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Abstract

To support the advancement of modern civilisation, our institutions of higher learning must produce
the right pool of professionals, who can develop innovative software. However, the teaching and
learning of the first programming language (CS1) remains a great challenge for most educators and
novice computer students. Indicators such as failure and attrition rates, and CS1 student engagement,
continue to show that conventional pedagogy does not adequately meet the needs of some beginning
CS students. For its ease in introducing novices to programming, Scratch—a visual programming
environment following the constructionism philosophy of Seymour Papert—is now employed even
in some higher education CS1 classes with mixed evidence of its impact. Scratch captures the

constructionist agenda by its slogan: “Imagine, Program, Share.”

Therefore, this study explored the impart of using a constructionist Scratch programming pedagogy
on higher education CS1 students’ achievements. This study also sought to compare the impacts of
the two CS1 modes: the conventional class - involving textual programming language, lectures and
labs, and the constructionist Scratch inquiry-based programming class. It further aims to discover if
gender, academic level, age, prior programming, and visual artistic abilities moderate the effects of

programming pedagogy on students’ achievements.

To realize the study’s aims, the study employed a quasi-experimental pretest-posttest nonequivalent
groups design, involving four intact CS1 classes of polytechnic students (N = 418) in north-central
Nigeria. The investigation was conducted in phases: a pilot (n = 236) and main (n=182) studies lasting
two academic sessions, with each study comprising one experimental and one control group. In each
session, learning in both modes lasted for six weeks. In both studies, purposive sampling was
employed to select institutions, and selected institutions were randomly assigned to treatment groups.
Instruments employed included CS1 Student Profile Questionnaire (CSPROQ) and Introductory
Programming Achievement Test (IPAT). To strengthen the research design, | employed Coarsened
Exact Matching (CEM) algorithm—after conducting a priori power analysis—to generate matched
random samples of cases from both studies. Thus, research data employed in the analysis include:
from the pilot, 41 cases in each treatment group; from the main study, 42 cases in each treatment
group. Descriptive and inferential statistics were employed to find answers to research questions and
test the research hypothesis. Data from both studies satisfied the requirements for statistical tests
employed, i.e., t-test and ANCOVA. The alpha level used in testing hypotheses was p = 0.05. The
dependent variable is the IPAT post-test score, while the independent variables are treatment, gender,
age, academic achievement level, prior programming, and prior visual art. The covariate was the

IPAT pretest score. Statistical analyses were conducted using SPSS version 23.
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The t-test results from both pilot and main studies indicated that, both programming pedagogies had
significant effects on student IPAT scores, although the effect of the constructionist Scratch

intervention was higher.

Results from the one-way ANCOVA analysis of both pilot and main study data—while controlling
for students’ IPAT pretest scores—Yielded the same outcome: There was significant main effect of
treatment on students’ IPAT posttest scores, although the impact was moderate. Controlling for pre-
test scores, analysis of the main studies data yielded no significant main effects of: gender, age,
academic level, prior programming and prior visual artistic ability. The result from the main study
also reveals no interaction effect of treatment, gender, academic level, age, prior programming, and

prior artistic ability.

While the quality of CS1 students’ performance in each session varies as their IPAT achievements
show, yet the results of this research revealed a consistent pattern: Students in the constructionist

Scratch class outperformed those in the conventional class, although the impart was moderate.

This finding implies college students without prior programming experience can perform better in a
class following a constructionist Scratch programming pedagogy. The study recommends the use of
Scratch, following a constructionist pedagogy with first-year students in colleges, especially those

without prior background in programming.

Keyword: Scratch; constructionism; blocks-based programming environment; introductory

programming; Coarsened Exact Matching; quasi-experiment.
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Chapter 1
1 The CS1 Problem

“The most disastrous thing that you can ever learn is your first programming language” — Alan Kay

“One of the central topics in computing education research (CEdR) is the exploration of how a person

learns their first programming language..” (Robins, 2019, p. 327)

This chapter presents the background to the study, the statement of the problem, the research
questions as well as the hypotheses tested in the study. This is followed by the contributions of the
study and the outline of the rest of the thesis. The chapter ends with definitions of terms to give

operational meanings to some words used in the thesis.

1.1 Background of the Study

The ability to develop programs for Information and Communication Technology (ICT) devices and platforms
is a highly priced skill (Boljat et al., 2019; Pérez-Marin et al., 2020). Such knowledge enables professionals to
provide software solutions in a world increasingly dependent on automation and innovation. That dependence
makes software “drivers” on various platforms which modern life revolves, such as mobile phones, cloud
computing, the web, personal computers, social networks, transportation systems, banking systems, healthcare
systems, electricity grids, military installations, etc. Therefore, availability of programming knowledge has
become critical for continued development of modern societies. The increasing realization of the economic,
social, political, and technological impacts of software and ICT continues to drive the demand for software
developers. This rising employment prospect is taking place amid a rising global unemployment (International
Labour Office & International Labour Organisation, 2017). For instance, by 2024 this category of IT
professionals will be among the fastest growing jobs in the USA (Bureau of Labor Statistics, 2017) as citizens
continue to demand for services requiring mobile computing, cloud computing, big data analytics as devices
are being added. For these reasons, the USA, governments in developed, emerging and developing countries,
and private organizations are campaigning rigorously to motivate more students to study computing (Rubio et
al., 2015)

However, the journey to gaining such programming ability for the numerous students (and, of course, their
teachers) is burden with many difficulties and disappointments from first course, popularly called Computer
Science one (CS1). The experience of many teachers and the impression novice computing students have, is
that, learning programming is hard (Robins, 2019; Sharmin, 2021). Global average failure rate of students in
CS1 stands at about 30% (Bennedsen & Caspersen, 2019; Falkner & Sheard, 2019). This suggests 3 students
in a class of ten fails their CS1. That appears not to be “alarmingly” high, however, because many computer
science educators in various countries are witnessing much higher failure rates, than the estimate provided by
Bennedsen and Caspersen (2019) —a fact Robins (2019) referred to —the CS1 problem is not going away from
computer science education research discourse. For instance, Chetty and Barlow-Jones (2014) reported that
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60% of students in a South African university failed their CS1 after six months of teaching. Liénardy et
al.(2021) reported a higher failure rate of 70% for CS1 students in Belgium University. While many students
struggle through their program of study and lack the expected level of programming ability at the end, others
drop out from the program, although they started with great enthusiasm. Bennedsen and Caspersen (2019) in
their article aimed at correcting what they perceived as wrong notion that CS1 failure rate is high, admitted,
“It appears that introducing students to computing is still one of computing education’s grand challenges
and that we as a community have a huge challenge in developing more inclusive and effective learning

environments and instructional methods for CS1.” (pg. 35).

Is this lacklustre picture of students’ performance in CS1 different in Nigeria? To answer this question, |
gathered CS1 assessments from three polytechnics located in the North central Nigeria. Data gathered are
presented in Tables 1, 2 and 3. | observed in the available results from the three institutions that students’
continuous assessment scores were high while most of these students fail the final examination. Amidst
widespread examination malpractices in Nigeria, institutions provide better watch on examinations than
continuous assessments (CA), which usually consist of marks from tests, projects, laboratory reports and
assignments where students’ works are less stringently supervised. In Nigerian polytechnics, the CA accounts
for 40% while the final examination accounts for 60% of the final marks. The recommended minimum pass
mark is 40% of the final score. However, to take care of margin of errors introduced into final score through
irregularities on the part of the students and the lecturers’ bonus marks in case of mass failures, which is usually

the case with CS1, | used 50% as the pass mark.

Table 1-1 shows the available data from Federal Polytechnic Bida (FPB). The results show failure rates for the

four sessions reported were 58.8%, 66.7%, 58.3%, and 28.3%, giving an average failure rate of 53.5%.

Table 1-1 Federal Polytechnic Bida Students Performance in CS1

Session No. of Students Scored Scored Scored Scored Scored Clear Poor (?)
Examined 80 and 70 and 50 and bet. 40 less Pass or
above above above and49 than 40 Failed
No. No No No. No. No. No.
(%) (%) (%) (%) (%) (%) (%)
3 6 14 17 3 14 20
2003/2004 34 88) (177)  (412) (500) (88)  (412) (58.8)
0 4 25 20 30 25 50
20062007 75 0.0)  (53)  (333) (267) (400) (333) (66.7)
1 3 30 28 14 30 42
2007/2008 72 (1.4) 4.2 (41.7) (38.9) (19.4) (41.7) (58.3)
0 5 29 24 12 29 36
20082009 65 00) (7.7)  (446) (369) (185) (446) (55.)
3 14 43 10 7 43 17

2011/2012 60 (50)  (233) (7L.7) (167) (1L7)  (7L7) (283)

SOURCE: Dept. of Computer Science, Federal Polytechnic, Bida. Nigeria, 2015
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Table 1-2 presents the performance of CS1 students from Federal Polytechnic Nasarawa (FPN). Though FPN
is in Nasarawa State, it is situated in the same region in central Nigeria as FPB (see Figure 1-1). The result
shows that for the six sessions reported students’ failure rates were 69.8%, 82.2%, 44.2%, 46.3%, 48.3% and
27.7%. The average failure rate for the six session was 53.1% just about same performance with students of

FPB where average failure rate was 53.5%.

Table 1-2 Federal Polytechnic Nasarawa Students’ Performance in CS1

Session No. of Scored Scored Scored Scored  Scored Clear Poor
Students 80 and 70 and 50 and bet. 40 less Pass (? or

Examined above above above and 49 than 40 Failed

No. No No No. No. No. No.

(%) (%) (%) (%) (%) (%) (%)

2006/2007 96 1 4 29 49 18 29 67
(1.0 (4.2) (30.2) (51.0) (18.8) (30.2) (69.8)

2007/2008 152 0 2 27 63 62 27 125
(0.0 (1.3) (17.8) (41.4) (40.8) (17.8) (82.2)

2008/2009 95 2 5 53 30 12 53 42
(2.1) (5.3) (55.8) (31.6) (12.6) (55.8) (44.2)

2009/2010 136 0 3 73 52 11 73 63
(0.0 (2.2) (53.7) (38.2) (8.1) (53.7) (46.3)

2010/2011 87 0 0 45 36 6 45 42
(0.0 (0.0) (51.7) (41.4) (6.9) (51.7) (48.3)

2012/2013 159 0 5 115 23 21 115 44

(0.0) (3.1) (72.3) (14.5) (13.2) (72.3)  (27.7)
SOURCE: Dept of Computer Science, Federal Polytechnic, Nasarawa. Nigeria, 2015.

Interestingly, the failure rate for 2013 was the lowest. To probe further into the reason for this apparent
improvement, | went through the examination scores of this set of students and discovered that only 45 students
out of 159 that sat for the examinations scored 50% and above. This makes the success rate in the examination
to be 28.3%. This shows that the initial success rate of 72.3% is doubtful. This result was probably influenced
by grade inflation: The high Continuous Assessment (CA) marks for take-home assignments, tests and labs
awarded to the students. We can reasonably conclude with the available data that generally, students’

performance in CS1 is poor in this polytechnic.

Table 1-3 presents the available CS1 data from Niger State Polytechnic, Zungeru (NSPZ). The table shows
that failure rates for the six sessions reported were 49.1%, 63.8%, 50.4%, 41.7%, 68.9% and 70.7%. The
average failure rate for the six sessions was 57.4%. we can then conclude that performance of students from
this polytechnic is same as the two previous schools. However, NSPZ which happens to be a state government-
owned institution unlike FPN and FPB had some of the poorest performances in the sessions reported. State

institutions in Nigeria are often less well-funded or equipped unlike their federal counterparts.



Table 1-3 Niger State Polytechnic Zungeru Students’ Performance in CS1

Session No. of Scored Scored Scored  Scored Scored  Clear Poor (?)

Students 80 and 70 and 50 and between lessthan Pass or

Examined above above above 40 and 49 40 Failed

No. No No No. No. No. No.

(%) (%) (%) (%) (%0) (%) (%)

2005/2006 108 0 6 55 46 7 55 53
(0.0) (5.6) (50.9) (42.6) (6.5) (50.9) (49.1)

2007/2008 152 5 18 55 63 34 55 97
(3.3) (11.8) (36.2) (41.4) (22.4) (36.2) (63.8)

2008/2009 133 4 12 66 39 28 66 67
(3.0) (9.0) (49.6) (29.3) (21.1) (49.6) (50.4)

2010/2011 48 1 5 28 12 8 28 20
(2.1) (10.4) (58.3) (25.0) (16.7) (58.3) (41.7)

2011/2012 90 2 1 28 45 17 28 62
(2.2) (1.2) (31.1) (50.0) (18.9) (31.2) (68.9)

2012/2013 92 0 5 27 40 25 27 65
(0.0) (5.4) (29.4) (43.5) (27.2) (29.4) (70.6)

SOURCE: Dept of Computer Science, Niger State Polytechnic, Zungeru. Nigeria. 2015

Schoeman (2015) corroborates the incidence of high CS1 failures in South Africa, reported earlier by Chetty
and Barlow-Jones (2014). Schoeman’s findings are presented in Table 1-4. The two studies differ in research
subjects. Those of Chetty and Barlow-Jones (2014) were full-time university students while Schoeman (2015)
were students from an Open Distance Learning (ODL) university. The average pass rate for these eight sets of
CS1 students is 30.3%, indicating a failure rate of 69.7%. This higher failure rate compared to 60% found by
Chetty and Barlow-Jones (2014) may be due to the additional challenge of studying in an ODL university.

Table 1-4 CS1 Registration, pass rate, distinctions and dropout from University of South Africa

Normal* Number of

Pass Rate Distinctions Dropout

Percentage (Percentage of rate
Examination Registration Examination (Passed written in (Dropout /
Year Module Sitting Normal Normal /written  brackets)** Dropout Enroliment
Sitting Count***  Admitted Wrote*  Pass* %) Fkx %)
2011 Jun 2381 2183 1923 549 28.5% 198 (10%) 458 19.2%
2011 Nov 1457 1197 1191 346 29.1% 111 (9%) 266 18.3%
2012 Jun 2213 2061 1827 582 31.9% 197 (11%) 386 17.4%
2012 Nov 1528 1417 1267 352 27.8% 106 (8%) 261 17.1%
2013 Jun 1180 1083 988 337 34.1% 138 (14%) 192 16.2%
2013 Nov 1145 1020 920 276 30.0% 83 (9%) 225 19.7%
2014 Jun 976 889 809 258 31.9% 101 (13%) 167 17.1%
2014 Nov 1054 1017 894 263 29.4% 78 (9%) 160 15.1%

(Legend: * — The term ‘Normal’ refers to students who were registered for the specific semester. ** — The
percentage of students who wrote the examination and obtained distinctions appears in brackets after the
number of distinctions. *** — ‘Dropout’ refers to students who were registered at the end of the semester but
did not write the examination. It does not include cancellations, which will raise the dropout rate considerably
when taken into account.) Similarly, ‘Registration Module Count’ indicates the number of students still
registered by the end of the semester and therefore excludes cancellations.

SOURCE: Extract from Schoeman (2015, p. 4)
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The impression from the above studies and other research in the literature is clear: the problem of learning and
teaching programming to novice undergraduates is widespread. For this reason, the problem remains one of
the grand challenges of computer science education (Bruce, 2018; McGettrick et al., 2005). This makes this

study a significant research endeavour.

Several reasons have been identified for this high failure rate in CS1. These include but not limited to, incorrect
mental models, or misconceptions that students bring into the CS1 class (Qian & Lehman, 2017), a fixed
mindset that believes that the ability to learn programming is inborn, even among students who were high
achievers before enrolment (Scott & Ghinea, 2014); stereotypical belief, especially among women and men
who see computing or IT as a male’s field (Rubio et al., 2015); poor or weak mathematics background (Qian
& Lehman, 2017)

Proponents of Scratch, a visual Educational Programming Language (EPL), claimed that the program could
make the introduction of programming concepts to novice students easy (Maloney et al., 2010; Resnick et al.,
2009). It reduces the cognitive load on novice students since they do not have to grapple with syntax errors in
their programs. In addition, students construct programs by using multimedia components such as text, audio,
videos, graphic images, or pictures that are of interest to the students. The initial vision of the authors of Scratch
was for after-school novice programming club members in the age range of 8 — 16 years (Maloney et al., 2008).
To address the problem of high failure rates and increase novice students engagement, introductory
programming classes (CSO or CS1) in some colleges and higher institutions now employ some forms of
Scratch instruction (Becker, 2019; Cardenas-Cobo et al., 2021; Hijon-Neira et al., 2021; Malan & Leitner,
2007; Papadakis & Kalogiannakis, 2019; Tijani et al., 2020; Topalli & Cagiltay, 2018)

To the best of my knowledge, at the beginning of this research, no empirical study of this scale involving CS1
students in post-secondary institution has been undertaken in Nigeria. The study took place within two sessions
(2015-2016) in four Nigerian polytechnics involving five cohorts of CS1 students. Therefore, the aim of this
study is to assess the impact of a constructionist Scratch programming instruction on the achievements of first-

year computer science in programming in some Nigerian polytechnics.

1.2 Statement of Problem

The predominant programming languages of choice in most CS1 classes are, textual programming languages.
Examples of such include Java, Python, Visual Basic, and C#. In these languages, the students must master
the syntax and semantics of some programming statements and write programs in words. Prior research
suggests that learning and using correct programming language syntax adds to the cognitive load of novice
students (Medeiros et al., 2019; Sands, 2019).

To address this problem, Scratch, a visual programming language, has been suggested as an easier alternative
language for introducing novice students to programming (Carlos Begosso et al., 2020; Pérez-Marin et al.,

2020; Tijani et al., 2020). However, the following gaps exist:
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o While there is extensive research on impact of Scratch programming environment on novice students,
most of these studies are limited to K-12 (i.e. primary and secondary) schools, and informal settings

like after-school computer clubs. However, gaps exist of its impact on undergraduate CS1 students

e There is need for research on the suitability, acceptance and effectiveness of Scratch in higher
education CS1 classes (Arpaci et al., 2019).

e Though Scratch was born out of Seymour Papert’s Theory of constructionism, Scratch classes as
reported in most studies are hardly constructionist. They are pre-eminently lecture-based in nature

thereby failing to explore fully the idea behind the program.

¢ In addition, while Scratch has been used and investigated in other countries, it has, to the best of my
knowledge, never been used nor its impact investigated in Nigerian higher education CS1 classes,
except for a recent study by Tijani et al.(2020) involving preservice student teachers.
In the light of prior research, the argument of this thesis is that exposing novice CS1 undergraduates to
programming in a constructionist Scratch class will lead to positive affective and cognitive achievement
in programming. The reasons for such improvement | suspect, are due to these factors:
e Low barrier to programming that Scratch affords
e Low cognitive load during programming
¢ Increased motivation in a constructionist programming class
¢ Increased engagement with programming artefacts of interest
¢ Increased self-efficacy. Self-efficacy has been reported to correlate with programming success in
CS1.
e Positive change in attitude towards programming
e Connecting with student’s interests or values.
e Collaborative atmosphere in a constructionist class
e Opportunities for experimentation, tinkering and bricolage that such class engenders.
Therefore, the problem of this study is whether exposing a novice undergraduate computer science student to
programming following a constructionist pedagogy in a Scratch programming class, results in any meaningful
learning, and whether such learning is comparatively better than what same or similar students learn in a
traditional class. In addition, the problem is, whether learning in a constructionist CS1 class is moderated by
these variables: gender, age, prior programming experience, prior visual art experience and academic

achievement level.

The aim of this study, therefore, is to assess the impact of a Scratch programming class on polytechnic

computer science students’ achievements in introductory programming.



1.3 Research Questions

The following research questions guided the study:

1

Is there a significant difference between the pre and post Introductory Programming Achievement

Test Scores of first-year polytechnic CS students, after a six-week Scratch programming instruction?

Is there a significant difference in terms of Introductory Programming Achievement Test Scores

between first-year polytechnic CS students in a Scratch programming class and those in the

conventional class?

Under what conditions will learning programming with Scratch have an effect on the Introductory

Programming Achievement Test Scores of first-year polytechnic CS students compared to learning in

conventional class?

3.1.

3.2.

3.3.

3.4.

3.5.

Will gender have an effect on the Introductory Programming Achievement Test scores of first-
year polytechnic CS students between those in a Scratch class and those in the conventional class?
Will academic background have an effect on the Introductory Programming Achievement Test
scores of first-year polytechnic CS students between those in a Scratch class and those in
conventional class?

Will prior programming experience have an effect on the Introductory Programming
Achievement Test scores of first-year polytechnic CS students between those in a Scratch class
and those in conventional class?

Will prior visual art experience have an effect on the Introductory Programming Achievement
Test scores of first-year polytechnic CS students between those in a Scratch class and those in
conventional class?

Will gender, age, academic background, prior programming experience and prior visual art
have effect on the Introductory Programming Achievement Test scores of first-year polytechnic

CS students between those in a Scratch class and those in the conventional class?



1.4 Research Hypotheses

The following null hypotheses in Table 1-5 were tested at the 0.05 level of significance in the study:

Table 1-5 Research Hypothesis

Research Hypotheses Research Study

Hol: There is no significant difference A paired sample t test
between the mean scores of the pre- and
post- Introductory Programming
Achievement Test (IPAT) of first-year
polytechnic CS students, after a six-week
Scratch programming instruction.

Hol: Haiff = 0
Hal: Maire 7 0

Where Wdift = Hposttest - Mpretest

Ho2: There is no significant difference in the | A one-way between-groups Analysis of Covariance.
mean scores of the post Introductory

Programming Achievement Test (IPAT) of | Variables:
first-year polytechnic CS students in a Independent Variable: CS1 instruction
constructionist Scratch class (experimental (Constructionist Scratch vs Conventional)

group) and those in the conventional class )

pretest scores. Covariates: Pretest
Or

Ho2:lsc = Pee
Ha2:Usc # pec

( SC —Scratch Class

CC - Conventional Class)

H.3: Gender has no effect on the mean scores | A two-way between-groups Analysis of Covariance.
of the post Introductory Programming
Achievement Test (IPAT) of first-year
polytechnic CS students in a constructionist | |ndependent Variable(IV) :
Scratch class (experimental group) and those

Variables:

in the conventional class (control group), Primary 1V: CS1 instruction (Constructionist Scratch
while controlling for their pretest scores. vs Conventional )

Ho3:Hm = Hr Secondary 1V: Gender (male, female)

Ha3:Hm # e Dependent Variable: Posttest scores.

M - Male Covariates: Pretest

F — Female




Hq4: Age has no effect on the mean score of
the post Introductory Programming
Achievement Test (IPAT) of first-year
polytechnic CS students in a constructionist
Scratch class (experimental group) and those
in the conventional class (control group),
while controlling for their pretest scores.

Hod:Hag1 = Hagz Hags = Hags
Agl — Age 16-18

Ag2 — Age 19-21

Ag3 — Age 22-24

Ag4 — Age above 24

A two-way between-groups analysis of covariance
Variables:
Independent Variable (1V) :

Primary IV: CS1 instruction (Constructionist Scratch
vs Conventional )

Secondary 1V: Age (16-18, 19-21, 22-24, Above 24)
Dependent Variable: Posttest scores.

Covariates: Pretest

Ho5: Academic background has no effect on
the mean score of the post Introductory
Programming Achievement Test (IPAT) of
first-year polytechnic CS students in a
constructionist Scratch class (experimental
group) and those in the conventional class
(control group), while controlling for their
pretest scores.

HoS:HH = Ha= L
H- High-achieving
A — Average-achieving

L — Low-achieving

A two-way between-groups analysis of covariance
Variables:
Independent Variable (1V):

Primary IV: CS1 instruction (Constructionist Scratch
vs Conventional)

Secondary 1V: Academic Background (High,
Average, Low)

Dependent Variable: Posttest scores.

Covariates: Pretest

Ho.6: Prior programming experience has no
effect on the mean score of the post
Introductory Programming Achievement
Test (IPAT) of first-year polytechnic CS
students in a constructionist Scratch class
(experimental group) and those in the
conventional class (control group), while
controlling for their pretest scores.

Hob:pnp = Hsp
NP- No Prior Programming Experience

SP- Some Prior Programming Experience

A two-way between-groups Analysis of Covariance.
Variables:
Independent Variable(IV) :

Primary 1V: CS1 instruction (Scratch vs Conventional

)

Secondary 1V: Prior program writing (none, some)
Dependent Variable: Posttest scores.

Covariates: Pretest
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Ho7: Prior visual art experience has no effect
on the mean score of the post Introductory
Programming Achievement Test (IPAT) of
first-year polytechnic CS students in a
constructionist Scratch class (experimental
group) and those in the conventional class
(control group), while controlling for their
pretest scores.

Ho7:Unv = Hsv
NV- No Prior Visual Art Experience

SV- Some Prior Visual Art Experience

A two-way between-subject Analysis of Covariance.
Variables:
Independent Variable (1V):

Primary IV: CS1 instruction (Scratch vs
Conventional)

Secondary 1V: Prior visual art (none, some)
Dependent Variable: Posttest scores.

Covariates: Pretest

Ho8: Treatment,  Gender,  academic
background, prior programming experience
and prior visual art have no interaction on the
mean score of the post Introductory
Programming Achievement Test (IPAT) of
first-year polytechnic CS students in a
constructionist Scratch class (experimental
group) and those in the conventional class
(control group), while controlling for their pre-

test scores.

A two-way between-subject Analysis of Covariance.
Variables:
Independent Variable (1V):

Primary IV: CS1 instruction (Scratch vs
Conventional)

Secondary 1Vs: Gender, Age, Academic Background,
Prior Programming and Prior visual art

Dependent Variable: Posttest scores.

Covariates: Pre-test

1.5 The Scope of the Study

In this section, the boundaries of the study include:

- Concepts or topics to be covered in the intervention

- the geographical location of the study
- the study cases or samples

- the variables of interest

Concepts covered in the study are those taught in the first six weeks, of the first semester of first year studies

in Nigerian polytechnics, as contained in the National Board for Technical Education (NBTE) curriculum.

With the present lack of rigorous computer science education in the K-12 (primary and secondary) education

in Nigeria, many of these study cases, will be confronted in CS1 class with little or wrong ideas of these basic

concepts. Research findings also revealed that many of these topics are those which CS1 students grapple with
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(Medeiros et al., 2019). These topics include programming, program, algorithms, variables, initialization,

pseudo code, and control structures (i.e., sequence, selection, and iteration)

The study area was limited to Nigeria’s north central region otherwise called the Middle Belt. It is a region
made up of six states (Benue, Nasarawa, Niger, Kogi, Kwara, and Plateau) and Nigeria’s Federal Capital
territory. A quasi-experimental study was conducted in two federal and two state government-owned
polytechnics located in Nasarawa and Niger States generating research data from four cohorts of students (see
Figure 1-1).
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Figure 1-1 The Study Area in North Central Nigeria

1.6 Contributions of the Study

The result from the quantitative pre and post test data suggests a moderate impact on the students’
achievements. However, this moderate impact needs to be interpreted in the context of the short duration of
the exposure to Scratch, and educationally challenging situations of the environments of the study. The study
took place in resource-constrained environments. Such resources include computing devices and regular
electricity supply. Nevertheless, this study contributes to ongoing computer science education research, as

exploring ways of engaging novice computer science remains a grand challenge (Sharmin, 2021).

The global economy increasingly relies on IT to function. Hence, the demand for computing and IT
professionals is growing. Addressing the problem of CS1 with better pedagogical tools or approach, will likely
boost students’ interest and self-efficacy, provide important grounding in foundational programming concepts
and motivate them to continue in computer science studies. Thus, with this boost in students’ interest and

engagement, it is likely to lead improved success rate in CS1 and reduced number of dropouts. This will
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contribute greatly in meeting the current and future global need for IT work force. This study provides
empirical evidence of an engaging pedagogy, especially for novice students without prior programming

experience (Campbell & Atagana, 2022) .

This study further provides empirical evidence of Scratch impact on CS1 students programming achievement.
Thus, this research contributes to the global knowledge on the impact of Scratch programming as a
programming learning tool in higher institutions. The results from this research will add to the Pedagogical
Content Knowledge (PCK) of CS1 teachers intending to use or already using Scratch in their CS1 classes. This
is one worthwhile pursuit of computer science education research as computer science teachers’ PCK has been

found to correlate with their students’ content knowledge (McKlin et al., 2019)

This study contributes empirical evidence on the application of the constructionist approach to programming

education of novice CS1 students.

While this study did not find causality, it provides empirical evidence that prior programming experience
correlates with CS1 students programming achievement. Being so, and since some seeds of the problem or
advantage in CS1 are sown in prior education levels, this finding suggests the importance of exposing students

to programming education during primary and secondary school education.

1.7 The Outline of the Thesis
The next chapter presents results of review of scholarship on computing, computational thinking, novice
programming education, constructionism theory, constructionist programming learning, past studies on

Scratch in Higher Education CS1 classes and other related themes.

Chapter 3 provides the research blueprint as well as activities followed in addressing the research problem.
This consists of the research design, the sampling method, instruments, as well as the data collection techniques

and procedure employed in the study.
Chapter 4 presents the data analysis, presentations and interpretations of results, and discussions.

Chapter 5 presents the conclusions and recommendations of the study.

1.8 Definitions of Terms

The following definitions present their intended meanings in this thesis:

Achievement level: This is a derived variable. We used it to classify students based on their aggregate scores
in the Unified Tertiary Matriculation Examination and their final secondary school examination grades in three
compulsory subjects for admission into computer science. These subjects are physics, mathematics, and
English language. The achievement level index was computed automatically from the data supplied by the
students in the questionnaire. The index goes from 1 to 3, for low, average, and high achievement levels

respectively.
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Algorithm: This is a computational solution to a programming problem. It is a finite ordered list of steps that

solves a problem or for performing a task.

Algorithmic Thinking: It is the ability of a student to think logically to understand and solve computational

(or programming) problems.

Computational thinking: This is synonymous to algorithmic thinking. It is a regarded as one of the 21%

century skills needed by students to function in a globalized knowledge economy.

Constructionism: A theory of learning propounded by the South-African born American mathematician and
computer scientist Seymour Papert. Having worked with Jean Piaget, Papert took the former’s theory of
constructivism to another level by propounding that student not only construct their own knowledge, rather
than being spoon-fed by teachers, but also that they learn as they construct artefacts of interest in collaboration
with their peers. In a constructionist class the students take responsibility for their learning while the teachers

act as facilitators.

CSO0: The name given to the computer science course that novice students take prior to CS1. It is a remedial
or an appreciation course aimed at developing the novice students’ interest for further computer science

studies.

CS1: A label given globally by computer science educators to the first introductory programming course that
novice students are taught. It is a foundational course for fresh college or undergraduate students in computer

science and other fields.

Educational Programming Languages: These programming environments are developed mainly to
introduce novice programmers to programming. It provides a visual environment containing pictures and
graphics for creating program unlike the textual programming languages where words or numbers (i.e., text)

are used.

Novice programmers: these refer to those who are just learning to develop programs. These could be students
in K-12 (i.e., primary, and secondary school) or higher educational institutions such as universities, colleges,

or polytechnics.

Pedagogy: This refers to methods and manners teachers employ in the education of the learners in a particular
domain. It is the process of accompanying learners in the pursuit of education to acquire knowledge and skills

in such domain.

Programming: This is the process of developing programs or applications that drive automated devices such

as computers, phones, robots etc.

Programming Achievement: A measure (or the result of assessment) of student’s programming learning,
knowledge, conceptual understanding and skills or ability to write correct programming constructs or detect
programming errors. This is synonymous to programming aptitude or programming ability. In this study, a

language-independent assessment was adapted to measure this construct.



14

Programming Languages: These are codes in form of words, numbers, or icons (pictures or graphic symbols)

for writing programs, software or apps.

Prior Programming Learning: This is level of students’ exposure to computer programs in formal or informal
school settings. In this study prior programming learning was computed from participants answers to question
in the questionnaire asking whether they have learnt programming before. An index of 0 or 1 representing

none or some experience.

Prior Program Writing: This is level of students’ background in developing programs. Computed from a

participant’s questionnaire responses, it is an index of 0 or 1 representing none or some experience writing.

Scratch: A visual educational programming learning environment developed by MIT for introducing novice
programmers to programming concepts through the building of artefacts using multimedia components such

as pictures, audio, and video clips.

Textual programming: The traditional way of developing programs with the use of words and numbers to

forms statements (or instructions) in the program.

Visual Art Background: A level of students’ prior experience in developing creative arts such as games,
drawings, art works, video editing etc where their creativity leads to production of tangible artefacts in offline
and online contexts. Computed from a participant’s questionnaire responses, it is an index of 0 or 1 representing

none or some experience in visual arts.

Visual Programming: is a way of developing or building programs majorly with the use of icons, pictures, or

graphics as building blocks instead of words.



15
Chapter 2

2 Review of Literature

Chapter 1 has set the stage for exploring the impact of a constructionist Scratch instruction on the achievement
of students in their first programming course (CS1). This chapter situates the current study in historical and
ongoing global discourse. It also provides a theoretical and conceptual framework for the study. Other topics
covered in this review include concepts of computing, computational thinking, computer science education,
engaging computer science education, Scratch, learning theories, and the relationship between students’
gender, age, academic background, prior programming writing, prior visual artistic ability, and their

programming achievement. Simply put, the review will be done both theoretically and empirically.

2.1 Theoretical Review
2.2 Concept of Computing

Most people will agree that knowledge of computing is vital for life in modern societies. However, the question
is, what is computing? The answer is not an easy one; it means different things to different people (Aho, 2012).
The writers of current undergraduate ACM/IEEE computing curricula captures this problem of defining
computing thus: “Although computing as a discipline has been around for more than eighty years, many
population groups are still not clear about the subject area or what it means. The philosophy underpinning the
CC2020 report is to treat computing as a meta-discipline—a collection of disciplines having a central focus of

computing”(CC2020 Task Force, 2020). So the question remains, what is computing?

Denning and Martel (2015)—in their book, Great Principles of Computing—describe computing as not just “a
tool for analysing data but also as a method of thought and discovery” (p. 1). This suggests both the use as
well as the practice of computing as a field of knowledge. Association for Computing Machinery (ACM)
Computing curricula 2005 provides a concise but comprehensive definition of computing as “any goal-oriented
activity requiring, benefiting from, or creating computers” (ACM Computing Curricula, 2005, p. 9). This
definition divides individuals or societies into two groups: consumers and producers of computing
technologies. Yet, computing is such a hydra-headed and developing concept that probably no single definition
may describe it. Szentgyorgyi (1999) reiterated that idea when she opined that Information Technology (IT)

or computing “is not a state but is really a process, so IT is never ending unless it is interrupted.” (p. 57)

Denning and Martel (2015) outlined the historical origin of computing from the time Alan Turing and other
pioneers laid the foundations for the field in the 1930s. Before then, the terms “computation” and “computer”
were already in use. Computation referred to mechanical steps followed to execute mathematical functions
then while computers were human beings, mostly women, who did computations(Ceruzzi, 1991; Copeland,
2017; Denning & Martell, 2015). Erwig (2017) described computation simply as “a systematic way of
problem-solving” (p. viii). The vision of Turing and other pioneers was the development of a machine with
the capacity to perform automatic computation and to show intelligence, that is, Artificial intelligence (Al)

(Copeland, 2017; Denning & Martell, 2015). This need for automation and Al in modern society remains an
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active driving force behind the demands for education, research, and developments in computing (Wing, 2008).
In the next section, we will consider an aspect of this global drive for computing knowledge for all — popularly

called computational thinking.

2.3 The Concept of Computational Thinking

One indication of a worldwide awakening for computing knowledge in modern society is the global call for
computational thinking (Guzdial, 2015; Wing, 2017). Several authors have declared that computational
thinking is a required skill for living and working in this digital 21st-century society (Haseski et al., 2018;
Shute et al., 2017). While there is consensus on the need for students in K-16 (from primary to postsecondary)
education to be exposed to computational thinking, nevertheless, there is no widely accepted definition for the

concept.

In a 3-page viewpoint section in March 2006 edition of Communication of the Association for Computing
Machinery (CACM), Jeannette Wing declared her vision of computing knowledge for all (Wing, 2006).
Though she gave several definitions, analogies and anecdotes in that article to arouse widespread interest in
computing, the often-cited definition is: “Computational thinking involves solving problems, designing
systems, and understanding human behaviour, by drawing on the concepts fundamental to computer
science.”(Wing, 2006, p. 33). This definition appears far-reaching to have included the idea of the ability to
understand human behaviour in computational thinking. However, in the light of developments in
computational biology and artificial intelligence, Wing’s viewpoint coming after successful use of computing
in human genome sequencing in 2003, is understandable. From that 2006 article, it could be deduced that
computational thinking is a skill set, as well as a mindset involving fundamental computing ideas, that

everyone can acquire and apply to solve computational problems in any area of human endeavour.

Despite the emotional appeal and the manner with which (Wing, 2006) viewpoints on computational thinking
resonated with many, there were also criticisms of this modern perspective on the concept from some who held
a traditional view of CT (Denning, 2017; Hemmendinger, 2010). For instance, four years after Wing’s article,
Hemmendinger(2010) disagreed with some of the views expressed in that article, and adjudged them to be
over-reaching, ambiguous, and exaggerated the need for people from all walks of life to think like computer
scientists. The author, however, agreed that the use of computational thinking and methods of computing in
all fields empowers individuals beyond what is possible without such applications. Similarly, in the same
viewpoint section of Communication of the ACM, eleven years after the influential Wing’s article, Denning
(2017), in one of the most articulated and reasoned critiques of Wing and other modern conception of CT,
pointed out that their definition of CT was vague. In his view, this was the reason behind the confusion amongst
K-12 teachers who were in doubt about what constitutes the body of knowledge they are to teach in their

classes.

Borne out of continued questioning by many educators, research collaborations with other computing
educators, and in response to criticisms, Jeannette Wing has provided further definitions to clarify what she

meant in 2006 by computational thinking. Table 2-1 captures the development of Wing’s definition of
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computational thinking. You will observe her definitions of CT in 2006 and 2008 includes “understanding

human behaviour” — a thing that looks tangential. However, as she grew in her understanding of what CT s,

we observe that, that aspect of her initial conceptualisation is no longer included in subsequent definitions.

Table 2-1 Progression in Jeannette Wing’s Conceptualisation of Computational Thinking

Definition

“Computational thinking involves solving problems, designing systems, and
understanding human behaviour, by drawing on the concepts fundamental to
computer science.”

“Computational thinking is taking an approach to solving problems, designing
systems and understanding human behaviour that draws on concepts fundamental
to computing.”

“the thought processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively carried out by
an information-processing agent”

“Computational thinking is the thought processes involved in formulating a
problem and expressing its solution(s) in such a way that a computer-human or
machine—can effectively carry out.”

“Computational thinking is the thought processes involved in formulating a
problem and expressing its solution(s) in such a way that a computer-human or
machine—can effectively carry out.”

Source

(Wing, 2006, p. 33)

(Wing, 2008, p. 3717)

(Wing, 2010, p. 1)

(Wing, 2014, “What is
computational
thinking?”)

(Wing, 2017, p. 8)

Now for a look at definitions by other authors, there are several, but we will consider a definition developed

from a literature review, and another from a much extensive historical review. Selby and Woollard (2013)

conducted a review of literature on definitions of computational thinking. They developed criteria for an

acceptable definition and proposed a definition using the same terminologies found in the literature as stated

in Table 2-2. Two well-known professors in computing education wrote the second definition in Table 2-2,

taken from their book Computational Thinking. Denning and Tedre (2019) did a historical review of similar

terms for computational thinking in use from the 1950s by Alan Perlis, who referred to it as algorithmic

thinking, to Seymour Papert who in 1980 called it procedural thinking. In that book, they provided a historical

root or context as well as broader perspectives to the concept of computational thinking. This perspective,

according to Denning (2017) in his earlier critique of Wing’s definition, is the traditional view of computational

thinking while those of Wing and other similar definitions represent the modern view.
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Table 2-2 Definition of Computational Thinking by Other Authors

Definition Source

“Computational thinking is an activity, often product-oriented, associated (Selby & Woollard, 2013, p. 5)
with, but not limited to, problem-solving. It is a cognitive or thought
process that reflects the ability to think in abstractions, the ability to think
in terms of decomposition, the ability to think algorithmically, the ability
to think in terms of evaluations, and the ability to think in generalizations.”

“Computational thinking is the mental skills and practices for (Denning & Tedre, 2019, p. 17)
* designing computations that get computers to do jobs for us, and
* explaining and interpreting the world as a complex of information

processes.”

The following remarks could be made from the above conceptualizations of computational thinking in Table

2-1 and Table 2-2;

e There is no consensus on the definition of computational thinking, and there may be none anytime
soon. Itis a developing definition shaped by many forces at different moments in its history. (Denning

& Tedre, 2019; Selby & Woollard, 2013).

e Computational thinking deals with computational problems.

e Computational thinking produces solutions to these problems for a computing agent —man or machine

—to follow.

e Computational thinking employs some core concepts or “thoughts processes” derived from computer

science.

Apart from the definition of computational thinking, a question that has bothered researchers and educators is
- what are the thought processes that are core to computational thinking? The answer to this depends on what
perspective or definition anyone gives to the term. Therefore, as there are nuances in the definitions of
computational thinking, so there are various submissions in the literature on what constitutes the core concepts
or thought processes, that students need to learn while developing their computational thinking ability. Let us

consider what some authors identified as core to computational thinking in Table 2-3.



Table 2-3 Computational thinking Core Concepts

19

Concepts

“the most important and high-level thought process in computational
thinking is the abstraction process”

Abstractions,
generalizations.

decomposition,  algorithmic  thinking,  evaluations,

Logical thinking, algorithmic thinking, decomposition, generalisation and
pattern recognition, modelling, abstraction, evaluation.

Decomposition, abstraction, iteration and

generalization.

algorithms,  debugging,

“Skills of design and software crafting—for example, separation of concerns,
effective use of abstraction, devising notations tailored to one’s needs, and

Source
(Wing, 2017, p. 8)

(Selby & Woollard, 2013, p. 5)

(Beecher, 2017, p. 11)

(Shute et al., 2017, p. 151)

(Denning, 2017, p. 37)

avoiding combinatorically exploding case analyses.”

We can make the following deductions from these submissions:

e There is consensus that abstraction is key in computational thinking

e Decomposition, algorithmic thinking, and evaluation are also core concepts.

Amid unresolved questions and debates, as well as consensus bothering on the hot topic of computational

thinking, Denning (2017) - a veteran computer science educator who holds a traditional view of computational

thinking - provides an articulation of the comparisons and contrasts between the traditional view and the

modern view (Table 2-4).

Table 2-4 Traditional Versus Modern Perspectives on Computational Thinking (CT)

Traditbomal CT

MNaww CT

MMental habits and disciplines for designing
u=eful software

Formuilating problesmnms so that their solutions
can e exgpressed as computational steps

Extensvely practicing programming cultivates
CT as a skill set

CT is 8 concepiual framework that enables
Programrrsing

Skills of design and software crafing—for
exmrmple separation of comncerns, effective use
of abstractvon., devising notations tailored o
one's needs, amnd avoiding combinavoricallby
exploding case analyses

Set of problem solbving concepts such as
representation. divide-and-comnoguer, absorac-
on, mformation hiding., werification. and Logical
eSS SOrinGg

A neney weay of conductimng science, alomgside
the=ory amnd experiment—a rewolution in sciemncs

I=saful in sciemces amnd meost other fields

Algorithwns are directions to control 8 compu-—
tauional medel (absuract machine) o perform
= tash

Algorithms are expressions of recipas for car-
rying out tasks: no awareness of computational
muodels is needed

Frograms are tightly cowpled wwith algorithems;
programs are algoritfims expressed in a
computer Languaoge; algorithms derive their
precision from & computational model

Designing computstions in a domain requires
extensive dormain koww ledge

End wusears can follves algorithms amd get
the= result withowt any understanding of the
mischanismm

Frograms are loosely coupled with algorithrmes;
algorithim s are for all kinds of information
processors including humamns—it is completely
optional whether an algorithm will ever bea
translated ints 8 proograrm

Someone schooled im the principles of CT can
fimd computational solutions v problermes in amy
dormin

Feople engaging in anmy step-by-step procedure
are performing algoridhoms and are (perbaps
umnconsciowshy] thinking computational by

Engagimg im a comyputstional task withowt
EnErEnNa2ss is Nnot compuwutational thinkimg

Feople wiho are emngeging in amy @3sk that cowld
be performmed computationally are engaging in
subconscious computational thimking

Extract from: (Denning, 2017, p. 37)
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While both Traditional and Modern CT agrees on some common core concepts of computational thinking such
as abstraction, decomposition, and evaluation, they disagree in what domain these concepts can be applied.
The traditional view sees CT as a skill for developing software, the modern view sees it as a skill for developing
any computational solutions other than software. Both disagree on the relationship between programming
ability and computational thinking. The traditional view says programming will lead to the development of
CT, while the modern view sees learning or exercising CT as leading to programming ability. The question of
causality arises here. What causes what? Alternatively, one can ask, which one comes before which? It is like
the question - which comes before which, the chicken or the egg? Experimenting can provide answers to these
questions. However, the setup or design of the experiment will be determined by whichever view one holds.
Those who hold the traditional view are likely to expose students without prior computational thinking skills
to programming or software development instruction to test for computational thinking. On the other hand,
those who hold the modern view will expose students with no prior programming skill to computational
thinking instruction (which may not involve the development of the software) and then test their programming

ability.

Like a jury who has listened to both parties in the computational thinking schools of thought, Curzon et al.
(2019) in their contribution to The Cambridge Handbook of Computing Education Research, provided a well-
articulated and excellent characterisation of the two perspectives (Figure 2-1). One can infer that the parties
differ in three major ways. Firstly, disagreement between the two borders on the question of careers that need
computational thinking. The traditional view believes that computational thinking is only applicable in
computing and some related fields. While the modern view says, all fields of human endeavour in this 21st
century will require computational thinking. Secondly, the two groups differ in their views on the question of
context for the application of computational solutions. The traditional view claims that computational solutions
such as algorithms or programs are meant for computers. The modern view says computational solutions are
not limited to the machine but can be for humans acting as a computational agent. Thirdly, they differ on the
question of causality between programming and computational thinking, that is how computation thinking
develops or means for developing computational thinking. The traditional view holds that programming leads
to computational thinking while the modern view says computational thinking can be developed by other

means apart from programming.

Nevertheless, as indicated in Figure 2-1, several beliefs unite the two schools. We can categorise this area of
agreement in these ways. Firstly, both agree on the common core of computational thinking. These constitute
essential skills anyone who possesses computational thinking ability will demonstrate. This is very essential
for uniformity in assessments of computational thinking whatever views educators or researchers may hold.
Secondly, both agree on the capacity of computational thinking for universal impact. Therefore, both schools

of thought are championing the cause for students to acquire computational thinking skills.
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Figure 2-1 A Characterisation of traditional and modern perspectives on CT

Source:(Curzon et al., 2019)

Given the above claims and hypotheses concerning computational thinking, the need for computer science
educators and researchers to conduct well-designed and rigorous experimental research becomes necessary.
Such studies can provide evidence that will lay to rest questions and debates. Convincing empirical results will
encourage uniformity in educational training and assessment of students in computational thinking. Computer
Science education research has a history of verifying such claims (Guzdial & du Boulay, 2019). What we need
is more of empirical investigations instead of peddling unfounded claims. This sentiment for empirical proof
is reiterated in the seminal work Cambridge Handbook of Computing Education (Blikstein & Moghadam,
2019; Fincher et al., 2019). This study seeks to contribute some empirical evidence to the question of causality

between programming and computational thinking.

2.4 Computer Science Education

As nations realise the value of computing, the need for computer science education is growing. This global
interest is seen in the level of commitment by governments, business organisations, and private individuals to
computer science educational programmes. So much is said in the news and various fora about computing

science education. However, the question is what is computer science education?

2.4.1 Defining Computer Science Education

Computer science education is a field of study that is concerned with developing students’ computational

thinking ability. It is a discipline that empowers learners by transforming them into solution providers to today
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and tomorrow’s computational problems, in a world increasingly dependent on information and
communication technologies. In other words, computer science education is the teaching and learning of the
science and art of computing. However, the concept is a huanced term having various forms and meanings in
the literature and different parts of the world. Some of these other terms include computing education,
informatics education (commonly used in Europe), IT education, and ICT education (commonly used in
Europe and South Africa). Tedre, Simon and Malmi (2018) described computing education as a field whose
goal is “to facilitate the learning of what the computing community believes fresh graduates should know about

computing.”(p.22).

In a report Informatics Education in Europe: Are We All In The Same Boat?, a joint committee of ACM Europe
Council and Informatics Europe described informatics education as “a distinct scientific discipline,
characterised by its concepts, methods, a body of knowledge, and open issues. It covers the foundations of
computational structures, processes, artefacts and systems; and their software designs, their applications, and

their impact on society.” (Vahrenhold et al., 2017, pp. 1-3)

According to UNESCO’s International Standard Classification of Education (ISCED), ICT education includes
ICT fields such as:

e Computer use (e.g., training in the use of application software and internet)

e Database and network design and administration (e.g., Computer administration and management,
Computer network installation and maintenance, Database administrator studies, Information
technology administration, Web design, etc)

e Software and applications development and analysis (e.g., Computer science, system analysis, system
design, software engineering, etc)

o Artificial intelligence

e Inter-disciplinary programmes and qualifications involving Information and Communication
Technologies. (e.g., Bioinformatics or computational biology, computational mathematics,
computational physics, etc)(UNESCO Institute for Statistics, 2015)

An ACM-IEEE curriculum task force involving IT professionals and educators defines IT education as:
“the study of systemic approaches to select, develop, apply, integrate, and administer secure computing
technologies to enable users to accomplish their personal, organizational, and societal goals.”(Task Group

on Information Technology Curriculum, 2017)

The products of the above educational programmes are staples of modern societies. Think of the world without
the internet, Facebook, Instagram, WhatsApp, Twitter, Google, Baidu, Yandex, WeChat and several other IT
applications and devices that modern life depends on. Most of these ICT tools were developed by former
students of computing. Considering the benefits, the world derives today from these technologies, and the
growing demands for more sophisticated technologies, it is imperative for computer science educators to
produce more inventors, scientists, engineers, entrepreneurs, developers, and other computing professionals

the world needs today and tomorrow. To achieve this objective, it becomes necessary to approach this business
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of motivating and educating newbies into computer science by employing empirically proven pedagogical

strategies.

2.4.2 Directions from the Past, and Developments in Computing Education

With the advent of electronic computers in the 1940s came the need for manpower that will operate or program
them, which birth the need for computing professionals. Tedre, Simon and Malmi (2018) provides a
comprehensive historical review of the beginning of these educational programmes in computing. The
summary of the history of computing education as stated by Tedre, Simon and Malmi (2018) is presented in
Table 2-5. You will observe that computing education has undergone four eras. It started with training for
technical jobs by different companies in the 1950s. One such prominent company was International Business
Machine (IBM) in the US. It manufactured and exported computers, trained computing manpower and had
offices in different parts of the world. For instance, from the early 1960s IBM computers were already in use
in Nigeria (Anyanwu, 1978; Nwachukwu, 1994). To address technical manpower needs in host countries, IBM
established training institutes. The first such training centre for West Africa was established in Nigeria at the
University of Ibadan in 1963 (Anyanwu, 1978; Nwachukwu, 1994).

Table 2-5 A historical characterisation of computing education

Training for ~ Training for software Training for Training for computational
Theme technical jobs development academia problem-solving
Focal Period 19505 1960s-1980s 1970s-1980s 19905-2000s
Focus Coping with Programmer Theoretical Design, application in
technology productivity sophistication problem domains
Subject matter The computer  Programming Algorithms Information processes
Educators Companies Computing centers Computing All departments
departments
Curriculum Local Prescriptive Descriptive Indicative
function
Skills and Technical Applied Theoretical Design, social
knowledge
Characterizing Accreditation of Structured Formal verification, Computational science,
debate professionals programming, experimental C5 computational thinking

software crisis

Source: (Tedre et al., 2018)

In the first era, with no computing programmes in the universities nor in the US, the only providers of
computing education were companies. Each company taught their trainees with localised or customised
syllabus in various countries. The same was the case in 1960 in Nigeria. Developments that took place in the
1950s in the US, began in Nigeria in the 1960s. Most sub-Saharan African nations have always lagged in

computing technologies and computing education knowledge.
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With the growing global distribution of computers, came increasing demands for software. The second era
spanning the next decade was devoted to addressing the need for broadening participation of other computing
professionals. Computer programming was not the preserve of the few gurus anymore. Note that in the table
by Tedre etal.(2018), the second era was (it seems wrongly written as) the 1960s -1980s. Computing education
was no longer limited to private companies’ training institutes or public institutions laboratories. Universities
programmes in computing science started springing. The first of these programmes in the US commenced at
Purdue University in October 1962. Soon, many other computing programmes in the US and different
continents of the world began during this era. Programming was the main preoccupation of computing
education during this era. The first definitive curricula for computing education was produced in 1968 by the
ACM. The same year saw the coming together of computing professionals and educators in a NATO-sponsored
conference in Germany, to address the software crisis of large industrial software development. That
conference fuelled the enthusiasm that led to the birth of a separate field in computing called software

engineering.

Challenged by open questions in computer programming, and excited by the events of the previous decade,
the next two decades were occupied with endeavours to address issues that affect the production of quality
software. According to Tedre, Simon and Malmi (2018), this period marked the third era of computing
education. Some of the events of the previous decade included the production of a curriculum for a degree
programme in computing and the NATO-sponsored software engineering conferences. For instance, Prof.
Edsger Dijkstra, the renowned Dutch Computer Scientist, got motivated by discussions at the NATO Software
Engineering conference. He devoted research efforts that produced methods for formal verification of
programs (Randell, 2018). Thus, further fuelling the shift to the popular programming paradigm during this
era called structured programming, an influential idea he earlier propounded to address the problem of poor
programming in the second era. To address criticisms of the definitive ACM curricula 1968, a new descriptive
curriculum 1978 was developed which left guidelines for an individual institution to customise computing

education, as they deem fit while preserving some common core.

We are in the fourth era of computing education according to Tedre, Simon and Malmi’s characterisation. This
era is marked by the need for universal application of computing in virtually all fields of human endeavours.
This makes it mandatory that some forms of educational programmes in computing are now provided for all,
from kindergarten to university, irrespective of learner’s field of interest. To address differential computing
educational needs, from ACM curricula 1991 to the present ACM curricula 2013, five computing fields,
namely computer science, information science, information technology, software engineering and computer
engineering, are recognised and each is provided with a separate curriculum. From country to country,
curricula for K-12 are also being developed which gives emphasis not only to digital literacy but also
computational thinking. It is the view of computing educators in various nations that their citizens should not

only be consumers, but also producers of technologies.



25

2.4.3 Computer Science Education in the US

The National Academies of Sciences, Engineering, and Medicine in a report Assessing and Responding to the
Growth of Computer Science Undergraduate Enrolments provides another historical view of computing
education in US universities from 1965 to 2015 (National Academies of Sciences, Engineering, 2018) (Figure
2-2). As you will observe in the figure, interest in degree programmes in computing education has witnessed
two eras of boom and sharp declines each. From 2005, we are witnessing the third era of increasing interest

for a degree in computing. This is also an era when computing knowledge is being needed by other fields.
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Figure 2-2 Historical view of computing degrees awarded in US universities
Source: (National Academies of Sciences, Engineering, 2018, p. 27)

Looking at Figure 2-3 you will observe that the introduction to computing or programming classes is
witnessing increasing enrolments even from students who do not intend to major in computing. This makes it
worthwhile to research best ways to instruct the various novices enrolling in our introductory programming

classes.



26

18000

16000
14000 -

12000

10000 .
Nonmajors

8000 ] ® Majors

6000 < -~ - -
4000

o o w3
2000 V@ — = ~
£ 2% i
0 s BN N i ] : : 1 : I ! i
Intro Nonmajors (51) Intro Majors (66) Mid-Level (66) Upper-Level (66)

Figure 2-3 Computing course enrolments in US universities

Source: (National Academies of Sciences, Engineering, 2018, p. 46)

2.4.4 Computer Science Education Trends: Portrait from Europe

To find out if a similar trend in the US is observable in other parts of the globe, we will consider data (Figure
2-4) taken from an European report prepared by Informatics Europe (Tikhonenko & Pereira, 2019). In the
diagram, some nations provided data for enrolments into what was called “research universities” (RU) and
“universities of Applied Sciences” (UAS). The RUs are mainly higher education institutions (HEIs) devoted
not only to teaching, but also to research in informatics whereas UASs in parts of Europe are simply institutes
of technology or polytechnics devoted to vocational training in informatics. So, while PhDs are awarded by

RUs, not all UAS award PhDs.

Trends in CS enrolments into informatics degree programmes in European HEIs provide a mixed picture as
shown in the figure. While increased interest is observed from Germany, Italy, Lithuania, Netherlands, Poland,
Portugal, Romania, Switzerland, and the UK. Interest in CS seems to decline or fluctuate in some countries

like the Czech Republic, Finland, Ireland, Latvia, and Spain.
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The problem with informatics education in Ireland has been reported in the literature (Piggot & Frawley, 2019).
In the Irish Higher Education Authority report, the issue of high dropout rate of students in computing was
given a singular mention. Of the students being tracked in the study from the 2007/2008 session, computing
had the lowest completion rate of 55% (Figure 2-5). Another disturbing finding from the report is that among
all dropout rates occurring after the first year of study in colleges or universities in Ireland, computing has the
highest. This may provide further insight into the lack of enrolment into computing in Ireland, although the

country is an IT hub in Europe being a leading exporter of software (Becker, 2019) and several vacancies are

unfilled with needed IT expertise.

From the foregoing, we conclude that while there is growing interest computing in most European countries
as in the US, however learning to program remains a challenge, continuing experience large failure or drop out

rates (Becker, 2019).
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Figure 2-5 Degree Programmes completion rate, Ireland

Source: (Piggot & Frawley, 2019, p. 59)

2.4.5 Computer Science Education in Africa

To comprehend interest trends in computing education in sub-Saharan Africa, we consider data from a report
from South Africa. Statistics South Africa (2019) provides enrolments data from universities and other HEI
referred to as Technikons. Table 2-6 indicates that a total of 12,750 applicants (representing 3.4% of applicants
into South African universities) were admitted to study computing courses in 2000. By 2016 the percentage of

universities admissions into computing courses rose slightly to 4.3% (Table 2-7). Surprisingly, although South
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Africa is one of the most developed and industrialised countries in Africa, and highly in need of computing
skills, there is slight increase in interest in computing. Looking at the percentage of combined enrolment into
universities and Technikons in Table 2-6 which was 5.8, and the graduation rates in Figure 2-6 suggests that
many who enrol into computing drop out or did not complete their studies at the normal time. This also suggests

a problem with engaging or sustaining students’ interest in computing.

Table 2-6 Enrolments into SA Universities and Technikons in 2000
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2.4.6 Computer Science Education: Its Driving Forces

To understand some of the forces behind the current era of increasing worldwide interest in computing, we
will consider data from industries. For instance, McKinsey and Company carried out a survey of organisations
from the US and fourteen European countries about the two historic drivers for computing technologies -
automation and Atrtificial Intelligence (Al). Their finding is provided in Figure 2-7. As you will observe
organisations are increasingly doing away with jobs that require physical, manual and basic cognitive skills.
Such roles are being replaced by technologies like robots, employing automation and Al. However, some old
and new jobs that require higher cognitive, social and emotional, as well as technological skills are witnessing
increasing demands. Looking at the skills being demanded by organisations and governments in various
nations, technological skills have the highest demands. Technological skills include digitals as wells as
advanced IT and programming skills. A reason for increase in enrolments in institutions and other training
avenues becomes apparent. Those skills can only be developed through computing education and training
programmes, irrespective of whether the worker is a computing professional or not. This makes improved
novice programming education that engages the students’ passion for computing imperative — if we are to
avoid the impending crisis resulting from the inability to supply computing skills needed for continued global

development.

Automation and Al will change the skills needed in the workforce
Total is for United States and 14 Western European countries

SKILLS Physical and manual Basic cognitive Higher cognitive Social and emotional Technological
Hours spent,
in 2016
Billion

140
Change in
hours spent
by 2030
%
Skills with v General equipment v Basic data input A Creativity A Entrepreneurship A Advanced IT skills
the biggest aperation and navigation and processing A Complex information and initiative and programming
shift in v Inspecting and v Basic literacy, pracessing and taking & Basic digital skills
demand monitaring numeracy, and interpretation & |eadership and

communication managing others

Figure 2-7 Demands for Skills: A survey of organisations in the US and Europe
Source: (Bughin et al., 2018, p. 5)
Findings by World Economic Forum corroborate what we now know about the changing nature of demands

for workers in this era (World Economic Forum, 2018). Let us consider Table 2-8 taking from that report.

Findings in the reports are based on survey data from a larger number of organisations and countries compared
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to those of McKinsey above. As you can observe, various roles requiring manual and basic cognitive skills

such as bank tellers and clerks are becoming useless in modern banks. Technologies or machines are replacing

such roles. For anyone in those roles to be relevant, it requires switching to new roles. This makes retraining

necessary for such workers. The demand for new roles also drives interest in such fields in our training

institutions. For those roles that are stable, anyone who wants to remain relevant in the face of continual

changes and disruptive technologies being introduced, continued education becomes necessary.

World Economic Forum (2018) not only provides information that are life experiences of workers and

management, they also give a view of projection describing how future place of work will look like (Table

2-9). Taking a serious consideration of these projections, makes it mandatory for computing educators to

reorganize educational strategies to provide educational opportunities and environments for diverse students,

to develop skills that adequately prepares them not only for today but also for future jobs.

Table 2-8: Changing roles in modern workplaces
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Source: Future of Jobs Survey 2018 as presented in (World Economic Forum, 2018, p. 9)
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Table 2-9 Today and Tomorrow’s Skills for workplaces
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Source: Future of Jobs Survey 2018 as cited in (World Economic Forum, 2018, p. 12)

In conclusion, it could be observed that various factors determine the type of computing education that students
receive. It could be rapid technological change as we are currently witnessing (Fee et al., 2017); company
demands for computing particular IT skills (Tedre et al., 2018); national policy (Zhang & Yan, 2010). We are
witnessing all of these factors today, making the need for engaging computer science education more critical

for the continued development and sustenance of modern societies.

2.5 Engaging Computer Science Education

Computer science education is faced with a dilemma. There is a growing demand for computing skills, yet an
alarming shortfall in the supply of these skills from educational and training institutions. This situation leaves
business organisations and nations competing for available skills from anywhere in the world. Consequently,
there is a growing interest in computer science education. However, the global problem of high failure or
dropout rate in introductory computer science or programming class (CS1) remains a worrisome matter for
computer science educators (Butler et al., 2016). Students come into computer science programmes with high
interest, this enthusiasm in a significant number of them is soon eroded in CS1, and they drop out. This situation
begs that the need for computing skills for introductory programmming instruction be made engaging to our
teeming students. Butler et al. (2016) take this sentiment further, advocating for computing education that
“engages and support students throughout their undergraduate studies” (p.1). In this section, we want to
consider these questions: What is engaging computing instruction? What makes a learning session engaging
for the diverse population of CS students? Is there empirical evidence to support the case for engaging

computing education?
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2.5.1 Defining an engaging computer science education.

Defining engaging computing instruction will require considering definitions of the construct of engagement
in the literature. Unfortunately, there is no consensus on the conceptualisation, forms, and measurement of
student engagement (Bond et al., 2020; Butler et al., 2016; Eccles & Wang, 2012; Lam et al., 2012; Reschly
& Christenson, 2012). Another problem with defining engagement is the conflating or confusing motivation
with engagement. One thing applicable to both constructs of motivation and engagement is: authors often
present narrow or broad views in their conceptualizations of the two concepts (Eccles & Wang, 2012). For
instance, while Skinner and Pitzer (2012) provide a holistic definition of engagement as “energized, directed,
and sustained action, or the observable qualities of students’ actual interactions with academic tasks”(p. 24),
Reschly and Christenson(2012) identified it “as multidimensional, involving aspects of students’ emotion,
behaviour (participation, academic learning time), and cognition” (p. 3). Similarly, while Reeve (2012)defines
engagement narrowly as “the extent of a student’s active involvement in a learning activity” (p. 150), Trowler
(2010) provides a comprehensive definition saying:” Student engagement is concerned with the interaction
between the time, effort and other relevant resources invested by both students and their institutions intended
to optimise the student experience and enhance the learning outcomes and development of students and the
performance, and reputation of the institution.”(p. 3). McCormick & Kinzie (2014) agree with the later
perspective by asserting that student engagement “refers to two critical features...... The first is the amount of
time and effort students put into their studies and other educationally purposeful activities. The second is how
the institution’s resources, curricula and other learning opportunities support and promote student experiences
that lead to success (e.g., persistence, learning, satisfaction, graduation).” (p. 14). An excellent definition that

captures some features relevant to this study defines:

“Student engagement is the energy and effort that students employ within their learning community,
observable via any number of behavioural, cognitive or affective indicators across a continuum. It is
shaped by a range of structural and internal influences, including the complex interplay of
relationships, learning activities and the learning environment. The more students are engaged and
empowered within their learning community, the more likely they are to channel that energy back into
their learning, leading to a range of short and long term outcomes, that can likewise further fuel

engagement” (Bond et al., 2020)

Several facts are clear from these conceptualisations: an engaging pedagogy is observable, as it awakens active
participation of the student, and it is positively rewarding for the student, the teacher, and the institution
(Reschly & Christenson, 2012). Another thing about engagement is that it can be measured in its general or
specific forms. Skinner and Pitzer (2012) summed up these general and specific dimensions by defining the
general construct of engagement as “the quality of a student’s involvement with school”, and the specific

aspects as “behavioural, emotional, cognitive, and psychological engagement.” (p. 22).
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As there is no consensus yet on the general definition of engagement, so there is no consensus on the number
of distinguishable features or types of engagement that can be observed or measured in the class(Bond et al.,
2020). Let us consider the various conceptualisations of the specific forms of engagement in Table 2-10 and

observe how far the authors agree.

Table 2-10 Dimensions of Engagement

Types of engagement Source

Emotion, behaviour and cognition (Reschly & Christenson, 2012, p. 3)

Behavioural engagement, emotional engagement, and cognitive (Fredricks et al., 2004, p. 60)
engagement

Affective, behavioural, and cognitive dimensions (Lametal., 2012, p. 405)

behavioural engagement, emotional engagement, cognitive (Reeve, 2012, p. 150)
engagement, and agentic engagement

Cogpnitive, affective, behavioural, academic, and social (Parsons & Taylor, 2011, p. 4)
engagement.”

Behavioural, emotional and cognitive engagements (Leietal., 2018)

Affective, cognitive, behavioural engagements (Bond et al., 2020)

From Table 2-10 you will observe that three types of engagements are common: behavioural, affective, and

cognitive engagements.

Behavioural engagement refers to what a student does with learning opportunities, facilities and situations
which is believed to predict his or her learning outcome in the school. This is seen in the efforts or time a
student invests in activities that lead to a meaningful learning experience, or achievement. Such activities
include notetaking, attempting class exercises, assignments, or projects, reading, and studying. Affective
engagement, which some authors call emotional engagement, refers to the student’s attitude towards learning
opportunities or situations. On the positive side, it refers to students’ interest, self-efficacy, sense of belonging
or identity with the school, course of study or subject. On the negative side, it refers to traits such as boredom,
withdrawal, or lack of attention. Cognitive engagement refers to the mental strategies and understanding the
student employs during learning sessions in or out of class. This refers to the student’s learning styles such as

deep or surface learning approaches.

Other variants of the above forms of engagements have been mentioned in literature such as agentic

engagement, social engagement, collaborative engagement, ongoing engagement, and reaction to challenge.
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Agentic engagement refers to student’s ability to take control of their learning by employing proactive actions
without instruction from teachers (Reeve, 2012). Social engagement is the level of contribution of efforts the
students make towards their collective learning. This is like collaborative engagement. Ongoing engagement
is a combination of the behavioural, affective and cognitive engagements demonstrated by the student towards
his or her studies. Reaction to challenges refers to what the students do, in the face of challenges to learning.
While a student with a high level of engagement on this later measure will persist, taking appropriates steps to
overcome his or her learning difficulties, another student low on this engagement will seek to delay doing or

completely avoid such difficult learning tasks.

2.5.2 Drivers of an engaging computing instruction

Several anecdotal and empirical evidence from literature present elements that make an instruction engaging

for students.

Table 2-11 Essential Factors in an engaging class

A conceptualisation of Engagement Factors (or Facilitators) Source

[E=Y

. Enriching collaboration and educational experiences among peers; (DeVito, 2016, p. 3)
. student-teacher interaction;

. levels of academic challenge;

. supportive classroom environment;

. supportive family environment.

. Meaningful instruction (Pino-James, 2018),

- A sense of competence (Pino-James et al., 2019)
. Autonomy support

. Collaborative learning

. Positive teacher-student relationships

O WO RO WDN

1. Real, relevant and interdisciplinary instruction. (Parsons & Taylor, 2011)
2. Rich in appropriate educational technologies

3. Risk-taking encouraged where mistakes are allowed in an atmosphere of

open, challenging, and supportive instruction

4. Respectful relationships between students and teachers

5. Resources are focused on learning and mastery first, and achievement

second.

1. Connecting CS to the students’ day-to-day activities. (Ryoo, 2019)
2. Creating open and safe environment for students to express

themselves.

3. Confronting social issues of concern to students using CS.

While it could be said from Table 2-11 that authors are re-echoing what previous writers have said about what
makes a learning session engaging, it also reveals some agreement in what they believe are key for engaging
students. A synthesis of these common factors in literature that can be identified in an engaging computing

class are:
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Cordial supportive relationship between teachers and students. (Klem & Connell, 2004; Reschly &
Christenson, 2012)

Collaborative active learning sessions with peers.

Challenging computing lesson or exercise commensurate with students’ capacity or scaffolded to
support students’ learning

Contents tailored to learners’ interest and needs.

Commitment to learning, not just grade.

Curiosity and a can-do attitude towards computing.

There are compelling reasons for making computing instruction engaging particularly for novice computer

science students. Some of the reasons are:

To address the global problem of high failure and dropout rate for the first programming course (CS1)
Computer science together with other physical sciences has been reported to be less engaging for
undergraduates by the National Survey of Student Engagement in the USA (Morgan et al., 2017).
While questions have been raised about the validity or reliability of the survey for computer science
(Butler et al., 2016), yet, with the global CS1 problem, well known to computer science educators,
could it be said that our computing instructions have been engaging enough for the teeming population
of CS students that fail or dropped out? In fact, in a Communication of the ACM opinion page,
professors Mark Guzdial and Elliot Soloway, admitted and lamented the inadequacy of the then CS1
pedagogy by raising a question that remains pertinent till date: “Why are we doing such a poor job at
getting and keeping students in computer science?” (Guzdial & Soloway, 2002, p. 17). It has been
suggested that there is a circular relationship between engagement and achievement (Eccles & Wang,
2012). As a kind of engagement feedback loop, this implies engagement increases achievement. And
positive improvement in achievement will likely lead to more engagement(Bond et al., 2020).

In many countries, enrolment data indicate computer science has been less appealing to women being
seen to be stereotypically a male field, though the need for innovation that comes from diversity in
computing workforce makes it compelling that women enrol into the field.

Vacancies for skilled computing professionals continue to be left unfilled globally threatening further
development in computing.

There are promising empirical results and “success stories” of computing educational interventions
that are engaging. Evidence from literature suggests CS educators found peer instruction and paired
programming to be engaging(Hanks et al., 2011; Porter et al., 2016). The story of David Malan, a
professor of computer science at Harvard, who following exposure to a CS1 instruction in his first
year as an undergraduate switched to computing science, is an excellent example of the power of
engaging instruction(Orbey, 2020). When the same CS1 course was becoming less enrolled and the
failure rate was concerning, David then a faculty at the same institution, was assigned to redesign that
CS1 course, and by employing an engaging pedagogy which included a week of Scratch lessons and

projects, turned around the course that attracted him into computing, into a popular CS1 course not
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just in Harvard but among students even outside the USA(Malan & Leitner, 2007). Another example
is the Media Computation introduced by Mark Guzdial at Georgia Institute of Technology for
undergraduates in other degree programmes who needed to learn relevant computing concepts
(Guzdial, 2015, 2013). Harvey Mudd also turned her CS programme to an engaging course that
attracted more women into the field of computer science(Alvarado et al., 2012).

2.5.3 Students’ Engagement and Achievement

Evidence from a growing body of literature on engagement, suggests, a positive association exists between
students’ engagement and learning outcomes such as achievement(Lei et al., 2018; Phuntsho & Dendup, 2021,
Schnitzler et al., 2021). While research suggests a less consistent or indirect impact of some types of
engagement, for instance, affective engagement (Finn & Zimmer, 2012), most findings present a picture of
growing consensus among researchers of the direct impact of students’ overall engagement on their

achievements.

2.6 Scratch
Scratch was launched in May 2007 (Fields et al., 2017; Kafai & Fields, 2018). According to TIOBE
(https://www.tiobe.com/tiobe-index/) programming language popularity January 2022 index, Scratch retains

its position as the most popular block-based programming language.Of the three hundred programming
languages monitored by TIOBE, Scratch sits on the index as the 23 most popular language. In the same
period, Scratch has over 83million registered participants (or Scratcher) on the Scratch website, and more than
90million projects shared by users from over 200 countries worldwide. Both the Scratch online and offline

editors are available for users to code in 70 world languages.

A product of research by the Lifelong Kindergarten Media Lab at MIT in conjunction with Yasmin Kafai at
UCLA, Scratch was initially developed for use by young people in informal setups of homes and afterschool
computer clubs (Maloney et al., 2008) but has now become the staples of primary and secondary schools (Rich
etal., 2019; Szabo et al., 2019). Higher educational institutions now employ some forms of Scratch to introduce

novice students to programming (Becker, 2019; Cardenas-Cobo et al., 2021; Hijon-Neira et al., 2021).

The vision of its developers was to create an engaging constructionist programming environment as part of the
strategies for increasing participation of women and other minorities in computing, by providing an
environment for users to design, create or remix multimedia programs (called scripts) of their interest (Fields
etal., 2017; Maloney et al., 2008). That is, to motivate users so that autonomy given to them, inspires creative
expressions leading to their computational thinking and programming ability development. That original
constructionist philosophy behind Scratch is captured by the slogan on the offline as well as online
environments — Imagine, Program, Share. The aim was to raise youths who are not just consumers but
producers of computing technologies. Students or Scratchers can develop animated stories, games and robotic

applications with Scratch.
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Scratch is a visual programming language with program statements usually written as texts, replaced by coding
blocks so that a program looks like a jig-saw puzzle, rather than sequence of texts. Earlier versions of Scratch
include version 1.4 and 2.0. The current version of Scratch is Scratch 3.0 which was released on January 2,
2019. Scratch 3.0 refers to both the offline program and the website providing facilities for collaborating with
millions of Scratchers (shown in Figure 2-8 and Figure 2-9)

Scratch 3.27.0 -
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Figure 2-8 Scratch 3.0 environment

- Some parts of Scratch interface include the stage — at the right side of the editor. This is where you see
effects of the code you create in the code area.

- Sprite Pane located bottom right under the stage. Where Scratch’s objects or characters called sprites

are located. A Scratch project contains one or more sprites.

- The code area — located at the center of the interface. This is where you create and edit Scratch codes
(called scripts).

- Block pallet — left of the code area. for choosing or creating code blocks. There are nine types of
blocks: motion, looks, sounds, events, control, sensing, operators, variables and MyBlocks.

- Paint editor — Scratch area for creating and editing your images called costumes.
- Sound editor — For creating and editing sounds for your sprites.

Scratch 3.0 came with features for developing Al programs. Such Al facilities include Translate, Text-to-
Speech, Micro:bit, and Lego Mindstorms EV3(Merino et al., 2021)



T

& Costumes oy Sounds ~ DA &

m@*p&

=1
&

=
;. :@ W
= o
=
g
=)
g

(@
-
2
e
i

o
i

m

TR XL BLRLRCE

iQ 1
°
:
o
o

(¢
%’v

s
E
i

¥

2
o
-]

° secsto random position »

®

Stapy
Sprite | Sprited a0 v o

point in direciion @

point fowards  mouse-pointer «

©

=
|
o
O

Figure 2-9 The Scratch online programming environment

2.7 Concept of gender

John Money an American psychologist was credited for “inventing” or popularizing the term gender (Goldie,
2014). Money’s idea of gender is reflected by this statement he made in 1955: “By the term, gender role, we
mean all those things that a person says or does to disclose himself or herself as having the status of boy or
man, girl or woman, respectively. “as cited in (Goldie, 2014, p. 45). This implies gender is a self-chosen
identity by a person to declare their masculinity or femininity. However, this gender identity may also be
influenced by society. For instance, World Health Organisation (Organisation, 2018) defines gender as “the
characteristics of women, men, girls and boys that are socially constructed. This includes norms, behaviours
and roles associated with being a woman, man, girl or boy, as well as relationships with each other. As a social
construct, gender varies from society to society and can change over time.” WHO definition reveals another
idea about this concept of gender: its malleability. That means a person may be born a boy and opt to change
their gender identity to a girl. However, there is growing call for departure from such binary or dichotomous
grouping of gender as there are many that identify themselves neither as male nor female today(Lindgvist et
al., 2021; Rushton et al., 2019). To allow for this, as in the questionnaires used in this study, participants are
given the opportunity to self-select their gender. It has been argued such allowance of other ways of

operationalizing gender will ensure more accurate data and research results (Rushton et al., 2019).

Gender variable is included in most studies as it is believed to influence certain dependent variables such as
attitudes, behaviours, programming achievement, among others(Lindqvist et al., 2021). However,
operationalizing this concept with the varied and growing gender identities in research poses a problem. To
address this, Lindqvist et al. (2021) argues for conceptualizing gender as being made of four aspects:

“physiological/ bodily aspects (sex)”; “gender identity or self-defined gender”; “legal gender”; and “social
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gender in terms of norm-related behaviours and gender expressions”. They recommend as shown in Table 2-12
that researchers should look at their research questions to identify which aspect is relevant to the study, to ask

the participants in the questionnaires.
Table 2-12: Suggested guideline for operationalising gender variable

Initial question: What aspect of gender is relevant for the research question?

Facet Recommendation

Physiological/bodily  Ask about that particular aspect, e.g. experience of menstruation.
aspects

Gender identity Use a free-text response.

Consider to also add the CSES adaption to measure identification with gender, from Luhtanen and
Crocker, 1992,
Consider if it is of relevance to ask about trans experiences.
Legal gender Ask about legal gender. NB, some nationalities have more than two legal genders, bear that in mind
when formulating the answer options,
If assigned gender at birth is of relevance, make sure to ask about that specifically.
Gender expression  |dentify the relevant aspect of gender expression. Examples of items to be used can be found in
Magliozzi et al. (2016) and Joel et al. (2014).

Source:(Lindqvist et al., 2021, p. 11)

Research results on the relationship between gender and CS1 performance is mixed. While some findings
indicated that gender have effect on CS1 student achievement (Quille & Bergin, 2019); other found no
effect(Gjelsten et al., 2021; Lishinski & Rosenberg, 2021; Veerasamy et al., 2019). Gjelsten et al.(2021)
identified the reason for disappearance of gendered difference in CS1 achievement: prior programming
experience in high school of female CS1 students. That suggests prior programming experience is a mediating

variable between gender and CS1 achievement.

Nevertheless, some gender differences have been identified in CS1 classes. For instances, CS1 assignments
focusing on people rather than on things, were found to be preferable to female CS1 students (Marcher et al.,
2021). This suggests teachers will give room for flexibility in class exercises or projects assigned to students
so that the interest of females who prefer people themes will be supported. Doing so will likely increase
interest, self-efficacy, retention and the final outcome — variables that often have been found to be skewed
against them (Beyer, 2014; Lehman et al., 2016).

2.8 Concept of age

Several definitions for age exist, depending on the perception or emphasis of the author. In this study, our
focus is on the lifespan and developmental stage of first-year CS students as it affects their achievement in
programming. Therefore, in this section we will consider definitions or descriptions relating to that. OECD
glossary of term defines age as “the interval of time between the day, month and year of birth, and the day and
year of occurrence of the event expressed in the largest completed unit of solar time such as years for adults
and children and months, weeks, days, hours or minutes of life, as appropriate, for infants under one year of

age”(OECD Gloss. Stat. Terms, 2008). That is what is popularly called chronological age. Russo and Brian
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(2012) go beyond that to define age as “a state of mind, however the physical length of time one inhabits the
earth and is alive” Two things are stated in this latter definition: reference to psychological age — “a state of
mind” - and chronological age — length of existence. Another popular classification is biological age. While
chronological age is the actual life span from the time of birth looking at the record of birth, biological age
refers to the perceived age of an individual looking at the growth or decline in the body as indicated by its
DNA markers (Jazwinski & Kim, 2019). Our focus in this study is the chronological age, though we
hypothesize that CS1 students’ achievement may be moderated or mediated by their psychological age. This
is apparent from the theoretical explanations by various theories of human cognitive or psychological

development.

Although not without criticisms, Piaget (2008) provides some of the most popular theoretical explanations for
age-related human cognitive performances from birth to adolescence. According to Jean Piaget, human
cognitive developmental stages from birth to adolescence include sensorimotor, preoperational, concrete
operational, and formal hypothetical reasoning abilities. The sensorimotor stage is the reasoning ability from
birth before a child learns to speak, that is from age 0 to about 2years. The preoperational stage goes from age
210 6 or 7 years. The concrete operational stage in which a person can reason only with concrete objects, goes
from age 7 or 8 to 11 or 12. The formal hypothetical, a stage where a person can think with abstract objects,
forms and tests hypotheses, goes from age 11 or 12 to age 14 or 15. Although this succession of cognitive
growth appears to be constant in most societies, there are variations in the speed due to environmental factors
in which an individual grows (Piaget, 2008). This suggests why some individuals reach the formal reasoning
level at about age 14 or 15, others, retarded by some factors, may or may not reach it at age 15 to 20. He also
identified varied aptitudes or area of interests as other factors that may differentiate how individuals
demonstrate maturity via cognitive abilities. In summary, Piaget's provides three reasons for differentiated
performances of individuals in various fields, programming inclusive: natural process of cognitive

development, talents, and the individual’s domain of study, training, or interest.

In line with speed of human development being witnessed in modern times, Sawyer(2018) in an article
advocating for new designation of the age of adolescence, provides some age-related nomenclatures to classify
human developmental stages. In Figure 2-10, we observe various classifications under the three human
developmental stages of childhood, adolescence, and adulthood. In many countries, from school-aged children
in K-12 to senior citizens in retirement, these various groups are being introduced to programming education

in formal and informal settings, though problem of access or digital divide is huge.
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Figure 2-10: A characterisation of age and human developmental stages

Source: (Sawyer et al., 2018)

Evidence shows that not all ages of learners receives programming instruction equally well (Kong et al., 2018;
Lambic¢ et al., 2020). In other words, the age of a learner, among other variables, may influence reception of

instruction or the outcome (Quille & Bergin, 2019).

Kong et al (2018) found age-related differences in reception towards programming instruction among323 Hong
Kong primary school children in grades 4-6 who participated in the study. They found a direct link between
interest or positive attitude, perception of meaningfulness, the impact of instruction and self- efficacy.
However, they found older students showing less positive attitude to programming than their younger ones.
This probably suggests age may not be the only variable influencing attitude towards programming. Almost

half of those in study had prior experience. So prior experience may be a factor too.

Lambi¢ et al.(2020) investigated the effects of a course appropriate for grades 1-4 on the popular site Code.org
on children’s attitude towards programming. The study involved 293 Serbian children between age 7-10 years
in grades 1-4. In contrast to Kong et al (2018), they found that the older ones (age 9-10) had more positive
attitude and solved more problem than the younger ones (age 7-8). This indicates programming attitude may
invariably affect achievements. Tailoring programming instructions and environments to appropriate ages of

the learners becomes necessary to achieve positive educational outcomes.

In an earlier investigation on age-related differences and programming knowledge, Morrison & Murphy-Hill

(2013) conducted a study of members on the StackOverflow site, exploring the relationship between



44

programmers’ age and programming knowledge. They found a direct correlation between programmers' age

and their programming knowledge, at least well into their 50s.

In a similar study, Kock et al (2018) explored the hypothesis that older programmers are less effective than
younger ones, invariably expecting a negative effect of age on programming performance. University students
(n=140) with varying degree of prior programming experience were given a software to develop within a
specified time. Following this experiment with students, they conducted a simulation to see what the results
will look like, if the participants were professional programmers. Corroborating earlier study by Morrison &
Murphy-Hill (2013), they found a positive effect of age on programming experience and perception of stress.
They also found programmers' experience is directly related to their performance. They found out that stress
had a negative effect on performance. However, regardless of age, as programming experience increases, they

found stress loses its negative effect on performance.

A profile of ages of Scratchers (i.e., participants on the Scratch online) as of January 2022 is given in Figure
2-11.

Age Distribution of New Scratchers
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Figure 2-11: Age of Online Scratch Users

Source: (Scratch - Imagine, Program, Share., 2022)
You will observe a mix of age from as young as 4, to as old as 80.

Does age matter in CS1? Quille and Bergin (2019) found that including age as a factor increase the accuracy

of a CS1 predictive model, suggesting that age has a positive relation to CS1 performance.

2.9 Concept of academic background
By academic background, we mean the prior achievement level attained by a student in the K-12 education or

in a previous course. Students prior academic achievement belongs to one of those cognitive and non-cognitive
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variables (like self-efficacy, gender and Socio-Economic Status) that are believed to influence their academic
achievements in higher ed (Al-Sheeb et al., 2019; Asarta & Schmidt, 2017; Parker et al., 2018; VVan den Broeck
et al., 2019). The need to investigate the effect of prior academic achievement of CS1 students, hinges on the
evidence from past research that, it can predict other educational outcome variables(Ramos, 2018). It has been
found that prior academic achievement influences students’ motivation, which invariably influences their
engagement with new learning situations (Rodriguez et al., 2019). Students’ engagement in learning directly
relates to their future achievements(Ferrer et al., 2020). Self-belief theory explains this phenomenon. Students
who have prior positive achievement, are likely to believe they will learn and do well in later studies (Schéber
et al., 2018). This belief in their ability to learn or perform certain skills is called self-efficacy, and has been
found to have positive effect on students’ academic achievements or programming performance(Al-Sheeb et
al., 2019; Lishinski & Rosenberg, 2021; Quille & Bergin, 2019)

Educators and researchers employ various variables to operationalise students’ prior academic achievement.

Table 2-13 presents some examples.

Table 2-13: Operationalising students’ prior academic achievement

Operational variable(s) Levels Source

One variable derived from: prior Five levels: from 1to 5 (Rodriguez et al., 2019, p. 4)
average academic grades in Spanish,
math and foreign language (English) (1 = insufficient, 2 = sufficient, 3 =

good, 4 = notable,

5 = outstanding).
One variable derived from primary 2 levels: (Prayitno et al., 2017, p. 268)
schools’ national examination scores higher academic achievement (HA)
and
lower academic achievement (LA)
students
Three variables were used: GPA, amath  Three levels: (Asarta & Schmidt, 2017, p. 13)
quiz score and grade in a calculus class -  Using GPA:
Below 2.80, 2.80-3.34, 3.35—4.00
- Using math quiz:
Below 9, 9-12, 13-16
- Using Calculus grade:
Below 7, 7-9, 10-13

One variable: high School grade None (Al-Sheeb et al., 2019)
One variable: High mathematical exit None (Quille & Bergin, 2019)
grade

One variable: University entrance exam  Nine levels: (Ramos, 2018)

score (Stanine) Using Stanine score: Level 1 to 9

(From lowest to highest)

Does prior academic achievement matter in CS1 students’ performance? Studies have found correlation or
causation between prior academic achievement and CS1 final grade. For instance, Ramos(2018) in a study
involving Filipino university computer science students found a correlation between students entrance exam

(their stanine level) and their CS1 grades.
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2.10 Concept of prior programming writing

Increasingly, CS1 classes are known to comprise students with various levels of prior programming
experiences (Mohamed, 2021; Rahman, 2020). Possible reasons for this diverse CS1 students’ abilities may
be the nature of K-12 computer science education in a particular country, informal programming learning
opportunities available, the department the students belong, computer science education advocacies ongoing
in the country, previous employment, and the demand for computing jobs leading to the need to enrol or switch
from one career to another. In developing nations especially, students come into CS1 classes with the larger

percentage having little or no background in programming (Agapito & Rodrigo, 2018).

While there is more evidence suggesting that having prior programming experience births better CS1
achievement, regardless of the nature of programming paradigm or environments the students are exposed to
(Alvarado et al., 2018; Armoni et al., 2015; Chen et al., 2019; Gjelsten et al., 2021; Holden & Weeden, 2004;
Liao et al., 2021; Veerasamy et al., 2018; Wilcox & Lionelle, 2018), yet there are studies that found no
evidence (Ventura, 2005). Also, Alvarado et al (2018), despite finding evidence for final CS1 course grade,
found that prior programming experience makes no difference in their pre-test scores. Another study by
Marling & Juedes (2016) found that students without prior programming experience obtained significantly
better grades in CS1 than those with prior experience, after both groups had undergone a CSO course. That
implies the CSO probably helped those with no prior experience to catch up with their experienced counterparts.
This makes it interesting to investigate whether students’ prior programming experiences in this study affect

their CS1 achievements.
Table 2-14 presents various ways for characterisingCS1 students prior programming levels.

Table 2-14 Defining levels of CS1 students’ prior programming experience

Grouping by Levels Source

Using a formula that produces No experience, (Holden & Weeden, 2004)

an experience index from a Minimal experience,

series of previous educational Medium experience,

or work experiences stated in  Very experienced

survey responses.

Students’ self-selection Prior Programming experience (P), (Wilcox & Lionelle, 2018)
No programming experience(N)

Student self-assessed responses A fair amount, (Alvarado et al., 2018)
to survey questions A little,

Absolutely none

Formal experiences

Informal experiences

Calculated an index (0-2) from  No knowledge (0) (Veerasamy et al., 2018)
Students’ survey responses Basic knowledge (1)

Good Knowledge (2)
Derived from student self- No experience (0) (Gjelsten et al., 2021)

reporting of whether they have Has experience (1)
written  program in  any
language
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2.11 Concept of prior visual art

Oxford English online dictionary, defines visual arts as “creative art whose products are to be appreciated by
sight, such as painting, sculpture, and film-making (as contrasted with literature and music)”.Esaak(2019)
echoes the same characterisation by defining visual arts as “those creations that we can see rather than
something like the auditory arts, which we hear. ..... [they] include mediums such as drawing, painting,
sculpture, architecture, photography, film, and printmaking”. Similarly, Encyclopaedia Britannica describes
visual art as “a visual object or experience consciously created through an expression of skill or imagination.”
(Britannica, 2020). We deduce from these definitions that visual arts are forms of art distinguished by their

visual appeals. To create such works requires the author to employ cognitive skill or talent.

In this study, by prior visual art we mean past creative artistic portfolios of the students. That is, ways that
students have expressed their creative abilities by producing visual works of art with or without the computer.
Research has often explored the impact of visual or creative arts activities on computational thinking ability
of novices (Kafai et al., 2019). In this study, | am interested in the impact of the visual art backgrounds CS1
students bring into the class on their computational thinking or programming ability. The aim is to explore if

innate visual or creative artistic ability relate to their CS1 programming ability.

Donald Knuth in his 1974 Turing award lecture titled ‘Computer programming as an art’, referring to medieval
meaning of the word, defines art as “something devised by man’s intellect, as opposed to activities derived
from nature or instinct”(Knuth, 2007). Drawing a comparison between programming and creative art, Knuth
further asserts “when we prepare a program, it can be like composing poetry or music”. That suggests both

programming and artistic composition have some things in common, one of which is creativity.

The question is, what is creativity or creative ability? While there is no consensus on defining this construct
(Said-Metwaly et al., 2017), there are several definitions, each emphasising one, two or several essential
properties of creativity. For instance, providing a one-criteria definition, Vygotsky (2004) defines it as “Any
human act that gives rise to something new is referred to as a creative act, regardless of whether what is created
is a physical object or some mental or emotional construct that lives within the person who created it and is
known only to him”(pg). Runco and Jaeger (2012), after extensive review of literature from the beginning of
the twentieth century, identified a “standard definition” that says creativity is the ability of an individual to
produce something which others judge as original and useful. Other definitions mention three criteria for
counting an idea, product, or response as expression of the creativity of its author. For instance,
Simonton(2017) reiterating a definition in line with the three criteria employed by the US patent office for
judging an invention as creative, he defined creativity as being a product of an idea that is original, useful and

surprising.

Is there a relationship between creative artistic ability of a student and their achievement in CS1? That question
appears to have found limited attention in the CSE research literature (Sharmin, 2021). That is one secondary

guestion this study is investigating. However, evidence from the few studies suggests there is no significant
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correlation between students’ creative achievement and their CS1 achievement (Gestwicki & Ahmad, 2010;
Sharmin, 2021)

2.12 Theoretical Framework:
This section presents a review of some of the theoretical underpinnings for this study, namely

constructivism, constructionism, and Keller’s ARCS model.

2.12.1 Constructivism Theory

What does constructivism entail? In the midst of ongoing discourse, claims and counterclaims, nuances,
jargons or hear-says surrounding the term constructivism, defining it becomes a challenge (Taylor, 2015) and
care is needed to avoid contributing to the confusions around this ubiquitous theory, that is influencing various
fields today. Raskin(2002) alluded to this confusion when he remarked, “One comes across so many varieties
of constructivist psychology that even the experts seem befuddled.”(pg. 1). Some of these popular variants of
constructivism include cognitive constructivism attributed to Jean Piaget(Powell & Kalina, 2009); radical
constructivism by Ernst von Glasersfeld; and social constructivism by Leo Vygotsky to mention a few. In this
section we want to define some of these variants, outline a brief history of constructivism, what critics say
about it, as well as how this theory relate to CS in general and CS1. Let us examine a few definitions of

constructivism.

Cogpnitive constructivism says knowledge is constructed in a person following a process of assimilation (i.e.,
adding knowledge to existing knowledge structure (schema) and accommodation (replacing an existing
schema with new ideas based on prior experiences, leading to shifts in the cognitive structures of the

individual). This emphasizes the individual.

Not satisfied by this Jean Piaget’s view of constructivist philosophy, earlier characterisation from the horse’s
mouth defines radical constructivism as: “... an unconventional approach to the problems of knowledge and
knowing. It starts from the assumption that knowledge, no matter how it be defined, is in the heads of persons,
and that the thinking subject has no alternative but to construct what he or she knows on the basis of his or her

own experience.” (Glasersfeld, 1996, p. 1)
Glasersfeld (2007) goes on to present these seven fundamental principles of radical constructivism:

1. Knowledge is what we experience. We experience knowledge. We know from our experiences. Our

experiences influence what we know.

There is knowledge beyond human reach.
However, existence is not knowable except it is experienced.
Knowledge is constructed.

Human knowledge is subjective, not objective. It is not equal to objective reality.

o g w Db

Even a viable knowledge or solution is only a construction, there are other alternative viable
constructions.
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7. Radical constructivism is only a model of knowing, it is not the only way of explaining how knowledge
or learning happens. It is only viable in contexts where it is fit for purpose.

While sharing some of the previous constructivist views, Leo Vygotsky and others, addressed what they saw
as gap in earlier constructivist theories: the missing emphasis of the social input to the individual construction
of knowledge. That is why their brand is called social constructivism.

While some have attributed constructivism to the theory of cognitive development by Jean Piaget(Ben-Ari,
1998; Malik & Coldwell-Neilson, 2018), others argued that the origin, dates back to the times before the great
Greek teacher Socrates (Glasersfeld, 1996, 2007; Llanas, 2018). Attributing earliest articulation of
constructivism to the writing of Vico Giambattista, an Italian eighteenth century philosopher, Glasersfeld
(1996) remarked that Vico’s treatise “which, as far as I know, is a first explicit formulation of
constructivism”(pg.6). In time, this constructivist idea that knowledge is what an individual construct within
themselves depending on their prior experiences spread from one generation of scholars and thinkers to
another, and since the second half of the twentieth century has become a dominant theory. Apart from Vico,
most prominent of mention is made of George Berkeley, and Jean Piaget as contributors to the modern idea of
constructivism (For comprehensive review of the historical roots of constructivism, see (Glasersfeld, 2007;
Llanas, 2018)

Despite widespread adoption of constructivism, it has not been without criticisms. Taylor(2015) articulated

these three criticisms:

e Constructivism is tantamount to discovery learning.

Empirical evidence suggests discovery learning is less efficient compared to direct instruction (Kirschner
et al., 2006). The constructivists provide a rebuttal by saying critics have wrongly equated constructivism
which is a theory of learning to a theory of pedagogy. In one of the most cited criticisms by Kirschner et
al (2006), they admit that “the constructivist description of learning is accurate, but the instructional
consequences suggested by constructivists do not necessarily follow.”(pg. 78) Kirschner et al (2006) also
concluded that “The advantage of guidance [i.e.. direct instruction over discovery learning] begins to
recede only when learners have sufficiently high prior knowledge to provide “internal” guidance” (pg.75).
That prior knowledge is one of core principles advocated by constructivism. That suggests that, the debates
on the value of direct instruction or constructivist learning is probably needless after all. Each is suited to
a particular purpose or context. In fact, following empirical evidence of the impact of both modes of
instruction, some authors advocate for employing both approaches giving consideration to contexts
(Kulasegaram et al., 2018; Margulieux et al., 2021; Stott, 2018)

e Majoring on minor by positing that student learning is based on prior knowledge. Critics say most people
agree that prior knowledge is important for learners. The constructivists react by stressing the point that
learners’ prior knowledge or experience makes it essential for teachers to tailor their teaching to their

backgrounds.
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e Just a theory of learning, lacking theoretical explanations or prescription for pedagogy(Kirschner et al.,
2006)

Ben-Ari(1998) identified these other criticisms:

¢ Undue emphasis of radical constructivism makes her supporters solipsistic, nursing the belief that nothing

is real or can be known apart from self.

e Extreme social constructivist ideology can lead to belief that scientific knowledge can only be
acquired by powerful privileged few.

e Emphasis on fallibility of knowledge means “truth” depends on an individual.

2.12.2 Constructionism

Constructionism is a constructivist philosophy of education propounded by the South African-born American
mathematician and computer scientist, Seymour Papert (Ellison, 2021). Papert who had worked with Jean
Piaget, extended Piaget’s brand of constructivism by positing that students not only construct their own
knowledge, but they do so as they develop artifacts of their interests in collaboration with their peers. That is
why, it is known as theory of learning by doing. This theory is suitable to this study because it explains how
providing students with a collaborative programming environment, and experiences for purposes of discovery
and communication of programming knowledge, can be the key to their engagement and learning, which in
the long run can enhance their programming performance. Scratch is a constructionist programming language.
The inventors of this novice programming language captures some of the essence of the constructionist
learning in the motto of Scratch: “Imagine, Program, Share”. Rob and Rob (2018) re-echoed this claim of the
constructionist educational philosophy stating “Thus at the heart of constructionism lies the belief that learning

occurs in the process of creating a product that can be shared.” [emphasis in the original] (pg. 5)

Figure 2-12 Learning dimensions in a constructionist programming class

Source: (Rob & Rob, 2018, p. 7)
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To clarify what really constitute a constructionist program learning instruction, Rob and Rob (2018) provides

an excellent characterisation.

The aim of constructionist learning for students is to develop from creative exercises concrete as well as
abstract programming knowledge. Important components of such a constructionist novice programming class

that contribute to these types of knowledge according to as indicated in Figure 2-12 includes:

Facilitator: the teacher acts as a facilitator or a coach for the students by providing authentic real-life
challenging learning goals for them. Here, the teacher does not spoon-feed the students with knowledge, the

best he or she does, is to provide the environment or impetus for learning through guided discovery.

Context: As stated earlier, learning happens in authentic context where students are encouraged to learn, and
are motivated to find answers by developing artefacts or solution to real life problems that are of interest to

them. Here, students are not just made to work on teacher-assigned exercises.

Collaboration: Often the constructionist class is characterised by students working in groups and sharing their
solutions or artifacts with one another. Here due to the freedom for self-expression of individual student’s

creative ability, the tendency towards code plagiarism does not exist or is minimised.

Tools: From its earliest beginning, constructionism had advocated the use of tools to engender students’
creative expression. One of such constructionist projects was One Laptop per Child by Seymour Papert and
his collaborators. Other tools include constructionist programming languages such as Logo, Scratch, and

dozens of others.

Product: In a constructionist programming class, the products are programs developed by the students. These
products encourage learning as students learn from each other’s code as they explore them. In the Scratch
community, this is called remixing. Each project submitted on the Scratch site are available for others to

explore and extend.

Media: This refers to platforms for instruction. It could be the blackboard, electronic whiteboard, and online

learning.

With the attendant confusions in the literature surrounding the two theories of constructivism and
constructionism (Guzdial, 1997), Rob and Rob (2018) present the table to characterise the similarities and

differences between the two theories.
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Table 2-15 Compare and Contrast: Constructivism and Constructionism

CONSTRUCTIVISM CONSTRUCTIONISM

INPUT: LEARNING DIMENSIONS

Inherent Knowledge of Students Inherent Knowledge of Students
Student-Centered Learning Student-Centered Learning
Teacher Initiated Work Teacher Facilitated Work
Constructing a Personal Artifact Constructing a Meaningful Artifact
Individual Creation Collaborative Creation Process
Sharing of Artifacts
Use of Tools, Media and Context

OUTPUT: CONSTRUCTION OF KNOWLEDGE

Source: (Rob & Rob, 2018, p. 7)

Brennan (2015) who had been involved with research on Scratch since its launch in 2007 as an MIT graduate
student, provides another excellent characterisation of the core features in a constructionist class. She identified

these four activities:

- Designing: students are engaged using their faculties to create objects, develop solutions,
unravel puzzles, and problem-solving.

- Personalizing: in contrast to the conventional class, the constructionist class devotes attention
to the individual. Students experience an atmosphere of freedom or autonomy that encourages
individual expressions. The theoretical framework for this activity comes from
constructivism. The constructivist emphasizes that learning takes place in the individual
students as they engage in the process of sense-making.

- Sharing: Students share ideas with teachers and fellow students. They share artefacts with
colleagues with the opportunities of getting feedback or taking their ideas or creations to
higher levels beyond their initial conception. Rather than struggling to contain plagiarism,
remixing of programming codes is encouraged. The theoretical foundation for this activity
includes social constructivism by Lev Vygotsky, situated learning and community of practice

- Reflecting:

2.13 Empirical Review

2.13.1 CS1 learning outcomes: Block-based Versus Textual programming

Two classes of programming platforms used by CS1 students are blocks-based (or visual) and text-based (or
textual) programming environments. Common examples of blocks-based environments include Scratch, Alice,
Blockly, Snap! etc., while popular textual programming environments are C++, Java and Python to name a

few. While programming in a textual environment involves composing texts that are syntactically meaningful



53

together to form logical instructions, programming in the blocks-based environment involves snapping graphic
blocks together like jigsaw puzzles. In the former, students are often confronted with syntax errors in their
codes, while in the latter syntax errors are eliminated, though semantic errors are still possible. In this section,
we will consider empirical studies involving Scratch (or Blocks-based) programming and text-based

programming environments and their impacts on CS1 students’ learning outcomes.

Rizvi and Humphries (2012) presented a Scratch intervention course (CS0) taken before CS1 by at-risk first-
year computer science students in a US university. The aim was to examine its effect on students’ attitude to
programming, performance in CS1 and their retention in computer science. It was a mixed-method design,
involving quantitative and qualitative methods. They conducted the study for two sessions (2009 & 2010) and
study sample include: 2009 - treatment group (n=35), control group (n=42); 2010 - treatment group (n=29),
control group (n=15). The treatment group were the students with the weak mathematics background in CSO,
while the control group were first-year students in CS1. Students in the CS1 class learnt C++. Anecdotal
evidence from the focus group conducted in 2010 with the 2009 treatment group revealed that Scratch had a
positive effect on their attitude and self-efficacy in CS1. Results from the CS1 performance data showed that
the treatment groups in the two sessions had higher pass rates compared to the control groups. They also found
an improvement in the retention of at-risk students in the two sessions compared to the session before

introducing the intervention.

Erol and Kurt (2017) explored the impact of Scratch on the motivation and achievement of first-year Turkish
university students in an introductory programming course. The study was a pretest-posttest quasi-
experimental design involving a convenience sample of 52 students randomly assigned to the treatment and
control groups. Data instruments used include an adapted MLSQ for measuring motivation and an achievement
test for measuring programming knowledge. Students learnt Scratch programming and flowcharting in the
treatment and control groups respectively for seven weeks, then they learnt C# programming in a combined
class for another seven weeks. Students took a pre-test at the beginning of the first seven-week for both
motivation and achievement in programming in both groups, and at the end, a post-test both groups. They took
the second post-test for both outcomes at the end of the combined C# class. They analysed data using mean,
Standard Deviation, paired sample t-test, independent samples t-test, ANOVA, and MANOVA. The result
suggests that though both groups were not significantly different in motivation and programming knowledge
at the beginning; they were significant differences in both outcome variables, at the middle and end of the
course in favour of the treatment group. They found that while motivation increased in the middle and end of
the course, in the treatment group; it plunges at the middle, and increased slightly at the end, in the control
group. However, both groups’ programming knowledge increased in the middle and at the end, though the
mean achievement of the treatment was significantly higher compared to the control group on both occasions.
One limitation of the study is failing to address the possibility of results being confounded by initial differences
in covariates. MANCOVA will probably have been used to address this threat. Another problem with this

study is, the control group were not given perhaps another form of programming, for instance, textual
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programming where students can run some codes like their Scratch counterparts and receive feedback. Perhaps

this was the reason for the lower motivation and performance of those in the control group.

Topalli and Cagiltay (2018) in a longitudinal study of undergraduate computing engineering students, from a
Turkish university, explores the effects of enriching traditional CS1 course with Scratch games developments.
The study investigated the impact of this intervention on the performance of students in the CS1 course, their
performance in the final year projects and their overall performance at the end of their studies. A quasi-
experimental design was employed involving 322 students, who the researchers followed for 4 years from the
freshman CS1 course to the senior year group project course. The sample was divided into the 48 students who
took the enriched Scratch CS1 course (treatment) and 274 students who took the traditional CS1 (Control).
The outcome variables were their CS1 grades, final year project grades and their overall CGPA. Study's data
were analysed using mean, SD and independent samples t-test. Though no pretesting of students' prior
knowledge was taken, the t-test analysis of the students CGPA at the beginning of the indicated that both
groups were similar in their academic ability. The independent-sample t-test of the students’ course grades
revealed that the treatment had significantly higher mean achievement compared to the control. They also
found similar results in favour of the treatment in the senior year project and the overall CGPA. However, due
to some threats to the validity of this study, these results are at best suggestive. For instance, there was no
pretesting of participants to know if both groups had similar baseline programming knowledge at the beginning
of the study. Organismic and environmental factors like differential learning contexts during their 4-year

programme and socio-economic backgrounds may also confound the results of the study.

Chen, Haduong, Brennan, Sonnert and Sadler(2019), following a different approach to previous studies,
conducted a retrospective study to explore the impacts of programming environments with which students
were initiated into programming and the age of introduction on their attitude towards CS and achievement in
CS1. The study employed a stratified random to realise a representative sample of students from 2- or 4-year
colleges in the US. However, from the sample of 10,203 students (from 118 institutions) that provided
complete research data, optimal matching was used to obtain 3 matched samples of those with graphic, textual
and none programming backgrounds, resulting into 2 treatment groups (i.e., Graphic and Textual
programming) and 1 control group (i.No programming). Regression analysis of the attitude data revealed that
there were significant differences between graphic and control group, and between the textual and control
group, in favour of each treatment group. However, there was no significant difference between the two
treatment groups. This suggests that learning to write program before CS1 using any of the two modes is better
for CS1 students' attitude than none. The regression analysis of the students' background and the CS1
achievement data also showed there were significant treatment effects of textual or graphic programming in
comparison to control on CS1 achievement, though with small effects. This indicates that learning to program
earlier may likely provide a little leverage for CS1 performance. Comparison of the two treatments initially
indicated no significant effect on CS1 achievement, suggesting that any of the two types of programming
environments can be equally effective. However, when age was introduced into the regression analysis, a

significant main treatment and interaction effects were found, suggesting that the advantage derived from
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earlier introduction to programming depends on the type of programming environment and the age of
introduction. Research results indicated that introducing students between age 6-10 with graphic programming
is better than textual programming. They also found no significant difference in treatment effects at age 11-14
and age 15-18 for both programming types, suggesting younger students above age 10 can be introduced to
programming using any of the two modes. One limitation of this study is the fact that, other confounding
variables after students’ initial introduction may also explain differences in their attitudes and achievements in
CS1. With no pretesting of students’ initial programming knowledge or including this as a covariate in the

matching, valuable factor that may influence their CS1 performance has been left out.

Mladenovi¢, Rosi¢, and Mladenovi¢ (2016) conducted an experiment involving Croatian elementary students
to compare between those introduced to programming using Scratch and those that were first taught in a textual
language called Logo. The dependent variables were attitudes towards programming and achievements. The
experiment lasted 6 weeks. The study used a mixed-method design involving 23, 7th grade students with 13
students in Scratch-first group and 10 in Logo-first. They collected data using two achievement tests (in
Scratch and Logo), the attitude survey and class observation. While students in Scratch-first group learnt to
program games in Scratch during the first 3 weeks, the Logo-first group learnt to program in Logo
environment. Both groups took a midterm post-test containing questions in the languages of instruction and
continued learning to program by swapping programming environments in the last 3 weeks. Each group took
final post-test with questions in the second programming language. The researchers adjudged both groups to
be equivalent based on the results analysis of their performance in math and Croatian language. Also, Shapiro-
Wilk’s tests showed that the post-test results fulfilled the normality test. t-test analysis of both groups’ overall
post-test scores showed that there was no significant difference in their achievements. However, while those
in Scratch-first group performed better in advanced concepts like nested loop compared to the Logo-first, there
was no statistically significant difference in the performance of both groups in basic programming concepts.
This suggests exposing elementary students, first, to programming using a visual language like Scratch, may
ease the learning of concepts that are difficult to learn in a textual language like Logo. They also found from
the attitude survey that the motivation of the Scratch-first group was higher than the Logo-first group. One
limitation of this study is the fact that while students in the Scratch-first had used the Croatian version of
Scratch, students in Logo-first had to program using English texts, which the study reported the students
struggled with. This initial setback may be the reason for their lower motivation towards programming during

the study.

To address a gap on the benefits and drawbacks of the growing use of block-based programming environments,
Weintrop and Wilensky (2017) compared the impact of block-based programming over textual programming
on the achievement and attitude of high school students in an elective introductory programming course. The
study followed a quasi-experimental design in which 60 students from a public high school in a midwestern
US city participated. The sample made up of students from the four different grades, were randomly assigned
to two classes of 30 participants producing one treatment (block-based) group and one control (Text-based)

group. Pencil.cc, an adaption of Pencil code (a free online dual-mode novice programming environment)
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served as treatment instrument. While the control made use of the text-based interface of Pencil.cc, the
treatment used the block-based interface, thereby exposing students to programming using different modes.
The study employed an attitudinal survey and an achievement test both taken online as pre-test and post-test.
A semi-structured interview protocol was used to collect qualitative data. Several statistics used in the analysis
include Mean, paired sample t-test, independent sample t-test, Mann-Whitney-Wilcoxon test, Wilcoxon
Signed Rank test, and Wilcoxon Ranked sum. After 5 weeks of both groups learning to programs, the results
of the analysis of the achievement test indicates, that both groups were similar in pre-test performance, and
demonstrated significant learning in the two modes, the learning gains for the block-based group was
significantly higher than the text-based group. The study also found that the block-based group outperformed
the text-based in the three modes of questions presented to them as well as in all the concepts asked. However,
the significant difference between the groups in the concepts asked, was found only in comprehension
questions. The analysis of the data from the attitudinal survey revealed that for ease of learning or using four
concepts in the two modes, namely conditionals, iterative logic, functions and variable, the block-based group
demonstrated significantly higher positive perception in their learning or use of conditionals and iterative logic.
This suggests some programming concepts are easier learned or used by a novice in one mode compared to
the other. Unsurprisingly, the study found a significant correlation between this ease of use of concepts and
the students' performance in answering questions on those concepts in the achievement test. While overall
confidence in programming ability remained unchanged after five weeks of instruction, the post-test
confidence for those in the block-based group was significantly higher than at the beginning, adding to a
growing body of evidence that block-based programming increases the students' confidence in their ability to
program. Similarly, the results of perceived enjoyment of programming indicated that no change between or
within the two groups, even, surprisingly, for the block-based group. This seems to contradict the usual
narrative around the block-based that students enjoy programming in it. This may suggest that the age of
introduction, teacher, classroom environment or other factors other than the programming environments make
learning to program enjoyable for students. Another interesting result of the study indicated both groups found
programming to be hard, even the block-based that had better performance. This suggests what Seymour Papert
calls, "hard fun", that though programming may be fun in a block-based environment, it does not remove the
intellectual challenge to be encountered while developing meaningful programs. Unsurprisingly, the study
found that while both groups interest for further computer science studies were similarly positive at the
beginning, their views were divergent at the end, with the block-based group seeing a significant increase and
the text-based group showing a significant decline. On the question of the authenticity of the programming
environments (in comparison with professional programming environment like java), while quantitative data
indicated that responses in both groups were equally positive and not significantly different, yet qualitative

data show some of the students expressed some reservation.

Hu, Chen & Su (2021) conducted a meta-analysis to investigate the effectiveness of block-based programming,
and some factors that may moderate its impact on students’ achievements. The four factors included are block-

based programming tool used (Alice, MIT App Inventor, Scratch, and others); nature of the block-based
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programming intervention (alternating with the traditional class or complementing); educational level
({elementary, middle, high} school, college/university) and geographical location (Asia, Europe, North
America, Others). From a search net that involved publications from ACM Digital Library, ERIC, IEEE
Xplore, ScienceDirect and Web of Science collection, 1485 initial relevant articles was uncovered, after which
series of closer look and filtering led to a sample of 29 articles employed in the study. Effect sizes for each
intervention, and their overall fixed and random effect sizes were computed. Other relevant analysis conducted
include test of heterogeneity, moderator analysis and test of publication bias. The 29 studies yielded 34 effect
sizes of which 22 (64.71%) effect sizes indicated statistically significant positive effects in favour of the block-
based environment, 2 (5.88%) effect sizes showed statistically significant negative effect and 10 (29.41) effect
sizes indicated no statistically significant effect. The overall effect and heterogeneity test reveal a mean overall
fixed effect size of 0.37 (95% CI [0.30, 0.44]); and overall random mean effect size of 0.47 (95% CI [0.32,
0.62]). This suggests that learning to program using block-based programming environment is better compared
to a text-based environment, though with small to medium effect on students' achievement. The results from
moderator analysis indicated that the four factors have a significant effect on the impact of the block-based
environment. This suggests that the impacts of block-based programming on students' achievement depend on
some variables like the four selected factors amongst others. For the programming tools used, while Alice has
a small to medium significant effect, Scratch showed a medium effect, App Inventor indicated no significant
effect. This indicates that either Scratch or Alice used in CS1 class will impact on students' achievement,
though Scratch may work better. The nature of the intervention also revealed that studies, where block-based
was alternated with traditional pedagogy, had small to medium effect. On the other hand, when block-based
programming was used to complement the traditional pedagogy, it had a medium effect. This suggests that
enriching CS1 pedagogy with the block-based programming taken by students for a short while before
continuing in the traditional text-based programming pedagogy appears to work better than students spending
the whole course duration on block-based programming alone. Results for the educational level indicated that
use of block-based programming intervention will have a medium to large effect in elementary or middle
school, a small to medium effect in high school and small effect in college or university. This further indicates
that the level of the impact made using block-based programming declines as students become more mature
or knowledgeable. As per location of intervention, Asia had a nearly medium effect, Europe a medium to large
effect, and a small effect in North America. This suggests that the impact of block-based programming
intervention is not the same in all places. While it works well in some places, it is of little use in others. This
study failed to capture the impact of block-based programming in Africa, though the use of such tools is

growing on the continent.

2.13.2 CS1 learning outcomes: Scratch and gender

The low participation of women in computing in most parts of the world is a well-known phenomenon (Rubio
et al., 2015). Interest in computer science appears to wane among girls from elementary schools. Computing
without women’s involvement in the creation of knowledge and technologies is increasingly recognized as

unhealthy for the profession (Lehman et al., 2016). Therefore, broadening participation with interventions that
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provides engaging pedagogy for the female students in CS1 and beyond is a dominant theme in computing
education research (Gunbata & Karalar, 2018). This section reviews empirical studies involving programming

interventions and their impacts on male and female students of programming.

Rubio et al.(2015) employed a contextualized computing pedagogy involving MATLAB programming and
Arduino, so that programming concepts become tangible to students using sound, movement, and light. This
intervention was aimed at assessing, in comparison to the traditional instruction, gender differences in
programming perceptions and learning outcomes of first-year Spanish university students who all had no prior
experience in programming. Both experimental and control groups had 10-week instruction in introductory
programming. The study was underpinned by the Technology Acceptance Model (TAM). A survey based on
the three TAM constructs namely, perceived ease of programming, perceived usefulness of programming and
intention to program, and a final achievement test were used to collect data. The programming perception
survey was conducted thrice: at the beginning, middle and end of the course. Student t-test was used to analyse
the programming perception data and a clustering technique was used to process the final exam scores. They
found that while the three programming perceptions scores for males and females showed consistently
diverging trends, closing with a significant difference in favour of male students in the control group, these
scores, though exhibited mixed trends in course of intervention in the experimental group, gender differences
remained consistently insignificant, suggesting that the contextualized instruction closed the gender gap in
programming perception. On the other hand, there was no gender difference in the programming learning
outcomes in both groups. However, the failure rate revealed a different picture. While female students’ failure
rate doubled those of male students in the control group, the rate was essentially the same in the experimental
group. Unfortunately, with no pretesting of the students’ programming knowledge, or use of a covariate, there
is no guarantee that students are equivalent, and that initial difference would not have confounded the final

exam outcome.

Likewise, Sabitzer, and Pasterk (2014) employed a neuro-educational pedagogy they called “brain-based
programming” and examined its effects on students' achievement. The hypothesis of their study is:
programming instruction that addresses each student's brain and memory functions by employing principles of
neuro-didactics will improve their learning outcomes. Such principles include discovery-learning, active-
learning, cooperative-learning and autonomous or individualized instruction. The study employed a quasi-
experimental design involving first-year Austrian university computer science students consisting of 3
experimental groups (n=71) and 4 control groups(n=88). Three research instruments were used: a profile
questionnaire, a midterm test and a final achievement test. Data collected were analysed using independent
samples t-test. The results of the study revealed that the success rate was higher in the experimental groups
(52%) compared to the control groups (40%) and the traditional CS1 sets from previous years (30-40%). While
the results from the midterm test suggest that the intervention was more effective than the traditional CS1
pedagogy (p = 0.008, Cohen’s d = 0.42), the average achievement in the experimental group though higher
compared to the control in the final test, the difference was not significant. Another result also indicates that

the intervention was effective at closing the gender gap, as the performance of both males and females was not
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significantly different in the experimental group. The males performed significantly better than the female in
the control group. The drawback of this study like that of Rubio et al.(2015) was that: prior individual and

group differences were not considered. These could have confounded the results of the experiment.

Papadakis and Kalogiannakis (2019) examined the cognitive and affective impact of a Scratch intervention on
some female preservice kindergarten teachers who had no prior programming experience, in a Greek
university. They employed one group pretest-posttest quasi-experimental design, with a convenience sample
of 15 females that signed up for a 13-week elective course. Data were collected with an adapted Teacher Self-
Efficacy in Computational Thinking (TSECT) questionnaire for pre-test and post-test; Dr Scratch (an online
tool) for assessing students' Scratch projects to measure the seven computational thinking (CT) dimensions; a
qualitative questionnaire and a structured interview protocol. The seven dimensions of CT are logical thinking
(LT), data-information representation (IR), user-interactivity (IN), flow control (FC), abstraction (AB) and
problem decomposition, parallelism (PA), and synchronization (SN). The result of the t-test of Self-Efficacy
data indicated that students' self-efficacy increased significantly. Analysis results from Dr Scratch for the
seven dimensions of computational thinking students employed in their project were: PA (M=1.88, SD= 0.38)
LT (M=1.54, SD = 0.29), FC (M=2.16, SD=0.41), IN (M=1.81, SD=0.32), IR (M=1.68, SD=0.29), AB
(M=0.72, SD=0.22), SN (M=1.84, SD=0.41), indicating, with a maximum score of 3 for each dimension, that
while students performed poorly in Abstraction ( a core skill in CT), their best performance was in the ability
to write sequences of instructions in their programs. Overall, students' projects were categorised into Basic
(15%), and Developing (85%), indicating none of them reached the Proficiency level in their Scratch
programming skill. This suggests Scratch has a moderate effect on their cognitive achievement. However,
qualitative results (together with earlier self-efficacy result) indicate that the intervention had a strong affective
impact as all the students expressed satisfaction with learning Scratch and indicated intentions to learn more
CT and teach CT in their classrooms after graduation. However, these results are only suggestive due to
weaknesses in the study. A larger sample and a control group (even another equivalent or matched sample of

female students) will probably produce a more definitive indication of Scratch's impact.

Adleberg(2013) investigated the problem of gender differences in student engagement in programming by
conducting a Scratch intervention. The study sample was 98 elementary school students from a private school
in Virginia, USA. They were randomly assigned into three groups: 18 girl pairs, 17 boy pairs, and 14 mixed-
gender pairs. Underpinning the study in theory of constructionism, participants were taken through four
workshop sessions in Scratch, three offline and one online. Data collected included a pre-test of prior
programming experience, a post-test survey of extrinsic and intrinsic motivation. Analysis of Variance results
indicated that though boy pairs' prior programming was significantly higher than those of girl pairs or mixed
pairs, yet there was no significant gender difference in engagement with Scratch. This suggests that Scratch
was equally engaging for both genders, despite the initial difference in prior programming experience. While
there was no significant gender difference in intrinsic motivation, yet, unsurprisingly, there was a significant

gender difference in extrinsic, with girls having higher extrinsic motivation. However, the result is limited in
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its generalisability due to the sample being a homogenous group, not representative of elementary students,

and no control group to compare with the treatment with.

Likewise, Hsu (2014), in the context of Scratch games design competition, explored gender differences among
elementary students who were skilled in Scratch programming. Adopting a one-group post-test design, a
purposive sample of 46 elementary school students in Taiwan were selected by their teachers for the study.
They were divided into 23 teams with 13 boy pairs, 7 girl pairs and 3 mixed-gender pairs. Data were collected
with a post-competition survey to measure computational thinking concepts; work analysis by Scrape (A
computer program) to mark each team's Scratch game. From the independence t-test, the author found that
while the overall results of students' performance in computational thinking concepts indicate no significant
gender difference, the females scored significantly higher in the counting loop compared to the males.
However, this study suffers from the same methodological weaknesses as the previous study by Adleberg

(2013): Non-representative sample and lack of a control group.

Addressing some of the drawbacks of the above studies, Tekerek and Altan (2014) examined the impact of
Scratch and gender on 6th-grade students' achievement in a Turkish school in an algorithm course. A pretest-
posttest control group experimental design was used. The study involved 30 students (15 boys and 15 girls) in
the control and similarly 30 students (15 boys and 15 girls) in the experimental group both from an elementary
school in Turkey. Data were analysed using independent samples t-test, paired-sample t-test, and ANCOVA.
While anecdotal evidence suggests Scratch was positively engaging for the students, empirical results indicate
that the mean achievement of the control group (taught the traditional way) was higher compared to the
experimental group, though the difference was not significant. Similarly, there is no significant effect of gender
on student achievement. The result suggests both modes of instruction were equally effective for both groups
and gender. However, the study's validity is threatened by the selection of students from a school. The
possibility of the participants interacting can confound the outcome. Employing samples from two schools will
probably mitigate this threat. The test of assumptions for ANCOVA was not stated and there’s no way to know
if the covariate used, was appropriate in the ANCOVA model. Findings and interpreting results may be

defective.

Some other studies present descriptive evidence of factors that predicts or differentiates male and female
performance in introductory programming. For instance, Gunbatar and Karalar (2018) investigated the impact
of mBlock (a Scratch-like) programming learning environment and gender on the self-efficacy perception and
attitudes of Turkish 6th-grade students towards programming. The study which lasted 12 weeks, employed a
one-group pretest-posttest design quasi-experimental design involving 82 public middle school students (39
girls and 43 boys) consisting of 3 classes. Results of statistical analysis of self-efficacy and attitudinal data
indicated that the initial significant gender gap (with boys being higher) in self-efficacy disappeared at the end.
While there was no initial gender difference in attitude towards programming, in the end, girls had a higher

positive attitude towards programming, though the difference was not significant.
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Quille, Culligan, and Bergin (2017) examined gender differences in factors that predict success in CS1 in three
areas: background factors, psychological factor and programming performance. Employing a descriptive
research design, study participants were CS1 students from 11 universities and colleges in Ireland and
Denmark. Using an earlier developed machine learning web-based tool called PreSS#, complete students’ data
on these areas were collected from a sample of 693 students with a male to female ratio of 79:21. However, a
cohort representing 36% of the sample (with male to female ratio of 73:27) was reported in their article. The
online research instrument consisted of a Background and Student Data Survey; Psychological Questionnaire
and Programming Test. Data were analysed using descriptive statistics (distribution in percentages) and

inferential statistics (Welch t-test). Findings from this study revealed:

1. For background: while there were no gender differences in age, weekly part-time work hours, and the time
to complete the survey, there were significant differences in prior mathematics ability, overall pass rates, daily
social media hours (with females having higher value), and daily computer games playing hours and dropped

out rate (with males having higher values).

2. For the psychological factors: All factors recorded significant gender differences, mostly in favour of
males. Males recorded higher values in self-efficacy, self-rating of knowledge of concept, design, and
completion of code, intrinsic motivation and expected course grade, and lower test anxiety compared to the

females.

3. Programming Test: Significant differences appeared at different stages. In the early stage test males
performed significantly better while at the end of the course module females outperformed the males.
Suggesting that probably the deficit in self-efficacy at the beginning of the course influenced the females to

put in more time and effort in their study.

However, with the reliability or validity of instruments not stated, the results of this study may only be taken
as suggestive. A similar study by Pappas et al. (2016) addressed this important need for reliability and validity
of research instruments. In the study involving a sample of 236 (180 males (76.3%) and 56 females (23.7%)
Norwegian university computing students, with 21% of them in their first-year, they assessed gender
differences in perceptions of factors that are believed to influence students towards enrolling and remaining in
computer science, with a particular aim at identifying factors that are critical for women participation in CS.
They employed a questionnaire containing 7-point Likert scale items divided into four parts: Demographics,
Critical CS constructs, Barriers, and Future intentions. The reliability and validity of the instrument were
established with acceptable Composite Reliability (CR) and Average Variance Extracted (AVE). Research
data were analysed using the Welch t-test. Gender differences were found in five areas: cognitive gain,
affective engagement, interest in schoolwork (in favour of males), and interest in CS, and satisfaction with
learning effectiveness (in favour of females). No gender differences were found for non-cognitive gain,
cognitive engagement, personal values, teaching quality, and retention. This implies that while both genders

perceive later five factors equally, they differ in their perception of the former five. It is interesting to note that
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females who enrolled in computer science do that out of real interest, yet probably due to the environment of
male-dominated classes and stereotypes, they may lose interest in school work later. However, the results
suggest that females will value engaging pedagogy than their male counterparts. Klawe (2013) identified this
as one of the reasons institutions like Harvey Mudd College in the USA have been more successful at enrolling

and retaining women into CS.

Lishinski et al. (2016) explored the relationship between 4 Self-Regulated Learning (SRL) constructs namely,
self-efficacy, metacognitive strategies, intrinsic and extrinsic motivation, and programming performance of
CS1 students. The study also investigated if there were gender differences in the effects of these four constructs
in their programming performance. The study adopted a one-group pretest-posttest design involving 346
students in a CS1 course at a large midwestern university in the USA. Of these students, 248 (73.1%) were
male, 93 (26.9%) were female and 5 were unidentified. The study employed an adapted online Motivated
Strategies for Learning Questionnaire (MSLQ) to measure the 4 SRL variables and two instruments developed

for programming performance:

» multiple-choice exam
* programming project rubric.

Path analysis of the research data revealed that self-efficacy has the strongest direct relationship with
programming performance, particularly the programming exams. Results also revealed a self-efficacy loop
feedback in which, metacognitive strategy and intrinsic goal orientation influences programming performance,
and improved programming performance leads to increase self-efficacy. While the overall results indicate a
strong relationship between self-efficacy and programming performance, largely, there was no significant
gender difference, except for female initial self-efficacy which was significantly lower than that of the males
(t = 2.92, p-value = 0.004). This is a common research finding; male and females rates their self-efficacy
differently at the beginning of CS1. However, in this study, there were also gender differences in their pattern
of self-efficacy correction. While females were quicker in correcting their initial self-efficacy belief, males
were slower in modifying theirs. That is, with positive performance feedback females receive at the beginning,
their self-efficacy increased sharply while those of the male remained largely unchanged. But between the
second and third efficacy measurements, males increased significantly in the correlation between self-efficacy

and programming performance, while those of the females though increased, the increases were not significant.

Like the previous study, Aivaloglou and Hermans (2019) explored the relationship between gender, age, self-
efficacy, prior programming, motivation, and stereotypical beliefs on programming performance and career
goals of elementary students. The aim was to investigate whether factors that have been found to affect
university computer science students, are also applicable at this level in an introductory programming class.
The study followed a correlation design which involved 74 students from two public elementary schools in
Netherland, with students in each school randomly divided into 2, making a total of 4 cohorts. In eight weeks,

students were exposed to the Scratch lesson. Data were collected using a profile questionnaire, MLSQ,
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midterm and final achievement tests. Surprisingly, test performance was found to be uncorrelated with self-
efficacy and motivation. Self-efficacy was found to be strongly correlated with intrinsic and extrinsic
motivation. It was also found that, while career orientation was not correlated with test performance and
stereotypical beliefs, it was strongly related to their midterm self-efficacy and intrinsic motivation. The effect
of gender indicates that self-efficacy was strongly related to test performance for females than for males,
though the difference was not significant. Another notable result indicates that intention for CS career
measured in the middle of the course for females is strongly related to their self-efficacy measurements at the
beginning and end of the course. Previous programming experience was found to be strongly correlated with

self-efficacy, extrinsic motivation and career orientation.

While self-efficacy and motivation have often been found to be related to learning performance, the probable
reason for the contrary result in this study may be that students reported a wrong level of their self-efficacy.
The researchers gave difficulty of the tests as the probable reason. They also admitted that the self-efficacy

measurement used may not be suited to the age of the students.
In summary, the following can be deduced from the above empirical studies in this section:

. Male and females rate their self-efficacy differently at the beginning of CS1. While male students
generally rate their self-efficacy high, female counterparts often rate theirs low. However, research suggests
this self-efficacy gap is often closed by effective interventions. (Gunbata & Karalar, 2018; Lehman et al., 2016;
Lishinski et al., 2016; Quille et al., 2017)

. Male students often have higher intrinsic motivation while female students have higher extrinsic

motivation for programming. (Adleberg, 2013; Quille et al., 2017)

. Self-efficacy is strongly related to programming performance. (Aivaloglou & Hermans, 2019;
Lishinski et al., 2016)

. While Scratch's impact on students’ achievement is mixed, what is clear is that constructionist
programming interventions employing Scratch can be equally engaging for both gender, it may be effective in

closing gender gaps in self-efficacy and programming performance. (Adleberg, 2013; Rubio et al., 2015)

. CS1 interventions should target or leverage self-efficacy of the female students who often are in danger
of dropping out from CS due to inherent low self-efficacy or their initial difficulty with traditional CS1 and
the attendant low self-efficacy. Also, programming instruction should be tailored to satisfy their extrinsic

motivation.

2.13.3 Scratch in CS1, Students’ age, and learning outcomes

What is the relationship between the age of students exposed to programming (or Scratch in particular) and

their performance in introductory programming classes? Generally, it is believed that there is a linear relation
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between programming knowledge and age (Rizvi & Humphries, 2012; Rountree et al., 2002; Silvast, 2015).
In this section, we will consider some relevant studies to further explore this issue of age and programming

achievement.

Hermans and Aivaloglou (2017) in a study involving Dutch elementary students sought to explore the
hypothesis that young age is not a barrier to learning advanced CS concepts. Thus, the main aim of the
intervention was to explore that idea, and confirm if age moderates the performance of students in their learning
of programming and software engineering concepts. The study employed a descriptive research design with a
convenience sample of 181 students that completed the study, out of the 3,179 and 2,270 that signed up and
participated respectively, in a 6 weeks MOOC introductory Scratch Programming course on eDX. Students
were exposed to programming by weekly video demos of Scratch programs. Data were collected using student
profile questionnaires, formative quizzes, midterm term and final tests. They found from the comparison of
students’ overall mean scores in both programming and software engineering concepts, that there was no
significant difference, indicating the students performed equally well in both. While the comparison of the 11-
12 age group with 13-14 age group students indicated there were no differences in many concepts, nevertheless,
significant differences (with at least a small effect size) were recorded in concepts of procedures and operators
in favour of the older students, probably suggesting that there are programming or software engineering
concepts that are too difficult to understand for younger students. However, with one convenience sample,
with no control group for comparison makes the result only suggestive. For a definitive finding, this
phenomenon of age and programming achievement needs to be studied further using a true experimental
design. While elementary students can learn advanced CS concepts, the result of this study suggests there are

topics that the students will struggle to understand, so introducing such at that level will not be appropriate.

Like the previous study, Atmatzidou and Demetriadis (2016) employed Educational Robotics (ER) and guided
instructional approach in an introductory class for secondary school students, intending to explore age and
gender differences in the development of their Computational Thinking skills. This study was underpinned by
Seymour Papert's theory of constructionism and Lev Vygotsky's social cognitive theory. The study followed a
one group quasi-experimental design involving a convenient sample of 164 (89 Junior high students: aged 15,
48 boys and 41 girls and 75 High vocational students: aged 18, 64 boys and 11 girls) from Thessaloniki,
Greece. Students were exposed to computational thinking education during an 8-week seminar, 4 weeks for
the Junior and 4 weeks for High students. Students were taught with Lego Mindstorms NXT 2.0 robotics Kits,
and data instruments used were Student Profile Questionnaire, two intermediate questionnaires for CT skills,
Students Opinion Questionnaire, Think Aloud rubric, Semi-structured interview protocol, and Structured
observation protocol. From the analysis of the quantitative data, they found that, though none of the students
has prior experience with robotics, there was no significant age difference in the overall CT skills of the
participants, indicating that despite the age difference (15 years versus 18years) both groups exposed to the
same educational robotics education instruction developed equally same computational thinking skills. The
results also indicated that though girls performed initially lower than boys in CT skills, they were able to catch

up, and in the end, there was no significant gender difference.
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In an often-cited study on predictors of CS1 students’ performance by Rountree, Rountree, and Robins (2002),
the authors employed descriptive research design, to identify factors that determine students' success or failure
in a CS1 course, for students at a university in New Zealand. The study involved a cohort of 472 students
enrolled in two consecutive sessions 2000-2001. The course lasted 13 weeks of the second semester. Data were
collected from an online survey and final course score. Percentage and Chi-square statistics were employed to
analyze data. The study found that factors such as gender, studentship type or intention to continue CS did not
matter in student success. However, while age did not matter among students with a pass rate of 70% and
above, age difference reflected in the performance of students who attained at least a pass rate of 50%. Among
these students the following pass rates were recorded 16-18, 80%, 19-21, 72%, 22-24, 54% and 25+, 74%,
throwing up a surprise that more matured students (age 22-24) had lowest pass rate. The study found that the
greatest predictor of success was student self-selected expectation of grade A, suggesting that student's self-
efficacy belief at the early stage of a CS1 course is strongly related to their final performance. However, this
study is fraught with several threats that make its findings only suggestive. Information on validity or reliability
of research instruments were not indicated. Testing of assumptions for Chi-square analysis was not given. With

a sample not representative of the CS1 population, generalization findings cannot be made.

Chen, Haduong, Brennan, Sonnert, & Sadler (2019) took a different approach to the above studies to find
answers to the question of the relationship between age and CS1 achievement. They employed ex post facto
guasi-experimental design, to explore retrospectively, the effects of the type of programming environment on
student's age, their attitude at the beginning, of being introduced to programming and their achievement at the
end of a college CS1 course experience. The study employed stratified random sample to realise a
representative sample of students in the US. students from 118 colleges running 2- Or 4-year CS programmes
in the US, totalling 10,203 eventually completed the in-class survey at the beginning of CS1 and their
instructors added their final grades at the end. This sample is made up 73% male (n=7,219) and 27% female
(n= 2,660). However, for the analysis, optimal matching was used to generate a matched random sample size
of 5764 students consisting of 306 students in graphical programming, 2995 in textual programming and 2463
had no prior programming language. t-test analysis of the matched samples revealed that samples consist of
students with similar backgrounds. Data collected through an in-class survey and CS1 course assessments
were analysed using regression analysis. The result indicated there were significant main effects of graphic
programming and textual programming environments on the students’ positive attitude towards CS (in
comparison with those without prior experience). They found no significant difference in positive attitude
between the students exposed to graphic and those with textual programming backgrounds. They also found
significant interaction effect of age when students first started to program and the programming environment
on students' positive attitude towards CS, suggesting that students’ positive attitude towards CS depends on
what age and how they were introduced to programming. For final CS1 grade, the study found significant
effects of both graphic and textual programming (in comparison to control) on students’ achievement,
indicating it is better to learn to program using any of the two environments than none. The performance of

students with prior programming in CS1 depended on the age they were introduced to programming. Those
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introduced to graphic programming between the age 6-10 or younger, are likely to score higher in CS1 than
those introduced to textual at the same age. There was no significant difference in the achievements of students
introduced to programming between age 11-14 and 15-18years in both treatment groups, suggesting that both

modes work equally well in preparing students for college CS1.
To summarize findings in this section we make the following deductions:

. Students’ age and mode of initiating them to programming before college matters in their later attitudes
towards CS or programming, and their achievements in college or university first programming course (CS1).
(Chen et al., 2019)

. Age in CS1 appears in most cases does not matter in students’ achievement in programming,
especially among students with no prior experience in programming (Hermans & Aivaloglou, 2017; Rountree
et al., 2002)

. However, findings from the above studies suggest that there are few programming concepts where

students’ achievements are differentiated by their ages. (Hermans & Aivaloglou, 2017)

. Whatever the age, student’s self-efficacy is strongly related to programming performance. (Aivaloglou
& Hermans, 2019; Lishinski et al., 2016; Rountree et al., 2002).

. Constructionist programming interventions employing Scratch can be equally engaging for all ages in
K-16 education (i.e. elementary or primary school, high or secondary school, and first-year college or
university students) (Adleberg, 2013; Rubio et al., 2015)

2.13.4 Scratch, CS1, prior programming experience and learning outcomes

Previous computing experience is another major factor that may contribute to success in introductory
programming. It is often argued that prior programming experience students bring into college or university
computer science course (CS1) contributes to their CS1 performance. College or university students acquire
such experience either by taking high school programming CS course or those without CS background are
made to take a pre-CS1, usually called CSQ0. In this section, we want to examine the effect of students’ prior

programming experience and their CS1 learning outcomes by reviewing some empirical studies.

Wilson & Shrock (2001) conducted a study exploring the relationship between twelve predictive variables and
students' achievement in CS1. Some of the factors included in their model are math background, comfort level,
performance attribution to luck, previous programming experience to mention a few. The attribution theory
served as the study's framework. The study followed a correlation design involving 105 students taking a CS1
course in a midwestern US university. A questionnaire and the Computer Programming Self-Efficacy Scale,
served as instruments for collecting data. The results from multiple regression analysis of the full model

including the twelve factors revealed that comfort level, math background, and performance attribution to luck
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contributed the most to success, with a negative influence of luck. This suggests that while comfort level and
math background are expected to contribute positively to students’ success, attributing performance to luck
probably led student to study less, and thus negatively impact their achievement. Further analysis using
multiple regression of the previous programming and non-programming experience variables, as predictors
and midterm grade as the outcome, showed previous programming and game playing to be significant in
predicting student’s success in CS1. However, while the contribution of previous programming experience is
positive, that of game playing is negative. This indicates that students who are given to playing computer

games probably spend less time on their studies and invariably performs less in the course assessments.

Silva-Maceda et al. (2016) in an attempt at investigating the impacts of CS1 pedagogical approach and
students’ organismic factors on their CS1 achievements, conducted a longitudinal study involving seven
cohorts (N = 1168) of students in a central Mexican university. The students were assigned to three
pedagogical modes differentiated by variation in the length of learning time (2 or 3 semesters) or programming
tools used in their first semester. The three groups consisted of those who did not take a CS0 course in the first
semester, but took CS1 with C for 2 semesters, those who took a CS0 using C in their first semester and CS1
with C for 2 semesters, and those who had a CSO0 using Raptor in their first semester and CS1 with C for 2
semesters. One of the questions they sought to answer was,“Does taking a CS0 course make a difference in
the pass rates of each group in the overall CS1 score?”. Logistics regression analysis of students’ performance
data indicated that students in the CS0 with Raptor group had highest pass rates, followed by students who had
CS0 with C, and lastly those who took CS1 without a CSO course. After including initial students’ ability as
control, the results of another logistic regressions analysis yet indicated a statistically significant difference in
the pass rates between those without a prior experience and the other two groups that were exposed to a CSO
course before CS1. However, comparing the two groups with prior experience in a CSO0 course, there was no
statistically significant difference after including initial students’ ability in the analysis. This suggests students
first being exposed to programming, is better than taking CS1 without a prior programming course, probably
evidence of the benefit of higher time-on-task. Also, it is better to have a prior programming experience using
whatever pedagogical approach than having none. Though, the study controlled for the initial students' ability,
nevertheless due to the longitudinal nature of the study, some other factors may have confounded the results.
Some of these factors included differential teachings and assessments leading to the final CS1 grade. An

experiment with students taking the same pre-test and post-test may address such limitation.

Hagan and Markham (2000) in a study involving Australian first-year computer science students sought to
confirm, whether students' prior experience in programming has an impact on their achievement in the
university CS1 course. The study employed a longitudinal study design in which students' performance
measured with a series of research instruments at a different stage of a semester course in introductory
programming lasting for 13weeks. The study sample was made of 75 students which provided complete
research data. While the t-test analysis of data indicated a significant statistical difference in the four formative
assessments between students with none, and those with some experience in programming, there was no

statistically significant difference in their summative assessment. However, t-test analysis of their final grade
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in the course showed a significant difference between the groups, in favour of those with some experience.
Analysis of variance of the performance of the groups also revealed that the more languages a student earlier
studied or had experience programming in, the better their performance in CS1. Furthermore, the analysis of
attitudinal data collected at an early stage and just before the final exam indicated a statistically significant
difference in the results from both surveys, measuring students’ confidence in passing the course, in favour of
those with some experience in programming before CS1. The study however did not provide information
validity or reliability of the research instruments. The study was limited by a lack of pretesting to identify if

students in both groups were comparable based on any covariate that can likely confound the result.

Mishra et al. (2014) conducted an intervention aimed at addressing the pedagogical needs of students with and
without prior programming experience in an Indian university. Scratch was employed in the study for the first
two weeks before all the students transitioned to C++ for the rest of the semester’s CS1 course. The study
involved 450 engineering students, however, only 332 of them that completed a programming background
survey in the first week of the study were included in the analysis. This sample was made up of 217 and 115
students that were classified as novices and advanced learners respectively, based on their prior programming
experience. Other research instruments used included semester quiz and midterm exam to assess students'
programming knowledge, Scrape (an online tool) to assess Scratch projects, and a survey to assess students’
perception about Scratch usefulness to their learning of C++ at the end of the semester. Independent samples
t-test analysis of the midterm exam consisting of Scratch and C++ questions indicated that there was a
statistically significant difference, between the students with no prior experience and those with some
programming experience at the end of 6th week in some question types: "Predict the output™ and "Debug a
program". This suggests Scratch has helped the students with no prior experience to catch up with their
counterparts with prior programming experience in some types of programming knowledge. Going by the
assessment of student’s projects, they inferred that the advanced learners were also highly engaged with
programming using Scratch. The analysis of the perception data indicated that most of the students believed
Scratch was beneficial to their learning of C++ programming language concepts. However, there was a
significant difference between the two groups in “Write a program" questions, in favour of those with prior
experience. This suggests that prior programming experience matters in students’ performance in CS1. There
was also a correlation between the midterm scores in Scratch and C++, suggesting student who performs well
in Scratch, a block-based programming language, will likely perform well in C++, a text-based programming
language. However, the results of this study are only suggestive due to some limitations. There was no control

group and measuring of any covariate that can confound the results.

2.13.5 Scratch, CS1, visual artistic experience and learning outcomes

In this section we seek to explore the relationship between students’ creative achievement in prior visual artistic
exercises and their CS1 achievements. Does bringing a positive performance in prior creative activities makes

any difference in the CS1 class? We will answer this question by reviewing some empirical works.
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Following an earlier empirical study that suggests delaying or replacing a CSO0 coding-first curriculum with
"Story Programming" (a non-coding) pedagogy is promising for broadening participation in CS1 class,
Parham-Mocello and Erwig (2020) sought to confirm the hypothesis that exposing students with little or no
programming experience or interest in computing to only "Story Programming™ will likely see better results
for Drop-Fail-Withdrawal (DWF) rate and students' interest than those exposed to coding-first. The "Story
Programming" approach is essentially using art (in form of stories) to develop creative or computational
thinking abilities of the students. The study involving 147 to 191 CS1 students in a USA university employed
a quasi-experimental design. Data collected were analysed using Kruskal-Wallis and Wilcoxon paired t-test.
They found that while DWF rate was not significantly different between the class that had "Story
Programming" and those that had coding, the DWF rate was higher in the traditional coding-first class. They
also found that, there was no significant difference in the grade point average of students in both classes. This
suggests that programming or computational thinking can be learnt by pedagogical means other than coding
on a computer - usually called "CS unplugged". Another analysis sought for change in students’ interest in the
class, coding and use of stories. They found that there was a significant drop in the class interest in both groups,
with a higher drop in the coding-first class. This suggests that some students in both groups did not find the
classes engaging, especially those in the coding-first group. This is further confirmed by the finding that while
interest to learn more about programming or coding did not wane between pre and post-test in the treatment
group, there was a significant decrease in the coding-first group. In answer to questions on the use of stories
to learn programming, while the traditional group's opinions were more negative, those of the treatment were
more positive. This study suggests students can learn programming using art and students exposed to such art-
based learning environments, and by so doing arose their creative interest, may perform better in CS1 than

those without such background.

Hermans and Aivaloglou (2017) explored the impact of introducing students to programming with or without
the computer (usually referred to as plug and unplugged CS) on their learning outcomes. They employed a
quasi-experimental design involving two random samples of 35 students (in total) from a Netherland
elementary school. The study is underpinned by Bandura's theory of self-efficacy. Self-efficacy is the belief
that one can perform steps necessary for realising a goal and has been found to correlate with students'
programming achievement. In the first week, online accounts were opened for both groups on Scratch.
Subsequently, for four weeks, while the "plugged" (the traditional) group (n=17) were introduced
programming using Scratch, the treatment group (n=18) learnt programming concepts using CS unplugged
activities without programming on a computer. Subsequently, both groups continued to learn to program using
Scratch for two weeks. For another two weeks, both groups developed and presented programming projects of
their interest in Scratch. The study employed MLSQ to collect pre-post data on self-efficacy at the end of week
two and week eight respectively. Programming knowledge of both groups was assessed by an end-term test.
Their projects were assessed using a rubric. The result of an independent samples t-test indicated no significant
difference between the two groups in their programming knowledge. However, while the t-test analysis of self-

efficacy data at the beginning showed no significant difference between the two groups, the result of their self-
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efficacy at the end revealed a significant difference in favour of the unplugged group. They also found from
the projects that students in the unplugged groups used significantly more Scratch blocks than what both
groups were taught. Probably suggesting that the unplugged pedagogy advanced the creative achievement of
the students more than what Scratch lessons did during the four weeks of learn programming concepts. With
such leverage of higher creative ability, the unplugged group outperformed their counterparts during the two
weeks’ Scratch projects. However, this study will have provided more convincing results if the students were
pretested for prior computational or programming knowledge and creative achievement, as was done for the

self-efficacy. Another control will be using representative sample from another school.

While previous studies in this section did not directly address the question of the impact of students' creative
artistic ability in a CS1 class, Gestwicki and Ahmad (2010) sought to address this issue. They employed a
correlational design involving 15 first-year students in an American university. Their hypothesis is that there
is a statistically significant relationship between students' creative achievement and their CS1 performance.
They employed Creative Achievement Questionnaire (CAQ) and other instruments to collect research data.
Students went through a multimedia oriented CS1 which provided an environment for creative artistic
expressions in a programming class. At the end, they found that creative achievement of the student is not
significantly related to their CS1 achievements. Nevertheless, there was a significant relationship between
Music aspect of CAQ and students' final exam. The study results raise some questions as to validity of results.
The study sample of 15 students, four of which were CS majors, and 11 non-CS majors, is inadequate. The
study aimed at exploring causation between creative achievement and CS1 performance. To realise that an
appropriate design would be an experimental study involving adequate number of students in the treatment

and control groups.

2.14 Conceptual Model for the Study

The conceptual framework for the study is shown in Figure 2-13. The conceptual model for this study is
composed of the independent variables or the treatment namely: constructionist inquiry-based programming
instruction and traditional lecture-based instruction. The researcher manipulated these variables to see their
effect on the dependent variable (achievement of first-year computer science students in programming). As
shown by the features of the two pedagogies in the figure, there is variation in the mode of programming
instructions in the two treatment conditions. Those in the experimental group were exposed to Scratch
programming in a constructionist way, while the control group was treated to programming in Visual Basic

programming using direct instruction.

The intervening variables consist of organismic and environmental factors. The organismic factors are those
factors which are resident within the individual such as level of academic skills, gender, self-efficacy, level of
engagement, and age among others. However, in this study, gender, age, academic background, visual art
background and prior programming are chosen as moderating variables. A moderating variable changes (or
interacts with) the effects of the treatment on the dependent variable. That is, together with the treatment a

moderating variable form an interaction term in the experimental model.
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Mediating variables are intervening variables that stand between the independent variable and the dependent
variable, having a positive impact on the relation between them. That is, the independent variable produces a
positive effect on the mediating variable and then the mediating generates a positive effect on the dependent
variable. Though several variables could mediate between programming instruction and students’
achievement, in this study, student engagement has been chosen as a mediating variable (Ribeiro et al., 2019).
Research suggests that when a programming instruction is engaging, it will positively impact students’

achievements (Lei et al., 2018; Phuntsho & Dendup, 2021; Schnitzler et al., 2021).

The environmental factors are variables which are resident outside the individual and could affect the responses
of the participants to the treatment. Examples of environmental factors are socioeconomic status differential
learning context, amongst others. In this study, confounding variables are environmental factors though not
measured yet, can positively or negatively affect both the independent (the treatment) and the dependent
variables. To mitigate the threat to the validity of the experiment posed by a confounding variable, a researcher
must put in place control measures to counteract its effect. Some of the control measures adopted in this study
was employing comparable samples from public institutions enrolling mostly students from low- or middle-
income families in the same north-central region of the country. Though this itself makes the samples less
representative by leaving out students from private institutions who are likely from high-income homes.
Another measure was to ensure that same lecturer or lecturers with similar experience provide the

programming instructions in the two treatment groups.

The covariate is a variable that has a linear relationship with the dependent variable.



l

CONSTRUCTIONIST CS1 INSTRUCTION

v’ Constructionist visual programming environment
(Scratch).

v Conducting programming demos by the lecturer

v’ Collaborative programming support from peers. Less
fears of code plagiarism.

v’ Challenging personal programming goals (i.e., problems
or projects)

v’ Constructing and sharing programming artifacts of

interest

TRADITIONAL CS1 INSTRUCTION

v’ Textual programming environment (Visual Basic)

v Teaching of programming concepts by the lecturer

v’ Teacher-assigned lab exercises for the students.

v’ Tackling programming exercises in lab or off-class often
alone, less collaboration. More code plagiarism fears.

¥ Turning in assigned programming codes, no or less
sharing of codes with peers.

v/ Tutorials by peers or Teaching Assistants.

MODERATING VARIABLES
Academic background

Age

Prior programming
Visual art background
Gender

I

|

Organismic Factors

Environmental

MEDIATING
VARIABLE

CONFOUNDING
VARIABLES

v’ Differential learning context
v/ Social Economic Status, etc

Figure 2-13 The Study’s Conceptual Model

Programming
Achievement

COVARIATE
Programming
Achievement
Pretest Score




73

Chapter 3
3 Research Methodology

This study explores the educational impact of a constructionist programming intervention on the programming
ability of first-year computer science (CS1) students. Seymour Papert’s theory of constructionism advances
the idea that students learn (or construct knowledge) as they create and share artefacts of interest in
collaboration with their peers. The main research question of this study is - what is the impact of a
constructionist programming intervention using Scratch on the programming ability of CS1 students? Several
corollary research questions following this main question are mentioned in chapter one. This chapter presents
the approach adopted in finding answers to the research questions. The topics presented include the research
paradigm, research design, the research population, the sample, and sampling technique used, the research
instruments, validation and reliability of research instruments, data collection procedures, data analysis

technique employed in the study, and ethical considerations that guided the research.

3.1 Research Paradigm

Science has always progressed as scientists conduct research (or specifically, experiments) by following a
guiding principle called research paradigm (Bird, 2018; Fraenkel et al., 2018; Kuhn, 2012). J.S. Mills refers to
this ancient idea as “Methods of Difference”. This simply means we start our experiment with two instances
resembling one another in every respect but differing in the presence or absence of the phenomenon we wish
to study. At the end of the experiment, if we notice any difference in the two instances, we arrive with certainty

that the phenomenon had caused the change.

Saint-Mont (2015) captures JS Mills’ logic in a tabular form thus (Table 3-1):

Table 3-1 JS Mill’s logic

Start of Experiment T = C T + C

Intervention Yes No Yes No

End of Experiment (Observed Effect) XT > XC XT > XC

Conclusion The intervention caused the The intervention OR Prior
effect difference between the groups

caused the effect

Source: Saint-Mont (2015). Note: T = Treatment group. C = Control group

Determining the impact of a constructionist programming instruction on CS1 student’s programming
achievement necessitates that we employ the scientific method, that gives empirical evidence of causation if

there is any. That implies this study takes a postpositivist stance.
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3.2 Research Design

The research design is the researcher’s plan or blueprint for conducting a research study (Ary et al., 2014;
Mouton, 2013). Elaborating further, Creswell (2018) defines it as a type “of inquiry within qualitative,
quantitative, and mixed methods approaches that provide specific direction for procedures in a research study.”

(pg. 49)

There are several research designs but the main factor that determines a researcher’s choice is the research
question(s) addressed by the study.

Hence, by the research questions posed in chapter one, the study employed a quantitative research design for
the collection and analysis of the research data. A quantitative research design is made of procedures for

collecting, analysing and combining quantitative data in a single study (Creswell, 2014).

The main research question of this study is: What is the impact of a constructionist Scratch programming
pedagogy on programming achievement of novice undergraduate computer science students? To address this
main research question, the study employed a quasi-experimental design (with pretest-posttest non-equivalent
experimental and control groups). The study was an in vivo study involving intact classes of newly admitted
CS1 students. We employed between-group design in which these intact classes were randomly assigned to
treatment conditions. An ecological control was employed, meaning those in the control group were taught the
usual contents using lectures and labs as done in the past. However, the experimental class were exposed to a

student-centred Scratch programming pedagogy.

This study followed a quasiexperimental design with quantitative approach as stated below

Selection differences in the two groups due to non-randomisation has been addressed by matching and use of
ANCOVA.

The following factors informed the choice of this design:

e The subjects of the research were newly admitted first-year students who were not taking any other
programming course apart from the introductory programming course. By controlling every factor that
can affect students’ programming ability, thus ensuring the internal validity of the study, the impact
of constructionist Scratch instruction on the students could be empirically deduced.

e The study took place in the first six weeks of the 15-week teaching duration for the introductory
programming course. In addition, the course being compulsory for all the students, the researcher is
constrained to make use of intact CS1 classes of CS1 students after securing their informed consent to

participate in the study.
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This study is a 2 (Programming Pedagogy: Constructionist (Scratch), Conventional) by 2 (Gender: Male,
Female) by 4 (Age: 16-18, 19-21, 22-24, above 24) by 3 (Prior Academic achievement: High, Average, Low)

by 2 (Prior programming: Some, None) by 2 (Prior visual art: Some, None)

The experiment involved the use of two levels of one primary independent primary variable. The independent
variables are a constructionist Scratch programming instruction and the conventional CS1 lecture while the
dependent variable was the students’ post-intervention learning post-test scores. The secondary independent

variables include Gender, Age, Prior Academic Achievement, Prior program-writing and Prior visual art.

The layout of the design is given in Table 3-2 below.

Table 3-2: Experimental Design layout

Groups Pre-test Treatment Post-test
Experimental Group 01 Constructionist Scratch Programming 02
Control Group 01 Conventional CS1 Instruction 02

The schematic representation of this research layout is as shown below:
01 X1 02
01 X2 02
Where,
O1 represents the Pre-testing of both control and Experimental Groups,
02 represents the Post-testing of both control and Experimental Groups,
X1 represents the Treatment (Constructionist Scratch Programming Instruction) for the Experimental Group,

X2 represents the Treatment (Conventional CS1 Instruction) for the Control Group.



CS1 Programming Instruction

Gender Scratch Conventional

Males
Mean Posttest score

Females

Variables: CS1 Instruction — Independent, Categorical: Scratch/ Convention
Gender — Independent, Categorical: Males/females (1, 2)

Post-test — dependent, continuous: scores on IPAT, ranging from 1-100

CS1 Programming Instruction
Age Scratch Conventional
16-18
19-21
Mean Posttest score
22-24
Above 24

Variables: CS1 Instruction — Independent, Categorical: Scratch/ Convention
Age — Independent, Categorical: 16-18/19-21/22-24/Above 24
Posttest — dependent, continuous: scores on IPAT, ranging from 1-100

CS1 Programming Instruction
Academic Scratch Conventional
Background
High
Mean Posttest Score Average
Low

Variables: CS1 Instruction — Independent, Categorical: Scratch/ Conventional

Academic Background — Independent, Categorical: High, Average, Low (i.e., 3,2,1)

Post-test — dependent, continuous: scores on IPAT, ranging from 1-100



CS1 Programming Instruction

Program  Writing
Background

Scratch

Conventional

None
Mean Posttest score

Some

Variables: CS1 Instruction — Independent, Categorical: Scratch/ Conventional

Program Writing Background— Independent, Categorical: None/Some (1,2)
Posttest — dependent, continuous: scores on IPAT, ranging from 1-100

CS1 Programming Instruction

Visual Art | Scratch Conventional
Background
None
Mean Posttest score
Some

Variables: CS1 Instruction — Independent, Categorical: Scratch/ Conventional

Visual Art Background — Independent, Categorical: None/Some (1,2)
Post-test — dependent, continuous: scores on IPAT, ranging from 1-100

3.3 Sampling
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The populations in this study were polytechnic students in Nigeria. The target population are first-year

computer science National Diploma (ND), polytechnic students, in the north-central area of Nigeria (see Table

3.2). Polytechnic students were selected for this experimental study as polytechnics are the higher education

environments, where, theory of constructionism will be most welcome due to the vocational and technical

educational goals for their setup (Geschwind et al., 2020). | have experience teaching polytechnic students’

introduction to programming course for over two decades. Therefore, the interest to study the phenomenon of

novice programming learning among these set of college students informed their choice as research subjects.
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Table 3-3 Polytechnics with Accredited Computer Science Programme in the Study Area

SN NAME OF POLYTECHNIC LOCATION OWNERSHIP
1 Federal Polytechnic Bida Bida. Niger State Federal
2 Federal Polytechnic, Idah Idah. Kogi State Federal
3 Federal Polytechnic Nasarawa. Nasarawa. State Federal
4 Nasarawa State Polytechnic, Lafia. Nasarawa State State

5 Federal Polytechnic Offa Offa. Kwara State. Federal
6 Benue State Polytechnic Ugbokolo. Benue State State

7 Niger State Polytechnic Zungeru. Niger State State

8 Kogi State Polytechnic Lokoja. Kogi State State

9 Kwara State Polytechnic llorin. Kwara State. State
10 Plateau State Polytechnic Barkin Ladi. Plateau State State
11 Dorben Polytechnic Bwari FCT- Abuja Private
12 Fidei Polytechnic Gboko. Benue State Private
13 Nacab Polytechnic Akwanga. Nasarawa State. Private

SOURCE: National Board for Technical Education, www.nbte.gov.ng, 2015

The researcher made contacts with colleagues in seven of the above schools intimating them of interest to

conduct the study in their schools. Letters requesting permission to hold the study were sent to six of them.

A multi-stage sampling technique was used for selecting the sample for the quantitative study. Firstly,
purposive sampling technique was used to select four polytechnics from the above sample frame of 13
polytechnics in the study area (see Table 3-3). The four polytechnics comprise clusters of two federal and two

state government-owned polytechnics. Participating polytechnics were selected based on:

e Having accredited National Diploma in Computer Science
e School type (Public Polytechnics)
e Proximity to the researcher’s base

Selected polytechnics were:

o Federal Polytechnic, Bida, Niger State. (FPB)
o Federal Polytechnic, Nasarawa, Nasarawa State. (FPN)
o Niger State Polytechnic, Zungeru. Niger State. (NSPZ)

o Nasarawa State Polytechnic, Lafia, Narasawa State (NSPL)
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Then selected polytechnics were randomly assigned to the experimental and control groups. Lastly, Coarsened

Exact Matching (CEM) was used to randomly select equivalent samples for final analysis.

The study was done in two stages: pilot and main study. After securing permission from the management of
selected schools, the pilot study took place in the 2014/2015 session with students from FPN and FPB serving
as the experimental and control groups respectively. Permission for the main study was granted by four
institutions. The intention was to have two experimental and two control groups. However, the study took
place in 2015/2016 session with students from three of the schools. Thus, a newly admitted cohort of first-year
computer science students from the NSPZ, formed the experimental group and students of NSPL and a new
cohort from FPN formed the control groups. However, data from NSPL were dropped from the study analysis.
The decision to drop data from NSPL was informed by detection of widespread collusion in students’ responses
to the open questions in their post-test, which happened to be the only test that was written in the absence of
the researcher. On the set day, the test was rescheduled due to students’ involvement in other school’s activity.
See Table 3-4 below for the breakdown of the participation in the two studies. The table contains the number
of participants with complete data i.e., those that participated in answering the initial questionnaire, attempted

the pre-test, participated in CS1 instruction, and completed the post-test questions.

Table 3-4 Participants in the study

Study Type Constructionist Scratch Class Conventional CS1 Class Study Total
(Experimental Group) (Control Group)
Male Female  Total Male Female Total

Pilot 80 36 116 78 42 120 236

Main 76 20 96 59 27 86 182

3.4 Instrumentation

We use instruments in scientific research to measure constructs of interest. In this study, we are measuring
mainly CS1 students’ basic programming learning or achievement and other associated variables such as prior
academic and programming backgrounds, gender, and age. For this purpose, the study made use of the

following research instruments to gather the needed data:

1. Treatment Instrument: Scratch 2 Offline Editor
2. Test instrument: (see appendix)
i. Introductory Programming Achievement Test (IPAT)
3. Other Data Gathering Instruments: (see appendix)
i CS1 Students Profile Questionnaire (CSPROQ)
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ii. Scratch Class Observation Protocol (SCOP)

3.4.1 Development of Instruments
3.4.1.1 The Scratch 2 Offline Editor

This is a free offline version of Scratch - a novice educational programming language and an online visual
multimedia programming environment developed by Massachuset Institute of Technology (MIT) Media Lab
in the USA available at https://Scratch.mit.edu. We have chosen to use the offline edition (see Figure 3-3)

during and outside classes making it possible for students to develop Scratch programs without having to
connect to the internet. The issue of internet access is still a resource challenge in Nigeria that can possibly
threaten the research outcome. However, students were introduced to the online version so that they can
interact with the online community of Scratchers to be able to upload, download and remix Scratch projects.

This is a crucial aspect of their programming learning in Scratch.

Moreover, to make the Scratch program culturally relevant to the Nigerian context the additional Scratch
objects such as audio and video clips, pictures, graphics and images were created and used during lab sessions.
For instance, students working on program on the national anthem, use the picture of the Nigerian flag, and
recorded audio clip of the Nigerian anthem. These local contents and several others were added to the Scratch

environment.
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3.4.1.2 Introductory Programming Achievement Test (IPAT):

Participants’ programming achievement was assessed using IPAT. IPAT is an adapted pre-test instrument from
a similar study, conducted in Israel, by Meerbaum-Salant et al.(Meerbaum-Salant et al., 2013). Some
modifications were made to the original instrument to make it suitable for the Nigerian context. The changes
include limiting concepts questions to those the students will be taught during the six weeks of teaching
according to the NBTE syllabus. Also, Nigerian names were used in place of Israeli names in the open
guestions. In addition, we have moved some items requesting demographic or other information from the
subjects in the original instrument into a separate instrument in as stated in the introduction to section 3.4.
IPAT was used to measure the students’ baseline programming knowledge serving as the pre-test for the two
groups. With some reordering of the questions, it was also used to measure the learning outcomes in both
groups serving as post-test after six weeks of teaching. As earlier mentioned, the scope of questions was limited
to concepts or topics introduced or were expected to have learnt during the six weeks of programming

instruction.
The decision to use IPAT - a non-programming language achievement test —is based on these reasons:

The researcher is interested in measuring programming (or computational thinking) ability of the students not
programming language knowledge. Once an algorithm or solution to a programming problem is formulated,

coding it in a programming language is straightforward.

The researcher believes programming achievement of students include the conceptual understanding of
programming as well as cognitive problem solving or algorithm design (in other word computational thinking)
skills.

Therefore, the questions comprised:

- Programming concepts: These are qualitative open-ended questions eliciting students’ recall, knowledge and
understanding of basic programming concepts they were taught or expected to have learnt during the six weeks.

There are ten questions in this section having 2 marks each. The total mark awarded to this section is 20 marks.

- Programming skills / Problem-solving/Computational thinking questions: According to Ozmen and Altun
(2014), programming skills refers to students’ ability for, “designing solutions to problems in programming
and to determining strategy to be followed while reviewing his/her programming knowledge.”(pg. 15)
Similarly, Kothiyal et al. (2013) identified the following as goals of programming education: conceptual
understanding, code tracing, designing program logic and writing program. Therefore, these are questions
seeking to know the programming or computational thinking skills of the students. students are expected to
apply specific domain and programming knowledge to solve the questions. There are three questions in this
section with each awarded the total mark of 10. Each question has some sub-questions. the total mark for this
section is 30 and the total for the test is 50 marks. Students were given 60 minutes to attempt all the questions.

IPAT is available in the appendix.
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3.4.1.3 CS1 Students Profile Questionnaire (CSPROQ):

CSPROQ is a questionnaire that was used to gather demographic information as well as academic,
programming, and creative arts backgrounds of the students in both the experimental and control group, after
registering their consent to participate in the study. CSPROQ was administered before pretesting and exposing
the two groups to the independent variables. It consists of four parts: demographic, academic, prior
programming, and creative arts experience. The first part contains nominal items such as age group and gender.
The second part consists of academic items such as student’s grade in the three (3) compulsory Ordinary Level
(OL) (i.e., secondary, or high school) subjects for admission of undergraduate computer science students, and
Unified Tertiary Matriculation Examination (UTME) score. From these grades, an index for student academic
achievement level was automatically computed: namely, 1 for low, 2 for average, and 3 for high achieving.
The third part consists of five (5) items asking for students’ prior programming background. From data
supplied by a participant, an index for experience was automatically derived: namely 0 for none, 1 for some.
Lastly, the prior visual art experience part consists of five (5) Likert’s scale-like items requesting for the level
of students experience with creative arts. From data supplied by a participant, an index for visual art experience

was automatically derived: namely, O for none, 1 for some.

3.4.2 Validity and Reliability
3.4.2.1 Validating Research Instruments

1. Scratch Editor was developed by a research group in MIT Media Lab in the US. Suitability of this
novice educational environment for introducing students, to programming concepts in a visual multimedia way
has been widely reported in the literature. Meerbaum-Salant et al.(Meerbaum-Salant et al., 2013) concluded
from their study, introducing middle schools students to Scratch, that students learnt some programming or
computer science concepts as a result of their exposure to Scratch. They, however, observed that students

failed to learn core programming concepts such as variables.

Field Trial Validation of Scratch: The Scratch 2.0 offline editor was pilot tested with polytechnic CS1
students which were not part of the main study. At the end of six weeks of the field trial, the subjects were
asked to express their perception of the suitability of Scratch to their programming learning experience.
Everyone gave positive feedbacks; interesting opinions were made by some academically weak male and
female students who had a phobia for programming before enrolling for computer science. These set of
students discovered that their exposure to Scratch lessened their fears and awakened their self-belief in their

ability to learn programming.

2. Introductory Programming Achievement Test (IPAT): IPAT being an adapted instrument was sent
to original instrument authors in Israel, and other computer science educators within and outside the country
to examine it for the construct, face, and content validities. It was field-tested on some CS1 students who were
not part of the main study. The instrument was amended following expert suggestions, criticisms, and remarks,

as well as the result of pilot trial with some CS1 students.
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3. CSPROQ: The CS1 Student Profile Questionnaire was given to science educators to examine it for
construct, face, and content validities. Amendments were made following experts remarks. It was also pilot
tested with some CS1 students. Subsequently, validation of the instrument was performed using exploratory

factor analysis. Thereafter, amendments were made following the results of the analysis.

4. SCOP: The Scratch Class Observation Protocol was sent to computer or science educators to ascertain

its validity. Amendments were made to SCOP following experts’ assessments.

3.4.2.2 Reliability of Research Instruments

The reliability of the research instruments, IPAT and CSPROQ were established through a pilot trial of these
instruments in single administration with a sample of CS1 students who were part of the population but were
not part of the main study sample. For the CSPROQ, reliability was calculated using an R package for
computing ordinal alpha (Table 3-5). The ordinal alpha was used rather than Cronbach alpha as the data here
are ordinal data. Coefficient of alpha calculated for IPAT instrument is presented in the Table 3-6.
Krippendorff Alpha (Inter-rater reliability) test was calculated for SCOP and the result is as shown in Table
3-7.

Table 3-5 CSPROQ’s Reliability

Construct Items Ordinal Alpha
Academic background 3 72
Programming Background 17 .85
Visual Art background 5 75

Table 3-6 IPAT’s Reliability

Cronbach's Alpha Based on
Cronbach's Alpha Standardized Items N of Items

.844 851 27
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Table 3-7 SCOP’s Reliability

Construct Iltems  Krippendorf’s Alpha

Affective, Cognitive, Psychomotor and Social impact 20 0.7037 95% CI [ .5727, .8133]

3.5 Data Collection
3.5.1 The Pilot Study:

Two polytechnics in the study area gave permissions for the pilot study. At the beginning of 2014/2015 session,
| visited the selected polytechnics. This gave me the opportunity to notify the schools of the intention to
commence the pilot study, and also inspected the state of facilities needed for the research. Provisions for
necessary materials for the study was made. | did seek for understanding and cooperation of staff and students
in the departments of computer science in the selected schools, and to conduct training or orientation for

research assistants. These activities lasted two weeks.

Before the commencement of teaching, the newly admitted National Diploma First Year (ND1) students in the
selected polytechnics were administered the CSPROQ questionnaire as well as IPAT for the pre-test. Some
lecturers and I, who teach CS1 in these schools conducted the pre-test. A computer science educator who was
not part of the study marked the test using a rubric drawn for assessing students’ answers. In addition, the test

papers did not contain any personal or group information to enhance the objectivity of assessment.

Subsequently, the experimental and control groups of newly admitted ND1 students in the selected
polytechnics, were introduced to CS1 course tagged COM113 in Nigerian polytechnics as indicated in Table
3-8 below. Problem-Based Learning was employed for the two groups. Hence, students were presented, in
class and as assignments, real-life programming problems to engage their attention. This lasted six weeks in
their first semester. The six weeks of teaching was guided, particularly in the control group, by UNESCO-
NBTE curriculum and course outline currently being used in Nigerian polytechnics. On the other hand, the
experimental groups were exposed to Scratch during the six weeks of teaching following the constructionist
educational theory, a student-centred pedagogy where the instructor only facilitates their learning. The same
instructor in the two groups led class sessions. I undertook this responsibility of handling weekly class sessions.
Scratch, to the best of my knowledge, is unknown to fellow CS1 lecturers in Nigeria, and the need to guard
against the threat to the validity of the experiment by lecturers having different qualifications and teaching
experiences taking the two groups informed the decision to take the class. However, this raises the same
potential threat to validity. This is mitigated by me not having a stake in the constructionism as an educational

theory or Scratch programming language project.
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At the end of the six weeks of teaching, the students in the two polytechnics took the post-test by answering

guestions in the IPAT2. Questions in IPAT2 were the same as those in IPAT1 but were reordered. This was

done to make the achievement test appears different from the pre-test to take care of the threat to validity

arising from the test instrument. The same computer science educator who was not part of the study marked

the post-test using the same rubric as the pre-test.

Fellow CS1 educators in the two polytechnics observed the classes during the six weeks instruction in their

respective schools.

Lastly, I interviewed five students from the experimental group to measure their experiences and opinions

about programming learning in the Scratch environment. Random sampling was used to select the sample for

the interview.

Table 3-8 Pedagogical Features of the CS1 intervention

Pedagogical Characteristics

Interactive 2-hour weekly lecture?
Weekly 2-hour lab sessions?

Same or Similar lecturers?

Weekly programming assignment?
Same curricular focus/same topics?
Worked examples in class?

o g s~wDd

Scratch  Class

group)
No (only demos in Scratch)

Yes
Yes
Yes
Yes
Yes

(Experimental

Traditional CS1 Class
(Control group)
Yes

Yes
Yes
Yes
Yes
Yes

At the end of the pilot study, a power analysis was conducted with the data to determine the required sample

for the main study (see Figure 3-4)

mple size

Total sa

F tests - ANCOVA: Fixed effects, main effects and interactions

Numerator df = 1, Number of groups = 4, Number of covariates = 1,
o err prob = 0.05, Effect size f = 0.3113

0.6 0.65 0.7 075 08 085 0.9 0,95
Power (1-B err prob)

Figure 3-4 A graph of Power Analysis conducted to determine sample for the main study
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3.5.2 The Main Study

The main study data collection was conducted as shown in
Figure 3-5 in the 2015/2016 academic session.

Data Collection Map (Main Study)

ACTIVITY INSTRUMENT

[ |
—
——
—
Mt

Figure 3-5 The Main Study Data Collection Map

Permission to conduct the study was obtained from five polytechnics in the study area. Out of these five, four
were selected for the study using purposive sampling. The four selected were all public institutions in north-
central Nigeria with two belonging to the state governments and two federal government institutions. Random
sampling was employed, in assigning intact classes of the research cohorts into two experimental and two
control groups. However, the study took place in three polytechnics, as one of the earlier scheduled research
sites, an experimental group, could not participate owing to disruption in the academic activities as a result of

strike action by lecturers. Thus, the study cohorts had one experimental group and two control groups.
At the beginning of the academic session, | visited the participating institutions with the following aims

e notify the schools of the intention to commence the study,
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e see the state of facilities needed for the research,

o make provisions for necessary study materials

e seek for understanding and the cooperation of staff and students in the departments of computer
science in the selected schools,

e Conduct training or orientation for research assistants. These activities lasted for two weeks.

Before the commencement of teaching, the newly admitted National Diploma first-year (ND1) students in the
three participating polytechnics were administered the CSPROQ questionnaire as well as IPAT for the pre-
test. In these schools, some CS1 lecturers and | conducted the pre-test. However, a computer science educator
who was not part of the study marked the test using a rubric drawn for assessing students’ answers. In addition,

the test papers did not contain any personal or group information to enhance the objectivity of assessment.

Subsequently, both the experimental and control groups were introduced to CS1 course tagged COM113 in
Nigerian polytechnics as indicated in the table. Problem-Based Learning was employed in the two groups.
Hence, students were presented real-life programming problems during class and assignments, to engage their

attention. This lasted six weeks in first semester.

The six weeks of teaching was guided, particularly in the control group, by UNESCO-NBTE curriculum and
course outline 2008 currently being used in Nigerian polytechnics. On the other hand, the experimental group
were exposed to Scratch during the six weeks of teaching following the constructionist educational theory, a
student-centred pedagogy where the instructor only facilitates their learning by demonstrating programming
and students developed programs for projects of interest. Examples of students’ projects include program that

recites the Nigerian national anthem, games, animated stories etc.

Pedagogical features of class sessions were like what we had during the pilot study (see Table 3-8). The CS1
instructors in the two control groups led class sessions while the researcher handled class sessions in the
experimental class. This is predicated on the fact that, to the best of the researcher’s knowledge, Scratch is still

unknown to fellow CS1 lecturers.

At the end of the six weeks of teaching, the students in the three polytechnics took the post-test (IPAT2).
However, as earlier mentioned in section 3.2, the data from one of the state institutions, a control group, was

dropped due to widespread evidence of collusion in the answers provided in the post-test achievement

The same computer science educator who earlier marked the pre-test marked the post-test using the same

rubric as the pre-test.

Four computer science (CS) educators in the experimental polytechnic observed the Scratch classes during the

six weeks of instruction. The validated observation protocol instrument (SCOP) was used to collect the data.
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3.6 Data Analysis

Data collected from the administration of research instruments were analysed using Statistical Package for
Social Sciences (SPSS) version 23. To answer the research questions and to test the eight hypotheses of the
study, the data were analysed using descriptive and inferential statistics. The data from the research questions
were analysed using descriptive statistics (mean and standard deviation) while the eight hypotheses were tested

using paired samples t test and Analysis of Covariance (ANCOVA) at 0.05 level of significance.

3.7 Ethical Issues

Moral obligation to Christian vocation, professional body memberships, UNISA studentship, UNISA policy
on copyright and plagiarism, and responsibility towards the consumers of the research findings made it
personally compelling for the researcher to maintain the highest level of research integrity during the study.
There was need to maintain a balance and checks on interests as a student or a researcher in search of
knowledge and a higher degree, and the interests of other stakeholders in this research study. So, the researcher
has made concerted efforts in the bids to ensure that the global and UNISA ethical standards were followed

before, during and after the study.

3.7.1 Ethical Clearance

After the research proposal was accepted, the researcher applied for ethical clearance and both the Institute for
Science and Technology Education as well as the College of Science, Engineering and Technology ethics

committees granted ethical clearance to the study. See the ethics certificates in Appendix.

3.7.2 Informed Consent and Voluntary participation

At the institutional level, permissions for the pilot and main studies were obtained from selected schools (see
appendix). In addition, the HODs, CS1 lecturers and lab assistants in departments of computer science of the
schools, were fully informed of the details of the studies. Notwithstanding, the researcher gave an adequate
briefing to the CS1 students who participated in the study to secure their informed consent without introducing
any threat to research credibility due to the Hawthorne effect. Those who were willing to participate signed
the informed consent form (see Appendix). In addition, research assistants were given orientation on the ethical

requirement of their work during both studies.

3.7.3 Anonymity of research data

The anonymity of research subjects has been ensured in this thesis. The same rule will guide subsequent
publications resulting from the study. This will be realized by removing or replacing Personally Identifiable

Information (PI1) with a pseudonym.
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3.7.4 Honesty in handling research data and reporting

The researcher has sought to uphold the integrity required for ethical research by avoiding the use of deception
during the research. Honest report of activities and challenges experienced during the study, has been brought
to the notice of the supervisor to avoid any dishonest acts. The researcher has gone to the field and collected
data rather than resorting to fabricating data. Evidence of this is provided within the thesis and in the appendix.

Also, the original data contained in the research instruments used in the study has been kept.

In this thesis, researcher adhered to an honest report of the research, reporting only what was done, found, as

wells as limitations, failures, or any information necessary to provide the true picture of this research work.

3.7.5 Plagiarism

In line with upholding the principles of ethical research, the researcher has avoided every act of plagiarism.

Proper citations and references of all materials used have been provided in this thesis.

3.8 Limitations of the Study

Chronological: six weeks of teaching perhaps was not sufficient for learning of concepts, needed to develop
programming knowledge and skill by novice CS1 students. permission from participating institutions allow
their students to take part in the research for just six weeks with the intention of resuming the usual CS1
instruction for the rest of the semester. This limited instruction was taken into cognizance by limiting the test
questions in the achievement test to such that the subjects are expected to have learnt during the first six weeks

of CS1 instruction.

Environmental: The research took place in resource-constrained environments in which large classes of
students are made to learn without adequate resources like seats in the lecture classes, computers in the lab and

regular electric power to supply. However, this was a problem common to all the sites during the study.

Pedagogical: Subjects were taught by different instructors with the possibility of differences in the impact of
instruction due to the difference in the quantity and quality of instruction. This was mitigated to some extent
by involving instructors with the same level of proficiency in teaching CS1 students. Research data from a
control group taught by a recent university graduate was eventually dropped due to the reason mentioned

earlier.

Methodological: The study did not measure some variables like Social Economic Status and motivation of
participants. Such unmeasured variables could affect the equivalence of treatment groups. However, the study
tried to mitigate the effects of this limitation by using equivalent random samples generated by Coarsened

Exact Matching.
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Chapter 4

4 Research Results and Discussion of Findings

This study explored the impact of a constructionist programming intervention, on the achievement of novice
computer science students in some Nigerian polytechnics. To realise these goals, the study employed a quasi-
experimental design - strengthened, by employing random samples from intact classes derived using
Coarsened Exact Matching (CEM) - to confirm study hypotheses. This chapter presents findings from the
guantitative data collected during the study. The study was conducted in two stages: the pilot and the main

studies.

4.1 The Pilot Study

Pilot study is a preliminary research project during which a researcher tries out a research design, instrument(s)
and data collection procedure intended for a main study. This trial enables the researcher to see modifications
to be made before embarking on the main study. Table 4-1 presents other definitions of pilot study in research

literature.

Table 4-1 What is a Pilot study?

Definition Source

“... a trial run of the major research or a pretest of a particular  Salkind (2010, p. 1032)

research instrument or procedure”

“.....a research study that tests the feasibility of an approach (Frey, 2018)
that will later be used in a larger study”

... is the process whereby you try out the research techniques (Blaxter et al., 2006, p. 137)

and methods which you have in mind, .”

“the first defense against oversight (or stupidity) [in research (Sally Fincher & Petre, 2005)

design] and the bias it may invite” (emphasis mine)

Researchers have several motives for embarking upon pilot study. Some of these reasons mentioned in

educational research literature include:

- “To establish content validity of scores on an instrument and to improve questions, format
and scales” (Creswell, 2014, pg. 257)
- “To get the bugs out of the instrument so that respondents in your main study will experience

no difficulty in completing it.” (Bell, 2014)

From the foregoing, it is evident that pilot study may lead to better research study as grey areas in the research

design discovered during the pilot are addressed in the main study.
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In this research, the pilot study enlisted two cohorts of newly admitted computer science students from two

Nigerian polytechnics located in two states in north central Nigeria during the 2014/2015 session.

4.1.1 Demographics of pilot study participants
The information about the participants is presented in Table 4-2 to Table 4-8

Table 4-2 presents two cohorts of first-year computer science students from the study area in north central
Nigeria. The number shown represents participants that provided responses to all the data collection

instruments used

Table 4-2 Pilot Study Participants by School (N= 236)

School Treatment Grouping No of Participants
Federal Polytechnic, Bida Control 116
Federal Polytechnic, Nasarawa Experimental 120
Total 236

Table 4-3 provides the gender mix in the two groups. Gender spread is similar in both groups; the ratio of

male to female is about 2:1.

Table 4-3 Gender of Pilot Study Participants (N =236)

Treatment Grouping Gender Total
Male Female
n (%) n (%)
Control 78 (65.0) 42 (35.0) 120(100)
Experimental 80 (69.0) 36 (31.0) 116 (100)
Total 158(66.9) 78 (33.1) 236 (100)

Table 4-4 presents the age groups of participants in the two groups. In the control and experimental groups,
only 8.3% and 13.8% respectively are between 16 and 18 years. In both groups, approximately half of the
participants are between 19 and 21 years. College entry age in Nigeria is 16 years. Since fresh high school-
leavers normally belong to the first age group (16-18), and the fact that in each group almost ninety percent of
participants are above 18 years, this suggests that most participants have left secondary schools long before

gaining admission into the CS programme.
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Table 4-4 Age of Pilot Study Participants

Treatment Grouping Age Group Total
16-18 19-21 22-24 > 24 Others
n(%o) n(%o) n(%o) n(%) n(%o)
Control 10 (8.3) 57 (47.5) 40 (33.3) 12(10.0) 1(0.8) 120
Experimental 16 (13.8) 64 (55.2) 27 (23.3) 9(7.7) 0(0.0) 116
Total 26 (11.0) 121(51.3) 67(28.4) 21(8.9) 1(.4) 236

Academic achievement background presented in Table 4-5 is a computed index from two self-reported results
by each participant: first, the final high school results in three compulsory subjects for admission into computer
science, namely, English, Mathematics and Physics, and second, the Unified Tertiary Matriculation Exam
(UTME) Score. The index goes from 1-3, for low, average, and high-achievement levels respectively.
Participants in both groups have similar academic profiles. In both groups, about 68% are in the low-achieving
category. Similarly, the average achieving students are approximately 30% of the participants in both groups.

This suggests that both groups have roughly the same academic strength.

Table 4-5 Academic Background of Pilot Study Participants

Treatment Academic Background Index Total
Grouping — — - —
Low-Achieving Average Achieving High-Achieving
n(%o) n(%o) n(%o)
Control 81(67.5) 33(27.5) 6 (5.0) 120
Experimental 79(68.1) 35 (30.2) 2(1.7) 116
Total 160(67.8) 68(28.8) 8(3.4) 236

Two questions in the CSPROQ questionnaire ask if participants have learnt or written programs in any
language. Results of responses to both questions are given in Tables 4-6 and 4-7 respectively. Information in

Table 4-6 indicates that both groups lack background in prior programming learning.
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Table 4-6 Prior Programming Learning of Pilot Study Participants

Treatment Grouping Prior Programming Learning Total
No Background Some Background
n(%o) n(%o)
Control 104 (86.7) 16 (13.3) 120
Experimental 100 (86.2) 16 (13.8) 116
Total 204(84.4) 32(13.6) 236

Responses by participants in both groups as shown in Table 4-7 also indicates that most of them had no
experience with writing programs before they enrolled for a course in computer science. However, the control
group had a higher number of participants (10.0%) who had prior program writing experience compared to the

experimental group with 4.3% of the participants.

Table 4-7 Prior Program Writing of Pilot Study Participants

Treatment Grouping Prior Program Writing Total
No Background Some Background
n(%o) n(%o)
Control 108(90.0) 12 (10.0) 120
Experimental 111 (95.7) 5(4.3) 116
Total 219(92.8) 17(7.2) 236

Visual art background is a computed measure from each participant’s responses to questions, probing their
earlier experiences with exercising their creativity in making, tinkering, or playing with artefacts either
manually or on the computer before they enrolled into computer science. From their responses as indicated in
Table 4-8, most participants in both groups have had some experiences or exposures with creative works of

arts, though the experimental group had higher percentage (76.7) compared to that of the control (66.7).

Table 4-8 Visual Art background of Pilot Study Participants

Treatment Grouping Visual Art Background Total
No Background Some Background
n(%o) n(%o)
Control 40 (33.3) 80 (66.7) 120
Experimental 27 (23.3) 89 (76.7) 116
Total 67(28.4) 169(71.6) 236

Table 4-9 presents the t-test statistics for ascertaining if there is any difference in the mean baseline scores of

both groups. The result indicates a significant mean difference between the groups.
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Table 4-9 Pilot Study Pre-test Achievement Performance
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Group Mean S.D. S.E. t value Significance
Control 116 21.20 12.88 1.18 -2.212 p =.035*
Experimental 120 24.78 13.01 1.21

*mean difference is significant.

Table 4-10 provides a view into baseline performance of the two groups by gender. Clearly, male participants

had better mean scores than their female counterparts in both groups. .

Table 4-10 Pre-test Scores of Pilot Study Participants based on Gender

Treatment Grouping  Gender Mean N Std. Deviation  Std. Error of Mean
Control Male 22.42 78 13.52 1.53
Female 18.93 42 11.39 1.76
Total 21.20 120 12.88 1.18
Experimental Male 25.82 80 12.77 1.43
Female 22.44 36 13.43 2.24
Total 24.78 116 13.01 121
Total Male 24.15 158 13.21 1.05
Female 20.55 78 12.42 1.41
Total 22.96 236 13.04 .85

Table 4-11 reveals that baseline performances of participants generally follow their prior academic

achievement in both groups. Surprisingly, the high-achieving participants mean pre-test scores were lowest in

both groups.

Table 4-11 Pretest Scores of Pilot Study Participants based on Academic Background

Treatment Grouping  Academic Background  Mean N Std. Dev. Std. Error
Control Low-Achieving 19.22 81 11.47 1.27
Average Achieving 26.45 33 15.45 2.69
High-Achieving 19.00 6 7.97 3.26
Total 21.20 120 12.88 1.18
Experimental Low-Achieving 25.95 79 13.50 1.52
Average Achieving 22.29 35 11.97 2.02
High-Achieving 22.00 2 5.66 4.00
Total 24.78 116 13.01 1.21
Total Low-Achieving 22.54 160 12.92 1.02
Average Achieving 24.31 68 13.83 1.68
High-Achieving 19.75 8 7.21 2.55
Total 22.96 236 13.04 .85
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Participants’ performance in the pre-test presented in Table 4-12 shows similar patterns in both groups:

participants with prior program writing had higher means scores than those without background.

Table 4-12 Pre-test Scores of Pilot Study Participants based on Prior Program Writing

Treatment Grouping  Prior Program Writing Mean N Std. Deviation Std. Error of Mean
Control No Background 20.56 108 12.47 1.20
Some Background 27.00 12 15.53 4.48
Total 21.20 120 12.88 1.18
Experimental No Background 24.22 111 12.57 1.19
Some Background 37.20 5 17.92 8.01
Total 24.78 116 13.01 121
Total No Background 22.41 219 12.62 .85
Some Background 30.00 17 16.40 3.98
Total 22.96 236 13.04 .85

Participants’ performance in the pre-test based on prior visual art, presented in Table 4-13, also shows similar
patterns as previous performance based on prior program writing: those with prior visual art had higher mean

scores than those with no background.

Table 4-13 Pretest Scores of Pilot Study Participants based on Visual Art Background

Treatment Grouping Visual Art Background Mean N Std. Dev. Std. Error of Mean
Control No Background 19.95 40 12.65 2.00
Some Background 21.83 80 13.02 1.46
Total 21.20 120 12.88 1.18
Experimental No Background 20.59 27 11.75 2.26
Some Background 26.04 89 13.17 1.40
Total 24.78 116 13.01 121
Total No Background 20.21 67 12.21 1.49
Some Background 24.05 169 13.23 1.02
Total 22.96 236 13.04 .85

4.1.3 Summary

From the foregoing, we observed that while there are similarities in the profiles of the two cohorts of CS1
students, some differences do exist. For instance, we can see that the experimental group had significantly
higher mean baseline score compared to that of the control group. Such difference, threatens the validity of the

causal inference we can make from this intervention. We would prefer our two cohorts to be same with no
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significant difference between them. Then, we may attribute the outcome of study to the experimental

intervention we have applied.

4.1.4 Pilot Study: Post-test Results

After taking the pre-test, the participants went through six weeks of programming instruction in two ways: the
control class had the conventional direct instruction-based pedagogy, using a textual programming
environment (Visual Basic), while the experimental class had the constructionist discovery-learning
instruction, using a block-based programming environment (Scratch). Subsequently, participants in both
groups took the same questions they had in the pre-test with some reordering in the post-test to measure

learning had taken place. The results of the post-test for the two groups are presented in this section

Table 4-14 presents the results from independence samples t-test analysis, to determine if there was significant
difference in the post-test achievement scores between the two groups. The value of p < 0001 clearly suggests
that significant difference exists in the mean post-test score of the experimental and control groups. Negative
value of the t statistic reveals that the mean post-test score for the control group was significantly lesser than

the mean score of the experimental group.

Table 4-14 Pilot Study Participants Post-test Achievement Performance

Grouping N Mean Std. Deviation Std. Error Mean tvalue Significance
Control 120 37.37 18.06 1.65 -4.76 *p <.0001
Experimental 116 48.59 18.13 1.68

* mean difference is significant.

To see the nature of learning gains by participants in the two groups, another independent samples t analysis
was conducted with the gain score as the dependent variable. The result presented on Table 4-15 reveals that

the experimental group made significant learning gains compared to the control group.

Table 4-15 Pilot Study Learning Gain Score Achievement Performance

Group N Mean S.D. S.E. tvalue Significance
Control 120 16.17 13.33 1.22 -3.927  *p<.0001
Experimental 116 23.81 16.45 1.53

* mean difference is significant.

Table 4-16 provides a descriptive statistic on the post-test achievements of participants in the two groups along
gender lines. While the mean post-test scores of male and female participants, are almost the same in the
control groups, the female participants in the experimental class had slightly higher mean post-test score

compared to male participants.
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Treatment Grouping  Gender Mean N Std. Dev. Std. Error of Mean
Control Male 37.79 78 18.64 211
Female 36.57 42 17.12 2.64
Total 37.37 120 18.06 1.65
Experimental Male 47.88 80 18.71 2.09
Female 50.17 36 16.91 2.82
Total 48.59 116 18.13 1.68
Total Male 42.90 158 19.29 1.53
Female 42.85 78 18.24 2.07
Total 42.88 236 18.91 1.23

Table 4-17 reveals that the participants belonging to the three academic achievement levels in the experimental

group had higher mean post-test scores than participants in related levels in the control group. Strangely, the

mean post-test score for high-achieving students records lowest in the control group. Looking at both the mean

and standard deviation for the high achieving students in the control group, it is evident this data will contribute

to problems of outliers in our research data.

Table 4-17 Post-test Scores of Study Participants based on Academic Background

Treatment Grouping Academic Background Mean N Std. Dev. Std. Err. of Mean
Control Low-achieving 36.79 81  18.97 2.11
Average-achieving 40.61 33 16.68 2.90
High-achieving 27.33 6 5.16 2.11
Total 37.37 120 18.06 1.65
Experimental Low-achieving 48.96 79 18.91 2.13
Average-achieving 47.60 35 16.64 2.81
High-achieving 51.00 2 21.21 15.00
Total 48.59 116 18.13 1.68
Total Low-achieving 42.80 160 19.84 1.57
Average-achieving 4421 68 16.91 2.05
High-achieving 33.25 8 14.26 5.04
Total 42.88 236 1891 1.23

Table 4-18 presents the comparative information about the performance of the two groups based on their prior

programming experience. As expected, participants with prior programming experience in both groups scored

higher in the post-test than their colleagues with no prior experience in writing programming.



99

Table 4-18 Post-test Scores of Pilot Study Participants based on Prior Program Writing

Treatment Grouping  Prior Program Writing  Mean N Std. Deviation Std. Err. of Mean

Control No Background 36.89 108 18.14 1.75
Some Background 41.67 12 1743 5.03
Total 37.37 120 18.06 1.65

Experimental No Background 48.52 111  18.02 1.71
Some Background 50.00 5 22.85 10.22
Total 48.59 116 18.13 1.68

Total No Background 42.79 219 18.96 1.28
Some Background 44.12 17  18.83 4.57
Total 42.88 236 18.91 1.23

Visual art background measures student’s experience with creative art works with or without the computer.
Prominent computer science figures like Donald Knuth, Edsger Dijkstra, and Grace Hopper have hinted that
programming involves some art (Booch, 2019). The guess here is that those with some background in artistic
creations or compositions, are likely to score higher in programming achievement. Information in Table 4-19
seems to support such assumption. However, while there appears to be no significant difference in performance
between those with or no background in visual art in the control group, the performance of participants with

background in visual art is significantly higher than those without background in the experimental group.

Table 4-19 Post-test Scores of Pilot Study Participants based on Visual Art Background

Treatment
Grouping Visual Art Background Mean N Std. Dev. Std. Error of Mean
Control No Background 36.60 40 16.38 2.59
Some Background 37.75 80 18.93 2.12
Total 37.37 120 18.06 1.65
Experimental No Background 40.89 27 17.52 3.37
Some Background 50.92 89 17.75 1.88
Total 48.59 116 18.13 1.68
Total No Background 38.33 67 16.85 2.06
Some Background 44.69 169 19.42 1.49

Total 42.88 236 18.91 1.23
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4.1.5 Matching for Valid Causal Inference
To address the problem of significant differences (as revealed by prior descriptive statistics) in the two

treatment groups, data from the pilot study was pre-processed using Coarsened Exact Matching (CEM). CEM

is a free SPSS add-in available at https://projects.iq.harvard.edu/cem-spss/pages/installation. After installation,

CEM resides in the Analyze menu in an SPSS program.

Another reason for matching, is to mitigate the weakness of ANCOVA analysis when intact groups are used
and there was non-random assignment to groups, making ANCOVA results and its interpretation prone to
errors (Miller & Chapman, 2001).

The pilot study data were processed using CEM and the results presented by subsequent tables and figures
show the effect of this pre-processing on the research data.

Figure 4-1 presents the box plots showing the pre-test scores for both groups before CEM. You will observe
more outliers in the control group than the experimental class. Another problem is the mean score for the
experimental class, which is significantly higher than the mean score for the control. This apparently revealed
both classes are not comparable. Without equivalence of the two groups, we cannot conclude that the

intervention, rather than this prior difference, is responsible for their final performance in the post-test.
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Figure 4-1 Boxplot showing the problems of outliers in pre-test data before matching

Figure 4-2 presents the box plot, for the matched data samples for the two treatment groups. A visual inspection
of the figure suggests similarity in the two sample. The outliers’ problem in previous data sets has disappeared.
Interestingly, there is a reversal in the mean pre-test score: the mean pre-test score for the control is now
slightly higher than that of the experimental class. However, as shown by the t-test analysis result in Table

4-20, this present difference in the pre-test score of both groups is not significant. You will recall that before


https://projects.iq.harvard.edu/cem-spss/pages/installation
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matching, the mean difference in their pre-test score was significant. Thus, CEM matching seems to have

produced comparable samples or data sets from which we may make valid causal inference at the end.
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Figure 4-2 Boxplot showing disappearance of outliers in pre-test data after matching

4.1.6 Pilot Study: Descriptive Statistics of Matched Sample

Table 4-20 Pilot Study Pretest Achievement Performance of Matched Sample

Group N Mean S.D. S.E. t value Significance
Control 41 22.05 8.84 1.38 144 *p = .886
Experimental 41 21.76 9.60 1.50

*Note: mean difference is no longer significant.

As shown in Table 4-21, the gender mix in the two group is similar. With this, we hope to mitigate against

threat to validity of the research result, as one factor that may contribute to mean difference between the two
groups is kept constant.

Table 4-21 Gender of Matched Sample Pilot Study Participants (n = 82)

Treatment Grouping Gender Total
Male Female
n (%) n(%o)
Control 28 (68.3) 13 (31.7) 41
Experimental 28 (68.3) 13 (31.7) 41

Total 56(68.3) 26(31.7) 82
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Like what we observe in the previous table for gender, information in Table 4-22 shows that we have a 100%
balance in the matching of the two samples based on the age groups of participants in the study. We have the
same results with the matching based on other covariates as presented in Tables 4-23, 4-24, and 4-25 for
academic background, prior program writing, and visual art background respectively. Note, in Table 4-23,
both groups have only low, average, and no high-achieving participants. Similarly, Table 4-24 shows samples
with no participants with prior program writing. The original unmatched samples as shown in Table 4-5 and
Table 4-7 reveal that most of the participants were low or average-achieving in their academic level with no

prior program writing experience.

Table 4-22 Age of Matched Sample Pilot Study Participants

Treatment Grouping  Age Group Total
16 - 18 19-21 22-24 > 24
n (%) n(%) n(%o) n (%)
Control 4(9.8) 24 (585)  12(29.3)  1(2.4) 41
Experimental 4 (9.8) 24 (58.5) 12 (29.3) 1(2.4) 41
Total 8(9.8) 48(58.5) 24(29.3) 2(2.4) 82

Table 4-23 Academic Background of Matched Sample Pilot Study Participants

Treatment Academic Background Index Total
Grouping Low-Achieving Average Achieving

n(%o) n(%o)
Control 32 (78.0) 9 (22.0) 41
Experimental 32 (78.0) 9 (22.0) 41
Total 64(78.0) 18(22.0) 82

Table 4-24 Prior Program Writing of Matched Sample Pilot Study Participants

Treatment Grouping Prior Program Writing Total

No Background

n(%)
Control 41 (100.0) 41
Experimental 41 (100.0) 41

Total 82(100.0) 82




Table 4-25 Visual Art background of Matched Sample Pilot Study Participants

Treatment Grouping

Control
Experimental

Total

Total

41

41

Visual Art Background

No Background Some Background
n(%o) n(%o)

7(17.1) 34 (82.9)

7(17.1) 34 (82.9)

14(17.1) 68(82.9)

4.1.7 Pre-test Results after Matching
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Pre-test scores of both groups in Tables 4-26, 4-27, 4-28, and 4-29 present further insights into the baseline

equality of the groups, based on the various covariates chosen in the CEM analysis.

Table 4-26 Pretest Scores of Matched Sample based on Gender

Treatment Grouping  Gender Mean N Std. Deviation  Std. Err. of Mean
Control Group Male 22.286 28  8.3038 1.5693

Female 21.538 13 10.2357 2.8389

Total 22.049 41  8.8373 1.3802
Experimental Group Male 22.214 28  9.4960 1.7946

Female 20.769 13 10.1502 2.8151

Total 21.756 41  9.6041 1.4999
Total Male 22.250 56  8.8384 1.1811

Female 21.154 26 9.9948 1.9601

Total 21.902 82 9.1727 1.0130

Table 4-27 Pre-test Scores of Matched Sample based on Academic Background

Treatment Grouping  Academic Background Mean N  Std. Deviation Std. Err. of Mean
Control Group Low-achieving 21.750 32 9.1546 1.6183
Average-achieving 23111 9 8.0069 2.6690
Total 22.049 41 8.8373 1.3802
Experimental Group Low-achieving 21.813 32 9.7631 1.7259
Average-achieving 21556 9 9.5801 3.1934
Total 21.756 41 9.6041 1.4999
Total Low-achieving 21.781 64 9.3884 1.1735
Average-achieving 22333 18 8.6023 2.0276
Total 21902 82 9.1727 1.0130




Table 4-28 Pre-test Scores of Matched Sample based on Prior Program Writing

Treatment Grouping Prior Program Writing  Mean N Std. Deviation Std. Error
Control Group No Background 22.049 41  8.8373 1.3802
Total 22.049 41  8.8373 1.3802
Experimental Group No Background 21.756 41  9.6041 1.4999
Total 21.756 41 9.6041 1.4999
Total No Background 21.902 82  9.1727 1.0130
Total 21.902 82 91727 1.0130

Table 4-29 Pre-test Scores of Matched Sample Based on Prior Visual Art

Treatment Grouping  Prior Visual Art Mean N Std. Deviation Std. Err. of Mean
Control Group No Background 21.143 7 9.1548 3.4602

Some Background 22.235 34 8.9003 1.5264

Total 22.049 41  8.8373 1.3802
Experimental Group No Background 21.714 7 9.6904 3.6626

Some Background 21.765 34 9.7330 1.6692

Total 21.756 41  9.6041 1.4999
Total No Background 21.429 14 9.0615 24218

Some Background 22.000 68  9.2591 1.1228

Total 21.902 82 9.1727 1.0130

4.1.8 Summary of Pre-test Results of the Matched Sample
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From the data and statistics presented above, we can assume that the two treatment groups are similar. This

implies, except for bias or errors, that may be due to omissions of relevant covariates and other methodological

flaws in the study, the stage is set to make valid inference from the study.

4.1.9 Post-test Results after Matching

As Table 4-30 shows, there is significant mean post-test difference (t = -2.49, p = 0.015) between the two

groups. Compared with the information on Table 4-20, we observe a reversal in the post-test achievement: the

experimental group has significantly higher mean post-test score. Recall that analysis of data from unmatched

samples, also gave the same result (see Table 4-14)
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Table 4-30 Pilot Study Matched Sample Posttest Achievement Performance

Grouping N Mean Std. Deviation Std. Error Mean tvalue Significance
Control 41 39.61 17.60 2.75 -2.49 *p =0.015
Experimental 41 48.88 16.07 2.51

* mean difference is significant.

Table 4-31 reveals that female students in each group, had slightly higher post-test scores compared to their

male counterparts.

Table 4-31 Post-test Scores of Matched Sample based on Gender

Treatment Grouping Gender Mean N Std. Deviation Std. Error of Mean

Control Group Male 38.857 28 19.3864 3.6637
Female 41.231 13 13.5287 3.7522
Total 39.610 41 17.6024 2.7490
Experimental Group Male 48.714 28 16.1127 3.0450
Female 49.231 13 16.6240 4.6107
Total 483878 41 16.0689 2.5095
Total Male 43.786 56 18.3489 2.4520
Female 45.231 26 15.3995 3.0201
Total 44.244 82 17.3856 1.9199

Unsurprisingly, while average achieving students had slightly higher post-test performance, in comparison
with the low-achieving students in the Scratch class, the performance of the two strata were the same in the

control class (see Table 4-32).

Table 4-32 Post-test Scores of Matched Sample based on Academic Background

Treatment Grouping  Academic Background Mean N  Std. Deviation Std. Err. of Mean

Control Group Low-achieving 39.688 32 17.9469 3.1726
Average achieving 39.333 9 17.3494 5.7831
Total 39.610 41 17.6024 2.7490
Experimental Group Low achieving 48.000 32 16.1764 2.8596
Average achieving 52.000 9 16.2173 5.4058
Total 48.878 41 16.0689 2.5095
Total Low achieving 43.844 64 17.4585 2.1823
Average achieving 45.667 18 17.5466 4.1358
Total 44.244 82 17.3856 1.9199

Since both groups have one stratum, Table 4-33 presents what we already knew about the post-test

performance of both classes.
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Table 4-33 Post-test Scores of Matched Sample based on Prior Program Writing

Treatment Grouping  Prior Program Writing Mean N  Std. Dev. Std. Err. of Mean
Control Group No Background 39.610 41 17.6024 2.7490

Total 39.610 41 17.6024 2.7490
Experimental Group No Background 48.878 41 16.0689 2.5095

Total 48.878 41 16.0689 2.5095
Total No Background 44.244 82 17.3856 1.9199

Total 44.244 82 17.3856 1.9199

Table 4-34 shows similar mix of students in both groups. While those with prior experience had significantly
higher post-test compare to those with no prior experience in the Scratch class, students with some prior
experience in visual art had slightly lower post-test performance compared to those with no prior experience

in the control group.

Table 4-34 Post-test Scores of Matched Sample based on Prior Visual Art

Treatment Grouping Prior Visual Art Mean N  Std. Deviation  Std. Err. of Mean

Control Group No Background 41.143 7  12.8508 4.8571
Some Background 39.294 34 18.5726 3.1852
Total 39.610 41 17.6024 2.7490
Experimental Group No Background 40.857 7 19.1784 7.2487
Some Background 50.529 34 15.1542 2.5989
Total 48.878 41  16.0689 2.5095
Total No Background 41.000 14 15.6844 4.1918
Some Background 44912 68 17.7493 2.1524
Total 44.244 82 17.3856 1.9199

4.1.10 Testing Assumptions for Inferential Statistics

To test research hypotheses, the researcher employed two inferential statistical analysis namely: paired sample
t-test and Analysis of Covariance (ANCOVA). Both statistical analyses require that research data meet some
conditions for proper conduct of the analysis and interpretation of the results. We present the results of tests
conducted for conditions required for both analysis in this section.

4.1.10.1 Assumptions for Paired Sample t-Test

Some general and specific assumptions that research data must fulfil before conducting a paired t-test
according to (Field, 2018; Pallant, 2016) include:

e Homogeneity of variance



107

e Normality of pre-test, post-test, and difference scores

e Homogeneity of variance

Information in Table 4-35 indicates that both pre-test and post-test scores of participants, have not violated the
assumption of homogeneity of variances (p >0.05).

Table 4-35 Test of Homogeneity of Variance

Levene Statistic dfl df2 Sig.
Pre-test 480 1 80 490
Post-test .610 1 80 437

You can visualize this same information for both classes in the study, by looking at figures Figure 4-3 and
Figure 4-4.
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Figure 4-3 Visualizing the equality of variance (pre-test)
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Figure 4-4 Visualizing the equality of variance (post-test)

Normality of Outcome data

The outcome data for pre-test, post-test, and gain scores for both groups are normal (p > 0.05) as indicated by

the information in table 4.36. The same result is presented in figures 4-5, 4-6, 4-7, 4-8 and 4-9.

Table 4-36 Test of Normality Pilot Study Data

Kolmogorov-Smirnov Shapiro-Wilk
Treatment Grouping Statistic df Statistic df
Pre-test(100)  Control Group(PS) .083 41 .200* .983 41 776
Experimental Group (PS) .134 41 .064 976 41 528
Post-test (100) Control Group (PS) J11 41 .200* .954 41 .099
Experimental Group (PS)  .093 41 .200* .955 41 103
Gain Score (100)Control Group (PS) .092 41 .200* 974 41 454
Experimental Group (PS)  .110 41 .200* 973 41 419
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Figure 4-9 QQ Plot showing normality of Difference scores

Additional Assumptions for ANCOVA:
Measurement of covariate before treatment:

The researcher collected pre-test scores from participants in both groups before introducing them to

programming.
Reliability of the Covariate:

After collecting the achievement data from CS1 students using IPAT, reliability analysis conducted produced

a Cronbach alpha value of 0.844. This value suggests that the covariate was reliable.
Independence of Treatment and the Covariate:

In this study, independence of treatment and the covariate means the pre-test scores of both conventional and
the Scratch class are not significantly different. To confirm this, Field (2018) recommends performing an
ANOVA or t-test using the treatment groups as independent variable and the covariate as outcome. The result
from ANOVA in Table 4-37, shows that the main effect of the pre-test scores is not significant, F (1, 80) =
.021, p = .886. In other words, the pre-test mean in both groups are not significantly different. Hence, the

independence of treatment and covariate, a requirement for performing ANCOVA, has been satisfied.
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Table 4-37 Test of independence Treatment and covariate

Dependent Variable: Pre-test

Sum of Squares Df Mean Square F Sig.
Between Groups 1.756 1 1.756 021 .886
Within Groups 6813.463 80 85.168
Total 6815.220 81

Linearity of relationship between dependent variable and the covariate for the two groups:

A plot of the dependent variable (post-test) and the covariate (pre-test) for Scratch and control groups in Figure
4-10 reveals that linear relationships exist between the dependent and the covariate for both groups.

Treatment Grouping
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Figure 4-10 Scatter plot showing linearity

The result of univariate analysis of covariance in Table 4-38, suggests that there is no interaction between

treatment and covariate (p =.144). As shown in the table, the significance value of the interaction term

(Treatment*Pre-test) is greater than 0.10 which shows, it is not important in the fitted model. In addition, its

partial eta squared is 0.032, which is near zero, showing that its contribution to the model is negligible. Hence,
we can assume that the homogeneity of covariate coefficient has been satisfied.
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Table 4-38 Homogeneity of Regression Slope

Tests of Between-Subjects Effects
Dependent Variable: Post-test

Type 1l Sum of Partial Eta
Source Squares df Mean Square F Sig. Squared
Corrected Model 7093.722b 3 2364.574 10.606 .000 .290
Intercept 7731.984 1 7731.984 34.682 .000 .308
Treatment 1483.413 1 1483.413 6.654 012 .079
Pretest 5007.780 1 5007.780 22.462 .000 224
Treatment * Pretest  568.326 il 568.326 2.549 114 .032
Error 17389.400 78 222.941
Total 185000.000 82
Corrected Total 24483.122 81

4.1.11 Why Use ANCOVA After Matching?

To address problems of confounders, data collected during the study have been subjected to pre-processing
using Coarsened Exact Matching (CEM) algorithm. The need to ensure equivalence of the two experimental
groups informed the use of CEM. This provides some ground for validity, for causal inference on the impact
of the treatments on the achievement of the students in the study. It has been suggested that the resultant data
after matching, can be subjected to same statistical analysis we would have employed on the original
unmatched data (lacus et al., 2009, 2012). Possible statistical analysis for our matched data includes weighted
least square linear regression and Analysis of Covariance (ANCOVA). | decided to use ANCOVA. The
reasons informing this decision include relevance to the study’s research hypotheses and power of ANCOVA

for detecting treatment effect. More so, in ANCOVA we have benefits of regression and ANOVA combined.

4.1.12 Pilot Study: Research Hypotheses Testing
The Impact of a Constructionist Scratch instruction on achievement
The study tested following hypotheses at the 0.05 level of significance:

Hol: There is no significant difference between the mean scores of the pre- and post- Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students, after a six-week Scratch
programming instructionHa,1: There is significant difference between the mean scores of the pre- and
post- Introductory Programming Achievement Test (IPAT) of first-year polytechnic CS students, after

a six-week Scratch programming instruction. In other words,
Hol: Haiff = 0
Hal: Haitr # 0

Where Wdift = Hposttest - Mpretest
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Paired sample t-test was employed to determine whether exposure to a constructionist Scratch programming

pedagogy made any significant improvement on novice computer science students’ programming ability. The

results of the test are presented in Tables Table 4-39, Table 4-40 and

Table 4-41

Table 4-39 Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean
Pair 1 Post-test 48.878 41 16.0689 2.5095
Pre-test 21.756 41 9.6041 1.4999
Table 4-40 Paired Samples Correlations
N Correlation Sig.
Pair 1 Post-test & Pre-test 41 341 .029
Table 4-41 Paired samples t -test
Paired Differences
95% Confidence
Std. Interval of the
Std. Error Difference
Mean  Deviation Mean Lower Upper ¢ df  Sig. (2-tailed)
Pair 1 Posttest - Pretest 27.1220 15.6592 2.4456 22.1793 32.0646 11.090 40 .000

Comparative impacts of the two CS1 programming instructions on achievement

The study tested following hypotheses at the 0.05 level of significance:

Ho2: There is no significant difference in the mean scores of the post Introductory Programming

Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class

(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

Ho2:uCS = puCL

CS — Constructionist Scratch
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CL — Conventional Lecture

Ha.2: There is significant difference in the mean scores of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.
Ha2:uCS #uCL

To determine if there was any statistically significant difference, between the post-test means of the students
in both classes while controlling for the difference in their pre-test scores, the researcher performed a One-

way analysis of covariance. The result of this analysis is presented in Table 4-42

A look at the third row (highlighted) in Table 4-42 containing the result for the main effect of the Treatment,
shows there is statistically significant difference between the post-test scores of students in the Scratch and
control classes, F(1,79) = 8.159, p = 0.005, partial n?= .094. The partial eta squared value, according to Cohen

(1988), indicates that treatment has a moderate effect on students’ programming achievement.

Table 4-42 Pilot Study, One-way ANCOVA Results: Tests of Between-Subjects Effects

Dependent Variable: Post-test

Type Il Sum Mean Partial EtaNoncent. Observed
Source of Squares  df Square F Sig. Squared Parameter Power
Corrected Model  6525.396 2 3262.698 14.353 .000 .267 28.707 .998
Intercept 8138.919 1 8138.919 35.805 .000 .312 35.805 1.000
Treatment 1854.730 1 1854.730 8.159 .005 .094 8.159 .806
Pretest 4764.420 1 4764.420 20.960 .000 .210 20.960 995
Error 17957.726 79 227.313
Total 185000.000 82

Corrected Total 24483.122 81

Deciding Main Study Sample Size

Figures Figure 4-11 and Figure 4-12 present the outputs of the analysis conducted in the power analysis
software (G*power version 3.1.9.2) with input from the pilot study in order to determine the sample size for
the main study. The effect size (i.e., partial eta squared) used in this analysis was from Table 4-42. This value
(0.094) suggests the size of effect likely to be observed, in a study comparing learning in Scratch and the

conventional CS1 programming classes. You will observe in Figure 4-11 that with statistical power of 0.8—a
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value widely recommended (Aberson, 2019)— and alpha value of 0.05, we will need a sample size of about

80 in all the four groups, to detect any effect of intervention from an ANCOVA test.
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Figure 4-12 Graph of sample size versus power

4.2 The Main Study
4.2.1 The Quasi-Experimental Research

In this section, we present the results of the statistical analysis of the data collected from the quasi-experiment
research. Due to reasons earlier mentioned, data presented here are from two out of four polytechnics
earmarked for the main study. Though the main study requires about 80 students as indicated in section 4.4.3,
first, we will present the results of data from the intact classes of CS1 students that were involved in the main
study. Ethical reasons informed this decision. From this unmatched sample, a random sample of 84 students
was realised using Coarsened Exact Matching. Hypothesis testing was conducted using this matched sample.

lastly, we will present the results from the matched sample in section 4.6.

4.2.2 Demographics of the main study participants

While Table 4-43 reveals what is characteristic of most CS1 classes - more males enrolling than females - the

control group has more females with 31% compared to the experimental class which has about 21%.

Table 4-43 Gender of Main Study Participants (N =182)

Treatment Grouping Gender Total
Male Female
n(%o) n(%o)
Control 59 (68.6) 27(31.4) 86
Experimental 76 (79.2) 20 (20.8) 96
Total 135 47 182

Table 4-44 indicates almost similar distributions in the ages of participants in both experimental and control

groups.

Table 4-44 Age of Main Study Participants (n=182)

Treatment Grouping  Age Group Total
16-18 19-21 22-24 > 24 Others
n(%o) n(%o) n(%o) n(%o) n(%o)
Control 15 (17.9) 37 (44.0) 27 (32.1) 5(6.0.0) 0(0.0) 84
Experimental 12 (12.5) 44 (45.8) 34 (35.4) 5(5.2) 1(1.0) 96
Total 27(15.0) 61(33.9) 81(45.0) 10(5.6) 1(0.6) 180

Note: Two participants in the Control group did not indicate their age in the questionnaire.
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While the participants in the control group seem to be academically higher compare to the experimental group,
the experimental group had students with high-achieving academic while the control has none (Table 4-45).

These two students’ data may be outliers in the research data.

Table 4-45 Academic Background of Main Study Participants (n=182)

Treatment Grouping  Academic Background Index Total
Low-Achieving Average Achieving High-Achieving
n(%) n(%) n(%o)
Control 53(61.6) 33(38.4) 0(0.0) 86
Experimental 80(83.3) 14 (14.6) 2(2.1) 96
Total 133(73.1) 47(25.8) 2(1.1) 182

In their response to question in the survey to know if participants have known about programming (i.e.,
theoretically) in earlier education levels, the data in Table 4-46 reveals similar distributions in the backgrounds
of students in both groups.

Table 4-46 Prior Programming Learning of Main Study Participants

Treatment Grouping Prior Programming Learning Total
No Background Some Background
n(%o) n(%o)
Control 68 (79.1) 18 (20.9) 86
Experimental 77 (80.2) 19 (19.8) 96
Total 145(79.7) 37(20.3) 182

In their response to the question - if the participants have learnt to write (practically) programs in earlier

education levels, the data in Table 4-47 reveals almost similar distributions in the backgrounds in both groups.

Table 4-47 Prior Programming Writing of Main Study Participants

Treatment Grouping Prior Programming Learning Total
No Background Some Background
n(%o) n(%o)
Control 74 (86.0) 12 (14.0) 86
Experimental 86 (89.6) 10 (10.4) 96

Total 160 22 182
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Table 4-48 provides information revealing the prior experience of the participant in creative or artistic activities
in their earlier education. More students reported they have experience in the experimental group compared to

the control group.

Table 4-48 Visual Art background of Study Participants

Treatment Grouping Visual Art Background Total
No Background Some Background
n(%o) n(%o)
Control 44 (51.2) 42 (48.8) 86
Experimental 36 (37.5) 60 (62.5) 96
Total 80(44.0) 102(56.0) 182

4.2.3 Main Study: Pre-test Performance

Table 4-49 indicates a higher statistically significant pre-test performance by the control group (M=18.65, SD
=10.95) compared to the experimental group (M= 13.44, SD = 8.53).

Table 4-49 Main Study Pre-test Achievement Performance

Group N Mean S.D. S.E. t value
Control 86 18.65 10.95 1.18 3.603
Experimental 96 13.44 8.53 0.87

* Mean difference is significant.

Table 4-50 provides the pre-test performance along gender lines in both groups. The performance of both
genders was similar in both groups. However, while the males performed higher in the control group, the

females performed higher in the experimental group.

Table 4-50 Pre-test Scores of Main Study Participants based on Gender

Treatment Grouping  Gender Mean N Std. Deviation  Std. Error of Mean
Control Male 19.29 59 10.75 1.40
Female 17.26 27 11.45 2.20
Total 18.65 86 10.95 1.18
Experimental Male 13.13 76 8.47 97
Female 14.60 20 8.85 1.98
Total 13.44 96 8.53 .87
Total Male 15.82 135 9.98 .86
Female 16.13 47 10.41 1.52
Total 15.90 182 10.06 .75

Table 4-51 shows pre-test performance aligning with student’s prior academic abilities. Strangely, the mean

of the two high achieving students in the experimental group, raises question or doubts about their self-reported
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prior academic record or error in the data. Nevertheless, the data as presented confirm that the experimental

class is academically weaker compared to the control group.

Table 4-51 Pre-test Scores of Main Study Participants based on Academic Background

Treatment Grouping Academic Background  Mean N Std. Deviation Std. Error of Mean

Control Group Low-Achieving 18.38 53 10.80 1.48
Average Achieving 19.09 33 1135 1.97
Total 18.65 86 10.95 1.18

Experimental Group Low-Achieving 12.98 80 7.80 87
Average Achieving 17.57 14 11.18 2.99
High-Achieving 3.00 2 1.41 1.00
Total 13.44 96 8.53 .87

Total Low-Achieving 15.13 133 9.46 .82
Average Achieving 18.64 47  11.20 1.63
High-Achieving 3.00 2 141 1.00
Total 15.90 182 10.06 75

Performance of the two groups are similar as shown in Table 4-52. Those with background in writing programs

performed better compared to those without.

Table 4-52 Pre-test Scores of Main Study Participants based on Prior Program Writing

Treatment GroupingPrior Program Writing  Mean N Std. Deviation Std. Error of Mean

Control Group No Background 18.36 74 11.03 1.28
Some Background 20.42 12 10.76 3.11
Total 18.65 86  10.95 1.18

Experimental Group ~ No Background 13.21 86 7.89 .85
Some Background 15.40 10 13.23 4.19
Total 13.44 9% 853 .87

Total No Background 15.59 160 9.78 a7
Some Background 18.14 22 11.93 2.54
Total 15.90 182 10.06 75

Performance of the two groups as shown in Table 4-53 presents similar information as in previous table for

prior program writing. Those with background in prior visual arts performed better compare to those without.



121

Table 4-53 Pre-test Scores of Main Study Participants based on Visual Art Background

Treatment Grouping Visual Art Background Mean N  Std. Deviation Std. Error of Mean

Control Group No Background 17.82 44  9.86 1.49
Some Background 19.52 42 12.05 1.86
Total 18.65 86 10.95 1.18

Experimental Group  No Background 10.17 36 5.50 .92
Some Background 15.40 60 9.42 1.22
Total 13.44 96 8.53 .87

Total No Background 14.38 80 9.00 1.01
Some Background 17.10 102 10.72 1.06
Total 15.90 182 10.06 75

4.2.4 Main Study: Post-test Results

While Table 4-49 showed that the control had higher statistically significant mean pre-test score compared to
the experimental, Table 4-54 indicates that performance of both groups in the post-test is not significantly

different. The experimental class seems to have had a catch-up in their performance.

Table 4-54 Main Study Participants Post-test Achievement Performance

Grouping N Mean S.D. S.E. t value Significance
Control 86 27.63  13.09 141 0.40 *p=.969
Experimental 96 2756  8.44 .86

* Mean difference is not significant.

Table 4-55 further confirms what we now know: The learning gain of the experimental class is significantly

higher than the control group.

Table 4-55 Main Study Learning Gain Score Achievement Performance

Grouping N Mean S.D. S.E. tvalue Significance
Control 86 8.98 10.91 1.18 -3.455  *p=.001
Experimental 96 14.13 9.18 0.94

* Mean difference is significant.

Looking at the post-test performance along gender lines, Table 4-56 gives an interesting information. The

performance in the post-test compared to the pre-test has reversed along gender lines in both groups. In the
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control group, the males performed higher, while in the pre-test their performance is lower. In the experimental

where the female performed higher, in the pre-test, their performance is lower.

Table 4-56 Main Study Post-test Achievement Performance based on Gender

Treatment Grouping Gender Mean N Std. Deviation Std. Error of Mean

Control Group Male 26.81 59 1294 1.68
Female 29.41 27 13.49 2.60
Total 27.63 86  13.09 1.41

Experimental Group Male 28.53 76  8.24 94
Female 23.90 20 8.40 1.88
Total 27.56 96 8.44 .86

Total Male 27.78 135 10.54 91
Female 27.06 47  11.82 1.72
Total 27.59 182 10.86 .80

To probe which gender has gained more in which group, Table 4-57 reveals that while the females gained

more in the lecture class (Control), the males gained more in the Scratch class (Experimental

Table 4-57 Main Study Learning Gain Score Achievement Performance based on Gender

Treatment Grouping  Gender Mean N Std. Deviation Std. Error of Mean

Control Group(MS) Male 7.53 59  10.00 1.30
Female 12.15 27 12.27 2.36
Total 8.98 86 10.91 1.18

Experimental Group(MS) Male 15.39 76  9.15 1.05
Female 9.30 20 7.77 1.74
Total 14.13 96 9.18 .94

Total Male 11.96 135 10.27 .88
Female 10.94 47  10.59 1.54
Total 11.69 182 10.33 77

Compare to the pre-test, Table 4-58 presents similar information about performance of the students in both

groups. Fairly, their post-test performance was aligned with their prior academic background.

Table 4-58 Main Study Post-test Achievement Performance based on Academic Background

Treatment Grouping Academic Background Mean N  Std. Deviation Std. Error of Mean

Control Group(MS) Low-Achieving 27.13 53 13.56 1.86
Average Achieving 28.42 33 1247 2.17
Total 27.63 86 13.09 1.41
Experimental Low-Achieving 27.35 80 8.63 .96
Group(MS) Average Achieving 2943 14 1.77 2.08
High-Achieving 23.00 2 283 2.00
Total 27.56 96 8.44 .86
Total Low-Achieving 27.26 133 10.82 .94
Average Achieving 28.72 47 11.20 1.63
High-Achieving 23.00 2 283 2.00

Total 27.59 182 10.86 .80
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Interestingly, Table 4-59 showing learning gains, reveals that low-achieving (including those who self-
reported they were “high-achieving”) learnt more from Scratch class compared to the averaged-achieving

students in that class. Recall that the high-achieving students in that class scored terribly low in their pre-test.

Table 4-59 Main Study Learning Gain Performance based on Academic background

Treatment Grouping Academic Background Mean N Std. Deviation Std. Error of Mean

Control Group(MS) Low-Achieving 8.75 53 11.73 1.61
Average Achieving 9.33 33  9.60 1.67
Total 8.98 86 10.91 1.18

Experimental Group(MS) Low-Achieving 14.38 80 9.36 1.05
Average Achieving 11.86 14  8.47 2.27
High-Achieving 20.00 2 4.24 3.00
Total 14.13 96 9.18 .94

Total Low-Achieving 12.14 133 10.69 .93
Average Achieving 10.09 47  9.26 1.35
High-Achieving 20.00 2 4.24 3.00
Total 11.69 182 10.33 N

Table 4-60 reveals that while students with some background in program writing performed higher than those
without background in the control group, the reverse is the case in the experimental class, though with probably

insignificant difference.

Table 4-60 Main Study Post-test Score based on Prior Program Writing Background

Treatment Grouping  Prior Program Writing Mean N  Std. Deviation Std. Error of Mean

Control Group(MS) No Background 26.92 74 1331 1.55
Some Background 32.00 12 1118 3.23
Total 27.63 86 13.09 1.41

Experimental Group(MS) No Background 27.67 86 8.22 .89
Some Background 26.60 10 10.62 3.36
Total 27.56 9 8.44 .86

Total No Background 27.33 160 10.84 .86
Some Background 29.55 22 11.02 2.35
Total 27.59 182 10.86 .80

Table 4-61 .reveals the learning gains in the two classes. It suggests that while those with some background in

program writing learnt more in the control group, those with no background learnt more in the experimental.
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Table 4-61 Main Study Learning Gain based on Prior Program Writing background

Treatment Grouping Prior Program Writing Mean N  Std. Deviation Std. Error of Mean

Control Group(MS) No Background 8.55 74 10.54 1.23
Some Background 11.58 12 13.16 3.80
Total 8.98 86 10.91 1.18

Experimental Group(MS) No Background 14.47 86 9.39 1.01
Some Background 11.20 10 6.89 2.18
Total 14.13 96 9.18 94

Total No Background 11.73 160 10.34 .82
Some Background 11.41 22 10.54 2.25
Total 11.69 182 10.33 17

Table 4-62 indicates that while background in visual arts seems not to make much difference in the post-test

performance in the control group, those with some background performed higher in the experimental group.

Table 4-62 Main Study Post-test Performance based on Visual Art background

Treatment Grouping Visual Art Background Mean N Std. Deviation Std. Error of Mean

Control Group(MS) No Background 28.05 44 1250 1.89
Some Background 27.19 42  13.82 2.13
Total 27.63 86 13.09 1.41

Experimental Group(MS) No Background 24.50 36 6.11 1.02
Some Background 29.40 60 9.13 1.18
Total 27.56 96 8.44 .86

Total No Background 26.45 80 10.24 1.14
Some Background 28.49 102 11.29 1.12
Total 27.59 182 10.86 .80

4.2.5 Matching for Valid Causal Inference

To address the problem of significant differences (as revealed by prior descriptive statistics) in the treatment
groups, data from intact classes during the main study were pre-processed using Coarsened Exact Matching

(CEM). CEM is a free SPSS add-in available at https://projects.ig.harvard.edu/cem-spss/pages/installation.

After installation, CEM resides in the Analyze menu in an SPSS program.

Another reason for matching, is to mitigate the weakness of ANCOVA analysis when intact groups are used
and there is non-random assignment to groups, making ANCOVA results and its interpretation prone to errors
(Miller & Chapman, 2001).

The main study data were processed using CEM and the results presented by subsequent tables and figures

show the effect of this pre-processing on the research data.


https://projects.iq.harvard.edu/cem-spss/pages/installation
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4.2.6 Main Study: Matched Sample

The result of the matching performed on the samples from the two treatment groups are presented in Tables
4-63 to 4-68. You will observe that while the two samples are perfectly matched by academic background,
prior program writing and visual art background, they are fairly or almost matched by gender and age. They

are perfectly matched on what prior research have found to influence achievement in CS1.

4.2.7 Descriptive Statistics of the Matched Sample

Table 4-63 Gender of Matched Sample (n =84)

Treatment Grouping Gender Total
Male Female
n(%o) n(%)
Control 27 (64.3) 15 (35.7) 42
Experimental 33 (78.6) 9(21.4) 42
Total 60(71.4) 24(28.6) 84

Table 4-64 Academic Background of Matched Sample (n =84)

Treatment Academic Background Index Total
Grouping Low-Achieving Average Achieving

n(%o) n(%o)
Control 32 (76.2) 10 (23.8) 42
Experimental 32 (76.2) 10(23.8) 42
Total 64(76.2) 20(23.8) 84

Table 4-65 Age of Matched Sample from Main Study (n =84)

Treatment Grouping Age Group Total
16 — 18 19-21 22-24 > 24
n(%o) n(%o) n(%o) n(%o)
Control 6 (14.3) 17 (40.5) 17 (40.5)  2(4.7) 42
Experimental 6 (14.3) 17 (40.5) 16 (38.1) 3(7.1) 42

Total 12 33 32 5 84
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Table 4-66 Academic Background of Matched Sample from Main Study (n =84)

Treatment Academic Background Total
Grouping Low-Achieving Average-Achieving

n(%o) n(%o)
Control 32(76.2) 10(23.8) 42
Experimental 32(76.2) 10(23.8) 42
Total 64(76.2) 20(23.8) 84

Table 4-67 Prior Programming Writing of Matched Sample from Main Study (n =84)

Treatment Grouping

Control
Experimental

Total

Prior Programming Writing Total
No Background Some Background

n(%o) n(%o)

41 (97.6) 1(2.4) 42
41(97.6) 1(2.4) 42
82(97.6) 2(2.4) 84

Table 4-68 Visual Art background of Matched Sample from Main Study (n =84)

Treatment Grouping

Control
Experimental

Total

Visual Art Background Total
No Background Some Background

n(%o) n(%)

22 (52.4) 20 (47.6) 42
22 (52.4) 20 (47.6) 42
44(52.4) 40(47.6) 84

4.2.8 Main Study: Pre-test Performance of Matched Sample

Another view of the result of matching is presented in Table 4-69, showing the baseline performance of the

treatment groups. Look

ing at the unmatched pre-test performance in Table 4-49 where the control group had
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a significant higher mean pre-test score compared to the experimental group, you will observe that with

matched samples, the significant difference has disappeared.

Table 4-69 Matched Sample from Main Study Participants Pre-test Achievement

Group N  Mean S.D. S.E. tvalue Level of Significance

Control 42 14.29 8.592 1.326 217 0.828 (not significant)

Experimental 42 13.88 8.469 1.307

4.2.9 Main Study: Posttest Performance of Matched Sample

Information in Table 4-54 indicated that the treatment and the control have insignificant difference in their
mean post-test score, though Table 4-55 revealed that the experimental group had significantly higher gain
score compared to the control. But with matched samples the difference in the mean post-test score is clear as

shown in Table 4-70. The experimental group has a significant higher score compared to the control.

Table 4-70 Matched Sample Post-test Achievement Performance

Treatment N Mean Std. Deviation Std. Error Mean tvalue Significance
Control 42 2343 11.648 1.797 -2.255 *p =.027
Experimental 42  28.47 8.600 1.327

* mean difference is significant.

Table 4-71 Matched Sample Learning Gain Achievement Performance

Grouping N Mean  Std. Deviation Std. Error Mean tvalue Significance
Control 42 9.14 10.363 1.599 -2.660 * p=.009
Experimental 42 14.60 8.314 1.283

* Mean difference is significant.

After adjusting an extreme outlier in the experimental group, we have the post-test performance as shown in
Table 4-72
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Table 4-72 Matched Sample Post-test Achievement Performance (Adjusted)

Treatment Grouping N Mean Std. Deviation Std. Error Mean
Post-test Control Group 42 23.43 11.648 1.797
Experimental Group 42 28.52 8.755 1.351

4.2.10 ANCOVA after Matching

To mitigate problems of confounders, data collected during the study have been subjected to pre-processing
using Coarsened Exact Matching (CEM) algorithm. The need to ensure equivalence of the two experimental
groups informed the use of CEM. This provides some ground for causal inference validity on the impact of the
treatments, on students” achievement in the study. It has been suggested that, the resultant data after matching
can still be subjected to same statistical analysis we would have employed on the original data (lacus et al.,
2009, 2012). Possible statistical analysis for our matched data includes, weighted least square linear regression
and Analysis of Covariance (ANCOVA). | decided to use ANCOVA. The reasons informing this decision
include relevance to the study’s research questions and power for detecting treatment effect. More so, in
ANCOVA we have benefits of regression and ANOVA combined.

4.2.11 Testing Assumptions Before Conducting Data Analysis

Running a statistical test without satisfying the assumptions the test requires, leads to flawed computation,
interpretation, and conclusion (Field, 2018; Mayers, 2013). In this section, we subject the matched data to
series of test, to know if the data satisfy or violate the conditions for ANCOVA to work in a study. Several
assumptions are mentioned in the literature that are desirable or that must be satisfied to run ANCOVA (Field,
2018; Mayers, 2013; Pallant, 2016). They include:

e Normality of data

e Covariates normally distributed

o Dependent variable is normally distributed (across the groups)

e Measurement of covariate before treatment:

e Reliability of the covariate

¢ Reasonable correlation between the covariate and the dependent variable

¢ Independence of treatment and the covariate

e Equality of variance

o Linearity of relationship between dependent variable and the covariate for the levels of independent
variable

e Sample sizes sufficient to ensure enough power to detect the hypothesis.
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Testing for Normality:

Covariates normally distributed: Information in Table 4-73 shows a mixed result. Pre-test Scores for the
control group appears to be normally distributed, W(42) = .952, p = .074, but may not be for the experimental
group, W(42) = .926, p = .009.

To address this problem, Mayers(2013, p. 51) suggests “to additionally test for z-scores
of the skew and kurtosis” of the scores. z-score is computed by dividing the value of the skew or kurtosis with
their corresponding standard error. The result of z-scores for the pre-test scores of both groups are given in
Table 4-74. How do we know whether our data are still within reasonable bound of normality? Mayers(2013)
provides an answer: “Statisticians have calculated that we reach the limits of normal distribution when z-scores
are greater than +1.96 (plus or minus 1.96)” (pg. 52). This cut-off points of £1.96 for the determining normality
is applicable to sample size < 50 (H Kim, 2013; Mayers, 2013). So, with our sample sizes being less 50, we

deduce that our pre-test scores for both groups are within reasonable limit of normality.

Table 4-73 Shapiro-Wilk Normality Test for Pre-test Scores Across Treatment Groups

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk
Treatment Grouping Statistic Df Sig. Statistic  df Sig.
Pretest Control Group 118 42 151 .952 42 074
Experimental Group 161 42 .008 .926 42 .009

Table 4-74 z-scores Test for Pre-test scores across Treatment groups

DV: Pretest
Treatment Mean N SD Skewness  Std. Error z-score of Kurtosis Std. Z-score
Grouping of Skewness Error of
Skewness Kurtosis
Control Group 1429 42 8592 0.454 0.365 1.243836 -0.372 0.717 -0.51883
Experimental 13.88 42 8.469 0.707 0.365 1.936986 -0.252 0.717 -0.35146

Group

Dependent variable is normally distributed (across the groups): Information in Table 4-75 indicates that
our dependent variable (the post-test) appears to satisfy normality test.

Using the z-score test for the postscore, the same evidence is provided that suggests, as shown in Table 4-76,

that both scores are normal across the two groups.
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Table 4-75 Shapiro-Wilk Normality Test for Post-test Scores Across Treatment Groups

Kolmogorov-Smirnov Shapiro-Wilk
Treatment Grouping Statistic df Sig. Statistic df Sig.
Control Group 127 42 .087 949 42 .058
Experimental Group 138 42 .043 .948 42 .057

Table 4-76 z-scores Test for Normality of Post-test scores across Treatment groups

Dependent Variable: Post-test Score

Treatment Mean N SD Skewness SESkewness Zskewness Kurtosis SEKurtosis ZKurtosis
Grouping

Control 23.43 42 11.648 0.286 0.365 0.783562 -0.804 0.717 -1.12134
Experimental 28.43 42 8523 0.623 0.365 1.706849 0.088 0.717 0.122734

Measurement of covariate before treatment: The researcher collected pre-test scores from participants in

both groups before introducing them to programming.

Reliability of the Covariate: Data was collected from CS1 students using IPAT, and reliability analysis

conducted produced a Cronbach alpha value of 0.844. This value suggests that the covariate was reliable.

Reasonable correlation between the covariate and the dependent variable: Error! Reference source not
found. suggests that correlation between the covariate and the dependent variable (r = .488, p<.05) is

acceptable. Reasonable correlation is: between r = .30 and r =.90 (Mayers, 2013). The requirement is satisfied.

Table 4-77 Correlation between the covariate and the dependent variable

Pre-test Post-test
Pre-test Score Pearson Correlation 1 488**
Sig. (2-tailed) .000
N 84 84
Post-test Score Pearson Correlation .488** 1
Sig. (2-tailed) .000
N 84 84

**_Correlation is significant at the 0.01 level (2-tailed).

Independence of Treatment and the Covariate: In this study, independence of treatment and the covariate
means, the pre-test scores of both conventional and the Scratch class are not significantly different. To confirm

this, Field (2018) recommends performing an ANOVA or t-test using the treatment groups as independent
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variable and the covariate as outcome. The result from ANOVA in Table 4-78 shows that the main effect of
the pre-test scores is not significant, F (1, 82) =.047, p = .828. In other words, the pre-test mean in both groups
are not significantly different. Hence, the independence of treatment and covariate, a requirement for
performing ANCOVA, has been satisfied.

Table 4-78 Test of Independence of treatment and the covariate

DV:Pre-test
Sum of Squares  df Mean Square F Sig.
Between Groups 3.440 1 3.440 .047 .828
Within Groups 5966.976 82 72.768
Total 5970.417 83

Equality of variance

Results in Table 4-79 suggests that the variances for the pre-test score is equal for both groups. Figure 4-13

presents visual evidence of the same information.

Table 4-79 Test of Homogeneity of variances

Dependable Variable: Pre-test

Levene Statistic dfl df2 Sig.
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Figure 4-13 Visualizing the equality of variances (pre-test)
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Similar to what we observe for the pre-test, Table 4-80 and Figure 4-14 present information suggesting that

our post-test data, satisfies the condition for equality of variances

Table 4-80 Test of Homogeneity of variances (Post-test)

Dependent Variable: Post-test

F dfl df2 Sig.
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Figure 4-14 Visualizing the equality of variances (post-test)

Linearity of relationship between Dependent variable and the covariate for the two groups: Figure 4-15

presents information suggesting that there is a linear relationship between pre-test and post-test across the two

groups
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Figure 4-15 Linear relationship between covariate and dependent variable

Homogeneity of covariate coefficient (also called Homogeneity of regression slopes): Homogeneity of
regression slopes implies, the lines for both groups should be parallel. Figure 4-15 indicates linearity, you will
observe that the lines are not parallel. So, we want to confirm how far or near to being parallel are these lines.
A way of testing this, is by conducting One-way ANCOVA to see if the interaction of treatment and covariate
is not significant. The result of univariate analysis of covariance in Table 4-81 suggests that there is no
interaction between treatment and pre-test, F(1,80), p =.468. As shown in table, the significance value of the
interaction term (Treatment*Pre-test) is greater than 0.10 which shows it is not important in the fitted model.
In addition, its partial eta squared is 0.007, which is near zero, showing that its contribution to the model is
negligible. Hence, we can assume that the homogeneity of covariate coefficient has been satisfied. Another
implication of this result is that, the pre-test score as a covariate can be used to explain some of the variance

in the experimental outcome (the post-test).



Table 4-81 Testing for Homogeneity of Regression Slopes

Dependent Variable: Post-test Score

Type 1 Partial

Sum of Eta Noncent.
Source Squares df Mean SquareF Sig.  Squared Parameter Powerc
Corrected Model 2779.952b 3  926.651 11.794 .000 .307 35.382
Intercept 6669.250 1 6669.250 84.883 .000 515 84.883
Treatment 320.125 1 320.125 4,074 047 .048 4,074
Pretest 2203.940 1 2203.940 28.051 .000 .260 28.051
Treatment * Pretest 41.778 1 41.778 532 468  .007 532
Error 6285.619 80 78.570
Total 65538.000 84
Corrected Total 9065.571 83

Sample sizes sufficient to ensure enough power to detect the hypothesis: This appears to be satisfied by

the information in Figure 4-16 which indicates, with alpha value of 0.05 and sufficiently high power of 0.85

we need a sample of 84 subjects for ANCOVA to detect any effect of the intervention.
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Figure 4-16 Power analysis graph showing required sample size
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Assumption for paired sample t-test: To determine if exposure to a six-week constructionist Scratch
programming pedagogy made any significant improvement on novice computer science students’
programming ability, paired sample t-test will be employed. Before conducting the test, assumption of
normality of difference scores must be satisfied (Field, 2018). To achieve this, a descriptive statistical analysis

was conducted using the Explore feature in SPSS. The result is shown in Table 4-82

Table 4-82 Tests of Normality of Learning Gains in Scratch Class

Tests of Normality

Kolmogorov-Smirnov Shapiro-Wilk
Treatment Grouping Statistic  Df Sig. Statistic ~ df Sig.
Gain Score Experimental Group(MS) .145 42 .026 973 42 416

Results of the normality test in table provides conflicting information. While the first test (Kolmogorov-
Smirnov) says the difference scores (i.e., Gain Score) of participants in the Scratch class is not a normal
distribution (p = 0.26), the second test (Shapiro-Wilk) says that the data follows normal distribution (p =
0.416).

To further ascertain normality of the difference scores, we compute z-scores for the skewness and kurtosis of
mean difference. Setting a cut-off point of z-score +1.96 as specified by Mayers(2013), we determine if our
data fulfil normality or not. The information on Table 4-83 shows that the z-score for both the skewness and

kurtosis are within the limit for normality.

In the light of these facts, we can conclude that our mean difference score for the Scratch class has satisfied

the normality assessment.

Table 4-83 z-score Test of Normality of Difference Score in Scratch Class

DV: Gain Score

Treatment Mean N SD Skewness SE of z-score of Kurtosis SE of z-score of
Grouping Skewness Skewness Kurtosis  Kurtosis

Experimental 1455 42 8317 -0.012 0.365 -0.033 0.822 0.717 1.15
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4.3 Hypothesis Testing

The following are the summary of findings on the eight hypotheses tested at 0.05 level of significance.

Ho1l: There is no significant difference between the mean scores of the pre- and post- Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students, after a six-week Scratch

programming instruction.

Hal: There is significant difference between the mean scores of the pre- and post- Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students, after a six-week Scratch

programming instruction.

In other word,

Table 4-84 Summary of Paired Sample t-Test (Scratch Class)

Group N X SD df t
P
Pre-test 42 13.88 8.47
41 -11.34 <.000
Post-test 42 28.43 8.52

The result from Table 4-84 shows that there is significant mean difference in the achievement of experimental
participants between their pre-test and the post-test (t (41) = -11.335, p = 0.001 (two-tailed)). A further
observation of means shows that the achievement of the constructionist Scratch programming participants in
their post-test (X = 28.43, SD= 8.52) is significantly higher than in their pre-test (X = 13.88, SD = 8.47). This
infers that the constructionist Scratch programming intervention improved the programming ability of the

participants. The stated hypothesis is therefore rejected.

Table 4-85 Summary of Paired Sample t-Test (Control Class)

Group N X SD Df t
P
Pre-test 42 14.29 8.59
41 -5.718 <.000
Post-test 42 23.43 11.64

Result from Table 4-85 reveals that there is significant mean difference in the achievement of participants in
the lecture-based programming instruction (control) in the pre-test and post-test (t(41) = -5.718, p =.001). A

further observation of means however shows that the achievement of the lecture-based programming
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participants in the post- test (X = 23.43, SD= 11.64) is higher than in the pre-test (X = 14.29, SD = 8.59). The
observed difference is equally significant. This suggests that lecture-based instruction was also effective.
However, the mean difference of the Scratch class is higher compared to that of the lecture-based class,
suggesting that Scratch intervention was more effective at imparting first-year computer science students with

programming knowledge.

Ho.2: There is no significant difference in the mean scores of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their

pretest scores.

Table 4-86 Summary of ANCOVA table showing the main effect of treatment

Source Type 11l Sum ofDf Mean Square F Sig. Partial Eta
Squares Squared

Corrected Model  2738.174a 2 1369.087 17526  .000 .302

Intercept 6669.186 1 6669.186 85.375  .000 .513

Pretest 2213.174 1 2213.174 28.332  .000 .259

Treatment 577.710 1 577.710 7.396 .008 .084

Error 6327.398 81 78.116

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .302 (Adjusted R Squared = .285)

Testing the effect of treatment while controlling for the students pre-test scores, an ANCOVA result in Table
4-86 revealed that that there was a significant effect of covariate, F(1, 81) = 28.332, p < .001, 72 = 0.259,
which indicates pre-test scores of students predicted their post-test scores. Result from Table 4-86 also shows
that there was a significant main effect of treatment on achievement in programming, F (1, 81) = 7.396, p =
0.008, 72 = 0.084. This means that there was a significant effect of the constructionist Scratch programming
on achievements of participant in programming. The partial eta squared value (an effect size measure) of 0.084
indicates a medium effect, since according to Cohen (1988) the value of 0.01, 0.06 and 0.14 represent small,

medium, and large effect respectively. Therefore, we reject the null hypothesis.



138

H.3: Gender has no effect on the mean scores of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.

Table 4-87 Summary of ANCOVA table showing the main effect of gender

Source Type 111 Sum of Df Mean Square F Sig. Partial Eta
Squares Squared

Corrected Model ~ 2743.584a 3 914.528 11.573 .000 .303

Intercept 6602.759 1 6602.759 83.553 .000 511

Pretest 2202.715 1 2202.715 27.874  .000 .258

Treatment 580.518 1 580.518 7.346 .008 .084

Gender 5.410 1 5.410 .068 794 .001

Error 6321.988 80 79.025

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .303 (Adjusted R Squared = .276)

Table 4-87 shows there was no significant main effect of gender on achievement in programming of
participants (F (1, 80) = .068, p = .794, i2 = 0.001). This means that gender did not have effect on the

participants’ achievement in programming. Therefore, we fail to reject null hypothesis.

Table 4-88 Showing the mean values of gender on achievement

Group Gender Mean Std. Deviation N
Male 29.42 8.303 33
Experimental  Female 24.78 8.800 9
Total 28.43 8.523 42
Male 22.81 11.823 27
Control Female 24.53 11.649 15
Total 23.43 11.648 42
Male 26.4500 10.48716 60
Total Female 24.6250 10.46656 24
Total 25.9286 10.45102 84

Table 4-88 reveals that both gender in the treatment group underwent the constructionist Scratch programming
instruction and it has a positive effect on their achievement, in programming. A further observation of means
shows that the achievement of males in programming (X = 29.42, SD= 8.303) improved more than that of
females (X'=24.78, SD=8.800). In contrast, the achievement of females in the control group (X =24.53,S.D.=
11.649) improved than that of the males (X = 22.81, SD= 11.823). However, the difference in the observed

improvements in both groups was not statistically significant.
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Hq.4: Age has no effect on the mean score of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.

Table 4-89 Summary of ANCOVA table showing the main effect of age

Source Type 111 Sum of Df Mean Square F Sig. Partial Eta
Squares Squared

Corrected Model 2939.900a 5 587.980 7.487 .000 324

Intercept 5567.317 1 5567.317 70.890  .000 AT76

Pretest 1935.933 1 1935.933 24.651 .000 .240

Treatment 549.816 1 549.816 7.001 .010 .082

Age 201.726 3 67.242 .856 468 .032

Error 6125.671 78 78.534

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .324 (Adjusted R Squared = .281)

Table 4-89 showed that there was no significant main effect of age on achievement in programming of
participants (F (1, 78) = .856, p =.468, 1j2 = 0.032). This means that age did not have effect on achievement in

programming of the participants. Therefore, we fail to reject the null hypothesis.

Table 4-90 Showing mean values of age on achievement

Treatment Grouping Age Group Mean Std. Deviation N
16 - 18 years 30.00 6.542 6
19 - 21 years 29.35 10.253 17
Experimental 22 - 24 years 25.50 6.044 16
Above 24 years 35.67 10.263 3
Total 28.43 8.523 42
16 - 18 years 25.67 11.272 6
19 - 21 years 24.00 12.042 17
Control Group 22 - 24 years 2141 11.462 17
Above 24 years 29.00 18.385 2
Total 23.43 11.648 42
16 - 18 years 27.83 9.074 12
19 - 21 years 26.68 11.342 34
Total 22 - 24 years 23.39 9.334 33
Above 24 years 33.00 12.268 5
Total 25.93 10.451 84

Result from Table 4-90 reveals that the three age groups in the treatment group, underwent constructionist
Scratch programming and it has a positive effect on their achievement in programming. A further observation
of means show that, the achievement in programming of participants between the ages of 24 years and above
in the experimental group (X = 35.67, S.D= 10.236) improved than that of those participants between the ages
of 16-18 years (X =30.00, S.D= 6.542), between the ages of 19-21 years (X =29.35, S.D=10.253) and those
between the ages of 22-24 years (X = 25.50, S.D= 6.044). Also, the achievement of those participants between

the ages of 24 years and above in the control group who were given lecture based instruction (X = 29.00, S.D=



140

18.385) improved than that of participants between the ages of 16-18 years (X = 25.67, S.D=11.272), between
the ages of 19-21 years (X = 24.00, S.D=12.042) and those between the ages of 22-24 years (X =21.41, S.D=
11.462). However, as indicated earlier the differences between observed improvements were not statistically

significant.

Ho5: Academic background has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

Table 4-91 Summary of ANCOVA table showing the main effect of academic background

Source Type 11 df Mean Square F Sig. Partial Eta
Sum of Squares Squared

Corrected Model 2747.885a 3 915.962 11.599 .000 .303

Intercept 5316.225 1 5316.225 67.319 .000 457

Pre-test 2202.951 1 2202.951 27.896 .000 .259

Treatment 578.285 1 578.285 7.323 .008 .084

Academic background  9.711 1 9.711 123 127 .002

Error 6317.686 80 78.971

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .303 (Adjusted R Squared = .277)

Table 4-91 showed that there was no significant main effect of academic background on achievement in
programming of participants (F (1, 80) = .123, p =.727, §12 = 0.002). This means that academic background
did not have effect on achievement in programming of the participants. Therefore, we fail to reject the null

hypothesis.

Table 4-92 Showing mean values of academic background on achievement

Group Academic Mean Std. Deviation N
background
Low 28.25 9.027 32
Treatment Average 29.00 7.055 10
Total 28.43 8.523 42
Low 23.06 11.584 32
Control Average 24.60 12.403 10
Total 23.43 11.648 42
Low 25.66 10.628 64
Total Average 26.80 10.077 20
Total 25.93 10.451 84

Table 4-92 reveals that participants with both academic backgrounds in the treatment group underwent the

constructionist Scratch programming and it has a positive effect on their achievement in programming. A
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further observation of means shows that the achievement in programming of those participants with average
academic background (X = 29.00, SD= 7.055) improved more than those with low academic background (X
= 28.25, SD= 9.027). Also, the achievement programming instruction of those with average academic
background in the control group, who were exposed to lecture based (X = 24.60, SD= 12.403) improved than
that those with low academic background (X = 24.06, SD= 11.584). However, the difference between the two

groups was not statistically significant.

H.6: Prior programming experience has no effect on the mean score of the post Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist
Scratch class (experimental group) and those in the conventional class (control group), while controlling
for their pre-test scores.

Table 4-93 Summary of ANCOVA table showing the main effect of prior program writing

Source Type Il Sumdf Mean SquareF Sig. Partial Eta
of Squares Squared

Corrected Model 2840.301a 3 946.767 12.167 .000 313

Intercept 2072.755 1 2072.755  26.637 .000 250

Pre-test 1682.729 1 1682.729  21.624 .000 213

Treatment 573.572 1 573.572 7.371 .008 .084

Prior program writing  102.127 1 102.127 1.312 .255 .016

Error 6225.271 80 77.816

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .313 (Adjusted R Squared = .288)

Table 4-93 showed that there was no significant main effect of prior programming writing on achievement in
programming of participants (F (1, 80) = 1.312, p =.255, §j2 = 0.016). This means that prior programming
writing had no effect on achievement in programming of the participants. Therefore, we fail to reject the null

hypothesis.

Table 4-94 Showing mean values of prior program writing on achievement

Group Prior programming Mean Std. Deviation N
No background 28.02 8.211 41
Experimental Some background 45.00 . 1
Total 28.43 8.523 42
No background 22.98 11.412 41
Control Some background 42.00 : 1
Total 23.43 11.648 42
No background 25.50 10.201 82
Total Some background 43.50 2121 2

Total 25.93 10.451 84
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Table 4-94 reveals that participants with prior programming writing, in the treatment group underwent the
constructionist Scratch programming and it has a positive effect on their achievement in programming. A
further observation of means shows that the achievement in programming of those participants with some
background (X = 45.00, S.D = -) improved than those with no background (X = 28.02, SD= 8.211). Also, the
achievement of those with some background in the control group (X'=42.00, SD = -) improved than those with
none (X = 22.98, SD= 11.412). Though, the difference in the observed improvements in both groups was not

statistically significant.

Ho7: Prior visual art experience has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

Table 4-95 Summary of ANCOVA table showing the main effect of prior visual art

Source Type 1l df Mean Square F Sig. Partial Eta
Sum of Squares Squared

Corrected Model 2866.009a 3 955.336 12.328 .000 .316

Intercept 5483.182 1 5483.182 70.756 .000 469

Pre-test 2316.074 1 2316.074 29.887 .000 272

Treatment 582.281 1 582.281 7.514 .008 .086

Prior visual art ~ 127.836 1 127.836 1.650 203 .020

Error 6199.562 80 77.495

Total 65538.000 84

Corrected Total 9065.571 83

a. R Squared = .316 (Adjusted R Squared = .290)

Table 4-95 showed that there was no significant main effect of prior visual art on achievement in programming
of participants (F (1, 80) = 1.650, p =.203, {2 = 0.020). This means prior visual art had no effect on achievement
of participants in programming. Therefore, we fail to reject the null hypothesis.

Table 4-96 Showing mean values of prior visual knowledge on achievement

Group Prior visual art Mean Std. Deviation N
No background 27.09 6.156 22
Experimental Some background  29.90 10.513 20
Total 28.43 8.523 42
No background 23.73 10.977 22
Control Group Some background  23.10 12.624 20
Total 23.43 11.648 42
No background 25.41 8.958 44
Total Some background  26.50 11.972 40

Total 25.93 10.451 84
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Table 4-96 reveals that participants with prior visual art in the treatment group underwent the constructionist
Scratch programming and it has a positive effect on their achievement in programming. A further observation
of means shows that the achievement in programming of those participants with some background (X = 29.90,
SD=10.513) improved than those with none (X = 27.09, SD= 6.156). In contrast, the achievement of those
with some background in the control group (X = 23.10, SD= 12.624) was a bit less than that those with none
(X = 23.73, SD= 10.977). However, the difference in the observed improvements in both groups was not

statistically significant here.

H.8: Treatment, Gender, academic background, prior programming experience and prior visual art
have no interaction on the mean score of the post Introductory Programming Achievement Test (IPAT)
of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and those

in the conventional class (control group), while controlling for their pre-test scores.

Table 4-97 Summary of ANCOVA table showing the significant interaction effect of treatment,
gender, age, academic background, prior programming writing and prior visual on achievement

Source Type 111 Sum Df Mean F Sig. Partial Eta
of Squares Square Squared

Corrected Model 4461.366a 35 127.468 1.590 070  .547

Intercept 2410.008 1 2410.008 30.053 .000  .395

Pre-test 1072.895 1 1072.895 13.379 .001  .225

Treatment 577.710 1 577.710 7.375 .008  .099

Treatment * gender 290.609 2 145.304 1.812 175 073

Treatment * age 223.231 6 37.205  .464 831  .057

Treatment * academic 9.024 2 4512 .056 945  .002

background

Treatment * prior program 272.406 2 136.203 1.698 194 .069

writing

Treatment * prior visual art 2.528 2 1.264 .016 984  .001

Treatment * gender * age * 1379.204 19 72590  .905 580  .272

academic background * prior

program writing * prior visual

art

Error 3688.829 46 80.192

Total 65470.000 84

Corrected Total 8150.195 81

a. R Squared = .547 (Adjusted R Squared = .203)

The result of the findings in Table 4-97, revealed that there was a significant main effect of treatment on
achievement in programming of the participants (F (1,46) = 7.375; p < 0.05, §2 = 0.099). However, there is

no significant interaction effect of treatment on gender, age, academic background, prior programming writing
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and prior visual on achievement in programming of participant (F (1, 46) = .905, p =.580, 712 = 0.272). This
implies that the participants in the experimental groups benefitted from the treatment, as they were able to get

higher achievement score in programming compare to their counterparts in the control group.

Table 4-98 Estimated marginal means for the treatment and control group

Treatment Grouping Mean Std. Error  95% Confidence Interval

Lower Bound Upper Bound
Control Group(MS) 24.094 1.727 20.621 27.566
Experimental Group(MS) 28.158 1.750 24.639 31.676

Table 4-98 shows that the experimental group has the highest mean score (X = 28.158) compared to the control
group (X = 24.094). This implies that students who were exposed to treatment (constructionist Scratch
programming) improved more in their programming ability, than those in the control group who were exposed

to the conventional programming instruction.

Table 4-99 Estimated marginal means for the treatment and gender

Gender Mean Std. Error  95% Confidence Interval

Lower Bound Upper Bound
Male 26.120 1.326 23.480 28.759
Female 24.656 2.155 20.367 28.944

Table 4-99 shows that males had the higher mean score (X = 26.120) compared to females (X = 24.656). This
implies that the treatment was more effective on the male participants than females. That is, males benefitted

more in the constructionist Scratch programming than the females.

Table 4-100 Estimated marginal means for the treatment and age

Age Group Mean Std. Error  95% Confidence Interval
Lower Bound Upper Bound

16 - 18 years 27.833  2.882 22.090 33.577

19 - 21 years 27.176 1.739 23.712 30.641

22 - 24 years 24.063 1.765 20.545 27.580

Above 24 years  32.333  4.557 23.252 41.414
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Table 4-100 shows that students whose ages falls between 24 years and above, has the highest mean score (X
= 32.333) than those between 16-18 years (X = 27.833), 19-21 years (X = 27.176) as well as those between
the ages of 22-24 years (X = 24.063). This implies that those participants between the ages of 24 years and

above improved in programming learning than their counterparts.

Table 4-101 Estimated marginal means for the treatment and Academic background

Academic BackgroundMean Std. Error 95% Confidence Interval
Index Lower Bound  Upper Bound
Low-Achieving 25.607 1.270 23.076 28.138
Average Achieving 30.983 2.861 25.282 36.685

Table 4-101 shows that average-achieving participants had the higher mean score (X = 30.983) than low-
achieving participants (X = 25.607). This implies that the treatment was more effective on the average-
achieving participants, compare to the low-achieving participants. That is, first-year computer science students
with average academic background benefitted more in the constructionist Scratch programming than those

with low academic background.

Table 4-102 Estimated marginal means for the treatment and prior program writing

Prior Program Writing Mean Std. Error  95% Confidence Interval

Lower Bound Upper Bound
No Background 25.166 1.354 22.469 27.863
Some Background 43.500a 7.129 29.296 57.704

Table 4-102 shows that students with some prior program writing background had the highest mean score (X
= 43.500) than those with no prior program writing (X = 25.166). This implies that the treatment was more

effective on the participants with some prior program writing background than those with no background.

Table 4-103 Estimated marginal means for the treatment and visual art background

Visual Art Background Mean Std. Error 95% Confidence Interval

Lower Bound Upper Bound
No Background 24.375 1.970 20.449 28.301
Some Background 31.805 2.679 26.466 37.144
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Table 4-103 shows that students with some visual art background had the highest mean score (X = 31.805)
than those with no visual art background (X = 24.375). This implies that, the treatment was more effective on

the participants with some visual art background than those with none.

4.4 Discussion of Findings

This study examined the impact of Scratch, a visual programming environment on the achievement of first
year computer science students in programming in some Nigerian Polytechnics. Paired sample t-test and

ANCOVA as statistical tools were used, to analyse the data collected. The findings are discussed below:

Ho1: There is no significant difference between the mean scores of the pre- and post- Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students, after a six-week Scratch

programming instruction.

The above hypothesis was rejected because the result in Table 4-84 clearly shows there is statistically
significant difference between the post-test and pre-test scores of those CS1 students exposed to a
constructionist Scratch intervention. This implies that even when those in the Scratch class were not
specifically given lectures on programming, the six-week intervention led to significant students’ learning
gains in conceptual and procedural programming knowledge. This finding is consistent with earlier studies
(Hijon-Neira et al., 2021; Meerbaum-Salant et al., 2013; Tijani et al., 2020) who found programming learning
gains after students went through a period of Scratch instruction. In a meta-analysis by Scherer et al. (2020) it
was found that employing Scratch even for a short while in novice programming classes led to positive overall
effect. The result of this study aligns with those of Céardenas-Cobo et al. (2021) who found Scratch led to
remarkable improvement in the achievement of university students in a CS1 known for high failure rates. The
students were from one of low SES parts of Ecuador. In contrast, this outcome negates those of Kalelioglu &
Giilbahar (2014) who found no significant difference between the pre-test and post-test of 5" grade Turkish

primary school pupils after five weeks exposure to Scratch.

Ho2: There is no significant difference in the mean scores of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.
Or,

H.2:  There is no significant main effect of treatment on programming achievement of first year

computer science students in Nigerian polytechnics

The hypothesis stated above was rejected because the result in Table 4-86 clearly shows that there is a

significant main effect of treatment on the mean post Introductory Programming Achievement Test (IPAT)
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scores, between first-year polytechnic CS students in a constructionist Scratch class (experimental group) and
those in the conventional class (control group). This finding is in congruence with the findings of Kim et al
(2012) who discovered that unlike the traditional computer programming languages, Scratch helped Korean
university pre-service education students, to focus on what they could do with programming languages, rather
than struggling with learning the language syntax. This resulted into implicit rather than explicit learning of
programming concepts, development of programming skills, creativity, confidence, and collaborations among
students. In a similar study, Erol and Kurt (2017) explored the impact of Scratch on the motivation and
achievement of first-year Turkish university students, in an introductory programming course. The authors
reported that though both groups were not significantly different in motivation and programming knowledge
at the beginning, they were significant differences in both outcome variables, at the middle and end of the
course in favour of the treatment group. They found that while motivation increased in the middle and end of
the course in the treatment group; it plunges at the middle, and increased slightly at the end, in the control
group. However, both groups’ programming knowledge increased in the middle and at the end, though, the
mean achievement of the treatment was significantly higher compared to the control group on both occasions.
The result of this study is supported by similar research by Cetin (2016) in which higher education students
were exposed to Scratch (in the experimental class) and C (in the control class). After six weeks of instruction,
the experimental group performed significantly better in programming achievement compared to the control.
The finding also lends credence with that of Topalli and Cagiltay (2018), who conducted a longitudinal study
of undergraduate computing engineering students from a Turkish university exploring the effects of enriching
traditional CS1 course with Scratch games developments. The study investigated the impact of this
intervention on the performance of students in the CS1 course, their performance in the final year projects and
overall performance at the end of their studies in the university. The authors reported that the treatment had
significantly higher mean achievement compared to the control. They also found similar results in favour of
the treatment in the senior year project and the overall CGPA. In a meta-analysis comparing the impacts of
block-based and text-based programming environments on students’ programming cognition, Xu et al.(2019)

found the former to have greater, albeit moderate effect.

By implication Scratch visual programming was effective at engaging and in improving the programming
skills of polytechnic students. Level of students’ engagement in first year, has been found to have significant
effect on their achievement, even for those disadvantaged by their prior educational performance or parental
status (Kuh et al., 2008). Another probable reason for Scratch’s impact on student’s achievement comes from
improved self-efficacy. Research suggests that increased self-efficacy leads to increase performance in
programming. In the study by Cetin (2016), students’ self-efficacy which was lower before Scratch particularly
for the females, was found to have increased after Scratch programming instruction. In summary, the finding
confirms the effectiveness of the treatment tool on novice students in programming. Although, the intervention

was effective, Table 4-98 clearly showed the marginal difference between the intervention and the control

group.
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H.3: Gender has no effect on the mean scores of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.
Or

Ho.3:  There is no significant main effect of gender on achievement in programming among first year

students of computer science in some Nigerian Polytechnics

The result in Table 4-87 indicates a value of p > .05 for gender, therefore we fail to reject the above hypothesis.
The result reveals that in this study, gender had no significant main effect on achievement in programming
among computer science students in some Nigerian Polytechnics. By implication, gender differences of first
year computer science students, have no significant impact on their achievements in programming. In essence,
gender did not predict CS1 students’ achievements in programming. The report of this study aligns with the
findings of some other studies, that discovered the insignificance of gender to the achievement in programming
of first year students of computer science(Gjelsten et al., 2021; Lishinski & Rosenberg, 2021; Veerasamy et
al., 2019). For instance, Ayalew et al.(2018) found no significant correlation between gender and achievement
in introductory programming among first-year university students in Botswana. The finding also goes in line
with that of Rubio et al.(2015) who employed a contextualized computing pedagogy involving MATLAB
programming and Arduino so that programming concepts become tangible to students using sound, movement,
and light. This intervention was aimed at assessing, in comparison to the traditional instruction, gender
differences in programming perceptions and learning outcomes of first-year Spanish university students, who
all had no prior experience in programming. The authors reported that while the three programming
perceptions scores for males and females showed consistently diverging trends, closing with a significant
difference in favour of male students in the control group, these scores, though exhibited mixed trends in
course of intervention in the experimental group, gender differences remained consistently insignificant,
suggesting that the contextualized instruction closed the gender gap in programming perception. Within each
group, there was no significant gender differences in the programming learning outcomes. However, the failure
rate revealed a different picture. While female students’ failure rate doubled those of male students in the
control group, the rate was essentially the same in the experimental group. The finding also goes in line with
that of Sabitzer and Pasterk (2014) who employed a neuroeducation pedagogy called ‘“brain-based
programming” and examined its effects on students' achievement. They found that the intervention was
effective at closing the gender gap, as the performance of both males and females was not significantly
different in the experimental group. In the control group, the males performed significantly better than the

female.

From a social viewpoint, it was thought that the higher rate of programming anxiety among females might be
due to differences in gender roles, and that greater equality between the sexes regarding their status, self-
efficacy or opportunities for prior experience with programming should balance the rates and prevalence of

programming anxiety in male and female. For instance, Gjelsten et al.(2021) identified the reason for
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disappearance of gendered difference in CS1 achievement: prior programming experience in high school of
female CS1 students. That, suggests prior programming experience is a mediating variable between gender
and CS1 achievement. Another mediating variable is, first year class is engagement(Kuh et al., 2008).
Providing engaging learning contents that interest females may also level the playing field with males who
have come into CS1 with higher self-efficacy and prior programming experience. For instance, CS1
assignments focused on people rather than things were found more engaging by female CS1 students (Marcher

etal., 2021). That likely leads increase in self-efficacy and eventual increase in performance in CS1.

Hq.4: Age has no effect on the mean score of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.
or

Hq4:  There is no significant main effect of age on achievement in programming among first year

students of computer science in some Nigerian Polytechnics
The result in Table 4-89 indicates a value of p > .05 for age, therefore we fail to reject the above hypothesis.

shows that age in this study had no significant main effect, on achievement in programming among computer
science students in some Nigerian Polytechnics. By implication, age difference of first year students of
computer science has no significant impact on their achievement in programming. In essence, achievement in
programming is not a function of age. The report of this study aligns with the findings of some other studies,
that discovered the insignificance of age to the achievement in programming of first year students of computer
science. For instance, Hermans and Aivaloglou (2017) in a study involving Dutch elementary students
explored the hypothesis that young age is not a barrier to learning advanced CS concepts. The authors found
from the comparison of students’ overall mean scores, in both programming and software engineering
concepts, that there was no significant difference, indicating the students performed equally well in both. While
the comparison of the 11-12 age group with 13-14 age group students indicated there were no differences in
many concepts, (though significant differences with insignificant effect sizes were found in few topics),
nevertheless, significant differences (with at least a small effect size) were recorded in concepts of procedures
and operators in favour of the older students, probably suggesting that there are programming or software
engineering concepts that are too difficult to understand for younger students. However, with one convenience

sample with no control group for comparison makes the result only suggestive.

The finding corresponds with Atmatzidou and Demetriadis (2016) who employed Educational Robotics (ER)
and guided instructional approach, in an introductory class for secondary school students to explore age and
gender differences in the development of their Computational Thinking skills. They reported that though girls

performed initially lower than boys in CT skills, they were able to catch up, and in the end, there was no
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significant gender or age difference. The finding however negates some findings by Chen et al.(2019) who
took a different approach to the above studies, to find answers to the question of the relationship between age
and CS1 achievement. They employed ex post facto quasi-experimental design to explore retrospectively, the
effects of the type of programming environment and student's age at the time of being introduced to
programming on their attitude at the beginning, and their achievement at the end of a college CS1 course
experience. They reported that significant interaction effect of age when students first started to learn to
program, and the programming environment on students' positive attitude towards CS, suggesting that
students’ positive attitude towards CS depends on what age and how they were introduced to programming.
For final CS1 grade, the study found significant effects of both graphic and textual programming (in
comparison to control) on students’ achievement, indicating it is better to learn to program using any of the
two environments than none. The performance of students with prior programming in CS1 depends on the age
they were introduced to programming. Those introduced to graphic programming between the age 6-10 or
younger are likely to score higher in CS1 than those introduced to textual at the same age. There was no
significant difference in the achievements of students introduced to programming between age 11-14 and 15-
18years in both treatment groups, suggesting that both modes work equally well in preparing students for

college CS1.

Ho5: Academic background has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.
Or

Ho5: There is no significant main effect of academic background on achievement in programming

among first year students of computer science in some Nigerian Polytechnics

The result in Table 4-91 indicates a value of p > .05 for academic background, therefore we fail to reject the
above hypothesis. That shows that academic background had no significant main effect on achievement, in
programming among computer science students in some Nigerian Polytechnics. By implication, academic
backgrounds of first year computer science students had no significant influence on their programming
achievement. In essence, achievement in programming is not necessarily a function of academic background.
The report of this study aligns with the findings of some other studies, that discovered the insignificance of
academic background to the achievement in programming of first year students of computer science(Rizvi &
Humphries, 2012). The finding is not consonance with that of Ramos(2018) who reported that academic
background played a role in predicting Filipino CS1 students’ programming performance. The author found
that the higher the student’s academic level in the university entrance exam, the higher their final grades in
CS1. A similar study by Mindetbay et al.(2019) also found that academic achievement of 8" grade Kazakhstani
pupils predicted their computational performance. This suggests that academic background promotes students’

capacity for learning and their achievements in programming. However, in this study the effect of that
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background did not reach a level that makes it a significant factor. An explanation for this may be that Scratch
was effective in engaging and increasing the self-efficacy of the low achieving students, leading to learning
gains that made them to catch up with the average achieving students. Evidence from their pre-test scores in
Table 4-51, post-test scores in Table 4-58 and learning gains in Table 4-59 suggests this. The study by Rizvi
and Humphries (2012) also substantiates that earlier assertion. They employed a Scratch intervention course
(CS0) taken before CS1, by at-risk first-year computer science students in a US university. They found no
significant difference in the CS1 post-test scores between those with weak mathematical background in the at-

risk group exposed to Scratch and those in the conventional programming class.

H.6: Prior programming experience has no effect on the mean score of the post Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist
Scratch class (experimental group) and those in the conventional class (control group), while controlling

for their pre-test scores.
Or,

Ho.6: There is no significant main effect of prior programming writing on achievement in programming

among first year students of computer science in some Nigerian Polytechnics

The result in Table 4-93 indicates a value of p > .05 for prior programming writing, therefore we fail to reject
the above hypothesis. Table 4-93 shows that prior programming writing had no significant main effect on
achievement in programming among computer science students in some Nigerian Polytechnics. By
implication, prior programming writing of first year students of computer science has no significant impact on
the programming achievement. In essence, achievement in programming is not necessarily a function of prior
programming writing. The finding did not lend credence with that of Wilson and Shrock (2001), who
conducted a study exploring the relationship between twelve predictive variables and students' achievement in
CS1. Some of the factors included in their model are math background, comfort level, performance attribution
to luck, previous programming experience, etc. The finding revealed that comfort level, math background, and
performance attribution to luck contributed the most to success, with a negative influence of luck. This suggests
while comfort level and math background as expected contributed positively to students’ success, attributing
performance to luck probably led student to put in less effort into their study, and thus negatively impacting

on their achievement.

However, the finding corroborates with that of Silva-Maceda, David Arjona-Villicana, & Edgar Castillo-
Barrera (2016) who - to explore the impacts of CS1 pedagogical approach and students’ organismic factors on
their CS1 achievements, - conducted a longitudinal study involving seven cohorts (N = 1168) of students in a
central Mexican university. The authors reported that there was no statistically significant difference, after
including initial students’ ability in the analysis. This suggests that students spending more time by first being
exposed to programming, are better than taking CS1 without a prior programming course, probably evidence

of the benefit of higher time-on-task. Also, it is better to have a prior programming experience using whatever
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pedagogical approach than having none. The finding of this study is also inconsistent with that of Hagan &
Markham (2000) in a study involving first-year computer science students in an Australian university, which
sought to confirm whether students' prior experience in programming has an impact on their achievement in
the university CS1 course. The finding revealed that while a significant statistical difference in the four
formative assessments was found between students with none and those with some experience in
programming, there was no statistically significant difference in their summative assessment. The finding also
negates that of Wilson and Shrock (2001) who reported that the grades of students were strongly associated

with their prior knowledge of the programming course.

In contrast, the report of this study aligns with the findings of some other studies, that discovered the
insignificance of prior programming writing, to the achievement in programming of first year students of
computer science. For instance, Chen et al. (2021) found that taking AP CS (a programming course) in high
school by first-year American higher ed CS students had no significant effect on their CS1 grades. This finding
is also consistent Ayalew et al(2018) who found no correlation between prior programming on the

achievement in introductory programming among first-year university students in Botswana.

An explanation for this result may be understood by fact that, Scratch enhanced the engagement and self-
efficacies of the students with no prior programming writing experiences. Such mediating variables have been
found to promote students’ achievements. However, the limitation of this result is the fact that only 1 out of
42 students in each group, had prior program writing experience. That seriously unbalanced within-group
effect may be responsible for the lack of effect in the between-group outcome. Nevertheless, considering the
information in Table 4-94, the Scratch intervention enhanced the achievement of students with no prior

program writing than those in the conventional instruction.

Ho7: Prior visual art experience has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.
Or,

Ho7:  There is no significant main effect of prior visual art on achievement in programming among

first year students of computer science in some Nigerian Polytechnics.

Result in Table 4-95 indicates a value of p > .05 for prior visual arts, therefore we fail to reject the above
hypothesis. In other word, prior visual arts had no significant main effect, on achievement in programming
among computer science students in some Nigerian Polytechnics. By implication, prior visual artistic abilities
of first year students of computer science have no significant impact on their programming achievements. In
essence, achievement in programming is not necessarily a function of prior visual art. Although, Table 4-103

shows those with prior visual art had higher mean post-test achievement, compared to those with none,
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probably suggestion a correlation. But our hypothesis test is for causation and the result reveals no such. The
report of this study aligns with the findings of some other studies, that discovered the insignificance of prior
visual art ability to the achievement in programming of first year students of computer science. The finding
supports that of Parham-Mocello, Erwig and Dominguez (2020) which sought to confirm the hypothesis that,
exposing students with little or no programming experience or interest in computing to only "Story
Programming” will likely see better results for Drop-Fail-Withdrawal (DWF) rate and students' interest than
those exposed to coding-first. The finding revealed that there was no significant difference in the grade point
average of students in both classes. This suggests that programming or computational thinking can be learnt
by pedagogical means other than coding on a computer - usually called "CS unplugged". The finding also goes
in line with that of Hermans and Aivaloglou (2017) who explored the impact of introducing students to
programming with or without the computer (usually referred to as plug and unplugged CS) on their learning
outcomes. The finding revealed no significant difference between the two groups in their programming
knowledge. This study’s result is consistent with that of Gestwicki & Ahmad (2010) who found no correlation
between university students’ creative achievement and their academic achievement, after doing a media
computation oriented CS1 course. The reason for this result may be that, there is no direct link between prior
visual art and CS1 achievement, or some other variables mediate or moderate the relationship between the
two. In the same vein, the finding also negates that of Reid (2005) which shows that students that are familiar
with visual art skills when compared with students from non-visual arts are better adjusted and have better

skills in computer and programming.

Ho.8: Treatment, Gender, academic background, prior programming experience and prior visual art
have no interaction on the mean score of the post Introductory Programming Achievement Test (IPAT)
of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and those

in the conventional class (control group), while controlling for their pre-test scores. Or,

H.8: There was no significant interaction effect of treatment, gender, age, academic background, prior
programming writing and prior visual art on programming achievement of first year computer science

students in Nigerian polytechnics

The result in Table 4-97 shows that there was no significant interaction effect of treatment, gender, age,
academic background, prior programming writing and prior visual programming on students’ achievement.
Hence, we fail to reject the above hypothesis. Consistent with some current research on programming
achievement of first year computer, this study did not find evidence for the significant interaction effect of
treatment, gender, age, academic background, prior programming writing and prior visual programming on
the programming achievement of first year computer (Guo, 2020; Hyeonjin Kim et al., 2012). In a study of
first-year CS students at an American University, Guo(2020) operationalised age as the time the student started
to program before enrolling. The study found no interaction between student’s age and gender on their CS1 or
CS2 achievement. Surprisingly, treatment, gender, age, academic background, prior programming writing and

prior visual programming did not predict changes in programming achievement of first year computer in this
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study. The finding negates that of Chen et al.(2019) who conducted a retrospective study to explore the impacts
of type of programming environments, with which students were initiated into programming and the age of
introduction on their attitude towards CS and achievement in CS1. The participants comprised those with
graphic, textual and none programming backgrounds, resulting into 2 treatment groups (i.e., Graphic and
Textual programming) and 1 control group (i.e., No prior programming). The authors reported that there were
significant differences between graphic and control group, and between the textual and control group, in favour
of each treatment group. Including age as a covariate in the linear regression analysis, they found significant
interaction effect of prior programming experience and age on the achievement of students in the CS1. That
implied students’ achievement in CS1 depended on the type of programming environment they were exposed

to and the age before their enrolment into higher education.

It is interesting to point out that this study did not find interaction of treatment and usual variables on CS1
achievement. A possible explanation for the above finding may be due to some mediating variables, such as
engagement and self-efficacies. Results from this study suggests students found the constructionist Scratch
programming to be engaging. Students who are so engaged, are likely to improve in their self-efficacies and
increase in self-efficacy is likely to enhance their achievements, regardless of differences in their background
variables. Level of students’ engagement in first year has been found to have significant effect on their
achievement, even for those disadvantaged by their prior educational performance or parental status (Kuh et
al., 2008). Corroborating this assertion, Ribeiro (2019) conducted a study with Portuguese first-year students,
to investigate the mediatory role of student engagement in the relationship between background variables and
their academic achievement. They employed Structural Equation Modelling (SEM) and a model including
variables such as engagement, learning approach, background variables and a course grade was tested at the
beginning and end of the first semester. They found engagement significantly fitted the model at those two
occasions as a mediator between students’ background variables (such as language skill, High school GPA,
SES, etc) and their performance in a first-year course in their respective departments. They concluded that
mediatory role played by engagement, is responsible for studies that found background variables (like SES)

not having effect on the student’s achievement.
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Chapter 5

5 Summary, Conclusion and Recommendations

This chapter presents the summary of the study and its findings. Conclusions were drawn and

recommendations on how to address the identified problems were suggested.

5.1 Summary

The study investigated the impact of a constructionist Scratch programming pedagogy, on programming
achievement of first-year computer science students in programming in some Nigerian Polytechnics. The study
adopted a quasi-experimental design (with pre-test post-test non-equivalent experimental and control groups).
This is a type of quantitative research design that seeks to establish the impact of Scratch on the students, in
which the researcher has control over some variables of interest and therefore can manipulate them. The study
was an in vivo study, involving intact classes of newly admitted students. We employed between-group design
in which these intact classes were randomly assigned to treatment conditions to achieve the purpose of the
study. The population of the study comprised all first-year computer science students in polytechnics in North
central Nigeria. Four polytechnics namely Federal Polytechnic, Bida, Niger State (FPB), Federal Polytechnic,
Nasarawa, Nasarawa State (FPN), Niger State Polytechnic, Zungeru. Niger State (NSPZ), Nasarawa State
Polytechnic, Lafia, Nasarawa State (NSPL) were selected using purposive sampling technique. Then selected
institutions were randomly assigned to treatment groups. From the data collected in the main study, eighty-
four students were selected randomly using Coarsened Exact Matching — a form of simple random sampling.
This generated two matched samples of which 42 students were in the experimental group and the remaining

42 in the control group. This comprised 60 males and 24 females, with their ages ranging from 16 > = years.

The findings revealed there was a significant main effect of the constructionist Scratch intervention, on the
achievements of first year computer science students, in programming in the Nigerian polytechnics studied.
The result also indicates students’ achievements was not moderated by their gender, age, academic
background, prior programming writing and prior visual art. The outcome also reveals that there was no
significant interaction effect of treatment and gender, age, academic background, prior programming writing,
prior visual arts on achievement in programming of first year computer science students in Nigeria
polytechnics. The study recommends that, to enhance the programming skill of the students with no prior
programming, programming instructors can employ Scratch in a collaborative atmosphere — the hallmark of a

constructionist pedagogy.

5.2 Conclusion

In this section we make conclusion on each hypothesis and proceed to give an overall conclusion on the

outcome of the study.
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Ho1: There is no significant difference between the mean scores of the pre- and post- Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students, after a six-week Scratch

programming instruction.

This study revealed that there was a significant difference between the pre-test and post-test scores of the
students in the Scratch class. This outcome provides evidence that, notwithstanding the constructionist nature
of the pedagogy employed in this class, compared to their counterparts who were specifically given
programming lectures, the students indeed learnt some programming. This indicates the value of a
constructionist Scratch programming in higher ed CS1 class, in view of a prior study by Kalelioglu & Giilbahar
(2014) that found no effect of learning programming after five weeks of exposing primary school students to
Scratch. Using an inquiry-based constructionist pedagogy in a novice Scratch programming class can lead to

meaningful programming knowledge for students so engaged.

H.2: There is no significant difference in the mean scores of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

The main finding of this study showed that the constructionist Scratch intervention, led to a significant
students’ programming learning, compared to the conventional instruction. Though results from the pilot and
main studies consistently reveal moderate effect of treatment on first year CS students, this finding adds to the
growing body of evidence that block-based programming environments, may be more engaging, leading to
students with no prior programming knowledge learning more compared to those in the text-based
programming language classes (Weintrop & Wilensky, 2017; Xu et al., 2019). Evidence in literature suggests
that “little head start” may make the difference between novice higher education CS classrooms with more
engaged or more disengaged students, between leaving many students behind or levelling the playing fields
for many, between retaining more in CS or raising CS1 attrition, between speeding up more diverse

professionals or strengthening CS stereotypes in computing industries.

H.3: Gender has no effect on the mean scores of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.

This study indicates that gender has no significant effect on the programming achievements of the participants.
While there may be gender differences in attitudes and self-efficacies of novice CS students, an engaging

programming pedagogy can mediate between gender and meaningful learning of programming.
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Hq.4: Age has no effect on the mean score of the post Introductory Programming Achievement Test
(IPAT) of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and

those in the conventional class (control group), while controlling for their pre-test scores.

This study shows that age has no significant main effect on novice students’ achievement in programming.
That implies, notwithstanding the diverse age of participants, their performances in programming were not
significantly different. This shows that age is no barrier to engaging and developing programming abilities in
a constructionist Scratch class, being that Scratch was originally developed for the younger age 8-16 (i.e.,

students in K-12 education).

Ho5: Academic background has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

The study shows that academic backgrounds of CS1 students, had no significant effect on their achievements
in programming. The implication of this finding is that an engaging Scratch programming instruction, can
level the playing fields for novice CS students with varying academic achievement levels. Such programming
instruction - while doing no harm to students with higher achievement as this study and literature show they
learn more - motivates and engages those with lower achievements to do catch-up in their achievements in

programming.

H.6: Prior programming experience has no effect on the mean score of the post Introductory
Programming Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist
Scratch class (experimental group) and those in the conventional class (control group), while controlling

for their pre-test scores.

This study reveals prior program writing experiences had no significant effects on students’ achievements in
CS1. While the grossly unbalanced sizes within each group, between those with or without programming
experiences raises question on the strength of this outcome, yet the outcome shows that Scratch enhanced the
performance of students without prior programming, compared to the conventional instruction. Employing an
engaging Scratch programming with students without prior programming writing is likely to promote students’

achievements in CS1.

Ho7: Prior visual art experience has no effect on the mean score of the post Introductory Programming
Achievement Test (IPAT) of first-year polytechnic CS students in a constructionist Scratch class
(experimental group) and those in the conventional class (control group), while controlling for their pre-

test scores.

This study indicates that prior visual artistic experiences of CS1 students have no significant effect on their

achievements in programming. Yet, this study reveals that those with such experiences performed better than
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those without it, regardless of whatever form of instructions. Comparing those with such backgrounds in the
two treatment groups, those exposed to Scratch performed better. This implies Scratch amplifies the effect of

prior visual art experience or mediates between prior visual art and achievement in programming.

H.8: Treatment, Gender, academic background, prior programming experience and prior visual art
have no interaction on the mean score of the post Introductory Programming Achievement Test (IPAT)
of first-year polytechnic CS students in a constructionist Scratch class (experimental group) and those
in the conventional class (control group), while controlling for their pre-test scores. In view of past
research, it appears surprising that in this study treatment, gender, age, academic background, prior
programming experience, and prior visual artistic ability had no significant interaction effect on the students’
achievement in programming. This suggests with an engaging novice programming class, usual predictors of
programming performance may not make significant difference in students’ outcomes. Such an engaging
programming instruction mediates between students’ baseline differences and their achievements — levelling

the playfield.
Overall Conclusion

The overriding research goal in this study was to search for empirical evidence of the effect of a constructionist
Scratch intervention in a higher education, taking CS students in some Nigerian polytechnics as case studies.
The results show that CS students exposed to this inquiry-based pedagogy were motivated, engaged and learnt
programming during the six weeks, going by their mean IPAT scores. Even though their counterparts in the
lecture class equally learnt programming, however the learning gains in the Scratch was significantly higher.
The result of this study reveals that a constructionist Scratch programming in higher education can be engaging
for students, especially those without programming experience, regardless of some other background

differences like gender, academic background, prior visual art.

Based on the findings of this study, I conclude that the Scratch programming intervention had significant main
effect on the achievement of first year computer science students in introductory programming in Nigeria
polytechnics. This outcome suggests that, the treatment improved the programming ability as the students

without prior programming experience were able to develop concrete and abstract knowledge of programming.

5.3 Recommendations

The following recommendations were made based on the finding of the study:

e Programming instructors should introduce programming writing and/or language for students
from simple to complex. Therefore, introducing them to programming using Scratch - a low
ceiling and high floor visual programming environment — works better than other textual

programming languages, especially for those with no prior experience in programming in their
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K-12 education. Furthermore, it makes the programming class more interesting to students
and aids quick retention.

e Institution administrators should introduce Scratch programming as a general course for all
the students as this can motivate and get them hooked to programming. Thus, students can
become vast in programming and be prepared for the competitive labour market. This can in
turn, give them an upper hand in the ever-changing job market as they would have the
necessary skills to handle computing or IT related works.

e To enhance the programming skill of the students, programming instructors should ensure
that there is a collaborative atmosphere like the one employed in this study while the
programming class is ongoing. This would increase their self-efficacies, motivate them, and
reduce the time instructor would spend training the students on programming.

e Policy makers and educational stakeholders should ensure that Scratch programming as a
subject is taught from primary to secondary school level. This will help the pupils and students
to be familiar with some concepts. Hence, when programming is introduced to them in higher
institution it would not be strange. This can reduce the stress on lecturers or instructors in
introducing programming to the students, using probably the more difficult textual
programming environment.

e Lecturers in computer science should ensure that while introducing programming to the
students, there should be opportunities for experimentation, tinkering and bricolage as this
tends to raise motivation, engagement, and retention on the part of the students. The value of
such environment in a CS1 class is emphasised by Simonton(2018) who remarked “After all,

creative solutions can emerge through either internal thinking or external tinkering”(p. 82)

5.4 Implications of the study

The findings of the present study, have several implications for computer science educators and policymakers.
Computer science educators could use findings from the present study on achievement in programming to
develop new or improve on the programming courses for students, which will focus on developing their

programming abilities.

Policy makers can also play a major role in the development, implementation, and evaluation of information
and communication technology (ICT) aimed at improving the programming skills for novice programmers.
Policy makers could add Scratch programming to the curricular being used in higher institutions training
preservice education students. By so doing, teachers in primary and secondary schools would have developed
some knowledge and skills needed to teach their learners programming. In addition, computer scientist could
develop empowerment training workshops, using Scratch for first year computer science students to empower

and help them learn strategies and skills for programming. Based upon the findings of the present study, the
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conventional mode for introducing novice CS students to programming appears not to work for many students.
Effective interventions for improving the achievement in programming of first year computer science students,

in Nigerian polytechnics, like the one employed in this study, are urgently needed.

5.5 Contributions to Knowledge

The findings of this study have contributed to knowledge in the following ways:

The findings from this study, provides valuable insight into the programming achievement in the context of
computer science students, in their first year in Nigerian polytechnics. Also, the study has added to the existing
literature on the effectiveness of Scratch visual programming, in the achievement of first year computer science
students studying programming in higher education. Since research reports affirm that achievement in
programming, is one of the co-morbidities that are often overlooked in the effective development of
programming skills of students, with no idea about programming, there is dire need to further explore the
programming achievement amongst year one computer science students in Nigerian polytechnics with an aim
to providing a needed yet overlooked area of need. The literature reviewed in this study as well as the training
sessions used in executing this study, has given a better understanding and knowledge of Scratch visual
programming environment. The study has further proven that Scratch visual programming was effective in
building the programming skills of students with no idea of programming. In general, the study has filled a
research gap, researchers or CS educators seeking to adopt Scratch visual programming to improve the
programming achievement and skills among first year computer science students in programming, having

discovered Scratch could improve their programming skills.

5.6 Limitations of the study

A number of obvious limitations existed in the study, however, the notable one is the large number of personal
variables not included in the study. Given the demographic differences (e.g., ethnicity, socio-economic status
(SES), motivation, geographical location, self-esteem), future research should include the above variables.
These would further strengthen the profile base of the participants. Thus, these self-selection biases, could
limit the generalizability of the present findings, to those who do not have the idea of programming, as well as
other participants with prior programming background. As such, the present study should be replicated with a
larger and randomly selected sample size and with a greater representation of students with or without
programming background. Also, the lack of data on a comparative normal population constitutes a limitation

to this study. It is hoped that future studies in this area will address these challenges.

Another limitation identified in this study is that, it may be limited in depicting the programming skills of the
participants. The list of potential demographic information of programming achievement among the
participants, that were explored in this study is by no means exhaustive. Hence, further research in this regard
would be needful. In the study, it is estimated that it took participants approximately 45 minutes or less to
complete all the instruments in sections A and B, based upon feedback from volunteers who assisted on the

field. However, the number of instruments and the length of completion time, may have facilitated a fatigue
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factor among participants, given the fact that they were undergoing some distress which learning programming

may bring.

In addition, it was not possible due to financial restrictions in the present study’s budget, to translate the
guestionnaires and the treatment packages into other languages other than English. The option of not having
other versions of the survey instruments may have attracted a less culturally diverse sample of research

participants.

Future studies would also benefit from gathering data from multiple sources (for example, prior knowledge of

computer) and employing qualitative research methods to condition mono-method bias.

Furthermore, while carrying out the research work, there were certain constraints experienced by the
researcher. Some of these limitations included poor conducive environment, insufficient time frame and cost
in extending the scope of the research. Another constraint was lack of adequate support from the management
of the institution under study, because, the management was not in support of their students being used for
research. This research was limited to only polytechnic institutions in the North Central of Nigeria. Moreover,
the issue of internet access is still a resource challenge in Nigeria and this threatens the research outcome.
However, students were introduced to the online version so that they can interact with online community of
Scratchers to be able to upload, download and remix Scratch projects. This is a crucial aspect of their
programming learning in Scratch. Despite all the challenges in this study, the researcher was able to scale

through.

5.7 Suggestions for further research

The study on the effectiveness of Scratch visual programming, on the programming achievement of first year
computer science students in Nigerian polytechnics, should also be carried out in other geo-political zones
such as South-West, South-East etc. Also, in terms of future research, it would be beneficial for researchers to
obtain a larger sample size and to include not only participants who are in their first year, but also those in
their second and third year. Other psychological and environmental variables other than gender, age, prior
programming writing and prior visual arts, can be examined as moderating variables to identify other variables
that could possibly influence the effectiveness of Scratch, on the programming achievement of first year
computer science students. Scratch programming can also be introduced to undergraduates in various
universities across the six geo-political zones, in Nigeria to explore its effect in such contexts. This study
revealed that a constructionist Scratch programming pedagogy promotes novice students’ learning of
programming, better than the conventional instruction. However, a question can be raised: What led to better
learning, Scratch or the constructionist approach? A way to explore this is to design an experiment that
involves two equivalent sample of novice CS students, both taught Scratch - one the constructionist way and

the other, another approach.
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As of date (November 2021), students can program in Scratch in more than 70 world languages other than
English. While there are some African languages in the list, such as Afrikaans, Kiswahili, isiZulu to mention
few, no major languages in Nigeria (like Hausa, Igho and Yoruba) are yet to make the list. Hausa which is a
language of communication among other African nations does not make the list. Incorporating such local
languages into Scratch environment online and offline can encourage participation and learning of
programming by more kids. A study on the impact of such contextualisation of the programming language in

Scratch on the attitude and achievements of K-12 students would make an interesting investigation.



163

References

Aberson, C. L. (2019). Applied power analysis for the behavioral sciences. In Applied Power Analysis for
the Behavioral Sciences (2nd ed.). https://doi.org/10.4324/9780203860274

Adleberg, B. M. (2013). Scratch programming and remix culture: Gender differences in interaction and
motivation for pre-adolescents. ProQuest Dissertations and Theses, 71.
https://search.proquest.com/docview/1355174689%accountid=15928%0Ahttp://onesearch.unifi.it/openu
rl/39UFI/39UFI_Services?tabs=viewOnlineTab&?url_ver=239.88-

2004 &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+%26+theses&sid=ProQ:Pro

Quest+

Agapito, J. L., & Rodrigo, M. M. T. (2018). Investigating the Impact of a Meaningful Gamification-Based
Intervention on Novice Programmers’ Achievement (pp. 3-16). https://doi.org/10.1007/978-3-319-
03843-1 1

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 833-835.
https://doi.org/10.1093/COMJINL/BXS074

Aivaloglou, E., & Hermans, F. (2019). Early programming education and career orientation: The effects of
gender, self-efficacy, motivation and stereotypes. SIGCSE 2019 - Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, 679-685.
https://doi.org/10.1145/3287324.3287358

Al-Sheeb, B. A., Hamouda, A. M., & Abdella, G. M. (2019). Modeling of student academic achievement in
engineering education using cognitive and non-cognitive factors. Journal of Applied Research in
Higher Education, 11(2), 178-198. https://doi.org/10.1108/JARHE-10-2017-0120

Alvarado, C., Dodds, Z., & Libeskind-Hadas, R. (2012). Increasing women’s participation in computing at
Harvey Mudd College. Acm Inroads, 3(4), 55-64.

Alvarado, C., Umbelino, G., & Minnes, M. (2018). The Persistent Effect of Pre-College Computing
Experience on College CS Course Grades. Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 876-881. https://doi.org/10.1145/3159450.3159508

Anyanwu, J. A. (1978). Computer science education. ACM SIGCSE Bulletin, 10(1), 37-40.
https://doi.org/10.1145/990654.990573

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real” Programming. ACM
Transactions on Computing Education, 14(4), 1-15. https://doi.org/10.1145/2677087

Arpaci, I., Durdu, P. O., & Mutlu, A. (2019). The Role of Self-Efficacy and Perceived Enjoyment in
Predicting Computer Engineering Students’ Continuous Use Intention of Scratch. International Journal
of E-Adoption, 11(2), 1-12. https://doi.org/10.4018/1JEA.2019070101



164

Ary, D., Jacobs, L. C., Sorensen, C. K., & Walker, D. A. (2014). Introduction to Research in Education (9th
ed.). Wadsworth, Cengage Learning. https://books.google.com/books?id=FgF7n0zGJm0OC&pgis=1

Asarta, C. J., & Schmidt, J. R. (2017). Comparing student performance in blended and traditional courses:
Does prior academic achievement matter? The Internet and Higher Education, 32, 29-38.
https://doi.org/10.1016/j.iheduc.2016.08.002

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Ayalew, Y., Tshukudu, E., & Lefoane, M. (2018). Factors Affecting Programming Performance of First
Year Students at a University in Botswana. African Journal of Research in Mathematics, Science and
Technology Education, 22(3), 363—373. https://doi.org/10.1080/18117295.2018.1540169

Becker, B. A. (2019). A Survey of Introductory Programming Courses in Ireland. Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education, 58-64.
https://doi.org/10.1145/3304221.3319752

Beecher, K. (2017). Computational Thinking: A Beginner’s Guide to Problem-Solving and Programming.
BCS Learning & Development Limited.

Bell, J. (2014). Doing Your Research Project: A Guide For First-Time Researchers (6th ed.). Open

International Publishing Limited.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the Twenty-Ninth
SIGCSE Technical Symposium on Computer Science Education - SIGCSE 98, 257-261.
https://doi.org/10.1145/273133.274308

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory programming. ACM Inroads, 10(2),
30-35. https://doi.org/10.1145/3324888

Beyer, S. (2014). Why are women underrepresented in Computer Science? Gender differences in
stereotypes, self-efficacy, values, and interests and predictors of future CS course-taking and grades.
Computer Science Education, 24(2-3), 153-192. https://doi.org/10.1080/08993408.2014.963363

Bird, A. (2018). Thomas Kuhn. In E. N. Zalta (Ed.), The {Stanford} Encyclopedia of Philosophy ({W}inter
2). Metaphysics Research Lab, Stanford University.

Blaxter, L., Hughes, C., & Tight, M. (2006). How to Research (3rd ed.). Open University Press.

Blikstein, P., & Moghadam, S. H. (2019). Computing EducationL iterature Review and Voices from the
Field. In S. A. Fincher & A. V. E. Robins (Eds.), The Cambridge Handbook of Computing Education
Research (pp. 56-78). Cambridge University Press. https://doi.org/10.1017/9781108654555.004

Boljat, I., Mladenovi¢, M., & Mustapi¢ Jogun, N. (2019). Students’ Attitudes Towards Programming After



165

the First Year of Implementing a New Informatics Curriculum in the Elementary Schools. ICERI2019
Proceedings, 1, 9486-9495. https://doi.org/10.21125/iceri.2019.2303

Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2020). Mapping research in
student engagement and educational technology in higher education: a systematic evidence map.
International Journal of Educational Technology in Higher Education, 17(1), 2.
https://doi.org/10.1186/s41239-019-0176-8

Brennan, K. (2015). Beyond technocentrism: Supporting constructionism in the classroom. Constructivist
Foundations, 10(3), 289-296.

Britannica, T. E. of E. (2020). Art. In Britannica. Encyclopedia Britannica.

https://www.britannica.com/art/visual-arts

Bruce, K. B. (2018). Five big open questions in computing education. ACM Inroads, 9(4), 77-80.
https://doi.org/10.1145/3230697

Bughin, J., Hazan, E., Lund, S., & Dahlstrom, P. (2018). Skill Shift: Automation and the Future of the
Workforce. McKinsey & Company, May, 3-84. https://www.mckinsey.com/featured-insights/future-of-

work/skill-shift-automation-and-the-future-of-the-workforce

Butler, M., Sinclair, J., Morgan, M., & Kalvala, S. (2016). Comparing international indicators of student
engagement for computer science. Proceedings of the Australasian Computer Science Week
Multiconference, 1-10. https://doi.org/10.1145/2843043.2843065

Campbell, O. O., & Atagana, H. I. (2022). Impact of a Scratch programming intervention on student
engagement in a Nigerian polytechnic first-year class: verdict from the observers. Heliyon, 8(3),
€09191. https://doi.org/10.1016/j.heliyon.2022.e09191

Céardenas-Cobo, J., Puris, A., Novoa-Hernandez, P., Parra-Jiménez, A., Moreno-Ledn, J., & Benavides, D.
(2021). Using scratch to improve learning programming in college students: A positive experience from
a non-weird country. Electronics (Switzerland), 10(10), 1180.
https://doi.org/10.3390/electronics10101180

Carlos Begosso, L., Ricardo Begosso, L., & Aragao Christ, N. (2020). An analysis of block-based
programming environments for CS1. 2020 IEEE Frontiers in Education Conference (FIE), 1-5.
https://doi.org/10.1109/F1E44824.2020.9273982

CC2020 Task Force. (2020). Computing Curricula 2020. ACM. https://doi.org/10.1145/3467967
Ceruzzi, P. E. (1991). When computers were human. Annals of the History of Computing, 13(3), 237-244.

Cetin, L. (2016). Preservice Teachers’ Introduction to Computing. Journal of Educational Computing
Research, 54(7), 997-1021. https://doi.org/10.1177/0735633116642774

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019). The effects of first programming



166

language on college students’ computing attitude and achievement: a comparison of graphical and
textual languages. Computer Science Education, 29(1), 23-48.
https://doi.org/10.1080/08993408.2018.1547564

Chen, C., Kang, J. M., Sonnert, G., & Sadler, P. M. (2021). High School Calculus and Computer Science
Course Taking as Predictors of Success in Introductory College Computer Science. ACM Transactions
on Computing Education, 21(1), 1-21. https://doi.org/10.1145/3433169

Chetty, J., & Barlow-Jones, G. (2014). Novice students and computer programming: Toward constructivist
pedagogy. Mediterranean Journal of Social Sciences, 5(14), 240-251.
https://doi.org/10.5901/MJSS.2014.VV5N14P240

Copeland, B. J. (2017). The Modern History of Computing. In E. N. Zalta (Ed.), The {Stanford}
Encyclopedia of Philosophy ({W}inter 2). Metaphysics Research Lab, Stanford University.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th

ed.). Sage Publications, Inc.

Creswell, J. W., & Crewell, J. D. (2018). Research design: quantitative, qualitative and mixed methods
approaches (5th ed.). SAGE Publications, Inc.

Curzon, P., Bell, T., Waite, J., Dorling, M., Denning, P. J., & Tedre, M. (2019). Computational Thinking. In
Sally Fincher & A. Robins (Eds.), The Cambridge handbook of computing education research (pp.
513-546). Cambridge University Press.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,
60(6), 33-39.

Denning, P. J., & Martell, C. H. (2015). Great principles of computing. MIT Press.
Denning, P. J., & Tedre, M. (2019). Computational thinking. Mit Press.

DeVito, M. (2016). Factors influencing student engagement [Sacred Heart University, Fairfield].
http://digitalcommons.sacredheart.edu/cgi/viewcontent.cgi?article=1010&context=ed|l

Eccles, J., & Wang, M.-T. (2012). Part | Commentary: So What Is Student Engagement Anyway? In S.
Christenson, A. Reschly, & C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 133—
145). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_6

Ellison, N. (2021). Seymour Papert. In Encyclopedia Britannica.

https://www.britannica.com/biography/Seymour-Papert

Erol, O., & Kurt, A. A. (2017). The effects of teaching programming with scratch on pre-service information
technology teachers’ motivation and achievement. Computers in Human Behavior, 77, 11-18.
https://doi.org/10.1016/j.chb.2017.08.017



167
Erwig, M. (2017). Once upon an algorithm: how stories explain computing. MIT Press.
Esaak, S. (2019). What are the visual arts? https://www.thoughtco.com/what-are-the-visual-arts-182706

Falkner, K., & Sheard, J. (2019). Pedagogic Approaches. In S. A. Fincher & A. V. Robins (Eds.), The
Cambridge Handbook of Computing Education Research (pp. 445-480). Cambridge University Press.
https://doi.org/10.1017/9781108654555.016

Fee, S. B., Holland-Minkley, A. M., & Lombardi, T. E. (2017). New directions for computing education:
Embedding computing across disciplines. In New Directions for Computing Education: Embedding
Computing Across Disciplines. Springer Publishing. https://doi.org/10.1007/978-3-319-54226-3

Ferrer, J., Ringer, A., Saville, K., A Parris, M., & Kashi, K. (2020). Students’ motivation and engagement in
higher education: the importance of attitude to online learning. Higher Education.
https://doi.org/10.1007/s10734-020-00657-5

Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics. SAGE Publications.
https://books.google.com.ng/books?id=JIrutAEACAAJ

Fields, D. A., Kafai, Y. B., & Giang, M. T. (2017). Youth computational participation in the wild:
Understanding experience and equity in participating and programming in the online Scratch
community. ACM Transactions on Computing Education, 17(3), 1-22. https://doi.org/10.1145/3123815

Fincher, Sally, & Petre, M. (Eds.). (2005). Computer Science Education Education. Taylor and Francis.

Fincher, Tenenberg, J., Dorn, B., Hundhausen, C., McCartney, R., & Murphy, L. (2019). Computing
Education Research Today. In S. Fincher & A. Robins (Eds.), The Cambridge Handbook of Computing
Education Research (pp. 40-55). Cambridge University Press.
https://doi.org/10.1017/9781108654555.003

Finn, J. D., & Zimmer, K. S. (2012). Student engagement: What is it? Why does it matter? In S. Christenson,
A. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 97-131). Springer.

Fraenkel, J. R., Hyun, H. H., & Wallen, N. E. (2018). How to Design and Evaluate Research in Education.
McGraw-Hill Education. https://books.google.com.ng/books?id=IKjlIuUAEACAAJ

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state
of the evidence. Review of Educational Research, 74(1), 59-1009.

Frey, B. B. (2018). The SAGE encyclopedia of educational research, measurement, and evaluation. Sage

Publications.

Geschwind, L., Brostrom, A., & Larsen, K. (Eds.). (2020). Technical Universities (Vol. 56). Springer
International Publishing. https://doi.org/10.1007/978-3-030-50555-4

Gestwicki, P., & Ahmad, K. (2010). A pilot study on the impact of creative achievement on academic



168
achievement in media-oriented CS1. The Journal of Computing Sciences in Colleges, 85.

Gjelsten, B. K., Bergersen, G. R., Sjgberg, D. I. K., & Cutts, Q. (2021). No Gender Difference in CS1 Grade
for Students with Programming from High School: An Exploratory Study. 21st Koli Calling
International Conference on Computing Education Research, 1-5.
https://doi.org/10.1145/3488042.3488071

Glasersfeld, E. von. (1996). Radical constructivism: a way of knowing and learning. 210.
http://books.google.com/books?id=XgXgRaG50x0C&pgis=1

Glasersfeld, E. von. (2007). Key Works in Radical Constructivism. In M. Larochelle (Ed.), Key Works in
Radical Constructivism. Sense Publishers. https://doi.org/10.1163/9789087903480

Goldie, T. (2014). The Man Who Invented Gender: Engaging the Ideas of John Money by Terry Goldie. In

University of Toronto Quarterly (Vol. 85, Issue 3). University of British Columbia Press.

Gunbata, S. M., & Karalar, H. (2018). Gender Differences in Middle School Students’ Attitudes and Self-
Efficacy Perceptions towards mBlock Programming. European Journal of Educational Research, 7(4),
925-933. https://doi.org/10.12973/eu-jer.7.4.925

Guo, A. (2020). Analysis of Factors and Interventions Relating to Student Performance in CS1 and CS2.
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-22.html

Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing for
Everyone. Synthesis Lectures on Human-Centered Informatics, 8(6), 1-165.
https://doi.org/10.2200/s00684ed1v01y201511hci033

Guzdial, M. (2013). Exploring hypotheses about media comptation. ICER 2013 - Proceedings of the 2013
ACM Conference on International Computing Education Research, 19-26.
https://doi.org/10.1145/2493394.2493397

Guzdial, M., & du Boulay, B. (2019). The History of Computing Education Research. In The Cambridge

handbook of computing education research (pp. 11-39). Cambridge University Press.

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo Generation to Program. Communications of the
ACM, 45(4), 17-21. https://doi.org/10.1145/505248.505261

Hagan, D., & Markham, S. (2000). Does it help to have some programming experience before beginning a
computing degree program? Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSEconference on
Innovation and Technology in Computer Science Education - ITiCSE '00, 25-28.
https://doi.org/10.1145/343048.343063

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in education:
A literature review. Computer Science Education, 21(2), 135-173.
https://doi.org/10.1080/08993408.2011.579808



169

Haseski, H. 1., llic, U., & Tugtekin, U. (2018). Defining a New 21st Century Skill-Computational Thinking:
Concepts and Trends. International Education Studies, 11(4), 29-42.

Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4-7.

Hermans, F., & Aivaloglou, E. (2017). Teaching Software Engineering Principles to K-12 Students: A
MOOC on Scratch. 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET), 13-22.
https://doi.org/10.1109/ICSE-SEET.2017.13

Hijon-Neira, R., Connolly, C., Palacios-Alonso, D., & Borras-Gené, O. (2021). A Guided Scratch Visual
Execution Environment to Introduce Programming Concepts to CS1 Students. Information, 12(9), 378.
https://doi.org/10.3390/info12090378

Holden, E., & Weeden, E. (2004). The experience factor in early programming education. SIGITE 2004
Conference, 211-218. https://doi.org/10.1145/1029533.1029585

Hsu, H. J. (2014). Gender Differences in Scratch Game Design . Icibet, 100-103.

Hu, Y., Chen, C.-H., & Su, C.-Y. (2021). Exploring the Effectiveness and Moderators of Block-Based Visual
Programming on Student Learning: A Meta-Analysis. Journal of Educational Computing Research,
58(8), 1467-1493. https://doi.org/10.1177/0735633120945935

Tacus, S. M., King, G., & Porro, G. (2009). cem : Software for Coarsened Exact Matching . Journal of
Statistical Software, 30(9). https://doi.org/10.18637/jss.v030.i09

lacus, S. M., King, G., & Porro, G. (2012). Causal Inference without Balance Checking: Coarsened Exact
Matching. Political Analysis, 20(1), 1-24. https://doi.org/10.1093/pan/mpr013

International Labour Office, & International Labour Organisation. (2017). World Employment and Social
Outlook: Trends 2017. In International Labour Organization.
https://www.ilo.org/wemsp5/groups/public/---dgreports/---dcomm/---

publ/documents/publication/wems_734455.pdf

Jazwinski, S. M., & Kim, S. (2019). Examination of the Dimensions of Biological Age. Frontiers in
Genetics, 10. https://doi.org/10.3389/fgene.2019.00263

Kafai, Y. B., & Fields, D. A. (2018). Some Reflections on Designing Constructionist Activities for

Classrooms.

Kafai, Y. B., Fields, D. A., Lui, D. A., Walker, J. T., Shaw, M. S., Jayathirtha, G., Nakajima, T. M., Goode,
J., & Giang, M. T. (2019). Stitching the Loop with Electronic Textiles. Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, 1176-1182.
https://doi.org/10.1145/3287324.3287426

Kalelioglu, F., & Giilbahar, Y. (2014). The effects of teaching programming via Scratch on problem solving



170
skills: A discussion from learners’ perspective. Informatics in Education, 13(1), 33-50.

Kim, H. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness
and kurtosis. Restorative Dentistry & Endodontics, 38(1), 52. https://doi.org/10.5395/rde.2013.38.1.52

Kim, Hyeonjin, Choi, H., Han, J., & So, H. J. (2012). Enhancing teachers’ ICT capacity for the 21st century
learning environment: Three cases of teacher education in korea. Australasian Journal of Educational
Technology, 28(6), 965-982. https://doi.org/10.14742/ajet.805

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75-86. https://doi.org/10.1207/s15326985ep4102_1

Klem, A. M., & Connell, J. P. (2004). Relationships matter: Linking teacher support to student engagement
and achievement. Journal of School Health, 74(7), 262-273.

Knuth, D. E. (2007). Computer Programming as an Art. In ACM Turing Award Lectures (p. 1974).
Association for Computing Machinery. https://doi.org/10.1145/1283920.1283929

Kock, N., Mogbel, M., Jung, Y., & Syn, T. (2018). Do older programmers perform as well as young ones?
Exploring the intermediate effects of stress and programming experience. Cognition, Technology &
Work, 20(3), 489-504. https://doi.org/10.1007/s10111-018-0479-x

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ interest, collaboration
attitude, and programming empowerment in computational thinking education. Computers &
Education, 127, 178-189. https://doi.org/10.1016/j.compedu.2018.08.026

Kothiyal, A., Majumdar, R., Murthy, S., & lyer, S. (2013). Effect of think-pair-share in a large CS1 class.
Proceedings of the Ninth Annual International ACM Conference on International Computing
Education Research, 137-144. https://doi.org/10.1145/2493394.2493408

Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the Effects of Student
Engagement on First-Year College Grades and Persistence. The Journal of Higher Education, 79(5),
540-563. https://doi.org/10.1080/00221546.2008.11772116

Kuhn, T. S. (2012). The Structure of Scientific Revolutions: 50th Anniversary Edition.
https://books.google.pt/books/about/The_Structure_of Scientific_Revolutions.html?id=3eP5Y_OOuzw
C&source=kp_cover&redir_esc=y%5Cnhttps://books.google.pt/books?id=3eP5Y_OOuzwC&printsec=

frontcover&source=ghs_ge_summary_r&cad=0#v=onepage&q&f=false

Kulasegaram, K., Axelrod, D., Ringsted, C., & Brydges, R. (2018). Do One Then See One. Academic
Medicine, 93(11S), S37-S44. https://doi.org/10.1097/ACM.0000000000002378

Lam, S. F., Wong, B. P. H., Yang, H., & Liu, Y. (2012). Understanding student engagement with a
contextual model. In S. Christenson, A. Reschly, & C. Wylie (Eds.), Handbook of Research on Student



171
Engagement (pp. 403-419). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_19

Lambi¢, D., Pori¢, B., & Ivakié, S. (2020). Investigating the effect of the use of code.org on younger
elementary school students’ attitudes towards programming. Behaviour & Information Technology, 1-
12. https://doi.org/10.1080/0144929X.2020.1781931

Lehman, K. J., Sax, L. J., & Zimmerman, H. B. (2016). Women planning to major in computer science: Who
are they and what makes them unique? Computer Science Education, 26(4), 277-298.
https://doi.org/10.1080/08993408.2016.1271536

Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between student engagement and academic achievement:
A meta-analysis. Social Behavior and Personality: An International Journal, 46(3), 517-528.
https://doi.org/10.2224/sbp.7054

Liao, S. N., Shah, K., Griswold, W. G., & Porter, L. (2021). A Quantitative Analysis of Study Habits Among
Lower- and Higher-Performing Students in CS1. Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1, 366-372.
https://doi.org/10.1145/3430665.3456350

Liénardy, S., Leduc, L., & Donnet, B. (2021). Promoting Engagement in a CS1 Course with Assessment for
Learning. Student Success, 12(1), 102-111. https://doi.org/10.5204/ssj.1668

Lindqvist, A., Sendén, M. G., & Renstrom, E. A. (2021). What is gender, anyway: a review of the options
for operationalising gender. Psychology & Sexuality, 12(4), 332-344.
https://doi.org/10.1080/19419899.2020.1729844

Lishinski, A., & Rosenberg, J. (2021). All the Pieces Matter: The Relationship of Momentary Self-efficacy
and Affective Experiences with CS1 Achievement and Interest in Computing. Proceedings of the 17th
ACM Conference on International Computing Education Research, 252—-265.
https://doi.org/10.1145/3446871.3469740

Lishinski, A., Yadav, A., Good, J., & Enbody, R. (2016). Learning to program: Gender differences and
interactive effects of students’ motivation, goals, and self-efficacy on performance. ICER 2016 -
Proceedings of the 2016 ACM Conference on International Computing Education Research, 211-220.
https://doi.org/10.1145/2960310.2960329

Llanas, I. S. (2018). Brevisimo andlisis doxogréfico sobre el Constructivismo: de los presocraticos a la
cibernética de segundo orden. Bajo Palabra, 2018, 61-76. https://doi.org/10.15366/bp2018.18.003

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. SIGCSE 2007: 38th SIGCSE
Technical Symposium on Computer Science Education, 223-227.
https://doi.org/10.1145/1227310.1227388

Malik, S. I., & Coldwell-Neilson, J. (2018). Gender differences in an introductory programming course: New

teaching approach, students’ learning outcomes, and perceptions. Education and Information



172
Technologies, 23(6), 2453-2475. https://doi.org/10.1007/s10639-018-9725-3

Maloney, J., Peppier, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). Programming by choice: Urban
youth learning programming with scratch. SIGCSE 08 - Proceedings of the 39th ACM Technical
Symposium on Computer Science Education, 367-371. https://doi.org/10.1145/1352135.1352260

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education, 10(4), 1-15.
https://doi.org/10.1145/1868358.1868363

Marcher, M. H., Christensen, I. M., Grabarczyk, P., Graversen, T., & Brabrand, C. (2021). Computing
Educational Activities Involving People Rather Than Things Appeal More to Women (CS1 Appeal
Perspective). Proceedings of the 17th ACM Conference on International Computing Education
Research, 145-156. https://doi.org/10.1145/3446871.3469761

Margulieux, L., Denny, P., Cunningham, K., Deutsch, M., & Shapiro, B. R. (2021). When Wrong is Right:
The Instructional Power of Multiple Conceptions. Proceedings of the 17th ACM Conference on
International Computing Education Research, 184-197. https://doi.org/10.1145/3446871.3469750

Marling, C., & Juedes, D. (2016). CSO for Computer Science Majors at Ohio University. Proceedings of the
47th ACM Technical Symposium on Computing Science Education, 138-143.
https://doi.org/10.1145/2839509.2844624

Mayers, A. (2013). Introduction to Statistics and SPSS in Psychology. Pearson.
https://books.google.com.ng/books?id=SDHtMgEACAAJ

McCormick, A. C., & Kinzie, J. (2014). Refocusing the quality discourse: The United States National Survey
of Student Engagement. In H. Coates & A. C. McCormick (Eds.), Engaging University Students:
International Insights from System-Wide Studies (pp. 13-29). Springer Singapore.
https://doi.org/10.1007/978-981-4585-63-7_2

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G., & Mander, K. (2005). Grand challenges in
computing: Education—a summary. The Computer Journal, 48(1), 42-48.

McKlin, T., Lee, T., Wanzer, D., Magerko, B., Edwards, D., Grossman, S., Bryans, E., & Freeman, J.
(2019). Exploring the Correlation Between Teacher Pedagogical Content Knowledge and Content
Knowledge in Computer Science Classrooms. Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, 315-315. https://doi.org/10.1145/3304221.3325556

Medeiros, R. P., Ramalho, G. L., & Falcéo, T. P. (2019). A Systematic Literature Review on Teaching and
Learning Introductory Programming in Higher Education. IEEE Transactions on Education, 62(2), 77—
90. https://doi.org/10.1109/TE.2018.2864133

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (Moti). (2013). Learning computer science concepts with
Scratch. Computer Science Education, 23(3), 239-264. https://doi.org/10.1080/08993408.2013.832022



173

Mehmet Tekerek, & Tugba Altan. (2014). The effect of Scratch environment on student’s achievement in

teaching algorithm. World Journal on Educational Technology, 6(2), 132-138. www.awer-center/wjet

Merino, M. V., Vinju, J., & Brand, M. van den. (2021). DRAFT-What you always wanted to know but could
not find about block-based environments. ArXiv Preprint ArXiv:2110.03073.

Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal
Psychology, 110(1), 40-48. https://doi.org/10.1037/0021-843X.110.1.40

Mindetbay, Y., Bokhove, C., & Woollard, J. (2019). What is the Relationship between Students’
Computational Thinking Performance and School Achievement? International Journal of Computer
Science Education in Schools, 3—19. https://doi.org/10.21585/ijcses.v0i0.45

Mishra, S., lyer, S., Balan, S., & Murthy, S. (2014). Effect of a 2-week Scratch Intervention in CS1 on
Learners with Varying Prior Knowledge. https://doi.org/10.1145/2591708.2591733

Mladenovi¢, M., Rosi¢, M., & Mladenovic, S. (2016). Comparing Elementary Students’ Programming
Success based on Programming Environment. International Journal of Modern Education and
Computer Science, 8(8), 1-10. https://doi.org/10.5815/ijmecs.2016.08.01

Mohamed, A. (2021). Teaching highly mixed-ability CS1 classes: A proposed approach. Education and
Information Technologies. https://doi.org/10.1007/s10639-021-10546-8

Morgan, M., Sinclair, J. E., Butler, M., Thota, N., Fraser, J., Cross, G. W., & Jackova, J. (2017).
Understanding International Benchmarks on Student Engagement: Awareness and Research Alignment
from a Computer Science Perspective. In J. Sheard & A. Korhonen (Eds.), Proceedings of the 2017
ITiCSE Working Group Reports, ITICSE-WGR 2017, Bologna, Italy, July 3-5, 2017 (pp. 1-24). ACM.
https://doi.org/10.1145/3174781.3174782

Morrison, P., & Murphy-Hill, E. (2013). Is programming knowledge related to age?: An exploration of stack
overflow. IEEE International Working Conference on Mining Software Repositories, 69-72.
https://doi.org/10.1109/MSR.2013.6624008

Mouton, J. (2013). How to Succeed in Your Master’s and Doctoral Studies: A South African Guide and
Resource Book.
https://books.google.co.za/books/about/How_to_Succeed_in_Your_Master_s and_Doct.html?id=uX4l
AQAAIAAJ&pgis=1

National Academies of Sciences, Engineering, and M. (2018). Assessing and Responding to the Growth of
Computer Science Undergraduate Enrollments. The National Academies Press.
https://doi.org/10.17226/24926

Nwachukwu, M. (1994). Development of information technology in Nigeria. In E. P. Drew & F. G. Foster
(Eds.), Information Technology in Selected Countries: Reports from Ireland, Ethiopia, Nigeria, and

Tanzania. United Nations University Press.



174
http://archive.unu.edu/unupress/unupbooks/uul9ie/uul9ie00.htm#Contents

OECD Glossary of Statistical Terms. (2008). OECD Glossary of Statistical Terms.
https://doi.org/10.1787/9789264055087-en

Orbey, E. (2020, July). How Harvard’s Star Computer-Science Professor Built a Distance-Learning Empire.

The New Yorker. https://www.newyorker.com

Organisation, W. H. (2018). Gender and health. Handbook of Health Psychology.
https://doi.org/10.4324/9781315167534-22

Ozmen, B., & Altun, A. (2014). Undergraduate Students’ Experiences in Programming: Difficulties and
Obstacles. Turkish Online Journal of Qualitative Inquiry, 5(3). https://doi.org/10.17569/t0jqi.20328

Pallant, J. (2016). SPSS Survival Manual: A Step By Step Guide to Data Analysis Using SPSS Program (6th
ed.). McGraw-Hill Education.

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a course for teaching introductory programming with
Scratch to pre-service kindergarten teachers. International Journal of Technology Enhanced Learning,
11(3), 231-246. https://doi.org/10.1504/1JTEL.2019.100478

Pappas, I. O., Aalberg, T., Giannakos, M. N., Jaccheri, L., Mikalef, P., & Sindre, G. (2016). Gender

Differences in Computer Science Education: Lessons Learnt from an Empirical Study at NTNU. Nik.

Parham-Mocello, J., & Erwig, M. (2020). Does story programming prepare for coding? Annual Conference
on Innovation and Technology in Computer Science Education, ITiCSE, 100-106.
https://doi.org/10.1145/3328778.3366861

Parker, M. C., Solomon, A., Pritchett, B., lllingworth, D. A., Marguilieux, L. E., & Guzdial, M. (2018).
Socioeconomic Status and Computer Science Achievement. Proceedings of the 2018 ACM Conference
on International Computing Education Research, 97-105. https://doi.org/10.1145/3230977.3230987

Parsons, J., & Taylor, L. (2011). Improving student engagement. Current Issues in Education, 14(1).

Pérez-Marin, D., Hijén-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be improved
by using a methodology based on metaphors and scratch to teach computer programming to children?
Computers in Human Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027

Phuntsho, U., & Dendup, R. (2021). The relationship between school climate, student engagement and
academic achievement in higher secondary school. Bhutan Journal of Research and Development, 9(2).
https://bjrd.rub.edu.bt/index.php/bjrd/article/view/81

Piaget, J. (2008). Intellectual Evolution from Adolescence to Adulthood. Human Development, 51(1), 40-47.
https://doi.org/10.1159/000112531

Piggot, V., & Frawley, D. (2019). An Analysis of Completion in Irish Higher Education : 2007 / 08 Entrants



175
An Analysis of Completion in Irish Higher (Issue February). Higher Education Authority.

Pino-James, N. (2018). Evaluation of a pedagogical model for student engagement in learning activities.
Educational Action Research, 26(3), 456-479. https://doi.org/10.1080/09650792.2017.1354771

Pino-James, N., Shernoff, D. J., Bressler, D. M., Larson, S. C., & Sinha, S. (2019). Instructional
interventions that support student engagement: An international perspective. In A. L. R.and S. L. C.
Jennifer A. Fredricks (Ed.), Handbook of Student Engagement Interventions: Working with Disengaged
Students (pp. 103-119). Elsevier. https://doi.org/10.1016/B978-0-12-813413-9.00008-5

Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., Zingaro, D., & Simon, B. (2016). A
multi-institutional study of peer instruction in introductory computing. ACM Inroads, 7(2), 76-81.
https://doi.org/10.1145/2938142

Powell, K. C., & Kalina, C. J. (2009). Cognitive and social constructivism: developing tools for an effective
classroom. Education, 130(2), 241-250.
http://content.ebscohost.com.ezp.waldenulibrary.org/ContentServer.asp? T=P&P=AN&K=47349084&S
=R&D=ehh&EbscoContent=dGJyMNXb4kSeqa84zdnyOLCmr0qgep7VSrgm4S66WxWXS&ContentC
ustomer=dGJyMPGss0g1gK5IluePfgeyx44Dt6fl A%5Cnhttp://ezp.waldenulibrary.org/login?url=http://

Prayitno, B. A., Corebima, D., Susilo, H., Zubaidah, S., & Ramli, M. (2017). Closing the science process
skills gap between students with high and low level academic achievement. Journal of Baltic Science
Education, 16(2), 266-277. https://doi.org/10.33225/jbse/17.16.266

Qian, Y., & Lehman, J. (2017). Students’ Misconceptions and Other Difficulties in Introductory
Programming. ACM Transactions on Computing Education, 18(1), 1-24.
https://doi.org/10.1145/3077618

Quille, K., & Bergin, S. (2019). CS1: how will they do? How can we help? A decade of research and
practice. Computer Science Education, 29(2-3), 254-282.
https://doi.org/10.1080/08993408.2019.1612679

Quille, K., Culligan, N., & Bergin, S. (2017). Insights on Gender Differences in CS1. Proceedings of the
2017 ACM Conference on Innovation and Technology in Computer Science Education, 263-268.
https://doi.org/10.1145/3059009.3059048

Rahman, F. (2020). Understanding Barriers and Motivations of Non-Traditional Students Learning
Programming in an Online CS1 Course. Proceedings of the 21st Annual Conference on Information
Technology Education, 38-41. https://doi.org/10.1145/3368308.3415455

Ramos, M. C. M. (2018). Correlation between Entrance Exam Scores (Stanine) and Academic Performance.
Proceedings of the 2018 2nd International Conference on Algorithms, Computing and Systems - ICACS
’18, 110-114. https://doi.org/10.1145/3242840.3242866

Randell, B. (2018). Fifty years of software engineering-or-the view from garmisch. ArXiv Preprint



176
ArXiv:1805.02742.

Raskin, J. D. (2002). Constructivism in psychology: Personal construct psychology, radical constructivism,

and social constructionism. American Communication Journal, 5(3).

Reeve, J. (2012). A Self-determination Theory Perspective on Student Engagement. In S. Christenson, A.
Reschly, & C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 149-172). Springer
US. https://doi.org/10.1007/978-1-4614-2018-7_7

Reschly, A. L., & Christenson, S. L. (2012). Jingle, Jangle, and Conceptual Haziness: Evolution and Future
Directions of the Engagement Construct. In S. Christenson, A. Reschly, & C. Wylie (Eds.), Handbook
of Research on Student Engagement (pp. 3-19). Springer US. https://doi.org/10.1007/978-1-4614-
2018-7_1

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & others. (2009). Scratch: programming for all.
Communications of the ACM, 52(11), 60-67.

Ribeiro, L., Rosario, P., NUfiez, J. C., Gaeta, M., & Fuentes, S. (2019). First-Year Students Background and
Academic Achievement: The Mediating Role of Student Engagement. Frontiers in Psychology, 10.
https://doi.org/10.3389/fpsyg.2019.02669

Rich, P. J., Browning, S. F., Perkins, M. K., Shoop, T., Yoshikawa, E., & Belikov, O. M. (2019). Coding in
K-8: International Trends in Teaching Elementary/Primary Computing. TechTrends, 63(3), 311-329.
https://doi.org/10.1007/S11528-018-0295-4

Rizvi, M., & Humphries, T. (2012). A Scratch-based CSO course for at-risk computer science majors.
Proceedings - Frontiers in Education Conference, FIE, 1-5. https://doi.org/10.1109/FIE.2012.6462491

Rob, M., & Rob, F. (2018). Dilemma between Constructivism and Constructionism: Leading to the
Development of a Teaching-Learning Framework for Student Engagement & Learning. Journal of
International Education in Business, 11, 0. https://doi.org/10.1108/JIEB-01-2018-0002

Robins, A. V. (2019). Novice Programmers and Introductory Programming. The Cambridge Handbook of
Computing Education Research, 327-376. https://doi.org/10.1017/9781108654555.013

Rodriguez, S., Nufiez, J. C., Valle, A., Freire, C., Ferradas, M. del M., & Rodriguez-Llorente, C. (2019).
Relationship Between Students’ Prior Academic Achievement and Homework Behavioral Engagement:
The Mediating/Moderating Role of Learning Motivation. Frontiers in Psychology, 10.
https://doi.org/10.3389/fpsyg.2019.01047

Rountree, N., Rountree, J., & Robins, A. (2002). Predictors of success and failure in a CS1 course. ACM
SIGCSE Bulletin, 34(4), 121-124. https://doi.org/10.1145/820127.820182

Rubio, M. A., Romero-Zaliz, R., Mafioso, C., & de Madrid, A. P. (2015). Closing the gender gap in an



177

introductory programming course. Computers & Education, 82, 409—420.
https://doi.org/10.1016/J.COMPEDU.2014.12.003

Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal,
24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092

Rushton, A., Gray, L., Canty, J., & Blanchard, K. (2019). Beyond Binary: (Re)Defining “Gender” for 21st
Century Disaster Risk Reduction Research, Policy, and Practice. International Journal of
Environmental Research and Public Health, 16(20), 3984. https://doi.org/10.3390/ijerph16203984

Russo, M. R., & Bryan, V. C. (2012). Technology, the 21 st century workforce, and the construct of social
justice. In V. Wang (Ed.), Handbook of Research on Technologies for Improving the 21st Century
Workforce: Tools for Lifelong Learning (Vol. 1, pp. 56-75). IGI Global. https://doi.org/10.4018/978-1-
4666-2181-7.ch005

Ryoo, J. J. (2019). Pedagogy that Supports Computer Science for All. ACM Transactions on Computing
Education, 19(4), 1-23. https://doi.org/10.1145/3322210

Sabitzer, B., & Pasterk, S. (2014). Brain-based programming continued: Effective teaching in programming
courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, 1-6.
https://doi.org/10.1109/FIE.2014.7044233

Said-Metwaly, S., Noortgate, W. Van den, & Kyndt, E. (2017). Approaches to Measuring Creativity: A
Systematic Literature Review. Creativity. Theories — Research - Applications, 4(2), 238-275.
https://doi.org/10.1515/ctra-2017-0013

Saint-Mont, U. (2015). Randomization Does Not Help Much, Comparability Does. PLOS ONE, 10(7),
€0132102. https://doi.org/10.1371/journal.pone.0132102

Salkind, N. (2010). Encyclopedia of Research Design. In Encyclopedia of Research Design.
https://doi.org/10.4135/9781412961288

Sands, P. (2019). Addressing cognitive load in the computer science classroom. ACM Inroads, 10(1), 44-51.
https://doi.org/10.1145/3210577

Sawyer, S. M., Azzopardi, P. S., Wickremarathne, D., & Patton, G. C. (2018). The age of adolescence. The
Lancet Child and Adolescent Health, 2(3), 223-228. https://doi.org/10.1016/52352-4642(18)30022-1

Scherer, R., Siddiq, F., & Sanchez Viveros, B. (2020). A meta-analysis of teaching and learning computer
programming: Effective instructional approaches and conditions. Computers in Human Behavior, 109,
106349. https://doi.org/10.1016/j.chb.2020.106349

Schnitzler, K., Holzberger, D., & Seidel, T. (2021). All better than being disengaged: Student engagement
patterns and their relations to academic self-concept and achievement. European Journal of Psychology
of Education, 36(3), 627-652. https://doi.org/10.1007/s10212-020-00500-6



178

Schdber, C., Schiitte, K., Kéller, O., McElvany, N., & Gebauer, M. M. (2018). Reciprocal effects between
self-efficacy and achievement in mathematics and reading. Learning and Individual Differences, 63, 1—-
11. https://doi.org/10.1016/j.lindif.2018.01.008

Schoeman, M. A. (2015). Enhancing Comprehension in Open Distance Learning Computer Programming
Education With Visualization (Issue October) [University of South Africa].
https://uir.unisa.ac.za/bitstream/handle/10500/20715/thesis_schoeman_ma.pdf?sequence=1&isAllowed
=y

Scott, M. J., & Ghinea, G. (2014). Measuring enrichment: the assembly and validation of an instrument to

assess student self-beliefs in CS1. Proceedings of the Tenth Annual Conference on International

Computing Education Research, 123-130.
Scratch - Imagine, Program, Share. (2022). https://scratch.mit.edu/statistics/
Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

Sharmin, S. (2021). Creativity in CS1: A Literature Review. ACM Transactions on Computing Education,
22(2), 1-26. https://doi.org/10.1145/3459995

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142—158.

Silva-Maceda, G., David Arjona-Villicana, P., & Edgar Castillo-Barrera, F. (2016). More Time or Better
Tools? A Large-Scale Retrospective Comparison of Pedagogical Approaches to Teach Programming.
IEEE Transactions on Education, 59(4), 274-281. https://doi.org/10.1109/TE.2016.2535207

Silvast, A. (2015). An Oral History of Programming Practices: Gender and Age Dynamics and. Human
Technology: An Interdisciplinary Journal on Humans in ICT Environments, 11(1), 4-29.
https://doi.org/10.17011/ht/urn.201505061738

Simonton, D. K. (2017). Domain-general Creativity: On generating original, useful, and surprising
combinations. The Cambridge Handbook of Creativity across Domains, 41-60.
https://doi.org/10.1017/9781316274385.004

Simonton, D. K. (2018). Defining Creativity: Don’t We Also Need to Define What Is Not Creative? Journal
of Creative Behavior, 52(1), 80-90. https://doi.org/10.1002/joch.137

Skinner, E. A., & Pitzer, J. R. (2012). Developmental Dynamics of Student Engagement, Coping, and
Everyday Resilience. In S. Christenson, A. Reschly, & C. Wylie (Eds.), Handbook of Research on
Student Engagement (pp. 21-44). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_2

Statistics South Africa. (2019). Education Series Volume V: Higher Education and Skills in South Africa,
2017. In Stats SA Library Cataloguing-in-Publication (CIP) Data: Vol. V. Statistics South Africa.

Stott, A. E. (2018). Are instructivist pedagogies more appropriate for learning the sciences in South African



179

low-quintile schools than western literature suggests? Journal of Education, 71.
https://doi.org/10.17159/2520-9868/i71a03

Szabo, C., Sheard, J., Luxton-Reilly, A., Simon, Becker, B. A., & Ott, L. (2019). Fifteen years of
introductory programming in schools: A global overview of K-12 initiatives. PervasiveHealth:
Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3364510.3364513

Szentgyorgyi, Z. (1999). A short history of computing in Hungary. IEEE Annals of the History of
Computing, 21(3), 49-57.

Task Group on Information Technology Curriculum. (2017). Information Technology Curricula 2017:
Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology. In Information
Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in
Information Technology. Association for Computing Machinery. https://doi.org/10.1145/3173161

Taylor, P. C. (2015). Constructivism. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 218-
224). Springer Netherlands. https://doi.org/10.1007/978-94-007-2150-0_102

Tedre, M., Simon, & Malmi, L. (2018). Changing aims of computing education: a historical survey.
Computer Science Education, 28(2), 158-186.

Tijani, F., Callaghan, R., & de Villers, R. (2020). An Investigation into Pre-service Teachers’ Experiences
While Transitioning from Scratch Programming to Procedural Programming. African Journal of
Research in Mathematics, Science and Technology Education.
https://doi.org/10.1080/18117295.2020.1820798

Tikhonenko, & Pereira, C. (2019). Informatics Education in Europe: Institutions, degrees, students,
positions, salaries. Key Data 2013-2018 (S. Tikhonenko & C. Pereira (Eds.)). Informatics Europe.
t.ly/VBvJ

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through
problem-based game projects with Scratch. Computers & Education, 120, 64-74.
https://doi.org/10.1016/j.compedu.2018.01.011

Trowler, V. (2010). Student engagement literature review. Higher Education, 11(November), 1-15.
http://americandemocracy.illinoisstate.edu/documents/democratic-engagement-white-paper-
2_13 09.pdf

UNESCO Institute for Statistics. (2015). International Standard Classification of Education. Fields of
Education and Training 2013 (ISCED-F 2013) Detailed Field Descriptions, 1-96.
https://doi.org/https://doi.org/10.15220/978-92-9189-179-5-en

Vahrenhold, J., Caspersen, M., Berry, G., Gal-Ezer, J., Kélling, M., McGettrick, A., Nardelli, E., Pereira, C.,
& Westermeier, M. (2017). Informatics Education in Europe: Are We All In The Same Boat?



180

Van den Broeck, L., De Laet, T., Lacante, M., Pinxten, M., Van Soom, C., & Langie, G. (2019). Predicting
the academic achievement of students bridging to engineering: the role of academic background
variables and diagnostic testing. Journal of Further and Higher Education, 43(7), 989-1007.
https://doi.org/10.1080/0309877X.2018.1431209

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M.-J. (2018). The Impact of Prior Programming
Knowledge on Lecture Attendance and Final Exam. Journal of Educational Computing Research,
56(2), 226-253. https://doi.org/10.1177/0735633117707695

Veerasamy, A. K., D’Souza, D., Lindén, R., & Laakso, M. J. (2019). Relationship between perceived
problem-solving skills and academic performance of novice learners in introductory programming
courses. Journal of Computer Assisted Learning, 35(2), 246-255. https://doi.org/10.1111/jcal.12326

Ventura, P. R. (2005). Identifying predictors of success for an objects-first CS1. Computer Science
Education, 15(3), 223-243. https://doi.org/10.1080/08993400500224419

Vygotsky, L. S. (2004). Imagination and Creativity in Childhood. Journal of Russian & East European
Psychology, 42(1), 7-97. https://doi.org/10.1080/10610405.2004.11059210

Weintrop, D., & Wilensky, U. (2017). Comparing Block-Based and Text-Based Programming in High
School Computer Science Classrooms. ACM Transactions on Computing Education, 18(1), 1-25.
https://doi.org/10.1145/3089799

Wilcox, C., & Lionelle, A. (2018). Quantifying the Benefits of Prior Programming Experience in an
Introductory Computer Science Course. Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 80-85. https://doi.org/10.1145/3159450.3159480

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory computer science course.
ACM SIGCSE Bulletin, 33(1), 184-188. https://doi.org/10.1145/366413.364581

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2010). Computational Thinking: What and Why?

Wing, J. M. (2017). Computational thinking ’s influence on research and education for all. In Italian Journal
of Educational Technology (Vol. 25, Issue 2). Edizioni Menabd-Menabo srl.
https://www.learntechlib.org/p/183466/

World Economic Forum. (2018). The Future of Jobs Report 2018. In Economic Development Quarterly

(Vol. 31, Issue 2). World Economic Forum. http://www.weforum.org/



181

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus text-based programming
environments on novice student learning outcomes: a meta-analysis study. Computer Science
Education, 29(2-3), 177-204. https://doi.org/10.1080/08993408.2019.1565233

Zhang, Y., & Yan, H. (2010). Reform and practice of programming teaching based on applied ability
building. 2010 10th IEEE International Conference on Computer and Information Technology, 2205-
2208.



Appendix A

Research Instruments

CS1 Students Profile Questionnaire (CSPROQ)

A - STUDENTS’ DEMOGRAPHIC QUESTIONNAIRE

The purpose of this questionnaire is to provide information showing the backgrounds of first-year computer science students taking part in the above PhD research study.
The study is aimed at improving the students’ performance in introductory programming course (COM 113). | want to assure you that information you provide shall be

kept confidential. So, please feel free to supply information as honest and accurate as possible. Thank you for your willingness to participate in the study.

By
Oladele Campbell

Institute for Science and Technology Education
University of South Africa (UNISA), Pretoria. South Africa.

INTRODUCTORY PROGRAMMING ACHIEVEMENT TEST (IPAT)

PRETEST



The purpose of these pretest questions is to measure your current knowledge or ideas about programming. This test is not counted as part of your continuous assessments
for the semester. So feel free and be yourself as you answer the questions. You do not need to copy your colleagues’ answers. Your answer(s) provide data in a study aimed
at understanding students’ problems with COM 113 (Introduction to Programming) and exploring an alternative approach to teaching the course so as to improve students’
performance. So please be sincere and serious in providing answers where you can. | want to assure you that the information you provide shall be kept confidential and

used only for research purpose. Thanks for your willingness to participate in this study.

INSTRUCTION:

Kindly complete all items/questions (where you can) by writing your answer or mark (X) if you do not have an idea about an item in the space provided.

Name of Polytechnic:

Identification Number:
Concepts

Here is a list of programming concepts. Please kindly write a short explanation of each one. You are expected to write two or more sentences showing your understanding
of each concept. Please write clearly and neatly so that the researcher can understand your answer. If a concept is not familiar, write an “X” in the space provided indicating

you do not have an idea.

Concept Explanation (2 marks each) For office use

Only

Program CMU1




Algorithm CMU2
Assignment CMU3
Output CMU4
Variable CMU5
Input CMUG6




Looping CMU7
structure

Selection CMU8
structure

Sequence CMU9
structure

Arithmetic CMU10
operators

Question 1




There are three playing cards laid out in a row on a table; each card is labelled with a number. You are given the following sequence of instructions:

1. compare the number on the left-hand card with the number on the center card

2. if the number on the left-hand card is greater than the number on the center card
2.1 exchange the two cards

3. compare the number on the center card with the number on the right-hand card

4. if the number on the center card is greater than the number on the right-hand card

4.1 exchange the two cards

On the table are the following cards:

(a)What will be the numbers on the cards after you carry out the above instructions?

(b) What is the purpose of the above sequence of instructions? (5 marks)
Q1RU2

(5 marks)

Q1MAL



Question 2

Here is a sequence of instructions:

1. Stand at the origin

2. Turn left

3. Carry out step 3.1 10 times:
3.1 Move 5 steps

4. Turn right

5. Carry out step 5.1 10 times:
5.1 Move 5 steps

6. Turn right

7. Carry out step 7.1 10 times:
7.1 Move 5 steps

(a) If you carry out these instructions, you will follow a path that is the form of some letter in English. Q2MA2
What is it? (You can also draw the path here.) (1+.5+1+.5+1+.5+1=5.5) marks for drawing the path. 1 mark for identifying the letter)

(b) Add more instructions at the end of the list of instructions above so that the path obtained will be a square. (3.5 marks) Q2MC1




Question 3

Two groups of kids are competing in a relay race. There are 10 kids in each group but here you are given the names of first three kids in each group. Each one runs to the

other side of the yard and back, and hands over the baton to the next kid. It takes 5 minutes for each kid in the first group to run back and forth, and 7 minutes for each kid

in the second group to run back and forth. The first group consists of Uche followed by Musa followed by Dayo followed by . . . ..

followed by Amina followed by Ada followed by . . . .. See the following diagram:

starting line

(a) Whose turn is it to run after Musa’s?

(b) Amina’s turn comes before whose turn?

finish line

forward

(1 marks)

(Imarks)

back

The second group consists of Shade

Q3UUl

Q3UU2




(c) How much time will pass until it is Dayo’s turn? Explain briefly (1.5 marks) Q3MA3

(d) How much time will pass until all members of the first team finish? Explain briefly (1.5 marks)
Q3MA4

(e) How much time will pass until all members of the second team finish? Explain briefly (1.5 marks)
Q3MA5

(f) How much time will the whole race take? Explain briefly (2 marks)
Q3RA1

(9) What will happen if Musa loses the baton while he is running? (1.5marks)
Q3RA2

* This work, IPAT, is an adaptation of a pretest instrument employed in a study “Learning Computer Science Concepts in Scratch” by Orni Meerbaum-Salant,

Michal Armoni and Moti Ben-Ari, available at http://stwww.weizmann.ac.il/g-cs/Scratch/tests-cs-concepts-in-Scratch.zip used under CC BY..



http://stwww.weizmann.ac.il/g-cs/scratch/tests-cs-concepts-in-scratch.zip

By

Oladele Campbell
Institute for Science and Technology Education
University of South Africa (UNISA), Pretoria. South Africa.

INTRODUCTORY PROGRAMMING ACHIEVEMENT TEST (IPAT)

POSTTEST

The purpose of these posttest questions is to measure your current knowledge or ideas about programming.
This test is not counted as part of your continuous assessments for the semester. So feel free and be yourself
as you answer the questions. You do not need to copy your colleagues’ answers. Your answer(s) provide data
in a study aimed at understanding students’ problems with COM 113 (Introduction to Programming) and
exploring an alternative approach to teaching the course so as to improve students’ performance. So please be
sincere and serious as you provide answers where you can. | want to assure you that the information you
provide shall be kept confidential and used only for research purpose. Thanks for your willingness to

participate in this study.
INSTRUCTION:

Kindly complete all items/questions (where you can) by writing your answer or mark (X) if you do not have

an idea about an item in the space provided.

Name of

Polytechnic:

Identification Number:

Concepts

Here is a list of programming concepts. Please kindly write a short explanation of each one. You are expected
to write two or more sentences showing your understanding of each concept. Please write clearly and neatly
so that the researcher can understand your answer. If a concept is not familiar, write an “X” in the space

provided indicating you do not have an idea.

Concept Explanation (2 marks each)

Program




Algorithm

Assignment

Output

Variable

Input

Looping

structure

Selection

structure




Sequence

structure

Arithmetic

operators

Question 1

Two groups of kids are competing in a relay race. There are 10 kids in each group but here you are given the
names of first three kids in each group. Each one runs to the other side of the yard and back, and hands over
the baton to the next kid. It takes 5 minutes for each kid in the first group to run back and forth, and 7 minutes
for each kid in the second group to run back and forth. The first group consists of Uche followed by Musa
followed by Dayo followed by . .. .. The second group consists of Shade followed by Amina followed by
Ada followed by . . . .. See the following diagram:



starting line

T ‘ ‘ ‘ forward

back
(a) Whose turn is it to run after Musa’s? (1 marks)
Q3uu1
(b) Amina’s turn comes before whose turn? (Imarks)
Q3uu2
(c) How much time will pass until it is Dayo’s turn? (1.5 marks)
Q3MA3
(d) How much time will pass until all members of the first team finish? (15
marks) Q3MA4
(e) How much time will pass until all members of the second team finish?
(1.5 marks) Q3MAS5
(f) How much time will the whole race take? (2 marks)
Q3RA6

(9) What will happen if Musa loses the baton while he is running?
(1.5marks) Q3RA7




Question 2

Here is a sequence of instructions:

1. Stand at the origin

2. Turn left

3. Carry out step 3.1 10 times:
3.1 Move 5 steps

4. Turn right

5. Carry out step 5.1 10 times:
5.1 Move 5 steps

6. Turn right

7. Carry out step 7.1 10 times:
7.1 Move 5 steps

(a) If you carry out these instructions, you will follow a path that is the form of some letter in English.
Q2MA1

What is it? (You can also draw the path here.) (1+.5+1+.5+1+.5+1=5.5) marks for drawing the path. 1
mark for identifying the letter)

(b) Add more instructions at the end of the list of instructions above so that the path obtained will be a square.
(3.5 marks) Q2MC2




Question 3
There are three playing cards laid out in a row on a table; each card is labelled with a number. You are given
the following sequence of instructions:
1. compare the number on the left-hand card with the number on the center card
2. if the number on the left-hand card is greater than the number on the center card
2.1 exchange the two cards
3. compare the number on the center card with the number on the right-hand card
4. if the number on the center card is greater than the number on the right-hand card

4.1 exchange the two cards

On the table are the following cards: 8 2 6

(a)What will be the numbers on the cards after you carry out the above instructions?

(5 marks) Q1MA1
(b) What is the purpose of the above sequence of instructions? (5 marks)
Q1RU2

This work, IPAT, is an adaptation of a pretest instrument employed in a study “Learning Computer
Science Concepts in Scratch” by Orni Meerbaum-Salant, Michal Armoni and Moti Ben-Ari, available
at http://stwww.weizmann.ac.il/g-cs/Scratch/tests-cs-concepts-in-Scratch.zip used under CC BY ..



http://stwww.weizmann.ac.il/g-cs/scratch/tests-cs-concepts-in-scratch.zip

THE IMPACT OF SCRATCH ON THE ACHIEVEMENTS OF FIRST-YEAR COMPUTER
SCIENCE STUDENTS IN SOME NIGERIAN POLYTECHNICS

Introduction to Programming Achievement Test (IPAT) Rubric

INFORMATION FOR TEST MARKERS:

The taxonomy used in this rubric has three categories: unistructural, multistructural and relational cognitive

classes. In addition, each category has three cognitive levels: understanding, applying and creating.

Unistructural cognition means that the student has a local perspective mainly knowing only one item or aspect
of body of concepts. The other points or ideas are missed neither can the student make connections between
related ideas.

Multi-structural cognition means the student knows or makes use of several ideas or concepts in his or her

answer. However, the student fails to make connections between these related ideas.

Relational cognitive category means that the student has knowledge of all the related ideas or concepts and is
able to make the appropriate connection among them.

PART 1: TESTING CONCEPTUAL PROGRAMMING KNOWLEDGE

(MU = Multi-structural Understanding). So CMU stands for Conceptual Multicultural Understanding.

Here 10 programming concepts are given to the students to measure their learning at the level of multi-
structural understanding of these concepts.

For CMUL1 — 10, if the students shows:

- Complete and correct understanding — 2 marks
- Incomplete but correct understanding — 1 marks
- Incorrect answers — 0 mark
SUBTOTAL =20 marks



Concept Explanation (2 marks each) For office use
Only
Program A program is a set of instructions that are executed by a computing device in order to perform a task or solve a problem. | CMU1
Programs are codes or routines or applications written in a particular programming language that can be understood or
translated, and then executed by a computing device.
Algorithm An algorithm is a finite ordered list of steps for solving a computational problem or performing a task. CMU2
Assignment | Assignment is an operation or a statement in a program that assigns the result (or value) of an expression to a variable. CMU3
Output This is the result of a program that may be displayed or written on the monitor as a soft copy or on paper by a printer asa | CMU4
hard copy.
Information resulting from processing input to a computing device.
Variable An identifier in a program that can assume different values. A placeholder whose values can change during the execution of | CMU5

a program.




Input Data entered into a computing device. CMUG6
Looping A set of commands or statements in a program to be repeatedly executed by a computing device. CMuU7
structure

Selection A block of statements in a program that makes a computing device to take alternative execution path depending on specific | CMU8
structure condition.

Sequence A block of statements that are to be executed in a serial manner. That is, the execution of statements are performed one after | CMU9
structure another strictly in the order they are placed in a sequence.

Arithmetic operators are symbols in an expression in a program that indicate arithmetic operations to be performed during
the execution of the program.
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PART 2: TESTING COMPUTATIONAL/PROGRAMMING KNOWLEDGE

Question 1:

- Q1MAL (MA = Multi-structural Applying). What is tested here is almost like code-tracing where the
student is expected to reason following steps in a piece of code in order to arrive at a particular result.

Following the given algorithm, we have the changes in the positions of the cards as shown below:

— 3Since 24 > 2, then we need to swap the positions of the cards

/—)\—\

24 2 15

\ Since 24 > 15, then we need to swap the positions of the cards

2 24 15
2%
2 15 24 272
Now the cards are sorted with no card on the left having a number greater than the number on the card
at the right.
- Q1RU1 - (RU = Relational Understanding)> What it is tested here is code explaining ability of the
student.
Answer:

The purpose of the instructions (or the given algorithm) is to rearrange (or sort) the cards (or numbers)
in ascending order.

5

SUBTOTAL
=10 marks

Question 2:

Q2MA2 (MA = Multi-structural Applying). What is tested here is code-tracing skill where the student is
expected to reason following steps in a piece of code in order to arrive at a particular result.

T

5

y 50 \

v

B
»

Origin

Marks break down:
1 mark — for identifying the origin and starting at the right position.
% mark for turning (tracing the path) in the right direction (i.e. to the left)

1 mark for carrying out the loop and arriving at the right point (50,0) i.e.50 units on the x axis.
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Y mark for turning (tracing the path) in the right direction (i.e. to the right)

1 mark for carrying out the loop and arriving at the right point (50,50) i.e. 50 units and 50 units on the x axis
and y axis respectively

Y mark for turning (tracing the path) in the right direction (i.e. to the right)
1 mark for carrying out the loop and arriving at the right point (0, 50) i.e. 50 units on the y axis.
1 mark for identifying the path as the third letter of the alphabet (Letter C)

Q2MC2 (MC = Multi-structural Creating) What is tested here is similar to code tracing, but actually it is code-
writing skill we want to measure here.

The three instructions to be added to make the path traced look like a square are:

8. Turn right - 1 mark
9. Carryout step 9.1 10 times -1% marks
9.1 Move 5 steps - 1 mark

SUBTOTAL = 10 marks
Question 3:

Q3UU1 (UU = Unistructural Understanding)
Answer: Dayo -1 mark

Q3UU2

Answer: Ada -1 mark

Q3MA3. (Code tracing skill)

Answer: 10 minutes. Since Dayo’s turn comes after those of Uche and Musa, and each of these two forerunners
will run for five minutes.

(1% marks)

Q3MAA4. (Code tracing skill)
Answer: 50 minutes. There are 10 members in this group with each running for 5 minutes. (1% marks)
Q3MAG5 (Code tracing skill)
Answer: 70 minutes. There are 10 members in this group with each running for 7 minutes. (1% marks)

Q3RAL. (The way the race runs is like the way a code works. So we want to test whether the student
understands this way. So it is a code-explaining skill being measured here)

Answer: 70 minutes. The race starts at the same time for the two competing groups (i.e. concurrently). When
the first team has finished the race, the eight member of the second team is just starting to run. So the whole
race ends when the last member of the second team gets back to the starting line.(2 marks)
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Q3RA2 (The way the race runs is like the way a code works. So we want to test whether the student
understands this way. Hence it is a code-explaining skill being measured here)

Answer: The first group will take longer than 50 minutes to complete the race and the second group may win
the race. (1%2 marks)

SUBTOTAL = 10 marks

TOTAL FOR THE TEST =50 marks
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The Impact of Scratch, a Visual Programming Environment, on the Achievement of First-year

Computer Science Students in Programming in some Nigerian Polytechnics

Polytechnic: Date of Observation:
Lecturer

To what extent are the following items present in the class during your observation?

Scratch Class Observation Protocol (SCOP)

Topic: Duration:

Number of Students:

Rating Scale (1= Never, 2 = Sometimes, 3 = Often, 4 = Generally, 5 = Almost always)

Serial
No.

ITEM

Tick where applicable

1

2

3 4

AFFECTIVE IMPACT (Programming attitude)

Students show sign of boredom during class

Students are confused with the programming task.

Students are confused with the programming topic

Students are delighted during the class

Students show sign of surprise during class.

Students show signs of frustration during class.

Students are immersed with topics or tasks in class.

Students are highly motivated wanting to learn programming.

oo Nlo|u|sl w|N|Ee

Students show sign of increasing self-confidence

10.

Students show sign of resentment to programming.

COGNITIVE IMPACT (Programming Knowledge)

1 Students works shows creativity

2 Students are ‘gaming the system’, guessing and arbitrarily
performing programming exercises.

3 Students develop correct algorithms.

4 Students develop correct programs in Scratch

PSYCHOMOTOR IMPACT (Programming Skills)

1 Students navigate Scratch environment quickly.
2 Students turn in programming solutions quickly.
3 Students are inactive during class.

SOCIAL IMPACT (Programming Collaborations)

1 Students are interacting in class to solve programming
problems.

2 Students ask their colleagues when they have questions.

3 Students ask the teacher when they have problems.

Other

comments or

observations:
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Observer:
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The Impact of Scratch on the Achievement of First-year Computer Science Students in
Programming in some Nigerian Polytechnics
SCRATCH POST INTERVENTION EVALUATION INTERVIEW (SPIEI)
The purpose of these interview questions is to gather information about your experiences, knowledge, ideas,
and opinions about programming and Scratch after the six weeks of teaching. So please feel free and be
yourself as you answer the questions as best as you can. Your answer(s) provide data in a study aimed at
understanding students’ problems with COM 113 (introductory to programming) in Nigerian polytechnics and
exploring an alternative approach to teaching the course so as to improve students’ performance. I hope you
would not mind if | take a recording of our conversation. | want to assure you that the information you provide
shall be kept confidential and used only for research purpose. However, you are free to object to answering
any question or withdraw from the interview without any consequence. Thanks for your willingness to

participate in this study.

A. Scratch and Programming Learning

1. Tell me about your programming experience in Scratch, what it looks like from the beginning of the
Scratch class to this time.

2. How will you describe your class’ overall programming learning experience in the Scratch
environment?
Probe: You have just described your class’ experience with Scratch as , how did you

arrive at this answer?

3. Has your programming ability improved due to your participation in the Scratch class?
Probe: if yes, can you mention some of the programming works or projects you created with Scratch.

If no, what hindered you?

B. Scratch, Prior Programming Background and Programming Ability

1. Did you have knowledge of computer programming before your admission to the Polytechnic?

2. Do you see any advantage of this your programming background and programming learning in
Scratch?
Probe: In what ways has your background helped (...or makes no difference to or hindered)

programming ability in Scratch?

C. Scratch, Gender and Programming Ability
1. To what extent do you think your gender affected your programming ability during your working in
Scratch?

Probe: Why do you think gender has this kind of effect on a student’s programming ability in Scratch?

2. Did you notice any difference along gender lines in the performance of students during your Scratch
Classes?

Probe: Can you mention specific roles being played by the different genders during classes?
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. Scratch, Student Academic Achievement Level and Programming Ability
How do you rate your academic achievement level before exposure to Scratch? High, average or low.
Probe: Did you see this academic background playing a significant role in your programming ability

in the Scratch environment?

. Scratch, Visual Art Background and Programming Ability
Do you have skills in drawing or making things before your exposure to Scratch?

Probe: What influence do you think your (or lack of) background in arts had in your learning
programming in Scratch?
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ATTACHMENT B

The Impact of Scratch on the Achievements of
First-year Computer Science Students in Programming in some Nigerian Polytechnics

INFORMED CONSENT FORM
Purpose of research
The proposed research with the above title is undertaken in order to investigate what impact Scratch, a visual
programming environment, can have on the programming ability of first-year computer science students.
Possible outcomes are significantly positive, none or significantly negative effects on students ‘programming
ability and attitude.

Risks and benefits

No any other risk is involved in this research other normal risks of participating in classes as a student that you
are used to. Potential benefits of the study include providing scientific knowledge about the use of Scratch in
introductory programming class. If the result of this research provides a positive evidence in favour of
introducing first-year undergraduate students to programming using Scratch, this can lead to improved
teaching and learning for students.

This research require your answering voluntarily questions contained in questionnaire, achievement test and
possibly interview at the end of the six weeks of classes. Data to be collected from you include demographic
information about yourself, educational and programming background, as well as knowledge, experiences and
opinions about programming in the class you will be participating in.

Methods of study and participants’ actual role in research

The research will make use of the following research methods: questionnaire, achievement test, observation
of class sessions and semi-structured interview. The questionnaires which will administered once in class at
the beginning of the study will take 20 minutes while the achievements tests (which will be taken twice, i.e.
before the programming class and after six weeks of instruction) will take about 60 minutes. The interview to
be taken by selected participants will last for about 45 minutes.

Identity of the researchers

In case you have any question about the research you are free to contact the following:
Oladele Campbell (the researcher) — ISTE, University of South Africa. +2348059062424
Prof H.I. Atagana (Supervisor) — ISTE, University of South Africa. +27822009855

Why you were selected

The method used for selecting the participants in this study is multistage. First, we have used purposive
sampling to select four federal polytechnics among the thirteen accredited polytechnics running National
Diploma programme in computer science in the north central region. Second, the same earlier sampling
technique was used to assign your class into one of the two study groups. You have been selected for this study
(after due permission from your school authority) because the study involves students in their first-year
computer science programme in selected Nigerian polytechnics.

Privacy, anonymity and confidentiality

You are assured that your right to privacy will be respected in during and after this research. Data to be
collected will be used only for the purpose of research. Information that can jeopardize your privacy,
anonymity and confidentiality will be removed or replaced with pseudonyms in research reports.

Future use of information.
Information obtained from this research will be published in my PhD thesis, research paper(s) in conferences
and journal, and online repositories for educational and research purposes.
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Right not to participate and to withdraw

Please be informed that you have the right to decline from participating in this study or to withdraw from your
earlier given consent at any time without fear of any penalty. You are also free to answer or decline from
answering certain questions in the questionnaire, achievement test, or the interview. In addition if you are
selected and consent to participate in the interview you are free to object the use of data gathering devices such
camera, tape recorder etc.

PARTICIPANT’S CONSENT

I have read the information presented above about the study. | have had the opportunity to ask any questions
related to this study and I have received satisfactory answers to my questions. | am aware that, if | am selected
for interview at the end of the study, | have the option of allowing my interview to be audio recorded to ensure
an accurate recording of my responses. | am also aware that information to be collected in the study may be
included in publications to come from this research, with the understanding that the Personally Identifiable
Information (P11) about me will be made anonymous. I was informed that | may withdraw my consent at any
time without penalty. With full knowledge of all foregoing, | agree, of my own free will, to participate in this
study.

Participant’s Name:
Participant’s Signature:
Researcher’s Name:
Researcher’s Signature:
Date:
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APPENDIX B

Ethical Clearance, Study Request and Permission Letters

U EErSiTy
ol south abrica

UNISA

ISTE-SUB RESEARCH ETHICS REVIEW COMMITTEE
Dabe: 19/11,/2015

Ref &: 2015 _CGS/ISTE_0Q1&

Mame of applicant
(studentfresearcher): Mr.
Oladele O Campbell Student
Dear Mr. Oladele O Campbell #: 518098772

I Decislon: Ethics Approval | Staff #:

Mame: Oladele O Campbell (S1898772) (S18987 726 mylife unisa.ac.za
piadelecampbell@gmail. com

Proposal: The Impact of SCRATCH: A Visual Programming Environment, on the
Achievement of First-year Computer Science Students in in Programming in some
Migerian Polytechnics.

Qualification: Postgraduate degree (PhD) research

Thank you Tor the application for research ethics clearance by the ISTE SUE Research Ethics
Review Committee for the above mentioned research. Final approval is granted for the

duration of the study

The application documents were reviewed in compliance with the Unisa Policy on Research
Ethics by the Commuittes/Chairparson of ISTE SU8 RERC on 19 NMovemnber, 2015, The
decistan will be tabled at the next RERC meeting for ratificatian.

The proposed research may now commence with the proviso that:

1) The ressarcher will ensure that the research project adheres to the values and
principles exprassed in the UNISA Policy on Research Ethics, which can be found at
the following website:

Rt A www, unisa, ac. za/cmsyssstaifcontents/departments/res_policiesadocs/ Policy_

Researche20Ethes_rev®e20appe20Councli_22,06,2012.pdf. Any adverse
circumstance arsing in the undertaking of the research prafect that is relevant to the
ethicality of the study, as well as changes'in the methodology, should be communicated
in writing to the ISTE Sph Ethics Rewview Commitfes. An amended application couwld be

©Campbell, Oladele, University of South Africa 2022
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Dear Otadele O Campbell (51898772) Date: 2016-01-26

Application number:
2015_CGS/ISTE_016

REQUEST FOR ETHICAL CLEARANCE: (The impact of SCRATCH: A visual programming
environment, on the achievement of first-year Computer Science students in Programming in
some Nigerian Polytechnics)

The College of Science, Engineering and Technology's (CSET) Research and Ethics Commitiee has
considered the relevant parts of the studies relating to the abovementioned research project and research
methodology and is pleased to inform you that ethical clearance is granted for your research study as set
out in your proposal and application for ethical clearance.

Therefore, involved parties may also consider ethics approval as granted. However, the permission
granted must not be misconstrued as constituting an instruction from the CSET Executive or the CSET
CRIC that sampled interviewees (if applicable) are compelled to take part in the research project. All
interviewees retain their individual right to decide whether to participate or not.

We trust that the research will be undertaken in a manner that is respectful of the rights and integrity of
those who volunteer 1o participate, as stipulated in the UNISA Research Ethics palicy. The policy can be
found at the following URL:

hlp:/iem.unisa.ac za/contents/dens

Please note that the ethical clearance is granted for the duration of this project and d you subsequently do
a follow-up study that requires the use of a different research instrument, you will have to submit an
addendum to this application, explaining the purpose of the follow-up study and attach the new instrument
along with a comprehensive information document and consent form,

Yours sincerely

LB

Prof Emest Mnkandla
Chalr: College of Science, Engineering and Technology Ethics Sub-Committee

Prof | he [ e
Executiye Degn: College of Science, Engineering and Techndlogy L . = = ., -_.:“‘j
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NIGER STATE POLYTECHNIC

OFFICE OF THE REGISTRAR

PM.B. 001, Zungery
Miger State. Nigena,

RECTOR:
Dr. Umar, Ahmed EQDako. i st s mlut paes), P20 10031, 1805, APSE AYRAMY

Dy Reft

REGISTRAR

KES, 6 A PG
NSF/PER/TS57,/VOL.Y/S

Yoir 3:&'2” Date:
Tl T

24" October, 2014

Alh. Yahuza 1. Wushishi

SIS | 2 AR ety e

S i )
The Registrar, £9 0CT 20

e 1A

The Federal Polvtechnic : gemﬁl. POL Y -y ~
Nasarawa VEY O Aensl e 4

Nasarawa State

LETTER CF INTRODUCTION: MR. OLADELE CAMPBELL

I write 10 formally introduce to you Mr.o Oladele Campbell, a Staff and farme
Head of Departmient of Computer Sciencs here.in-Niger State Polvtechnio.
Zuageruy,

2. He s currendy a Ph. D (Computer Science Education) student af ihe
University of South Africa, South Alrics and is embarking on a research work
titled “The Impact of Scratch, A Visual Programming Environment on The
Academic Achievement of First Year Computer Science Student in some

Nigerian Polytechnics™

3. More s, vour institution hus been chosen by him as one of his rescarch
sites and is requesting for your permission Lo hotd & pilot study with ND |
Students in the Department of Compuier Saience, for six 10 cight weeks.

“ W Aassure vou el whalesyr buormadon given wiil e Geted «&s

confidential and used for the purpose of the research work.

5. Antigipating vour usual cooperations,

©Campbell, Oladele, University of South Africa 2022
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THE FEDERAL POLYTECHNIC, BIDA

(OFFICE OF THE REGISTRAR)
DR. ABUBAKAR A. DZUKOGI;

A EAA) MR UASLAGY My o (L)
Rector

P. M. B, 55,

BIDA,

NIGER STATE, NIGERIA.
TEL: BIDA 066/461707

PISI ADEYEMI; oa e} ARss, EAP COUP, vt 461609

and S tary to C

FPB/R-EST/13 10" November, 2014

The Registrar

Niger State Polytechnic
P.M.B. |

Zungeru

REQUEST FOR PILOT STUDY

This is to formally convey 10 you approval for Mr Oladele Campbell, to hold a
pilot study with our ND I Computer Science students.

Mr Oladele should report directly to the Head of Department Computer Science
for the pilot programme.
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THE FEDERAL POLYTECHNIC

P.M.B. 01 NASARAWA, NASARAWA STATE

Rector:  Dr. SHETTIMA ABDULKADIR SAIDU
% 31 e, PR MK, PASAL FEL RECOM RS, SFWA B 08087360365, 09037277005

www. fedpolynasonline.com
Registrar: F. ). SABO (MRS) E-mail: tpolynas@@yanoo.com
. RS (M) M B2 PLOEN M '.B[F"e)’mm

FPN/REM 42/Vol. V/123 15" July, 2015

The Registrar

Niger State Polytechnic
P.M_B. 001

Zungeru, Niger State

RE: LETTER OF INTRODUCTION — MR. OLADELE CAMPBELL
Your letter Reference No. NSP/PER/757/Vol. 1 dated

24" Dctober, 2014 on the above subjact matters refers, please.

I have been directed to convey Management's approval of your
reguest to allow Mr, Oladele Campbell, a Ph.D candidate
conduct a pilet study with ND | students in the Department of

Computer Science of this Polytechnic for his research purpose.

Please accept the assurances of Management's highest regards.

ALHASSAN E.J. ABBAH
FOR: REGISTRAR
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BECTOR $08053926444
> Ag. REGISTRAR
Dr. Umar, Ahmed Egbako,
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NSP/PER/757/Vol. I/
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Your Ref- Date: =
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The Registrar, : «.Q%f 2N /
Nassarawa State Polytechnic, _ —
Lafia, Nassarawa State. 3
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LETTER OF INTRODUCTION: MR. OLADELE CAMPBELL '
| write to formally introduce to you Mr. Oladele Campbell, a staff and former
Head of Department of Computer Science here in Niger State Polytechnic,
Zungeru, :
2. He is currently a Ph. D (Computer Science Education) student of the " !

University of South Africa, South Africa and is embarking on a research work
titled “The Impact of Scratch, A Virtual Programming Environment on the
Academic Achievement of First Year Computer Science Student in some
Nigerian Polytechnics”.

3. Moreso, your institution has been chosen by him as one of his research
sites and is requesting for your permission to hold a Main study with ND |

Students in the Department of Computer Science, for six (6) to eight (8) weeks. i‘

4.  We assure you that whatever information given will be treated as g

confidential and used for the purpose of the research work. 7|
4

N

5. Anticipating your usual cooperation, please.
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