice writing code that is required to keep up with new programming
trends, techniques, and languages (Freyermuth 2016). Nevertheless, the assimilation of computers in
graphic design education is increasingly making coding literacy mandatory for design educators.
Some design schools have sought to circumvent the shortage of code-literate design educators by
hiring computer science educators to teach Creative Coding courses. This setup, however, has caused
students to complain that their educators did not understand design (Pannafino 2013), effectively

 26

highlighting the quintessential problem of outsourcing programming courses to non-design
educators.

2.2.10 Impact of programming on the evolution of the graphic design discipline

The graphic design education literature largely agrees that programming is a natural addendum to the
contemporary graphic design curriculum and that students should acquire at least a basic level of
computational literacy by engaging in informal, hands-on programming. Hence, it seems appropriate
to investigate how programming and computation is believed to affect the evolution of the graphic
design discipline.

According to Terzidis (2009), the increased use, misuse, and abuse of computational design has
raised concerns about the future direction that design may take. While some have regarded
programming and computation as a misappropriation of what design should be, Terzidis considered it
a liberation which would hopefully foster a “new generation of truly code literate creative designers
who can take fate into their own hands” (Terzidis 2009, xx). Likewise, Madsen (2015) has envisioned
new generations of what he refers to as meta-designers; designers working in the intersection
between art, design, and computation, to whom programming is a natural tool. Similarly, Tober (2017)
has regarded meta-designing as a shift back to a designer’s engagement with production, stating that
“meta-design involves the transformation of the role of the designer from one in which s/he is primarily
concerned with the design of individual artifacts to one where s/he also creates or develops new tools,
systems, and methods for design” (2017, 96). Tober has also described the computational graphic
design process as a mega-process that encompasses both meta-process and a meta-meta-process to
describe the relationship between the designer, user, code, and visual output (2011, 12–14).

A recurring theme in the discussion of how programming will affect the graphic design trade is the
making of custom design tools as an alternative and opposition to the industry-standard, commercial
software packages (Womack & Lehni 2006; Richardson 2016). This can be seen as a digital re-
emergence of the previous analog craftmanship associated with the discipline (Richardson 2006,
2010).

Learning to program will also enable graphic designers to use algorithms to create flexible
systems, a process that is concentrated on iterative formation with parameters instead of a fixed end
form. According to Shim (2016a), this resonates with the inherent systemic nature of graphic design
(see section 2.2.1) and presents a change in viewpoint from form to formation. However, compared to
the “mechanical” and formalistic design systems of the pre-computer era, modern computational
graphic design systems can include a wide range of sophisticated and advanced technologies and
processes (e.g., artificial intelligence, neural networks, machine learning, autonomous generative
systems) whose use raises new questions of authorship, ownership, originality, and creativity
(Galanter 2009; McCormack et al. 2014).

Programming has already brought about a new, distinctly “computational” visual style—New
Aesthetic (Bridle 2012)—which is struggling to mature and establish itself as a solid genre. Though
not denying its rightful presence in modern graphic design, Sterling (2012a, 2012b) voiced a critique
of New Aesthetic for being immature, prompting Watz et al. (2012) to respond by arguing that New
Aesthetic was already an integrated part of society. In a recent evolution of the New Aesthetic genre,
graphic designers are now using Web browsers as a tool for creating designs, with the inherent
technical affordances directly influencing the visual aesthetic (Benoit 2017).

New breeds of code-savvy graphic designers will emerge too. In his sarcastic piece, “Everyone
Hates Creative Coders,” Pearson (2013) pointed to the fact that the established business model has a
hard time fitting creative coders into its existing practice and workflow. But the graphic design

 27

industry is rapidly adapting, spurred on by the benefit to workflow, creativity, productivity, and
products made possible through programming and computation. Indeed, as Maeda (2018) concludes,
code-literate designers are in high demand.

2.3 Programming
2.3.1 Learning to program is difficult

Learning to program is notoriously difficult. Teaching programming to novices has been—and
continues to be—a big challenge (Bennedsen 2008). Repenning (2017), reflecting on twenty years of
teaching programming, observed that many students consider programming to be “hard and boring,”
a view contributing to frequent high dropout rates in introductory programming courses
(Matthíasdóttir & Geirsson 2011). Still, programming is not innate but a learned skill that anyone can
acquire and improve with practice (Brown & Wilson 2018). In fact, the belief that some people are
born programmers and others are not has been referred to by Guzdial (2015) as “computing’s most
enduring and damaging myth.” Repenning (2017) has argued that addressing the “hard” part is a
cognitive challenge requiring programming to become more accessible, while addressing the
“boring” part is an affective challenge requiring programming to become more exciting.

Traditionally, computing education has tended to favor formal learning environments (Dorn &
Guzdial 2006). This approach, according to Vihavainen, Paksula, & Luukkainen (2011), assumes most
introductory programming courses to be taught using lectures structured according to language
constructs, take-home assignments, and perhaps also demo-sessions. Over time, several instructional
strategies (e.g., problem-based learning, minimalist instruction, extreme apprenticeship, pair
programming) have been employed and tested in attempts to improve computer science students’
learning outcomes and course retention. The pedagogy and instructional strategies of computing
education are discussed in more detail in section 2.4. Despite the many approaches taken, the
literature suggests that there is still no consensus on how programming is ideally taught. Moreover,
because computing as a general topic is no longer exclusive to the domain of computer science
(Amiri 2011), instructional strategies for teaching programming must be developed within the
individual disciplines to account for the disciplinary context, typical use cases, and the learning style
profile of the target audience.

2.3.2 New breeds of programmers require new pedagogical approaches

Despite Andersen et al. (2003) having demonstrated a need to modify the traditional computer
science method, computer science educators have largely been hesitant to modify their pedagogical
approaches, perhaps too fettered by the mathematical and engineering legacy of the discipline
(Greenberg, Kumar, & Xu 2012). However, over the course of the past decade, computer science has
increasingly adopted pedagogical models and instructional strategies developed for teaching
programming in design schools in an attempt to make introductory programming courses more
engaging (Xu, Wolz, & Greenberg 2018). This collaboration between computer science and graphic
design educators was considered imperative by Reed & Davis (2006, 186) to ensure that each
discipline learned from the other and was prepared for future developments. Amiri (2011) has argued
further that teaching programming to graphic designers must abandon the engineering model of
software construction in favor of approaches that recognize the unique characteristics of digital
design and the malleable nature of interactive artifacts. In this respect, it can be helpful to consider
the activity of programming in relation to traditional artistic activities such as writing or painting.

 28

2.3.3 Programming as “sketching,” “sculpting,” “bricolaging,” and “hacking”

Over time, several computer science and design scholars have discussed programming using
vocabularies, perspectives, and metaphors originating from artistic practice.

Blum (1996) introduced a “sculpting” metaphor, in which programs take form by departing from
initial sketches that are then deviated from until the artifact is considered finished, rather than
faithfully adhering to an original plan. Similarly, Andersen et al. (2003) likened artistic programming
practice to that of the writer who moves phrases around and the painter who constantly repositions
and re-paints, a technique known in linguistics as commutation. Also drawing parallels to painting,
Graham (2004) maintained that creative programming, which he deliberately called “hacking” to
distinguish it from standard programming, should be viewed and practiced using “[…] a language that
lets us scribble and smudge and smear” (2004, 22). Graham (2004) chose the term “sketching” for his
preferred style of programming to emphasize the process of “figuring out the program” as it is being
written, thereby extending Blum’s “sculpting” metaphor. Coincidentally, the popular programming
environment Processing (Fry, Reas, & Maeda 2007) also refers to projects as “sketches” to purposely
incite authors to adopt a whimsical and artistic style of programming.

McLean & Wiggins (2008), extending Turkle & Papert’s (1990, 136) notion of bricolage
programming, discussed the relationship between artists, their creative process, their program, and
their artistic works through the analogy of a painter. In their model, McLean & Wiggins (2008)
described bricolage programming as a creative feedback loop in which concepts are encoded as
algorithms, which in turn produces output that is observed and evaluated by the artist-programmer,
prompting him to adjust the initial concept and begin another cycle. Such a curious and explorative
approach to programming closely resembles the natural modus operandi of graphic designers and
stands in stark contrast to an engineering approach to programming, in which carefully planned,
meticulously controlled, and mutually agreed specifications are imperative.

Non-programmers’ laissez-faire relationship to programming is further reflected in the way they
refer to their activities. Verbs like “hack,” “bodge,” “tinker,” and “dabble” are frequently used to
describe their working process, which also involves scavenging, foraging, copying, pasting, welding,
and piecing together snippets of code from other sources.

2.3.4 Teaching programming to graphic design students

During the past two decades, it has become widely recognized that a variety of majors have need of
computing skills, but a variety of approaches to programming is lacking. In response to this disparity,
many computer science educators designed course materials and interventions to encourage non-
STEM students to take computer science courses. Andersen et al. (2003, 109) observed that “teaching
introductory programming to non-computer-science students and in particular to multimedia students
with a liberal arts background is a big challenge […]” Owing to the nature of their trade and its
associated pedagogy, Andersen et al. (2003, 109) characterized liberal arts students as ”more inclined
to ‘open-ended topics’ in which analysis, discussion and interpretation are core competencies, and are
less inclined to take interest in ‘closed, absolute topics’ like math and programming.”

Although programming may not be of primary interest to them, liberal arts students (Andersen et
al. 2003) often possess a number of qualifications that can be useful when learning programming; for
example, their evolved visual spatial thinking aptitude (Sutton & Williams 2010) positively influences
their ability to learn programming (Webb 1985; Jones & Burnett 2008). Dorn & Guzdial (2006, 132)
examined a group of graphic designers who engaged in end-user programming and concluded that
this group of designers could likely benefit from some aspects of the formal teaching of
programming. This view was shared by Pannafino (2013) and Reed & Davies (2006, 183). In this

 29

respect, the 2007 Model Curriculum for a Liberal Arts Degree in Computer Science (Liberal Arts
Computer Science Consortium 2007) can provide a comprehensive foundation to aid graphic design
educators as they seek to integrate programming in their teaching. Also, Montfort (2016, 279–282)
has provided brief outlines of generic syllabi for use with programming courses taught within the arts
and humanities.

As discussed in section 2.2.7, the literature widely agrees that programming is a natural and much-
needed addendum to the contemporary graphic design curriculum. However, for students across all
disciplines, the prospect of having to learn to program can trigger negative emotions and cause fear
and anxiety (Byrne & Lyons 2001; Radošević, Orehovački, & Lovrenčić 2009; Connolly, Murphy, &
Moore 2009; Nolan & Bergin 2016).

2.3.5 Challenges associated with teaching programming to graphic designers

Educators who set out to teach programming to graphic designers will face several challenges.
First of all, to graphic designers, programming is a threshold concept (Cousin 2006). Meyer & Land

(2003) considered threshold concepts “akin to a portal, opening up a new and previously inaccessible
way of thinking about something.” Grasping a threshold concept becomes a transformative experience
involving an ontological as well as a conceptual shift (Smith, Young, & Raeside-Elliot 2015, 1563);
when a graphic design student who programs starts to think like a programmer, he will transition from
studying programming to becoming a working programmer able to see the interrelatedness of graphic
design and programming that were hitherto hidden from his view (Cousin 2006, 4). Heddy & Pugh
(2015) argued that facilitating such big transformative learning experiences is innately difficult;
therefore, they alternatively proposed small transformative experiences that are more manageable
and achievable.

Next, the mere thought of being taught programming can demotivate many graphic design
students (Andersen et al. 2003) and cause their comfort levels to drop drastically (Freyermuth 2016).
Pettiway (2012) reported that graphic designers tend to focus on the inadequacy of their
programming rather than trying to understand the salient issues that govern how and why
programming interfaces with graphic design. As a way to remedy the students’ reluctance, Freyermuth
(2016) argued that coding must be incorporated into more coursework throughout the graphic design
curriculum to provide students with frequent opportunities to practice their programming skills.

Another major challenge relates to graphic designers’ general aversion toward math. Pearson
(2011) recounted his experience of how novice artist-programmers became frustrated when the need
for trigonometry was required to create even simple animations. According to Andersen et al. (2003),
the majority of graphic designers lack mathematical qualifications, are scared of math, and typically
have had very bad school experiences in that subject. Similarly, Tober (2014) has stated that “creative
students perceive themselves at a disadvantage because they feel they often lack mathematical
understanding and numeracy skills.” Ironically, Peppler & Kafai (2005) observed that when
programming is integrated into design curricula, programming projects tend to focus precisely on
mathematical and science content. This focus on logical structures and mathematical principles,
Knochel & Patton (2015, 26) have conjectured, stems from the historical origin of programming in the
fields of mathematics and engineering. However, as programming increasingly transgresses
disciplinary borders, it becomes necessary to approach the task of teaching introductory
programming to non-STEM students in a new and (to computer science) untraditional way (Andersen
et al. 2003) that focuses less on math as a distinct topic.

Learning the intricate syntax of conventional text-based programming languages was perceived by
Pettiway (2012) to be a major barrier to graphic design students, who feel more comfortable working

 30

in spatial rather than text-heavy environments (Panda 2016) and think in terms of logically connected
workflows (Watz in Pearson 2011). This might suggest that a visual programming language (VPL; also
referred to as “node-based” or “dataflow” programming), in which programs are constructed by
manipulating elements graphically rather than textually, are ideal for teaching programming to
graphic designers. Recently, an increasing number of VPLs aimed at visual artists and designers have
emerged (e.g., QuartzComposer, TouchDesigner, NodeBox, PraxisLIVE, vvvv, Max, Vuo) as
complementary choices to the predominant textual programming languages (TPL) used in Creative
Coding (e.g., Processing, p5.js, openFrameworks, Cinder, paper.js, three.js). While the efficiency of
VPLs is highly debated (Leitão & Santos 2011; Panda 2016; Hjorth 2017; Iskrenovic-Momcilovic
2017), the main criticisms pertain to their inability to help users build a skillset that can be
transferred to other programming environments and paradigms and their inability to be extended
through new components without ultimately requiring the user to revert to TPLs. Those in favor of
TPLs include Leitão & Santos (2011, 556), who have claimed that “modern TPLs with user-friendly IDEs
can be much easier to program and understand than the older ones, and they can surpass recent VPLs,
especially in complex tasks.” Despite not dispensing with the need for learning syntax, the steeper
learning curve when it comes to TPLs provides good return on the investment. Unfortunately, as
noted by Leitão & Santos (2011), most TPLs lack domain-specific primitives, which significantly
delays the scripting process. Shim (2016a), however, has argued in favor of destressing the emphasis
on learning syntax and stressing the focus on teaching graphic designers meta-skills to enable them
to build design systems using logic and code. Shim’s idea aligns with the popularized notion of
computational thinking, which is discussed in section 2.3.7.

2.3.6 What kind of programming should graphic designers be taught?

With educators, scholars, researchers, and professional practitioners all largely agreeing that graphic
designers will benefit from learning programming, it is appropriate to ask what kind of programming
they should be taught.

Several studies (Dorn & Guzdial 2006; Dorn, Tew, & Guzdial 2007) found that graphic designers
were already taking part in significant programming activities despite having little to no formal
training in programming. Nardi (1993) labelled these participants as end-user programmers,
characterizing them as “individuals [who are] making use of a class of applications that incorporate
features like textual scripting, high-level declarative specification, programming by example, and
automation or customization via wizards” (Nardi 1993). Dorn & Guzdial (2006) argued that end-users
would eventually have more and more sophisticated needs and would outgrow the standard
affordances of their tools so that learning to program would become a natural progression. However,
Maeda (2002) did not believe the solution lay in artists or designers pursuing degrees in computer
science. Like Maeda, Denning (2004, 20), advocated the necessity of connecting programming
abstractions to domain specific actions, remarking that “there is little joy in worlds of pure abstractions
devoid of action.” Amiri (2011) has argued that this is particularly true in the case of end-users who
are graphic designers, for they see programming as a pragmatic and utilitarian tool allowing them to
create their often exploratory, experimental, and artistic artifacts. Graphic designers are not
interested in the intricacies of a programming language for its own sake (Amiri 2011; Tober 2013).

The literature has different views on what kind of programming should be taught to students in
non–computer science disciplines. In their comprehensive review of introductory programming
courses, Pears et al. (2007) identified three different foci of teaching programming: the language and
its syntax, problem solving, and the full cycle of system production (i.e., identifying a problem,
analyzing the requirements, and solving the problem). Reading the literature through these foci

 31

reveals a general consensus among researchers and educators that the latter two are most important
when teaching programming in a design context; herein lies a fundamental difference between
teaching programming to computer science students and graphic design students. Using the analogy
of teaching a foreign language to linguists or tourists, Amiri (2011, 205) explained: “The tourist needs
the language to be able to communicate with people and explore the new environment and to get by. The
linguist needs to understand the syntax, semantics and pragmatics of the language even if he or she
never needs to communicate with a native speaker of that language.” Extending this view, Guzdial
(2015a) argued that it suffices students outside computer science to learn a small core of
programming skills that will teach them enough computational thinking (see section 2.3.7) to help
them design tools in their own domains. Graphic designers do not need to develop the competencies
of professional software developers to make something useful.

According to Schneider (1978, 110), choosing a programming language suitable for use in
education “should be based on two critical and apparently opposing criteria: richness and simplicity -
rich in those constructs needed for introducing fundamental concepts in computer programming [yet]
simple enough to be presented and grasped in a one semester course.” Interpreting Schneider’s view
using the notion of “low threshold, high ceiling, and wide walls” (M. Resnick et al. 2005), it can be
argued that effective tools (programming languages) must make it easy for novices to get started (low
threshold), make it possible for experts to make sophisticated projects (high ceiling), and support and
suggest a wide range of explorations (wide walls). One tool that fits within this description and is
frequently mentioned in both graphic design and computer science literature is Processing (Fry, Reas,
& Maeda 2007), a Java-based textual programming language popular among artists, designers, and
architects and used widely throughout professional industries and education. Nevertheless,
discussing specific languages to teach is irrelevant: programming languages come and go. However,
despite their syntactic variations, they share an overarching set of fundamental computing principles.
A study of 12 computing textbooks by Tew & Guzdial (Tew & Guzdial 2010) identified 29 computing
constructs that are common across introductory courses. While these constructs can be taught to
computer science students using an abstract language-agnostic approach, graphic designers—qua
their preference for relatable, concrete, and utilitarian examples (see section 2.3.6)—will rely on a
specific programming language to make tangible software objects to help them understand the
computing constructs in relation to their native domain.

Briefly returning to the aforementioned three foci identified by Pears et al. (2007), it is clear that
while a focus on language and syntax is less important, it cannot be disregarded when teaching
programming to graphic designers. However, greater emphasis should be placed on the remaining
two foci: problem solving and system production. For this purpose, computational thinking (see
section 2.3.7) and contextualization (see section 2.3.8) can be helpful.

2.3.7 Computational thinking

Computational thinking (CT) has been a hallmark of computer science since the 1950s (Denning
2017, 33), making frequent appearances in debates on learning sciences and instructional
technology. Most notably, scientist and educational theorist Papert discussed the term in his
influential book Mindstorms (Papert 1980). Mateas (2005) considered CT (referring to it as
“procedural literacy”) as a core part of the curriculum for new media practitioners. However, the most
recent movement promoting CT began with an essay by Wing (2006), in which she promoted CT as a
way to solve problems, design systems, and understand human behavior by drawing on concepts
fundamental to computer science. Later, Wing, Cuny, & Snyder (2010) defined CT as an algorithmic
problem-solving method “represented in a form that can be effectively carried out by an information-

 32

processing agent.” Despite her many contributions towards solidifying CT, Wing (2006, 2008; 2010;
2014) has been criticized for offering a vague and confusing definition of the term (Denning 2017),
leaving teachers and education researchers without a consistent definition of what CT encompasses
and how development of CT skills can be assessed (Brennan & Resnick 2012).

Seeking to alleviate the confusion surrounding CT, Denning (2017) offered two perspectives:
traditional CT and new CT. Importantly, the kind of traditional CT taught in computer science is not the
same as new CT, which should be taught in graphic design education. Explaining the difference using
a paraphrased version of Hemmendinger’s (2010, 6) view on CT, Denning‘s intention was not for
graphic designers to think like computer scientists, but for them to understand and use computation
to solve their problems, to create, and to discover new questions that can be fruitfully explored. To
this end, new CT has been shown capable of offering syntactic, semantic, and pragmatic support for
overcoming the cognitive challenges of learning programming (Repenning 2017).

Spreading to fields beyond computer science, CT has also resonated with several scholars situated
in the field of graphic design. Among these are Knochel & Patton (2015), who have advocated for CT
to be viewed as an urgent need within art and design education. Sharing this view is Pettiway (2012),
who has maintained that CT can provide a gateway for combining practice-oriented and principles-
oriented learning in a graphic design context and has described CT as an essential element in an
effective curriculum model that intertwines programming as a foundational component of graphic
design education. Mishra & Yadav (2013) even claimed that CT (when coupled with a solid
understanding of a given domain) can augment human creativity, in particular through automation of
problem-solving and algorithmic thinking. Generally, researchers and scholars consider CT, applied as
a practice methodology within graphic design education, the key to understanding computation as
system and logic for creative processes. However, in practice, CT is rarely found as part of a graphic
design curriculum.

Repenning (2017), after evaluating experiences from courses employing CT, concluded that
teaching programming does not automatically lead to students developing CT skills; thus, he has
continued to suggest that CT must be taught explicitly as a separate topic using an appropriate
contextual setting.

2.3.8 Contextualizing programming courses

Contextualization of programming courses is much debated among computer science researchers.
Lukkarinen & Sorva (2016, 51) defined a contextualized computing course as “one in which one or
more application domains provide the motivation for learning Computer Science content and inspire the
design of learning activities; these domains may be, and often are, external to Computer Science itself.”

Forte & Guzdial (2005) argued that tailored computing courses aimed at non-computer science
students can offer a more motivating and engaging context for the learning of programming, which
can lead to an increase in the students’ motivation and engagement and help reduce their anxiety
and negative perceptions of programming. Similarly, Andersen et al. (2003) suggested that by “talking
to students in a language they know [and] choose a metaphor already known to them, we could be
halfway [to teaching them programming].” Another study by Dorn & Guzdial (2006), specifically
involving graphic designers, has also suggested that computer science educators should consider
new contextualizations of programming courses to match the settings in which end-user
programming takes place. From the perspective of a design educator, Pettiway (2012) has agreed that
such contextualized courses could help decrease the barriers between abstract programming
knowledge and practical application by providing a more relational and transformative approach.
However, Guzdial (2010) warned that students who learn programming within a context might over-

 33

specialize that knowledge (e.g., see a for loop only as a tool to step through an array of pixels). While
this is problematic for computer science students, who must obtain a context-independent
understanding of computing concepts, graphic design students contrarily aim to use programming in
one highly specific context. Indeed, Guzdial (2010) has argued that contextualized approaches are
fine for students who will only use computating within a single domain.

Contextualized approaches to introducing students to computer science have gained momentum
and recognition in recent years. Specifically, Media Computation has successfully used (audio)visual
contexts to teach programming to computer science students (Guzdial 2003, 2009; Greenberg,
Kumar, & Xu 2012; Xu et al. 2016; Dodgson & Chalmers 2017; Xu, Wolz, & Greenberg 2018). Maxwell
& Taylor (2017) have reported that while these contextualized approaches do not affect the students’
learning outcomes, they have a positive influence on the students’ engagement. While not denying
their effectiveness in making computing fun and relevant, Kay & Road (2011) have encouraged
educators to discuss whether contextualization is simply bait used to lure students into computer
science studies.

2.4 Pedagogy
2.4.1 Pedagogy in graphic design education

Traditionally, the discipline of graphic design (earlier referred to as commercial art) was a trade
passed on and learned by apprenticeship (see section 2.2.1). In the early 1800s, studio training
emerged as a teaching tradition at Ecole des Beaux-Arts in France (Shaffer 2007). This training
involved open-ended projects with structured critiques and led to a public showing and evaluation of
work. Later, as dedicated graphic design education emerged, studio training became the preferred
instructional setting. Initially, this involved educators passing on their knowledge through didactic
lectures and demonstrations, after which students would be given the same assignment to complete
while being supervised by their instructor. Later, the Bauhaus teaching structure, developed by
Walter Gropius in the early 1920s, introduced an unprecedented type of course that encouraged
students to produce creative designs based on their own subjective perceptions (Wick 2000). The
unifying pedagogy of the Bauhaus posited artist-teachers as those who used their artistic discipline to
inform educational issues (Daichendt 2010). Fusing art, technology, and pedagogy, Bauhaus became
an influential landmark in the history of modern art and design education (Daichendt 2010). Bauhaus
professor Moholo-Nagy later went on to introduce the teaching model in the US and initiated a close
relationship with the local graphic design industry, thereby establishing a tradition of strong ties
between design schools and design industry, which has been upheld ever since. Today, graphic
design education remains heavily influenced by professional practice, and this leads to classroom
activities being designed to resemble the industry’s nature and situational context (Logan 2006).

A paradigmatic change in graphic design education came about with the advent of computers. As
the graphic design trade increasingly relied on computers, obtaining an understanding of digital
technology became an absolute necessity for graphic design students. Having traditionally relied on
gut-feeling, intuition, and a trained eye, graphic design education suddenly had to adapt its teaching
to fit the absolute, logical, and “mechanical” nature of digital media. As mentioned in section 2.2.3,
initially, early critics among design educators did not consider computers a pedagogic tool (Faison
1995). Undeterred, however, other educators embraced computers and began to explore their
pedagogic potential and concomitant challenges, resulting in the formation of new learning theories.

Currently, design pedagogy at large is in a state of flux as it struggles to respond to constant
technological and societal changes (Hardman 2017). Hardman, while embracing the new design

 34

paradigm, has also concluded that it holds the potential to render traditional design pedagogical
virtues superfluous unless educators remain vigilant.

2.4.2 Pedagogy in Computer Science education

When computer science began to form as a separate academic discipline in the 1950s, education had
to start from scratch, designing curricula, training staff, writing textbooks, even constructing mental
models for thinking about computing (Tedre, Malmi, & Malmi 2018). The initial courses were highly
theoretical, drawing mainly on mathematics and electrical engineering (Tedre, Malmi, & Malmi 2018).
These courses established a tradition of teaching computing through a passive lecture style with
limited interaction in practical sessions (Felder & Brent 2005; Van Der Post 2010). Typically, students
would attend a few short lectures and practical sessions per week, completing homework in their
own time, supported only by their own notes and textbooks.

In the early 1970s, computing saw a shift from mathematically-oriented discipline to a more
diverse discipline that began to emphasize hands-on work, programming, and applications. Educators
in liberal arts colleges proposed alternative computing curricula better suited for their own purposes.
These curricula explored new pedagogical strategies and teaching activities that were anchored in a
more pragmatic, experiential, and explorative approach to computing. A major push towards a radical
shift in computing pedagogy came in Papert’s (1980) book Mindstorms (discussed further in section
2.4.5). Recently, computing education has also focused on teaching problem-solving strategies and
processes to avoid fixed-problem statements (Tedre, Malmi, & Malmi 2018), with many courses
deploying Wing’s (2006) idea of computational thinking (see section 2.3.7) using various pedagogic-
didactic measures.

Over time, many pedagogic theories, methods, and strategies have been used to teach
programming, including cognitive apprenticeship (Collins, Brown, & Newman 1989), extreme
apprenticeship (Vihavainen, Paksula, & Luukkainen 2011), problem-based learning (Stevenson 2001;
Fee & Holland-Minkley 2010; Nuutila, Törmä, & Malmi 2005), pair programming (Williams et al. 2000;
Nagappan et al. 2003), and peer-instruction (Mazur 1997; Simon et al. 2010); however, the literature
reveals a lack of consensus on which methods are the most effective for teaching programming—
likely because there is no “silver bullet” answer.

Noteworthy, considering the scope of this dissertation, a number of computer science educators
have recently attempted to integrate art and graphic design into their existing curricula (e.g.,
Greenberg, Kumar, & Xu 2012; Xu, Wolz, & Greenberg 2018). In particular, the branch of computer
science known as Media Computation (Guzdial 2003; Forte & Guzdial 2004), has abandoned
programming courses that favor properties such as predictability, robustness, and correctness in
pursuit of courses focused on making products that are understandable, entertaining, aesthetically
satisfying, educational, and provocative. These courses are increasingly taught using a pedagogical
technique known as studio-based learning (SBL) (Carter & Hundhausen 2011), which is discussed
further in section 2.4.7.

2.4.3 Educational Paradigms

Mass schooling in the early industrial society relied on didactic teaching as its educational paradigm
(Kalantzis & Cope 2010, 202). Prominent features were classrooms with desks in rows, a blackboard
at the front, textbooks, recitation, memorization, rote learning, and with all students doing the same
work and moving ahead at the same pace. Later, the educational paradigm changed in favor of
authentic education (Kalantzis & Cope 2010, 202). This emphasized experiential learning; group
dialogue; students expressing their own opinions and points of view; use of images/diagrams/visual

 35

representations to supplement written text; educators acting as learning facilitators; and
individualized, self-paced learning. As Kalantzis & Cope (2010, 202) have argued, we have now
entered yet another educational paradigm, namely that of transformative learning (Mezirow 1991,
1997). There is no longer any need for classes to be collocated; students collaborate using networked
computers, whether at home, at school, or at relevant locations in the field. Also, it entails a balance
of knowledge processes: experiential, conceptual, analytical, and applied. The educator has become a
designer and manager of learning. Learning has become contextualized, and student differences are
catered for through flexible teaching approaches that utilize the complexities and richness of digital
media. Willis (2007) has encapsulated the gist of transformative learning in a speculative pedagogic
model, centered around algorithms, that suggests viewing courses as databases with multiple points
of entry, abandoning formal learning outcomes to allow for unexpected outcomes, moving beyond
the acquisition of information to an enhancement of the ability to learn, and the deployment of
expertise using a network as metaphor.

According to Kolko (2012b), design studio training (see section 2.4.1) is an exemplary model for
how transformative learning theory is used to allow experiential learning to occur. He has argued that
in a design studio, knowledge is produced, not disseminated, through projects that involve a constant
cycle of constrained making and guided reflection. This recasts the educator from the role of lecturer
to facilitator (Kalantzis & Cope 2010, 205), that is, to one who “[…] has had a certain quality of creative
experience who can anticipate, during the knowledge-generation process, where various patterns,
methods, approaches, or techniques will be most effective” (Kolko 2012b, 82). Kolko believed that
design studio teaching was an effective way of facilitating transformative learning, by letting
“students have an experience, and […] [control] the majority of that experience. This means they have
approached the learning from within their own frame, a place of comfort. And then, in an emotionally
safe environment, they have been nudged outside of their own frame into a place of discomfort” (Kolko
2012b, 83).

2.4.4 Learning styles and teaching styles

Students have different attitudes about and aptitudes for learning, as well as different ways they
respond to specific teaching environments and activities (Felder & Brent 2005). Similarly, educators
have different approaches and methods of teaching. These are referred to as learning styles and
teaching styles, respectively. For many years, educators believed that the same instructional method
could be used to teach all students (Capretz 2002). Later, researchers (Capretz 2002; Felder & Brent
2005) argued that effective teaching and learning could be achieved if educators adapted their
teaching style to match the preferred learning style of their students; however, the notion and
usefulness of learning styles is not accepted by all researchers (Felder & Brent 2005; Willingham,
Hughes, & Dobolyi 2015). Nevertheless, studies have shown consistent differences in students’
results in accordance with their assessed learning style (Felder & Brent 2005). Regardless of the
ongoing debate on the raison d'etre of learning styles, there is an acceptance of learning styles as
useful mechanisms to facilitate a metacognitive process among students by helping them reflect on
and become aware of how they acquire knowledge.

Coffield et al. (2004) identified more than 70 models for analyzing and understanding different
learning styles. The most prominent models found within the literature examined in this dissertation
are:

• Myers-Briggs Type Indicator (MBTI) (Briggs-Myers et al. 1998),
• Kolb’s Experiential Learning Cycle and Learning Style Inventory (LSI) (Kolb 1984),

 36

• Felder-Silverman Learning Style Model (FSLSM) (Felder & Silverman 1988) and Felder-
Soloman Index of Learning Styles (ILS) (Felder & Soloman 1997),

• Honey and Mumford's Learning Styles Questionnaire (LSQ) (Honey & Mumford 2000),
• VARK Learning Style Inventory and Questionnaire (VARK) (Fleming & Mills 1992).

Each learning style model has its own specific theoretical foundations and usually classifies
students using a number of scales, based on their responses in a questionnaire. By administering a
learning style questionnaire to his class, an educator can obtain a profile of the students and adapt
his teaching style accordingly. To this avail, most learning style models provide intrinsically linked
educator guidelines. The literature further reveals that both graphic design educators and computer
science educators alike make use of prescriptive instructional design models to help plan and
structure their teaching activities, for example, ADDIE (Allen 2006), ARCS (Keller 2010), and 4MAT (B.
McCarthy 1990).

2.4.5 Constructionism as learning theory

Learning and teaching styles must be applied within the larger context of a learning theory. One
particular learning theory, constructionism, was developed in the late 1960s by Seymour Papert, who
was pioneering investigations of technology-supported pedagogy using the programming language
LOGO to teach children math through programming the movements of a robotic turtle (Papert 1971,
1980). However, thereafter, the use of tools for teaching programming to children remained broadly
uninvestigated until the availability of visual programming languages (Lye & Koh 2014). Still, as an
attestation of its pedagogical efficiency, LOGO remains in use today (Anderson 2018; Caspersen &
Christensen 2000). Papert’s early work informed Harel & Papert’s influential theory of
constructionism (1991), derived from Piaget’s constructivist epistemology, which theorized that
children learn by assimilating new knowledge into their existing mental schema (Knochel & Patton
2015, 25). Constructionism is about playing with programmable objects as material and assimilating
the activities into the students’ mental schema while they are also learning how to accommodate the
rules of the programming language to make the code work. In particular, constructionist learning
theory lets students use their pre-existing knowledge to acquire new knowledge in a different
domain through hands-on, playful exploration. Papert, summarizing this approach, explained: “First,
relate what is new and to be learned to something you already know. Second, take what is new and make
it your own: Make something with it, play with it, build with it” (Papert 1980, 120).

Overall, constructionist learning theory appears to be particularly well suited to help bridge the
gap between abstract programming concepts and the action-driven, experiential way designers
acquire new knowledge. In section 3.3.2, the origins and philosophy of constructionism is described
further.

2.4.6 Practicum pedagogy

Traditionally, graphic design has been a trade learned by practice, not by analyzing and studying its
theoretical concepts. Accordingly, teaching graphic design has fostered an abundance of pedagogical
approaches, most of which are based on experiential learning, hands-on experiences, and
experimentation activities. Schön (1987), referring to this as practicum pedagogy, concluded that it
was a significant factor in the development of design competence; yet, he still critiqued practicum
pedagogy as valuing the “tacit theories” of practitioners over formal theories and models, thus
keeping knowledge “sealed” (i.e., tacit, implicit, and inaccessible).

 37

Schön (1983, 1987), extending the work of Dewey (1933), argued that practice can be improved
through contemplative reflection. To this end, Schön proposed the temporally linked concepts of
reflection-on-action (looking back on an accomplished task to review the actions, thoughts, and
products), and reflection-in-action (reflecting while in the act of carrying out a task). Later, Killion and
Todnem (1991) added a third concept of reflection-for-action (reviewing what has been accomplished
to form constructive guidelines for similar future tasks). Schön’s thoughts on reflective practice have
been hugely influential—almost canonical—in the way they have been applied in graphic design
education and continue to inspire the development of new frameworks for reflective practice (Bain et
al. 1999; Grushka, McLeod, & Reynolds 2005; Liston & Zeichner 2013). Particularly within the design
studio teaching tradition, plenary reflection-on-action frequently occurs in the shape of various forms
of critique (crit) sessions facilitated by the educator (Hokanson 2012; Lawson 2004; Stolterman
2008). Such sessions provide a rich opportunity for students to critically reflect on their own work by
comparing and contrasting it to the work of their peers.

 While Schön’s anti-positivist and anti–technical rationality views resonate well with graphic
design educators, computer science educators have questioned the relevance and usefulness of
Schön’s reflective scheme and its ensuing design education as suitable instructional strategy in non-
design education (Cáceres 2017, 35–36). A reason for this was pointed out by George (2002), who
observed that the act of reflecting differs depending on the underlying nature of knowledge for that
particular discipline. A study by Chng (2018) on reflective practice in computing classes in STEM
education has revealed the use of several other reflection models (Gibbs 1998; Johns 1995; Fekete
et al. 2000; George 2002; Humphrey 2000; Bender & Vredevoogd 2006; Zarestky & Bangerth 2014).

In sum, the literature indicates a dichotomy between models used for reflection in design
education versus reflection in programming education. Navigating this space is Montfort (2016), who
has ultimately stressed that practicum pedagogy and its associated models for reflection must be
employed when teaching programming to students within the arts and humanities.

2.4.7 Convergence: Teaching computing in a design studio environment

Briefly mentioned in sections 2.4.1 and 2.4.3, studio teaching, with its emphasis on practicum
pedagogy and reflective practice, has long been the preferred instructional setting in graphic design
education. Considering it a central educational device, Shaffer (2007) described the studio as a
coherent learning system in which pedagogical processes and theoretical perspectives come
together to create an effective learning environment. Each student is encouraged to explore his
individual ideas, internalize the fundamental of the design discipline, and develop a unique approach
to design practice (Van Der Post 2010, 66).

In his closing address for the CHI 1990 conference, Winograd (1990) advocated the use of the
studio teaching model in computer science. Early attempts to restructure software development
courses to use a studio teaching model are recounted by Tomayko (1991), who observed that “the
core courses and prerequisites are adequate for teaching the tools of design, reuse, and management, but
the more creative aspects are best taught in a studio environment” (1991, 301). Interestingly,
considering the scope of this dissertation, Tomayko (1991) also observed that “many software
engineering and computer science instructors (and their students!) fear the artistic nature of their work.”
As computer science increasingly sought to adopt the studio teaching model, differences between
the prevalent educational paradigms became evident, leading Reimer & Douglas (2003, 195) to
conclude that “studio teaching is radically different from the usual computer science instruction of
lecture/lab/discussion.” Similarly, Van Der Post (2010), comparing studio and computing teaching

 38

methods, concluded that several differences exist pertaining to structure, pedagogy, epistemology,
and the educator’s role.

Following an adaptation phase, studio-based learning (SBL) has recently become increasingly
popular in computer science education (Carter & Hundhausen 2011), in which it is used to
reinvigorate a computing curriculum and give students exposure to industry practice. Still, lectures
continue to be the prevalent teaching method, whereas SBL is used mainly to reinforce the material
presented in the lectures.

Graphic design education, on the other hand, faces a key challenge in finding a natural way to
embed programming into the curriculum that is compatible with the existing studio teaching model.
Currently, the dominant paradigm for teaching programming in design schools is based on conceptual
models of programming lifted from software engineering (Amiri 2011, 204). According to Van Der
Post (2010), this engineering bias, coupled with design educators’ insufficient technical knowledge
and skills, causes programming courses to be planned with a disproportionate focus on technology. In
response, Tzankova & Filimowicz (2017) and Tober (2014) have both addressed an urgent need for
developing and maturing the pedagogy, curriculum, and educators’ professional development in the
interdisciplinary field of computation and creative making.

2.4.8 Developing pedagogic strategies to teach programming to graphic designers

Almost two decades ago, Carmen (2000, 71) opposed the increasing focus on teaching software
packages in design education (see sections 2.2.4 and 2.2.5) by arguing that “unless educators take a
lead in developing appropriate pedagogies for these new electronic media and forms of communication,
corporate experts will be the ones to determine how people will learn, what they learn, and what
constitutes literacy.” Taking a lead though, particularly in developing programming courses, proved
hard for design educators, who lacked both technical skills and applied know-how (Maeda 2002).
Despite many calls from scholars, researchers, and educators to evolve pedagogic strategies to teach
programming in graphic design education (see section 2.2.7), very little happened. Three years later,
Peppler & Kafai (2005) saw no signs of design education evolving to reflect how programming were
used by professional artists and designers. Pettiway (2012), discouraged by the ongoing lack of
models for introducing programming in graphic design pedagogy, made a plea for design educators
to devise an effective curriculum model that intertwines programming as a foundational component
of graphic design education. Recently, however, as more design schools have begun to offer
programming courses, the development of tailor-made pedagogic strategies has gained momentum.

The literature describes several attempts at developing custom pedagogic strategies to scaffold
liberal art students’ journey into programming, including computer-independent activities such as
theatre and role-playing (Maeda 2009), paper and cardboard prototypes (Maeda 2009; Artut 2017),
workbooks (Maurer et al. 2013), board games (Drake & Sung 2011), and robots (Xu, Blank, & Kumar
2008). While such strategies can successfully capture students’ attention and aid their construction
of mental models of computing principles, at some point, graphic design students must engage with
programming through hands-on exercises to fully understand the properties of code as a creative
material. Thus, pedagogical strategies that directly involve code as an element of the teaching must
also be considered. According to Tober (2012b, 382–383), such strategies should also be devised to
support students outside class, allow for different skill levels through differentiated learning, and
make any instructional material available for repeated viewing.

 39

2.4.9 New technology = new teaching methods

When devising pedagogic strategies, educators must consider the new teaching methods made
possible by technology.

Blended learning was defined by Friesen (2012, 1) as “[…] the range of possibilities presented by
combining Internet and digital media with established classroom forms that require the physical co-
presence of teacher and students.” Four discrete models of blended learning exist, spanning a
continuum from traditional, tech-free classrooms to online-only learning (Philadelphia Education
Research Consortium 2014). Studies report positive experiences of using blended learning in design
education (Bender & Vredevoogd 2006; Kim 2016; Warburton 2017; Fleischmann 2018).

Flipped classroom (Abeysekera & Dawson 2015) is a type of blended learning that delivers
instructional content online outside the classroom and focuses on traditional homework activities in
class. Pioneering work by Lage, Platt, & Treglia (2000) investigated what they referred to as “the
inverted classroom.” Their work was later extended by other scholars who subsequently renamed the
concept as “flipped classroom.” It caught widespread public attention around 2011, but despite its
growing popularity, flipped classroom is still generally under-evaluated, under-theorized, and under-
researched (Abeysekera & Dawson 2015). Yet, a crucial point can be drawn from the existing,
available research: Amresh et al. (2013) have concluded that the flipped classroom is a more
effective pedagogy than passive lectures. A testimony to this view are the empirical observations on
the effects of flipping an introductory programming class recounted by Shiffman (2018), who found
himself able to devote more time to helping, supporting, and preparing students for the next classes.

The topic of digital textbooks (also referred to as hypertextbooks, e-textbooks, or e-texts) in the
literature is not new. Early definitions by Brewer (1998) and Ross & Grinder (2002) saw the medium
of text as the core enriched by multimedial assets and interactive learning visualizations to support
meaning making. Today, nearly two decades later, an abundance of digital textbooks of many
different levels of pedagogical, technological, and aesthetical sophistication are available to
students. The crux of the matter, however, is their amount of interactivity. Studies (Rockinson-Szapkiw
et al. 2013; Nichols 2016; Walsh 2016) have revealed no significant difference to learner
comprehension if they read from printed materials or screens. Other studies (Stoop, Kreutzer, & Kircz
2013; Ericson, Guzdial, & Morrison 2015) have implied that digital textbooks containing interactive
elements can increase student performance and enhance cognitive and affective learning.
Programming lends itself particularly well to being taught using digital media, and, within the scope
of this dissertation, Shiffman’s interactive digital textbook, The Nature of Code (Shiffman 2012),
provides a prime example of how interactive, code-based examples can be integrated in a visual
context to aid comprehension. However, as suggested by Gu et al. (2015), many aspects related to
designing, developing, and teaching using digital textbooks still require in-depth study.

Lastly, when discussing technology-based teaching, the recent rise of Massive Open Online
Courses (MOOCs) must be addressed. Kaplan & Haenlein (2016, 441) defined a MOOC as “an open-
access online course that allows for unlimited (massive) participation.” MOOCs use traditional course
materials, such as short, pre-recorded lectures and selected texts, exercises, and assignments, as well
as interactive elements such as quizzes, tests, polls, demonstrations, and editable worked examples.
Forums are used to facilitate community interaction and peer-assessment among students. MOOCs
represent a plausible, though unresolved, online teaching model that challenges many long-held
beliefs of learning and teaching (McNamara 2015). While seemingly allowing for low-cost learning at
scale, several shortcomings of using MOOCs in formal computer science education have been
identified and described by Ericson, Guzdial, & Morrison (2015, 170). Yet, Falker et al. (2016),
accounting for a MOOC-based, introductory programming course specifically designed for a media

 40

computation context, concluded that learning design approaches can be successfully transferred to
the massive, online scale. Likewise, McNamara (2015) saw great potential in the use of MOOCs in
design education, and he has projected that teaching approaches and efficiencies seen in MOOCs will
be incorporated into existing teaching processes as a replacement for certain aspects of face-to-face
teaching. Finally, reflecting back on their MOOC Creative Coding (FutureLearn 2014), Guglielmetti &
McCormack (2017) have asserted that the most promising aspect of MOOCs is through the social
learning they enable, despite the low-bandwidth dialogue of online forums.

In sum, graphic design educators will be challenged, perhaps to their dismay, to adapt existing
pedagogical strategies to fit a new techno-centric and rapidly changing, transformative educational
paradigm, which threatens to erode the prevailing studio-based, face-to-face practicum pedagogy
known today.

 41

CHAPTER 3: METHODOLOGY

In this chapter, I describe my paradigmatic position and explain its

influence on this study. I then account for the research design used to

answer my three research questions. Lastly, I suggest a means of validating

my results.

3.1 Introduction
The objective of this study has been to investigate how programming should ideally be taught to
graphic designers to account for how they learn and how they intend to integrate programming into
their vocational practice. From the thesis statement (section 1.6), three specific research questions
were identified (section 1.7). To ensure the research questions were aligned and worked together to
address the overarching research question of this study, a good research design had to be developed.
Let me begin by discussing how I perceived the relationship between my research activities and my
practice-based background.

3.2 Mitigating viewpoint ambiguity
My background in the field of graphic design (section 1.2) inevitably informed and influenced the
initial choice of topic for my investigation. Instinctively, I was inclined to approach my research by
assuming the familiar role of a designer who applies a designerly, problem-framing and problem-
solving mindset to pragmatically improve a process (teaching programming to graphic designers)
through the design of a product (instructional design). However, to aid my research, I sought to
provide an answer to my research question through a structured scientific investigation based on
theoretical and empirical studies of existing practices. This required me to also assume the role of
researcher and adopt a scholarly mindset. Bluntly making a distinction between these two roles,
Nelson (2013, 4) claimed that “designers work by synthesizing ideas within real-world situations that
involve creating artifacts and managing environments, while scientists think analytically within an
abstract, symbolic world.” I did not, however, intend to choose one role over the other. Instead, I chose
to let the inherent methodologies of each role inform how I conducted my research. I saw great
strength in qualifying the method best suited for a particular purpose as a result of a dialectic
dialogue between the methods used in either design or science. This view is supported by Faste and
Faste (2012), who argued that both “scientific left” research practice and “designerly right” design
processes can benefit from a wider perspective (2012, 4). They also maintained that designers tend
to use a variety of research methods when pragmatically appropriate, some rigorously scientific and
others less so (2012, 4).

Assuming the simultaneous roles of designer and researcher inevitably caused ambiguity in my
personal viewpoint, ultimately causing me to ponder whether design was a form of research, or

 42

research a form of design—a question that has been asked by other researchers (Nelson 2013; Faste
& Faste 2012). Specifically, Nelson (2013, 3) has asked:

Do instructional designers use scientific principles and contribute to the development of theory
as they engineer instructional products intended to produce learning by students? Or, do
instructional designers employ ‘designerly thinking’ to solve ‘wicked problems’ that can’t be
approached using scientific thinking, yet produce the same kind of products and learning
outcomes for students?

The answer to this question, of course, is not a simple binary “either/or”; rather, it creates a fuzzy
“both/and” state between each of the statements. I considered this a further validation of my choice
of approaching my study with both a designerly and scientific mindset, knowledge set, skillset, and
toolset.

I chose to mitigate the ambiguity of my viewpoint by embracing them all. Was I a researcher
investigating how programming is introduced in graphic design education? Was I a graphic designer
doing research on programming education? Was I an educator designing research-based guidelines
for teaching programming? Truth is, I was all of these. Simultaneously.

3.3 Paradigmatic position
Encasing my composite viewpoint, however, was my personal stance. Heavily influenced by my
background as a trained practitioner with a long professional career working in the graphic design
industry, I had—knowingly and unknowingly—come to adopt a pragmatic approach in my way of life.
Designers in the graphic design industry see a constant demand by clients, art directors, and project
managers to deliver a steady stream of tangible and billable artifacts. Working under the trammels of
strict deadlines, project specifications, and technical and economical limitations inevitably requires
any graphic designer to develop a pragmatic approach to his work, constantly having to balance
questions like “what is doable within the given time frame?” “what materials are at my disposal?” and
“what do I assume will work best?”

Given that I reckoned myself unable to abolish or suppress my inherent pragmatic world view and
designerly, problem-framing and problem-solving way of thinking, choosing pragmatism as my
paradigmatic position for this study seemed straightforward. However, when I transitioned from
practicing to teaching graphic design, my new role as educator required me to supplement my
disciplinary knowledge with pedagogical methods in order to transfer my knowledge to my students.
I became aware of constructionism, a branch of constructivism, which also shares many traits with
pragmatism. I knew from personal experience, that the ideas and methods of constructionist learning
theory were useful and efficient for teaching graphic design students, and I therefore chose to
supplement my mainly pragmatist position with constructionism. The difference between pragmatism
and constructionism is in the epistemology (i.e., the philosophical assumptions as to what constitutes
knowledge). Constructionism aims to build understanding and meaning, whereas pragmatism aims to
find solutions and solve problems. Below, I will briefly outline the ideas associated with pragmatism
and constructivism.

3.3.1 Pragmatism

The philosophical tradition of pragmatism was introduced around the late 1870s by James, Dewey,
and Peirce (Biesta & Burbules 2003). As a research paradigm, modern pragmatism advocates the use

 43

of a mixed methods research, “sidesteps the contentious issues of truth and reality” (Feilzer 2010, 8),
and “focuses instead on ‘what works’ as the truth regarding the research questions under investigation”
(Tashakkori & Teddlie 2010, 713). Pragmatists believe the purpose of knowledge is to improve
existence through action. This calls for knowledge that points to a better and possible world and
useful ways to reach this improved state (Goldkuhl 2011). According to Goldkuhl (2011), essential
traits of design research can best be justified within the epistemological foundations of pragmatism:

• a focus on utility, usefulness, and contribution to practice;
• knowledge development through building and intervention;
• problematic situations as a starting and driving point for inquiry and design;
• a search for what is possible and desirable;
• going beyond description, and aiming for prospective, normative, and prescriptive knowledge.

The utility of pragmatism is that it aims to find middle ground between philosophical dogmatisms
(Johnson & Onwuegbuzie 2004). Pragmatism offers researchers the freedom to choose the best
methods to answer research questions at hand and advocates a balance between subjectivity and
objectivity throughout the research (Shannon-Baker 2016). Traditionally, there have been strong
intellectual and conceptual affiliations between graphic design and pragmatism (Moszkowicz 2013).
Furthermore, Dewey is widely recognized as an influential educational reformer who employed the
pragmatic approach in his work. His major writing on aesthetics, “Art as Experience” (1934), is
considered seminal reading by many design school programs. As such, pragmatism has strong ties to
both graphic design and education, two of the research areas of this study.

3.3.2 Constructionism

Constructionism is a prevalent learning theory that has its basis in Piaget’s and Vygotsky’s
constructivist learning theories (Papert 1980; Ackermann 2001) and is connected with the modern
theory of experiential learning developed by Kolb (1984). Constructionism grew out of a set of
innovative educational research projects performed in the 1960s and 1970s at the MIT Media
Laboratory by Papert, Resnick, and Ackermann (Kafai & Resnick 1996). The projects were meant to
illustrate how computational technologies can transform the concepts of learning, education, and
knowledge. Papert subsequently devoted his career to developing and promoting constructionism. In
1980, he published his seminal book Mindstorms: Children, Computers, and Powerful Ideas (Papert
1980). Papert has also been a proponent of bringing technology to classrooms, introducing the
programming language LOGO (Papert 1980)—along with a robotic turtle—as a way to teach
mathematics to children. While constructionism has been used primarily to teach science and math,
its origin in media studies also makes it suitable for students who simultaneously engage with media
theory and a complementary praxis.

The guiding principle in constructionism is in accordance with the basic constructivist
assumptions, namely, that learners must actively construct and reconstruct knowledge based on their
own experiences. Constructionism advocates student-centered, discovery learning where students
use information they already know to acquire more knowledge. Further, constructionism holds that
learning can happen especially felicitously when people are active in making tangible objects in the
real world that enable discussion, examination, probing, and admiration (Kafai & Resnick 1996;
Papert 1993). Despite it often being described as “learning-by-making,” Papert & Harel (1991, 1)
maintain that constructionism should be considered “much richer and more multifaceted, and very
much deeper in its implications […]”

 44

Constructionism, and its associated learning theories, naturally sits well with graphic design
students as it prescribes the making of tangible, shareable objects as a means of acquiring
knowledge across domains. Specifically, within the scope of this study, constructionism’s cross-
domain bridging ability has been particularly useful and influential in my work towards an improved
instructional design for Creative Coding courses in graphic design education.

3.4 Type of research
Next, with the intent of qualifying methods for my study, I sought to determine the kind of research I
was about to conduct, as each type of research suggests a range of methodological approaches to be
used. To do this, I used the typology of research in the creative arts and design proposed by Brown,
Gough, & Roddis (2004). The authors list four types of research: scholarly research, pure research,
developmental research, and applied research. An adapted version of the authors’ table listing each
type and their mutual differences is shown in table 3.1.

Correlating the nature of my research questions (discussed in detail in section 3.5) with the
research types defined by Brown, Gough, & Roddis (2004) suggested that I would be undertaking
both developmental and applied research; my research questions described a specific problem
(teach programming) to be solved within a specific context (graphic design students), seeking to
improve existing processes (instructional design) through a systematical testing of hypotheses. In
addition, aligning with my pragmatist, designerly stance, the impetus motivating this study was to test
relevant issues (developmental) to solve a specific problem (applied), rather than ask key questions
(pure) to create intellectual infrastructure (scholarly). Explicitly stated as mandatory in the call for
proposals for this study was that its outcome had to be put to immediate practical use, thus making
an additional case for applied research activities. That my research could be understood as both
applied and developmental was based on the fact that most research concerning instructional design
is either applied or developmental (Nelson 2013, 3).

Noticeably absent from Brown, Gough & Roddis’ typology, however, is the type referred to as
design research. While Akker et al. (2006, 4) roughly equate design research with Brown, Gough, &
Roddis’ category of developmental research, the momentum and popularity gained by design
research as a type in its own right led me to investigate whether the research I was about to conduct
also fell in the design research category.

3.4.1 Design research

Design research is a broad term with a long history. Dating back to the 1960s within academia, design
research has traditionally referred to the study of design itself, its purpose, and processes. Significant
contributions have been made across the decades by researchers such as Schön (1983, 1987), Cross
(1982), Frayling (1993), Friedman (2003), Buchanan (2001), and Lawson (1980, 2004). Yet, the
concept of design research is still much debated, with the discussion revolving around defining what
research is and where it belongs in design education and practice (Frankel & Racine 2010). Recently,
non-academic designers have also adopted the term when referring to research that is integral to the
design work itself or inquiries that are part of designing, and not directly about design (Faste & Faste
2012). This has resulted in a proliferation of terminology and lack of consensus on definitions. Today,
the term design research has become part of the common vernacular in the field of design and is
used to describe a wide range of activities, from scholarly investigations to simple methods used by
practitioners as part of their design work (Faste & Faste 2012). In this study, however, I have used the
term design research to refer to the traditional definition as it is used within academia.

 45

Three dominant categories of design research have emerged and are widely accepted in the
literature: Research for design, research through design, and research about design (Frayling 1993;
Friedman 2003; Downton 2003).

Research for design is the category of research that most practitioners and academics associate
with the term “design research,” likely because it has the most potential to contribute to successful
design outcomes (Frankel & Racine 2010). In this category, both quantitative and qualitative research
methods may be appropriate (Roth 1999, 22–25). Approaches such as Action Research (Archer 1995)
or design-oriented research (Fallman 2003) fit in this category.

Scholarly Research Pure Research Developmental Research Applied Research

Creates intellectual
infrastructure

Asks key questions Tests relevant issues Solves specific problems

Records—questions asked,
issues explored, solutions
proposed—in the field

Sets and explores
hypotheses experimentally
through logic and/or
intuition

Contests and tests existing
hypotheses/theories
originally

Examines specific cases
systematically

Documents the knowledge
gained from pure,
developmental, and applied
research along with the
results

Searches for pure
knowledge

Tests and applies the
outcome of pure research
by harnessing existing
knowledge to determine
new methods or ways of
achieving some specific and
pre-determined objective

Applies developed
knowledge and methods to
the examination of a
specific context in order to
solve a problem in that
context

Compiles the resources,
methods, tools, and models
used in research within the
pure, developmental, and
applied research fields

Uncovers issues, theories,
laws, or metaphors that help
to explain why things
operate as they do, why
they are as they are, or, why
they appear to look the way
they do

Focuses on how things are
done by (a) generating
useful metaphors for
organizing insight and (b)
developing specific theories
that can be used to predict
the future in specific
situations

Creates new or improved
artifacts, products,
processes, materials,
devices, services, or systems
of thought and ways of
seeing

Maps the field in which
issues, problems, or
questions are located

Discovers/generates
significant new facts,
general theories, or
reflective models where
immediate practical
application or long-term
benefits are not a direct
objective

Tests and reworks
knowledge through (a) the
generation of alternative
visual models, experiences
and thought systems and (b)
the evolving of special
methods, tools, and
resources in preparation for
solving specific problems in
a specific context where
immediate practical
application is a direct
objective

Applies outcomes from pure
and developmental research
to a specific context where
long-term benefits are a
direct objective

Disseminates the results of
research to the research
community and to others
who might be interested in
them

Yields potentially
unexpected results and
original theories,
discoveries, or models that
are unrelated to the
disciplines in which the
research has been
conducted

Produces results that may
be usable across many
contexts in pure and/or
applied research,
establishing connections
between individual cases
and disciplines

Produces results that cannot
usually be directly applied
to other contexts because of
the specificity of the context
from which information is
gathered

Table 3.1: Types of research in creative arts and design (adapted from Brown, Gough, and Roddis 2004).

 46

 Research through design seeks to provide an explanation or theory through action-reflection for
use within a broader context (Frankel & Racine 2010). Downton (2003, 77) viewed this kind of
investigative theory as explaining and becoming “a vehicle for acquiring and shaping knowing” that
assists in future design activities. This category is derived from and is valuable for practice, and both
practitioners and researchers have contributed significantly to the literature (Frankel & Racine 2010).
Jonas’s (2007) action-reflection, Schön’s (1983) reflection in action, and research-through-design by
Zimmerman, Forlizzi, & Evenson (2007) fall in this category.

Research about design is characterized by Buchanan (2007) as searching for “an explanation in the
experience of designers and those who use products.” According to Cross (2007), this category
addresses “the nature of design activity, design behaviour, and design cognition.” Much of the research
about design considers design in a more holistic sense, discussing what design should be and
methods to achieve this, as well as finding out what designers do and then developing and perhaps
refining this (Downton 2003, 37). Design inquiry (Buchanan 2007) is an example of research about
design. After comparing the three categories of design research with the aim of this study, I expected
to mainly conduct research about design and research through design and only include research for
design to a lesser extent (if at all).

To consider design research from a scientific perspective, Faste & Faste (2012) have proposed the
idea that design research is not a “kind” of research; rather, research is always a “kind” of design (see
figure 3.1) They have argued that design research is creative research and should be regarded as a
subset of design practice at large. This approach resonated well with me and allowed me to think of
my research as an activity that resided within the “practice” super-set. However, the nature of my
research questions implied using rigorous scientific methods associated with the traditional
“research” super-set with its known and replicable methods.

3.4.2 Understanding design research activities

To help me better understand the complex interrelatedness of my specific research questions and
how they would cause me to move between practical, theoretical, and experimental, activities, I
positioned my expected activities associated with each of my research questions within Fallman's
(2008) Interaction Design Research Triangle. As the name implies, the model was initially developed
to describe and guide research within the field of interaction design. However, the model’s general
categories closely match the topics and context of this dissertation because “interaction design, like
all design disciplines, […] resides in people, methods, processes, and artifacts” (Fallman 2008, 9).
Fallman’s model provides a way of plotting the position of a design research activity within three

Figure 3.1: Design research as a subset of design practice at large (Faste & Faste 2012).

 47

extremes: design practice, design studies, and design exploration, with the differences being
primarily in tradition and perspective, rather than the methods and tools used.

Design practice denotes the types of activities undertaken outside academia, such as working for a
commercial design organization, negotiating with clients, or working under budget constraints. This
activity area is about engaging in real-life design practice but doing so with an appropriate research
question in mind. The research question is developed and explored in either a reflective or proactive
manner.

The category referred to as design studies indicates activities that most closely resemble
traditional academic disciplines. This activity area is about building intellectual tradition within the
discipline and contributing to the accumulated body of knowledge. It involves analytical work and
taking part in ongoing discussions at conferences and workshops about design theory, methodology,
and history.

Design exploration is similar to design practice but differs in one key point: it aims to explore
“what if?” questions. This activity area is typically driven by the researcher’s own research agenda,
personal ideals, or theory seeking to transcend accepted paradigms. Design in this area becomes a
statement of what is possible and is often intended to provoke or criticize.

The model also introduces three concepts to describe movement between activity areas:
trajectories, loops, and dimensions. Trajectories are either intentional moves or unwanted drifting
between two or more activity areas in the model. Loops are trajectories with no starting or ending
points that move between different activity areas and are mainly used to describe a shift in the
researcher’s perspective rather than a change in actual practice. Dimensions describe a continuum
between activity areas. Each activity area represents a perspective that indicates an infinite number
of views. By choosing views from each activity area and placing them on a bipolar scale, a researcher
can establish a frame in which a specific issue can be discussed.

Positioning my specific research questions (SRQs) in Fallman’s Design Research Triangle (see figure
3.2) clarified that my research activities would mainly reside in design practice and design studies.

Figure 3.2: The study’s specific research questions (marked by Xs) positioned in Fallman's (2008)
Interaction Design Research Triangle. The yellow area shows the activity areas of this study. Also shown

is the loop between the areas of design practice and design studies, as well as the trajectory pointing
from design practice toward design exploration.

 48

Design practice was appropriate because I was attempting to introduce programming as a design
activity to be undertaken by graphic design students in their future professional vocation in the
design industry. It would assume my active, first-hand engagement with students, which meant I
would be part of the students’ experiences as well as taking part in discussions, rather than being just
an observer. My job as educator teaching Creative Coding naturally bestowed this upon me, but I
would need to approach my teaching from another perspective—that of a researcher. Design studies
was appropriate because I would have to use my personal experience, empirical observations, and
data I gathered as a foundation for analytical work that would add to the body of knowledge of the
graphic design discipline.

Given my background as practitioner-become-researcher, this study took its departure from design
practice, but answering the research questions required establishing a loop between design practice
and design studies. I expected a trajectory pointing from design practice toward design exploration to
manifest itself through the discussion of the theoretical and practical implications of teaching
programming to graphic designers.

3.4.3 Educational design research

Design research has also gained momentum in educational studies (Cobb et al. 2003; Akker et al.
2006). Specifically, design research within the field of educational studies aims at developing
empirically grounded theories through combined study of both the process of learning and the
means that support that process (DiSessa & Cobb 2004; Prediger, Gravemeijer, & Confrey 2015).
Barab and Squire (2004, 2) define educational design research as “a series of approaches, with the
intent of producing new theories, artifacts, and practices that account for and potentially impact learning
and teaching in naturalistic settings.”

While this study has only briefly touched upon the purpose of programming in graphic design
education, it is, nonetheless, deeply concerned with the processes and practices related to how
programming is taught in design schools, which ultimately will affect how students think about,
conceive, and execute graphic design products. Taking a pragmatist’s approach to this study, I have
focused my attention on producing something that changes the world. My contribution will not be a
self-contained Creative Coding course but rather a series of individual investigations, which, when
viewed together, can guide and inform educators in their work to design, develop, and deliver
Creative Coding courses. This process is generally referred to as instructional design.

3.4.4 Instructional design

Reiser and Dempsey (2007, 11) define instructional design as “a systematic approach that is employed
to develop education and training programs in a consistent and reliable fashion.” Practically, this entails
determining the state and needs of the learner, defining the end goal of instruction, and creating
some intervention to assist in the transition. But do investigations into instructional design constitute
design research? Nelson (2013) has answered this question affirmatively, arguing that it may be
useful to view instructional design as a design field in which applied and developmental research
activities are carried out to develop grounded theories based in design practice. Also, reinforcing the
relationship between instructional design and design research, Akker et al. (2006, 45) have argued
that instructional design can be perceived as informal predecessors of design research.

Järvelä and Renninger (2014) have asserted that instructional designers must generate interest in
learners, motivate them to learn, and create environments that can be engaging to the learners. These
key functions can be greatly aided by the skilled application of visual design principles. Instructional
design is also about stimulating the senses of the learner to create a positive emotional response to

 49

the subject matter. Well-crafted instructional design can entice learners to complete the course, as
well as inspire them to ask their own questions and explore the subject independently. Hokanson,
Miller, and Hooper (2008) referred to the role of instructional designer as an instructional
craftsperson (i.e., someone who has honed his knowledge and skills through experience, and who is
concerned with the technical and aesthetic aspects of a project). Furthermore, Christensen & West
(2013) argued that an instructional craftsperson refers to so much more than the ability to create an
instructional product that simply looks good; the role becomes the manifestation of interdisciplinary
design research. Accordingly, in this study, I took on the role of instructional craftsperson, conducting
educational design research in an interdisciplinary field with the pragmatic intent to improve how
programming should be taught in graphic design education.

3.4.5 Mixed methods

My choice of the pragmatist paradigm negated a focus on any specific perspective or way of doing
research; instead, it emphasized the specific problem or questions asked and used whatever data-
collection methods were needed to understand the issue. Pragmatism advocates the use of any
combination of methods—independent of their paradigmatic affiliation—that are qualified solely on
their utilitarian value in investigating “what works” in order to arrive at an actionable result. This
approach of bringing together several seemingly unrelated methods to form a coherent research
strategy is commonly referred to as mixed methods research (MMR).

MMR has been practiced since the 1950s but formally emerged in the US in the late 1980s (McKim
2017) after the “paradigm wars” had ended (Gage 1989; Melles 2008, 5) and more dialogue between
different methods emerged. MMR began occupying the middle ground between post-positivist and
constructionist research paradigms. Recently, MMR has seen an explosion in theory development and
it has taken off in several different directions (Creswell 2009, 2014; Creswell & Plano Clark 2007;
Mertens 2007; Teddlie & Tashakkori 2009).

As a research method, MMR focuses on collecting, analyzing, and mixing both quantitative and
qualitative data in a single study or series of studies (Hall 2013). Its central premise is that the
combination of quantitative and qualitative approaches provides a better understanding and
corroboration of research problems than either approach alone (Johnson, Onwuegbuzie, & Turner
2007, 123). Doyle, Brady, and Byrne (2016) discuss the main rationales or benefits proposed for
undertaking an MMR study. An edited excerpt of these can be seen in Table 3.2.

Rationale Explanation

Triangulation Uses quantitative and qualitative methods so that findings may be mutually
corroborated.

Expansion Requires the findings of earlier phases to be explained qualitatively, if needed.

Exploration Requires an initial phase to develop an instrument, intervention, identify variables
to study or develop a hypothesis that requires testing.

Completeness Provides a more comprehensive account of phenomena under study.

Offset weaknesses Ensures that weaknesses of each method are minimized.

Different research questions Allows for both quantitative and qualitative questions to be posed at the
beginning of the study.

Illustration Uses qualitative data to illuminate quantitative findings.

Table 3.2: Main rationales and benefits of Mixed Methods Research (adapted from Doyle, Brady, and Byrne 2016).

 50

I arrived at my decision to adopt MMR through my choice of pragmatism as my paradigmatic
position. Other researchers, however, have taken the opposite direction. Hall (2013) investigated the
use of mixed methods while looking for an appropriate paradigm to justify its use. Hall (2013)
identified three approaches to paradigm choice: the a-paradigmatic approach, the multiple paradigm
approach, and the single paradigm approach. He concluded that a single paradigm can indeed
provide a justification for mixed methods. Despite acknowledging pragmatism as a contender, he
ultimately pointed to realism as a better choice of paradigm for mixed methods, criticizing
pragmatism’s lack of clear definition of “what works.” Hall opposed Goldkuhl (2011), who claimed
that design research had found an appropriate home in the pragmatist paradigm. His view aligned
with that of Melles (2008), who posited that acknowledging pragmatism as useful and relevant within
design research, would give purpose to the mixed methods approach that design currently employs
on an ad-hoc, eclectic basis (Melles 2008, 10). In light of my findings, discussed in this chapter, which
all indicated a strong natural relationship between pragmatism and the educational and design parts
of my research topic, I rejected Hall’s recommendation in favor of the views of Melles and Goldkuhl
and maintained my position as pragmatist.

Collectively, the topics discussed in the previous sections were all indicative of and supported
mixed methods research as the most appropriate and best suited to provide an exhaustive, broad,
and nuanced answer to my overarching research question.

3.5 Research design
In section 1.7, the study’s overarching research question, “how should programming ideally be taught
to graphic designers to account for how they learn and how they intend to integrate programming into
their vocational practice?” was subdivided into three specific research questions to be addressed in
individual papers. Given the methodological flexibility of MMR, coupled with my paradigmatic
pragmatist position, I chose to let the nature of each individual research question decide which
particular qualitative or quantitative method was appropriate. Below, I account for the research
design of my three papers individually.

3.5.1 Paper 1

This paper seeks to answer SRQ1: “How is Creative Coding currently taught in graphic design schools?”
The objective of the study on which the paper is based was to survey the structure and content of

contemporary Creative Coding courses to establish a snapshot of current teaching praxis. Its
underlying hypothesis, derived from my personal experience and observations, was that
contemporary Creative Coding courses are mainly taught using a computer science approach that is
not beneficial to graphic design students.

The paper describes research that analyzed syllabi collected from contemporary Creative Coding
courses taught at design schools across the globe. The reason for this choice of material was that it
would be practically impossible to do in-depth observation studies of several courses occurring over
extended periods of time in many different places. I could have opted to do in-class observation
studies, but at the expense of the breadth of the study. However, there are benefits of looking at
finished courses: 1) they are typically well-documented, 2) teaching materials are available, 3) course
assignments and exercises, plus the students’ submissions to these, are available, and 4) it allows the
study to document “what actually happened” as opposed to the course educators’ intentions of “what
will happen.”

 51

To provide a broad and nuanced overview of the structure and content in contemporary Creative
Coding classes, I chose breadth over depth.

Given the nature of the data collected, I performed a quantitative study of constituent course
parameters and discussed the results in juxtaposition with traditional graphic design education to
evaluate the paper’s hypothesis.

3.5.2 Paper 2

The intent of this paper is to answer SRQ2: “How should Creative Coding be taught to accommodate
how graphic design students learn?”

The objective of the study presented in this paper was to assess if the instructional design of how
Creative Coding is currently taught is optimal with respect to how graphic designers learn. Its
underlying hypothesis, based on the observations gained from the study described in paper 1, was
that contemporary Creative Coding courses are not taught in the most optimal way and do not
account for how graphic designers learn.

To evaluate the hypothesis, the study set out to investigate how graphic design students learn.
Specifically, the study sought to understand how graphic design students compare with students in
other disciplines to determine characteristics that educators must account for. The study used a
standardized test to allow for direct comparison of the results with findings obtained in similar tests
of different audiences performed by other researchers. As my literature review revealed, the Felder-
Soloman Learning Style Index (ILS©) online questionnaire (Felder & Soloman 1997) appeared to be
widely used and frequently referred to in publications across many fields. Accordingly, in this study, I
administered the Felder-Soloman ILS© questionnaire to groups of graphic design students to
establish their learning style profile. I compared my results with groups of students from technical
disciplines to determine if graphic design students exhibit different characteristics. Finally, I
compared the learning style profile with my findings from paper 1 to identify any measures that
should be addressed to adapt the instructional design of Creative Coding courses to suit the learning
styles of graphic design students.

To ensure a level of homogeneity and consistency in the data used in the analysis, I opted to test
students from just one school (The Danish School of Media and Journalism). A similar choice had
been made by the researchers whose results I used for comparison.

3.5.3 Paper 3

This paper addresses SRQ3: “How can graphic design students be motivated and supported as they are
introduced to programming?”

The objective of the study behind the paper was to describe and test a new pedagogical method
for teaching programming to graphic designers. The pedagogical method was developed using
constructionist learning theory as its underpinning theoretical framework. Following Papert’s (1980)
idea of using familiar knowledge in one domain to leverage knowledge acquisition from an unfamiliar
domain, the pedagogical method relied on pre-existing graphic design specimens to contextualize
computational concepts.

 The underlying hypothesis of the study was that contextualizing programming to fit the students’
predominant learning style and pre-existing domain-specific skills would improve the motivation and
desire to learn programming of graphic design students, which would be essential to pave the way
for their self-initiated exploration of code in their vocational practice.

 52

The study took an empirical action research approach. I employed and tested the pedagogical
method in real Creative Coding courses to 1) make first-hand empirical observations, and 2) receive
qualitative feedback from the students as they described their experience of working with the
method. This strategy was chosen as a direct consequence of the first two papers having used
quantitative methods and not engaged directly with the intended audience. A key rationale in MMR,
explained in section 3.4.5, is that combining methods is believed to lead to a better understanding
and a more comprehensive account of the studied phenomenon than could be arrived at by either
approach alone.

The paper describes the pedagogical method, explains its intended use in Creative Coding courses,
and assesses the potential, successes, and shortcomings of the pedagogical methods based on
empirical observations and plenary student interviews.

3.5.4 Summary

The research design chosen for each of the papers is summarized in table 3.3.

Specific Research
Question

Objective Hypothesis Research Type Research
Method

Material

SRQ1:
How is Creative
Coding currently
taught in graphic
design schools?

Survey the
structure and
content of
contemporary
Creative Coding
courses to
establish a
snapshot of
current teaching
praxis

Contemporary
Creative Coding
courses are mainly
taught using a
computer science
approach which is not
beneficial to graphic
design students

Research about
design

Developmental
research
(Brown, Gough,
Roddis)

Design studies
(Fallman)

Scientific
approach

Quantitative
study of
structure and
content in
contemporary
Creative Coding
syllabi

Syllabi from
contemporary
introductory
Creative Coding
courses taught
at design
schools

SRQ2:
How should
Creative Coding
be taught to
accommodate
how graphic
designers learn?

Assess if the
instructional
design of how
Creative Coding is
currently taught is
optimal with
respect to how
graphic designers
learn

Contemporary
Creative Coding
courses are not taught
in the most optimal
way and do not
account for how
graphic designers
learn

Research about
design

Developmental
research
(Brown, Gough,
Roddis)

Design studies
(Fallman)

Scientific
approach

Quantitative
Learning Style
test to graphic
design students

Felder-Soloman
Learning Style
Index (ILS®)
tests taken by
graphic design
students

SRQ3:
How can graphic
design students
be motivated and
supported as
they are
introduced to
programming?

Suggest and test
one possible
pedagogic
method to assess
its potential,
successes and
shortcomings

Contextualizing
programming to fit the
students’ predominant
learning style and pre-
existing domain-
specific skills, will
improve the
motivation of graphic
design students and
their desire to learn
programming

Research
through design

Applied
research
(Brown, Gough,
Roddis)

Design practice
(Fallman)

Design
approach

In-situ testing of
the pedagogic
method on its
intended
audience

Qualitative
assessment of
its efficiency

Iteratively
improved
proprietary
pedagogic
method

Graphic design
specimens
collected using
Pinterest

Instructional
material

Table 3.3: Summary of research design chosen to answer each SRQ.

 53

3.6 Order of execution
Gathering data for paper 1 was initiated immediately. Compared to papers 2 and 3, gathering data
could be carried out in-between other activities. Once sufficient data was gathered, analysis could
commence immediately as this study was not dependent on input from papers 2 and 3.

To obtain a sufficient sample size, gathering data for paper 2 also had to be initiated immediately.
My choice of surveying students from only one school (section 3.5.2) had the drawback that data
could only be collected across a larger timespan because each class was fairly small (approx. 24
students).

Paper 3 describes a pedagogic model and observations on its employment in a Creative Coding
course. As the course is taught two times a year, across the span of my PhD, I would teach the course
approximately six times. This provided an opportunity to iteratively improve the pedagogic method
using feedback and knowledge obtained from the preceding courses. Consequently, I initiated
development on the pedagogic method immediately, giving me the chance put the method to the
test and report my observations before having to turn my attention to papers 1 and 2. This, however,
means that only findings from the first iterations of the method have been reported in paper 3.

Taking all of the above-mentioned elements into account, the order in which to execute the
activities described in each paper emerged. Figure 3.1 provides a schematic overview:

3.7 Validating results
As this is a paper-based dissertation, results have been continuously evaluated in multiple peer
reviews, and revisions have been made according to the feedback (see the submission and
publication history at the beginning of each paper). However, acknowledging that some readers wish
to critically scrutinize my results, I will recommend some possible ways to validate the results of my
research.

Results obtained in paper 1 (chapter 5) can be validated by replicating the method and analysis
described in the paper. A comprehensive list of the courses that make up the dataset is described in
the paper. Teaching materials, syllabi, and student assignments for each course can be located and
downloaded using one of the Internet search engines mentioned in the paper. As new Creative
Coding courses are constantly added and indexed by Internet search engines, following the search

Figure 3.3: Schematic overview of research activities in this study.

 54

strategy described in the paper will always yield a new set of courses to be analyzed. However, given
my decision to opt for breadth over depth, I feel assured that any attempts to replicate my study in
the near future using a set of different courses will likely see a re-emergence of the reported pattern,
thus confirming my results.

Results in paper 2 (chapter 6) are easily validated due to my choice of using a standardized and
widely used profiling tool (Felder & Soloman 1997). The paper lists the exact data obtained though
the questionnaire, thereby making it easy to subject my results to various validation checks. I
speculate that attempts to validate my results on a similar audience will arrive at the same
observations.

Validating the usefulness of the method described in paper 3 (chapter 7) requires practically
implementing, observing, and assessing the method by following the outlines described in the paper.
Student feedback was gathered using a qualitative approach, thus not permitting a direct quantitative
comparison of the performance of the suggested method to other similar methods. As of now, the
verification of the method’s efficiency is based on my past experience with other methods, students’
feedback of their perceived experience working with the method, and an assessment of the effect of
the iterative improvements made to the method. As described in section 8.6, future studies are
planned to formally qualify the method as a valid and effective approach. Additionally, I hope that
other educators will incorporate the method in their teaching and report their observations regarding
its usefulness.

The overall research question posed in this dissertation is answered by merging results found in
papers 1–3. Given the open-ended nature of the research question, it is important to stress that the
answer provided in section 8.2.4 should be seen as just one of many possible conclusions. Following
my personal ambition to also provide a utilitarian output, the answer is interpreted and supported by
a set of heuristics. I suggest that the usefulness of the heuristics be evaluated through the eyes of a
design educator. In the text accompanying each heuristic, I provide a detailed explanation anchored
in supporting studies, findings from my own papers, and my own empirical observations. This allows
the reader to make a personal assessment of the validity of the suggested heuristics.

 55

CHAPTER 4: RESEARCH CONTRIBUTIONS

This chapter provides an overview of the research papers and discusses

their interrelationship. Each paper is presented in the following chapters

along with a submission history and publication state.

4.1 Overview
“Mapping Creative Coding Courses: Towards Bespoke Programming Curricula in Graphic Design
Education” (paper 1; chapter 5) reports a study of thirty syllabi gathered from introductory Creative
Coding programming courses. A selection of the results concerning the courses' structure and content
is presented and discussed. The majority of the analyzed courses exhibited evidence of being
planned to adapt and submit graphic design topics to programming paradigms. Also, topics and
algorithms of particular value to graphic design as a spatial practice were absent in many courses.
Finally, most courses did not investigate visual output that is achievable only through computation.
The paper argues that educators must adapt their Creative Coding syllabi and teaching materials to
make programming meet the needs of graphic designers rather than the other way around. The
findings in this paper provide a point of departure for a critical discussion among educators who wish
to integrate programming in graphic design education.

“Assessing Graphic Designers’ Learning Style Profile to Improve Creative Coding Course” (paper 2;
chapter 6) assesses the learning style of graphic design students to help design school educators
teaching Creative Coding programming courses adapt their teaching style to account for the way their
students learn. The Felder-Soloman Index of Learning Styles (ILS©) was administered to 77 bachelor-
level graphic design students. Compared to students in technical fields, the graphic design students
differed by being considerably more intuitive, with an increased preference for active and visual
learning. Based on these findings, specific recommendations and issues for educators to consider are
presented.

“Deconstruction/Reconstruction: A Pedagogic Method for Teaching Programming to Graphic
Designers” (paper 3; chapter 7) proposes, describes, and exemplifies a hands-on, experiential
pedagogic method, deconstruction/reconstruction, specifically designed to introduce graphic design
students to programming in a visual context. The method uses pre-existing, commercially applied
graphic design specimens as its main material to contextualize programming into a domain familiar to
the audience. Observations of the method used in teaching are discussed, and its potential is
evaluated based on feedback provided by the students.

4.2 Linking the papers
The papers share a common origin in the dissertation’s overarching research question (RQ; section
1.7). Each paper takes a specific research question (SRQs; section 1.7) as its point of departure.

 56

Individually, the papers are self-contained pieces that contribute valuable knowledge by posing and
answering highly specific questions. Seen together, the papers provide a coherent and
comprehensive contribution to research on instructional design in the interdisciplinary field of
graphic design and programming.

Further linking the papers are their mutual temporalities, deliberately designed to give the
dissertation a broad chronological span by covering both past, present, and future (see table 4.1).

Paper Purpose Temporality Chronology

Paper 1 Analyze syllabi from recently finished programming courses
in design schools

Past > Examine what has
been done

Paper 2 Profile how graphic designers learn to inform how
programming courses should be designed

Present > Understand
current potential

Paper 3 Suggest and test a bespoke contextualized pedagogic
method as one possible way to teach programming

Future > Suggest what
can be done

Table 4.1: Progression of temporalities in papers.

The linear temporal succession of the papers suggests that they should be read in the sequence
they appear in this dissertation. However, due to issues accounted for in section 3.6, the papers were
originally written in a different order.

In the final conclusion of the dissertation (section 8.2) each paper’s contribution to answering the
dissertation’s overarching question is discussed in more detail.

 57

CHAPTER 5: PAPER 1

Mapping Creative Coding Courses: Towards Bespoke Programming

Curricula in Graphic Design Education

Abstract
This paper presents a study of 30 syllabi gathered from introductory Creative Coding programming
courses. A selection of the results concerning the courses' structure and content is presented and
discussed. The majority of the analyzed courses exhibited evidence of being planned to adapt and
submit graphic design topics to programming paradigms. Also, topics and algorithms of particular
value to graphic design as a spatial practice were absent in many courses. Finally, most courses did
not investigate visual output that is achievable only through computation. The present study argues
that educators must adapt their Creative Coding syllabi and teaching materials to make programming
meet the needs of graphic designers rather than the other way around. The findings in this paper
provide a point of departure for a critical discussion among educators who wish to integrate
programming in graphic design education.

Keywords
Curriculum, Syllabus, Graphic Design, Creative Coding, Processing

1. Introduction
In the wake of the convergence of computer programming and graphic design, several scholars and
practitioners have argued that there is a need for coding to play a larger role in the future education
of graphic designers [Ami11; Pet12; Sau13; Tob12a; You01]. This move toward integrating
computation into graphic design practice and education is paramount to engage and nurture a new
generation of cross-disciplinary meta-designers who are as visually talented as they are technically
proficient [Mad15].

Extending this discussion into classroom practice, design schools across the globe have begun
revising their curricula to include courses in Creative Coding, which is a vague yet popularized term
describing "a discovery-based process consisting of exploration, iteration, and reflection, using code
as a primary medium, towards a media artifact designed for an artistic context" [MB13]. However, as
an emerging practice, educators and researchers alike still only possess a shallow understanding of
how programming should ideally be taught to an audience of visuospatial-inclined graphic designers.

Submission history Accepted Publication State

ITiCSE 2018 (Poster)
SIGCSE 2019 (Paper)
EuroGraphics 2019 (Paper)

ITiCSE 2018 (Poster)
EuroGraphics 2019 (Paper)

Published (Poster)
Published (Paper)

 58

The lack of an established epistemological framework [TF17] inadvertently has caused many Creative
Coding courses to be haphazardly planned on an uninformed basis. In an effort to mitigate this,
design educators have drawn inspiration from programming courses offered within Computer
Science, but, without proper adaptation, they unintentionally have made graphic design topics fit the
structure and terminology of Computer Science.

Moving toward bespoke programming curricula that is adapted to fit graphic designers calls for
investigation into and discussion of how these courses should ideally be planned, developed, and
implemented. To facilitate an informed debate on the subject, an overview of the status quo of
contemporary Creative Coding courses is needed. Examination of the literature reveals that no study
to date has been conducted on this subject. Therefore, to fill this gap, this paper asks the question:
"How are introductory Creative Coding courses that are designed to teach programming in a visual
context structured, and what topics are covered?" To answer this question, the systematic mapping
and content analysis of 30 representative Creative Coding courses were performed.

2. Collecting data
The first phase of this study involved conducting structured Internet search engine queries using
combinations of chosen keywords that are essential to the topic of the study (see Table 1). The search
was carried out using generic web search engines, Google and Bing, with the browser set to “private
mode” to prevent the possible interference of past searches in the results. To prevent a bias toward
courses taught in English, queries using translations of the keywords in several languages (i.e.,
German, Spanish, Portuguese, French, Italian, Danish, Swedish) were also made. Search results from
the first five pages of each query were systematically evaluated to construct a gross list of identified
courses. In the second phase, search queries using the previously mentioned keywords were made
on code sharing websites that are frequently used by educators who teach programming in a visual
context: github.com, codepen.io, and openprocessing.org (Main Repository & Class Section). All
identified courses were added to the gross list.

Next, the content of each of the courses on the gross list was reviewed and held against a set of
criteria to determine if it was suitable for inclusion in the study:

• Offered by a university, university college, or trade school
• Taught within the past five years (2013-2018)
• Introductory level
• Teaches programming in a visual design context
• Detailed course syllabus is available
• Teaching materials are available (optional)
• Assignments and student submissions are available (optional)

Domain Activity Item

Visual Programming Curriculum

Graphic Coding Syllabus

Design Course

Creative Class

Table 1: Search queries were constructed by combining one keyword from each column.

 59

Applying this search strategy yielded 30 courses qualified for in- depth analysis. The syllabus,
teaching materials, and assignments from each course were downloaded to form the study's dataset.

3. Analysis & Results
A homogenized dataset was developed using a spreadsheet to log 17 constituent parameters from
each course (i.e., course duration, class size, scheduled lectures, number of teaching assistants,
teaching methods, textbooks, programming environment). To establish a framework for analyzing the
courses' structures and contents, an inductive textual analysis of the course syllabi and teaching
materials dataset was conducted to identify recurring domain-specific topics relating to both
Programming and Graphic Design. Twenty-seven programming topics and 19 graphic design topics
were derived directly from the raw dataset through repeated examination without the use of
theoretical perspectives or predetermined categories.

The identified domain-specific topics were used to construct a matrix with 30 rows (courses) and 46
columns (topics). The matrix was populated through a detailed examination of each course's syllabus
and teaching materials to identify in which class each topic was first introduced and dealt with in-
depth. The absolute class number (e.g., 8) and its relative position in the overall course (e.g., the 8th
class of 24 total classes = 33.3%) were entered into the matrix. In cases where it could not be
definitely decided if or when a particular topic was dealt with in the course, the cell was left blank.
Color coding cells, using the relative position mapped to a specter ranging from green (0%) over
yellow (50%) to red (100%), revealed the pattern shown in Figure 1. Green refers to “core” topics
introduced early in almost all courses, whereas, red refers to advanced or specialized topics

Figure 1: The populated matrix, providing an overview of the analyzed courses (see Section 3 for additional info).

1

1

1

Computer Science Topics Graphic Design Topics IDE

ID
E

in
tro

C
om

m
en

ts

C
on

so
le

 /
Pr

in
t S

ta
te

m
en

ts

D
eb

ug
gi

ng

Fl
ow

 C
on

tro
l

Sy
nt

ax
 &

 R
ef

er
en

ce

V
ar

ia
bl

es

O
pe

ra
to

rs
 &

 E
xp

re
ss

io
ns

M
ou

se

K
ey

bo
ar

d

A
rr

ay
s

C
on

di
tio

na
ls

Lo
op

s

Fu
nc

tio
ns

O
O

P

Ti
m

er
s

Ev
en

ts

G
U

I

D
at

a
Im

po
rt

D
at

a
Ex

po
rt

To
uc

h
(M

ob
ile

 D
ev

ic
es

)

A
PI

's

R
ec

ur
si

on

N
et

w
or

k

H
ar

dw
ar

e
&

 E
le

ct
ro

ni
cs

B
ro

w
se

r D
O

M

Li
br

ar
ie

s (
Ex

te
rn

al
)

C
ol

or

G
ra

ph
ic

 P
rim

iti
ve

s

C
us

to
m

 S
ha

pe
s

C
oo

rd
in

at
e

Sy
st

em

R
an

do
m

ne
ss

 /
N

oi
se

Tr
an

sf
or

m
at

io
ns

Te
xt

Im
ag

es

M
ot

io
n

&
 A

ni
m

at
io

n

Ty
po

gr
ap

hy

V
id

eo

So
un

d

3D C
om

pu
te

r V
is

io
n

Pi
xe

l o
pe

ra
tio

ns

C
ol

lis
io

ns

V
ec

to
rs

M
at

he
m

at
ic

s

C
om

pu
ta

tio
na

l A
es

th
et

ic
s

Pr
oc

es
si

ng

p5
.js

ja
va

sc
rip

t (
 p

ur
e

/ f
ra

m
ew

or
ks

)

2 3 3 6 3 2 2 3 2 2 7 3 4 5 8 2 17 17 25 18 2 2 7 2 5 6 11 10 5 23 10 14 17 2 7
2 5 3 2 6 4 4 4 12 6 6 8 10 18 20 12 2 2 2 4 14 18 16 26 16 22 14 2 14 2 16
2 2 2 2 2 10 3 3 2 10 4 2 3 2 6 5 11 12 5 13 11 3 7 2
1 1 12 4 1 10 4 1 16 1 10 10 19 7 40 31 42 4 1 6 4 16 13 16 22 25 31 22 12 1
2 3 3 2 8 8 11 11 19 9 9 15 17 11 23 5 5 5 5 13 13 13 21 21 2
1 2 2 2 2 2 2 3 3 5 2 2 6 6 7 8 2 3 3 2 6 3 3 5 3 5 3 6 1
4 4 6 5 5 6 10 8 4 4 4 8 9 8 8 12 10 4
1 6 2 2 6 6 2 2 2 8 14 15 3 3 3 2 10 3 9 4 13 5 1
1 2 3 2 2 3 3 2 2 7 3 4 5 9 2 15 16 1 1 6 2 3 13 19 18 13 18 6 1
1 2 2 2 1 2 2 2 6 7 8 3 4 6 11 6 7 15 14 14 15 2 2 4 2 6 12 5 5 5 5 16 17 13 18 6 1
1 2 2 3 3 1 2 2 3 10 5 3 2 5 6 12 8 11 11 10 8 1 1 13 1 2 5 7 3 5 13 7 13 1
1 1 1 2 1 2 3 2 3 3 6 2 3 7 6 5 5 10 11 12 4 10 1 1 1 5 3 1 5 5 5 5 5 1
1 2 1 2 3 2 6 5 3 3 4 5 11 6 6 7 10 7 4 12 6 12 1 1 1 1 2 2 7 5 3 8 8 11 11 5 1
1 2 1 4 2 3 3 5 5 4 3 4 5 6 5 7 1 1 2 2 2 2 3 4 3 7 5 2 7 6 7 7 6 4 7 1
1 1 2 2 1 2 2 3 4 5 3 4 5 8 3 1 3 1 3 3 4 4 4 4 2 8 1
1 6 1 2 2 2 2 3 4 5 2 2 8 7 3 5 6 6 10 2 2 2 4 7 6 4 3 4 7 4 6 1
2 13 2 2 3 4 2 8 4 4 5 6 23 23 14 27 13 1 1 16 1 3 16 21 18 21 19 25 16 20 18 14
3 3 6 4 3 3 5 7 5 7 9 7 8 10 11 12 12 7 13 4 4 4 6 4 13 5 13 13 14 12 3 3

1 2 2 3 3 2 4 8 10 10 10 11 1 1 4 4 4 4 4 5 1 9
1 1 2 2 2 1 2 2 2 3 4 3 4 6 6 9 5 5 1 1 1 2 8 4 3 2 4 5 5 9 9 1
1 2 2 3 1 1 2 1 2 2 5 2 2 3 8 4 8 11 8 12 11 7 1 1 7 1 2 4 9 3 3 6 6 11 6 6 11 4 1 12
1 5 2 1 2 2 4 2 2 3 12 9 10 6 1 9 8 8 10 7 8 7 1
1 15 20 1 1 4 3 8 8 12 9 5 10 19 8 17 17 25 31 3 2 3 2 6 11 21 17 21 28 31 32 26 8 16 14 1
1 1 1 1 1 2 4 9 10 6 4 4 5 5 8 10 10 6 3 6 6 10 3 1 2 1 4 2 5 10 8 5 12 11 13 10 4 1 5 5
1 1 1 3 2 1 2 2 3 4 2 2 4 11 8 10 1 1 1 2 5 3 1 1 1
1 3 1 2 1 4 3 4 3 6 3 14 14 2 2 2 4
2 2 2 2 2 2 3 3 4 5 3 5 11 11 7 8 7 12 2 2 2 2 6 6 5 2
2 2 2 2 2 2 3 3 5 3 3 4 7 9 10 4 9 5 4 7 12 6
1 1 3 1 1 3 3 1 3 3 3 4 4 6 6 6 1 1 2 1 3 2 5 2 5 7 5 2 1
2 2 2 7 5 6 6 7 19 2 2 2 15 2 9

 60

introduced late and sparsely across the courses. Next,
the average order in which both programming topics and
graphic design topics were taught was determined by
sorting the relative position value in ascending order.
The tabulated results are shown in Table 2. Below, a few
of the most noticeable results relevant within the scope
of this paper are discussed:

Processing and p5.js were the preferred programming
environments. Of the analyzed courses, 37% used p5.js
[MFR15], 33% used Processing [FR14], and 20% used
both. Furthermore, 10% used lesser known JavaScript
frameworks (basil.js, rune.js). Other popular Creative
Coding environments (e.g., openFrameworks, Cinder,
vvvv, Max, three.js) were used only in one of the
analyzed courses, respectively; however, they often
replaced or supplemented Processing and p5.js in
advanced courses.

Debugging and error analysis techniques were only
discussed as separate topics in half of the courses. As a
major part of programming is hunting down bugs and
fixing problems, failing to equip students with
techniques to accomplish this will likely cause frustration
among students who have to solve their assignments
outside of their scheduled classes and, thus, will not
have the opportunity to ask an educator or teaching
assistant for advice.

Recursion was introduced relatively late (64% into
the courses), considering its ability to produce visually
aesthetic results. Of the courses that introduced
recursion, half of them discussed it solely as an abstract
concept while the remaining courses explained recursion
visually by implementing generic examples (e.g., Koch
snowflakes, recursive trees). Only one course
exemplified how recursion is used in actual graphic
design artifacts.

Collisions, overlapping, and spatial arrangements were
given little attention, considering that much of what
graphic designers do is arranging elements on a surface.
Of the courses, 20% addressed these topics; however,
this was mostly done by emphasizing the math involved,
thereby, failing to demonstrate how the topics could be
practically applied in graphic design projects.

Graphical User Interface (GUI) was discussed in 27%
of the courses. A simple GUI provides students with a
familiar way to explore the inherent aesthetic potential
of a code without having to continually recompile or

Computer Science Topics

IDE intro 9%

Syntax & Reference 10%

Comments 12%

Flow Control 14%

Variables 17%

Operators & Expressions 18%

Conditionals 21%

Output: Console 21%

Loops 23%

Debugging 24%

Input: Mouse 26%

Input: Keyboard 33%

Functions 36%

Arrays 37%

Events 42%

GUI 47%

Timers 51%

OOP 51%

Input: Touch 57%

API’s 61%

Libraries (3rd party) 62%

Browser DOM 62%

Data Import 63%

Data Export 63%

Recursion 64%

Hardware & Electronics 69%

Network 76%

Graphic Design Topics

Coordinate System 12%

Graphic Primitives 13%

Color 14%

Shapes (Custom) 27%

Randomness & Noise 27%

Transformations 37%

Motion & Animation 38%

Mathematics 39%

Typography 39%

Text 45%

Images 47%

Collisions 53%

Computational Aesthetics 55%

Video 56%

Pixel Operations 57%

Sound 66%

Vectors 70%

3D 72%

Computer Vision 82%

Table 2: The average order in which

computer science topics and graphic design
topics were taught (%-values denote when
the topic was taught relative to the entire

course duration).

 61

resort to arbitrary keyboard/mouse inputs. In courses that used Processing, the built-in “Tweak Mode”
provided a rudimentary GUI within the IDE itself, allowing students to experiment with different
values and receive immediate visual feedback. However, this option was only mentioned explicitly in
two courses. GUI was more frequently discussed in courses that used p5.js, likely because a range of
basic interface elements are readily available within the browser DOM.

Math, rarely incorporated in graphic design curricula, is an essential component of Creative Coding.
Of the courses, 63% introduced basic algebraic, trigonometric, and geometric principles. Often, math
was introduced using an apologetic tone, building on the assumption that graphic designers lack
numeracy skills. One course featured a scheduled “Math Day!”, with an exclamation mark to indicate
caution or danger. This discourse may inadvertently have reinforced the students’ pre-conceived
notions that programming is hard to learn.

4. Discussion
Several researchers argue that the principles of coding share conceptual aspects with the principles
of design [Tob12b; You01]. Despite their commonalities, notable differences were observed in how
Creative Coding courses were structured and what content they included depending on the course
educator’s disciplinary background. To elaborate on this, the generalized opposing notions of code-
first approach versus design-first approach are introduced.

A code-first approach refers to programming educators who plan a Creative Coding course
thinking, "how can I make graphic designers understand what programming is?" This approach forces
graphic design topics to adapt and submit to programming paradigms. Typically, students learn how
to convert well-known graphic design methods into the medium of code. Assignments are primarily
given to test the students' proficiency at programming and refrain from assessing the aesthetic
aspects of the students' works. Little attention is given to connecting the activity of programming
with the students’ field of study. This implies formal rigor and adherence to the established
programming practices.

A design-first approach refers to design educators who plan a Creative Coding course thinking,
"how can I make graphic designers use programming in their work?" This approach employs
programming to explore graphic design topics computationally. Typically, students learn how to
expand the boundaries of their discipline through the medium of code. Assignments are primarily
given to test the students' ability to arrive at new visual expressions and refrain from assessing the
quality of their code. Great attention is given to connect the activity of programming to the students’
field of study. This implies exploratory discovery and a casual treatment of code.

4.1 Structure
The majority of the analyzed courses exhibited evidence of having been planned utilizing a code-first
approach. Programming terminology was often favored over equivalent graphic design terminology
(e.g. "loop" instead of "repetition," "output window" instead of "canvas"). Assignments focused on
testing if students had understood a given programming topic and downplayed the assessment of
their aesthetic quality. A consequence of structuring the course and teaching materials using a code-
first approach is that students fail to utilize their existing, domain-specific, graphic design knowledge
as a basis for constructing and acquiring new knowledge in a programming domain that is unfamiliar
to them, which is an essential premise in constructionist learning theory [Pap87]. For example,
graphic design students can use their existing knowledge of two-dimensional grids to leverage their
understanding of the abstract concept of “nested for loops,” a strategy specifically employed in five
of the analyzed courses.

 62

Another example of how the two approaches affected the syllabi, respectively, can be given by
looking at how the topic of color was taught. Most of the analyzed courses used a code-first approach
by taking the language reference of the chosen programming environment as an offset to discuss
specific functions used to define and manipulate colors, thereby, leaving students to explore colors
computationally within the confinements of the programming environment. Had a design-first
approach been used, color theory, which has been established over centuries, could be used as a
reference to discuss how colors can be defined and used computationally. Aside from replicating
certain mathematical principles used to create harmonious color schemes, courses might also discuss
new techniques that have become available through computation, e.g., creating palettes by sampling
pixel values from an image, pixel-sorting, computing dominant colors, and connecting to APIs like
COLOURLovers [Col18].

A few of the analyzed courses had been planned utilizing a design-first approach. One example
was the course "Printing Code" [Mad16], taught at ITP by Rune Madsen. In his course, Madsen
constructed a syllabus that stayed deeply rooted in graphic design and introduced programming
topics only as they were required to illustrate, extend, and explore a particular graphic design
principle. Although an advanced course assuming prior programming knowledge and, thus, excluded
from the analysis, another noteworthy course was “Computational Form” [Bak18], taught at the
Parson School of Design by Justin Bakse. Through highly visual and interactive course materials,
adapted to cater to the needs of design students, this course established an exploratory environment
where programming was taught with the clear intention of empowering Art and Design students to
investigate new modes and forms of expressions as well as where programming topics were chosen
for their ability to produce aesthetical output, rather than their canonical value within Computer
Science.

Studies [DG06; Guz10] suggest that contextualizing programming into a setting more familiar to
the audience positively affects student retention and motivation; thereby, research further prompts
educators to use a design-first approach when planning Creative Coding courses intended for graphic
designers.

4.2 Content
All courses dealt mainly with foundational graphic design topics, e.g., color, shapes, and typography.
This is hardly surprising, as these are considered to be the basic components of the graphic design
trade and, as such, would be expected to appear in an introductory level course. Absent in most
courses, however, were topics and algorithms of particular value to graphic design as a spatial
practice (e.g., object distribution, space filling, space partitioning, and overlap detection). While
arguably more complex to implement and understand, it is pivotal to include these in a Creative
Coding syllabus, as they can address and provide solutions to well-known issues experienced by
graphic design students in their daily work.

Few courses investigated algorithms that produce a visual output that is only achievable through
computation (e.g., glitch art, ASCII art, cellular automata, emergence, L-systems, fractals, self-
organizing systems, evolutionary design, and drawing using data feeds). An example of one such
course was "Computer Graphics con p5.js" [Bel17] at the Brera Academy of Fine Arts, taught by Prof.
Antonio Belluscio. This course discussed topics like attractors, fractals, autonomous agents, and
flocking behaviors, partially through presenting cases employing the technique and partially by
providing simple code examples for students to explore at times. Conversely, courses that neglected
to examine the potential of the computational aesthetic and its associated techniques taught
students to use code to create works that originated in graphic design principles belonging in the

 63

pre- computer design era. This is counterproductive to the aim of educating graphic design students
who can expand the boundaries of their discipline through the medium of code.

A final observation worth mentioning is that virtually all of the courses encouraged students to
sketch their ideas on paper before performing any coding. Two of the courses even required the first
exercises (involving harmonographs, automatons, and tiling patterns) to be solved using only pen,
paper, and cardboard, thereby, using a familiar and “safe” medium to help students understand the
principles involved in computational thinking [KP16; Win06]; this could potentially help disarm any
premature aversion towards programming. However, as truly indigenous computational aesthetics are
typically generated through computationally intensive calculations, they are virtually impossible to
express manually in an analog sketch. To escape the inherent expressive limitations of physical
materials, it is important that educators stress to their students that sketching solely using code is
equally as important.

5. Implications & Future Research
Programming allows graphic designers to unlock and explore a new code-driven visual paradigm, but
they must be inspired and given the necessary skills to do so in a way that builds upon and extends
their pre-existing knowledge. This study indicates plenty of opportunities for educators to rethink
and restructure how Creative Coding courses are currently taught in design schools. Considering the
results obtained in this study, it is argued that educators must use a design-first approach when
planning the structure and content of Creative Coding courses intended for graphic designers. A
design-first approach is considered to be essential to effectively promote and embed programming
as an established practice in graphic design education.

This study’s data and the conclusions derived thereof are currently being used to develop a
bespoke Creative Coding syllabus especially for use in design schools. Also underway is a study
investigating the relationship between the students' motivations and the aesthetic quality of their
assignments. Finally, dedicated research on the pedagogical and didactical strategies employed in
the courses can further inform and encourage a dialogue among both programming and graphic
design educators.

Acknowledgements
The author would like to thank all educators whose courses formed the basis of the analysis. They all
have put tremendous effort into creating their courses and have been kind enough to share them
online.

References
[Ami11] AMIRI, F.: Programming as design: The role of programming in interactive media curriculum in

art and design. International Journal of Art and Design Education 30, 2 (2011), pp. 200–210.

[Bak18] BAKSE, J.: Hello, Comp Form! Comp Form (2018). http://compform.net/.

[Bel17] BELLUSCIO, A.: Computer Graphics con p5.js. Exframes (2017). https://www.exframes.net/cg-
p5js/.

[Col18] COLOURLovers: COLOURlovers API Documentation. COLOURLovers (2018).
https://www.colourlovers.com/api.

 64

[DG06] DORN, B., GUZDIAL, M.: Graphic designers who program as informal computer science
learners. Proceedings of the 2006 international workshop on Computing education research
(2006), pp. 127–134. (Proc. ICER '06).

[FR14] FRY, B., REAS, C.: Processing: a programming handbook for visual designers and artists. MIT
Press, 2014. http://processing.org/

[Guz10] GUZDIAL, M.: Does Contextualized Computing Education Help? ACM Inroads, 1, 4 (2010), pp.
4–6.

[KP16] KNOCHEL, A. D., PA TTON, R. M.: If Art Education Then Critical Digital Making: Computational
Thinking and Creative Code. Studies in Art Education 57, 1 (2016), pp. 21–38

[Mad15] MADSEN, R.: On Meta-Design and Algorithmic Design Systems. Rune Madsen (2015).
https://runemadsen.com/blog/on-meta- design-and-algorithmic-design-systems/.

[Mad16] MADSEN, R.: Programming Design Systems. Programming Design Systems (2016).
http://printingcode.runemadsen.com/.

[MB13] MITCHELL, M. C., BOWN, O.: Towards a creativity support tool in processing. Proceedings of the
25th Australian Computer-Human Interaction Conference on Augmentation, Application,
Innovation, Collaboration (2013), pp. 143–146. (Proc. OzCHI '13).

[MFR15] MCCARTHY L., FRY B., REAS C.: Make: Getting Started with p5.js. MakerMedia Inc., 2015.
http://p5js.org/

[Pap87] PAPERT, S.: Constructionism: A New Opportunity for Elementary Science Education. National
Science Foundation NSF Award Search: Award #8751190 (1987).

[Pet12] PETTIWAY, K.: The New Media Programme: Computational thinking in Graphic Design Practice
and Pedagogy. Journal of the New Media Caucus 8, 1 (2012).

[Sau13] SAUNDERS, S.: Coding as Craft: Evolving Standards in Graphic Design Teaching and Practice.
AIGA Design Educators Community (2013).

[Tob12a] TOBER, B.: Making the Case for Code: Integrating Code-Based Technologies into
Undergraduate Design Curricula. Catch22: Eighth Annual UCDA Design Education Summit
Abstracts & Proceedings (2012), pp. 224–229.

[Tob12b] TOBER, B.: Creating with Code: Critical Thinking and Digital Foundations. Mid-America College
Art Association Conference (2012).

[TF17] TZANKOVA, V., FILIMOWICZ, M.: Introduction: Pedagogies at the Intersection of Disciplines. In
FILIMOWICZ, M., TZANKOVA, V. (eds.): Teaching Computational Creativity. 1st ed. Cambridge:
Cambridge University Press, 2017, pp. 1–17.

[Win06] WING, J. M.: Computational Thinking. Communications of the ACM 49, 3 (2006).

[You01] YOUNG, D.: Why designers need to learn programming. In HELLER, S. (ed.): Education of an e-
designer. New York, NY, USA: Allworth Press, 2001

 65

Appendix: List of analyzed courses

Course Name Institution Country Semester & Year

DM-UY-1133-A Creative Coding Integrated Digital Media,
NYU Tandon School of Engineering

US Spring 2017

DM-UY-1133-C Creative Coding Integrated Digital Media,
NYU Tandon School of Engineering

US Fall 2017

Programming Design Systems
(previously "Printing Code")

NYU Tisch School of the Arts US 2016

15-104 • Computation for Creative
Practices

Carnegie Mellon University US 2016

MCC-UE 1585 Creative Coding NYU Steinhardt US 2014

CCT 126 Programming for Artists and
Designers

Maine College of Art US Winter 2013

VA345 Creative Coding Sabanci University TR 2017

VCD 293 Design By Code Istanbul Bilgi Üniversitesi TR 2016-2017

CS 110 (Sect. 2): Introduction to Computing Bryn Mawr College US Spring 2016

EDPX 2100 Coding University of Denver US Winter 2016

PUCD 2035-E Creative Computing Parsons The New School for Design US Spring 2016

DAT405 Creative Coding University of Plymouth GB Fall 2017

ICM-2017 ITP Foundation Course to
Computational Media

NYU Tisch School of the Arts US 2017

Corso di Computer Graphics Accademia di Belle Arti di Brera IT 2018

HCDE 598 MS Creative Computing University of Washington US Winter 2017

Creative Coding 1701ICT Griffith University AU 2017

AET 319 Foundations of Creative Coding University of Texas at Austin US Fall 2016

MART 120 Creative Coding 1 University of Montana US 2017

Kickstart Algorithmic Thinking &
Programming

Lucerne University of Applied Sciences and Arts CH Spring 2015

Programming for Visual Artists Aalto University FI Spring 2018

Programming for Visual Artists Purchase College State University of New York US Fall 2017

Programming for Artists University of Florida US Spring 2016

Computer Science 1050: Introduction to
Computer Science: Multimedia

Saint Louis University US Spring 2016

ARTS 249-01 Creative Coding Queens College US Spring 2017

PUCD 2035-E Creative Computing Parsons The New School for Design US Fall 2015

ASIM 1310 Art + Code Southern Methodist University US Fall 2013

CIM 540 Intro to Creative Coding University of Miami School of Communication US Spring 2017

CAT 117 Process & Interaction: An
Introduction to Creative Coding

Bloomfield College US Spring 2015

Creative Coding Politecnico di Milano IT Fall 2018

Creative Coding Integrated Digital Media,
NYU Tandon School of Engineering

US Fall 2018

 67

CHAPTER 6: PAPER 2

Assessing Graphic Designers’ Learning Style Profile to Improve Creative

Coding Courses

Abstract
This study aimed at assessing the learning style of graphic design students to help design school
educators teaching Creative Coding programming courses adapt their teaching style to account for
the way their students learn. The Felder-Soloman Index of Learning Styles (ILS©) was administered to
77 bachelor-level graphic design students. Compared to students in technical fields, the graphic
design students differed by being considerably more intuitive, with an increased preference for
active and visual learning. Based on these findings, specific recommendations and issues for
educators to consider are presented.

1. Introduction
In today’s software-driven, techno-centric world, the popular prevailing discourse is that everyone
must learn to program. Many national and international initiatives have helped put coding and
computational thinking into schools’ curriculums, aided by a rapidly increasing undergrowth of
dedicated programming environments tailored to suit the needs and learning situations of specific
audiences. Programming has also made its entrance into Graphic Design education. Design schools
across the globe are now offering programming courses, typically branded using the popularized
term Creative Coding. These courses teach informal programming practices that enable graphic
design students to create expressive visual output for use in commercial contexts.

However, being a recent addition to graphic design education, programming has not yet been
taught extensively. Hence, empirically gained knowledge to help design educators navigate and
operate within the intersection among graphic design, programming, and teaching is largely missing.
As a contribution to close this gap, this study will assess the learning style profile of graphic
designers. Learning styles are different and unique ways used by students as they prepare to learn
and recall information. Incorporating learning styles into teaching plans can make learning easier and
lead to better achievement. Conversely, failing to match the students’ preferred learning styles risks
impeding their learning. While several studies have been undertaken to assess the learning style
preferences of students in many diverse disciplines, no known studies have explicitly sought to
profile graphic design students. Understanding the preferred learning style of graphic design
students will help design educators plan and execute enjoyable, enriching, and effective learning

Submission history Accepted Publication State

EuroGraphics 2019 (Paper) EuroGraphics 2019 (Paper) Published (Paper)

 68

experiences that teach programming in a way which accounts for how graphic design students prefer
to acquire new knowledge.

2. Method
Although some researchers consider the idea of learning styles a contested notion [FB05, p.58], more
than 70 learning style models are described [CMHE04] with Kolb [Kol84], Honey and Mumford
[HM92], Myers-Briggs [BMQH98], and Felder and Silverman [FS88] being the most commonly used.
Each proposes different classifications and descriptions of learning styles.

This paper uses the Felder-Silverman learning style model (FSLSM) developed in 1988 [FS88] and
updated in 2002. FSLSM is widely used in scholarly literature within science, technology, engineering,
and mathematics (STEM) fields; thus, there is a large pool of studies to compare the findings against.
The learning styles defined in FSLSM can be identified using the Index of Learning Styles (ILS©)
questionnaire [FS00]. ILS© is an often used and well-investigated instrument generally considered
reliable across disciplines [FG07, ZWA00, Zyw03]. ILS© is available as a free online test, which makes
it easy for educators to deploy and interpret. This also allows researchers to verify and extend the
results reported in this paper. While other studies on how graphic designers learn focus on
qualitative, holistic, and procedural aspects [Cro82, Law05, Sch83], the combination of FSLSM used in
conjunction with ILS© provides a quantitative, utilitarian lens through which to consider the ways
students prefer to acquire knowledge.

Compared to other learning style models, which tend to classify learners into a few groups, FSLSM
allows for a more nuanced profile by placing the learner on a scale between two contrasting poles
across four dimensions. Each dimension can be summarized as follows [FS05]:

• “sensing (concrete, practical, oriented toward facts and procedures) or intuitive (conceptual,
innovative, oriented toward theories and underlying meanings);

• visual (prefer visual representations of presented material, such as pictures, diagrams, and flow
charts) or verbal (prefer written and spoken explanations);

• active (learn by trying things out, enjoy working in groups) or reflective (learn by thinking things
through, prefer working alone or with one or two familiar partners);

• sequential (linear thinking process, learn in incremental steps) or global (holistic thinking process)."

Moreover, FSLSM is based on tendencies, indicating that learners, despite exhibiting a preference for
a certain behaviour, can sometimes act differently.

3. Study
The study was conducted between May 2015 and May 2018. A total of 77 bachelor-level graphic
design students participated: 41 males and 36 females, with ages varying between 19 and 35 years
(median 25 years). All students were enrolled in introductory Creative Coding classes at The Danish
School of Media and Journalism (DMJX). The study and the purpose were explained to the students,
who were then asked to complete the ILS© online questionnaire and submit the results. Upon
completion, students were briefed about the ILS© learning modalities to allow them to make use of
their test scores.

The data collected was entered into Microsoft Excel and analyzed according to instructions given
in [FS05, p.105]. Statistical analysis against the chosen comparison studies was not possible due to
lack of exact data provided.

 69

4. Results
Figures 1–4 depict the accumulated results of all
four dimensions. The left side of each dimension
pair is presented as a negative value, and the
right side is positive, the encoding being from -
11 to +11 in odd numbers. Following the
encoding procedure described in [FS05], Table 1
lists students’ cumulative results arranged
according to the strength of their preference as
either strong (±11, ±9), moderate (±7, ±5) or mild
(±3, ±1). Furthermore, results are also expressed
percentage-wise in Table 2, row A, to make them
comparable with results reported in other
studies.

The 77 graphic design students who
participated in the study were characterized by a
majority of highly visual, active, intuitive types
with a fairly balanced number of sequential and
global learners. Remarkably, looking at the
VIS/VRB dimension, 82% of the students were
moderate or strong visual learners. A majority of
visual learners was anticipated as most people prefer to learn this way, but for students enrolled in a
design school, the ratio was hypothesized to be more pronounced, and indeed, only one student
showed a mild preference toward verbal instruction. In dimension SEQ/GLO, students were more
diverse. Median value resided at 1, indicating that most students had a mild preference for both. A
quarter of the students (24%) showed a moderate to strong preference towards either sequential
(9%) or global (15%) learning. Similarly, in dimension ACT/REF, students exhibited a wide spread in

Figure 1: Active-Reflective distribution of the respondents. Figure 2: Visual-Verbal distribution of the respondents.

Figure 3: Sensing-Intuitive distribution of the respondents. Figure 4: Sequential-Global distribution of the respondents.

Active / Reflective Moderate-Strong Active 39%

Mild 52%

Moderate-Strong
Reflective

9%

Sensing / Intuitive Moderate-Strong Sensing 14%

Mild 46%

Moderate-Strong Intuitive 40%

Visual / Verbal Moderate-Strong Visual 82%

Mild 18%

Moderate-Strong Verbal 0%

Sequential / Global Moderate-Strong
Sequential

9%

Mild 76%

Moderate-Strong Global 15%

Table 1: Strengths of preferences.

 70

their preferred learning style. The median value was -3, suggesting that the majority of students
(52%) had a mild preference toward active learning. Of students showing a moderate to strong
preference in this dimension, more were active (39%) than reflective (9%). On the SEN/INT
dimension, nearly half the students (46%) had a mild preference for either type, with an almost equal
number of students (40%) having a moderate to strong preference toward intuitive learning.

4.1 Results compared to other disciplines
To put the results into perspective, a number of studies reporting ILS© scores across different
disciplines (Table 2, rows B-H) have been used as a comparison. The studies have been selected with
a desire to eliminate any skewing in the results relating to geocultural differences in teaching and
learning styles.

A cross all four FSLSM dimensions, results in this study correspond well with results obtained by
Kolmos & Holgaard [KH08], who examined, among others, students studying Architecture & Design.
This is considered indicative of a correlation between the disciplinary kinship and the students’
learning profile. A considerable difference is found in dimension SEN/INT, where students in design-
related studies A and B are mostly intuitive learners, directly opposed to students in technical-
related studies C-G, who are mostly sensing learners. On the VIS/VRB dimension, graphic designers
are generally more visual learners than students in technical fields. In fact, this study represents the
highest percentage of visual learners compared to other known studies using ILS©. However, the
informatics engineering students in study G show a similarly high preference toward visual learning,
thereby debunking the idea that studies situated within the field of Art and Design will implicitly
have a significantly larger population of visual learners in a cohort of students. Compared to the
many (mostly technically oriented) studies summarized in study H, graphic design students at DMJX
are almost exclusively visual (99% vs. 82%), global rather than sequential (44% vs. 60%), intuitive
rather than sensing (32% vs 63%), and increasingly active (77% vs 64%) learners.

5. Implications for educators
Assuming that the learning style profile of the graphic design students at DMJX is representative of
graphic design students in general, several insights can be gained from interpreting the results using
the updated Felder & Silverman teaching style model [FS88] and Felder & Soloman learning styles
and strategies [FS00]. In the following paragraphs, these insights have been converted into specific
recommendations to inform educators and help them plan Creative Coding courses aimed at graphic
design students.

 Field Institution Act Sen Vis Seq N Ref

A Graphic Design The Danish School of Media and Journalism 77% 32% 99% 44% 77 This study

B Architecture & Design Aalborg University 79% 38% 96% 32% 77 [KH08]

C Computer Engineering & Science Aalborg University 71% 69% 81% 47% 70 [KH08]

D Mathematics Aalborg University 50% 71% 79% 57% 14 [KH08]

E Computer Science Lappeenranta University of Technology 62% 69% 73% 41% 118 [AS10]

F Information Systems Massey University & Vienna University of Technology 57% 58% 87% 56% 207 [GVLK07]

G Informatics Engineering Polytechnic Institute of Coimbra 64% 61% 96% 74% 173 [GM10]

H Multiple Fields Multiple Institutions 64% 63% 82% 60% 2506 [FS05]

Table 2: Learning Style preferences found in this study compared to those reported in similar studies.

 71

An overwhelming majority of students will have moderate to strong visual preferences. This
emphasizes a need for teaching materials, demonstrations, and assignments to be highly visual.
Students will not respond well to verbal instructions (i.e., passive auditorium lectures). To help
students develop mental models of abstract programmatic constructs, they must be supported by
visualizations [Pan16] or metaphors drawn from their pre-existing domain-specific knowledge (e.g.,
using nested for-loops to generate a 2D grid of shapes). Working processes should be presented
whenever possible. Live coding is one particularly useful way to accomplish this that holds many
benefits [BW18]. Another way to make teaching more visual is by incorporating premade interactive
and editable code examples for the students to explore. This will give students an opportunity to
learn programming by forming and testing ideas through immediate visual feedback.

Most students will have a mild sensing/intuitive preference, with an almost equal number of
students being strong-moderate intuitive learners. Still, a sizable minority of students have sensing
preferences and must be considered. It is essential that both types be catered to and that
corresponding measures be taken when designing the course material. Educators should alternate
between instructional methods best suited for each type, or, alternatively, introduce two parallel
tracks in both teaching and assignments. For example, assignments could be designed to have a fixed
goal but allow for two different ways of arriving at a solution: either through experimentation and
novel use of new techniques to accommodate the intuitors, or through stepwise instructions that
incorporate the use of memorized knowledge to accommodate the sensors. The formal and
structured nature of programming implies that students must be presented a certain number of facts,
but such sessions should be kept at a minimum. Also, the students’ general bias towards intuitive
learners instills hope in the sense that they should be able to cope with the abstract and
mathematical concepts within programming – worth addressing at the beginning of the course to
help alleviate any premature code-induced anxiety among the students.

A majority of students having a mild sequential/global learning preference indicates that
educators must prepare themselves to help both sequential students who learn in linear steps and
global learners who learn in large jumps. Educators must be careful to provide the big picture and
relate it to previous knowledge before diving into the details, without missing a step in their
explanation. In graphic design education, programming is not an objective in itself; it is a means to
achieve a higher purpose, namely that of crafting visual output. Therefore, educators must relate
every programming concept to the broader context of the students’ study and future vocation.
Sequential learners might regard assignments and exercises as individual activities, whereas global
learners must be reassured that the tasks they are asked to solve will eventually form a coherent
body of knowledge and skills. Finally, it might be helpful to explain to global students that they
should not be discouraged from feeling "in the dark" when they compare themselves to their
sequential classmates – they are both making progress, but their learning takes place differently.

Active learning is preferred by most students; however, as this is only a mild preference, teaching
initiatives that call for reflective activities should also be integrated. Pair-programming is suggested
as a good teaching practice [BW18], but it might be transgressive to students who prefer to quietly
reflect in order for learning to stick. The wide spread in the results suggests that students should be
given the option to either work in pairs or work alone, depending on their personal preference. Active
learners, who prefer to try things out and learn from experience, should be given objects to form a
basis for their discovery. These objects might be inspirational visual material, premade code snippets,
or a set of digital assets to use. To support reflective learners, educators should consider supplying
additional explanatory tutorials and demonstrations, preferably as video/animations to cater to the
students’ visual preference. These could be viewed by students at their own pace as many times as

 72

needed until they grasped the topic presented. Not only would this leave the educator free to attend
to other tasks, it might also encourage students to persist in seeking an answer.

Further implications are suggested by Silverman [Sil02], co- developer of FSLSM, who later
extended her research based on brain research and clinical observations. Considering the results
obtained in this study, the majority of graphic designers at DMJX fit Silverman’s description of “Visual
Spatial Learners”: “They learn better visually than auditorally. They learn all-at-once, and when the light
bulb goes on, the learning is permanent. They do not learn from repetition and drill. They are whole-part
learners who need to see the big picture first before they learn the details. They are non- sequential, which
means that they do not learn in the step- by-step manner in which most teachers teach.” [Sil02]

Silverman points out that visual-spatial abilities (associated with graphic design) are the domain of
the right brain hemisphere; sequential abilities (associated with programming) are in the domain of
the left brain hemisphere. Teaching programming to graphic designers, in other words, becomes a
cross-hemispheric endeavor that requires educators to consider initiatives meant to access the left
brain in addition to their regular mainly right-brain- oriented teaching activities. Suggested activities
to stimulate the students’ left brain hemispheres are verbal walk-throughs of algorithms, tests that
involve math and logic, quizzes, and code- related puzzles (e.g., Parsons problems [PH06]).

6. Conclusions
The learning style profile of graphic design students at The Danish School of Media and Journalism
(DMJX) differs noticeably from that of students in technical fields. Graphic design students have a
more pronounced preference towards an intuitive learning style, they are virtually exclusively visual
learners, and they more strongly prefer active learning. These findings suggest that courses
developed to fit the learning style profile of students in technical fields will fail at matching the
preferred learning style of graphic designers. This implicitly underlines the need to develop
customized programming courses and accompanying instructional methods for use in design schools.

During the study, preliminary results continuously informed the instructional design of the course
the profiled students were enrolled in, leading to the development of a pedagogic method
specifically made to suit the learning style profile discussed in this paper. Experiences employing this
method are reported in [Han17].

The size of the population tested (N=77) is sufficient to render the study valid for comparison with
similar studies. However, to determine a broadly anchored learning style profile of graphic designers
requires similar data to be collected by administering the ILS© to graphic design students in other
design schools. This could be taken up as further research in this field.

References
[AS10] ALAOUTINEN S. , SMOLANDER K.: Are computer science students different learners? In

Proceedings of the 10th Koli Calling International Conference on Computing Education Research
— Koli Calling ’10 (2010), pp. 100–105

[BMQH98] BRIGGS-MYERS I. , MCCAULLEY M. H. , QUENK N. L. , HAMMER, A. L.: MBTI Manual: A Guide to
the Development and Use of the Myers-Briggs Type Indicator. 3rd Edition. Consulting
Psychologists Press, 1998

[BW18] BROWN N. C. C. , WILSON G.: Ten quick tips for teaching programming. In: PLoS Computational
Biology (2018), pp. 1–8

 73

[CMHE04] COFFIELD F. , MOSELEY D. , HALL E. , ECCLESTONE K.: Learning styles and pedagogy in post-
16 learning. A systematic and critical review. London, UK : Learning and Skills Research Centre,
2004

[Cro82] CROSS N.: Designerly ways of knowing. In Design Studies vol. 3 (1982), Nr. 82, pp. 221–227

[FB05] FELDER R. M. , BRENT R.: Understanding student differences. In Journal of Engineering Education
vol. 94 (2005), Nr. 1, pp. 57–72

[FG07] FELKEL B. H. , GOSKY R. M.: A study of reliability and validity of The Felder-Soloman Index of
Learning Styles for Business Students. In Proceedings from the International Conference on
Technology in Collegiate Mathematics (ICTCM), (2007), pp. 38–47

[FS88] FELDER R. M. , SILVERMAN L. K.: Learning and teaching styles in engineering education (June
2002 preface). In Engineering Education vol. 78 (1988), pp. 674–681

[FS00] FELDER R. M. , SOLOMAN B. A.: Index of Learning Styles (ILS®) Questionnaire.
https://www.webtools.ncsu.edu/learningstyles/ - retrieved 2018-10-10. — North Carolina
State University

[FS05] FELDER R. M. , SPURLIN J.: Applications, reliability and validity of the Index of Learning Styles.
In International Journal of Engineering Education vol. 21 (2005), Nr. 1, pp. 103–112

[GM10] GOMES A. , MENDES A. J.: A Study on Student Performance in First Year CS Courses. In
Proceedings of the fifteenth annual conference on Innovation and technology in computer science
education - ITiCSE '10 (2010), pp. 113-117

[GVLK07] GRAF S. ,VIOLA S. R. , LEO T. , KINSHUK: In-depth analysis of the Felder-Silverman learning
style dimensions. In Journal of Research on Technology in Education vol. 40 (2007), Nr. 1, pp.
79–93

[Han17] HANSEN S. M.: Deconstruction/Reconstruction: A pedagogic method for teaching
programming to graphic designers. In Proceedings of the 20th Generative Art Conference GA2017
(2017)

[HM92] HONEY P. , MUMFORD A.: The Manual of Learning Styles, 1992

[KH08] KOLMOS A. , HOLGAARD J. E.: Learning styles of science and engineering students in problem
and project based education. In Proceedings of the 36th Annual SEFI Conference, (2008)

[Kol84] KOLB D. A.: Experiential Learning: Experience as the Source of Learning and Development,
1984

[Law05] LAWSON B.: How Designers Think — The Design Process Demystified. 4th Edition. Oxford,
England : Architectural Press, 2005

[PH06] PARSONS D. , HADEN P.: Parson’s programming puzzles: A fun and effective learning tool for
first programming courses. In Conferences in Research and Practice in Information Technology
Series vol. 52 (2006), Nr. January 2006, pp. 157–163

[Pan16] PANDA P.: Helping Designers Understand Code. College of Design, North Carolina State
University (2016)

[Sch83] SCHÖN D. A.: The Reflective Practitioner: How Professionals Think in Action. New York : Basic
Books, 1983

[Sil02] SILVERMAN L. K.: Upside-Down Brilliance: The Visual-Spatial Learner. 1st. Edition. Denver, CO,
USA : DeLeon Publishing, 2002

 74

[ZWA00] VAN ZWANENBERG N. , WILKINSON L. J. , ANDERSON A.: Felder and Silverman’s Index of
Learning Styles and Honey and Mumford’s Learning Styles Questionnaire: How do they
compare and do they predict academic performance? In Educational Psychology vol. 20 (2000),
Nr. 3, pp. 365-380

[Zyw03] ZYWNO M. S.: A contribution to validation of score meaning for Felder-Soloman’s Index of
Learning Styles. In Proceedings of the 2003 American Society for Engineering Education Annual
Conference & Exposition (2003)

 75

CHAPTER 7: PAPER 3

Deconstruction/Reconstruction: A Pedagogic Method for Teaching

Programming to Graphic Designers

Abstract
This paper proposes, describes and exemplifies a hands-on, experiential pedagogic method,
deconstruction/reconstruction, specifically designed to introduce graphic design students to
programming in a visual context. The method uses pre-existing commercially applied graphic design
specimens as its main material to contextualize programming into a domain familiar to the audience.
Observations of the method used in teaching are discussed, and its potential evaluated based on
feedback provided by the students.

1. Introduction
Being code-literate is considered a crucial ability in today’s society. Permeating through all parts of
contemporary culture, this view is also influencing the education of graphic designers, prompting
students to recast their existing skills to fit the medium of the code and educators to develop new
courses that help build this literacy [1, 2, 3]. However, most graphic design students perceive
programming as an abstruse skill they will never be able to master, and have a hard time trying to
connect the activity of programming with the essence of their profession; crafting visual artifacts.
Although many attempts have been made to teach programming to a visually oriented audience,
most of them use seemingly random layouts, bouncing balls or simple characters in monochrome
color schemes (e.g. [4, 5, 6]) to illustrate programmatic principles. To an audience, who equate a lack
of aesthetics with a lack of relevance, neglecting the importance of the visual quality causes them to
lose interest. To encourage graphic designers to explore programming as a creative tool, it is vital that
new teaching strategies be developed, tailored to fit how this specific audience acquires new
knowledge. In a contribution towards building computational literacy among graphic designers, this
paper proposes and describes a hands-on experiential pedagogic method, deconstruction/-
reconstruction, specifically designed to introduce programming in a visual context.

Submission history Accepted Publication State

SIGCSE 2017 (Paper)
Creativity & Cognition 2017 (Pictorial)
Generative Arts Conference 2017 (Paper)

Generative Art Conference 2017 (Paper)
GASATHJ Journal (Condensed Version)

Published (Paper)

 76

2. Background and influences
For nine years I have taught introductory programming classes to undergraduate graphic designers at
The Danish School of Media and Journalism. During this time, I have observed some recurring critical
issues that negatively affect student retention, engagement, and learning outcome:

• Students find it hard to relate the activity of programming to their line of work.
• Students feel intimidated by the prospect of working with mathematics, logic, and

structure.
• Students respond poorly to a lack of aesthetic quality in the output produced by their

code.
• Students are easily distracted when asked to consider aesthetic issues. They quickly

obsess over design-related issues, forgetting that their primary goal is to learn how to
program.

• Students lack a starting point for their knowledge construction. As novice programmers
they spend their time in the bottom half of Anderson and Krathwohl's Taxonomy [7], not
yet in a position where they feel confident about programming to be creative with it.

• Students respond negatively to passive auditorium lectures and abstract, verbal
explanations.

• Students are deterred by strange syntax and indecipherable error messages.

Seeking to alleviate these issues, I decided to develop a new pedagogic method specifically tailored
to accommodate the learning needs of my students. To inform the design of the method, I
summarized my observations into a set of guidelines:

• The link between programming and crafting of visual artifacts must be clearly visible.
• The output of the programming exercises must be visual
• The output must possess an aesthetic quality that makes it useful and sellable at a

professional level.
• Students must be given an "object-to-think-with" [8], a cognitive artifact to serve as a link

between their pre-existing internalized mental structure ("how to create graphic design")
and the formation of new abstract knowledge ("how to program").

• Students must be given a fixed goal to provide a clear focus. Also, a fixed goal can serve as
a measuring stick allowing students to continuously evaluate their progress.

• Students should not be asked to consider aesthetic issues to keep them focused on
learning how to program.

• Mathematics, logic, and structure should only be taught when the students encounter a
need for it, preferably by letting the students investigate the topic themselves, guided by
the educator.

• Students must be given the same material to encourage sharing of knowledge and
discussion around a common base.

• Students must be actively engaged in the task of programming to build hands-on
experience.

• Students must work in a programming environment that provides a low threshold (easy
entry to usage for novices), high ceiling (powerful facilities for sophisticated users), and
wide wall (a small, well-chosen set of features that support a wide range of possibilities)
[9].

 77

I chose to build the method around the recreation of pre-existing design specimens. This decision
resolved several issues at once: It established a direct link between programming and design,
introduced a relatable "object-to-think-with" that doubled as a fixed target, thus eliminating the risk
of students losing focus by being having to make aesthetic choices.

Constructionism was chosen as the theoretical foundation of the method. Among other things,
constructionism let students use the information they already know ("how to create graphic design")
as a foundation for acquiring more knowledge ("how to program") in a different domain. Also,
constructionism holds that learning happens most effectively when students are active in making
external artifacts they can reflect upon and share with others. Finally, constructionism prescribes that
the educator must take on a mediational role as opposed to an instructional role, assisting students
to individually understand problems in a hands-on way.

Guzdial [10, 11] suggest that teaching programming needs to be contextualized and meet the
needs of the learners. The target audience is intended to merely be “programming tourists,” [12], thus
a rigorous adherence to “correct” Computer Science terms was abandoned in favor of a terminology
that better helped students build cognitive models of programmatic principles. Another key factor in
favor of contextualization is to make apparent the usefulness of programming in the student's
profession.

A term introduced by Papert [8] and later popularized by Wing [13], Computational Thinking deals
with thought processes involved in formulating a problem and expressing its solution(s) in such a way
that a computer—human or machine—can effectively carry out [14]. Key principles in Computational
Thinking are:

• Decomposition (breaking down a complex problem into smaller, more manageable parts)
• Pattern recognition (looking for similarities among and within problems)
• Abstraction (focusing on the important information only, ignoring irrelevant detail)
• Algorithms (developing a step-by-step solution to the problem, or the rules to follow to

solve the problem).

These principles influenced the design of the method and are embedded in the activities therein.
Finally, the work of Stahl [15] also informed the design of the method. According to Stahl,

transforming tacit preunderstanding into a computer model happens in a series of successive steps.
In his discussion, Stahl, among other things, suggests a taxonomy of classes of information [15, pp.
178-183]. This taxonomy greatly inspired the design of the method to be a number of sequential
steps divided into two distinct phases.

3. Method described
The deconstruction/reconstruction method consists of two successive phases, deconstruction, and
subsequent reconstruction. Each phase has three steps. Activities associated with each step are
briefly described in figure 1. A detailed account of how the method is applied in practice is given in
section 4 of this paper.

 78

Figure 1: Schematic overview of the deconstruction/reconstruction method.

The purpose of the deconstruction phase is to keep the students in their comfort zone by letting
them rely on their pre-existing knowledge of graphic design principles and terminology to
deconstruct an existing design product to form the basis of the reconstruction phase. The purpose of
the reconstruction phase is to let students discover programming as a practical craft acquired by
incremental conversion of their notes from the deconstruction phase into code, thereby constructing
a self-contained design system capable of reproducing the chosen specimen and acting as a platform
for playful discovery through manipulation of variables and the code itself.

As the student completes each step, he/she gradually shifts from using their existing skills in a
familiar domain (Graphic Design) toward acquiring new skills in an unknown and unfamiliar domain
(Computer Science).

Material
As its main material, the method uses pre-existing commercially applied graphic design specimens.
Examples of these are posters, packaging, logos, typography, signage, bank notes, stamps, etc.
Specimens are handpicked by the teacher based on their ability to be deconstructed, meaning that
they must exhibit distinct visual characteristics indicating that an underlying system or set of rules
has played a key role in their creation. Specimens should be easily replicable using geometric
primitives, basic linear transformations (e.g., translation, rotation, scaling) and control flow statements
(e.g., decision-making, looping, branching). A selection of suitable specimens that meet these criteria
is shown in figure 2 to provide an idea of the visual genre.

 79

4. Method exemplified
In this section, the activities associated with each step of the deconstruction/ reconstruction method
are discussed using Enzo Mari's 1963 poster "Arte Programmata: Kinetische Kunst" [16] (figure 3) as
example. Processing [17], a popular Java-based language for learning how to code within the context
of the visual arts, is used as the programming environment.

Step 1: Select
Guided by his subjective aesthetic preference, a student, Peter, chooses the Arte Programmata poster
from the set of specimens provided by the teacher.

Step 2: Describe
Taking notes using pen and paper, Peter describes the poster's immediately visible components:

• "The poster is portrait format."
• "The background color is brown."
• "The upper part of the poster contains one 5x5 grid of black squares with inset spacing

taking up the entire width of the poster excluding a border margin."
• "Each black square contains one white square of varying size."
• "The white squares increase then decrease in size while forming a spiral pattern."
• "The white square is fixed to the lower right corner of the black square."
• "The lower part of the poster has a white all-caps title spanning the entire width of the

poster excluding the border margin + an additional black text set in a small font size
aligned to the left."

• "Separating the 5x5 grid and the typography is a small white logo aligned to the left."

Peters observations are described using graphic design terminology familiar to him. Embedded in his
description are clues about features that he must consider in his code (e.g. "square," "grid," "border
margin," "inset spacing".)

Figure 2: A selection of specimens suitable as material for the method. Figure 3: Poster by Enzo Mari (1963).

 80

Step 3: Analyze
Still using pen and paper as his material, Peter identifies and formalizes the underlying math, logic
and rules needed to construct the poster. In the previous step, Peter loosely described a spiral
pattern of oscillating white squares. In this step, he must make additional considerations to explicitly
describe this spiral pattern: Is it rotating left, or right? Does it go inside out or outside in? Where are
its starting and ending points? Also, looking at the oscillating squares: How many oscillations? What
are the minimum and maximum size? What principle is used to calculate the rate of change in size:
Sine waves? Linear interpolation? Exponential change? These observations do not translate into
simple built-in commands. They require rules to be established and algorithms developed. To
formalize a thing like oscillation, something that is otherwise easily (but imprecisely) verbalized,
Peter is forced to look into mathematics of oscillating functions, realizing that even a seemingly
simple thing like oscillating movement can be accomplished using many different techniques all of
which ultimately affect the visual style of the output. No code is written yet, although, during his
research, Peter comes across a pseudocode spiral algorithm that helps him understand how spiral
patterns are constructed in a two-dimensional grid.

Step 4: Convert
In this step, Peter launches Processing, as he transitions from paper and pen to code. By using his
notes from previous steps as starting point, Peter gets an idea of what his program must contain and
do. Sampling the original artwork, he converts colors from broad descriptions to specific color codes
("Brown" = #5A4531, "White" = #F7F1E5 and "Black" = #000000). Squares are drawn using the built-
in rect() command. The 5x5 grid is constructed using two nested for()-loops representing x-
coordinates and y-coordinates respectively. To correctly place the black and white squares, functions
like pushMatrix() and popMatrix() in conjunction with translate() is used. Investigating the
sin()-function, Peter chooses a sine wave moving from 0 to π to achieve the oscillating white
squares. In search of a way to mimic the spiral pattern, Peter modifies pseudocode found online to fit
his needs. The typography can be made either as text or inserted as an image. Painstakingly
recreating complex typography letter by letter serves no point; also, students might get distracted
from programming when trying to correctly identify, download and install the font. Therefore, in this
example, Peter was asked to simply cut out the original typography as a separate image using
Photoshop and insert it into his program as a static image. As Peter converts his notes from steps 2
and 3, he gradually constructs a program capable of recreating the original specimen. Besides acting
as an "object-to-think-with," the original poster also doubles as a visual reference used by Peter to
measure his progress and evaluate the behavior of his program.

Step 5: Explore
In this step, Peter must produce alternative versions of the original poster without modifying his
code. By only changing variables, in this particular case using Processings "Tweak Mode," instant
feedback is provided allowing for real-time exploration of the solution space inherently described by
the code. A set of Peter’s possible alternatives to the original specimen, obtained by tweaking the
variables in his code, can be seen in figure 4.

 81

Figure 4: Alternative versions obtained by tweaking variables.

Step 6: Tinker
Having gained an understanding of the "mechanics" of the code, Peter begins modifying the code
itself. Now, more radical solutions emerge. The result of Peters' tinkering with his code as well as
continued tweaking of the variables can be seen in figure 5.

Figure 5: Alternative versions obtained by modifying code and tweaking variables.

5. Method used in teaching
I used deconstruction/reconstruction method in two introductory programming courses taught at The
Danish School of Media and Journalism. Participants were classes of 20-24 undergraduate graphic
design students (ages ranging between 21-33 years, 50/50 gender ratio) with little to no prior
programming experience. The aim of the courses was to equip the students with sufficient cognitive
and practical skills to enable them to conceive and execute custom made code-driven design
systems. The deconstruction/reconstruction method was used as a recurring daily exercise in the first
week.

As prescribed in the method, I chose a sample set of 20 pre-existing graphic design specimens
from a curated collection [18]. The entire set of specimens made available as handouts and digital
files to the students is shown in figure 6.

 82

Figure 6: The collection of chosen specimens taped to the blackboard in the studio provided a quick visual overview.

Step 1: Select
Initially, choosing a specimen was a simple matter of personal preference and daily mood. Later, the
students’ choice was influenced by their newly acquired skills. If they had learned how to make a
two-dimensional grid, students tended to choose a specimen that would allow them to reuse this
programmatic feature in addition to posing a new challenge.

Step 2: Describe
The students felt confident as they began to describe their chosen specimen. Trained observers of
graphic design, students had few problems describing the immediately visible components. Perhaps
overly confident in their own ability to memorize their findings, I found it necessary to stress the
importance of noting all observations on paper. Students spontaneously developed the habit of using
Photoshop's eraser and cloning tool to remove all design components besides the background and
typographic elements. This provided an authentic background to import in step 4 to make the output
look almost identical to the original specimen.

Step 3: Analyze
Students began leaving their comfort zone when asked to explicitly describe the math, logic, and
rules of their chosen specimen. Certain relations and behaviors were easily described using basic
mathematical principles (e.g., sine/cosine, Pythagoras, linear transformations) while others relied on
formulas or phenomenon one could not expect the students to know beforehand (e.g., Fibonacci
series, recursion, moiré). I assisted the students in researching any formulas or techniques they might
need to recreate the specimen, being careful not to provide explicit answers. This step provided a
great opportunity to for the students to practice and utilize Computational Thinking principles as
discussed in section 2 of this paper.

Step 4: Convert
Launching Processing and converting notes into code, students gradually discovered how variables,
arrays, functions, classes, as well as other programmatic building blocks, helped them extend their
static system to become a fully functioning, dynamic system capable of replicating the original
specimen. This step was – without a doubt – the most challenging step for the students. They spent

 83

the majority of the time working on the daily assignment completing this step, slowly grasping
programming logic, structure, looking up syntax in the language reference, and tracking down bugs.

Step 5: Explore
In this step, students used Processing’s ‘Tweak Mode’ to manipulate variables with instant visual
feedback. They would bend, stretch and inevitably break their programs. Immersing themselves in
playful experimentation, students kept generating new variations from the seemingly infinite number
of possibilities, always curious to discover what output their system would generate next. Students
were asked to capture a visual log of their progress to show the extent of the visual diversity that
their system was capable of producing. Examples from a students' visual log are shown in figure 7.

Figure 7: A students attempt at recreating the original specimen (big image, left) [19] using code, and his
subsequent experiments modifying the identified variables and the code itself to produce radically different

versions (small images, right).

Step 6: Tinker
Spurred on by their active experimentation in step 5, students began to modify the code itself.
Through this process, students discovered that code, although immaterial and intangible, still possess
plasticity and is highly malleable. Their confidence in their abilities grew, and this kind of tinkering
and hacking was encouraged to support their urge to experiment. This step gave occasion to discuss
topics like version control, optimization and advanced debugging.

Most students managed to work through steps 1-6 in one day (= 7 hours of scheduled and
supervised studio time). On a few occasions, students gave up trying to complete the daily
assignment. This was mainly due to issues arising in step 4 as a result of their lack of experience.

True to constructionist learning theory, students were asked to share their experiences with fellow
students, currently trying to solve the same specimen. This had them verbalize and explain how they
had arrived at a solution, further anchoring their understanding of what they did.

6. Concluding remarks
In this paper, a pedagogic method for teaching graphic designers’ programming in a visual context
has been outlined and put into practice. Supported by an overall positive student response
expressed in follow-up plenary interviews, the method appears as a promising way of introducing
graphic design students to programming in a visual context.

 84

The idea of contextualizing programming using pre-existing graphic design specimens was well
received. Students entered their programming course with skepticism and anxiety but introducing the
deconstruction/reconstruction method and explaining how it relied on familiar and well-known
material defused the student’s immediate aversion to code. The students also appreciated being
given a real-life case as a starting point and step-by-step method to guide their learning process.

Though praised by the students, it can be argued, that repetitiously remaking work done by other
graphic designers does not stimulate them to synthesize their knowledge into new independent
creations. While this might be true, the deconstruction/reconstruction method is primarily designed
to keep students engaged and motivated while introducing them to the nuts and bolts of
programming. If students, by the rote learning and repetitive practice implicitly inscribed in the
method, manage to cognitively link visual patterns with basic programmatic techniques, they have
established a solid basis for taking full advantage of the creative potential of computational media in
their future line of work.

To further put the social and learning-through-sharing ideas of constructive learning theory in play,
one possible future improvement would be to make the deconstruction phase group-based to incite
discussion and make problem-solving a more verbal exercise. Moving to the reconstruction phase,
shifting to individual work will still allow for a personal hands-on experience with programming.
Having multiple students working individually in parallel to implement a jointly deconstructed
specimen will further increase the chances of students helping and learning from each other.

7. References

1. Tober, B. (2012): Making the Case for Code: Integrating Code-Based Technologies into Undergraduate
Design Curricula. Abstracts & Proceedings from the Eigth Annual UCDA Design Education Summit.

2. Pettiway, K. (2012): The New Media Programme: Computational thinking in Graphic Design Practice
and Pedagogy. Journal of the New Media Caucus, CAA Conference Edition 2012.

3. Freyermuth, S. S. (2016): Coding As Craft: Evolving Standards in Graphic Design Teaching and
Practice. Plot(s), Volume 3, 2016, pp. 57-71. Parsons School of Design, New York, USA.

4. Reas, C. & Fry, B. (2014): Processing: A Programming Handbook for Visual Designers, Second
Edition. MIT Press, Cambridge, Massachusetts, USA.

5. Shiffman, D. (2015): Learning Processing, Second Edition: A Beginner's Guide to Programming
Images, Animation, and Interaction. Morgan Kaufmann, Burlington, Massachusetts, USA.

6. Reas, C. & Fry, B. (2015): Make: Getting Started with Processing, Second Edition. Maker Media, San
Francisco, California, USA.

7. Anderson, L. W., & Krathwohl, D. R. (2001): A taxonomy for learning, teaching, and assessing: A
revision of Bloom's taxonomy of educational objectives. New York: Longman.

8. Papert, S. (1980): Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
9. Resnick, M. et. al. (2005): "Design Principles for Tools to Support Creative Thinking" in "Creativity

Support Tools - A workshop sponsored by the National Science Foundation June 13-14, 2005,
Washington, DC."

10. Guzdial, M. (2007): Contextual computing education increasing retention by making computing
relevant. White paper, Georgia Institute of Technology.

11. Guzdial, M. (2010): Does contextualized computing education help? ACM Inroads, 1(4), 4-6.
12. Amiri, F. (2011): Programming as design: The role of programming in interactive media curriculum in

art and design. International Journal of Art and Design Education, 30(2), 200-210.
13. Wing, J. (2006): Computational thinking. Communications of the ACM, 49(3), 33-35.

 85

14. Wing, J. (2014): Computational Thinking Benefits Society. 40th Anniversary Blog of Social Issues in
Computing. (Retrieved November 4, 2017, from
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html)

15. Stahl, G. (1993): Interpretation In Design: The Problem of Tacit and Explicit Understanding in
Computer Support of Cooperative Design. PhD dissertation in Computer Science, University of
Colorado, August 1993.

16. Mari, E. Arte Programmata, Kinetische Kunst. (1963) Printed by Officina d'Arte Grafica A. Lucini e C,
Milan (Retrieved November 3, 2017, from
https://www.moma.org/collection/works/8052?locale=en)

17. Processing. (Retrieved November 3, 2017, from: http://www.processing.org/)
18. Pinterest. Computational Graphic Design Inspiration. (Retrieved November 3, 2017, from:

https://www.pinterest.dk/stixan/computational-graphic-design-inspiration/)
19. Lee, J (2014). systems 14. (Retrieved November 7, 2017, from http://www.leejaemin.net/systems-

14)

 87

CHAPTER 8: CONCLUSIONS

In this chapter, I revisit my research questions, answering each of them

individually. I aggregate the cumulative knowledge acquired during my

study and distill my findings in a list of pragmatic and applicable

heuristics. After discussing both theoretical and practical implications of

my research, I suggest future research to be conducted.

8.1 Introduction
Having arrived at the conclusion to the dissertation, I will now revisit my research questions. I had
one overarching research question (RQ) which I chose to sub-divide into three specific research
questions (SRQs). The SRQs were investigated in the three separate papers presented in the previous
chapters, each of which offered a conclusion on the performed study. Although not explicitly
mentioned within the papers themselves, several underlying hypotheses (sections 3.5.1–3.5.3)
provided the motivation behind them. In the following section, I will either refute or support these
hypotheses based on the findings highlighted in each paper.

An answer to the dissertation’s main RQ results from looking at the answers to the SRQs in unison.

8.2 Answering research questions
8.2.1 SRQ1: How is Creative Coding currently taught in graphic design education?

Based on an in-depth, comprehensive, quantitative analysis (chapter 5) of Creative Coding syllabi, I
concluded that the planning for the majority of introductory programming courses currently taught in
graphic design schools is mainly guided by the technical properties and affordances of the chosen
programming environment. This techno-centric perspective involuntarily establishes a hierarchy in
which topics relevant within graphic design are considered subsidiary to those of computer science.
Moreover, this code-first-design-second perspective causes issues that arise as a result of either
ignoring, underprioritizing, or skewing the needs of graphic designers so that they can be answered
using a certain pre-chosen programmatic construct.

Further negative consequences of the current practice include (but are not limited to):

• requiring compatibility with rigid institutional class scheduling, which causes most courses to be
taught through passive lecture-style classes once or twice a week. Instructional strategies like
blended learning and flipped classrooms are only sporadically employed as a way to combat the
prevalent didactic teaching.

• placing disproportionate emphasis on programming, which forces graphic designers to recast and
restrain their pre-existing, domain-specific skills to fit the programming languages.

 88

• offering inadequate explanation in most courses of how graphic designers will recognize,
utilize, extend, and augment their pre-existing, domain-specific skills.

• failing to connect the activity of programming with the graphic design student’s future
vocational occupation and production of visual artifacts for use in commercial contexts.

• omitting metaphors for relating programming concepts to well-known graphic design
concepts, which provides little help to students in their cognitive model-making.

• insufficiently recognizing and using visual aesthetics as an important motivational factor.
• failing to explore media-specific computational aesthetics, which discourages students

from cultivating new forms of visual artifacts.
• ignoring fundamental graphic design methods (e.g., typography, color mixing) either due

to the non-design educator’s ignorance or because it is deemed impossible to exercise
them with a desired level of finesse due to a coarseness and lack of supporting options
within the chosen development environments.

• not paying enough attention to debugging strategies and troubleshooting, which results in
an inability to identify and solve problems, causing frustration and discouraging students
when they become stuck doing their homework assignments.

Overall, I have concluded that there is an urgent need to put graphic design theory and practice
first and subsequently introduce programming concepts as needed. I consider this approach to be
essential for effectively promoting and embedding programming as an established practice in
graphic design education.

The hypothesis for this specific research question was that contemporary Creative Coding courses
are mainly taught using a computer science approach that is not beneficial to graphic design
students. I consider the hypothesis to be supported.

8.2.2 SRQ2: How should Creative Coding be taught to accommodate how graphic design students
learn?

As observed in SRQ1, a code-first approach is used by most design educators to inform and guide the
planning of their Creative Coding courses. This entails course structures originally intended for a non-
design audience being transferred to graphic design students in a form that has only been
moderately adapted. I was interested in investigating whether there were any notable differences in
the learning style profile of graphic design students and students within technical fields. A
quantitative analysis (chapter 6) of Felder-Soloman Learning Style Index (ILS®) questionnaires,
completed by 77 graphic design students, showed that their learning style profile differed noticeably
from that of students in technical disciplines. This implicitly underlines the need to develop
customized programming courses and accompanying instructional methods for use in design schools.

In response, the following specific recommendations were made:

• Teaching materials, demonstrations, and assignments must be highly visual.
• Visualizations or metaphors tied to the graphic design students’ pre-existing, domain-specific

knowledge must be used to help them develop mental models of abstract programming
constructs.

• Live coding and visual demonstrations should be used whenever possible.
• Exercises and assignments should be designed to have a fixed goal but allow for different ways

of arriving at a solution either through experimentation or through stepwise instructions.
• Educators must be careful to provide the big picture and relate it to the students’ previous

knowledge before going into details.

 89

• Teaching must actively engage the students; however, initiatives that call for reflective activities
should also be integrated.

• Students should be given the option to work either in pairs or alone, depending on their personal
preference.

• Students should be given objects to assist their exploratory discovery; this might be visual
specimens, premade code snippets, or a set of digital assets to use.

• Providing additional explanatory tutorials and demonstrations, preferably in the form of
video/animations, is highly encouraged.

• Other suggested activities to support graphic designers in building cognitive models of
programming constructs are verbal walk-throughs of algorithms, tests that involve math and logic,
quizzes, and code-related puzzles.

The hypothesis for this specific research question was that contemporary Creative Coding courses
aimed at graphic designers are not taught in the most optimal way and do not account for how they
learn. I consider this hypothesis to be (partially) supported.

8.2.3 SRQ3: How can graphic design students be motivated and supported as they are introduced
to programming?

This question holds many possible answers. As a deliberate decision, arising partly from my choice of
pragmatism as my paradigmatic stance and partly from the study’s initial call for practically
applicable contributions, I refrained from answering this question by engaging in a broad theoretical
discussion. Instead, I chose to provide one possible answer in the form of a specific pedagogic
method. Through gradual interweaving of the findings from SRQ1 and SRQ2, a contextualized
pedagogic method, deconstruction/reconstruction, specifically devised to teach graphic designers
programming in a visual context was developed and tested. The method relied on familiar and well-
known materials to defuse the graphic design students’ initial aversion to programming. Further
supporting them was a six-step method to guide their learning process.

Though they cannot be claimed to constitute an exhaustive and unified answer to the specific
research question, several partial findings were, however, deduced from the empirically gained
observations made while iteratively testing the proposed method. The following are based on a
summary of these findings and indicate ways in which the learning of graphic design students can be
motivated and supported:

• Planning course structure and content using a design-first perspective (see paper 1, chapter 5)
• Employing instructional strategies that match the students’ preferred learning style (see paper 2,

chapter 6)
• Easing the transition from well-known graphic design domain-specific knowledge to the

unfamiliar and unknown programming domain to avoid abrupt learning barrier thresholds.
• Including real-life cases that involve relatable commercial graphic design products. Such cases

resonate with the students and give them something to aspire to.
• Engaging students in practical hands-on activities to the widest extent possible. Didactic lectures

meant to introduce and demonstrate a given programmatic principle must be kept short or even
possibly replaced by pre-recorded lectures and on-demand instructional material.

• Maintaining a high level of aesthetic quality in instructional material, exercises, and assignments.
• Emphasizing utilitarian value to help establish a direct link between programming and the

students’ primary field of study.

 90

• Making programming a social activity that involves the creation of shareable visual artifacts
which, when presented, can spark discussion and admiration among the students.

• Establishing a fear-free environment and relieving any initial anxiety felt by the students.
Typically, this involves a reassurance that the quality of their code will not affect their grade and
that failure to successfully complete an assignment is allowed, provided that a persistent attempt
was made.

• Providing a step-wise method to guide the students’ progression towards the fixed goal.
However, it must be emphasized that students are free to deviate from—or even abandon—the
method to arrive at the fixed goal through individual and alternative paths.

• Limiting the students’ creative freedom by providing fixed goal and associated assets as a
deliberate strategy to prevent opportunities for making aesthetic decisions from derailing
students’ focus on learning to program.

• Providing a shared pool of assignments—all to be solved but in no particular order—as a way to
promote and encourage knowledge-sharing among students.

• Focusing on building students’ competencies in bug tracking and problem identification
strategies to enable them help themselves when they get stuck.

The hypothesis for this specific research question was that contextualizing programming to fit the
students’ predominant learning style and pre-existing, domain-specific skills would improve the
graphic design students’ motivation and desire to learn programming. Additional studies on
contextualized pedagogic methods for use in graphic design education are required to either refute
or support this hypothesis.

8.2.4 RQ: How should programming ideally be taught to graphic designers to account for how they
learn and how they intend to integrate programming into their vocational practice?

Providing a succinct answer to the study’s main research question can be done by synthesizing the
answers given to the three specific research questions. However, it is important to stress, that due to
the open-ended nature of the research question, the answer provided in this dissertation is not to be
seen as the only true answer, rather as one possible answer arising from the findings accounted for in
the research papers and outlined in the sections above.

Recapitulating this study’s conclusions into one condensed paragraph, a broad answer to the main
research question is as follows:

Programming should ideally be taught to graphic designers as a studio-based social activity
practiced in a safe environment using relatable metaphors, familiar materials, visual examples,
and live, interactive demonstrations. Courses should be planned utilizing a design-first
perspective to allow the graphic design students to use their pre-existing, domain-specific skills
to leverage their acquisition of programming knowledge and relate it to their vocational
practice. Ideally, flipped classroom and blended learning instructional strategies should be used
advantageously to move transferable knowledge out of the classroom, allowing instead for
contact time being used to engage in plenary discussions, presentations, troubleshooting, and
transfer of tacit knowledge through experiential, hands-on discovery learning. Assignments
should be available in varying difficulties, solvable individually or in pairs/groups, provide a
fixed goal, include premade assets, and limit the need for aesthetic decisions to ensure students
stay focused on learning to program. Also, assignments should have a clear utilitarian purpose
within a graphic design workflow and mimic restrictions found in the professional industry.

 91

8.3 Theoretical implications
As a whole, this study extends a line of research (Amiri 2011; Tober 2017; Maeda 2002; Freyermuth
2016; Tober 2012b; Pettiway 2012) that emphasizes the importance of introducing programming as a
core part of the graphic design curriculum. More specifically, the study makes two major
contributions to the literature on programming in graphic design education. First, it introduces two
opposing approaches to planning Creative Coding courses: code-first versus design-first.
Understanding the distinction between these approaches and what they each entail will help inform
and clarify the ongoing debate. Second, it determines the differences in the way graphic designers
prefer to learn compared to students in technical disciplines. This knowledge must be considered by
researchers who seek to contribute to the epistemological framework for teaching programming to
visually inclined non-programmers that is currently missing from the literature.

Findings obtained in this study can encourage and elevate dialogue among researchers, educators,
scholars, and practitioners, mainly within the field of graphic design, but not limited to this. Due to
the multi- and interdisciplinary nature of my research area, this dissertation’s theoretical
contributions are also relevant and useful within many disciplines beyond graphic design (e.g., to
computer science educators who want to teach introductory programming using visual examples, and
to researchers within the field of applied pedagogy investigating pedagogic and didactic measures
related to teaching programming).

8.4 Practical implications
Because it was explicitly stated as mandatory in the call for proposals for this study, arriving at an
outcome that can be put to immediate, practical use has been an aim—as well as a personal desire—
of my research. Hence, this study proposes several initiatives with direct practical implications, of
which the most relevant are discussed below.

The pedagogic method, deconstruction/reconstruction, proposed in paper 3, can be employed as is
in courses that teach introductory programming through visual materials. Though it has been tailored
specifically for use in Creative Coding courses taught in design schools, the method can also be used
by educators within the field of computer science who use art and visual design as contextualized
approaches in their teaching.

Already mentioned as having theoretical implications, the proposed notion of a code-first versus
design-first approach also has practical implications. Bringing this schism to educators’ attention,
enables them to consciously take on and uphold a design-first approach in their planning, in turn
affecting their choice of structure and content and supporting instructional strategies.

The study of graphic designers’ learning style profile and how it relates to programming courses
interprets and convert its findings into a number of practically applicable didactical suggestions.
When implemented by educators, these suggestions will help lower—or entirely remove—
knowledge acquisition barriers that arise from discrepancies in how programming courses lifted from
technical disciplines are modeled and how graphic design students prefer to learn.

Though still far from exhaustive, the heuristics in their present form offer educators who teach
Creative Coding in design schools some much needed guidance to help them critically reflect on and
question their own planning, ultimately resulting in better courses.

8.5 Limitations
As is always the case when coming to the end of a research study, things come to mind that could
have been done differently or should have been included, such as additional perspectives, analyses,

 92

or explanations. Below, I will briefly discuss the study’s limitations and give suggestions for how they
can be overcome.

8.5.1 Paper 1

The study in paper 1 (chapter 5) was limited by the number of Creative Coding syllabi available
online. Peer reviewers suggested that syllabi could be gathered from a defined list of top-ten design
universities; however, this suggestion presents a number of obstacles. First, upon further
investigation, not all of these design schools offer Creative Coding courses. Next, to provide a broad
overview of contemporary Creative Coding courses, I found it necessary to include Creative Coding
courses from trade schools, colleges, and universities as graphic design education is not exclusively
taught at universities. Furthermore, as most of the analyzed courses spanned an entire semester (16
weeks) and were physically located across three continents, it was logistically impossible to attend
the classes to do observation studies. Considering it an alternative approach rather than a limitation, I
acknowledge that a narrower range of courses permitting observational studies would likely yield a
more-detailed and nuanced understanding of how Creative Coding courses are taught.

8.5.2 Paper 2

In paper 2 (chapter 6), 77 graphic design students were profiled using the Felder Soloman ILS©
questionnaire. Compared to other similar studies, the number of respondents qualifies the study as a
valid contribution. However, to make any conclusions regarding the learning style of graphic
designers in general, a significantly larger body of respondents would be required. Also, these should
preferably represent design schools across the globe to account for cultural differences in teaching
and learning style. Additionally, the results obtained in my study could be further strengthened
through statistical analysis; however, this requires access to the raw datasets of the referenced
studies. Although an independent and useful contribution, the quantitative results obtained in the
study must be complemented by qualitative insights from other related studies if the aim is to gain a
broad, holistic, and comprehensive understanding of how graphic designers learn.

8.5.3 Paper 3

Due to the asynchronous development of the paper (described in section 3.6), paper 3 (chapter 7) as
it appears in this dissertation does not include the latest modifications to the proposed pedagogic
method made on the basis of findings in paper 1 and paper 2 as well as the students’ feedback. While
the paper provides a practically applicable method, it is less specific in its description of the
instructional strategies that surround the method. Even though they do not appear in the paper,
several of such strategies are discussed in this dissertation’s roundup of recommendations (chapter
9). Also, the evaluation of the usefulness and efficiency of the method is based solely on qualitative
accounts of the students’ personal experience of working with it and my personal empirical
observations from previous courses where the method was not employed. To thoroughly assess its
effectiveness, the method must be compared against other pedagogic methods for teaching
programming. Also, performing a range of quantitative tests to examine the method’s ability to retain,
motivate, and engage the students, as well as teach them fundamental programming skills in a
context that encourages them to pursue programming, will further qualify the method as a valuable
addendum to the graphic design curriculum. Ideally, these tests should also be performed in several
other design schools to ensure a broad coverage in the results obtained.

 93

8.6 Future Research
Building upon the findings in this dissertation, several avenues for future research emerge.

Generally, more initiatives are needed that explore new pedagogic and didactic approaches to
teaching programming to graphic designers. As we continue to develop a better understanding of
how graphic designers prefer to learn (to which paper 2 is making a contribution), we will be able to
refine and optimize our teaching activities and instructional strategies accordingly. The holy grail of
how best to teach programming to graphic designers has yet to be found.

One possible study could involve a detailed examination of how computational thinking (CT)
principles could be contextualized to fit the graphic design curriculum. As the nature of graphic
design is inherently systemic, CT can easily be introduced in classes teaching typography, color
theory, layout, animation, and more. Infusing traditional graphic design subjects with CT, enables
students to construct cognitive models of their acquired skills in a way that is compatible with and
transferrable to code.

A second area of study concerns the role of code in graphic design education. Code can be used in
numerous ways: from quickly sketching ideas, conducting experiments to spark ideas, and providing
single-purpose tools to be used in-house, to providing refined and complex design systems delivered
to a client. A study devoted to developing a deeper understanding of the many ways code can be
used is essential to further justify and integrate code as an integral part of graphic design education.

Another study could focus on developing a generic Creative Coding syllabus specifically intended
for use within graphic design education. Through my study of Creative Coding courses, I observed a
host of useful algorithms, topics, exercises, assignments, pedagogic methods, and instructional
strategies. However, these were wildly scattered and arbitrary, suited to fit the individual courses.
Additionally, my study also revealed an absence of particular content useful to graphic designers. A
systematic synthesization and augmentation of current best practice resulting in a bespoke syllabus
with accompanying teaching materials and assignments would be highly welcomed among educators.

A study to determine if programming should be taught as short, week-long workshops or semester-
long, one-day lectures also seems highly relevant. Currently, most design schools teach programming
as semester-long electives alongside traditional design courses. Other design schools have opted to
introduce programming through intense, week-long workshops with no other concurrent courses.
What are the consequences associated with each approach? Are short, intense courses better at
making learning stick, or is it then quickly forgotten? Do longer courses make learning stick
permanently, despite the students’ inability to devote their entire attention to programming?

A longitudinal study examining how graphic designers adopt programming into their workflow is
also relevant. Teaching designers how to program is only worthwhile if they manage to integrate it
into their everyday practice. Tracking how graphic design students use programming while they are in
school and when they have graduated and entered the graphic design industry can reveal the long-
term effects of programming as a subject taught in graphic design education.

Several interesting future studies can also be derived from the proposed heuristics, as will be
explained in chapter 9.

Finally, other relevant research could include critical studies on how computation contributes to
the evolution of the graphic design discipline, as well as studies to determine the future roles of the
computationally literate graphic designer within the industry.

 95

CHAPTER 9: HEURISTICS

9.1 Introduction
During this research project, I have encountered and absorbed extensive knowledge and gained
invaluable insight through scientific publications, books, informal interviews, classroom experiences,
experiments, discussions at conferences, and workshops, to name a few. To aggregate my cumulative
findings, gathered over four years of research, I will now elaborate on the answers to my research
questions by interweaving other relevant and influential sources not directly mentioned in my
papers. I will convey this “knowledge spillover” in the shape of a list of pragmatic and directly
applicable heuristics aimed at design educators who teach Creative Coding to graphic design
students.

1: Remember that graphic designers are not artists
To frame and situate these tips, it is key to distinguish between art and graphic design. The resolution
of this distinction is a major philosophical conundrum, and an on-going and convoluted debate
attempting to define and isolate both concepts has yet to produce a clear and widely agreeable
definition (Avital 2017). Art and graphic design share similar qualities and are closely associated
(Monnier 1995) and thus are not mutually exclusive. However, some characteristics that distinguish
graphic designers from artists are crucial to consider. For instance, graphic designers

• are problem framers (Dorst 2010), and problem solvers (Clohessy 2011) who use a broad range
of theory, methods, and tools to tackle wicked problems (Rittel & Webber 1973; Buchanan 1992);

• use their acquired skills to craft visual communication that conveys the same message to an
audience in order to motivate, inform, persuade, or incite;

• have a developed sense of beauty and aesthetics, and qualify their choices of visual elements
based on objective insights regarding their efficiency in a given circumstance (Flores 2016);

• direct the observer to take a certain action;
• operate based on a fixed starting point (client’s problem) and are goal-driven (client’s

expectations);
• operate in a commercial context guided by a client's needs and have to account for numerous

limitations;
• are aware that their work is often part of a larger construct;
• realize that their work serves a specific function which objectively informs their design decision.

These traits are important to account for as they will dramatically influence the course’s structure,
topics, instructional material, teaching style, assessment, and learning outcomes. For Creative Coding
courses in graphic design education to be relevant, they must conform to the many issues of the
trade, which the artist does not need to worry about: consistency, identity, homogeneity,
identification, staying on brand, conveying the right message, legibility, functionality, applicability,
reproducibility, flexibility, adaptability, technical limitations, and client feedback.

2: Use relatable materials
Constructionism (Papert & Harel 1991) prescribes that students use their existing knowledge to
acquire new knowledge (Papert 1980; Kafai 2005). Papert (1980) has also stressed the importance of
relating what is new and to be learned to something that is already known. In the case of teaching

 96

programming to graphic designers, new is programming, and what is already known is graphic design.
By using materials that students can immediately relate to, students need not first establish a link
between the materials and their trade and then subsequently establish a link between their trade and
programming. Choosing relatable materials allows for a direct understanding of how programming is
relevant. Being able to recognize and relate to the teaching materials also helps build confidence
(Keller 2010) and reduces the anxiety towards programming often felt by students with no prior
experience of it (Byrne & Lyons 2001; Rogerson & Scott 2010). A final proponent for the use of
relatable materials is Keller (2010), who has argued that familiarity (referring to the ability to tie the
instruction to the learners' experience) plays a crucial role in the students' motivation.

Examples of materials that graphic designers can intuitively relate to are given by Hansen (2017)
who uses them as the core foundation of his pedagogic model. Also, it should be remembered that
relatable materials should not include art (see #1) or images/illustrations lifted from non-design
contexts (see #12).

3: Arouse and inspire
A successful course should grab and maintain the students' attention. Keller (2010) suggests a
number of strategies to accomplish this, two of which pertain to arousal. Arousal can be achieved
though relatable visual examples originating within the student’s field of study (see #2) or by
stimulating an attitude of inquiry. Consider an assignment built around the visual topic of moiré.
Showing carefully chosen examples similar to the assignment (pre-existing posters using moiré
patterns), a completed version of the assignment (interactive moiré pattern explorer), or asking
questions to be answered by completing the assignment (“how can we work with moiré as a visual
expression?”) can serve as a hook to capture the students’ interest. It gives them something to aspire
to as well as an idea of what they will be able to achieve when they complete the assignment’s
learning objectives. According to Ryan & Deci (2000), students are more likely to invest the time
necessary to complete the assignment if they enjoy it or find it interesting. Hidi & Baird (1986) also
found that students could better recall content of what was interesting to them. Finally, Dewey
(1913) argued that interest must be coupled with effort before real learning will take place.

4: Highlight utilitarian value
Students are more motivated when they can see the usefulness of what they are learning and when
they can use that information to do something that has an impact on others (National Research
Council 2000, 61). The ARCS Motivational Model (Keller 2010) also discusses the importance of
relating the assignment to the learners' goals. Specifically, it distinguishes between present worth
and future value (Keller 2010, 127). When highlighting the utilitarian value of an assignment, it
should be related to both the student’s present situation ("how can I use this in my ongoing studies?")
and future occupation ("how can I use this in my future work as graphic designer?") The assignment’s
learning outcome should be framed using words that describe how the acquired knowledge and skills
are directly applicable to the students’ workflow (e.g., use sine/cosine to make a tool that
computationally produces vector shapes to import in Illustrator) and what the advantage/effect is
over their existing tools (e.g., ability to iterate faster through solutions and take an exploratory
approach to producing shapes).

Makers at heart, graphic design students will assess the learning outcome of an assignment using a
pragmatic view (Flores 2016). Failing to highlight the utilitarian value will negatively affect the
students’ motivation to learn (Keller 2010, 97).

 97

5: State a vocational purpose
The defined disciplinary purpose of the assignment should be explained by relating it to how it can
be used in a real-life professional workflow. Even assignments meant to teach fundamental
computational topics (e.g., loops), should always be accompanied by an explanation of their
usefulness in a design process (e.g., ability to iterate faster, make grids, repetition design principle). If
the sole purpose given in an assignment is to solve it in order to advance in the course, student
motivation will drop. Understanding an assignment's intended use in a professional workflow
(beyond the classroom) increases the likelihood that students will find the assignment valuable (see
#4).

Also, stating a defined disciplinary purpose provides an opportunity to discuss the multitude of
use scenarios for code-based graphic design tools in existing workflows. How will it be used, and by
whom? Will it be a temporary sketch used as an intermediary towards understanding a larger idea?
Will it be a crude tool intended to be used once, then discarded? Will it be a tool that the graphic
designer develops for himself/herself and makes multiple use of and continues to refine? Will it be
used to facilitate a collaborative process between the designer and a client? Will it be the actual
output that is sold to the client for their internal use? Will it be used by a broader audience, thus
requiring it to be stable, intuitive, and attractive?

6: Provide authentic restrictions
A tenet of constructivist learning theory is that learning results from participation in authentic
activities based on problems that students might encounter in "the real world" (Alesandrini & Larson
2002, 119). As mentioned in # 1, graphic designers are typically given a start-point and a desired
end-goal in the shape of a creative brief. Rittel & Webber (1973) argued that most of the problems
addressed by designers are wicked problems. These wicked problems, Buchanan explained, have their
“wickedness” taken out of them when someone specifies briefs in great detail (Buchanan 1992, 17).
However, intentionally stripping the “wickedness” by providing authentic restrictions in the form of
creative briefs can help students maintain focus on the learning objectives. Creative briefs normally
come with an abundance of restrictions: message, tone-of-voice, visual appearance, economy,
audience, and so forth. Emulating this (to an extent that is not counterproductive) in assignments has
two immediate benefits: first, creative briefs mimic the graphic design students’ future work scenario,
thus providing opportunity to practice receiving and interpreting these creative briefs; and second,
once understood by the students, the assignment’s inherent restrictions define a solution space for
them to operate within. In addition, Brown & Wilson (2018, 4), referring to Guzdial (2013), argued
that the use of authentic tasks is preferable, particularly in cases when an informal end-user
programmer can be motivated by a contextualized approach to learning programming. Generally,
learners find authentic tasks more engaging than abstracted examples (Brown & Wilson 2018, 4).

7: Limit the need for aesthetic decisions to keep the focus on programming
Working within the confines of a given creative brief (see #6) limits the amount of aesthetic choices
a graphic design student needs to make. While this might be perceived as a negative consequence, it
can actually be beneficial. Given too much liberty and freedom in choosing the visual look and feel of
an assignment, students tend to devote an inordinately large portion of the allotted time to making
choices about fonts, illustrations, nuances of colors, cropping images, or similar decisions regarding
aesthetics. Students are easily led astray, becoming lost in decisions relating to their "comfort zone,"
thereby derailing their focus on the primary objective of the assignment: learning to program.
Replicating existing graphic design specimens one-to-one (Hansen 2017) or adhering to visual

 98

guidelines already decided upon help students stay on track and focus on programming. However,
the chance to practice artistic freedom should not be removed; some slack should be allowed—
assignments should not become straight-jackets.

8: Stimulate positive aesthetic responses
Graphic designers are visual feinschmeckers with a well-developed aesthetic sense. Making a
conscious effort to evoke positive aesthetic responses is an important factor in motivating the
students to pick up programming (see #3). Failure to do so can lead students to make the wrongful
assumption that programming is incapable of producing beautiful output that meets the professional
standards demanded by their future clients. To avert this, it is important to establish and maintain a
high aesthetic standard in the assignments.

Ulrich (2006) conjectured that "a positive aesthetic response is more likely to lead to a positive
ultimate preference, than if the initial aesthetic response were negative." In the case of Creative Coding
courses, to build a positive preference for programming, both instructional materials and assignments
must stimulate positive aesthetic responses. Also, Ulrich (2006) has argued that "an initially positive
aesthetic response may result in a greater chance of further analysis and exploration by the user. A
negative aesthetic response may dissuade the user from ever learning more about the artifact and
therefore reduces the chance that an ugly, but otherwise preferred, artifact will ever be fully evaluated." If
graphic design students in Creative Coding courses are given assignments that evoke a positive
aesthetic response, they will be more inclined to analyze and explore the topic of the assignment.
While some assignments that successfully illustrate a computational concept work well on non-
designers, graphic design students' susceptibility to an assignment’s sub-par visual quality causes
them to not fully evaluate its usefulness. Last, Ulrich (2006) suspected that "aesthetic preferences are
'sticky.' That is, positive aesthetic judgements create a positive bias that persists even in the face of
mounting negative analytical evidence. Conversely, negative aesthetic judgments persist even when
further analysis reveals highly positive attributes." Again, relating this to Creative Coding courses, once
graphic design students have developed a negative bias toward the aesthetic quality of visuals
produced using code, it is difficult to overturn it and can severely obstruct any attempt by the
educator to prove students wrong in their perception of programming as a worthwhile skill to learn.

Asking students to work on visually meaningless, insignificant, or boring results will make students
connect their experience of the output being ugly to the activity of programming itself ("I hate this
generated layout"), the process that created it ("I hate my code"), and possibly extend it onto the act
of programming itself ("I hate programming"), which may, in turn, result in programming being loaded
with a host of negative connotations.

Granted, graphic design students have individual perceptions of what constitutes beauty; however,
to the largest extent possible, educators should strive to use materials that students find beautiful as
well as have the students aspire to pursue beauty in the output they create.

9: Allow students to enjoy their work
Once students manage to produce beautiful artifacts using code, they should be given ample time to
appreciate and enjoy the fruit of their labor. Also, by dwelling on their success and receiving verbal
feedback from educators and classmates, students reinforce their intrinsic motivation to continue
learning programming. In a study investigating digital design students’ motivation to learn
programming, Takemura et al. (2008, 355) concluded that "to maintain or raise students' motivation it
is more important to allow students to enjoy viewing the final results (artwork) of the programming than
to make them strive to create more beautiful artwork.” Promoting a feeling of satisfaction involves

 99

taking time to appreciate the students’ outcomes and providing positive recognition from educators,
fellow students, and external peers (Keller 2010, 188).

Another strategy is to have graphic design students show their output to each other. Such
exhibitions manifest a core tenet of constructionist learning theory: that learning is tied to the active
construction of a public entity (Papert & Harel 1991), and that learning results by engaging socially
and reflectively while sharing both the produced artifact and the creation process (Ackermann 2001;
Stager 2001). Exhibitions can foster fruitful discussion among students, providing them with a chance
to verbalize and reflect on the process, share experiences, and receive acknowledgments from their
peers, as well as display the diversity of possible solutions to the same assignment.

10: Assess aesthetic quality— not code quality
Keep in mind that graphic designers are not programmers, nor should they be. Amiri (2011, 205)
described graphic designers who code as "programming tourists," and Dorn & Guzdial (2006)
referred to graphic designers as "end-user programmers.” While students studying computer science
should have a deep foundational knowledge of aspects related to computing, graphic designers can
adopt a more informal and exploratory approach to programming. To them, programming is just a
means to a higher purpose: crafting visual communication (Amiri 2011, 205). Excessive focus on
technical aspects of the code will cause teaching to depart from the main topic—graphic design—
and venture into a proverbial jungle of technical jargon that can seriously impede students’
motivation.

When graphic design students in a Creative Coding course manage to produce visually beautiful
output, their feeling of success should not be devalued by only pointing out the flaws in their code.
Also, following the crit tradition of studio teaching, graphic design students (rightfully) expect to
receive feedback that addresses the aesthetic aspects of their work. Failure to assess aesthetic
quality leaves students unfulfilled. This is not to say that the quality of the code should not be
assessed, but it should be critiqued according to a less-strict standard.

Techniques like refactoring and optimizing are beyond the scope of introductory courses.
However, it is fair to argue that a basic understanding of how an unintentional or counterproductive
structuring and grouping of computationally exhaustive calculations can substantially slow down a
program is required.

11: Contextualize programming
A way to help graphic design students connect programming to graphic design is through
contextualization. A contextualized programming course is one in which one or more application
domains provide the motivation for learning computing and inspire the design of learning activities
(Lukkarinen & Sorva 2016). Guzdial (2010) posited that the point of a context is to explain the
usefulness (see #4) of what is being learned and that contextualization both provides relevance and
helps improve retention in courses that teach programming to be used within a single domain.
According to Forte & Guzdial (2005), tailored introductory programming courses, designed to
accommodate the students’ interest and background, can offer a motivating and engaging context for
the learning of programming. Positive consequences thereof are less anxiety, increased interest, and
higher achievement (Forte & Guzdial 2005).

Contextualizing a Creative Coding course targeting graphic designers involves “translating”
abstract logical and mathematical programming concepts to fit the graphic design students’ cognitive
models that revolve around graphic design. Do not use examples that are decontextualized and
demonstrate programming concepts in a generic setting. Instead, use examples that more closely

 100

resemble artifacts (intended for communicative purposes) made by graphic design students. Not only
are they more relatable (#2), they are also more aesthetically pleasing (#8), both of which are
qualities that have a positive impact on the student’s motivation.

Contextualization will also affect the course content. Hansen (2018b), mapping out contemporary
Creative Coding courses, found that only a few took a design-first perspective when selecting and
prioritizing content based on what is relevant to graphic designers.

12: Show how programming concepts have been used in graphic design
When introducing a new programming concept, contextualized examples of the concept in use
should be included. For example, when discussing recursion, show a number of different graphic
design products that make use of this principle. Not only will this spark the students’ imagination, but
it will also illustrate how the same core concept of recursion can be applied to visual products in
diverse ways to achieve a multitude of looks and expressions.

Also, credit the designers who made the examples shown, not solely because of ethical and credit-
where-credit-is-due motifs, but also to help students identify "role models" (Keller 2010, 131). Many
Creative Coding courses apply the strategy of assigning students with the task of having to spot,
research, and present graphic design products that make use of computational principles to their
peers.

13: Remember that graphic design students are visual learners
Compared to students across other disciplines (Felder & Spurlin 2005), graphic design students
exhibit three notable distinct characteristics: they exhibit a strong preference for visual learning
(Hansen 2018a) and have a highly developed spatial thinking aptitude (Sutton & Williams 2010). This
suggests that a visual approach to demonstrations and assignments (see #2, #3, #15) is both a
preferable and effective way to introduce them to programming. Second, graphic design students are
predominantly intuitors, but sometimes have a preference for sensing. This suggests that
assignments should provide a stepwise path to completing the task, but it should not be mandatory
to follow it. Third, graphic design students show a less-strong preference toward sequential learning;
instead, they show an increased-mild preference. This suggests that students should be given the
option to either work in pairs or work alone depending on their personal preference (see #14).

Research by Sorva et al. (2013) indicates that visualization techniques are beneficial for students.
Hence, to the widest extent possible, educators should explain abstract and theoretical programming
constructs using visual aids to leverage understanding, whether made specifically to illustrate a
single construct (Panda 2016) or taken from the students’ domain (#2).

14: Allow for pair programming AND individual programming
Pair programming is a software development practice where two programmers share one computer
and take turns typing and giving suggestions. While pair programming is an effective way to teach
(McDowell et al. 2006), it also has its drawbacks. As a social activity, it requires participants to be
extroverted, outspoken, and open-minded. Students who are introverted, shy, or uncomfortable being
watched might find pair programming very intimidating. The use of pair programming by Hansen
(2017) yielded mixed responses from the students, which likely relates to the individual students'
preferred learning style (#13). To avoid frustration and to honor the individual students' preferences,
assignments should allow for pair programming AND individual programming, letting each student
decide how he wants to work.

 101

15: Use live coding
Live coding, which involves the educator programming in front of the students, is as good as, if not
better than, teaching code via static examples (Rubin 2013). Moving from showing completed
solutions on a slide to students to detailing the process by coding it “live” in front of the class,
significantly improves the pedagogy of teaching programming (Gaspar & Langevin 2007). Live coding
enables an active dialogue between educator and students (Brown & Wilson 2018, 2). Also, live
coding facilitates unintended knowledge transfer by watching the educator work (Brown & Wilson
2018, 2). Having to type in the program slows the educator down and makes it easier for students to
keep up (Brown & Wilson 2018, 2); however, the educator must keep a steady pace and avoid typing
in too much code (a way to mitigate this is discussed in #21). Live coding also lets students see how
to diagnose and correct mistakes, a major topic that is often omitted in Creative Coding courses and
textbooks (Brown & Wilson 2018, 3). Watching educators make mistakes helps establish a "safe
environment" where making and talking about mistakes is acceptable (perhaps even encouraged!).
However, live coding is still mostly passive from the students’ point of view (Gaspar & Langevin
2007) and should not be used as a standalone feature (Victor 2012). One way to implement live
coding as a participative activity is by having students make predictions of what the code will do
before executing it (Brown & Wilson 2018, 3). Another way is to introduce student-led live coding
(Gaspar & Langevin 2007), which exposes the students’ thought process for the educator to provide
feedback on.

Students might ask that live coding sessions be recorded. While seemingly an good idea, educators
must be aware that recording these sessions is making students increasingly less interactive (Gaspar
& Langevin 2007). However, they do provide students with an opportunity to revisit, scrutinize, or
catch up on the material discussed in class. Educators must also be aware that recorded live coding
sessions cannot be substituted for carefully planned and pre-recorded instructional videos.

16: Build on existing graphic design history
Graphic design has a substantial body of knowledge developed and accumulated over centuries.
Madsen (2016) has advocated that this knowledge not be ignored, but rather understood in order to
be deliberately bent later. Graphic design students attend design schools to learn the theory and
methods of the trade. It is vital that Creative Coding courses manage to latch onto this to be
perceived as vehicles for students to further develop and extend their graphic design skills. That is
why “artistic” learning activities that do not incorporate the established theory, models, and methods
of the graphic design field are thought of as "fun-but-useless," detached exercises with little to no
value to their continuing education (see #1).

The tradition and legacy of graphic design should be honored in Creative Coding courses.
Referring to canonical theories, models, and methods also referenced in other classes makes the
students realize that what they learn in the course of their study can also be applied in the medium
of code. Consider the topic of color. Simply because a given programming language requires colors to
be defined in hexadecimal notation or described using an HSB-model, does not eliminate the need to
connect computationally defined colors to centuries of established color theory. Au contraire, a
possible assignment regarding color might concern the transfer of traditional non-digital color
models into the computational medium, sparking discussions about additive and subtractive
properties of paper versus screens.

Throughout history, the making of custom design tools has been a regular component of the
graphic design trade (Hansen 2012). By referencing this tradition in Creative Coding courses,

 102

educators can encourage and nurture the students’ desire to continue this tradition with digital
media.

Finally, reflecting back on the history of graphic design enables Creative Coding to be viewed as a
contemporary pinnacle of the trade. This helps educators situate code literacy and programming
skills as mandatory and indispensable for students to wish to exert any influence on the future
evolution of the graphic design trade.

17: Show commonalities between graphic design and programming
Despite ontological discrepancies, graphic design and programming have many commonalities (Tober
2012a; Shim 2016a). Throughout history, procedural “design systems” have governed and guided the
production of visual communication. Recent canonical examples are the works of Gerstner (1964,
1972), Müller-Brockmann (1981), and Kapitzski (1980), whose systemic approach to graphic design
closely mimics the sequential and rule-based execution of computer software, thereby highlighting
the connection between programming and design and between coding and designing. Also arguing
for the inherent connection between the two disciplines is Stiny (2001), who has considered "seeing"
as a form of "visual calculating," thereby implying that some sort of "computation" takes place.

When framing Creative Coding courses, educators should mention that the courses are not merely
designed to make students code-literate. At a meta level, courses are meant to introduce a way of
thinking that enables visual ideas to be explicitized and formalized, with the aim of enlisting the
computer as a tool in the formation and exploration of design artifacts. Accomplishing this can be
greatly aided by introducing computational thinking, a set of problem-solving methods recently
popularized by Wing (2006; 2010; 2014). Students should be encouraged to adopt computational
thinking and backpropagate this knowledge in the way they conceive and execute graphic design.
While programming languages may come and go, acquiring a generalized and platform-agnostic way
of thinking computationally about graphic design will help students transition into meta-designers
(Madsen 2015), i.e., designers who are as visually talented as they are technically proficient and to
whom programming is a natural medium for creating modern dynamic, non-linear, and procedural
design products.

18: Introduce programming concepts relevant to computational graphic design
Picking up from #16, it is important to realize that computation, and its derived influence on
workflows, aesthetics, and the designer’s own ontological perspective, represents a paradigm shift in
graphic design as a discipline. The continued development of the graphic design discipline relies on
curious students who challenge existing assumptions, methods, tools, and modi operandi. As
educators, we carry an obligation to lead students into uncharted territory by introducing new
concepts and ideas that inspire their quest into discovering what is possible to achieve through
computation. This involves investigating the aesthetics created using dedicated computational
methods (i.e., methods that involve far too complex and numerous calculations to perform by hand,
rather than automated versions of tasks otherwise carried out by hand by the designer).

Creative Coding courses should, therefore, introduce programming concepts that are relevant for
computationally assisted graphic design. These concepts can include algorithms that deal with spatial
issues (e.g., dividing, distributing, packing, filling, aligning, intersecting), explore a pre-made set of
building blocks (combinatorics, permutations), or create complex patterns out of simple rule-based
systems (automaton, L-systems, context-free grammars). Some emulate natural phenomena (flocking
behavior, vectors/gravity, kinematics, harmonius motion), others produce visual output (ASCII-art,
fractals), retrieving/parsing/modifying data (fetching data from external API's, using XML/JSON data

 103

as input, reading sensors from connected hardware, webcams, computer vision, Kinect/Leap/VR) and
some are even meant to corrupt, bend, and break data (glitch, datamoshing, databending).

These algorithms can be provided as pre-made elements (#21) because the aim of the assignment
is not to have each student implement, for example, a Poisson Disc Sampling algorithm from scratch,
rather it is to explore what visual output can be made by the algorithm. However, some algorithms
are surprisingly simple to implement, and purposely letting students experience what amazing
complexity can be achieved with a few lines of code is beneficial to their inclination to explore other
algorithms or even make their own.

To summarize: Assignments should introduce students to post-digital computational aesthetics.
Therein lies a great justification for accepting programming as a unique and valuable addendum to
their skillset.

19: Make programming concepts fit graphic design
Contemporary Creative Coding courses tend to make graphic design topics fit into a cognitive and
conceptual frame originating in computer science as well as the syntactical affordances of the chosen
programming environment/language (Hansen 2018b). Being forced to restrict and recast their
domain-specific knowledge to fit the confines and limitations imposed by a programming
environment has no positive impact on the graphic design students’ view on the usefulness of
programming in their existing workflow. Programming should be perceived as an extension of their
skills, not as a limitation.

Creative Coding courses must be planned utilizing a design-first perspective. This involves letting
graphic design praxis dictate what is needed and then choosing (and possibly adapting) the
computing concepts accordingly. Also, if features fundamental to graphic design production are
missing from the chosen programming environment, educators should make an effort to either 1)
provide an explanation as to how the students can implement it themselves or 2) provide a utility as
a pre-built element to give students the functionality they expect. Otherwise, they risk adjusting and
limiting their thinking and ways of working to match the affordances of the programming
environment, potentially forgetting that their skills obtained as graphic designers extend way beyond
what they are capable of creating as programmers.

20: Make assignments "hard fun"
Many students enter programming courses with the preconceived notion that programming is “hard
and boring” (Repenning 2017).

Turning "boring" into "exciting" is an affective challenge (Repenning 2017). Students become more
engaged if they are given the opportunity to program objects that matter to them (see #2). Graphic
design students have no passionate interest in understanding the construct of a double nested for-
loop, but when it is shown in a contextualized example (see #11) where it is used to create a two-
dimensional grid of objects, suddenly the same construct can excite the student. Appealing to the
students’ emotions by showing the exciting prospect of what they can achieve when they learn the
objective of the assignment provides them with a worthwhile reason to invest the monumental effort
needed to learn programming.

Turning "hard" into "easy" is a cognitive challenge (Repenning 2017). To the majority of graphic
designers, programming is a totally new and unfamiliar domain. They will face a steep learning curve,
and despite all instructional and pedagogical efforts by the educator to reduce the incline, students
will need to work hard to achieve the desired learning outcome. There is no quick shortcut to go from
"hard" to "easy"—just practice, practice, and more practice. It is important to address this in class; so

 104

too the variations in the pace by which students progress as students tend to compare their own
progress with that of their classmates. This, however, is an unfortunate habit as all students learn
differently (Hansen 2018a). Explicitly explaining this can help students relax when they see what
they believe to be "hard" is already being solved by others.

Students will inarguably have a perception of learning to program as being "hard" for a prolonged
period of time (cognitive challenge). This is fine as long as the assignments are "exciting" or "fun"
(affective challenge). The constellation of hard and fun is also discussed by Papert (quoted in
Martinez & Stager 2019): "We learn best and we work best if we enjoy what we are doing. But fun and
enjoying doesn’t mean ‘easy.’ The best fun is hard fun. Our sports heroes work very hard at getting better
at their sports. The most successful carpenter enjoys doing carpentry. The successful businessman enjoys
working hard at making deals.” Equally, Creative Coding educators should strive to have the students
enjoy programming despite it being cognitively taxing.

To ensure that "hard" is not perceived as "impossible," it is important that assignments are
solvable by accounting for the students’ level and knowledge. This can be done by offering pre-made
elements (#21) or making the assignment available in different levels (#23). Also, educators should
try to establish an environment where failure to successfully complete an assignment is accepted, as
long as a valid attempt was made.

21: Offer pre-made elements
It is a relic of a bygone era to assume that all assignments should begin with an empty editor and that
students should write all the code themselves (Brown & Wilson 2018, 4). Just as training wheels help
children keep their balance as they learn to ride a bike, so too can graphic designers benefit from a
little support in their effort towards learning programming. One way is to offer pre-made elements in
the form of visual assets (images, video, fonts), code (libraries, classes, snippets, templates,
boilerplates), or math/algorithms (formulas, pseudo-code algorithms).

Pre-made and well-documented code, whether partially complete or fully written, provided by the
educator can detract from the students’ temptation to copy/paste code found on social code sharing
platforms such as Stackoverflow, openProcessing, or Codepen without thinking about the logic
behind the snippet. Furthermore, pre-made code can relieve students of the mental burden of first
having to implement a given algorithm before they can use it. Rather, the algorithm should be
provided as pre-made code, and graphic design students should be allowed to explore what it can do
as a way to stimulate their subsequent inquiry into how it works. Finally, the use of pre-made code
somehow also mimics the "messy" way students will work with code in real life, scavenging and
reusing available code fragments from other programs in a bricolage style of programming (Guo
2013).

Offering pre-made visual assets can alleviate the risk of students spending too much time on
issues (e.g., retracing logos, choosing fonts, mixing palettes) not directly related to learning
programming, a strategy purposely employed by Hansen (2017).

22: Use interactive demonstrations
Regular analog textbooks (e.g., Vantomme 2012; Gradwohl 2013; Fry, Reas, & Maeda 2007; McCarthy,
Fry, & Reas 2015) are used in many Creative Coding courses; however, research by Palmer (2011)
indicates that it is difficult to correlate written code in books to visual results on the screen. A better
way to help students understand a programming concept is by offering interactive demonstrations as
cognitive support. In Creative Coding courses, these interactive demonstrations typically consist of
pre-written editable code that is continuously executed to reflect any changes made. Using such

 105

interactive demonstrations genuinely engages students in both active (playing with it) and reflective
(thinking about it) processes, both of which, according to constructionist learning theory (Papert &
Harel 1991; Kafai & Resnick 1996; Kafai 2005), are necessary for learning to take place most
efficiently.

Interactive demonstrations using Donald Schön’s notions of reflection-in-action and reflection-on-
action (1983) establish a safe sandbox that allows students to actively modify code firsthand and
evaluate the consequences using immediate visual feedback, which provides students with the
opportunity to reflect on what they are doing while they are doing it (i.e., reflection-in-action).
Supporting the interactive demonstration with follow-up questions encourages students to reflect on
what they just did and what they experienced (i.e., reflection-on-action). These questions might be:
What were you doing? Why were you doing that? What was the outcome? Can you explain what was
happening? Why/how is this relevant or important to you in your work?

Some contemporary Creative Coding courses (e.g., Bakse 2018; Belluscio 2017) and interactive
textbooks (Shiffman 2012) provide a rich supply of interactive examples—editable directly in a web
browser—as a way for students to directly experience the functions and mechanics of the code
through direct manipulation and immediate visual feedback (see #13).

In short, letting students interact with a demonstration and think about their experience afterwards
is beneficial to their acquisition of new knowledge.

23: Introduce assignments with different difficulty levels
Graphic design students learn at different paces and in different ways (Hansen 2018a). This suggests
the need for differentiated instruction to assure that students feel confident and able to accomplish
the tasks given to them. One way to do so is by introducing assignments with varying difficulty levels.
This will make weak students feel supported and strong students feel challenged (see #20). Students
should themselves decide which level they want to undertake. Students still struggling with basic
issues need scaffolding, while students who have gained a better understanding should also find the
assignment challenging in order to stay motivated. Two levels (e.g., "novice" and "competent") will
normally suffice, but larger classes might need be provided with an additional level (e.g., "proficient")
to account for the larger spread between weak and strong groups of students. Support sessions
should be planned to match different levels, and commonly experienced problems (technical,
cognitive, conceptual) should be addressed by that group without having weaker/stronger students
spend their time sitting in on discussions that they perceive as too complex or too simple (see #20).

A way to do this relates to #21. When setting an assignment in, say, three levels, pre-made
elements in the shape of boilerplate code can be offered to the novice, partial code to the
intermediate learner, and no code to the advanced programmer. Also, novices should not worry about
interfaces, while expert programmers can be challenged to provide an intuitive interface to interact
with their product. Issues such as performance and stability should not be of concern to the novices
but made mandatory for the advanced programmers.

Knowing that the challenge level of the assignment can be chosen to match their competencies
will help reduce the stress and anxiety associated with being asked to complete a programming
assignment. Also, to non-novices, being able to complete an assignment without taking any of the
help offered to lower levels instills a sense of achievement and accomplishment in the student,
further motivating him to push forward.

 106

24: Spend more time helping, less time lecturing
Learning to program is a path riddled with obstacles: mysterious bugs, unescapable loops, missing
libraries, cumbersome syntax, and convoluted control structures. Becoming stuck is unavoidable, but
students grow frustrated and become demotivated if their programs do not work as intended.
However, in keeping with constructionist teaching methodology, it is not the educator’s role to be the
tow truck that arrives to winch up the car from the ditch and then leave. Instead, educators must help
students get themselves unstuck. A number of tactics to achieve this can be considered, as explained
in the following paragraphs.

Most importantly, educators must prioritize teaching general problem-solving and debugging
strategies to allow students to help themselves. While these strategies can be taught theoretically in
lectures, they must be practiced and honed through hands-on experience with support readily
available. Students should therefore be given ample time in class to work on exercises, assignments,
and projects with the educator close by to assist when a problem occurs. However, if the educator
tries to take adequate time to assist each student to solve their problem by themselves, a bottleneck
can quickly form, resulting in a queue of students waiting for help. Possible ways to combat this
include enlisting teaching assistants, solving similar and frequently occurring problems in plenum,
and encouraging students to help each other.

To free up time for helping, new teaching methodologies brought about by the use of technology
in the classrooms should also be considered. For example, the concept of blended learning (Friesen
2012) combines traditional classroom methods with digital learning resources (see #15, #22). By
using a combination of digital instruction and one-on-one time, students can work on their own with
new concepts, which frees up educators to circulate and support individual students who may need
individualized attention. A specific blended learning instructional strategy is the flipped classroom
(Flipped Learning Network 2014). A flipped classroom reverses the traditional learning environment.
It moves activities that may traditionally have been considered homework into the classroom, and
similarly moves traditional lectures, teaching activities, and instructional content out of the
classroom—most often online. Having transformed his introductory Creative Coding course to fit the
flipped classroom model, Shiffman (2018) has made his lectures available online as mandatory pre-
class preparation, freeing up valuable time spent on questions, demonstration of homework,
workshops, and wrap-ups.

When designing assignments, typical problems that might occur when trying to complete the given
task can be addressed and (depending on difficulty level, see #23) a remedy provided to ensure that
stuck students can quickly solve the problem and move on.

Students should also be taught the appropriate etiquette of how to ask for help (e.g., how to
describe a problem, including a code example, listing relevant system specifications) and where to
ask for help (e.g., in class, course site, from educator during office hours, programming forums, or
social platforms).

 107

FINAL REMARKS

This dissertation has investigated the overlapping intersection of graphic design, programming, and
pedagogy. In addition to three individual studies and a summarizing discussion, the dissertation also
contributes valuable knowledge in the shape of 24 heuristics specifically aimed at design educators
who plan to teach Creative Coding to graphic designers.

Code as a creative medium and material holds a vast and yet barely explored potential and must
be included in the disciplinary epistemology if graphic design is to stay current and relevant. As
programming and graphic design continue their convergence and form an even stronger symbiotic
relationship, it naturally calls for computation to be integrated into graphic designers’ thinking and
doing. By learning to program, graphic designers can become creators of unique and custom-made
digital design tools and not just users of ready-made, industry-standard tools provided by the
software industry. By learning to program, graphic designers can reap the benefits of adding
computation to all stages of their workflow. By learning to program, graphic designers can acquire a
new perspective and appreciation of their trade as they explicate their tacit knowledge. By learning
to program, graphic designers can understand how software works and adapt the way they
conceptualize their designs to fit the computational media. By learning to program, graphic designers
can push the disciplinary boundaries forward as they infuse the essence of their trade with the power
of technology. Finally, and perhaps most importantly, by learning to program, graphic designers can
also learn when programming is NOT the answer to their needs and their computer is better left
switched off.

If this dissertation in any possible way or form contributes to the development of bespoke
Creative Coding programming courses in future Graphic Design education, my four years spent as
designer-become-researcher has been worthwhile.

Stig Møller Hansen
Roskilde, February 2019

 109

GLOSSARY

Algorithmic Design: A design process that involves specific procedures or formulas to generate
output.

Blended Learning: An educational approach that combines online educational materials with
traditional place-based classroom methods and independent study in a new hybrid
teaching methodology.

Coding: The activity of translating an algorithm to a specific programming language. This
requires an understanding of the syntactical aspects of the language. It also requires direct
interaction with the programming environment.

Computational Graphic Design: The act of using calculations and instructions, typically
performed using computers, as part of a graphic design process or workflow.

Computational Thinking: The thought processes involved in expressing solutions as
computational steps or algorithms that can be carried out by a computer. Originating in
computer science but universally applicable across disciplines.

Creative Coding: A type of computer programming in which the goal is to create something
expressive instead of something functional. Mitchell & Bown (2013, 143) define Creative
Coding as “a discovery-based process consisting of exploration, iteration, and reflection, using
code as a primary medium, towards a media artifact designed for an artistic context.”

Debugging: The routine process of identifying and resolving errors within a computer program.
Can be done manually or supported by debugging tools.

Demoscene: A computer art subculture focused on producing demos (i.e., self-contained
computer programs that produce audio-visual presentations). The purpose of a demo is to
show off programming, visual art, and musical skills.

Flipped Classroom: An instructional strategy and type of blended learning that reverses the
traditional learning environment. Students are introduced to content at home (usually
through online media) and practice working though it in the classroom.

Generative Design: An iterative design process in which an initial state of a design system is
changed either computationally or by input from the designer to create seemingly endless
variations.

GUI (Graphical User Interface): A form of user interface that allows users to interact with
computers through graphical icons, windows, mouse cursors, and other visual
representations instead of typing commands or navigating text-only screen.

IDE (Integrated Development Environment): A software application used by programmers for
software development. An IDE normally consists of a source code editor, build tools, and a
debugger.

Instructional Design: The practice of creating learning experiences that make acquisition of
knowledge and skills more efficient, effective, and appealing.

 110

Meta-design: An approach to design in which no specific artifact is designed; it is rather a
collection of design rules and actions, which, when formalized (often using software) and
executed, is capable of automatically generating final artifacts without much effort.

Parametric Design: A design process driven by parameters where properties of existing models
are modified to vary multiple outcomes.

Programming: The activity of translating a problem-solving approach to algorithms using
programming constructs. This does not require any knowledge of specific syntax. Also,
programming does not necessarily require interacting with a programming environment.

Recursion: The process in which a function calls itself.

Tertiary Education: (also referred to as postsecondary education) An educational level focusing
on learning endeavors in specialized fields. Includes both public and private universities,
academies, seminaries, colleges, and vocational schools. Culminates in the receipt of
certificates, diplomas, or academic degrees.

Unicorns: Nickname for a new generation of designers who excel equally in both designing and
programming.

 111

FIGURES AND TABLES

Extended summary
 Figure 1.1: The study’s subject field, research fields, and position of the author ... 15
 Figure 3.1: Design research as a subset of design practice at large

(Faste & Faste 2012) ... 46
 Figure 3.2: The study’s specific research questions positioned in

Fallman's (2008) Interaction Design Research Triangle ... 47
 Figure 3.3: Schematic overview of research activities in the study ... 53
 Table 3.1: Types of research in creative arts and design .. 45
 Table 3.2: Main rationales and benefits of Mixed Methods Research ... 49
 Table 3.3: Summary of research design chosen to answer each SRQ ... 52
 Table 4.1: Progression of temporalities in the study’s papers.. 56

Paper 1
 Figure 1: Populated matrix, providing an overview of the analyzed courses .. 59
 Table 1: Search query matrix ... 58
 Table 2: Average order in which computer science topics and graphic design

topics were taught ... 60

Paper 2
 Figure 1: Active-Reflective distribution of the respondents ... 69
 Figure 2: Visual-Verbal distribution of the respondents... 69
 Figure 3: Sensing-Intuitive distribution of the respondents ... 69
 Figure 4: Sequential-Global distribution of the respondents ... 69
 Table 1: Strengths of preferences ... 69
 Table 2: Learning Style preferences found in this study compared to those

reported in similar studies. ... 70

Paper 3
 Figure 1: Schematic overview of the deconstruction/reconstruction method .. 78
 Figure 2: A selection of specimens suitable as material for the method ... 79
 Figure 3: Poster by Enzo Mari (1963) .. 79
 Figure 4: Alternative versions obtained by tweaking variables ... 81
 Figure 5: Alternative versions obtained by modifying code and tweaking variables 81
 Figure 6: The collection of chosen specimens taped to the blackboard in the studio 82
 Figure 7: A students attempt at recreating the original specimen using code, and his

subsequent experiments modifying the identified variables and the code
itself to produce radically different versions ... 83

 113

REFERENCES

Abeysekera, Lakmal & Dawson, Phillip. 2015. “Motivation and Cognitive Load in the Flipped
Classroom: Definition, Rationale and a Call for Research.” Higher Education Research &
Development 34 (1): 1–14.

Ackermann, Edith. 2001. “Piaget’s Constructivism , Papert’s Constructionism: What’s the Difference?”
Future Learning Group Publication.

AIGA. 2017. “What Is Graphic Design?” American Institute of Graphic Arts. Accessed from
https://www.aiga.org/guide-whatisgraphicdesign.

Akker, Jan van den, Gravemeijer, Koeno, McKenney, Susan & Nienke, Nieveen. 2006. Educational
Design Research. 1st Edition. Routledge.

Alesandrini, Kathryn & Larson, Linda. 2002. “Teachers Bridge to Constructivism.” The Clearing House
75 (3): 118–121.

Allen, W. Clayton. 2006. “Overview and Evolution of the ADDIE Training System.” Advances in
Developing Human Resources 8 (4): 430–441.

Amiri, Faramarz. 2011. “Programming as Design: The Role of Programming in Interactive Media
Curriculum in Art and Design.” International Journal of Art and Design Education 30 (2): 200–210.

Amresh, Ashish, Carberry, Adam R. & Femiani, John. 2013. “Evaluating the Effectiveness of Flipped
Classrooms for Teaching CS1.” Proceedings of the Frontiers in Education Conference, FIE, 733–735.

Andersen, Peter Bøgh, Bennedsen, Jens, Brandorff, Steffen, Caspersen, Michael E. & Mosegaard,
Jesper. 2003. “Teaching Programming to Liberal Arts Students – a Narrative Media Approach.” In
Proceedings of the Conference on Innovation and Technology in Computer Science Education,
8:109–113. ACM Press.

Anderson, Eike Falk. 2018. “Turtle Fractals and Spirolaterals: Effective Assignments for Novice
Graphics Programmers.” In Proceedings of the 39th Eurographics Conference 2018, 39–42. The
Eurographics Association.

Archer, Bruce. 1995. “The Nature of Research.” Co-Design, Interdisciplinary Journal of Design, no.
January: 6–13.

Artut, Selcuk. 2017. “Incorporation of Computational Creativity in Arts Education: Creative Coding as
an Art Course.” In ERPA International Congresses on Education 2017, edited by E. Masal, I. Önder,
S. Beşoluk, H. Çalişkan, and E. Demirhan. Vol. 37. EDP Sciences.

Atwood, Jeff. 2012. “Please Don’t Learn to Code.” Accessed from https://blog.codinghorror.com/please-
dont-learn-to-code/.

Avital, Tsion. 2017. The Confusion between Art and Design. 1st Edition. Vernon Press.

Bain, John D., Ballantyne, Roy, Packer, Jan & Mills, Colleen. 1999. “Using Journal Writing to Enhance
Student Teachers’ Reflectivity During Field Experience Placements.” Teachers and Teaching 5 (1):
51–73.

Bakse, Justin. 2018. “Hello, Comp Form!” Accessed from http://compform.net/.

Barab, Sasha & Squire, Kurt. 2004. “Design-Based Research: Putting a Stake in the Ground.” Journal of
the Learning Sciences 13 (1): 1–14.

Belluscio, Antonio. 2017. “Computer Graphics Con P5.Js.” Accessed from https://www.exframes.net/cg-
p5js/.

Bender, Diane M. & Vredevoogd, Jon D. 2006. “Using Online Education Technologies to Support
Studio Instruction.” Educational Technology & Society 9 (4): 114–122.

 114

Bennedsen, Jens. 2008. “Introduction to Part I.” In Reflections on the Teaching of Programming:
Methods and Implementations, edited by Jens Bennedsen, Michael E. Caspersen, and Michael
Kölling, 3–5. Springer-Verlag.

Benoit, Francis. 2017. “The Web Browser as a Tool: A Programmatic Approach to Graphic Design on
the Web.” York University, Toronto, Canada.

Biesta, Gert & Burbules, Nicholas C. 2003. Pragmatism and Educational Research. 1st Edition. Rowman
& Littlefield Publishers.

Blauvelt, Andrew. 2008. “Towards Relational Design.” DesignObserver. Accessed from
http://designobserver.com/feature/towards-relational-design/7557/.

Blauvelt, Andrew. 2011. “Tool (Or, Post-Production for the Graphic Designer).” In Graphic Design: Now
in Production. Walker Art Center.

Blum, Bruce I. 1996. Beyond Programming: To a New Era of Design. 1st Edition. Oxford University Press.

Brennan, Karen & Resnick, Mitchel. 2012. “New Frameworks for Studying and Assessing the
Development of Computational Thinking.” In 2012 Annual Meeting of the American Educational
Research Association, 1–25.

Brewer, Jess H. 1998. “So What Is a HyperTextBook?” Accessed from http://jick.net/~htb/HTB/HTB3/.

Bridle, James. 2012. “#sxaesthetic.” booktwo.org. Accessed from
http://booktwo.org/notebook/sxaesthetic/.

Briggs-Myers, Isabel, McCaulley, Mary H., Quenk, Naomi L. & Hammer, Allen L. 1998. MBTI Manual: A
Guide to the Development and Use of the Myers-Briggs Type Indicator. 3rd Editio. Consulting
Psychologists Press.

Brown, Bruce, Gough, Paul & Roddis, Jim. 2004. “Types of Research in the Creative Arts and Design.”
Discussion Paper.

Brown, Neil C. C. & Wilson, Greg. 2018. “Ten Quick Tips for Teaching Programming.” PLoS
Computational Biology 14 (4): 1–8.

Buchanan, Richard. 1992. “Wicked Problems in Design Thinking.” Design Issues 8 (2): 5–21.

Buchanan, Richard. 2001. “Design Research and the New Learning.” Design Issues 17 (4): 3–23.

Buchanan, Richard. 2007. “Strategies of Design Research: Productive Science and Rhetorical Inquiry.”
In Design Research Now, edited by Ralf Michel, 55–66. Birkhäuser Verlag AG.

Byrne, Pat & Lyons, Gerry. 2001. “The Effect of Student Attributes on Success in Programming.” ACM
SIGCSE Bulletin 33 (3): 49–52.

Cáceres, Carlos H. 2017. “Re-Educating The Reflective Practitioner: A Critique of Donald Schön’s
Reflective Practice and Design Education For Engineering.”

Cannaerts, Corneel. 2016. “Coding as Creative Practice.” Ecaade 2016: Complexity & Simplicity, Vol 1 1:
397–404.

Capretz, Luiz Fernando. 2002. “Implications of MBTI in Software Engineering Education.” ACM SIGCSE
Bulletin 34 (4): 134–137.

Carlsson, Anders. 2009. “The Forgotten Pioneers of Creative Hacking and Social Networking–
Introducing the Demoscene.” In Re:Live Media Art Histories 2009, 16–20.

Carmen, Luke. 2000. “Cyberschooling and Technological Change: Multiliteracies for New Times.” In
Multiliteracies: Literacy Learning and the Design of Social Futures, edited by Bill Cope and Mary
Kalantzis, 69–91. Macmillan.

Carter, Adam S. & Hundhausen, Christopher D. 2011. “A Review of Studio-Based Learning in
Computer Science.” The Journal of Computing Sciences in Colleges 27 (1): 105–111.

 115

Caspersen, Michael E. & Christensen, Henrik Bærbak. 2000. “Here, There and Everywhere - on the
Recurring Use of Turtle Graphics in CS1.” In ACSE ’00 Proceedings of the Australasian Conference
on Computing Education, 34–40.

Chng, Sue Inn. 2018. “International and Multidisciplinary Perspectives Incorporating Reflection into
Computing Classes: Models and Challenges.” Reflective Practice 19 (3): 358–375.

Christensen, Kimberly & West, Richard E. 2013. “The Development of Design-Based Research.” In
Foundation of Learning and Instructional Design Technology. University of Georgia.

Clohessy, Deanna L. 2011. “Creating Visual Solutions: Using Creative Problem Solving Techniques in
Graphic Design.” State University of New York.

Cobb, Paul, Confrey, Jere, DiSessa, Andrea, Lehrer, Richard & Schauble, Leona. 2003. “Design
Experiments in Educational Research.” Educational Researcher 32 (1): 9–13.

Coffield, Frank, Moseley, David, Hall, Elaine & Ecclestone, Kathryn. 2004. Learning Styles and Pedagogy
in Post-16 Learning. A Systematic and Critical Review. Learning and Skills Research Centre. Learning
and Skills Research Centre.

Collins, Allan, Brown, John Seely & Newman, Susan E. 1989. “Cognitive Apprenticeship: Teaching the
Craft of Reading, Writing, and Mathematics.” In Knowing, Learning, and Instruction, edited by L. B.
Resnick, 453–494. Lawrence Erlbaum Associates.

Connolly, Cornelia, Murphy, Eamonn & Moore, Sarah. 2009. “Programming Anxiety Amongst
Computing Students — A Key in the Retention Debate ?” Control 52 (1): 52–56.

Cooper, Alan. 2017. “Should Designers Code? No, Part 1, 2 & 3.” medium.com. Accessed from
https://medium.com/@MrAlanCooper/should-designers-code-f7b745b8cd03.

Cousin, Glynis. 2006. “An Introduction to Threshold Concepts.” Planet 17 (1): 4–5.

Creswell, John W. 2009. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.
SAGE Publications.

Creswell, John W. 2014. A Concise Introduction to Mixed Methods Research. 1st Edition. SAGE
Publications.

Creswell, John W. & Plano Clark, Vicki L. 2007. “Choosing a Mixed Methods Design.” In Designing and
Conducting Mixed Methods Research, 62–79. SAGE Publications.

Cross, Nigel. 1982. “Designerly Ways of Knowing.” Design Studies 3 (82): 221–227.

Cross, Nigel. 2007. “From a Design Science to a Design Discipline: Understanding Designerly Ways of
Knowing and Thinking.” In Design Research Now, edited by R. Michel, 41–54. Birkhäuser.

Crouwel, Wim. 1967. “New Alphabet.” Accessed from https://www.moma.org/collection/works/139322.

Daichendt, G. James. 2010. “The Bauhaus Artist-Teacher: Walter Gropius’s Philosophy of Art
Education.” Teaching Artist Journal 8 (3): 157–164.

Davis, Meredith. 1998. “How High Do We Set the Bar for Design Education.” In The Education of a
Graphic Designer, edited by Steven Heller, 25–30. Allworth Press.

Denning, Peter J. 2004. “The Field of Programmers Myth.” Communications of the ACM 47 (7): 15–20.

Denning, Peter J. 2017. “Remaining Trouble Spots with Computational Thinking.” Communications of
the ACM 60 (6): 33–39.

Dewey, John. 1913. Interest and Effort in Education. 1st Edition. Houghton Mifflin.

Dewey, John. 1933. How We Think: A Restatement of the Relation of Reflective Thinking to the Educative
Process. Henry Regnery Co.

Dewey, John. 1934. Art as Experience. Minton, Balch & Company.

DiSessa, Andrea A. & Cobb, Paul. 2004. “Ontological Innovation and the Role of Theory in Design
Experiments.” Journal of the Learning Sciences 13 (1): 77–103.

 116

Dodgson, Neil A. & Chalmers, Andrew. 2017. “Designing a Computer Graphics Course for First Year
Undergraduates.” In Proceedings of the 38th Eurographics Conference 2017, 9–15. The
Eurographics Association.

Dorn, Brian & Guzdial, Mark. 2006. “Graphic Designers Who Program as Informal Computer Science
Learners.” Proceedings of the 2006 International Workshop on Computing Education Research,
127–134.

Dorn, Brian, Tew, Allison Elliott & Guzdial, Mark. 2007. “Introductory Computing Construct Use in an
End-User Programming Community.” In VLHCC ’07 Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, 27–32. IEEE Computer Society.

Dorst, Kees. 2010. “The Nature of Design Thinking.” In Symposium Proceedings of DTRS8: Interpreting
Design Thinking, edited by Kees Dorst, Susan Stewart, Ilka Staudinger, Bec Paton, and Andy Dong,
131–139. University of Technology Sydney.

Downton, Peter. 2003. Design Research. RMIT University Press.

Doyle, Louise, Brady, Anne-Marie Marie & Byrne, Gobnait. 2016. “An Overview of Mixed Methods
Research – Revisited.” Journal of Research in Nursing 21 (8): 623–635.

Drake, Peter & Sung, Kelvin. 2011. “Teaching Introductory Programming with Popular Board Games.”
In SIGCSE ’11 Proceedings of the 42nd ACM Technical Symposium on Computer Science Education,
619–624. ACM.

Dubberly, Hugh. 1990. “An Introduction to Hypermedia and the Implications of Technology on
Graphic Design Education.” In Proceedings of the Graphic Design Education Association (GDEA)
Annual National Symposia 1989-1990.

Dwiggins, William Anderson. 1922. “New Kind of Printing Calls for New Design.” Boston Evening
Transcript, August 29, 1922.

Ericson, Barbara J., Guzdial, Mark & Morrison, Briana B. 2015. “Analysis of Interactive Features
Designed to Enhance Learning in an Ebook.” In Proceedings of the Eleventh Annual International
Conference on International Computing Education Research - ICER ’15, 169–178.

Ettinger, Linda E. 1988. “Art Education and Computing: Building a Perspective.” Studies in Art
Education 30 (1): 53–62.

Faison, Brenda Smith. 1995. “Graphic Design Educators and Practitioners in Transition: From
Traditional Tools and Applications to the Computer-Based Tools of Multimedia Design.” The Ohio
State University.

Falkner, Katrina, Falkner, Nickolas, Szabo, Claudia & Vivian, Rebecca. 2016. “Applying Validated
Pedagogy to MOOCs : An Introductory Programming Course with Media Computation.” In
Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, 326–331. ACM Press.

Fallman, Daniel. 2003. “Design-Oriented Human-Computer Interaction.” In Proceedings of the
Conference on Human Factors in Computing Systems - CHI ’03, 225–232. ACM Press.

Fallman, Daniel. 2008. “The Interaction Design Research Triangle of Design Practice, Design Studies,
and Design Exploration.” Design Issues 24 (3): 4–18.

Fallman, Daniel. 2017. “Do You Need to Know How to Code to Be a Designer?” Accessed from
http://www.dfallman.com/journal/2017/3/17/do-you-need-to-know-how-to-code-to-be-a-designer.

Faste, Trygve & Faste, Haakon. 2012. “Demystifying ‘Design Research’: Design Is Not Research,
Research Is Design.” In Proceedings of the IDSA Education Symposium 2012.

Fee, Samuel B. & Holland-Minkley, Amanda M. 2010. “Teaching Computer Science through Problems,
Not Solutions.” Computer Science Education 20 (2): 129–144.

Feilzer, Martina Yvonne. 2010. “Doing Mixed Methods Research Pragmatically: Implications for the
Rediscovery of Pragmatism as a Research Paradigm.” Journal of Mixed Methods Research 4 (1): 6–
16.

 117

Fekete, Alan, Kay, Judy, Kingston, Jeff & Wimalaratne, Kapila. 2000. “Supporting Reflection in
Introductory Computer Science.” ACM SIGCSE Bulletin 32 (1): 144–148.

Felder, Richard M. & Brent, Rebecca. 2005. “Understanding Student Differences.” Journal of
Engineering Education 94 (1): 57–72.

Felder, Richard M. & Silverman, Linda Kreger. 1988. “Learning and Teaching Styles.” Engineering
Education.

Felder, Richard M. & Soloman, Barbara A. 1997. “Index of Learning Styles (ILS®) Questionnaire.” North
Carolina State University. Accessed from https://www.webtools.ncsu.edu/learningstyles/.

Felder, Richard M. & Spurlin, Joni. 2005. “Applications, Reliability and Validity of the Index of Learning
Styles.” International Journal of Engineering Education 21 (1): 103–112.

Fleischmann, Katja. 2013. “Big Bang Technology: What’s next in Design Education, Radical Innovation
or Incremental Change?” Journal of Learning Design 6 (3): 1–17.

Fleischmann, Katja. 2018. “Online Design Education: Searching for a Middle Ground.” Arts and
Humanities in Higher Education, March, 1–22.

Fleming, Neil D. & Mills, Colleen. 1992. “Not Another Inventory, Rather a Catalyst for Reflection.” To
Improve the Academy 11 (1): 137–155.

Flipped Learning Network. 2014. “Definition of Flipped Learning.” FLIP Learning. Accessed from
https://flippedlearning.org/definition-of-flipped-learning/.

Flores, René Pedroza. 2016. “Personality Dominant Values in Graphic Design Students in Their
Educational Practice.” Higher Education Studies 6 (1): 101–109.

Florin, Fabrice. 1985. “Hackers: Wizards of the Electronic Age.” Public Broadcasting Service.

Forte, Andrea & Guzdial, Mark. 2004. “Computers for Communication, Not Calculation: Media as a
Motivation and Context for Learning.” In 37th Annual Hawaii International Conference on System
Sciences. IEEE.

Forte, Andrea & Guzdial, Mark. 2005. “Motivation and Nonmajors in Computer Science: Identifying
Discrete Audiences for Introductory Courses.” IEEE Transactions on Education 48 (2): 248–253.

Frankel, Lois & Racine, Martin. 2010. “The Complex Field of Research: For Design, through Design, and
about Design.” In Proceedings of the 43th Design Research Society (DRS) International Conference,
518–529. Université de Montréal.

Frayling, Christopher. 1993. “Research in Art and Design.” Royal College of Art Research Papers 1 (1): 1–
5.

Freyermuth, Sherry S. 2016. “Coding As Craft: Evolving Standards in Graphic Design Teaching and
Practice.” Plot(s) Journal of Design Studies 3: 58–71.

Friedman, Ken. 2003. “Theory Construction in Design Research Criteria: Approaches, and Methods.”
Design Studies 24 (6): 507–522.

Friesen, Norm. 2012. “Report: Defining Blended Learning.”

Fry, Ben, Reas, Casey & Maeda, John. 2007. Processing: A Programming Handbook for Visual Designers
and Artists. 1st Edition. The MIT Press.

FutureLearn. 2014. “Creative Coding - Online Course.” Accessed from
https://www.futurelearn.com/courses/creative-coding.

Gage, Nathaniel Lees. 1989. “The Paradigm Wars and Their Aftermath: A ‘Historical’ Sketch of
Research on Teaching Since 1989.” Educational Researcher 18 (7): 4–10.

Galanter, Philip. 2009. “Thoughts on Computational Creativity.” In Proceedings of the Computational
Creativity: An Interdisciplinary Approach.

 118

Gaspar, Alessio & Langevin, Sarah. 2007. “Active Learning in Introductory Programming Courses
through Student-Led ‘Live Coding’ and Test-Driven Pair Programming.” In EISTA 2007, Education
and Information Systems, Technologies and Applications.

George, Susan E. 2002. “Learning and the Reflective Journal in Computer Science.” Australian
Computer Science Communications 24 (1): 77–86.

Gerstner, Karl. 1964. Programme Entwerfen. 1st Edition. Arthur Niggli Verlag.

Gerstner, Karl. 1972. Kompendium Für Alphabeten: Systematik Der Schrift. 1st Edition. Arthur Niggli
Verlag.

Gibbs, Graham. 1998. Learning by Doing: A Guide to Teaching and Learning Methods. Oxford Brookes
University.

Goldkuhl, Göran. 2011. “Design Research in Search for a Paradigm: Pragmatism Is the Answer.” In
Practical Aspects of Design Science, edited by M. Helfert and B. Donnellan, 84–95. Springer-
Verlag.

Gradwohl, Nikolaus. 2013. Processing 2: Creative Coding Hotshot. Packt Publishing Ltd.

Graham, Paul. 2004. Hackers and Painters. O’Reilly Media Inc.

Greenberg, Ira, Kumar, Deepak & Xu, Dianna. 2012. “Creative Coding and Visual Portfolios for CS1.” In
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education - SIGCSE ’12,
247–252.

Grushka, Kath, McLeod, Julie Hinde & Reynolds, Ruth. 2005. “Reflecting upon Reflection: Theory and
Practice in One Australian University Teacher Education Program.” Reflective Practice 6 (2): 239–
246.

Gu, Xiaoqing, Wu, Bian & Xu, Xiaojuan. 2015. “Design, Development, and Learning in e-Textbooks:
What We Learned and Where We Are Going.” Journal of Computers in Education 2 (1): 25–41.

Guglielmetti, Mark & McCormack, Jon. 2017. “Between Code and Culture: Developing a Creative
Coding Massive Open Online Course.” In Teaching Computational Creativity, edited by Michael
Filimowicz and Veronika Tzankova, 1st ed., 193–209. Cambridge University Press.

Guo, Philip. 2013. “Teaching Real World Programming.” BLOG@CACM. Accessed from
https://cacm.acm.org/blogs/blog-cacm/159263-teaching-real-world-programming/fulltext.

Guzdial, Mark. 2003. “A Media Computation Course for Non-Majors.” In Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education - ITiCSE ’03, 104–108.

Guzdial, Mark. 2009. “Teaching Computing to Everyone.” Communications of the ACM 52 (5): 31–33.

Guzdial, Mark. 2010. “Does Contextualized Computing Education Help?” ACM Inroads 1 (4): 4–6.

Guzdial, Mark. 2013. “Exploring Hypotheses about Media Computation.” In Proceedings of the Ninth
Annual International ACM Conference on International Computing Education Research - ICER ’13,
19–26. ACM Press.

Guzdial, Mark. 2015a. Learner-Centered Design of Computing Education: Research on Computing for
Everyone. 1st Edition. Morgan & Claypool Publishers.

Guzdial, Mark. 2015b. “Top 10 Myths about Teaching Computer Science.” Communications of the
ACM. Accessed from http://cacm.acm.org/blogs/blog-cacm/189498-top-10-myths-about-teaching-
computer-science/fulltext#.

Hall, Ralph. 2013. “Mixed Methods: In Search of a Paradigm.” In Conducting Research in a Changing
and Challenging World, edited by Thao Le and Quynh Le, 71–78. Nova Science Publishers, Inc.

Hannaford, Joey. 2012. “Changing Contexts in Graphic Design.” In Catch22: Eighth Annual UCDA
Design Education Summit Abstracts & Proceedings, 271–275. University & College Designers
Association.

Hansen, Stig Møller. 2012. “Den Grafiske Designer Som Værktøjsmager.” Aarhus Universitet.

 119

Hansen, Stig Møller. 2017. “Deconstruction/Reconstruction: A Pedagogic Method for Teaching
Programming to Graphic Designers.” In Proceedings of the 20h Generative Art Conference GA2017.

Hansen, Stig Møller. 2018a. “Assessing Graphic Designers’ Learning Style Profile to Improve Creative
Coding Courses.” Submitted to Eurographics 2019.

Hansen, Stig Møller. 2018b. “Mapping Creative Coding Courses: Towards Bespoke Programming
Curricula in Graphic Design Education.” Submitted to Eurographics 2019.

Hardman, Paul. 2017. “Framing Design Education within the Contemporary Paradigm.” In Proceedings
of 5th EIMAD Meeting of Research in Music, Arts and Design, 1–15.

Hausman, Jerome. 1991. “Computers, Video-Discs, and Art Teachers.” Art Education 44 (3): 6–14.

Heddy, Benjamin C. & Pugh, Kevin J. 2015. “Bigger Is Not Always Better: Should Educators Aim for Big
Transformative Learning Events or Small Transformative Experiences?” Journal of Transformative
Learning 3 (1): 52–58.

Heller, Steven. 2002. The Graphic Design Reader. 1st Edition. Allworth Press.

Heller, Steven & Womack, David. 2007. Becoming a Digital Designer: A Guide to Careers in Web, Video,
Broadcast, Game and Animation Design. Wiley.

Hemmendinger, David. 2010. “A Plea for Modesty.” ACM Inroads 1 (2): 4–7.

Hidi, Suzanne & Baird, William. 1986. “Interestingness - A Neglected Variable in Discourse
Processing.” Cognitive Science A Multidisciplinary Journal 10 (2): 179–194.

Hjorth, Maria. 2017. “Strengths and Weaknesses of a Visual Programming Language in a Learning
Context with Children.”

Hokanson, Brad. 2012. “The Design Critique as a Model for Distributed Learning.” In The Next
Generation of Distance Education: Unconstrained Learning, edited by L. Moller and J. B. Huett, 1st
ed., 71–83. Springer Science & Business Media.

Hokanson, Brad, Miller, Charles & Hooper, Simon. 2008. “A Contemporary Perspective for Innovation
in Instructional Design.” TechTrends 52 (6): 36–43.

Honey, Peter & Mumford, Alan. 2000. The Learning Styles Questionnaire: 80-Item Version. Peter Honey.

Hoxsey, Rich. 2003. “Code Dependency.” PRINT 57 (5): 39–45.

Humphrey, Watts S. 2000. “The Personal Software Proces (PSP).”

Iskrenovic-Momcilovic, Olivera. 2017. “Choice of Visual Programming Language for Learning
Programming.” International Journal of Computers 2: 250–254.

Johansson, Roger. 2007. “Are We Designers or Developers?” Accessed from
https://www.456bereastreet.com/archive/200708/are_we_designers_or_developers/.

Johns, Christopher. 1995. “Framing Learning through Reflection within Carper’s Fundamental Ways of
Knowing in Nursing.” Journal of Advanced Nursing 22 (2): 226–234.

Johnson, R. Burke & Onwuegbuzie, Anthony J. 2004. “Mixed Methods Research: A Research Paradigm
Whose Time Has Come.” Educational Researcher 33 (7): 14–26.

Johnson, R. Burke, Onwuegbuzie, Anthony J. & Turner, Lisa A. 2007. “Toward a Definition of Mixed
Methods Research.” Journal of Mixed Methods Research 1 (2): 112–133.

Jonas, Wolfgang. 2007. “Design Research and Its Meaning to the Methodological Development of the
Discipline.” In Design Research Now, 187–206. Birkhäuser Basel.

Jones, Sue & Burnett, Gary. 2008. “Spatial Ability and Learning to Program.” Human Technology 4
(May): 47–61.

Jury, David. 2012. Graphic Design before Graphic Designers: The Printer as Designer and Craftsman
1700-1914. Thames & Hudson.

 120

Järvelä, Sanna & Renninger, K. Ann. 2014. “Designing for Learning: Interest, Motivation, and
Engagement.” In The Cambridge Handbook of the Learning Sciences, edited by R. Keith Sawyer,
2nd ed., 668–685. Cambridge University Press.

Kafai, Yasmin B. 2005. “Constructionism.” In The Cambridge Handbook of the Learning Sciences, edited
by R. Keith Sawyer, 35–46. Cambridge University Press.

Kafai, Yasmin B. & Resnick, Mitchel. 1996. Constructionism in Practice: Designing, Thinking, and
Learning in a Digital World. Edited by Yasmin B. Kafai and Mitchel Resnick. 1st Edition. Routledge.

Kalantzis, Mary & Cope, Bill. 2010. “The Teacher as Designer: Pedagogy in the New Media Age.” E-
Learning 7 (3): 200–222.

Kapitzki, Herbert W. 1980. Programmiertes Gestalten: Grundlagen Für Das Visualisieren Mit Zeichen. 1st
Edition. Verlag Dieter Gitzel.

Kaplan, Andreas M. & Haenlein, Michael. 2016. “Higher Education and the Digital Revolution: About
MOOCs, SPOCs, Social Media, and the Cookie Monster.” Business Horizons 59 (4): 441–450.

Kay, Jennifer S & Road, Mullica Hill. 2011. “Contextualized Approaches to Introductory Computer
Science: The Key to Making Computer Science Relevant or Simply Bait and Switch?” SIGCSE ’11
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 177–182.

Keller, John M. 2010. Motivational Design for Learning and Performance: The ARCS Model Approach. 1st
Edition. Springer US.

Kelly, Rob Roy. 2001. “Constraint vs. Restraint: Graphic Design Education And The Computer.” In
Everything Is a Work in Progress: The Collective Writings of Rob Roy Kelly on Graphic Design
Education, 1st ed., 147–157. DesignLab, Rochester Institute of Technology, School of Design.

Killion, Joellen & Todnem, Guy R. 1991. “A Process for Personal Theory Building.” Educational
Leadership 48 (6): 14–16.

Kim, Lam A. 2016. “The Myth and Reality of Studio-Based Learning in Communication Design
Education: The Potential of Integrating into an e-Learning Environment.” Swinburne University of
Technology, Australia.

King, Robin G. 1988. “Computer Graphics and Animation as Agents of Personal Evolution in the Arts.”
Leonardo. Supplemental Issue 1: 43.

Knochel, Aaron D. & Patton, Ryan M. 2015. “If Art Education Then Critical Digital Making:
Computational Thinking and Creative Code.” Studies in Art Education 57 (1): 21–38.

Knuth, Donald Ervin. 1979. TEX and METAFONT: New Directions in Typesetting. Digital Press.

Kolb, David A. 1984. Experiential Learning: Experience as the Source of Learning and Development. 1st
Edition. Prentice-Hall.

Kolko, Jon. 2012a. “Code Is Material: Why Designers Must Learn to Code.” Austin Center for Design.
Accessed from http://www.ac4d.com/2012/06/code-is-material-why-designers-must-learn-to-
code/.

Kolko, Jon. 2012b. “Transformative Learning in the Design Studio.” Interactions 19 (6): 82–83.

Kroeger, Michael. 2008. Paul Rand: Conversations with Students. 1st Edition. Princeton Architectural
Press.

Lage, Maureen J., Platt, Glenn J. & Treglia, Michael. 2000. “Inverting the Classroom: A Gateway to
Creating an Inclusive Learning Environment.” The Journal of Economic Education 31 (1): 30–43.

Lawson, Bryan. 1980. How Designers Think. 1st Edition. Architectural Press.

Lawson, Bryan. 2004. How Designers Think - The Design Process Demystified. 4th Edition. Architectural
Press.

Lehni, Jürg. 2008. “Soft Monsters.” Perspecta 40 (Monster): 22–27.

 121

Lehni, Jürg & Puckey, Jonathan. 2011. “Teaching in the Spaces between Code and Design.” Eye
Magazine 81: 90–91.

Leitão, António & Santos, Luís. 2011. “Programming Languages for Generative Design: Visual or
Textual?” In In Respecting Fragile Places: 29th ECAADe Conference Proceedings, edited by Tadeja
Strojan Zupancic, Matevz Juvancic, Spela Verovsek, and Anja Jutraz, 549–557. University of
Ljubljana.

Levit, Briar. 2016. Graphic Means. Tugg.

Levy, Steven. 2010. Hackers. 1st Edition. O’Reilly Media.

Liberal Arts Computer Science Consortium. 2007. A 2007 Model Curriculum for a Liberal Arts Degree in
Computer Science. Journal on Educational Resources in Computing. Vol. 7.

Liston, Daniel & Zeichner, Kenneth. 2013. Reflective Teaching. Lawrence Elbaum Associates. Routledge.

Logan, Cheri D. 2006. “Circles of Practice: Educational and Professional Graphic Design.” The Journal
of Workplace Learning 18 (6): 331–343.

Lukkarinen, Aleksi & Sorva, Juha. 2016. “Classifying the Tools of Contextualized Programming
Education and Forms of Media Computation.” In Koli Calling 2016, 51–60. ACM Press.

Lye, Sze Yee & Koh, Joyce Hwee Ling. 2014. “Review on Teaching and Learning of Computational
Thinking through Programming: What Is next for K-12?” Computers in Human Behavior 41
(December): 51–61.

Madsen, Rune. 2015. “On Meta-Design and Algorithmic Design Systems.” Accessed from
https://runemadsen.com/blog/on-meta-design-and-algorithmic-design-systems/.

Madsen, Rune. 2016. “Printing Code | Intro Lecture.” Accessed from
http://printingcode.runemadsen.com/lecture-intro/.

Maeda, John. 1999. Design by Numbers. 1st Edition. MIT Press.

Maeda, John. 2002. “Design Education in the Information Age.” Design Management Journal 13 (3):
39–45.

Maeda, John. 2004. Creative Code. Thames & Hudson.

Maeda, John. 2009. “John Maeda: My Journey in Design, from Tofu to RISD.” TED. Accessed from
https://www.youtube.com/watch?v=uNYMw9O2bu4.

Maeda, John. 2018. “Design in Tech Report 2018.” Accessed from
https://designintechreport.wordpress.com/.

Majoros, Ádám, Iván, József & Matusik, Szilárd. 2012. Moleman 2 - Demoscene - The Art of the
Algorithms. Moleman Film.

Manovich, Lev. 2005. “Generation Flash.” In Total Interaction, edited by G. M. Buurmann. Birkhäuser-
Verlag.

Manovich, Lev. 2013. Software Takes Command. International Texts in Critical Media Aesthetics. 1st
Edition. Bloomsbury Academic.

Martinez, Sylvia Libow & Stager, Gary S. 2019. Invent to Learn: Making, Tinkering, and Engineering in the
Classroom. 2nd Edition. Constructing Modern Knowledge Press.

Mateas, Michael. 2005. “Procedural Literacy: Educating the New Media Practitioner.” Edited by Drew
Davidson. On the Horizon 13 (2): 101–111.

Matthíasdóttir, Ásrún & Geirsson, Hrafn J. 2011. “The Novice Problem in Computer Science.” In
Proceedings of the 12th International Conference on Computer Systems and Technologies -
CompSysTech ’11, 570–576. ACM Press.

Maurer, Luna, Paulus, Edo, Puckey, Jonathan & Wouters, Roel. 2013. Conditional Design Workbook.
Valiz.

 122

Maxwell, Bruce A. & Taylor, Stephanie R. 2017. “Comparing Outcomes Across Different Contexts in
CS1.” In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, 399–403.

Mazur, Eric. 1997. Peer Instruction: A User’s Manual. Prentice-Hall, Inc.

McCarthy, B. 1990. “Using the 4MAT System to Bring Learning Styles to Schools.” Educational
Leadership 48 (2): 31–37.

McCarthy, Lauren, Fry, Ben & Reas, Casey. 2015. P5.Js. 1st Edition. Maker Media Inc.

McCormack, Jon, Bown, Oliver, Dorin, Alan, McCabe, Jonathan, Monro, Gordon & Whitelaw, Mitchell.
2014. “Ten Questions Concerning Generative Computer Art.” Leonardo 47 (2): 135–141.

McCoy, K. 1998. “Education in an Adolescent Profession.” In The Education of a Graphic Designer,
edited by Steven Heller, 3–12. Allworth Press.

McDowell, Charlie, Werner, Linda, Bullock, Heather E. & Fernald, Julian. 2006. “Pair Programming
Improves Student Retention, Confidence, and Program Quality.” Communications of the ACM 49
(8): 90–95.

McKim, Courtney A. 2017. “The Value of Mixed Methods Research: A Mixed Methods Study.” Journal of
Mixed Methods Research 11 (2): 202–222.

McLean, Alex & Wiggins, Geraint. 2008. “Bricolage Programming in the Creative Arts.” In 22nd
Psychology of Programming Interest Group.

McNamara, Patrick. 2015. “The Influence of MOOCs to Enhance Graphic Design Education.” Art, Design
& Communication in Higher Education 14 (1): 57–69.

Meggs, Philip B. & Purvis, Alston W. 2006. Meggs’ History of Graphic Design. 4th Edition. Wiley.

Melles, Gavin. 2008. “An Enlarged Pragmatist Inquiry Paradigm for Methodological Pluralism in
Academic Design Research” II (1): 3–13.

Mertens, Donna M. 2007. “Transformative Paradigm: Mixed Methods and Social Justice.” Journal of
Mixed Methods Research 1 (3): 212–225.

Meyer, Jan H. F. & Land, Ray. 2003. “Threshold Concepts and Troublesome Knowledge: Linkages to
Ways of Thinking and Practising within the Disciplines.” In Improving Student Learning – Ten
Years On, edited by C. Rust, 1–16. Oxford Centre for Staff and Learning Development (OCSLD).

Mezirow, Jack. 1991. Transformative Dimensions of Adult Learning. The JosseyBass Higher and Adult
Education Series. Wiley.

Mezirow, Jack. 1997. “Transformative Learning: Theory to Practice.” New Directions for Adult and
Continuing Education 1997 (74): 5–12.

Mishra, Punya & Yadav, Aman. 2013. “Of Art and Algorithm: Rethinking Technology & Creativity in the
21st Century.” TechTrends 57 (3): 10–14.

Mitchell, Mark C. & Bown, Oliver. 2013. “Towards a Creativity Support Tool in Processing:
Understanding the Needs of Creative Coders.” In Proceedings of the 25th Australian Computer-
Human Interaction Conference on Augmentation, Application, Innovation, Collaboration - OzCHI
’13, 143–146. ACM Press.

Mittendorp, Jan. 2000. “Toolspace.” Accessed from http://letterror.com/writing/toolspace/.

Monnier, Antoinette. 1995. “The Interrelationship of Graphic Design and Fine Art.” Rochester Institute
of Technology.

Montfort, Nick. 2016. Exploratory Programming for the Arts and Humanities. The MIT Press.

Moszkowicz, Julia. 2013. “American Pragmatism and Graphic Design: Retrieving the Historical and
Philosophical Constitutions of a ‘Non-Theoretical’ Approach.” The Design Journal 16 (3): 315–
338.

Müller-Brockmann, Josef. 1981. Raster Systeme Für Die Visuelle Gestaltung. 1st Edition. Niggli Verlag.

 123

Nagappan, Nachiappan, Williams, Laurie, Ferzli, Miriam, Wiebe, Eric, Yang, Kai, Miller, Carol & Balik,
Suzanne. 2003. “Improving the CS1 Experience with Pair Programming.” In SIGCSE ’03
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education, 359–362.
ACM Press.

Nardi, Bonnie A. 1993. A Small Matter of Programming: Perspectives on End User Computing. MIT Press.

National Research Council. 2000. How People Learn: Brain, Mind, Experience, and School: Expanded
Edition. National Academies Press.

Nelson, Wayne A. 2013. “Design, Research, and Design Research: Synergies and Contradictions.”
Educational Technology 53 (1): 3–11.

Nichols, Mark. 2016. “Reading and Studying on the Screen: An Overview of Literature Towards Good
Learning Design Practice.” Journal of Open Flexible and Distance Learning 20 (1): 33–43.

Nolan, Keith & Bergin, Susan. 2016. “The Role of Anxiety When Learning to Program.” In Proceedings
of the 16th Koli Calling International Conference on Computing Education Research - Koli Calling
’16, 61–70.

Nuutila, Esko, Törmä, Seppo & Malmi, Lauri. 2005. “PBL and Computer Programming — The Seven
Steps Method with Adaptations.” Computer Science Education 15 (2): 123–142.

Palmer, Cathy. 2011. “Teaching Code to Creatives: Removing Learning Barriers to Incorporating
Automation into Graphic Design.” In E-Learn: World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education, edited by C. Ho and M. Lin, 2066–2072.
Association for the Advancement of Computing in Education (AACE).

Panda, Payod. 2016. “Helping Designers Understand Code.” Department of Graphic and Industrial
Design, North Carolina State University.

Pannafino, James. 2013. “AIGA Design Educators Community | Learn That Over There … Do Design
Students Need to Learn to Code within a Design Curriculum?” AIGA Design Educators
Community. Accessed from https://educators.aiga.org/learn-that-over-there-do-design-students-
need-to-learn-to-code-within-a-design-curriculum/.

Papert, Seymour. 1971. “Teaching Children to Be Mathematicians vs. Teaching About Mathematics.”
International Journal of Mathematical Education in Science and Technology 3 (3): 249–262.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. 1st Edition. Basic Books
Inc.

Papert, Seymour. 1993. Mindstorms: Children, Computers, And Powerful Ideas. 2nd Edition. Basic Books
Inc.

Papert, Seymour & Harel, Idit. 1991. “Situating Constructionism.” In Constructionism, edited by
Seymour Papert and Idit Harel, 1st ed., 1–11. Ablex Publishing Corporation.

Papert, Seymour & Turkle, Sherry. 1990. “Epistemological Pluralism: Styles and Voices within the
Computer Culture.” Signs 16 (1): 128–157.

Pears, Arnold, Seidman, Stephen, Malmi, Lauri, Mannila, Linda, Adams, Elizabeth, Bennedsen, Jens,
Devlin, Marie & Paterson, James. 2007. “A Survey of Literature on the Teaching of Introductory
Programming.” ACM SIGCSE Bulletin 39 (4): 204–223.

Pearson, Matt. 2011. Generative Art - A Practical Guide Using Processing. Manning Publications Co.

Pearson, Matt. 2013. “Everyone Hates Creative Coders.” In OFFF 2013, 72–75. OFFF.

Peppler, Kylie A. & Kafai, Yasmin B. 2005. “Creative Coding: Programming for Personal Expression.”
Accessed from https://download.scratch.mit.edu/CreativeCoding.pdf.

Pettiway, Keon. 2012. “The New Media Programme: Computational Thinking in Graphic Design
Practice and Pedagogy.” Journal of the New Media Caucus.

Philadelphia Education Research Consortium. 2014. “Blended Learning - Defining Models and
Examining Conditions to Support Implementation.”

 124

Post, Leda Van Der. 2010. “A Computing Studio Method for Teaching Design Thinking.” Nelson
Mandela Metropolitan University.

Poulin, Richard. 2011. The Language of Graphic Design: An Illustrated Handbook for Understanding
Fundamental Design Principles. Rockport Publishers.

Prediger, Susanne, Gravemeijer, Koeno & Confrey, Jere. 2015. “Design Research with a Focus on
Learning Processes: An Overview on Achievements and Challenges.” ZDM - Mathematics
Education 47 (6): 877–891.

Radošević, Danijel, Orehovački, Tihomir & Lovrenčić, Alen. 2009. “New Approaches and Tools in
Teaching Programming.” Ceciis ’09, no. September: 49–57.

Reed, David & Davies, Joel. 2006. “The Convergence of Computer Programming and Graphic Design.”
Journal of Computing Sciences in Colleges 21 (3): 179–187.

Reichardt, Jasia & Institute of Contemporary Arts. 1969. Cybernetic Serendipity: The Computer and the
Arts. 1st Edition. Praeger.

Reimer, Yolanda J. & Douglas, Sarah A. 2003. “Teaching HCI Design With the Studio Approach.”
Computer Science Education 13 (3): 191–205.

Reiser, Robert A. & Dempsey, John V. 2007. Trends and Issues in Instructional Design and Technology.
2nd ed. Prentice-Hall, Inc.

Repenning, Alexander. 2017. “Moving Beyond Syntax: Lessons from 20 Years of Blocks Programing in
AgentSheets.” Journal of Visual Languages and Sentient Systems 3.

Resnick, Mitchel, Myers, Brad A., Nakakoji, Kumiyo, Shneiderman, Ben, Pausch, Randy, Selker, Ted &
Eisenberg, Mike. 2005. “Design Principles for Tools to Support Creative Thinking.” In Proceedings
of the Workshop on Creativity Support Tools.

Richardson, Andrew Grant. 2006. “New Media, New Craft?” In SIGGRAPH Boston 2006: Electronic Art
and Animation Calalogue, 157–159.

Richardson, Andrew Grant. 2010. “Truth to Material: Moving from Software to Programming Code as a
New Material for Digital Design Practice.” University of Sunderland.

Richardson, Andrew Grant. 2016. Data-Driven Graphic Design: Creative Coding for Visual
Communication. Bloomsbury Academic.

Rittel, Horst W. J. & Webber, Melvin M. 1973. “Dilemmas in a General Theory of Planning.” Policy
Sciences 4 (2): 155–169.

Rockinson-Szapkiw, Amanda J., Courduff, Jennifer, Carter, Kimberly & Bennett, David. 2013.
“Electronic versus Traditional Print Textbooks: A Comparison Study on the Influence of
University Students’ Learning.” Computers & Education 63 (April): 259–266.

Rogerson, Christine & Scott, Elsje. 2010. “The Fear Factor: How It Affects Students Learning to
Program in a Tertiary Environment.” Journal of Information Technology Education: Research 9 (1):
147–171.

Ross, Rockford J. & Grinder, Michael T. 2002. “Hypertextbooks: Animated, Active Learning,
Comprehensive Teaching and Learning Resources for the Web.” In Software Visualization, Lecture
Notes in Computer Science, Vol 2269, edited by S. Diehl, 269–283. Springer.

Rossum, Just Van & Blokland, Erik Van. 1990. “FontShop | FF Beowolf.” Accessed from
https://www.fontshop.com/families/ff-beowolf.

Roth, Susan. 1999. “The State of Design Research.” Design Issues 15 (2): 18–26.

Rubin, Marc J. 2013. “The Effectiveness of Live-Coding to Teach Introductory Programming.” In
Proceeding of the 44th ACM Technical Symposium on Computer Science Education - SIGCSE ’13,
651–656.

Rushkoff, Douglas. 2010. Program or Be Programmed: Ten Commands for a Digital Age. 1st Edition. OR
Books.

 125

Ryan, Richard M. & Deci, Edward L. 2000. “Intrinsic and Extrinsic Motivations: Classic Definitions and
New Directions.” Contemporary Educational Psychology 25 (1): 54–67.

Schneider, Michael G. 1978. “The Introductory Programming Course in Computer Science – Ten
Principles.” In Papers of the 9th SIGCSE/CSA Technical Symposium on Computer Science Education,
107–114. ACM Press.

Schön, Donald A. 1983. The Reflective Practitioner: How Professionals Think in Action. 1st Edition. Basic
Books.

Schön, Donald A. 1987. Educating the Reflective Practitioner: Toward a New Design for Teaching and
Learning in the Professions. 1st Edition. Wiley.

Scott, Terry & Ursyn, Anna. 2006. “A Web Design Course Team Taught by Professors in Art and
Computer Science.” Journal of Computing Sciences in Colleges 22 (1): 205–210.

Shaffer, David Williamson. 2007. “Learning in Design.” In Foundations for the Future in Mathematics
Education, edited by R.A. Lesh, J.J. Kaput, and E. Hamilton, 99–126. Lawrence Erlbaum Associates.

Shannon-Baker, Peggy. 2016. “Making Paradigms Meaningful in Mixed Methods Research.” Journal of
Mixed Methods Research 10 (4): 319–334.

Shiffman, Daniel. 2012. The Nature of Code. Self-published.

Shiffman, Daniel. 2018. Learning to Teach 2018 – Daniel Shiffman. School for Poetic Computation.

Shim, Kyuha. 2016a. “Computation for Graphic Designers.” Medium. Accessed from
https://medium.com/@qshim/computation-for-graphic-designers-23629ec63dc0.

Shim, Kyuha, ed. 2016b. GRAPHIC #37: Introduction To Computation. GRAPHIC. Propaganda Press.

Simon, Beth, Kohanfars, Michael, Lee, Jeff, Tamayo, Karen & Cutts, Quintin. 2010. “Experience Report:
Peer Instruction in Introductory Computing.” In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education – SIGCSE ’10, 341–345. ACM Press.

Smith, Annabel, Young, Robert A. & Raeside-Elliot, Fiona. 2015. “Teaching Business Concepts Using
Visual Narrative.” In Proceeding of the 3rd International Conference for Design Education
Researchers, 1552–1568.

Sorva, Juha, Karavirta, Ville & Malmi, Lauri. 2013. “A Review of Generic Program Visualization Systems
for Introductory Programming Education.” ACM Transactions on Computing Education 13 (4): 1–
64.

Stager, Gary S. 2001. “Constructionism as a High-Tech Intervention Strategy for At-Risk Learners.” In
National Educational Computing Conference, “Building of the Future,” 1–11.

Sterling, Bruce. 2012a. “An Essay on the New Aesthetic.” WIRED. Accessed from
https://www.wired.com/2012/04/an-essay-on-the-new-aesthetic/.

Sterling, Bruce. 2012b. “Generation Generator (New Aesthetic).” WIRED. Accessed from
https://www.wired.com/2012/04/generation-generator-new-aesthetic/.

Stevenson, D. E. 2001. “Problem-Based Learning Applied to Programming Instruction.” In Submitted to
SIGCSE 2001.

Stinson, Elizabeth. 2017. “John Maeda: If You Want To Survive In Design, You Better Learn To Code.”
WIRED. Accessed from https://www.wired.com/2017/03/john-maeda-want-survive-design-better-
learn-code.

Stiny, George. 2001. “When Is Reasoning Visual?”

Stolterman, Erik. 2008. “The Nature of Design Practice and Implications for Interaction Design
Research.” International Journal of Design 2 (1): 55–65.

Stoop, Judith, Kreutzer, Paulien & Kircz, Joost G. 2013. “Reading and Learning from Screens versus
Print: A Study in Changing Habits (Part 1).” New Library World 114 (9/10): 371–383.

 126

Sutton, Ken & Williams, Anthony. 2010. “Implications of Spatial Abilities on Design Thinking.” In
Design Research Society International Conference.

Takemura, Yasuhiro, Nagumo, Hideo, Huang, Kuo Li & Tsukamoto, Hidekuni. 2008. “Assessing the
Learners’ Motivation in the E-Learning Environments for Programming Education.” In Advances in
Web Based Learning - ICWL 2007, edited by H. Leung, F. Li, and Q. Li, 4823 LNCS:355–366.
Springer.

Tashakkori, Abbas & Teddlie, Charles. 2010. Sage Handbook of Mixed Methods in Social & Behavioral
Research. SAGE Publications.

Teddlie, Charles & Tashakkori, Abbas. 2009. Foundations of Mixed Methods Research. Foundations of
Mixed Methods Research. SAGE Publications.

Tedre, Matti, Malmi, Simon & Malmi, Lauri. 2018. “Changing Aims of Computing Education: A Historical
Survey.” Computer Science Education 28 (2): 158–186.

Terzidis, Kostas. 2009. Algorithms for Visual Design Using the Processing Language. 1st Edition. Wiley.

Tew, Allison Elliott & Guzdial, Mark. 2010. “Developing a Validated Assessment of Fundamental CS1
Concepts.” In Proceedings of the 41st ACM Technical Symposium on Computer Science Education -
SIGCSE ’10, 97–101.

Tober, Brad. 2011. “New Tools of the Trade: An Exploration of Interactive Computational Graphic
Design Processes.” York University, Toronto, Canada.

Tober, Brad. 2012a. “Creating with Code: Critical Thinking and Digital Foundations.” In Mid-America
College Art Association Conference 2012 Digital Publications, Paper 16.

Tober, Brad. 2012b. “Making the Case for Code: Integrating Code-Based Technologies into
Undergraduate Design Curricula.” In Catch22: Eighth Annual UCDA Design Education Summit
Abstracts & Proceedings, 224–229. University & College Designers Association, Smyrna, TN, USA.

Tober, Brad. 2013. “Text: Keeping the Balance: Copyright, Plagiarism, and Creative Code in the
Classroom.” Art + Copyright. Accessed from http://artcopyright.interartive.org/copyright-
plagiarism-creative-code/.

Tober, Brad. 2014. “Creative Code in the Design Classroom - Preparing Students for Contemporary
Professional Practice.” In An Illinois Sampler: Teaching and Research on the Prairie, edited by
Mary-Ann Winkelmes, Antoinette Burton, and Kyle Mays, 1st ed. University of Illinois Press.

Tober, Brad. 2017. “Teaching for the Design Singularity: Toward an Entirely Code-Based Design
Curriculum.” In Teaching Computational Creativity, edited by Michael Filimowicz and Veronika
Tzankova, 1st ed. Cambridge University Press.

Tomayko, James E. 1991. “Teaching Software Development in a Studio Environment.” In Proceedings
of the 22nd SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’91, 23:300–
303.

Tucker, H. A. 1988. “Desktop Publishing.” In Advances in Computer Graphics III, edited by Maurice M.
de Ruiter, 293–322. Springer-Verlag.

Tzankova, Veronika & Filimowicz, Michael. 2017. “Introduction: Pedagogies at the Intersection of
Disciplines.” In Teaching Computational Creativity, edited by Michael Filimowicz and Veronika
Tzankova, 1st ed., 1–17. Cambridge University Press.

Ulrich, Karl T. 2006. “Aesthetic in Design.” In Design: Creation of Artifacts in Society, 1st ed. Pontifica
Press.

Ursyn, Anna, Scott, Terry, Hobgood, Benjamin R. & Mill, Lizette. 1997. “Combining Art Skills with
Programming In Teaching Computer Art Graphics.” Computer Graphics August: 60–61.

Vantomme, Jan. 2012. Processing 2 : Creative Programming Cookbook. Packt Publishing Ltd.

Victor, Bret. 2012. “Learnable Programming: Designing a Programming System for Understanding
Programs.” Accessed from http://worrydream.com/LearnableProgramming/.

 127

Vihavainen, Arto, Paksula, Matti & Luukkainen, Matti. 2011. “Extreme Apprenticeship Method in
Teaching Programming for Beginners.” In Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education - SIGCSE ’11, 93–98.

Walsh, Gemma. 2016. “Screen and Paper Reading Research – A Literature Review.” Australian
Academic and Research Libraries 47 (3): 160–173.

Warburton, Chantelle. 2017. “An Evaluation of Blended Learning for Critical Reflection in Graphic
Design Higher Education.” Durban University of Technology.

Ward, Adrian. 2001. “Life & Oblivion.” In Generative Design: Beyond Photoshop, 66–81. Friends of ED
Ltd.

Wasco, Al. 2008. “Teaching Design, Teaching Technology: Time to Rethink Our Approach.” In
Massaging Media 2 Conference.

Watz, Marius. 2003. “Teaching - Computational Design and Generative Art.” Accessed from
http://workshop.evolutionzone.com/old/.

Watz, Marius. 2010. “Closed Systems: Generative Art and Software Abstraction.” In MetaDesign, edited
by Lab[au]. Les Presses du Réel.

Watz, Marius, Chayka, Kyle, Minard, Jonathan, Borenstein, Greg, George, James & McDonald, Kyle.
2012. “In Response To Bruce Sterling’s ‘Essay On The New Aesthetic.’” The Creators Project.
Accessed from http://www.thecreatorsproject.com/blog/in-response-to-bruce-sterlings-essay-on-
the-new-aesthetic.

Webb, Noreen M. 1985. “Cognitive Requirements of Learning Computer Programming in Group and
Individual Settings.” AEDS Journal 18 (3): 183–194.

Weinman, Lynda. 2001. “Education of a Digital Designer.” In The Education of an E-Designer, edited by
Steven Heller, 60–62. Allworth Press.

Wick, Rainer K. 2000. “Teaching at the Bauhaus.” Hatje Cantz Publishers. Accessed from
https://www.bauhaus.de/en/das_bauhaus/45_unterricht/.

Williams, Laurie, Kessler, R.R., Cunningham, Ward & Jeffries, Ron. 2000. “Strengthening the Case for
Pair Programming.” IEEE Software 17 (4): 19–25.

Willingham, Daniel T., Hughes, Elizabeth M. & Dobolyi, David G. 2015. “The Scientific Status of
Learning Styles Theories.” Teaching of Psychology 42 (3): 266–271.

Willis, Holly. 2007. “Toward an Algorithmic Pedagogy.” Fibreculture Journal, no. 10.

Wing, Jeannette M. 2006. “Computational Thinking.” Communications of the ACM 49 (3): 33–35.

Wing, Jeannette M. 2008. “Computational Thinking and Thinking about Computing.” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366
(October): 3717–3725.

Wing, Jeannette M. 2014. “Computational Thinking Benefits Society.” Social Issues in Computing:
40th Anniversary Blog. Accessed from
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html.

Wing, Jeannette M., Cuny, Jan & Snyder, Larry. 2010. “Demystifying Computational Thinking for Non-
Computer Scientists.” Unpublished Manuscript.

Winograd, Terry. 1990. “What Can We Teach About Human-Computer Interaction?” In CHI ’90
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 443–449. ACM.

Womack, David & Lehni, Jürg. 2006. “Tools to Make or Break.” Eye Magazine 60.

Xu, Dianna, Blank, Doug & Kumar, Deepak. 2008. “Games, Robots, and Robot Games: Complementary
Contexts for Introductory Computing Education.” In GDCSE ’08 Proceedings of the 3rd
International Conference on Game Development in Computer Science Education, 66–70. ACM.

 128

Xu, Dianna, Greenberg, Ira, Kumar, Deepak & Wolz, Ursula. 2016. “Creative Computation for CS1 and
K9-12.” In Envisioning the Future of Undergraduate STEM Education: Research and Practice
Symposium (AAAS EnFuse), 1–6.

Xu, Dianna, Wolz, Ursula & Greenberg, Ira. 2018. “Updating Introductory Computer Science with
Creative Computation.” In Proceedings of SIGCSE ’18, 167–172. ACM Press.

Young, David. 2001. “Why Designers Need To Learn Programming.” In Education of an E-Designer,
edited by Steven Heller, 64–67. Allworth Press.

Zarestky, Jill & Bangerth, Wolfgang. 2014. “Teaching High Performance Computing: Lessons from a
Flipped Classroom, Project-Based Course on Finite Element Methods.” In 2014 Workshop on
Education for High Performance Computing, 34–41. IEEE.

Zee, Natalie. 2001. “The Design Technologist: Creating Interactive Experiences.” In The Education of an
E-Designer, edited by Steven Heller, 72–73. Allworth Press.

Zimmerman, John, Forlizzi, Jodi & Evenson, Shelley. 2007. “Research through Design as a Method for
Interaction Design Research in HCI.” In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems - CHI ’07, 493–502. ACM Press.

