
Old Dominion University
ODU Digital Commons

STEMPS Theses & Dissertations STEM Education & Professional Studies

Summer 2016

Defining the Competencies, Programming
Languages, and Assessments for an Introductory
Computer Science Course
Simon Sultana
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/stemps_etds

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and
Research Commons, and the Programming Languages and Compilers Commons

This Dissertation is brought to you for free and open access by the STEM Education & Professional Studies at ODU Digital Commons. It has been
accepted for inclusion in STEMPS Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please
contact digitalcommons@odu.edu.

Recommended Citation
Sultana, Simon. "Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science
Course" (2016). Doctor of Philosophy (PhD), dissertation, STEM and Professional Studies, Old Dominion University, DOI:
10.25777/sgra-pa16
https://digitalcommons.odu.edu/stemps_etds/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217296912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/stemps_etds?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/stemps?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/stemps_etds?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/stemps_etds/10?utm_source=digitalcommons.odu.edu%2Fstemps_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


 

 

DEFINING THE COMPETENCIES, PROGRAMMING LANGUAGES, AND 

ASSESSMENTS FOR AN INTRODUCTORY COMPUTER SCIENCE COURSE 

by 

Simon Sultana 

B.S. July 1995, The University of Michigan 

M.S. May 2000, Wayne State University 

M.B.A. May 2003, Wayne State University 

 

A Dissertation Submitted to the Faculty of 

Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

 

DOCTOR OF PHILOSOPHY 

 

EDUCATION 

 

OLD DOMINON UNIVERSITY 

August, 2016 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Philip A. Reed (Director) 

 

Darryl C. Draper (Member) 

 

Ginger Watson (Member) 

  



 

 

 

ABSTRACT 

DEFINING THE COMPETENCIES, PROGRAMMING LANGUAGES, AND 

ASSESSMENTS FOR AN INTRODUCTORY COMPUTER SCIENCE COURSE 

 

Simon Sultana 

Old Dominion University, 2016 

Director: Dr. Philip A. Reed 

 

 The purpose of this study was to define the competencies, programming languages, and 

assessments for an introductory computer science course at a small private liberal arts university. 

Three research questions were addressed that involved identifying the competencies, 

programming languages, and assessments that academic and industry experts in California’s 

Central Valley felt most important and appropriate for an introduction to computer science 

course. 

 The Delphi methodology was used to collect data from the two groups of experts with 

various backgrounds related to computing. The goal was to find consensus among the individual 

groups to best define aspects that would best comprise an introductory CS0 course for majors 

and non-majors. The output would be valuable information to be considered by curriculum 

designers who are developing a new program in software engineering at the institution. The 

process outlined would also be useful to curriculum designers in other fields and geographic 

regions who attempt to address their local education needs. 

 Four rounds of surveys were conducted. The groups of experts were combined in the first 

round to rate the items in the straw models determined from the literature and add additional 

components when necessary. The academic and industry groupings were separated for the 

remainder of the study so that a curriculum designer could determine not only the items deemed 

most important, but also their relative importance among the two distinct groups. The experts 



iii 

selected items in each of the three categories in the second round to reduce the possibilities for 

subsequent rounds. The groups were then asked to rank the items in each of the three categories 

for the third round. A fourth round was held as consensus was not reached by either of the 

groups for any of the categories as determined by Kendall’s W. The academic experts reached 

consensus on a list of ranked competencies in the final round and showed a high degree of 

agreement on lists of ranked programming languages and assessments. Kendall’s W, values, 

however, were just short of the required 0.7 threshold for consensus on these final two items. 

The industry experts did not reach consensus and showed low agreement on their 

recommendations for competencies, programming languages, and assessments. 

  



iv 

This work is dedicated to my wife and children. First and foremost, I thank you Jenny for 

your support and understanding during the Ph.D. process. I know this was as much an 

undertaking for you as it was for me. I appreciate the sacrifices you made and the extra work you 

took on so that I could focus on my studies and research. I look forward to returning the favor as 

you further your education. Brittany, Nicholas, and Natalie, I hope I have inspired you to always 

pursue learning. Never stop. Also remember to always take time for what is most important in 

your lives. 

 

  



v 

ACKNOWLEDGEMENTS 

 I offer thanks to God for blessing me during this process and throughout my life.  

I want to thank all the faculty I have had the pleasure to meet at the School of Education 

at Old Dominion University. You have been valuable teachers and advisors and have taught me 

much. Your efforts helped me to persevere through the difficult undertaking of beginning a new 

job at a critical time in my doctoral studies. Thank you for all you do. 

 To my advisor, Dr. Phil Reed, I thank you for sharing your time so generously. You 

taught me from my first class in this program that distance learning can be viable only through 

the dedication of the instructor. I am especially grateful for your counsel as I transitioned from 

one job to another. To Dr. Deri Draper, thank you for your advice and encouragement as I 

tackled my new responsibilities of curriculum design. Dr. Ginger Watson, thank you for your 

contributions to this research and for your valuable insight. 

 I thank Dr. John Ritz. You are an inspirational educator and convinced me I wanted to be 

a Ph.D. for life. I would also like to express thanks to the students I met during course work and 

summer institutes. To Brian Preble, thanks for sharing ideas, counsel, and encouragement. Dr. 

Diana Cantu, thank you for your support and advice. I also want to thank Dr. Masud Mansuri for 

being a mentor and a friend. 

 Finally, I want to thank the administration at DeVry University for reimbursing my 

tuition expenses for my coursework, and those at Fresno Pacific University for the continued 

support from the comprehensive exam stage through the dissertation process. Thank you also for 

the opportunity to develop curriculum for two exciting programs I hope will help many students 

achieve their career goals. 

  



vi 

TABLE OF CONTENTS 

Page 

LIST OF TABLES  ..........................................................................................................................x 

Chapter 

I. INTRODUCTION ....................................................................................................................... 1 

STATEMENT OF PROBLEM ........................................................................................... 3 

RESEARCH QUESTIONS  ................................................................................................4 

BACKGROUND AND SIGNIFICANCE .......................................................................... 5 

LIMITATIONS ................................................................................................................... 9 

ASSUMPTIONS ............................................................................................................... 10 

PROCEDURES................................................................................................................. 11 

DEFINITION OF TERMS ............................................................................................... 13 

SUMMARY AND OVERVIEW ...................................................................................... 14 

 

II. REVIEW OF LITERATURE................................................................................................... 16 

PREPARATION OF PROGRAMMERS AND SOFTWARE ENGINEERS .................. 16 

DEFINITION OF COMPUTER SCIENCE ..................................................................... 16 

OCCUPATIONS............................................................................................................... 17 

BRIEF HISTORY OF UNDERGRADUATE STUDY OF COMPUTER SCIENCE ..... 18 

FORMAL EDUCATION IN COMPUTING.................................................................... 22 

STAKEHOLDERS IN COMPUTER SCIENCE EDUCATION ..................................... 24 

INDUSTRY ...................................................................................................................... 25 

ACADEMIA ..................................................................................................................... 26 

INTRODUCTORY COMPUTER SCIENCE COURSES................................................ 30 

GENERAL SKILLS ......................................................................................................... 32 

COMPETENCIES ............................................................................................................ 35 

TOPICS IDENTIFIED FROM PROFESSIONAL ASSOCIATIONS AND 

TEXTBOOKS ................................................................................................................... 36 

TOPICS IDENTIFIED IN JOURNAL ARTICLES ......................................................... 39 



vii 

TOPICS IN PROGRAMMING ........................................................................................ 41 

PROGRAMMING FUNDAMENTALS .......................................................................... 42 

DEVELOPING PROGRAMS .......................................................................................... 43 

APPLICATIONS, TECHNIQUES, AND PROCESSES ................................................. 44 

TOPICS IN HARDWARE AND OTHER LEVELS OF THE OSI MODEL .................. 46 

PROFESSIONAL SKILLS ............................................................................................... 48 

TEAMWORK AND COLLABORATION ...................................................................... 48 

PROBLEM SOLVING AND RELATED ATTRIBUTES ............................................... 50 

WAYS OF THINKING .................................................................................................... 51 

OTHER PROFESSIONAL ATTRIBUTES ..................................................................... 53 

STRAW MODEL OF COMPETENCIES ........................................................................ 54 

PROGRAMMING LANGUAGES ................................................................................... 57 

OVERVIEW ..................................................................................................................... 57 

LANGUAGE POPULARITY IN INDUSTRY ................................................................ 60 

LANGUAGE POPULARITY IN ACADEMIA ............................................................... 61 

STRAW MODEL OF PROGRAMMING LANGUAGES .............................................. 66 

ASSESSMENTS ............................................................................................................... 68 

SUMMARY ...................................................................................................................... 75 

 

III. METHODOLOGY ................................................................................................................. 78 

PARTICIPANTS .............................................................................................................. 78 

DESIGN ............................................................................................................................ 80 

RECRUIT AND IDENTIFY PARTICIPANTS ............................................................... 81 

DEVELOP STRAW MODELS ........................................................................................ 83 

DESIGN AND DISTRIBUTE ROUND 1 SURVEY TO BOTH GROUPS .................... 84 

ROUND 1 REVIEW AND ANALYSIS .......................................................................... 85 

DESIGN AND DISTRIBUTE ROUND 2 SELECTION SURVEY ................................ 85 

ROUND 2 REVIEW AND ANALYSIS .......................................................................... 86 

DESIGN, DISTRIBUTE, AND ANALYZE ROUND 3 AND 4 SURVEYS .................. 87 

SUMMARY ...................................................................................................................... 88 



viii 

IV. RESULTS ............................................................................................................................... 90 

PARTICIPANTS AND DEMOGRAPHICS .................................................................... 90 

ROUND 1 ......................................................................................................................... 92 

COURSE COMPETENCIES ........................................................................................... 92 

PROGRAMMING LANGUAGES ................................................................................... 97 

ASSESSMENTS ............................................................................................................... 99 

ROUND 2 ....................................................................................................................... 100 

COURSE COMPETENCIES ......................................................................................... 101 

PROGRAMMING LANGUAGES ................................................................................. 101 

ASSESSMENTS ............................................................................................................. 105 

ROUND 3 ....................................................................................................................... 105 

COURSE COMPETENCIES ......................................................................................... 107 

PROGRAMMING LANGUAGES ................................................................................. 107 

ASSESSMENTS ............................................................................................................. 109 

GROUP CONCORDANCE............................................................................................ 110 

ROUND 4 ....................................................................................................................... 112 

COURSE COMPETENCIES ......................................................................................... 112 

PROGRAMMING LANGUAGES ................................................................................. 115 

ASSESSMENTS ............................................................................................................. 116 

GROUP CONCORDANCE............................................................................................ 117 

 

V. CONCLUSIONS AND RECOMMENDATIONS ................................................................ 119 

RECOMMENDATIONS FOR COURSE COMPETENCIES ....................................... 120 

RECOMMENDATIONS FOR PROGRAMMING LANGUAGES .............................. 125 

RECOMMENDATIONS FOR ASSESSMENTS .......................................................... 129 

OVERALL COURSE RECOMMENDATIONS AND FUTURE RESEARCH ........... 133 

 

REFERENCES ........................................................................................................................... 136 

 

 



ix 

APPENDICES ............................................................................................................................ 166 

APPENDIX A: INVITATION TO PARTICIPANTS .................................................. 166 

APPENDIX B: HUMAN SUBJECTS INFORMED CONSENT ................................. 167 

APPENDIX C: SUMMARY OF THE STUDY............................................................ 169 

APPENDIX D: ROUND 1 QUESTIONNAIRE ........................................................... 171 

APPENDIX E: ROUND 2 SURVEY ........................................................................... 177 

APPENDIX F: ROUND 3 SURVEY FOR ACADEMIC GROUP .............................. 180 

APPENDIX G: ROUND 3 SURVEY FOR INDUSTRY GROUP .............................. 182 

APPENDIX H: ROUND 4 SURVEY FOR ACADEMIC GROUP ............................. 184 

APPENDIX I: ROUND 4 SURVEY FOR INDUSTRY GROUP ................................ 186 

 

VITA  ...........................................................................................................................................188 

  



x 

LIST OF TABLES 

Table                                                                                                                                         Page 

1 United States Bureau of Labor Statistics Projected Job Outlook Over the Decade 2012 to 

2022..................................................................................................................................... 2 

2 State of California Employment Development Department Projected Job Outlook over 

the Decade 2012 to 2022 for Fresno County ...................................................................... 6 

3 California State University System Computer Science and Software Engineering Program 

Enrollment........................................................................................................................... 7 

4 United States Bureau of Labor Statistics Occupations Related to the Study of Computer 

Science .............................................................................................................................. 19 

5 Coverage of Potential Topics for Introductory Computer Science ................................... 40 

6 Introduction to Computer Science Competencies Straw Model ....................................... 56 

7 Programming Language Popularity Rankings in Software Industry ................................ 62 

8 Programming Language Popularity Rankings in Academia ............................................. 63 

9 Programming Language Straw Model .............................................................................. 67 

10 Kendall’s W Values Analyzed .......................................................................................... 88 

11 Round 1 Expert Feedback on Competencies for Introductory Computer Science ........... 93 

12 Round 1 Expert Feedback on Programming Languages for Introductory Computer 

Science .............................................................................................................................. 98 

13 Round 1 Expert Feedback on Assessments for Introductory Computer Science ............. 99 

14 Round 2 Selection Counts of Competencies for Introductory Computer Science .......... 102 

15 Round 2 Selection Counts of Programming Languages for Introductory Computer 

Science ............................................................................................................................ 104 



xi 

16 Round 2 Selection Counts of Assessments for Introductory Computer Science ............ 105 

17 Round 3 Median Rankings of Competencies for Introductory Computer Science ........ 108 

18 Round 3 Median Rankings of Programming Languages for Introductory Computer 

Science ............................................................................................................................ 109 

19 Round 3 Median Rankings of Assessments for Introductory Computer Science ........... 110 

20 Kendall’s W Values for Round 3 .................................................................................... 111 

21 Round 4 Median Rankings of Competencies for Introductory Computer Science ........ 114 

22 Round 4 Median Rankings of Programming Languages for Introductory Computer 

Science ............................................................................................................................ 115 

23 Round 4 Median Rankings of Assessments for Introductory Computer Science ........... 117 

24 Kendall’s W Values for Round 4 .................................................................................... 118 

25 Top Recommended Competencies for Introductory Computer Science by Both Groups      

......................................................................................................................................... 121 

26 Round 4 Interquartile Range Values for Suggested Primary and Secondary Competencies  

..........................................................................................................................................125 

27 Top Recommended Assessments for Introductory Computer Science by Both Groups  130 

 

 

 

 

 

 

  



1 

CHAPTER I 

INTRODUCTION 

 Fields that deal with technology seem to undergo a constant redefinition of their 

identities. Technology education, for example, has its origins in manual training, which later 

became industrial arts before arriving at its current state of technology and engineering education 

(Foster, 1997). The study of computing appears to have some similarity in this respect. Computer 

science (CS) had its beginnings in mathematics. Humans devised calculating devices and 

practiced algorithmic thinking back in the days of antiquity (Keller & Volkov, 2014). The field 

was very much entrenched in science around the time the first computing academic programs 

were being offered (Denning, 2013), starting with the Diploma in Numerical Analysis and 

Automatic Computing at the University of Cambridge in 1953 (University of Cambridge, 2004). 

Purdue University and Stanford University formed CS departments nine years later (Denning, 

2013) and the field of academic study was well on its way. 

 Since that time computing as an academic discipline has experienced changes in focus 

from science, to technology, and back to science (Denning, 2013). Subsequently, CS, along with 

electrical engineering and information systems, became three distinct options of formal study 

(The Joint Task Force for Computing Curricula 2005, 2006). The 1990s saw a great deal of 

change and computer engineering, software engineering (SE), and information technology (IT) 

were added to the other three academic program subjects. There is certainly overlap in the 

coverage of these programs and some debate persists on their exact definitions and boundaries 

(Kelly, 2007; Kelly, 2013; Lutz, Naveda, & Vallino, 2014). 

 In this short yet tumultuous history, the demand for computing professionals has 

continued to grow. Academic programs in CS and SE prepare students for occupations as 



2 

applications software developers, systems software developers, computer systems analysts, 

computer programmers, computer and information systems managers, web developers, and 

database administrators (Bureau of Labor Statistics [BLS], 2015). The BLS (2015) reports 

national increases in the demand for these occupations from 2012 to 2022 as seen in Table 1. 

 

 

 

Table 1 

 

United States Bureau of Labor Statistics Projected Job Outlook Over the Decade 2012 to 2022 

 

Occupation Title 2012 2022 Change 

(%) 

Software developers 1,018,000 1,240,600 22 

   Software developers, applications 613,000 752,900 23 

   Software developers, systems software 405,000 487,800 20 

Computer systems analyst 520,600 648,400 25 

Computer programmers 343,700 372,100 8 

Computer & information systems managers 332,700 383,600 15 

Web developers 141,400 169,900 20 

Database administrators 118,700 136,600 15 

Note. Adapted from Bureau of Labor Statistics, U.S. Department of Labor (2015). 

 

 

 

 

It is no surprise that as a result of these projected trends, CS and SE have become popular 

choices as areas of study. SE is relatively new as an academic discipline as it was not until about 

four decades after the original CS programs in this country that Rochester Institute of 

Technology (2004) accepted the first students into a SE program in 1996. It is, therefore, 

sometimes more difficult to locate data on enrollment trends of students in SE programs. The 

Computing Research Association (2015) collects data on the Taulbee Survey to measure 

enrollment trends in CS, computer engineering, and information programs at PhD-granting 

institutions and their findings are summarized as follows: 



3 

 1. Among U.S. schools that reported data in 2014 and 2013, enrollments in 

undergraduate CS programs rose 18.6% in 2014, marking the seventh straight year of 

increase. Overall enrollment, including schools that did not participate in the survey in 

2013, increased 27.3%. 

 2. The number of Bachelor’s degrees in CS awarded by the reporting institutions 

increased by 13.6% in 2014. Among schools who responded in 2014 and 2013, the 

increase was 14.2%. 

 3. The number of new Bachelor of Science majors rose 17.0% from 2013 to 2014 and 

18.3% among those departments reporting both years.  

Dye (2014) reported on findings from the Sparkroom Marketing Software student inquiry 

and enrollment database that CS program inquiries in the United States showed a general 

increase between the first quarters of 2010 and 2014. That increase was 20% from 2013 to 2014 

(Dye, 2014). These data suggest increased interest nationally in undergraduate computing 

degrees. 

Statement of Problem 

Students may begin formal computer science or SE study in a course entitled 

“Introduction to Computer Science,” or a similar name. These introductory courses form the 

gateway to an academic program. They can have various goals including raising interest in the 

core field of study, introducing students to the different areas of the discipline, and exposing 

them to a project experience to practice the skills that will be needed in upcoming courses 

(Fulton & Schweitzer, 2011; Rolka & Remshagen, 2015; Shell & Soh, 2013). An introductory 

CS course may cover information systems, hardware and architecture, operating systems, SE, 

programming, databases, and several other topics (Anderson, Ferro, & Hilton, 2011; Wu, Hsu, 



4 

Lee, Wang, & Sun, 2014). Instructors can select from several computer languages (Ali & Smith, 

2014; Chang, 2014; Shein, 2015) in trying to provide students with an experience that is 

educational, motivating, or applicable to current industry practices. Likewise, there are several 

possibilities for assessment in these courses (Fulton & Schweitzer, 2011; Muñoz, Martínez, 

Cárdenas, & Cepeda, 2013; Shaw, 2010; Zur, Vilner, & Shay, 2014).  

Therefore, various possibilities and sources of information as to the desired content and 

best practices exist for the curriculum designer to consider for such a class. A strong approach to 

curriculum development is to take into account input from these different sources and to include 

the opinions of subject matter experts (SME) to help ensure the course’s design meets the needs 

of all stakeholders (Brown & Green, 2011; Ornstein & Hunkins, 2013). Another possibility is to 

consider the essentials as dictated by local industry in designing undergraduate curriculum. 

(Bothe, Budimac, Cortazar, Ivanović, & Zedan, 2009; Bramwell & Wolfe, 2008; Levin, Cox, 

Cerven, & Haberler, 2010). The purpose of this study was to define the competencies, 

programming languages, and assessments for an introductory CS course at a small private liberal 

arts university that seeks to address the computing industry’s needs of California’s Central 

Valley. 

Research Questions 

The author developed the following questions to guide the research: 

RQ1: What competencies do subject matter experts recommend for students in 

California’s Central Valley to master in an undergraduate introductory CS course? 

RQ2: What programming languages do subject matter experts recommend for students in 

California’s Central Valley to use in an undergraduate introductory CS course? 



5 

RQ3: What assessments do subject matter experts recommend for students in California’s 

Central Valley to demonstrate mastery of competencies for an undergraduate introductory 

CS course? 

Background and Significance 

California’s Central Valley is typically known for its agriculture and it has begun to 

increasingly depend on computing technology (Pratt, 2015). Additionally, there has been an 

influx of small high technology companies looking to take advantage of low rent and costs and 

the available workforce offered by the region (Romero, 2014; Sheehan, 2014). As shown in 

Table 2, the State of California Employment Development Department (2015) identified 

software developer, computer systems analyst, computer programmer, and web developers as 

occupations that are expected to experience a growth of 30% or higher in Fresno County 

between the years of 2012 to 2022. The outlooks for other related occupations are also shown. 

The increase in the projected number of jobs in computing in the region has been 

accompanied by substantial growth in the number of students in California pursuing degrees in 

CS and SE. The California State University (2015) awards the most bachelor’s degrees in the 

state. The system’s enrollment in CS and SE programs for the past five years is shown in Table 

3. The number of students enrolled in a CS program has increased 95% and SE enrollment has 

grown 158% during the time period. Also included in Table 3 are enrollment numbers for these 

programs at two regional campuses of CSU in Fresno and San Luis Obispo. The Fresno campus 

has seen CS enrollment increase by 101% and the location in San Luis Obispo has seen its CS 

and SE program enrollments increase by 51% and 144%, respectively. 

 

 

 



6 

Table 2 

 

State of California Employment Development Department Projected Job Outlook Over the 

Decade 2012 to 2022 for Fresno County 

 

Occupation Title           Employment Change  

 2012 2022 (%) 

Software developers 430 620 44 

   Software developers, applications 340 490 44 

   Software developers, systems software 90 130 44 

Computer systems analyst 450 630 40 

Computer programmers 230 300 30 

Computer & information systems managers 270 290 7 

Web developers 150 200 33 

Database administrators 110 120 9 

Note. Adapted from State of California Employment Development Department (2015). 

 

 

 

 

The increased focus on computing appears to be enveloping this region. Sheehan (2014) 

reported on the efforts of Bitwise Industries to create a technology hub in downtown Fresno. The 

organization provides real estate so computer technology firms can be housed together in one 

location, trains students with technology skills with highly focused course offerings, and 

provides computer technology services for local industries. Bitwise CEO Jake Soberal made the 

case for a regional economy more focused on high technology in the traditionally agricultural 

area: 

If we can get a critical mass of people here in Fresno who are competent and capable, 

national and global companies will choose to expand their operations here. The Silicon 

Valley and Boston and Portland will continue to grow. And so will Fresno—and Des 

Moines and Wichita. Software and tech have not been a zero-sum game. (Fallows, 2015 

para. 12) 



7 

Table 3 

California State University System Computer Science and Software Engineering Program 

Enrollment  

 

Student Type 2010-11 2011-12 2012-13 2013-14 2014-15 

Computer Science 4,752 5,807 6,703 7,909 9,283 

   Fresno 154 177 193 272 309 

   Cal Poly, San Luis Obispo 401 452 473 545 606 

Software Engineering 231 273 323 449 597 

   Cal Poly, San Luis Obispo 95 114 143 204 232 

Total 4,983 6,080 7,026 8358 9,880 

Note. Adapted from California State University (2015b). 

 

 

 

 

The context for this research is a new undergraduate SE program at a small private 

nonprofit university in Fresno County. An introductory course in CS will serve as a gateway to  

the program for those students looking to major or minor in SE, and for others looking to simply 

develop some background in computing. A consideration for the course will be those students 

who intend to remain and practice their skills in the local geographic region. It is, therefore, 

prudent to consider the needs of local industry. 

As in any curriculum development there are many possibilities that exist for 

competencies, programming languages, and evaluation in an introductory computer science 

course. Curriculum designers consider information from stakeholders in the planning stage of 

development to ensure they meet students’ needs (Kenny & Desmaris, 2012; Reigeluth, 1999). 

Professional associations, faculty, and industry members are sources of expertise who can 

provide valuable information on curriculum content and delivery. Also of consideration is the 

geographic location of a course as the more applicable areas of focus can vary from one location 



8 

to another. As a result, program curriculum should address these regional concerns and the 

proposed introductory course is no exception.  

 The competencies for the class are of primary concern. Ornstein and Hunkins (2013) state 

that curriculum development should begin with an “analysis of needs and tasks” (p. 190). The 

objectives or competencies defined will dictate the content to be covered. They will also serve as 

the central components for assessment of the learners’ abilities (Brown & Green, 2011) as well 

as for the instruction itself.  

 Several possibilities serve as sources of information for course competencies. 

Professional associations and accrediting bodies publish guides on what content academic 

programs of study should address. The Joint Task Force on Computing Curricula (JTFCC) 

(2014) has periodically published curricula guidelines for computer engineering, CS, information 

systems, IT, and SE since the 1960s. These recommendations include the areas of knowledge 

that higher education programs in these fields should address to properly prepare students for the 

world of work. The Accreditation Board for Engineering and Technology (ABET) and its 

Engineering Accreditation Commission specify student outcomes for engineering programs, 

including those in SE. These sources provide valuable input regarding the competencies and 

assessment devices for an introductory computing course. 

 Likewise, the literature provides rich insight into best practices and trends in computing 

education. Educators from all over the world conduct research on the use of instructional 

strategies, student motivation, assessment, resources, and choices of programming languages, for 

example. These reported findings become part of the body of pedagogical content knowledge 

and help instructors focus course offerings. 



9 

 Though these resources seem to provide sufficient data, they typically lack a focus on the 

specific region in which instruction is offered. Industry emphases tend to vary from one location 

to another and it is not the norm that higher education is seen to meet those needs. Symonds, 

Schwartz, and Ferguson (2011) stated that “while the best community colleges are the most 

entrepreneurial, market-responsive institutions in higher education, they are the exception rather 

than the rule” (p. 28). Smaller institutions of higher learning can better serve their stakeholders 

by meeting local needs. A program that prepares graduates for a career in computing in the 

Central Valley will be in better synergy with the recent industry developments. It is, therefore, 

prudent to develop this curriculum and its introductory course with input from the discipline as 

well as local industry. 

 Finally, students might pursue an introductory course, and perhaps a minor in computing, 

to develop their skills for an occupation other than software development. Lazowska, Roberts, 

and Kurose (2014) reported that “students are figuring out that every 21st Century citizen needs 

to have facility with ‘computational thinking’ – problem analysis and decomposition (stepwise 

refinement), abstraction, algorithmic thinking, algorithmic expression, stepwise fault isolation 

(debugging), modeling – driving introductory course demand” (p. 16).  

Limitations 

The researcher imposed the following limitations on this study: 

1. The research will include feedback from a small number of experts in California’s Central 

Valley. Selection bias may be a potential issue (Mitchell, 1991). These persons will be 

selected based on their status as experienced industry professionals or faculty at the local 

state university and community colleges.  



10 

2. This survey research will capture the opinions and recommendations of the participants at 

a particular point in time. Computing can be a dynamic field and it is expected this feedback 

would vary if collected at a future timeframe. 

3. The feedback of participants may be biased by their personal experiences, preferred 

learning and teaching styles, and disciplinary knowledge. 

4. The written survey will communicate limited information as it will employ ratings and 

rankings. The reasons for differences in opinions are beyond the scope of this study. 

Assumptions 

The researcher assumed the following points to be true throughout the data collection and 

analysis for this study: 

1. Participants in the study would draw upon their experience and promote their informed 

opinions of the most important skills for inclusion in the introductory course. Their 

responses would constitute their personal views. 

2. Industry professionals would make recommendations based on their content 

knowledge and the practices utilized at their place of work in the local industry. 

The recommendations of the instructors would consider pedagogical content knowledge 

(Shulman, 1986) to help promote the practicality and subject matter necessary to include 

in an introductory course in computing. 

3. The recommendations of the instructors from the state university and community 

colleges would be equally important. Though their student populations may be different, 

their recommendations would apply equally to the target students of this introductory 

course.  



11 

4. The content and design of the introductory CS course in the local region may have 

emphases which differ from similar offerings outside this area. Participants will 

successfully represent the conditions in this region. 

Procedures 

 The researcher’s goal was to design an introductory course in CS that meets the needs of 

local stakeholders. The first offering of the course was scheduled to take place in January 2016. 

The course had been approved by university committees before this study and would be run as 

previously designed for the first semester. The research would be conducted concurrently with 

the initial course offering and the results would be used to help design the second offering in 

August 2016. This descriptive study utilized surveys consisting of quantitative ratings and 

feedback to answer the research questions. Local industry members and college and university 

educators are experts who would likely provide disparate recommendations. Wilhelm (2001) 

suggested the Delphi technique as providing a method of getting “the relevant intuitive insights 

of experts and to use informed judgment as systematically as possible” (p. 6).  

 A panel of 23 experts were recruited for this study. Eleven members of industry were 

recruited from professionals holding programming or software development managerial roles 

with local firms for a period of at least five years (Guu, Lin, & Lee, 2014; Joyner & Smith, 

2015). Another twelve individuals were educators with local universities and community 

colleges, who taught CS or related disciplines (i.e. computer engineering, information systems, 

IT, and SE) and held at least a Master’s degree (Sami, 2007) in CS or a connected field. One 

research expert was recruited to help interpret the data from the Round 1 surveys. This individual 

was required to hold a Ph.D. degree and have experience with survey data. 



12 

The JTFCC’s recommendations for introductory CS courses were consulted for guidance 

on competencies and assessment. A review of literature on trends and best practices regarding 

these items and programming languages available was then performed. The output from these 

sources were analyzed and served as the components for the straw models, which would then be 

used to clarify the undertaking and narrow the content for the participants in the Delphi 

procedure (Rotondi & Gustafson, 1996). The competencies, programming languages, and 

assessments identified from the literature were used as the topics for the first round survey. 

The Round 1 questionnaire first asked for demographic data from the participants. This 

initial survey consisted of the potential competencies, programming languages, and assessment 

devices, and participants were asked to identify their importance or applicability for an 

introductory course in computing on a five-point Likert scale. Participants were also given the 

opportunity to add their own suggestions for each of the categories. The questionnaire was made 

available to the participants on the internet using SurveyMonkey (Elledge & McAleer, 2015) and 

an email was sent out to each individual with a link and instructions to complete the survey 

within one week. The researcher collected responses and sent out email reminders on the fourth 

and eighth days.  

The results of the first survey were analyzed and items for competencies, programming 

languages, and assessments were ranked based on the responses. Additionally, the researcher 

collected suggestions of new items and added those that did not overlap with already existing 

options in the updated list. Any suggested items that garnered at least two independent 

suggestions would then be included as options in the questionnaire for Round 2. All open-ended 

responses were reviewed with a research SME and changes were made to the item lists as 

necessary. 



13 

The survey for Round 2 included the modified choices for competencies, programming 

languages, and assessments. All options and their median scores from Round 1 were indicated on 

the questionnaire. The two groups were then separated at this point into industry and academic 

experts constituting a panel design for Round 2 and after so they would function independently 

(Okoli & Pawlowski, 2004). Okoli and Pawlowski’s (2004) recommendations were used so that 

each participant was given three lists representing the competencies, programming languages, 

and assessments and asked to select, not rank, at least ten of each of these topics. Those items 

that were selected by at least 50% of either the industry or academic group were kept for the 

subsequent round (Okoli & Pawlowski, 2004).  

 The updated lists were again submitted separately to each of the two groups in Round 3. 

Participants were asked to attribute importance or applicability of each item on a five-point 

Likert scale. The median score was computed for each topic and the overall Kendall’s W for each 

category was calculated. Consensus was deemed to be achieved if the value was equal to 0.7 or 

greater (Okoli & Pawlowski, 2004; Schmidt, 1997). The sequence for Round 3 was repeated for 

one additional round if the W value was less than 0.7 (Okoli & Pawlowski, 2004). 

 The output from the Delphi study would thus consist of recommendations from two 

stakeholder groups: industry and academic experts. The median ranking scores would constitute 

the importance attributed to each item by each individual group. These itemized 

recommendations would then be made available to the curriculum developer to design the course 

accordingly. 

Definition of Terms 

The following definitions are included to provide a clear understanding of terms used throughout 

the study: 



14 

Competencies: general objectives detailing the desired content and abilities students are expected 

to master as a result of learning (Koszalka, Russ-Eft, & Reiser, 2013); specifically, those used 

for the introductory CS course of concern in this research. 

Curriculum: “a course of study organized by the content to be covered and the activities to be 

employed to cover them” (Brown & Green, 2011, pp. 101-102). 

Formative evaluation: activities instructors use to gauge student learning to optimize the process 

(Ornstein & Hunkins, 2013). 

Resources: items to aid learning in a course (e.g. textbook, computer language, embedded 

microcontroller, etc.). 

Pedagogical content knowledge: knowledge of content that includes aspects “most germane to its 

teachability” (Shulman, 1986). 

Subject matter expert (SME): individual with experience or certification “who assists 

instructional designer by providing guidance on the scope and sequence of the content and tasks 

that need to be included in the instruction” (Brown & Green, 2011, p. 68). Individuals in this 

study who had at least five years’ experience in their occupations in industry or taught in 

academia with at least a master’s degree qualified as SMEs for this study. 

Summative evaluation: means to assess “the overall quality of a produced and then taught 

curriculum” (Ornstein & Hunkins, 2013, p. 253).  

 Summary and Overview 

 Administrators and faculty in colleges and universities spend a great deal of time and 

effort designing curriculum. It is imperative students are provided with content and delivery that 

will help prepare them for their future careers. The experience of an introductory CS course is 

crucially important as it can often be the student’s first exposure to a field of study. The 



15 

impressions of industry and academic experts should be considered during design and 

development to properly meet the needs of students and their future employers. 

 In Chapter II of this study a review of literature focuses on the different goals of 

introductory CS courses in terms of student competencies, programming languages, and 

assessment. Trends in all these aspects are analyzed and synthesized. Recommendations from 

professional associations are also presented and factored.  

 Chapter III presents the methods and procedures utilized to determine the optimal 

components for the introductory course. The target population of experts in the study and their 

recruitment are discussed. The author outlines the data to be gathered and the methods to be 

utilized in its collection. Details of the Delphi method and the design of each round are also 

presented. 

 Chapter IV presents the output from each round of the study and the conclusions reached 

by the researcher and research SME. The results are supported by the data which is presented for 

the reader’s review. 

 Chapter V provides an evaluation of the study as a whole. The author uses the results to 

present conclusions and provide pertinent recommendations for the current course of interest and 

to educators responsible for the design of introductory courses in similar and related fields of 

study. 

  



16 

CHAPTER II 

REVIEW OF LITERATURE 

 A survey course in CS can vary significantly from one institution to another in terms of 

topics covered and the level of mastery expected of students. Another area of discrepancy is the 

degree to which programming is covered and in the cases where it is a factor, the extent to which 

it is included and the programming languages used. The teaching approaches and assessments 

used in class are also sources of variation. The focus of this study is an introduction to CS course 

at a liberal arts university.  

This review of literature will cover topics on the preparation of programmers, software 

engineers, the stakeholders of CS curriculum development, and introductory computing courses. 

The goal of this chapter is to provide the reader with a background in these areas and generate 

the straw models for the three subjects to be deliberated by the Delphi groups. A review of the 

education and training of programmers and software engineers is provided, including a definition 

of CS and a brief history of the schooling of students in the discipline. A concise analysis of the 

stakeholders in CS curriculum development in academia and industry is provided before the 

literature is reviewed on the competencies, programming languages, and assessments for 

introductory CS courses. The latter examination will serve to generate the straw models for the 

first round of the Delphi study 

Preparation of Programmers and Software Engineers 

Definition of Computer Science 

 Chapter 1 began with mention of the identity struggle that has been part of the history of 

CS. The most appropriate beginning would seem to be a definition of the field itself. Though the 

terms computing and CS are often used interchangeably, Denning (2013) used the term 



17 

‘computing’ to encompass the fields of “computer science, computational science, information 

science, computer engineering, and software engineering” (p. 35) and argued for its identity as a 

true science. The Association for Computing Machinery (ACM) Curriculum Committee on CS 

(1965) concentrated on the discipline’s relationship with information and stated that CS was 

“devoted to the representation, storage, manipulation, and presentation of information in an 

environment permitting automatic information systems” (p. 544). Over the next few decades the 

environment had become commonplace. Increased mention of algorithms, automata, data 

structures, and the handling of information found their way into updated definitions of the field 

(Gibbs & Tucker, 1986; May 1980). Brookshear (1997) seemingly simplified the description 

while including another element when he stated that CS was “the study of the theoretical 

foundations of information and computation” (p. 1). Six years later Brookshear (2003) elaborated 

to include “topics such as computer design, computer programming, information processing, 

algorithmic solutions of problems, and the algorithmic process itself” (p. 1). The emphasis on 

algorithms has seemingly become widespread. The authors of two recent texts on introductory 

CS directed their focus on algorithms as they defined the discipline (Dale & Lewis, 2016; 

Schneider & Gersting, 2016). It would appear then that coverage of CS must include how 

information is used to perform computations and construct algorithms. 

Occupations 

In a text intended for young people thinking about their future careers, the editors at JIST 

(2010) offered the following occupations related to CS: computer network, systems, and 

database administrators; computer scientists; computer software engineers and computer 

programmers; computer support specialists; computer systems analysts; and mathematicians. 

Young persons reading the material may one day enroll in an introductory course in CS. As 



18 

mentioned in the first chapter, CS skills are associated with many occupations, including 

applications software developers, systems software developers, computer systems analysts, 

computer programmers, computer and information systems managers, web developers, and 

database administrators (BLS, 2015). Descriptions of these professions are provided in Table 4.     

The BLS (2015) also lists related occupations that are associated with networking that are 

typically connected to degreed programs in that specific discipline. This subject is not offered as 

a field of study at the institution at which the introductory course will be offered. These 

networking occupations, therefore, are thus not considered here. The occupations that are listed 

in Table 4 require various skills, and a fundamental understanding of CS is important in all of 

them. Computer programmers and software developers need to be highly proficient in computer 

programming. Database administrators and web developers also rely on the ability to program. 

An introduction to programming in one or more languages will be highly beneficial for students 

in an introductory course who wish to pursue positions in these professions. Computer and 

information systems managers and systems analysts need a firm understanding of computer 

systems and how they can be used to help a business meet its goals. Students in an introductory 

course who are interested in these professions will benefit from a broad introduction to the 

discipline of CS and the systems, tools, and procedures associated with it. 

Brief History of Undergraduate Study of CS 

 To this day there exists debate on the identity of CS (Denning, 2013; Kelly, 2007; Kelly, 

2013). Denning (2013) wrote that its “brief history suggests that computing began as science, 

morphed into engineering for 30 years while it developed technology, and then entered a science 

 

 



19 

Table 4 

United States Bureau of Labor Statistics Occupations Related to the Study of Computer Science 

Occupation Description 

Applications software 

developers 

Design computer applications, such as word processors and games, 

for consumers. They may create custom software for a specific 

customer or commercial software to be sold to the general public.  

Computer & information 

systems managers 

Plan, coordinate, and direct computer-related activities in an 

organization. They help determine the information technology goals 

of an organization and are responsible for implementing computer 

systems to meet those goals. 

Computer programmers 

Write code to create software programs. They turn the program 

designs created by software developers and engineers into 

instructions that a computer can follow. 

Computer systems 

analysts 

Study an organization’s current computer systems and procedures 

and design information systems solutions to help the organization 

operate more efficiently and effectively. They bring business and 

information technology together by understanding the needs and 

limitations of both. 

 Database administrators 

Use specialized software to store and organize data, such as financial 

information and customer shipping records. They make sure that data 

are available to users and are secure from unauthorized access. 

Systems software 

developers 

Create the systems that keep computers functioning properly. These 

could be operating systems that are part of computers the general 

public buys or systems built specifically for an organization. 

Web developers 

Design and create websites. They are responsible for the look of the 

site. They are also responsible for the site’s technical aspects, such as 

performance and capacity, which are measures of a website’s speed 

and how much traffic the site can handle. 

 Note. Adapted from Bureau of Labor Statistics, U.S. Department of Labor (2015). 

 

 

 

 

renaissance about 20 years ago” (p. 37). Koffman and Finerman (2004) wrote that CS had its 

origins as an area of academic study in the 1950s based on the need to educate users of 

computing machinery. IBM’s sale of discounted computers to about 50 universities increased 



20 

this need (Gupta, 2007). The main offerings predominant in these early days were in the form of 

noncredit courses at computing centers (Gibbs & Tucker, 1986; Koffman & Finerman, 2004).  

Programs in engineering and mathematics began to address the growing need for the 

content to be covered in formal education (Koffman & Finerman, 2004). It was not long, 

however, before the call for CS to be considered as a standalone discipline would start to be 

heard (Gorn, 1963; Keenan, 1964). Gorn (1963) seemingly began the questioning by asking “can 

such a rapidly growing discipline with clearly different interests and requirements continue 

indefinitely to be carried in an essentially different environment where accident has caused it to 

gestate” (p. 155)? Keenan (1964) for his part asked “should our colleges and universities adapt 

their educational plans to take into account an increasingly computerized society and, if so, how” 

(p. 207)? The answers became apparent as universities began to offer CS academic programs. 

Undergraduate education, however, was predated by graduate study as there was a lack of 

definition as to what a program at the entry level would look like (Koffman & Finerman, 2004). 

Nonetheless, demand for education in the areas of computing grew. Pioneers in CS instruction 

presented content to be covered at the introductory level (e.g. Arden, 1964; Perlis, 1964). Rosser 

chaired the Committee on Uses of Computers (1966), which identified a need for increasing 

“capacity for education and research in computer science” (p. 1). Among the recommendations 

was the call to “increase as rapidly as possible the number of persons trained annually as 

computer specialists and the support of pioneering research into computer systems, computer 

languages, and specialized equipment” (Committee on Uses of Computers, 1966, p. 2).  

Over the years, other academic disciplines branched out from CS. By 1969 Georgia State 

University had launched a graduate program in business information systems (BIS) (Chand, 

1974). The Case Western Reserve University (2015) offered the first accredited computer 



21 

engineering program in the country in 1971. By the 1990s, IT and SE had become independent 

programs of study as well (Lunt et al., 2005; Rochester Institute of Technology, 2004). 

The ACM provided the first set of curriculum recommendations for undergraduate study 

in CS in 1965. The ACM Curriculum Committee on CS (1965) described the discipline and 

particular courses as being attractive to students in different majors, especially those studying 

engineering. The organization released its first official curriculum guidelines for CS in 1968 and 

has published updates approximately once every decade thereafter (Dziallas & Fincher, 2015; 

Roach & Sahami, 2015). Dziallas and Fincher (2015) wrote that “these reports have become an 

institution; with each new iteration, chairs are chosen, task forces formed, disciplinary groups 

engaged, drafts produced and then posted on websites and presented at conferences to solicit 

community feedback” (p. 81). The ACM joined with the Institute of Electrical and Electronics 

Engineers (IEEE) to form the Joint Task Force on Computing Curricula (JTFCC) in 1988 

(Koffman & Finerman, 2004; Turner, 1991), which would release the subsequent 

recommendations in 1991, 2001, 2008 and 2013 (Joint Interim Review Task Force, 2008; JTFCC 

1990; JTFCC 2001; JTFCC 2013). 

Though the JTFCC’s recommendations have provided much value to institutions offering 

CS programs over the years, educators at liberal arts colleges and universities were apparently 

underserved by the documents. Much has been written about the situation of these typically 

smaller schools and their education of students in CS (Bruce, Cupper, & Drysdale, 2010; Gibbs 

& Tucker, 1986; LaFrance & Roth, 1972; Lopez, Raymond, & Tardiff, 1977; Walker & 

Kelemen, 2010; Walker & Schneider, 1996). LaFrance and Roth (1972) conducted a workshop 

on CS education at liberal arts institutions and noted the goal of “educating the whole person” (p. 

22) with “wide variation in the degree of commitment to vocational preparation” (p. 22) among 



22 

these colleges and universities.  Lopez et al. (1977) performed a survey on curricula at liberal 

arts colleges and found that only 12% of those offering CS programs had instituted the ACM's 

recommendations from 1968. Because these institutions focus on offering students a broad 

education, compromise is often required. Walker and Schneider (1996) indicated that “a liberal 

arts education involves the investigation of a major at a reasonable level of detail [in which] the 

core areas of the discipline can be carefully and fully covered” (p. 86). It is apparent, therefore, 

that a wide variety of institutions have come to offer academic programs in CS and formal 

education has become increasingly important for students looking to obtain jobs in computing. 

Formal Education in Computing 

 According to the BLS, most of the aforementioned occupations related to computing 

require an academic degree. Computer programmers, computer systems analysts, database 

administrators, and software developers are all listed as requiring a bachelor’s degree as entry 

level education while web developers require an associate’s degree (BLS, 2015). While outlier 

examples like Bill Gates, Steve Jobs, Michael Dell, and Mark Zuckerberg have succeeded in 

creating technical ventures without completing an academic degree, it is increasingly rare to 

excel in the computing field without one (Aarts, 2015). Because the skills required in each of 

these occupations tends to be highly technical, employers seek applicants who have earned an 

academic degree and established a foundation of knowledge in the field. In 2006, 85% of 

computer software engineers and 73% of computer programmers aged 25-44 had earned at least 

a bachelor's degree (Liming & Wolf, 2008). O*Net Online (2015) reported that as of 2009, 94% 

of systems software developers, 84% of applications software developers, 78% of computer 

programmers, and 60% of database administrators had earned at least a bachelor’s degree while 

67% of computer systems analysts had earned at least an associate’s degree. Thus, education in 



23 

the form of an academic degree is predominantly required for occupations in the field. Another 

area of instruction achievement becoming increasingly visible is that of certification. 

 A prospective employee can show proof of aptitude with respect to computing products 

and systems of a certain producer (e.g. networked systems by Cisco Systems) by earning 

certification. Land and Reisman (2012) indicate that certification in computing has tended to be 

specific to vendor or domain and “helps bridge the knowledge gap between what new college 

graduates bring to the job versus what companies require” (p. 51). The IEEE Computer Society 

has offered various certifications since 2002, including Knowledge Area Certificates, Associate 

Software Engineer Certifications, Professional Competency Certifications, and Certificates of 

Achievement (Continuing Education) (IEEE Computer Society, 2015). These types of 

certifications are used to verify that prospective employees have been properly trained and have 

the necessary knowledge to help an employer meet software goals (Land & Reisman, 2012). This 

aptitude thus helps to ensure that new workers can contribute to an employer’s operations 

quickly and effectively and gives job seekers an advantage in competitive markets.  

Government has also become involved in requiring proof of propensity by those 

employed in these fields. Though licensure is not a widespread requirement for those employed 

in the computing fields, it is becoming more commonplace. Land and Reisman (2012) reported 

that ten states “require software licensure for software engineers working on software systems 

that can affect public health, safety, and welfare” (p. 52). These forms of formal education can 

help those who hope to excel in a computing career obtain the background necessary to prepare 

them for their futures. 

Though learning in places of formal education comprises a large part of the knowledge 

transfer taking place about computing, informal learning plays a significant role. Many people 



24 

work in fields outside of computing but rely on skills to develop scripts or programs in software 

applications to do their jobs (Dorn, 2011; Shein, 2014). Much learning takes place in the form of 

personal learning networks but most research has focused on what occurs in and around school 

campuses (Harding & Engelbrecht, 2015).  

Moffitt (2012) discussed informal and formal learning of CS and SE noting that several 

opportunities existed for both. Nontraditional sources of computing education abound and 

include Code Academy (www.codeacademy.com), iTunes U (http://www.open.edu/itunes/), and 

various massively open online courses (MOOCs) including Coursera (www.coursera.org), 

Udemy (www.udemy.com), and offerings by Harvard University (https://cs50.harvard.edu) and 

Stanford University (http://online.stanford.edu/courses). Moffitt (2012) observed that formal 

education can help build a solid foundation for graduates pursuing careers in the industry 

because “software and web development can be a very complex field, which at times may 

require that detailed explanation or other points of view to get through certain situations” (p. 9). 

Education in computing has certainly come a long way over the last six decades. One 

consistency during this development, however, has been the list of stakeholders. 

Stakeholders in Computer Science Education 

 There are four major groups who are deeply involved in CS education; more specifically 

in an introduction to CS course. These include industry, academic institutions, professional 

associations, and students. Experts on computing education are found in the first three groups 

and these have primary roles in this study. Mention has already been made of the ACM and 

IEEE as the major professional associations. Students are the ultimate recipients of these efforts 

and have varied expectations and their aims to learn necessary skills has been discussed. This 

section will focus on the two main groups not yet examined. 



25 

Industry 

 Firms engaged in business employ persons in varied occupations. The computing 

industry includes businesses engaged in activities directly related to the disciplines of CS, 

computer engineering, information systems, IT, and SE. Most of these distinct fields of study 

arose because of the needs of individual skill sets required by the computing industry (Chand, 

1974; Lunt, et al., 2005; Lutz et al., 2014).  

 Industry directly defines the skills necessary for employment. Norton (1998) based the 

DACUM (Developing a Curriculum) methodology on the premises that experts in industry best 

define their jobs and occupations and successful employees possess certain knowledge, skills, 

and aptitude with tools used by these experts. He indicated that:  

1. Expert workers can describe and define their job or occupation more accurately than 

anyone else … 

2. An effective way to define a job or occupation is to precisely describe the tasks that 

expert workers perform … 

3. All tasks, in order to be performed correctly, demand the certain knowledge/skills, 

tools and positive worker behaviors (Norton, 1998, pp. 1-2) 

Industry experts in the computing field should therefore be regarded as primary stakeholders 

who possess deep knowledge on the skills required to successfully design and develop hardware 

and software computing solutions. 

 Industry continuously develops business practices with the aim to improve effectiveness 

and efficiency. One of the most significant events in the software development field over the past 

two decades has been the emergence of agile methods. Beck et al. (2001) called for emphasis on 

interactions, functional software, collaboration with customers, and response to change in their 



26 

Agile Manifesto. Because of these types of business practice developments, there arises a need 

for new employees who possess some knowledge of, and perhaps the ability to implement, them. 

Since industry needs graduates who have skills necessary to contribute to an organization’s 

operations, the argument is often made that an academic program’s curriculum needs to reflect 

this requirement (Lutz et al., 2014; Tan & Venables, 2010; Winberg, 2014). Universities and 

colleges often respond to these needs. There has been much written over the past few years on 

the reasons for and proper methods of teaching agile software development practices in the 

classroom (Guercio & Sharif; 2012; Lutz et al., 2014; Rajlich, 2013). Therefore, it can be safely 

assumed that industry does serve a role in the curriculum definition of CS and related disciplines. 

 Though this influence of industry on academia is apparent, it is not necessarily the 

dominant direction of impact in SE. Ben Arfa Rabai, Bai, and Mili (2011) developed a model 

that showed that the impact of successful adoption in academia on implementation in industry 

declines with time but is stronger than industry's effect on academic learning. It is obvious, 

therefore, that industry and academia influence one another and that universities and colleges are 

also primary stakeholders. 

Academia 

 There are around 1,300 academic institutions in the United States offering undergraduate 

programs in CS or related disciplines (U.S. News & World Report, 2015). Hambrusch, 

Libeskind-Hadas, and Aaron (2015) pointed to almost 800 such institutions in their study on the 

backgrounds of Ph.D. students majoring in CS. These institutions include community colleges, 

research and other four-year universities of the private and public, for-profit, and not-for-profit 

varieties. Gray and Herr (1998) indicated that two-year associate’s level programs at community 

colleges have been attractive options for “high-skills/high-wage nonprofessional occupations” (p. 



27 

263). Though these varied institutions have different goals, there is dependence among them. It 

is perhaps no surprise that the ACM closed its 1978 curriculum recommendations with a 

discussion on the importance of articulation acknowledging that “transfer programs in 

community and junior colleges are often geared to programs at four-year institutions” (Austing, 

Barnes, Bonnette, Engel, & Stokes, 1978, p. 165). Even more recently there has been a trend for 

state governments to pass legislation to improve articulation between institutions of the two-year 

and four-year types.  

The 2005 Career-Technical Credit Transfer (CT)2 program in Ohio is one example that 

promoted flexibility for students. The legislation made it easier to transfer credits from approved 

career-technical or secondary career technical programs to four-year higher education institutions 

“without unnecessary duplication or institutional barriers” (“[CT]2 Basic Information,” n.d., para. 

1). State governments enacting this type of legislation can help address shortages of skilled 

workers within their borders. Sander (2008) pointed out that: 

Ohio's move reflects the experience of many states that face shifting economies and a 

shrinking pool of jobs for workers without college credentials. Educators in those places 

are looking for ways to provide students greater access to credit-bearing courses and, 

ultimately, greater career potential. (A23) 

The assertion here is that the needs of academic institutions, students, employers, and 

governments are better met by reducing the barriers of movement from one program to another. 

Because CS and related disciplines provide education of technical skills, they are often a 

popular domain for these types of articulation efforts. Colson (2015) reported on the importance 

of the community college system in New Hampshire and that CS majors are among the most 

common students taking advantage of dual admission and transfer programs. The situation is 



28 

similar in California. In 2014-15, there were 1,883 students enrolled in information sciences 

programs in the CSU system who had transferred from the California Community College 

system (CSU, 2015). CSU (2015) reported that over 1,200 of these were enrolled in CS or CS 

and IT programs. 

Community college administrators and faculty have found that collaboration with other 

institutions can be beneficial sources of both increased opportunities for students and enrollments 

for the institutions themselves. Levin et al. (2010) investigated best practices of programs within 

the California Community College system that have been successful at reducing the gap in 

success between majority and underrepresented minority (URM) groups; they found one of the 

top habits to be “the capacity of program personnel to develop and maintain linkages and 

relationships, both within the institution and to external parties, so that interdependence is both 

recognized and relied on to advance the interests of the program” (p. 53). These associations 

include various types of schools and a wide range of involvement.  

One example is the joint program between CSU Monterrey Bay and Hartnell College, 

which offers students the opportunity to graduate with a B.S. in CS in three years by taking 

courses offered at both institutions (CSin3, n.d.). The Californian reported that the CSin3 

program has been highly successful at attracting traditionally URMs (“Matsui Foundation 

awarding over $1M in scholarships,” 2015). Grandgenett, Thiele, Pensabene, and McPeak (2015) 

reported on the Midwest Center for Information Technology (MCIT) consortium of 10 

community colleges that have been able to improve faculty professional development practices, 

increase the relevancy of curriculum, raise the number of female enrollments, and enhance 

articulation with both secondary schools and four-year institutions with their IT offerings. Bothe 

et al. (2009) reported on a collaborative effort involving individuals from seven universities in 



29 

five countries in Europe to create curriculum for a master’s program in SE. Finally, Molnár, 

Toth, and Vincent-Finley (2014) recommended sharing of resources in curriculum development 

efforts and potentially allowing students at their institutions to enroll in courses at each of their 

different university’s campuses. Collaboration among institutions of higher education appears to 

be a trend that is gaining in popularity as it offers opportunities for institutions to improve the 

quality and efficiency of program offerings. 

Development of curriculum is an integral step in the creation of new academic programs. 

Content and delivery shape the student experience and curriculum designers look for resources to 

aid their efforts. Ornstein and Hunkins (2013) include science, society, moral doctrine, 

knowledge, and the learner as sources of information for the design of curriculum. The 

aforementioned collaboration efforts allow for sharing of knowledge and best practices along 

each of these domains. Franklin (2015) advocated including computing education research at the 

forefront of teaching CS to better understand how students learn concepts and what tools, 

languages, techniques, and themes are most appropriate. She stated that “researchers need deep 

expertise in computer science as well as a robust understanding of the types of questions and 

methods used in education” (Franklin, 2015, p. 35). The literature on CS education, therefore, 

provides a rich source of information for one tasked with developing curriculum. There has been 

much written on introductory courses throughout the history of CS. The findings in the literature 

serve as rich sources of information to create the straw models for experts to consider when 

judging the merits of different competencies, programming languages, and assessments. Before 

contemplating each of these areas, however, it is necessary to consider the breadth of the 

audience in introduction to CS courses and take into account their varying goals. 

 



30 

Introductory Computer Science Courses 

Introductory courses in CS serve many purposes to their various stakeholders. Program 

administrators and faculty might consider the course a gateway to a program, a foundation for 

further in-depth study, or a combination of these two (Ali & Smith, 2014; Dodds, Libeskind-

Hadas, & Kuenning, 2008). Ali and Smith (2014) indicated that an introductory course is “useful 

in two ways: … as a marketing tool for the teaching department to bring more students into their 

programs … [and] as a prerequisite for other courses within the department and prepare student 

for advanced courses in the program” (p. 60). Urness and Manley (2011) concurred that these 

courses can be effective in attracting new students to CS. As such, development of curriculum 

for such a course must establish the purpose and degree to which these varied aims are to be met. 

The topic of this study is an introductory course in CS that aims to provide a survey of 

the areas within the discipline as well as an introduction to programming. The goal of 

introducing the discipline of CS to a wide audience has given rise to what has been termed the 

CS0 course. The identifier alludes to the ACM’s naming of the original course suggestions 

mentioned in its 1978 curriculum recommendations, where Austing et al. (1978) identified 

courses in Computer Programming I and Computer Programming II as CS 1 and CS 2, 

respectively. Since then, the course title CS0 has come to represent a breadth-first introduction to 

the areas of the CS discipline (Bruce, Fowler, Guzdial, King, & Woszczynski, 2005; Forte & 

Guzdial, 2005; Huang, 2008; Urness & Manley, 2011), an introduction to programming (Ali, 

2009; Guo, 2014), or a reduced or lack of emphasis on programming (Cheng, Jayasuriya, & Lim, 

2010; Cortina, 2007; Enbody, Puch, & McCullen, 2009). Davies, Polack-Wahl, and Anewalt 

(2011) identified CS0 as “an introductory course with no prerequisites involving at least some 

programming that does not count towards the major” (p. 626) and a CS1 course as “the first 



31 

required course in the major programming sequence” (p. 626). They found wide variance in the 

emphasis on programming in CS0 courses (Davies et al., 2011). Hertz (2010) argued that the 

titles have become meaningless as he found little agreement on the topics of importance in CS1 

and CS2 courses among educators. In spite of a lack of consensus on the exact definition of such 

courses, the terminology continues to be used and the focus for this study can therefore be 

termed a CS0 course. 

It is, perhaps, no surprise that the first curriculum recommendations from the ACM 

Curriculum Committee on CS (1965) included special mention of introductory courses. What 

might be more of a revelation, however, is that the authors of these recommendations 

acknowledged from the beginning that introductory courses have a varied audience and that “the 

background of the students, the language appropriate to the subject, the pertinent exercises and 

examples, all differ, depending on the students' primary field” (p. 544). The importance of 

computing to different careers was, therefore, understood in these early days. That view 

continues today. Denning and Gordon (2015) indicated that “surveys show students are taking up 

computing … because they perceive computer science as compatible with almost every other 

field” (p. 28). There is indeed a perception that CS has much to offer students of various 

disciplines with differing career aspirations. Introductory courses in CS have reportedly become 

the most popular offerings at university and college campuses all across the United States 

(Bernhard, 2014; Lazowska et al., 2014; Soper, 2014). Such courses serve varied purposes for 

the different students who enroll in them. CS is often viewed as an avenue to teach general and 

translatable skills, such as computational thinking and creativity. 

 

 



32 

General Skills 

There is debate among experts on what is meant by computational thinking (Committee 

for the Workshops on Computational Thinking & Computer Science and Telecommunications 

Board, 2010). Papert (1980) originally used the term and mentioned its importance in everyday 

life but did not elaborate on its meaning. Wing (2006) explained computational thinking as 

involving “solving problems, designing systems, and understanding human behavior, by drawing 

on the concepts fundamental to computer science” (p. 33). Shein (2014) seemingly agreed stating 

that it “helps people learn how to think abstractly and pull apart a problem into smaller pieces” 

(p. 17). Lazowska et al. (2014) identified these skills as “the problem analysis and decomposition 

(stepwise refinement), abstraction, algorithmic thinking, algorithmic expression, stepwise fault 

isolation (debugging), [and] modeling” (slide 16). These skills are ultimately of high importance 

to students studying CS (Dodds et al., 2008; Zhao, Su, & Wang, 2015) but offer much to others 

as well. Barr and Stephenson (2011) advocated for increased emphasis on computational 

thinking in K-12, stating: 

Computational thinking is an approach to solving problems in a way that can be 

implemented with a computer. Students become not merely tool users but tool builders. 

They use a set of concepts, such as abstraction, recursion, and iteration, to process and 

analyze data, and to create real and virtual artifacts. Computational thinking is a problem 

solving methodology that can be automated and transferred and applied across subjects. 

(p. 51) 

Students will likely find it useful to develop this ability to solve problems in this manner, no 

matter their major.  



33 

Developing this attribute has seemingly become increasingly important as evidenced by 

its augmented coverage in the literature over the past few years. Czerkawksi and Lyman (2015) 

agreed with this assertion stating “attaching computational thinking to our current list of 

discussions, however, and seeking deeper understanding of its outcomes will yield future 

benefits across multiple academic disciplines” (p. 64). That benefit appears to be increasingly 

acknowledged by students as evidenced by the aforementioned popularity of introductory 

computing courses. Another general attribute of courses in CS is creativity. 

While creativeness is an emphasis in many academic courses, it has been discussed more 

as an outcome of studying computing. Forte and Guzdial (2004) posited that when considering 

the computer as a tool for communication and becoming literate, one “must acknowledge that 

literacy implies not only consumption, but also creation” (p. 1). The authors called for an 

increased emphasis on creativity in the CS classroom and that request has not diminished. 

Practices within the CS classroom can allow for opportunities for students to “exercise their 

creativity and have a sense of ownership over what they have created” (Cheng et al, 2010). A 

focus on creativity is often ignored in curriculum planning (Ornstein & Hunkins, 2013) and 

students may find a lack of opportunities to express themselves in their classes. Porter and Simon 

(2013) indicated that “CS is a creative endeavor” (p. 36) and students from all types of 

backgrounds may seek out opportunities to develop this skill in such classes. 

Introductory courses, therefore, can attract a wide variety of students with potentially 

different desired outcomes. Forte and Guzdial (2004) stated that “the increase in non-majors who 

are required to take introductory computer science courses or who wish to improve their 

technical skills is drawing more attention to the strengths and weaknesses of traditional course 

implementations for a diverse student population” (p. 3). It can be challenging to address the 



34 

needs of different students and designing such courses may prove difficult. Those majoring in 

CS have different expectations than individuals who may be taking the course as an elective. 

Simon et al. (2009) performed a survey in which they asked students in CS1 courses at various 

institutions to define the programming experience and found non-majors to be less apt to provide 

positive responses but more prone to report it as useful and interesting; majors were more likely 

to use the words “fun” and “challenging.” Many institutions have taken to offering different 

introductory CS courses for learners based on their backgrounds or majors (Cohoon, Cohoon, & 

Soffa, 2013; Dodds et al., 2008; Forte & Guzdial, 2005; Guzdial, 2009; Norman & Adams, 

2015). The curriculum in these types of courses can be tailored to the students enrolled allowing 

for a more focused approach. 

This practice, however, can be prohibitive for smaller institutions or those with limited 

resources. Some introductory course offerings, therefore, must be designed to cover the breadth 

of the CS discipline to majors and non-majors alike. Many researchers have investigated best 

practices to meet the disparate needs of all students in one inclusive course (Bishop-Clark, 

Courte, Evans, & Howard, 2007; Malan & Leitner, 2007; Schneider, 2004). Schneider (2004) 

presented a three course introductory CS sequence and chose not to distinguish between majors 

and non-majors indicating “it is quite common for beginning students to have no idea of the field 

in which they will major or minor” (p. 41). The course of focus in this study is an example of one 

that will include students from different majors. The remainder of this literature review will aim 

to generate lists of competencies, programming languages, and assessments to consider for this 

CS0 course. This output will then serve as the three straw models for experts to deliberate in the 

Delphi study. 

 



35 

Competencies 

Since the early days of CS education in this country there has been dispute about what to 

cover in an introductory CS course. Gupta (2007) wrote about the development of CS curriculum 

in the 1960s and discussed the dispute about the objectives to be covered: 

Perlis believed the introductory course should be more about problem solving and 

algorithms while Arden thought computing could be used to motivate students' ideas in 

mathematics. Hamming's view was that the course should focus more on the whole 

spectrum of applications including those that were not mathematical. (p. 43) 

Before a discussion on the potential competencies of an introductory CS course, it is 

desirable to clarify the difference between competencies, objectives, and outcomes. Though the 

words are sometimes used interchangeably, they are applied to different ideas in education. 

Hartell and Foegeding (2006) defined the terms as follows: 

Competency: a general statement detailing the desired knowledge and skills of student 

graduating from [a] course or program. 

Objective: a very general statement about the larger goals of the course or program. 

Outcome: a very specific statement that describes exactly what a student will be able to 

do in some measurable way. A competency may have several specific learning outcomes 

so a course typically contains more outcomes than competencies. (p. 69) 

Competencies, therefore, can be expected to be somewhat general and not specifically 

measurable. They do, however, define what a student will know or be able to do at some broad 

level. 

The choice of competencies of a course defines its curriculum design. Barberà, Layne, 

and Gunawardena (2014) compared competencies for online courses from three different 



36 

disciplines (education, engineering, and business) in three different countries (Spain, United 

States, and Venezuela); they noted that instructional design was important to meet “the local 

context such as the needs and expectations of the learners, faculty perspectives, beliefs and 

values, and the needs of the institution, the community, and country” (p. 163). The authors, 

therefore, contend it is important to consider the needs of a locality in establishing competencies 

for a course of study. Barberà et al. (2014) went on to report that: 

the type of competencies that the three disciplines from three countries [agreed] on: 

knowledge of the field, higher order cognitive processes such as critical thinking, 

analysis, problem solving, transfer of knowledge, oral and written communication skills, 

team work, decision making, leadership and management skills. (p. 163) 

There are competencies, therefore, that will be deemed important regardless of location or major. 

Starr, Manaris, and Stalvey (2008) provide a two-step process in which Bloom's 

taxonomy can be applied to establish outcomes: first “identify/select the topics to be covered… 

[and second] decide which is the highest level of mastery that all students should achieve upon 

completion of the course” (p. 263). The literature does provide clues, but not exactly defined 

guidance on the desired level of mastery in introductory CS0 courses. Their procedure to 

establish competencies was to first identify topics from the research and then apply the proper 

level of Bloom’s taxonomy to indicate the applicable level of ability. 

Topics Identified from Professional Associations and Textbooks 

The identification of topics to cover in an introductory CS course is an arduous task. 

There are numerous subjects but of utmost consideration is the intended focus of the course. By 

definition, a breadth-first approach reflects a wide range of topics in the discipline (JTFCC, 

2001) so a consideration of disparate areas is required.  



37 

Surakka (2007) used a literature review and group work to select 42 topics and skills 

important for software development professionals. He listed these in a questionnaire on 

commonly required CS skills, which he distributed to academic and industry specialists and 

students in Finland. The 19 topics that were rated at least a three on a four-point Likert scale by 

both the academic and industry groups were: data structures and algorithms, procedural 

programming, object-oriented programming, software architectures, operating systems, 

computer/data security, distributed systems, compilers, concurrent programming, computer 

architecture, design, implementation, requirements, test, concept exploration, version and 

configuration management, project management, and documentation. (Surakka, 2007). 

Surakka (2007) found the industry group rated three items at least three out of four on a 

Likert scale that the academic group failed to rate as high (internet protocols, script 

programming, and systems programming). The academic group rated two items that the industry 

group did not rate at least a score of three (database management systems and implementing 

techniques of user interfaces) (Surakka, 2007). Because of the similarity in Surakka’s research to 

this particular study, the topics he identified merit consideration for inclusion. 

The JTFCC’s recommendations from 2001 and 2013 were consulted for their direction on 

the desired competencies for students in introductory courses. While the JTFCC (2001) covered 

a multi-course introductory sequence, direction was gathered in the context of a single 

introduction to CS course.  

The 2013 guidelines differed from those released in 2001, which had included specific 

topic suggestions for introductory classes. The JTFCC (2001) provided course descriptions for 

six different approaches (i.e. focus on imperatives, objects, functional, breadth, hardware, and 

algorithms). In the 2013 recommendations the JTFCC (2013) authors discussed introductory 



38 

pathways, focus on programming, programming languages, software development, parallel 

processing, and platform as topics to consider in introductory courses. They did not, however, 

make specific recommendations for introductory courses and left it to institutions to make 

decisions based on local needs. 

The JTFCC’s (2001) recommendations did, however, identify major topics for 

competencies. Specifically, suggestions were made for a breadth-first course, CS100B Preview 

of Computer Science covering the following topics: mathematical preliminaries, algorithms, 

algorithmic analysis, hardware realizations of algorithms, programming fundamentals, operating 

systems and virtual machines, networking and computer graphics, and social and professional 

issues (JTFCC, 2001). Topics in mathematics were eliminated as the institution that would host 

the course would present this material in a separate course. 

The Liberal Arts Computer Science Consortium (LACS) released a model curriculum for 

liberal arts schools offering CS programs. The LACS (2007) based their suggestions on JTFCC’s 

2001 recommendations and included hours to focus on topics in introductory courses. They also 

offered objects-first and functional-first recommendations and topics from the first course from 

each of these sequences (CS1A and CS1B) were compared to the existing list. It was deemed 

that the subjects tracing, testing, and debugging and exceptions (LACS, 2007) were the only 

ones missing. These topics were combined and added to the existing list under the heading 

software development and engineering. 

The JTFCC’s 2013 curriculum recommendations were also analyzed for additional input. 

Specifically, the body of knowledge topics were reviewed to ensure all had corresponding 

coverage within the list identified for an introductory course. The topic of human-computer 

interaction was found to be missing and added to the list. Other topics were deemed to be 



39 

sufficiently covered by existing entries. As an example, platform-based development was 

thought to be addressed by the topics of information systems and World Wide Web and cloud 

computing.  

Three textbooks that were deemed appropriate for a CS0 course were also consulted. The 

texts were Connecting with Computer Science (CwCS) (2nd edition) (2011) by Anderson, Ferro, 

and Hilton, Invitation to Computer Science (ItCS) (7th edition) (2016) by Schneider and 

Gersting, and Computer Science Illuminated (CSI) (6th edition) (2016) by Dale and Lewis. Dale 

and Lewis (2016) indicated in the preface to their text that they surveyed experts in CS and asked 

them to list four topics each for student mastery of CS0 and CS1 courses and four additional 

topics of the latter that required familiarity. Though they don’t discuss their methodologies, they 

state the results, in conjunction with other research, formed the outline for the text. Tables of 

contents and indices of the texts were analyzed for treatment on topics and a list was developed. 

The lists from the five sources were then merged as necessary. The results are shown in Table 5.  

 This table lists 26 topics and the sources that give considerable coverage (more than a 

simple mention in the textbooks). All the subjects listed are covered in at least two of the sources 

except file structures. Anderson et al. (2011) dedicate an entire chapter to this area but similar 

attention was not found in the other sources. 

Topics Identified in Journal Articles 

 Additional resources in the literature discuss topics of concern in introductory CS 

courses. Many authors review topics in varying levels of detail while writing about an 

introductory course’s design (Alvarado & Dodds, 2010; Cortina, 2007; Dodds et al., 2008; 

Huang, 2008; Kelly, 2007; Muñoz et al., 2013; Schneider, 2004; Whitfield, 2003). Other  

 



40 

Table 5 

Coverage of Potential Topics for Introductory Computer Science 

 

Topic CSI 

(2016) 

ItCS 

(2016) 

CwCS 

(2011) 

JTFCC 

(2001, 2013) 

& LACS 

(2007) 

Algorithmic analysis X X  X 

Algorithms and problem solving X X X X 

Artificial intelligence X X  X 

Basic computability X X  X 

Binary values and number systems X X X X 

Digital logic and digital systems X X X X 

File structures   X  

Fundamental data structures X X X X 

Fundamental programming constructs X X X X 

Hardware realizations of algorithms X X X X 

History of computing X X X X 

Human computer interaction   X X 

Information systems X X X X 

Language translation and compilers X X  X 

Networking X X X X 

Operating systems and virtual machines X X X X 

Overview of programming languages X X X X 

Parallel and distributed computing X X X X 

Programming fundamentals X X X X 

Recursion X X  X 

Security of information and networks X X X X 

Simulation, modeling, graphics, and gaming X X  X 

Social and professional issues X X X X 

Software engineering   X X 

Software verification and validation X X X X 

World Wide Web and cloud computing X X X X 

 

 

 

researchers simply mention subjects in CS when discussing a particular study that took place in 

the context of an introductory course (Bishop-Clark et al., 2007; Enbody et al., 2009; Norman & 

Adams, 2015; Wang, Su, Ma, Wang, & Wang, 2011). The topics identified from these other 



41 

sources can be divided into three main categories: programming, hardware and lower levels of 

the Open Source Interconnection (OSI) model (International Organization for Standardization 

[ISO]/International Electrotechnical Commission [IEC], 1994), and professional skills. 

Topics in programming 

 As previously mentioned, one of the more elementary topics in programming is 

algorithms. Authors have often written on the need for students to be able to read, write, and 

explain algorithms (Cortina, 2007; desJardins & Littman, 2010; Goldman et al., 2008; LaFrance 

& Roth, 1972; Schneider, 2004; Schulte & Bennedsen, 2006; Surakka, 2007; Walker & 

Kelemen, 2010; Walker & Schneider, 1996; Zhao et al., 2015). Goldman et al. (2008) discussed 

the necessity of exhibiting this skill to conceptualize problems and design solutions. Some 

authors specifically mentioned the need for students to have a working comprehension of 

classical CS algorithms, such as searching and sorting (desJardins & Littman, 2010; Schneider, 

2004; Walker & Schneider, 1996). Students are thus expected to be able to create algorithms to 

solve problems they encounter. 

 Related to the actual creation of algorithms is the ability for students to analyze existing 

ones. Several authors mentioned the ability to analyze the efficiency of algorithms as being 

particularly desirable (Cortina, 2007; Roach & Sahami, 2015; Schneider, 2004; Schulte & 

Bennedsen, 2006). Students with this knowledge would be expected to be able to compare 

algorithms and identify higher quality solutions to problems. Skills related to algorithms can be 

learned independent of programming language. The understanding of programming essentials, 

however, are often taught in the context of a particular language or a paradigm.  

 

 



42 

Programming fundamentals 

The topic of programming fundamentals can receive varying levels of emphasis in 

introductory courses; whether they be of the CS0 or CS1 types. Tew (2010) attempted to identify 

the key concepts in a CS1 course using the CC2001 and four textbooks as sources to reduce the 

topics she had obtained from the literature. She focused only on the areas of fundamentals and 

object-oriented programming and discarded concepts in other categories (including SE, 

algorithms and complexity, etc.). Tew (2010) grouped concepts into a table arranged under 

headings of: expressions, control structures, functions/methods, data types and structures, and 

object-oriented programming; also included were the items variable, simple I/O, and recursion, 

which were not grouped under a dedicated heading (Tew, 2010). Goldman et al. (2008) also 

mentioned variables and recursion as a topic for an introductory course.  

Several of the headings listed by Tew (2010) could be grouped under the heading of 

programming fundamentals and many have received distinct mention in the literature. These 

areas include expressions (Tew, 2010); control structures (Norman & Adams, 2015; Schneider, 

2004; Tew, 2010), conditionals (Alvarado & Dodds, 2010; Walker & Schneider, 1996), 

functions and methods (Schneider, 2004; Tew, 2010), and the previously mentioned topic of 

recursion (Alvarado & Dodds, 2010; Cortina, 2007; Dorn, 2011; Schulte & Bennedsen, 2006; 

Walker & Schneider, 1996; Winter, 2014). These items could be considered as suggested 

competency topics for a CS1 course emphasizing programming and warranted some 

consideration in a CS0 course that includes programming. 

In addition to these subtopics of programming fundamentals were subjects related to data. 

Many authors included data types and structures, and arrays and lists (Alvarado & Dodds, 2010; 

Cortina, 2007; Roach & Sahami, 2015; Schneider, 2004; Schulte & Bennedsen, 2006; Surakka, 



43 

2007; Tew, 2010; Walker & Kelemen, 2010; Walker & Schneider, 1996; Whitfield, 2003). 

Whitfield (2003) specified in a learning outcome that students “list the scalar data types 

supported by the core language, identifying the domain of and the operations defined for each 

type” (p. 215). Students would be expected to describe the role and functionality of data 

structures in computer programs. 

A final consideration related to programming fundamentals is the choice of whether or 

not to focus on a paradigm. The JTFCC (2001) provided for three distinct programming-first 

models in their curriculum recommendations (imperative-first, objects-first, and functional-first). 

The object-oriented paradigm warrants particular mention as it has often been mentioned in the 

context of introductory courses (Ali & Mensch, 2008; Alvarado & Dodds, 2010; Goldman et al., 

2008; Norman & Adams, 2015; Schulte & Bennedsen, 2006; Surakka, 2007; Tew, 2010). The 

choice of a particular paradigm and potential focus on fundamentals related to object-oriented 

programming in a CS0 course should be considered. Another topic for a potential competency is 

an overview of programming languages (Cortina, 2007; Walker & Schneider, 1996). These 

fundamentals all form a foundation for the act of programming, which is another potential 

competency for students in an introductory course. 

Developing programs 

Writing programs is often the main focus of an introductory CS course (Alvarado & 

Dodds, 2010; Ali & Smith, 2014; Baldwin, Brady, Danyluk, Adams, & Lawrence, 2010; Bishop-

Clark et al., 2007; Dodds et al., 2008; Forte & Guzdial, 2005; Schneider, 2004 Wang et al., 2011; 

Whitfield, 2003). Schneider (2004) included the skills of compiling, testing, and debugging as 

being elementary to programming. Wang et al. (2011) specified that students have the ability to 

“write, type in, correct and run programs” (p. 220). Baldwin et al. (2010) noted these skills were 



44 

taught in an introduction to CS course at a liberal arts college. Programming can be an intensive 

competency and can be the sole focus of introduction courses, especially those of the CS1 

variety. It can also, however, be associated with related subtopics and various outcomes. 

Kelleher and Pausch (2005) defined programming as “the act of assembling a set of 

symbols representing computational actions” (p. 83). This ability, however, is tied to other 

related competencies, including “how to express instructions to the computer (e.g., syntax), how 

to organize these instructions (e.g., programming style), and how the computer executes these 

statements” (Kelleher & Pausch, 2005, p. 86). Whitfield (2003) specified a competency that 

called for students to “identify and write code containing various statements supported by the 

core language, including assignment, input, output, selection, iteration, and function call” (p. 

215). The foundations topics mentioned previously are of utmost importance for students to 

properly develop the ability to program. Additionally, other topics in CS related to programming 

have also been mentioned for primary application in introductory courses. 

Applications, techniques, and processes 

The applications, techniques, and processes of programming identify additional subjects 

for potential competencies to be considered. Applications of programming include artificial 

intelligence, information systems, computer graphics, and internet protocols, for example. 

Authors have written about artificial intelligence as a topic of study in an introductory CS course 

(Bishop-Clark et al., 2007; desJardins & Littman, 2010; Huang, 2008). Huang (2008) shared a 

design for an introductory CS course emphasizing the principles of artificial intelligence as a 

major theme. He stated that  

Regardless of whether they take future CS courses, students will be exposed to the 

challenge, power, and beauty of designing and implementing algorithms, as well as the 



45 

wide-reaching impact of computer science and the myriad opportunities available for 

those who study it. (Huang, 2008, p. 101)  

A topic as seemingly as complex as artificial intelligence can, therefore, be considered in a 

breadth-first introduction course. 

 The subject of information systems also warrants consideration. Many non-majors, 

including those studying business for example, might find the subject especially useful. Authors 

have included mention of information systems and structured query language (SQL) databases 

(Cortina, 2007; Poulova & Klimova, 2015; Surakka, 2005; Surakka, 2007). Surakka (2005) 

identified database management systems as one of the important subjects for graduates in 

software systems programs in Finland. Interestingly the academic group in the Delphi portion of 

his study placed more interest on this area than did the industry experts (Surakka, 2007). Other 

applications of programming include the World Wide Web and internet protocols (Surakka, 

2007), computer graphics (desJardins & Littman, 2010), and modeling for simulation (Norman 

& Adams, 2015). 

 Techniques of programming include those skills that programmers rely on in their 

activities. These topics include information, or data, representation (Fulton & Schweitzer, 2011; 

Walker & Schneider, 1996), documentation (Surakka, 2007), user-interface techniques (i.e. 

human-computer interaction) (Surakka, 2007), and basic computability (desJardins & Littman, 

2010). The topic of binary numbers, or numbering systems in general, (desJardins & Littman, 

2010; Goldman et al., 2008) could be considered a subset of data representation. A major related 

topic is SE, which has become increasingly popular in recent years. 

 Software development and its associated processes has garnered significant interest in 

introductory courses (Forte & Guzdial, 2005; Kelly, 2007; Muñoz, et al., 2013; Poulova & 



46 

Klimova, 2015; Schulte & Bennedsen, 2006; Vitkutė-Adžgauskienė, & Vidžiūnas, 2012; Walker 

& Schneider, 1996; Zhao et al., 2015). Agile methods, such as pair programming are popular 

practices in early programming courses and these have sometimes been found to improve student 

persistence (Barker, McDowell, & Kalahar, 2009; Bishop-Clark et. al, 2007; Guercio & Sharif, 

2012; Horton, Craig, Campbell, Gries, & Zingaro, 2014; McDowell, Werner, Bullock, & Fenald, 

2006; Porter, Guzdial, McDowell, & Simon, 2013; Rubio, Romero-Zaliz, Mañoso, de Madrid 

Teague & Roe, 2007).  

 Including topics and methodologies from SE can help shape the curriculum for an 

introductory course. Vitkutė-Adžgauskienė and Vidžiūnas (2012) promoted “shifting the focus 

from teaching programming paradigms towards concentrating on main software engineering 

concepts” (p. 280). Goldman et al. (2008) identified topics such as debugging/exception handling 

and designing tests as among the most important related to program design. Surakka (2007) 

identified several topics that were important to both academics and industry professionals 

including design, requirements, test, version and configuration management, project 

management, etc. These topics in SE, therefore, should also be considered by the experts in this 

Delphi study. 

Topics in hardware and other levels of the OSI model 

 The topics mentioned thus far reside in the programming and applications layers of the 

OSI model (Dale & Lewis, 2016). Several topics have been identified for introductory CS 

courses that deal with hardware and computing activities associated with other levels of the OSI 

model (OSI/IEC, 1994). The subject areas related to the study of hardware include digital circuits 

and Boolean logic (desJardins & Littman, 2010) and computer architecture and organization 

(Alvarado & Dodds, 2010; Bishop-Clark et al., 2007; desJardins & Littman, 2010; Poulova & 



47 

Klimova, 2015; Surakka, 2007). The study of computer architecture introduces students to the 

hardware systems and components that are used in computing. A related topic that has identified 

as increasingly important is parallel and distributed systems and programming (Roach & Sahami, 

2015; Surakka, 2007; Winter, 2014). 

 Other associated areas sometimes encompass multiple layers of the OSI model (OSI/IEC, 

1994).  These include operating systems, (Surakka, 2007); computer networks (Bishop-Clark et 

al., 2007; Poulova & Klimova, 2015), and compilers (Bishop-Clark et al., 2007; Cortina, 2007; 

Surakka, 2007). Operating systems form the interface between a student’s programming and 

hardware (Dale & Lewis, 2016; Schneider & Gersting, 2016). Compilers are used to translate a 

program into executable source code (Dale & Lewis, 2016; Schneider & Gersting, 2016). The 

topic of networks deals with aspects of communication and associated hardware in computing. 

Two additional subtopics that are related to networks are data compression (desJardins & 

Littman, 2010) and computer and data security (desJardins & Littman, 2010; Fulton & 

Schweitzer, 2011; Surakka, 2007; Whitfield, 2003). This latter area has also received increasing 

attention in recent years (JTFCC, 2013).  

 A final subject related to computer hardware and programming is the history of 

computing. This topic has also been mentioned as an area of focus for introductory courses 

(Cortina, 2007; Walker & Schneider, 1996) and allows students to see the development of 

computer artifacts and processes over the past seven decades. These areas constitute a breadth of 

topics that are of particular interest for CS majors, and of debatable importance to non-majors. 

Of less question is the relevance of professional skills to both groups. 

 

 



48 

Professional skills 

Professional skills are often emphasized both for non-majors and majors in introductory 

CS courses (Muñoz, et al., 2013). Sometimes referred to as soft skills, they involve the 

mechanics one utilizes to perform job activities. While this identifier can mean different specifics 

for majors and non-majors, it is nonetheless an important component to any introductory CS 

course which houses both groups. Roach and Sahami (2015) stated that  

any CS curriculum should prepare graduates to succeed in a rapidly changing field; thus, 

it must prepare students for lifelong learning and include professional practice 

elements—communication skills, working in teams, ethics, and so on—as components of 

the undergraduate experience. (p. 116) 

The authors referred to the curriculum of a program as a whole but their statement can easily be 

put into the context of an introductory course. These skills range from those that can be 

developed in various courses and subjects, such as teamwork and communication, to others in 

which CS specifically has been found to be effective and unique context for their development. 

An introduction to CS course for majors and non-majors alike provides interdisciplinary 

opportunities to develop such skills. Several researchers have discussed the development of 

teamwork, interpersonal, and group skills (Guercio & Sharif, 2012; Muñoz et al., 2013; Soper, 

2014; Walker & Kelemen, 2010; Whitfield, 2003). Soper (2014) wrote that according to Ed 

Lazowska, of the University of Washington, teamwork is one of the most important 

competencies to develop in a CS course.  

 Teamwork and collaboration 

Even though computer programming is often associated with individual work in which 

one works alone at a computer terminal (Teague & Roe, 2007), it heavily requires working with 



49 

others. It has been found that CS programs have work to do to dispel these misconceptions and 

show students that understanding can be developed effectively in team situations (Lewis, 

Jackson, & Waite, 2010). Muñoz et al. (2013) specified the need to work both autonomously and 

in interdisciplinary teams. An introductory CS course can be designed to offer opportunities for 

both experiences to students. 

An emphasis on teamwork seemingly has other benefits. Law, Lee, and Yu (2010) 

studied the key factors that motivate students to learn in computer programming courses and 

found only “social pressure and competition” (p. 226) correlated with efficacy. These 

experiences provided in a CS course, therefore, can help students to develop self-worth. 

Additionally, Barker et al. (2009) found increased student-to-student interaction was the most 

significant determining factor of CS majors in an introductory course to persist in their program. 

The previously mentioned method of pair programming provides occasions to develop these 

skills. McDowell et al., (2006) found pair programming to specifically improve student 

persistence in CS and quality of programs, and to increase enjoyment and confidence of students 

in an introductory course; they suggested the learning technique as a potential solution to 

improving the performance of URMs. 

An emphasis on developing teamwork capabilities has perceived benefits for students. 

Sometimes this focus can provide students with chances to develop other competencies. Teague 

and Roe (2007) stated that: 

Encapsulating collaboration into learning to program can effectively utilise the resources 

already available, encourage more vigorous and active engagement by students; 

encourage them to think aloud and verbalise every step of their problem solving process, 

as well as satisfy their intense need for interaction and support. (p. 17) 



50 

An ability mentioned here, problem solving, is another highly important professional skill that 

can be developed in an introduction to CS course. 

Problem solving and related attributes 

 Problem solving was one of the most often mentioned competencies for introductory CS 

courses in the reviewed literature (Barberà et al., 2014; Cheng et al., 2010; Cortina, 2007; Dodds 

et al., 2008; Enbody et al., 2009; Fulton & Schweitzer, 2011; Guercio & Sharif, 2012; LACS, 

2007; Muñoz et al., 2013; Norman & Adams, 2015; Roach & Sahami, 2015; Schneider, 2004; 

Schulte & Bennedsen, 2006; Shein, 2014; Sonnier, 2013; Walker & Schneider, 1996; Walker & 

Kelemen, 2010; Wang et al., 2011; Whitfield, 2003; Zhao et al., 2015). This competency has 

been linked with other benefits, some that are especially important to majors. Teague and Roe 

(2007) stated that “the basic problem solving process template has been instrumental in 

highlighting the advantages of good documentation in the early stages of program design, 

especially for more challenging exercises by novice programmers” (p. 11).  

Other authors have repeated the importance of structure in the problem solving approach 

and considered other benefits, which are desirable to students from all disciplines. Poulova and 

Klimova (2015) argued for the importance of problem analysis as a key competency. They 

identified it as the “ability to approach the problem broadly and consider connections, ability to 

structure the problem, its generalization or on the contrary, its specification” (Poulova & 

Klimova, 2015, p. 1999). Tackling a problem broadly relies on a capability to properly define it. 

The ability to seek and analyze information from different sources is related and has also been 

mentioned (Enbody et al., 2009; Muñoz et al., 2013). 

It is no wonder that problem solving, therefore, receives considerable mention. Sonnier 

(2013) reasoned about the role of a CS program in liberal arts institutions, stating the intent “to 



51 

tie classical logic to digital logic and integrate an understanding of modern digital concepts into 

the traditional liberal arts, the program should have a balance of theory and application and focus 

on problem solving” (p. 119). Thus the ability to solve problems can indeed be viewed as a 

central emphasis for any CS course. One can consider, though, that to be able to solve problems 

effectively, students must develop alternate ways of thinking. 

Ways of thinking 

The study of CS has been linked with methods of thinking that can be viewed as 

professional skills. These include systems, computational, algorithmic, critical, and creative 

thinking. Poulova and Klimova’s (2015) previous mention of “an ability to approach a problem 

broadly” (p. 1999) is related to a capacity to view the problem’s environment as a system. 

Muñoz et al. (2013) also mentioned systems thinking as a skill to be developed by an 

introduction to CS course. The ability to maximize understanding of one’s environment is one 

that is translatable to varied domains; so too are algorithmic and computational thinking. 

The typical focus on algorithms in CS courses has already been mentioned. Algorithmic 

thinking has been identified as a desirable attribute to be gained by students studying CS (Courte 

& Howard, 2005; Fulton & Schweitzer, 2011; Gupta, 2007; Katai, 2014; Kiss, 2013; Lazowska 

et al., 2014; Norman & Adams, 2015; Schneider, 2004). Katai (2014) argued for algorithmic 

thinking as an important skill, pointing out that “many fields of modern life involve the processes 

of following procedures, applying protocols or implementing techniques, all of which can be 

viewed as human-processed algorithms” (p. 287). Liberal arts colleges and universities have 

been known to emphasize this skill in CS programs. Baldwin et al. (2010) presented examples of 

five CS programs at liberal arts institutions and differentiated them from offerings at other 

colleges and universities. They specifically noted an increased emphasis on algorithms, stating 



52 

that there is “a general consensus among the liberal arts programs to require more work in the 

algorithms and complexity area than required by the ACM/Computer Society model, and to treat 

material required by the ACM/Computer Society model in areas such as net-centric computing, 

graphics and visual computing, and intelligent systems as desirable but optional” (Baldwin et al., 

2010, p. 27). 

Related to algorithmic thinking is the aforementioned general skill of computational 

thinking, which has also received much attention as a desirable skill (Czerkawski & Lyman, 

2015; Dorn, 2011; Forte & Guzdial, 2004; Franklin, 2015; Shein, 2014; Syslo, 2015; Walker & 

Kelemen, 2010; Wing, 2006; Zhao et al., 2015). Wing’s (2006) previously mentioned definition 

included recursion, abstraction and decomposition and heuristic reasoning as attributes for 

students to learn and utilize. Syslo (2015) considered computational thinking as an extension of 

algorithmic thinking while Shein (2014) indicated it “helps people learn how to think abstractly 

and pull apart a problem into smaller pieces” (p. 17). This capability has been increasingly 

referred to as a general skill that is necessary for all (Czerkawski & Lyman, 2015; Wing, 2006). 

Critical thinking is yet another related skill. 

The ability to think critically is one that is often mentioned as a desirable professional 

skill that can be developed in CS courses (Barberà et al., 2014; LACS, 2007; Muñoz, et al., 

2013; Voskoglou & Buckley, 2012; Whitfield 2003). Voskoglou and Buckley (2012) pointed out 

that though a universal definition is elusive, critical thinking is a foundational skill for 

computational thinking and “plays a central role in knowledge acquisition and creation” (p. 41). 

The authors warn, however, that although acquiring knowledge is important, it is overshadowed 

by the ability to think creatively (Voskoglou & Buckley, 2012).  



53 

Creativity has already been mentioned as a translatable general skill of potentially high 

importance for majors and non-majors alike. This attribute has obvious implications for one’s 

ability to perform varied tasks, including solving problems. Creative thinking has often been 

referenced as a desirable attribute for CS students (Cheng et al., 2010; Forte & Guzdial, 2004; 

Lewis et al., 2010; Poulova & Klimova, 2015). As with any of the aforementioned attributes, it 

can receive differing emphasis in one course of study versus another. Lewis et al. (2010) 

suggested that “faculty must consider ways to move students toward the idea that 'the work you 

do in computer science in the real world requires a lot of creativity,' rather than away from it” (p. 

85). These ways of thinking have received considerable attention as targeted competencies for 

students and there is some level of overlap between them. The potential list of competencies that 

can be identified as professional skills includes others not yet mentioned.  

 Other professional attributes 

 Additional competencies outside those of problem solving and ways of thinking are also 

beneficial to CS majors and non-majors alike. One that is often mentioned in the context of CS 

study is acting ethically and exhibiting responsibility and accountability (Guercio & Sharif, 

2012; Schulte & Bennedsen, 2006; Muñoz et al., 2013; Walker & Kelemen, 2010; Walker & 

Schneider, 1996; Whitfield, 2003). Related to these behaviors is an understanding of the societal 

impact of CS (Bishop-Clark et al., 2007; Huang, 2008; Roach & Sahami, 2015). These 

competencies are important as computing relies on technology. As with any other technology, 

there is strong interplay with society, which therefore requires a solid comprehension of this 

relationship (Pearson & Young, 2002). 

 Also related are skills that help students to use computer technology effectively in their 

careers. Digital literacy and working with computers, their systems, and software, have been 



54 

listed among desirable competencies for introductory CS students (Enbody et al., 2009; LaFrance 

& Roth, 1972; Schneider, 2004). LaFrance and Roth (1972) discussed an introductory CS course 

for liberal arts institutions and alluded to digital literacy pointing out that “foundational to the 

program is a service course enabling persons from all departments to learn how to make effective 

use of the computer in their discipline” (p. 22). The importance of these skills has only grown 

since the statement was made four decades ago and there is benefit to all students. Related to the 

concept of digital literacy is media computation (Forte & Guzdial, 2004; Forte & Guzdial, 2005; 

Porter et al., 2013). Porter et al. (2013) indicated that media computation “explained how digital 

media are manipulated” (p. 35). 

 Other professional skills have been identified as being noteworthy. These include 

communicating orally and in writing (Guercio & Sharif, 2012; Muñoz et al., 2013; Whitfield, 

2003), self-learning and self-assessment (Muñoz et al., 2013), managing time and resources 

(Guercio & Sharif, 2012; Muñoz et al., 2013), exhibiting entrepreneurship (Muñoz et al., 2013), 

and meeting specifications with a designed solution (Poulova & Klimova, 2015; Whitfield, 

2003). Finally, Muñoz et al. (2013) mentioned career planning as being beneficial to cover in 

introductory courses for CS majors specifically. This list of competencies identified from sources 

outside professional associations and textbooks is indeed sizable but there is overlap. 

Straw Model of Competencies 

 A straw model was developed using the information on competencies gathered from this 

review of literature. Topics from association curriculum recommendations and the three 

textbooks were synthesized with the other sources from the literature to form a comprehensive 

list of topics. Action verbs from Bloom’s taxonomy (Anderson & Krathwohl, 2001) were applied 



55 

to topics to express the intent of student mastery in an introductory CS course as called out in the 

literature. 

 Although identification of potential competencies from the curriculum recommendations 

and textbooks and journal articles was done independently, 24 of the 26 topics in the former 

sources were found in the latter group. Only the topics of file structures and verification and 

validation were not identified from analysis of the journal articles. The second topic could, 

however, be implied in the subject of SE. In addition to these topics, the authors in the journal 

articles identified competencies associated with the act of programming, including writing 

procedural and object-oriented programs and documenting them; and several professional skills. 

The act of writing programs was found to encompass the competencies concerning data types 

and structures; programming fundamentals; and expressions, control structures, functions, and 

methods so these were combined accordingly. Finally, the topic of social and professional issues 

was separated due to its broad scope. In all, 38 competencies were identified and these are listed 

in Table 6. Note that sources are coded as text, for textbooks and curriculum recommendations; 

article, for items identified in professional journal articles; or both, when the competency was 

identified in both these types of sources. 

The straw model in Table 6 was to be provided to the experts from academia and industry 

for their consideration in this study. Eighteen of these competencies were identified from 

curriculum recommendations, texts, and articles. Another 16 competencies originated from 

analysis of journal articles. Only two of the items originated in only either curriculum 

recommendations or the textbooks. The experts would be asked to deliberate on the importance 

of these items and provided the opportunity to add any competencies deemed to be lacking. 

 



56 

Table 6 

Introduction to Computer Science Competencies Straw Model 

 

Competency Source(s) 

Analyze algorithms for effectiveness and efficiency Both 

Illustrate concepts in artificial intelligence Both 

Summarize basic computability, theory of computation, and its limits Both 

Describe different types of data representation (e.g. graphics, binary numbers, etc.) Both 

Illustrate the use of Boolean logic and basic combinational digital circuits Both 

Describe basic computer architecture and organization Both 

Summarize the history of computing and its ramifications to implementation today Both 

Explain the factors contributing to human-computer interaction in computing Both 

Illustrate the use of databases and apply SQL Both 

Explain the operation of compilers Both 

Discuss the operation of networks and related practices (e.g. data compression, etc.) Both 

Explain the functionality of operating systems and provide examples Both 

Describe common programming languages and their popular uses Both 

Describe benefit and operation of parallel and distributed systems and programming Both 

Demonstrate use of recursion in a program Both 

Describe the need for computer and data security and identify best practices Both 

Explain the role of modeling and simulation in computing Both 

Describe societal impact of computing Both 

Describe the World Wide Web and select internet protocols Both 

Describe process and practices in software engineering Both 

Plan a career in CS Article 

Write functional object-oriented programs employing programming fundamentals Article 

Write functional procedural programs employing programming fundamentals Article 

Implement good documentation practices in programming Article 

Demonstrate teamwork and interpersonal group skills Article 

Demonstrate algorithmic thinking. Article 

Demonstrate computational thinking Article 

Demonstrate problem solving Article 

Demonstrate critical thinking and reasoning Article 

Demonstrate systems thinking Article 

Demonstrate creativity in programming Article 

Demonstrate time and resource management skills in a project Article 

Exhibit entrepreneurship in computing Article 

Communicate effectively orally and in writing Article 

Describes self-learning and assesses self Article 

Exhibit digital literacy Article 



57 

Table 6 Continued  

Competency Source(s) 

Explain and choose from different file structures Text 

Explain and utilize effective procedures in software verification and validation Text 

 

 

 

 

Programming Languages 

Overview 

Though CS1 courses typically have a significant emphasis on computer programming, 

CS0 courses include this element to varying degrees (Davies et al., 2011). Some institutions may 

choose to offer an introductory course with a reduced emphasis on programming (Cortina, 2007; 

desJardins and Littman, 2010) but even these have included it in the curriculum. There are 

reportedly up to 2,500 programming languages that have been developed (Kinnersley, n.d.), 

though not all of these are still actively used. Regardless, there are several languages that could 

potentially be utilized to introduce students to computer programming. Shein (2015) quoted 

Shriram Krishnamurthi, a CS professor from Brown University, who stated that “ever since 

(Blaise) Pascal introduced the idea of ‘one programming language for introductory programming 

education,’ the community has been stuck in a rut of trying to find one and then arguing about it” 

(p. 21). Though there have been conflicting findings on whether the choice of language in this 

context significantly affects performance (Kunkle, 2010; Watson & Li, 2014), many researchers 

have analyzed the factors influencing student comprehension.  

While the choice of programming language for an introductory course will depend to an 

extent on the desired student competencies, languages can be assessed on their own general 

merit. Of utmost importance in an introductory course is a student’s ability to learn how to use it. 

Student motivation and accessibility and utility of the language warrant consideration. 



58 

Forte and Guzdial (2005) surveyed students in three tailored introductory CS course 

offerings at Georgia Institute of Technology and learned that engineering students found choice 

of programming language to be highly important because they were “eager to learn a language 

that [would] help them perform their jobs” (p. 251). Other students, who were more interested in 

communication, were not as motivated by choice of a particular programming language and were 

more concerned with an avenue to express themselves meaningfully and creatively (Forte & 

Guzdial, 2005). 

Another factor is accessibility to a programming language. Students typically begin their 

collegiate studies with little to no experience with programming (Winter, 2014). Hurdles, such as 

syntax and semantics, can often make it difficult for beginner programmers (Kelleher & Pausch, 

2005; Malan & Leitner, 2007; McIver, 2001; Norman & Adams, 2015; Stefik & Gellenbeck, 

2011). Syntax, for example, can prevent a programmer from seeing results because of problems 

with something as trivial as punctuation.  

This barrier to learning has long been recognized by the computing education community 

and languages have been developed to help address these issues to some extent. Kelleher and 

Pausch (2005) developed a taxonomy of programming languages and identified three approaches 

that have been used to make languages more approachable, including “1) simplifying the 

language, 2) tailoring the language for a specific, small domain of programming problems, and 

3) preventing syntax errors” (p. 88). Powers, Ecott, and Hirshfield (2007) pointed out that 

eliminating frustration due to errors in syntax can help improve student confidence. These efforts 

have resulted in a plethora of languages available for introductory courses in CS. The JTFCC 

(2013) acknowledged that most introductory courses emphasize programming and commented 

on the popularity of certain programming languages:  



59 

There does, however, appear to be a growing trend toward 'safer' or more managed 

languages (for example, moving from C to Java) as well as the use of more dynamic 

languages, such as Python or JavaScript. Visual programming languages, such as Alice 

and Scratch, have also become popular choices to provide a 'syntax-light' introduction to 

programming; these are often (although not exclusively) used with non-majors or at the 

start of an introductory course. (p. 42) 

These trends appear to indicate a desire to increase accessibility of all students, majors and non-

majors alike, to programming. Several researchers have found a positive link between using 

visual languages (e.g. Alice, Scratch, Greenfoot) and increased confidence, enjoyment, and 

understanding of programming (Bishop-Clark et al., 2007; Daly, 2011; Powers et al., 2007). 

Students who are not overly concerned with syntax can focus on solving problems creatively and 

develop important competencies. 

 Arguments have been made, however, for not shielding students from syntax. Zhao et al. 

(2015) debated that knowledge of syntax helps  

students to understand the process of software design and development, master the basic 

methods of constructional and object-oriented programming, … understand 

computational thinking on how to describe and solve specific problems by computers, as 

well as the foundational methodologies of software system design and implementation. 

(p. 196) 

Certainly these skills are desirable as well. The question of which programming language is best 

to learn in an introductory CS course for both majors and non-majors can be difficult to answer. 

CS majors especially want to learn to use languages that are applicable to their future 

careers (Forte & Guzdial, 2005) though different communities will vary on their preferred 



60 

programming languages (Meyerovich & Rabkin, 2013). Meyerovich and Rabkin (2013) argue it 

is desirable for majors to learn multiple languages to improve their versatility. Curriculum 

designers, therefore, have many options to choose from depending on the needs of the course and 

their students. The many attributes of the languages available help determine their usage in both 

academia and industry. Their popularity, however, is not necessarily the same in both domains. 

Language Popularity in Industry 

 Determining the usage of certain programming languages over others can be challenging. 

There are valuable sources of information, however, that provide input. The monthly TIOBE 

Programming Community index is one such resource. The TIOBE index for December 2015 

(2015) ratings are based on the numbers of skilled professionals using languages according to 

information from web search engines (e.g. Google, Yahoo!, Wikipedia, Amazon, YouTube, etc.). 

The authors, however, warn that the “index is not about the best programming language or the 

language in which most lines of code have been written” (TIOBE Index for December 2015, 

2015, para. 2). Ben Arfa Rabai, Cohen, and Mili (2015) compared the TIOBE programming 

index to other resources and found it a valuable indicator of programming language use in 

industry. 

 Another source for programming language popularity is RedMonk. The software 

developer analyst firm releases its rankings twice each year and aims to “correlate language 

discussion (Stack Overflow) and usage (GitHub) in an effort to extract insights into potential 

future adoption trends” (RedMonk, 2015a, para. 1). A similar resource is the PYPL PopularitY 

of Programming Language list. Carbonelle (2015) explained the PYPL rankings as being based 

on online searches for tutorials, making it a leading index indicating future use. The Trendy 

Skills resource uses job advertisements online (e.g. Monster.com, etc.) to gauge the software 



61 

industry’s need for particular programming languages in 13 countries and ranks the top ten based 

on the results. Black Duck Software (2015) tracks open source projects and the relative 

popularity of languages used. Finally, IEEE Spectrum also provides a ranked list of languages 

and its methodology is similar to that used in the TIOBE index, though with some different 

primary sources. The “rankings are created by weighting and combining 12 metrics from 10 

sources” (Diakopoulos & Cass, 2015, para. 1). Table 7 lists the rankings obtained from these six 

resources. Only languages that were listed in at least two of the six sources were included. 

The data in Table 7 were based upon usage or projected use in industry. It is interesting to note 

that Java, C, C++, Python, C#, PHP, and JavaScript are ranked in each of the six lists. It can be 

safely assumed that these are highly popular languages in industry. Perl and Ruby are also highly 

considered as they are ranked in five of the six resources referenced and Visual Basic, Swift, 

Objective C, MATLAB, R, and Scala are mentioned in four of six. Assembly language, PL/SQL, 

and Shell were all listed in half of the sources. The list is important to consider as a source of 

programming language options for industry members to consider in this study. While these 

languages also warrant consideration by academic experts, it is expected that industry members 

will have familiarity with these languages. 

Language Popularity in Academia 

Data for academic use of programming languages was more difficult to determine. One 

reason may be the tendency for language use to have a less uniform distribution in academia than 

in industry (Ben Arfa Rabai et al., 2015). Four sources, however, were identified that listed 

recent data. Red Monk (2015b) used mentions in the curriculum of the Top Ten Forbes Colleges 

and Universities to rank the top twenty languages. Guo (2014) used U.S. News and World 

Report’s top 39 CS departments and their use of the top seven programming languages in CS0 



62 

Table 7 

Programming Language Popularity Rankings in Software Industry  

 

Language TIOBE RedMonk PYPL Trendy 

Skills 

Black  

Duck 

IEEE 

Spectrum 

Java 1 2 1 1 4 1 

C 2 9 6 6 2 2 

C++ 3 5 5 7 3 3 

Python 4 4 2 9 10 4 

C# 5 5 4 3 11 5 

PHP 6 3 3 5 5 7 

JavaScript 8 1 7 2 1 8 

Perl 9 11 15 -- 14 15 

Ruby 10 5 12 -- 7 9 

Assembly Language 11 -- -- -- 12 13 

Visual Basic 12 19 13 -- -- 16 

Delphi/Object Pascal 13 -- -- -- -- 29 

Swift 14 18 9 -- -- 19 

Objective C 15 10 8 -- -- 20 

MATLAB 16 17 11 -- -- 10 

R 18 13 10 -- -- 6 

PL/SQL 19 -- -- -- 13 12 

Fortran 22 -- -- -- -- 28 

D 23 -- -- -- -- 25 

Groovy 24 19 -- -- -- -- 

SAS 27 -- -- -- -- 26 

Scala 28 14 16 -- -- 18 

Lisp 29  -- -- -- 27 

Shell -- 12 -- -- 13 11 

Go -- 15 -- -- -- 14 

Haskell -- 15 -- -- -- 30 

Lua -- -- 17 -- -- 24 

 

 

 

 

and CS1 classes. Ben Arfa Rabai et al. (2015) conducted a survey on programming language 

usage in CS1 courses at 134 U.S. academic institutions in 2013 and included the top 12 in their 



63 

article. Davies et al., (2011) surveyed over 200 U.S. institutions offering CS0 courses and 

listed11 languages that were used at multiple institutions. Table 8 lists the top ten (seven from 

Guo’s work) languages based upon use in higher academia. 

 

 

 

Table 8 

Programming Language Popularity Rankings in Academia 

 

Language RedMonk  

(2014) 

Guo  

(2014) 

Ben Arfa Rabai  

et al. (2013) 

Davies et al., 

(2011) 

C 1 4 4 7 

Java 2 2 1 4 

C++ 3 5 2 6 

Python 4 1 3 2 

MATLAB 5 3 5 -- 

JavaScript 6 -- 9 5 

ML 7 -- -- -- 

Objective-C 8 -- -- 8 

C# 9 -- 6 -- 

Haskell 10 -- 7 -- 

PHP -- -- 8 -- 

Scheme -- 6 10 -- 

Scratch -- 7 -- 10 

Alice  -- -- -- 1 

Visual Basic -- -- -- 3 

Lisp/Scheme -- -- -- 8 

 

 

 

 

One observation about this list is that the top five languages according to the most recent 

three sources are the same. The most popular languages as used in academia appear to be Java, 

C, C++, and Python as these four appear in each of the four lists. MATLAB appears in all but the 

research provided by Davies et al., mainly because their work focused on CS0 and this language 



64 

is associated with more technically focused courses in engineering. JavaScript appeared in three 

sources, but did not make Guo’s (2014) top seven. C#, Haskell, Scheme, and Scratch appeared in 

two of the four sources. Davies et al. (2011) remarked on the previously mentioned “novice 

focused environments” (p. 627) like Alice, and noted that Scratch and Greenfoot were only 

beginning to be implemented in introductory courses. These three languages warrant particular 

attention as they have been developed to teach beginner programmers. 

 Visual languages allow beginning users to develop programs by clicking and dragging 

potential commands as opposed to typing them out. These languages were originally designed to 

instruct younger or at-risk CS students (Chang, 2014; Cooper, 2010). Urness and Manley (2011) 

noted they “make programming accessible and immerse the programmer in a media-rich 

environment, which is appealing to larger audiences who might otherwise disregard computer 

science because of preconceived perceptions about programming” (p. 272). These environments 

have garnered significant attention in recent years and researchers have presented their 

advantages and disadvantages. 

  As previously mentioned, it can be highly desirable for instructors to use languages that 

introduce programming concepts without the hurdles associated with syntax. The Alice 

programming language was developed at Carnegie Mellon University (Kelleher & Pausch, 2005) 

and has been identified as a means for students to develop creativity in programming without 

having to focus on syntax issues (Ali & Mensch, 2008; Ali & Smith, 2014). Bishop-Clark et al. 

(2007) performed a mixed methods study in which 154 students, most of which were non-

majors, in an introductory computing course participated in a 2.5-week unit using Alice to 

introduce fundamental programming concepts. They found that students experienced increased 

confidence, enjoyment, and understanding of programming but were frustrated with its 



65 

limitations (Bishop-Clark et al., 2007). Courte and Howard (2005) used Alice in a non-majors 

CS course and found students experienced increased enjoyment and positive attitudes toward 

programming. While Moskal, Cooper, Munson, and Dann (2008) did not observe an effect on 

students’ attitudes as a result of using Alice, they did find a positive effect on conceptual 

knowledge. 

Scratch was developed by educators at the Massachusetts Institute of Technology in 2003 

and launched four years later (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010). 

Maloney et al. (2010) pointed to Scratch’s strengths as allowing tinkering for beginners, making 

program execution directly visible, a lack of error messages, and reduced data types. They did, 

however, acknowledge the deficiency of a lack of support for procedures (Maloney et al., 2010). 

It is interesting to note that Scratch was the only visual programming language that made at least 

two lists in Tables 7 and 8. One significant disadvantage is potential frustration and 

dissatisfaction on the part of experienced programmers using Scratch (Tanrikulu & Schaefer, 

2011). 

Greenfoot, developed at the University of Kent, has the reported strengths of illustrating 

object-oriented concepts, scalability, and ease to begin programming but potential drawbacks 

with error handling and reporting and the use of a two-dimensional system (Kölling, 2010). The 

language and environment have been used in research efforts aimed at improving student 

performance in introductory CS courses (Rolka & Remshagen, 2015) and educators at the 

postsecondary level have found students to enjoy working with it (e.g. Zur et al., 2014). 

Researchers have observed favorable results with the use of these languages as gateways 

to other languages. Malan and Leitner (2007) found 76% of students believed Scratch was a 

positive influence on their ability to later learn Java. Daly (2011) found “students in [a] 



66 

Alice/Java course had higher levels of confidence at the end of the course in all of the categories 

when compared to the course using pure Java programming” (p. 28). 

On the negative side, such languages may not be as popular with CS majors or may cause 

issues for those moving onto other languages in later courses. Ali and Smith (2014) warned that 

“majors may not find [Alice] very challenging or interesting” (p. 7). Cooper (2010) pointed to 

Alice’s lack of dynamic object creation, burdensome visual arrays, and the promotion of trial-

and-error troubleshooting techniques. Powers et al., (2007) cautioned “the object model in Alice 

can easily lead to misconceptions, and although the lack of syntax errors can raise students’ 

confidence while programming in Alice, it can be detrimental when these same students 

transition to C++ or Java” (p. 217). 

Straw Model of Programming Languages 

 A list of programming languages to be considered by experts in industry and academia 

should include data from both sources. Sources of data from industry were more plentiful than 

from academia. Using the guideline to include languages that were identified in at least three of 

the six industry sources in Table 7, or in at least two of the four sources in Table 8, and the three 

visual programming languages that warranted inclusion, the straw model of programming 

languages shown in Table 9 was constructed.  

This list of 23 programming languages was meant to include those that could faithfully 

represent current use in academia and industry. Eleven of the languages (C, C#, C++, Java, 

JavaScript, MATLAB, Objective-C, Perl, Python, and Scala) made this list based on their 

popularity in both academic and industrial environments. Eight languages were included based 

on their popularity in industry only (Assembly language, PHP, PL/SQL, R, Ruby, Shell, Swift, 

and Visual Basic). The academic community researched in the literature contributed another five 



67 

languages (Alice, Greenfoot, Haskell, Scheme, and Scratch). This study’s participants would be 

given the opportunity to add to the list in the Delphi’s first round in the event that anyone felt a 

worthy language had been excluded. 

 

 

 

Table 9 

Programming Language Straw Model 

 

Language Source(s) 

Alice Academia 

Assembly Language Industry 

C Both 

C# Both 

C++ Both 

Greenfoot Academia 

Haskell Academia 

Java Both 

JavaScript Both 

MATLAB Both 

Objective-C Both 

Perl Both 

PHP Industry 

PL/SQL Industry 

Python Both 

R Industry 

Ruby Industry 

Scala Both 

Scheme Academia 

Scratch Academia 

Shell Industry 

Swift Industry 

Visual Basic Industry 

 

 

 



68 

Assessments 

 The third category of items the industry and academic groups would be asked to consider 

were the assessments for an introductory CS course. Differentiation should be made between the 

terms assessment and evaluation. Brown and Green (2011) defined evaluation as “the process for 

determining the success level of an individual or product based on data” and assessment as the 

“procedures or techniques used to obtain [that] data” (p. 138). Assessment can be of formative or 

summative types. Summative assessment tends to measure learning having taken place at the end 

of a course, or its major units, whereas formative assessment takes place throughout the teaching 

and learning process (Brown & Green, 2011; Ornstein & Hunkins, 2013). Xiang and Ye (2009) 

discussed the issues with relying solely on summative assessment to gauge student learning and 

presented a framework making extensive use of formative assessment. 

Both types of evaluation can be used to gauge the success of not only the learner, but of 

the curriculum itself (Brown & Green, 2011; Ornstein & Hunkins, 2013). Bransford, Brown, and 

Cocking (1999) stated this information is valuable to students and teachers alike. Whitfield 

(2003) wrote about embedding assessment in a CS1 class and pointed out that good practice 

helped to “identify both the strengths and weaknesses of the course” p. 219). The assessment 

devices used, therefore, provide not only valuable information about what the student has 

learned, but also about the learning environment itself. 

 Curriculum designers can choose from several options when planning an introductory 

course in CS. Barker et al., (2009) looked at factors contributing to CS majors’ program 

persistence and indicated that “teaching concepts in appealing contexts and relating material to 

students’ prior knowledge and interests is positively associated with retention” (p. 155). Urness 

and Manley (2011) suggested that “to support student interest, it is critical that the assignments 



69 

are relevant, manageable, not trivial, and highlight the concepts stressed in the classroom” (p. 

271). The optimal choices depend on the target audience, which in this case also included non-

majors. It is also helpful to consider best practices.  

Determining a straw model for assessment types to provide for expert groups to consider 

can be challenging because of these varied considerations. The research contained articles in 

which educators teaching computing courses shared their course designs and explained 

assessments (Cheng et al, 2010; Cortina, 2007; desJardins & Littman, 2010; Muñoz et al., 2013; 

Wang et al., 2011; Whitfield, 2003; Zhao et al., 2015). Many researchers mentioned assessments 

they utilized in the classroom in their research and sometimes used these as evidence of student 

learning to demonstrate results (Bishop-Clark et al., 2007; McDowell et al., 2006; Norman & 

Adams, 2015; Rubio et al., 2015). The authors of the literature reviewed for this study reported 

on some of the assessments used in introductory CS courses. 

 Eleven distinct types of assessment devices were identified from the literature. First, there 

were several mentions of laboratory exercises or smaller programming activities (Bishop-Clark 

et al., 2007; Cheng, et al., 2010; Cohoon et al., 2013; Cortina, 2007; Horton, et al., 2014; Malan 

& Leitner, 2007; Moura & van Hattum-Janssen, 2011; Muñoz et al., 2013; Norman & Adams, 

2015; Wang et al., 2011; Zhao et al., 2015). Sometimes these assignments had specific 

requirements or components (e.g. Malan & Leitner, 2007) or could be open-ended (e.g. Moura & 

van Hattum-Janssen, 2011). These types of activities give students the opportunity to investigate 

concepts by actively engaging in them. 

 Students are sometimes asked to write essays or papers to demonstrate or develop their 

knowledge on a topic. Essays of various types were mentioned in the literature as assessments 

used in introductory CS courses (Bishop-Clark et al., 2007; Cortina, 2007; desJardins & Littman, 



70 

2010; Moura & van Hattum-Janssen, 2011). Moura and van Hattum-Janssen (2011) mentioned a 

midterm essay assignment consisting of “software analysis, design, and development activities” 

(p. 476). DesJardins and Littman (2010) stated their students, who included non-majors, were 

required to write a research paper in which they investigated computing applications in an area 

of interest. Cortina (2007) described a term paper in which students pursuing various majors 

addressed the interplay between computers and society in an introductory course. Essays can 

thus focus on a number of different topics and provide students the opportunity to expand their 

knowledge on the various areas of CS. 

 Class discussions can also be used as assessment devices in introductory CS courses 

(Barker et al., 2009; Harding & Engelbrecht, 2015; Lan, Tsai, Yang, and Hung, 2012; Muñoz et 

al., 2013; Riabov, 2013). The discussions mentioned in the literature were typically those used in 

the online modality. Riabov (2013) examined the benefits of a project-based approach to CS 

graduate student motivation and learning in the online modality. Lan et al. (2012) found students 

in an introduction to CS course in Taiwan were more motivated to participate and performed 

better in online threaded discussions if mobile technology support was available. This type of 

added technology is sometimes included so students have more accessibility to these discussions. 

Threaded discussions allow students to exchange ideas and learn from one another and 

the course instructor may assume a facilitator role. A benefit of participation in these forums is 

that students get exposure to perspectives and knowledge of their peers. Harding and Engelbrecht 

(2015) studied personal learning network clusters and found students to appreciate insight into 

the perceptions of others. Barker et al. (2009) stated that “the strong relationship between 

collaborative environments and classroom climate suggests that faculty engineer student-student 

interaction by setting clear expectations for student peer involvement in their classrooms and 



71 

labs through shared assignments, group problem solving, group discussions, and other methods” 

(p. 156). This call for the increased collaboration provided by both lab exercises and threaded 

discussions, therefore, warranted their inclusion. 

Code reviews are assessment devices that originated in industry. Participants review a 

program together and identify strengths and weaknesses and look to improve a software product 

when possible. In an academic setting, these are sometimes not graded but the activities share 

similarity with threaded discussions because students exchange ideas and perspectives. 

Hauswirth and Adamoli (2013) wrote that students’ curiosity about the performance of their 

peers helped to motivate learning. Cohoon et al. (2013) had students examine code artifacts, 

which involves similar activities to those encountered in a code review. Students “discuss, 

inspect, and modify programming artifacts” (Cohoon et al., 2013, p. 53). Law et al. (2010) stated 

that certain assessment experiences, such as code reviews, give students an opportunity to 

compete with one another and evaluate best practices in programming. These reviews give 

students important practice in reading the code of others (Malan & Leitner, 2007). These 

activities would, therefore, be especially beneficial for CS majors intending to work as 

programmers. 

Quizzes and tests were often mentioned as assessments in introductory CS courses 

(Cheng et al., 2010; Fulton & Schweitzer, 2011; McDowell et al., 2006; Norman & Adams, 

2015). These tests can be of varied designs, including short answer, true/false, and multiple 

choice questions (Norman & Adams, 2015). Moura and van Hattum-Janssen (2011) 

recommended the use of short weekly quizzes to “assess … understanding of CS fundamentals 

and … ability to solve simple programming exercises that require these fundamentals” (p. 482). 

Bälter, Enström, and Klingenberg (2013) conducted a study involving two introductory 



72 

programming classes and found quizzes after exposure to content helped students improve study 

habits. Horton et al. (2014) used quizzes in an inverted learning approach but graded students 

only on their participation; they found students performed significantly better on a final exam 

than students learning via a traditional approach. Quizzes and tests, therefore, have been shown 

to have important benefits for students and are often used in introductory CS courses. 

According to the literature, another popular assessment in these classes is the use of 

concept questions (Cortina, 2007; Fulton & Schweitzer, 2011; Horton et al., 2014; Muñoz et al., 

2013; Whitfield, 2003). Though there was not much elaboration on these assessments it can be 

assumed these involve having students answer questions on content they are studying. Muñoz et 

al. (2013) reported that students found concept questions to be “thought-provoking and helpful 

for critical thinking development” (p. 31). There were also two additional assignments 

mentioned. Muñoz et al. (2013) also referred to the use of case studies and student interviews 

with professionals as assessments in introductory CS courses. Though these assessments were 

only mentioned in one source, they merit consideration. 

The assignments mentioned thus far have mostly been of the formative type. Researchers 

referenced assessment devices in the literature that were mainly summative in nature, including 

final exams and term programming projects. Final exams are typical in many undergraduate 

courses and introductory CS classes are no exception. Some authors made simple mention of 

final exams in their writing (Cortina, 2007; Dodds et al., 2008) whereas others used final exams 

as a dependent variable in some type of experimental research because they were good indicators 

of student learning of course content (Fulton & Schweitzer, 2011; Horton et al., 2014; Norman & 

Adams, 2015). 



73 

Exams and tests can vary widely with regard to substance. Often final examinations in 

CS courses will include a programming activity (Horton et al., 2014; McDowell et al., 2006; 

Moura & van Hattum-Janssen, 2011; Wang et al., 2011). Exams have been called important 

components in computing courses that can supplement assessment information obtained from 

programming assignments (Whitfield, 2003). In discussing tests in CS courses, Scott (2003) 

suggested that questions should assess learning at all six levels of Bloom’s taxonomy to properly 

evaluate the knowledge of the student and the curriculum environment itself. Starr et al. (2008) 

reiterated the importance of utilizing Bloom’s taxonomy when aligning assessment with 

expected student outcomes. 

Even though exams have been associated with student anxiety (Gerwing, Rash, Gerwing, 

Bramble, & Landine, 2015), they have not been found to be a leading cause for angst in 

introductory programming classes. Hawi (2010) looked at the major causes of anxiety as 

reported by undergraduate business computing students and though it was one of the causes 

identified for success or failure in an introductory level programming course, it was not one of 

the most often mentioned.  

The other major summative assessment often mentioned in the literature was a 

programming project (Dodds et al., 2008; Fulton & Schweitzer, 2011; Horton et al., 2014; 

Muñoz et al., 2013; Zhao et al., 2015). These assignments were usually on a larger or longer term 

scale and authors described courses in which students completed two (e.g. Muñoz et al., 2013; 

Zhao et al., 2015) or three (Fulton & Schweitzer, 2011; Horton et al., 2014). Sultana (2015) 

interviewed four hiring managers in the software industry in the geographic region of this study 

and found project experience to be a commonly reported attribute desired of potential employees. 



74 

The inclusion of projects in CS curriculum has some history. Gupta (2007) noted that the 

ACM’s 1968 curriculum guidelines recommended “true-to-life programming projects” (p. 58). 

Lutz et al. (2014) reported on their SE program at the Rochester Institute of Technology and 

stated that “all of the software engineering courses incorporate team projects as significant 

graded components” (p. 54). Muñoz et al. (2013) reported that “students appreciate working on 

medium- to large- size projects that are challenging and well-structured” (p. 31). Moura and van 

Hattum-Janssen (2011) had students lead a presentation of a term project, which they found 

helped to promote individual and learning accountability. Projects, therefore, are an important 

assessment device in introductory CS courses. 

The straw model of assessments for academic and industry experts to consider for an 

introduction to CS course consist of these eleven items in alphabetical order:  

• case studies,  

• code reviews,  

• concept questions, 

• essays,  

• final exams, 

• online threaded discussions, 

• interviews with professionals,  

• lab exercises  

• quizzes,  

• smaller programming activities, and 

• term projects.  



75 

The experts would again be provided the occasion to add to the list if they determined an item 

had been left out. 

Summary 

 This chapter presented a synopsis of CS education by outlining the academic preparation 

of professionals in the field, examining stakeholders, and researching introductory courses. Many 

undergraduates study CS in pursuit of careers as software developers, systems analysts, 

programmers, systems managers, web developers, or database administrators. Others simply take 

an introductory course to develop skills that will be beneficial for other types of occupations. 

Though undergraduate study of CS was predated by graduate programs, it has become highly 

defined thanks to curriculum recommendations from professional societies and sharing of best 

practices by institutions in academia and industry over the past seven decades.  

 Formal education has become the norm for most occupations related to computing. Most 

positions require a bachelor’s degree in CS, SE, information systems, computer engineering, or 

IT; depending on a student’s desired area of specialization. Certification and licensure have 

started to become a standard for some, depending on geographic location and specialization. 

 The major stakeholders of CS education, like those in any other field of study, have 

distinct interests and much interaction. Members of the computing industry need employees who 

have the proficiencies required to develop products effectively and efficiently. Industry 

contributes much to CS education by helping to identify and define these skills, though the 

influence is not necessarily a dominant one. Academic institutions provide the future workforce 

for industry by preparing students with the aptitudes needed. Scholastic preparation of CS 

students takes place in various types of institutions, ranging from community colleges to research 

universities. Liberal arts institutions have increasingly offered programs in CS as its study has 



76 

come to be recognized as presenting highly translatable skills. Representatives from these 

diverse academic institutions sometimes collaborate in the development or offerings of programs 

in the hopes of maximizing their quality. 

 Introduction to CS courses have become highly popular and attract majors and non-

majors alike. Colleges and universities have responded in differing ways, including offering 

distinct courses to account for those with different levels of experience or future career goals. 

Liberal arts institutions, and others that might have more limited resources, may typically offer a 

single introductory course for majors and non-majors. The identification of student 

competencies, programming languages, and assessments to consider for such a context becomes 

increasingly difficult. 

 The curriculum recommendations from organizations such as the JTFCC and LACS offer 

valuable input as do scholars who research CS education. These sources were used to create the 

straw models for the competencies, programming languages, and assessments to consider for an 

introductory CS course. The models identified from these sources were then provided to experts 

from academia and industry to consider their relative importance and applicability. 

 The competencies of an introductory CS course aim to identify the topics of importance 

for students as they are provided a breadth-first overview of the field. Additionally, these 

competencies generally state the level of mastery expected. The proficiencies identified here deal 

with topics in programming and related areas, hardware and lower level architecture, and 

professional skills. 

 Various programming languages were identified that warranted consideration for an 

introduction to CS course. These varied from visual to text-based in nature and were reported to 

have significantly divergent use in industry and academia. There has been much debate about 



77 

how to teach programming at the introductory level and the 23 languages identified in the straw 

model have distinct characteristics for academic and industry professionals to consider. 

 Assessments can often define an academic experience for students. At a cursory level the 

assessments to consider for an introduction to computing course might appear to be of interest to 

academic experts only. However, industry professionals are concerned with the skill base of 

potential employees and would likely have valuable input. These straw models would be 

provided to experts from academia and industry so they could help identify the competencies, 

programming languages, and assessments most important and applicable to the goals of a survey 

course in CS. 

 The next chapter will convey the research methods utilized in this study. Special attention 

is paid to the Delphi methodology, which would play the primary role in the determination of 

inputs to consider for the introductory course’s design. A description of the populations involved 

is presented, along with an explanation of the methods planned to collect and analyze data. 

 

  



78 

CHAPTER III 

METHODOLOGY 

The overall goal of this research was to identify the competencies, programming 

languages, and assessments recommended by experts for an introductory CS class at a private 

nonprofit liberal arts university in Fresno County, California. The literature and input from 

experts in industry and higher education were used toward these ends. This chapter specifies the 

methodology implemented in this study. Detail is provided about the participants and their 

selection and the design and procedures used to gather and analyze data.  

Participants 

 Zhao (n.d.) wrote about curriculum in U.S. schools stating that content conveyed should 

be representative of the society in which it is taught. This suggestion has merit for development 

at the postsecondary level. It is, therefore, prudent to learn about the target content for a 

curriculum by those deemed experts in a given area. 

This study, therefore, utilized a Delphi approach. One of the limitations of this 

methodology is the lack of representative sampling methods in the recruitment of participants 

(Beech, 1999). The goal, however, is not to form a group who is necessarily a cross-section of a 

population (Okoli & Pawlowski, 2004). What is important, however, is that participants are 

“experts or at least informed advocates” (Goodman, 1987, p. 730) who can be impartial, provide 

current input, and are interested in the research (Hasson, Keeney, & McKenna, 2000). 

 A major area of concern regarding Delphi studies is the number of participants to include. 

Wilhelm (2001) stated that statistics do not play a role in determining a sample size. Participant 

pool sizes vary widely with this type of research. Skulmoski, Hartman, and Krahn (2007) 

identified several Delphi studies in the information sciences and IT fields and found the number 



79 

of participants ranged from nine to 126. They also looked at Delphi studies outside of the 

information sciences and IT and found numbers as few as three and as high as 171. 

Two main groups constituted the participants for this part of the study: industry and 

academic professionals. The goal was to identify regional experts’ recommendations for an 

introductory CS course as these individuals would be best able to identify the most important 

concepts and practices in the geographical area. The target members for industry experts were, 

therefore, experienced computing professionals in Fresno County, California. According to the 

State of California Employment Development Department (2015), there were 920 total persons 

employed as computer programmers, database administrators, applications and systems software 

developers, and web developers in Fresno County in 2012. Since the opinion of experts in these 

positions was sought, a minimum of five years’ experience was required for potential 

participants (Guu et al., 2014; Joyner & Smith, 2015).  

The experience level of the individuals employed in these positions in Fresno County was 

unknown but a modest participant pool was expected. This situation was not without precedent. 

Brungs and Jamieson (2010) looked at legal issues in computer forensics in Australia and used a 

heterogeneous sample of 11 persons representing four different stakeholder groups from a 

limited population of approximately 30 experts. Surakka (2007) sought out 10 to 20 persons 

when trying to identify the most important topics for software development students in Finland 

to study. Due to the similarity of this study, and the limited population from which to draw, 10 to 

20 experienced professionals were targeted. Hasson et al. (2000) recommended involving 

participants who were strongly interested in the topic of study. Therefore, industry members who 

were actively or previously involved with local higher education through program advisory 

committees or similar activities were recruited. 



80 

 The second group involved in this study were instructors in CS or related fields in higher 

education. Four community colleges and a state university offer courses in CS in the county and 

immediate surrounding area. The department web sites for these institutions were used to 

determine a total pool of 39 professors of CS or related fields. Since it was desired that the 

academic and industry groups were comparable in size, 10 to 20 participants from higher 

education were targeted. Educators who held at least a Master’s Degree in their field (Surakka, 

2007) at these institutions were approached about their interest in participating in this research.  

Design 

 This research was descriptive in nature as the goal was to survey a situation rather than 

identify causes or institute change (Leedy & Ormrod, 2014). Focus groups and interviews were 

considered for this study as both provided opportunities to solicit feedback from experts and 

allowed for direct and immediate contact between interviewer and participants (Hays & Singh, 

2012). The focus group, however, can suffer from issues of participant conformity and input 

from a few dominant voices, whereas interviews require a skilled and experienced questioner and 

can seem more intrusive to participants (Hays & Singh, 2012). The use of both a focus group and 

separate interviews was considered to help offset some of these deficiencies but it was deemed 

the commitment might be seen as too intensive on the part of potential participants. Because 

there was concern about the ability to recruit a sufficient number of experts willing to commit 

time to the study, the Delphi methodology was chosen. 

 The RAND Corporation first developed the Delphi technique and the use of 

questionnaires and feedback to determine expert consensus for the U.S. Air Force (Linstone & 

Turoff, 2011). Linstone and Turoff (1975) described the Delphi approach “as a method for 

structuring a group communication process so that the process is effective in allowing a group of 



81 

individuals, as a whole, to deal with a complex problem” (p. 3). Dalkey and Helmer (1963) 

described the first implementation by RAND and indicated that the group aimed to achieve 

consensus “by a series of intensive questionnaires interspersed with controlled opinion feedback” 

(p. 458). An important distinction of the approach is the anonymity of the participants (Linstone 

& Turoff, 1975; Strauss & Zeigler, 1975; Wilhelm, 2001). This factor can help ensure that 

participants provide their true and unadulterated opinions in an environment that can reduce 

apprehensions. The Delphi methodology was thus viewed as the best approach to solicit 

feedback from the experts identified for this research. 

 Among the many popular uses for the Delphi method is consensus on frameworks for a 

field of study (Bacon & Fitzgerald, 2001) and objectives for curriculum (Brungs & Jamieson, 

2010; Elledge & McAleer, 2015; Mamelok, 2013; Surakka, 2007). Several approaches and 

variations have been utilized and the specific design was modified to fit the context of this study 

per methodologies found in the research literature. The design is shown in Figure 1.  

Recruit and Identify Participants 

Potential participants were located using suggestions from professionals in higher 

education, graduates of academic programs, and research of organizations’ web sites. All 

participants were invited to take part in the research by email. A copy of the message is included 

in Appendix A. Phone calls were placed one week after the emails were sent to those who had 

not yet responded. Snowball sampling was utilized as individuals who agreed to participate were 

asked to suggest other candidates for the study (Hays & Singh, 2012). The participants 

expressing interest were questioned about their backgrounds in the fields of computing and 

software development to verify they met the criterion of a minimum of five years’ experience.  

 

 



82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Delphi design methodology. 

 

Recruit & 

Identify 

Participants 

Develop Straw 

Models from 

Literature 

Design & 

Distribute 

Round 1 Survey 

to Both Groups 

Research Experts 

Review & Analyze 

Round 1 Results 

Design Round 

2/3/4* Survey 

Distribute Round 

2/3/4* Survey to 

Industry Group 

Distribute Round 

3 Survey to 

Academic Group 

 

Round 3 Review 

& Analysis 

Review & 

Analyze Industry 

Group Results  

Review & Analyze 

Academic Group 

Results  

 

Identify 

Participant 

Recommendations 

Repeat process inside 

dashed lines for                

Round 2 (Select),                

Round 3 (Rank),                      

and Round 4* (Rank) 

*Round 4 necessary 

only for topics in 

which consensus not 

achieved for either 

group (Kendall’s W < 

0.7) after Round 3 

 



83 

The plan was to continue this process for each of the groups until ten to twenty individuals were 

located or no additional candidates could be identified. 

One research SME was also recruited for this study. This individual would be responsible 

for assisting the researcher in reviewing participants’ open responses from the first round to 

validate their identification. This individual was required to have a PhD in any field and have 

experience teaching in any IT-related field. 

A preliminary phone call was placed to each participant and they were provided a brief 

overview of the study and the research goals. Each member was informed the surveys would be 

administered electronically and asked to complete a human subjects consent form. This 

document, which is included in Appendix B, was sent electronically, along with a summary of 

the study, shown in Appendix C. The summary was provided so that each participant would be 

fully aware of their role. Subjects were asked to read and sign the consent form and return it 

electronically to the researcher’s email address.  

Develop Straw Models 

The review of literature was used to develop straw models, which then served to give the 

participants starting reference points for the most relevant topics (Rotondi & Gustafson, 1996) to 

be considered as competencies, programming languages, and assessments for an introductory CS 

course. The exclusion of input from the experts into the initial models was deemed acceptable to 

ensure making the most efficient use of all participants’ time (Brace-Govan, Farrelly, Joy, 

Luxton, & Davey, 2001; Eskandari, Sala-Diakanda, & Furterer, 2007). The experts would be 

allowed to add their own suggestions in the first round of the survey to ensure that all important 

possibilities were included in the analysis.  

 



84 

Design and Distribute Round 1 Survey to Both Groups 

The first survey included four sections and is presented in Appendix D. The initial set of 

questions asked participants to provide their demographic information including gender, age, 

current employment, years of experience, highest education earned in CS or a related field, and 

the number of programming languages in which the individual was fluent. This information was 

collected to describe the background and expertise of the group. The second set of questions 

asked the participants to rate the applicability of the competencies from the straw model on a 

five-point Likert scale. Each item was to be categorized as very important, important, moderately 

important, of little importance, or unimportant (Siegle, 2010). The subsequent sections provided 

a list of programming languages and assessments to be used in an introductory CS course and the 

same rating categories were provided. Blank entries were also available for optional 

contributions by the individuals for each of the three categories. Instructions were included to 

write any additional topics and weight their importance. A field was also available for an 

explanation of the optional entry so participants could clarify their suggestion to the rest of the 

group. 

 The Round 1 survey was constructed in SurveyMonkey. An email was sent to each 

participant inviting them to the first round of the study along with a link to the survey. Responses 

were requested within one week of the email being sent. Because the survey was confidential, 

the identity of those completing it was not known. Individuals who had not sent emails to 

indicate they had completed the survey by the deadline were sent email reminders on the fourth 

and eighth days. Any individuals who indicated they could no longer participate were removed 

from the study but those who did not respond were retained in the distribution for future rounds. 

 



85 

Round 1 Review and Analysis 

 The results of the surveys were downloaded into Microsoft Excel. The mean age, years of 

experience, and number of programming languages in which the participants were fluent were 

computed using the “MEAN” function. Minimum, maximum, and standard deviation values for 

each category were determined using the “MIN,” “MAX,” and “STDEV.P” functions, 

respectively. Counts for individuals by gender, employment, and highest education were 

computed using the “COUNT” function. 

 Responses to each of the three content categories were copied into Excel and quantified 

as follows: very important = 5, important = 4, moderately important = 3, of little importance = 2, 

unimportant = 1. Newly suggested items by participants were checked for individuality and 

inserted into the lists ranked according to the weight given. The processing for newly suggested 

items was reviewed with the research SME and changes to the surveys for the next round were 

made as necessary.  

Any item selected by at least two participants was added to the list of competencies, 

programming languages, or assessments to be used in subsequent rounds. Okoli and Pawlowski 

(2004) asked participants in a Delphi study for open suggestions and included items appearing on 

at least 50% of their surveys. This research utilized a strategy that added to the questionnaire any 

item suggested more than once, thus indicating recommendation by at least 10% of the 

participants. This approach would be more inclusive to input from the experts and address the 

lack of an open-ended brainstorming approach in the first round. 

Design and Distribute Round 2 Selection Survey 

 The ranked lists of items and their median weight scores were added to the survey for the 

second round. Reference the questionnaire in Appendix E. The median was computed instead of 



86 

the mean as these data were Likert-type in nature (Boone Jr. & Boone, 2012). The inclusion of 

this value in the questionnaires would communicate the perceived importance attributed to each 

item. The instructions for this questionnaire were different than those used in the first round. 

First, the questions on demographics were omitted as this information had already been 

collected. Second, there were no blank fields for optional entries. Finally, participants were 

instructed to determine whether or not each of the items should be included for the introductory 

CS course by choosing to select at least ten topics for each of the three categories (Okoli & 

Pawlowski, 2004). The items were imported into SurveyMonkey as two equivalent 

questionnaires for the academic and industry groups.  

At this stage the study took on a panel structure (Okoli & Pawlowski, 2004). The industry 

and academic groups were given separate links so analysis of their feedback could be done 

independently. This design would allow each group to come to a consensus more quickly and 

would allow recommendations from each group to be distinguished for final decision making by 

the curriculum designer.  

An email with instructions and the appropriate link were sent to all participants, including 

those who may have not submitted a survey in Round 1 but had initially expressed interest in the 

research. Participants were asked to respond within one week. Follow-up emails were sent on the 

fourth and eighth days.  

Round 2 Review and Analysis 

 Feedback was collected from each participant on their selected items from each of the 

three categories. Those items that were selected by at least half the participants were chosen to 

be included for Round 3 (Okoli & Pawolowski, 2004). Those not selected by half the experts 

were omitted from further consideration by that group, but not necessarily the other panel. The 



87 

findings from this point would be independent for each group. In this manner the subsequent 

surveys would be more focused on the suggestions for each individual panel. 

Design, Distribute, and Analyze Round 3 and 4 Surveys 

 The steps in Round 3, and Round 4 if necessary, were identical. The lists of items as 

selected by the experts from the previous round were added to the survey. The questionnaires for 

the industry and academic groups are included in Appendices F, G, H, and I. Participants were 

asked to rank each item in each of the three categories of competencies, programming languages, 

and assessments in terms of their use in an introductory CS course. The lists were again imported 

into SurveyMonkey as two questionnaires in keeping with separate panels. The email message 

with instructions and the appropriate link were sent to the participants, who were once again 

asked to respond within one week. Follow-up emails were again used as necessary.  

 The coefficient of concordance, Kendall’s W, was used to determine the level of 

agreement among the participants’ ranked lists for each panel. Kendall’s W ranges from zero to 

one to indicate a scale of increasing unanimity between rankings (Field, 2009). Israel (2008) 

identified the requirements to use Kendall's W to check agreement among ranked lists as working 

with ordinal data and a sample size, between 3 and 300, that is equal between the groups to be 

compared. Schmidt (1997) indicated a value of at least 0.7 indicates strong agreement. This 

threshold was used to determine whether or not any of the lists of competencies, programming 

languages, or assessments needed to be submitted in a fourth round to either of the panels. The W 

would, therefore be computed six times after Round 3 as shown in Table 10. Each W value 

would be analyzed independently and only those topics that failed to meet the 0.7 threshold value 

were included in a Round 4 survey for each individual panel. 

 

 



88 

Table 10 

 

Kendall’s W Values Analyzed 

 

 Levels of Agreement 

Expert Group Competencies Programming 

Languages 

Assessments 

Academic WAC WAL WAA 

Industry WIC WIL WIA 

 

 

 

 

It was decided that a maximum of four rounds would be considered for the Delphi 

portion of this research. It has been found that major fluctuations are typically not expected after 

a fourth round (Scheibe, Skutsch, & Schofer, 1975; Wilhelm, 2001) and participant fatigue can 

become a concern (Schmidt, 1997; Sitlington, 2015). 

 The output from the final round consisted of ranked lists of the most important 

competencies, programming languages, and assessments to be utilized in an introductory course. 

Two lists were available as the industry and academia experts would likely have different 

preferences. These data would then be used in the curriculum development of the introductory 

class to the extent desired by the course designer. 

Summary 

 This chapter outlined the methods and procedures used in this research. The study 

involved a Delphi technique to determine the recommendations of two local groups of experts on 

the competencies, programming languages, and assessments to use for an introductory CS 

course.  

 The participants for the Delphi portion of the research represented professionals from the 

computing industry and academia in the area surrounding the university in which the course 



89 

would be taught. Twenty to forty participants were targeted with half coming from each of these 

two expert groups.  

 The Delphi approach used was a modified adaptation, which began with straw models 

developed from the literature. Round 1 was used to rank the initial items and request suggestions 

from the experts. The groups were then separated so that each could function independently and 

provide their specific recommendations. The experts were asked to select the items that were 

deemed most important for each of the three categories of competencies, programming 

languages, and assessments in Round 2. Round 3 was used to determine preferences and 

consensus from the participants on each of the three topics; again with each group acting 

individually. Kendall’s W was used to gauge agreement and any topics that did not have 

consensus between either of the groups were carried over to a fourth and final round. 

 Chapter IV will present the findings from this study. The recommendations for the 

competencies, programming languages, and assessments to be used for the introductory CS 

course will be presented from each of the expert groups. These items will then be available as 

recommendations for the development of the course’s curriculum. 

  



90 

CHAPTER IV 

RESULTS 

This chapter presents the results of this research. The four rounds of the online Delphi 

study were conducted with academic and industry experts in CS during the months of April and 

May 2016. This chapter reviews the steps undertaken throughout the four rounds and the 

feedback provided by the experts. 

Participants and Demographics 

 Professional acquaintances of the researcher and web searches of regional industry 

organizations and academic institutions were used to identify participants. Potential contributors 

to this study were invited by email and asked to nominate other experts who met the criterion of 

five years’ experience in industry or teaching CS or related disciplines with at least a master’s 

degree. Phone calls were also placed to individuals who did not respond by email. The researcher 

directly invited 85 experts from California’s Central Valley; 48 individuals (56%) were from 

higher education and 37 (44%) were from industry. Invitations were sent via email between 

March 14 and April 8, 2016. These persons were also free to forward the invitation to others so it 

is unknown exactly how many total persons were contacted. A total of 23 individuals (27% of 

those directly invited) agreed to participate in the study. There were 11 persons (48%) in the 

industry group and 12 persons (52%) in the academic group. 

 The link to the survey for Round 1 was sent by email on April 11, 2016. Participants 

were given eight days to complete the survey. Email reminders were sent out on the fourth day 

and again on the final day. There were 22 experts who participated in Round 1 and these were 

evenly distributed between the industry and academic groups. There were 20 males and 2 

females (one from academia and one from industry). The participants were asked to identify their 



91 

ethnicity and the group consisted of 15 Caucasian, 4 Asian, 2 Hispanic, and 1 African American. 

Their average age was 45.9 years, ranging from a minimum of 31 years to a maximum of 59 

years. They had an average of 18.1 years of experience with values spanning five to 36 years. 

Their formal educational attainment consisted of four doctoral degrees, 10 master’s degrees, five 

bachelor’s degrees, and one associate’s degree. Two individuals reported having some 

postsecondary experience. These degrees came from the disciplines of CS (eight individuals, 

including two persons with degrees in CS and engineering), information systems (five 

individuals), engineering (one electrical and one chemical), digital animation (one individual), 

management (one individual), psychology (one individual), computational linguistics (one 

individual), and mathematics (one individual).  

The experts identified themselves as being fluent in an average of 4.4 programming 

languages; ranging from zero to eight languages. The industry experts worked in areas of focus 

including consulting and software development, sports, statistical data processing, government, 

healthcare, education, web development, information systems, and higher education. Faculty 

taught courses at the undergraduate and graduate levels in introductory and intermediate 

programming concepts and methodology, discrete mathematics, computer 

organization/architecture, operating systems, mathematical programming, programming for 

scientists and engineers, SE, applications programming, client and server side scripting, 

computer concepts and literacy, network systems management, databases, enterprise resource 

planning, management information systems, and web development. Finally, six participants held 

certifications with titles including Microsoft Certified Application Developer, Microsoft 

Certified IT Professional, Certified Scrum Master, Certified Scrum Product Owner, Cisco 

Certified Academy Instructor, Java 2 Certified Programmer, and Java 2 Certified Developer; and 



92 

in areas such as Microsoft Certified Systems Engineering, COMPTIA A+, COMPTIA Strata IT, 

Bureau for Postsecondary and Vocational Education, and Oracle Implementation. 

Two participants in the academic group did not hold master’s degrees in a computer-

related field. These individuals had degrees in chemical engineering, with an emphasis on 

computer applications, and in mathematics, with an emphasis on CS. They were, however, 

included in the study as each had extensive experience teaching introductory CS courses for 10 

and 26 years, respectively. 

Round 1 

Course Competencies 

The goal of the first round was to solicit opinions from the experts on the importance of 

the course competencies, programming languages, and assessments for an introductory 

undergraduate CS course. The survey included the straw models developed from the literature 

and provided participants the opportunity to suggest any items they may have felt were missing. 

Eleven academic (92%) and eleven industry (100%) experts completed the Round 1 

survey. Participants were first prompted to answer demographic questions and then asked to rate 

the potential competencies for an introductory CS course on a five-point Likert scale. Responses 

were weighted as Very Important (5), Important (4), Moderately Important (3), Of Little 

Importance (2), and Not Important (1). See Table 11 for an overview of the responses submitted 

by the 21 experts participating in Round 1. It was noteworthy that four of the competencies listed 

received median scores of five (Very Important); these included “writing functional procedural 

programs employing programming fundamentals,” “demonstrating teamwork and interpersonal 

group skills,” “demonstrating problem solving,” and “demonstrating critical thinking and 

reasoning.” Also of note was the competency of “exhibiting entrepreneurship in computing,” 



 

Table 11 

Round 1 Expert Feedback on Competencies for Introductory Computer Science  

Competency Median  

Rating 

Minimum 

Rating 

Maximum 

Rating 

Analyze algorithms for effectiveness and efficiency 4 1 5 

Illustrate concepts in artificial intelligence 3 1 4 

Summarize basic computability, theory of computation, and its limits 3 1 5 

Describe different types of data representation (e.g. graphics, binary numbers, etc.) 3 2 5 

Illustrate the use of Boolean logic and basic combinational digital circuits 3 2 5 

Describe basic computer architecture and organization 4 2 5 

Summarize the history of computing and its ramifications to implementation today 3 1 5 

Explain the factors contributing to human-computer interaction in computing 4 1 5 

Illustrate the use of databases and apply SQL 4 1 5 

Explain the operation of compilers 3 1 5 

Discuss the operation of networks and related practices (e.g. data compression, etc.) 3 2 4 

Explain the functionality of operating systems and provide examples 3 2 5 

Describe common programming languages and their popular uses 4 2 5 

Describe benefit and operation of parallel and distributed systems and programming 3 1 5 

Demonstrate use of recursion in a program 4 1 5 

Describe the need for computer and data security and identify best practices 4 2 5 

Explain the role of modeling and simulation in computing 3 1 5 

Describe societal impact of computing 3 1 5 

Describe the World Wide Web and select internet protocols 3 1 5 

Describe process and practices in SE 4 1 5 

Plan a career in CS 3 1 5 

Write functional object-oriented programs employing programming fundamentals 4 1 5 

Write functional procedural programs employing programming fundamentals 5 1 5 

Implement good documentation practices in programming 4 1 5 9
3

 



 

Table 11 Continued    

Competency Median  

Rating 

Minimum 

Rating 

Maximum 

Rating 

Demonstrate teamwork and interpersonal group skills 5 3 5 

Demonstrate algorithmic thinking.  4 1 5 

Demonstrate computational thinking 4 1 5 

Demonstrate problem solving 5 3 5 

Demonstrate critical thinking and reasoning 5 3 5 

Demonstrate systems thinking 3 1 5 

Demonstrate creativity in programming 3 1 5 

Demonstrate time and resource management skills in a project 3 1 5 

Exhibit entrepreneurship in computing 2 1 5 

Communicate effectively orally and in writing 4 2 5 

Describes self-learning and assesses self 4 1 5 

Exhibit digital literacy 4 2 5 

Explain and choose from different file structures 3 2 5 

Explain and utilize effective procedures in software verification and validation 4 1 5 

Note. N = 22. Median calculated for a five-point Likert scale (5 – Very Important, 4 – Important, 3 – Moderately Important, 2 – 

Of Little Importance, 1 – Not Important). 

 

9
4

 



95 

which received the lowest median rating of two (Of Little Importance). Additionally, two 

competencies failed to receive a maximum score of five by any of the participants; these were 

“illustrating concepts in artificial intelligence” and “discussing the operation of networks and 

related practices.” Only three items received minimum rating values no lower than three. These 

were the competencies involving teamwork, problem solving, and critical thinking. 

The participants were provided the opportunity to append to the list additional 

competencies that they felt were important for an introductory CS course. These open-ended 

responses were reviewed with a third-party research expert who held a Ph.D. in an engineering 

field and had experience teaching introductory programming. The research expert reviewed the 

open-ended answers independently then met with the researcher to make suggestions on changes 

to the original straw models. Consensus was reached on all necessary changes. 

Seventeen open-ended responses were provided to this optional question. These 

responses varied widely on content including: 

 Effective workflow and process analysis - very important. Need to be able to 

understand and analyze workflows/processes BEFORE designing an application 

or programming a solution.  

 Working on a Team in a Project - because that's what they will do. 

 I would refine the "societal impact" category to be more specific to things like 

cyberbullying, privacy, intellectual property.  

 Object Oriented Design - Important to tie real world objects into the thinking 

really early in the learning process. Makes it relevant.  

 Write programs employing functional programming fundamentals. Functional 

programming is a paradigm that is gaining greater importance especially in 



96 

distributed and parallel programming fields. Functional programming is also a 

very different paradigm from procedural and object oriented code and therefore 

provides its users with an additional tool set for problems solving. 

 Write programs using Generic Programming concepts and techniques. These 

concepts feature in modern revisions of most programming languages.  

 Early industry exposure or experience. 

 When solving a programming problem, it is important to know why to use a 

certain programming language.  

 I believe that debugger competency would merit consideration. Too many 

engineers do not properly know how to effectively use one.   

 Under software validation, principals like unit testing and mocking/facades as 

well as integration testing would be really beneficial. This is very important 

 Ability to figure out difficult tasks - critical thought processes - You aren't always 

told what to do...  

 I would refine the "data security" category to be more like “designing, 

implementing, and verifying" hacker-resistant safe code.  

 How will the training translate to a job in the marketplace? 

 Code portability and reuse. There are many design and distribution strategies to 

be able to use code written once in multiple use cases (SOLID, packages like 

NPM or Nuget).  

 Ability to be critical effectively - you have to understand how to criticize 

appropriately for effectiveness and to be heard. 

 DevOps, large category but inclusive of Continuous Integration and Deployment. 



97 

 Web development, because the world is surrounded by it. 

There were no competencies suggested by at least two individuals. Therefore, no new 

competencies were added for Round 2. However, two suggestions to clarify existing 

competencies were deemed beneficial by the researcher and third party expert and were used to 

modify the entries for Round 2. The competency related to societal impact was modified to 

include examples of topics, such as cyberbullying, intellectual property, and privacy. Likewise, 

the item on data security was modified to include the actions of designing, implementing, and 

verifying hacker-resistant safe code. 

Programming Languages 

The next section of the survey asked participants to rate 23 programming languages in 

terms of their importance for an introductory CS course. The rating scale was similar to the one 

used for course competencies with the inclusion of an option titled “Unfamiliar,” which was 

weighted as zero points. Table 12 presents the results of this portion of the survey. 

It was noteworthy that only 5 of the 23 languages were known to all the participants, 

including assembly language, C, C++, Java, and Visual Basic. Six languages achieved median 

scores of zero, indicating unfamiliarity by more than half the group. These languages included  

Alice, Greenfoot, Haskell, R, Scheme, and Scratch. Five languages were rated as being “Very 

Important” according to their median rankings (C#, C++, Java, JavaScript, and Python). 

The experts provided six open-ended responses to the optional questions about additional 

programming languages not listed. The recommendations included Elm (a functional language  

based on Haskell), Clojure (a LISP dialect), Extensible Application Markup Language (XAML), 

CSS (a stylesheet language), and HTML5 (Hypertext Markup Language). The last three 

recommendations were for markup or stylesheet languages, which are not typically identified as 

programming languages (van der Spuy, 2012). However, it was considered prudent to add 



98 

HTML5 to the Round 2 survey as it was recommended by two experts. Though it is not a true 

programming language, concepts in CS could be taught using HTML5. 

 

 

Table 12 

Round 1 Expert Feedback on Programming Languages for Introductory Computer Science  

Programming Language Median  

Rating 

Minimum  

Rating 

Maximum  

Rating 

Alice 0 0 4 

Assembly Language 2 1 4 

C 3 1 5 

C# 4 0 5 

C++ 4 1 5 

Greenfoot 0 0 2 

Haskell 0 0 4 

Java 4 1 5 

JavaScript 4 0 5 

MATLAB 1 0 5 

Objective-C 2 0 4 

Perl 1 0 3 

PHP 2 0 4 

PL/SQL 3 0 5 

Python 4 0 5 

R 0 0 4 

Ruby 1 0 4 

Scala 1 0 5 

Scheme 0 0 3 

Scratch 0 0 5 

Shell 2 0 5 

Swift 1 0 4 

Visual Basic 1 1 5 

Note. N = 22. Median calculated for a five-point Likert scale (5 – Very Important, 4 – Important, 

3 – Moderately Important, 2 – Of Little Importance, 1 – Not Important, 0 – Unfamiliar). 

 

 

 

 

 



99 

Assessments 

 

The final section of the Round 1 survey asked participants to rate 11 potential 

assessments for an introductory CS course. The rating scores available were identical to those  

used with the course competencies, ranging from “Most Important (5)” to “Not Important (1).” 

The results are presented in Table 13. The assessments deemed most important according to the 

median rating scored by the participants were lab exercises, smaller programming activities, and 

term projects. Only one assessment device, essays, was rated below “Moderately Important” in 

terms of its median score. 

 

 

 

Table 13 

Round 1 Expert Feedback on Assessments for Introductory Computer Science  

Assessments Median  

Rating 

Minimum  

Rating 

Maximum  

Rating 

Case Studies 3 2 5 

Code Reviews 4 1 5 

Concept Questions 4 2 5 

Essays 2 1 5 

Final Exams 4 1 5 

Online Threaded Discussions 3 1 5 

Interviews with Professionals 3 1 5 

Lab Exercises 5 4 5 

Quizzes 3 1 5 

Smaller Programming Activities 5 1 5 

Term Projects 5 1 5 

Note. N = 22. Median calculated for a five-point Likert scale (5 – Very Important, 4 – Important, 

3 – Moderately Important, 2 – Of Little Importance, 1 – Not Important). 

 

 

 



100 

Finally, the experts provided only four open-ended responses to the list of assessments to 

be considered. Team programming assignments were recommended by at least two individuals 

so this assessment was included for Round 2. 

The lists used in the first round and the two items suggested by multiple experts were 

copied over into a new survey. The median ratings provided in Tables 10 to 12 were recorded 

into the survey for Round 2 to communicate the importance attributed to each item by the overall 

group.  

Round 2 

 The goal of the second round was to give experts the opportunity to narrow down the lists  

they would rank in Rounds 3 and 4 (Okoli & Pawlowski, 2004). Participants were instructed to 

select no fewer than 10 items from each of the lists of competencies, programming languages, 

and assessments. They were also advised to consider their opinions on each item in relation to 

the importance attributed by the overall group as indicated by the median score from Round 1. 

This instruction enabled participants to utilize deliberation as characterized by the Delphi 

approach without meeting with other experts in person. 

The survey links for Round 2 were sent by email on April 25, 2016. Identical surveys 

with duplicate instructions were provided to the academic and industry groups. Participants were 

again given eight days to complete the survey. Email reminders were sent out on the fourth and 

on the eighth days. There were 21 experts who participated in the second round with eleven in 

the industry group (100%) and 10 in the academic group (83%). At least five selections for an 

item were required for it to be carried over into the final rounds of the study for the academic 

group. This number was six for the industry group.  

 



101 

Course Competencies 

The selection counts for competencies are shown in Table 14. The academic group 

selected 16 competencies compared to the industry group, which chose 12 competencies. Nine of 

the competencies were identical between the groups, including those concerning the topics of  

algorithms, computer architecture, SE, object-oriented programming, functional programming, 

documentation, teamwork, problem solving, and critical thinking. These shared competencies 

were highly focused on programming and professional skills.  

The academic group also included seven competencies that were not chosen by the 

industry experts. These competencies involved computability, operating systems, recursion,  

computer and data security, modeling and simulation, algorithmic thinking, and computational 

thinking. The industry group selected only three items not chosen by the academic experts, 

including those dealing with data representation, databases and SQL, and common programming 

languages. No competency was selected by all the experts in either group and only “exhibiting 

entrepreneurship in computing” was not selected by anyone.  

Programming Languages 

The second round instructions for programming languages were identical in that 

participants were instructed to select no fewer than ten. The number of programming languages 

was augmented with HTML5 per the results of the first round. Each group was given the 

opportunity to narrow their respective lists and the results are shown in Table 15. 

 Eight programming languages were selected by at least half of the experts in the 

academic group. The industry group selected 12 languages for inclusion in the latter rounds. All 

eight languages selected by at least half the experts in the academic group were also chosen by 

the industry group; these were C, C#, C++, Java, JavaScript, PHP, Python, and Ruby. The  



 

Table 14 

Round 2 Selection Counts of Competencies for Introductory Computer Science  

Competency Academic Group 

Selections 

Industry Group 

Selections 

Analyze algorithms for effectiveness and efficiency 5 8 

Illustrate concepts in artificial intelligence 0 1 

Summarize basic computability, theory of computation, and its limits 7 3 

Describe different types of data representation (e.g. graphics, binary numbers, etc.) 3 7 

Illustrate the use of Boolean logic and basic combinational digital circuits 3 5 

Describe basic computer architecture and organization 7 6 

Summarize the history of computing and its ramifications to implementation today 2 3 

Explain the factors contributing to human-computer interaction in computing 2 4 

Illustrate the use of databases and apply SQL 3 7 

Explain the operation of compilers 3 1 

Discuss the operation of networks and related practices (e.g. data compression, etc.) 1 2 

Explain the functionality of operating systems and provide examples 6 4 

Describe common programming languages and their popular uses 4 9 

Describe benefit and operation of parallel and distributed systems and programming 1 1 

Demonstrate use of recursion in a program 5 3 

Describe the need for computer and data security and identify best practices  5 4 

Explain the role of modeling and simulation in computing 5 3 

Describe societal impact of computing 2 3 

Describe the World Wide Web and select internet protocols 1 2 

Describe process and practices in SE 6 7 

Plan a career in CS 4 2 

Write functional object-oriented programs employing programming fundamentals 8 8 

Write functional procedural programs employing programming fundamentals 9 8 

Implement good documentation practices in programming 6 6 

1
0
2

 



 

Table 14 Continued   

Competency Academic Group 

Selections 

Industry Group 

Selections 

Demonstrate teamwork and interpersonal group skills 8 8 

Demonstrate algorithmic thinking.  6 5 

Demonstrate computational thinking 6 5 

Demonstrate problem solving 8 6 

Demonstrate critical thinking and reasoning 7 8 

Demonstrate systems thinking 4 2 

Demonstrate creativity in programming 4 2 

Demonstrate time and resource management skills in a project 0 3 

Exhibit entrepreneurship in computing 0 0 

Communicate effectively orally and in writing 4 4 

Describes self-learning and assesses self 1 3 

Exhibit digital literacy 2 4 

Explain and choose from different file structures 2 2 

Explain and utilize effective procedures in software verification and validation 3 4 

Note. N = 10 for academic group and N = 11 for industry group. 

 

 

1
0
3

 



104 

industry group also included assembly language, HTML5, PL/SQL, and Shell. All Round 2 

participants in the academic group selected C++, Java, and Python. The sole programming 

language chosen by all industry experts was JavaScript. No academic expert selected Greenfoot 

and no industry professional selected Alice, Greenfoot, MATLAB, Scala, or Scratch. 

 

 

 

Table 15 

Round 2 Selection Counts of Programming Languages for Introductory Computer Science  

Programming Language Academic Group 

Selections 

Industry Group 

Selections 

Alice 1 0 

Assembly Language 4 6 

C 9 6 

C# 8 9 

C++ 10 9 

Greenfoot 0 0 

Haskell 1 2 

HTML5 4 9 

Java 10 9 

JavaScript 8 11 

MATLAB 4 0 

Objective-C 2 4 

Perl 2 1 

PHP 5 6 

PL/SQL 2 7 

Python 10 10 

R 1 1 

Ruby 6 7 

Scala 1 0 

Scheme 2 1 

Scratch 3 0 

Shell 4 7 

Swift 2 4 

Visual Basic 3 4 

Note. N = 10 for academic group and N = 11 for industry group. 



105 

Assessments  

Finally, the groups were asked to select no fewer than ten of twelve assessments. Because 

of the low number of assessments, the narrowing effect was expected to be minimal. Only one 

item, essays, was not chosen to be carried over into Rounds 3 and 4. The results of the selection 

counts by each group for assessments are shown in Table 16. Items selected by at least half of 

each group were copied over into the Round 3 survey for that group. The number of selections 

for each of the categories, as shown in Tables 14 to 16 were also included on the surveys. 

 

 

 

Table 16 

Round 2 Selection Counts of Assessments for Introductory Computer Science  

Assessments Academic Group 

Selections 

Industry Group 

Selections 

Case Studies 9 10 

Code Reviews 9 11 

Concept Questions 10 10 

Essays 3 1 

Final Exams 10 9 

Online Threaded Discussions 8 8 

Interviews with Professionals 5 11 

Lab Exercises 10 11 

Quizzes 10 9 

Smaller Programming Activities 10 11 

Team Programming Assignments 9 10 

Term Projects 9 11 

Note. N = 10 for academic group and N = 11 for industry group. 

 

 

 

Round 3 

 The third round of the study provided experts the opportunity to rank the competencies, 

programming languages, and assessments selected in the previous round. The participants were 



106 

instructed to rank the items in each of the lists according to their importance for an introductory 

CS course. They were again advised to consider their opinions on each entry in relation to the 

importance attributed by the overall group as indicated by the number of experts selecting it in 

Round 2. Participants were given instructions on how to rank the items. They had the 

opportunity to click a radio button next to each item and select the numerical ranking. A second 

option was for participants to click and drag each item into order to indicate ranking. 

The survey links for Round 3 were distributed by email on May 9, 2016. The panel 

structure was again utilized so that academic and industry experts provided feedback separately. 

The surveys for each group included duplicate instructions but consisted of the itemized lists as 

selected by each group in the previous round. Participants were again given eight days to 

complete the survey. Email reminders were sent out on the fourth and on the eighth days. There 

were 19 total experts who participated in the third round with 10 in the industry group (91%) and 

nine in the academic group (75%).  

Each participant’s rankings were copied into a Microsoft Excel workbook. One 

worksheet was used for the academic group and another for the industry group. Competencies, 

programming languages, and assessments were copied into rows and individual expert rankings 

were copied from SurveyMonkey into Microsoft Excel columns. No identifiers were used as the 

information submitted was confidential. The median rankings for each of the items was 

computed via the MEDIAN function. The interquartile range (IQR) was calculated to identify the 

dispersion of the middle half of these data. Field (2009) stated the median is often excluded in 

this calculation so the QUARTILE.exc function was used to define the first and third quartiles.  

 

 



107 

Course Competencies 

The academic group ranked 15 competencies and the results are presented in Table 17. 

Overall, the group chose “write functional procedural programs employing programming 

fundamentals” as the most important competency. “Write functional object-oriented programs 

employing programming fundamentals” and “demonstrate problem solving” were next in terms 

of importance, followed by “demonstrate critical thinking and reasoning” and “demonstrate 

algorithmic thinking.” The industry experts’ results are also shown in Table 17. They ranked 12 

competencies and collectively selected “demonstrate problem solving’ as their most important. 

The competency related to critical thinking and reasoning placed second in terms of importance. 

The next three competencies for the industry group were “describe processes and practices in 

SE,” “write functional procedural programs employing programming fundamentals,” and 

“demonstrate teamwork and interpersonal group skills.” The IQR values for these highly ranked 

items varied from 3.0 to 5.5 for the academic group and from 5.3 to 7.5 for the industry group. 

The lowest ranked competencies were “describe the need for computer and data security 

and identify best practices” for the academic group and “illustrate the use of databases and apply 

SQL” for the industry group. Both groups exhibited comparatively low IQR values for their 

selections for the lowest ranked competencies. 

Programming Languages 

The ranked programming languages for both groups are presented in Table 18. The 

academic group ranked eight programming languages and chose Java as their most important and 

C++ as the next highest ranked. The IQR values for the rankings of these two languages were 1.5 



 

Table 17 

Round 3 Median Rankings of Competencies for Introductory Computer Science  

Competency Academic Group 

Ranking 

Industry Group 

Ranking 

 Median IQR Median IQR 

Analyze algorithms for effectiveness and efficiency 9.0 4.0 7.0 5.3 

Describe different types of data representation (e.g. graphics, binary numbers, etc.) - - 7.0 5.5 

Describe basic computer architecture and organization 12.0 5.5 6.5 9.0 

Illustrate the use of databases and apply SQL - - 9.5 4.5 

Explain the functionality of operating systems and provide examples 12.0 4.5 - - 

Describe common programming languages and their popular uses - - 7.5 6.3 

Demonstrate use of recursion in a program 12.0 3.0 - - 

Describe the need for computer and data security and identify best practices  14.0 2.0 - - 

Explain the role of modeling and simulation in computing 12.0 6.5 - - 

Describe process and practices in SE 11.0 4.5 5.0 6.0 

Write functional object-oriented programs employing programming fundamentals 3.0 4.5 7.0 3.8 

Write functional procedural programs employing programming fundamentals 1.0 4.5 5.5 5.3 

Implement good documentation practices in programming 7.0 7.5 8.5 7.3 

Demonstrate teamwork and interpersonal group skills 8.0 6.5 6.0 7.5 

Demonstrate algorithmic thinking 5.0 5.5 - - 

Demonstrate computational thinking 6.0 3.0 - - 

Demonstrate problem solving 3.0 3.5 2.5 7.5 

Demonstrate critical thinking and reasoning 5.0 3.0 3.0 7.3 

Note. N = 9 for academic group (16 items ranked) and N = 10 (12 items ranked) for industry group. 

 

 1
0
8

 



109 

and 2.0, respectively; indicating low variability. The industry experts ranked 12 languages and 

selected JavaScript and Python as their most important, though there was less variability on the 

former’s ranking (IQR = 2.3) than that of the latter (IQR = 5.3). The academic experts chose 

JavaScript as the least important language on their list but the IQR value of 3.5 pointed to some  

variability in this low ranking among the group. The industry group, meanwhile, selected 

Assembly language as the least important with a corresponding IQR value of 4.3. 

 

 

 

Table 18 

Round 3 Median Rankings of Programming Languages for Introductory Computer Science  

Programming Language Academic Group Ranking Industry Group Ranking 

 Median IQR Median IQR 

Assembly Language - - 10.0 4.3 

C 4.0 2.5 7.0 4.8 

C# 6.0 2.5 4.5 5.8 

C++ 2.0 2.0 5.5 4.0 

HTML5 - - 5.5 5.8 

Java 1.0 1.5 4.5 6.8 

JavaScript 7.0 3.5 3.0 2.3 

PHP 6.0 2.5 6.0 7.3 

PL/SQL - - 8.0 4.3 

Python 4.0 2.5 3.0 5.3 

Ruby 6.0 2.0 9.5 3.3 

Shell - - 9.0 4.8 

Note. N = 9 for academic group (8 items ranked) and N = 10 for industry group (12 items 

ranked). 

 

 

 

 

Assessments 

Finally, the groups ranked 11 assessments as shown in Table 19. Both groups selected 

smaller programming activities among their highest ranked items and did so with little variability 



110 

as indicated by the low IQR values of 1.5 for the academic group and 2.3 for the industry group. 

The academic group also selected lab exercises as a top assessment and again did so with a low 

variability as evidenced by the IQR value (2.0). The industry group also selected term projects as 

tied for the most important assessments but with a high IQR value (8.3). 

 

 

 

Table 19 

Round 3 Median Rankings of Assessments for Introductory Computer Science  

Assessment Academic Group Ranking Industry Group Ranking 

 Median IQR Median IQR 

Case Studies 9.0 4.5 6.5 2.3 

Code Reviews 6.0 3.0 4.5 2.0 

Concept Questions 5.0 2.5 6.0 5.8 

Final Exams 7.0 3.0 8.0 3.0 

Online Threaded Discussions 10.0 1.5 9.0 4.3 

Interviews with Professionals 10.0 1.5 8.5 4.0 

Lab Exercises 2.0 2.0 4.0 6.8 

Quizzes 6.0 3.5 8.5 7.5 

Smaller Programming Activities 2.0 1.5 3.0 2.3 

Team Programming Assignments 4.0 3.5 6.0 5.5 

Term Projects 6.0 4.5 3.0 8.3 

Note. N = 9 for academic group (11 items ranked) and N = 10 for industry group (11 items 

ranked). 

 

 

 

 

Group Concordance 

Kendall’s W was chosen to analyze the conformity among the rankings of the three 

categories by the expert groups. Computation of this statistic requires the deviations of the  

individual elements to be analyzed, the number of items, and the number of rankings to be 

compared. The k value, indicating the number of items ranked was computed via Microsoft   



111 

Excel’s COUNT function of the rows used to indicate competencies, programming languages, 

and assessments. The m value, indicating the number of participants, was computed via the 

COUNT function of the columns with rankings. Zaiontz (2013) suggested using Microsoft Excel 

to calculate Kendall’s W and the approach was used for the three categories for both the 

academic and industry groups. The results are presented in Table 20. 

 

 

 

Table 20 

 

Kendall’s W Values for Round 3 

 

 Levels of Agreement 

Expert Group Competencies Programming 

Languages 

Assessments 

Academic WAC = 0.57  WAL = 0.63 WAA = 0.53 

Industry WIC = 0.13 WIL = 0.10 WIA = 0.20 

Note. N = 10 for academic group and N = 11 for industry group. 

 

 

 

 

 Linear transformations of the Kendall’s W were performed to describe the corresponding 

correlations (r) so the level of agreement for each of the categories by the groups could be 

identified (Zaiontz, 2013). P-values were calculated to determine significance. Neither group 

reached the consensus threshold of W = 0.7, as recommended by Schmidt (1997), on any of the 

three categories in Round 3. Even so, the academic experts apparently agreed more on each of 

the three categories than the industry experts did. Kendall’s coefficient of concordance (W) tests 

showed statistically significant agreement by the academic group on the competencies (WAC = 

0.57, rAC = 0.52, p < 0.001), programming languages (WAL = 0.63, rAL = 0.58, p < 0.001), and 

assessments (WAA = 0.53, rAA = 0.48, p < 0.001). The industry experts exhibited more disparity in 



112 

their rankings but achieved statistical significance in their agreement for their assessments (WIA = 

0.20, rIA = 0.11, p = 0.03). Their agreement levels for the competencies (WIC = 0.13, rIC = 0.03, p 

= 0.21) and languages (WIL = 0.10, rIL = 0.00, p = 0.43), however, lacked statistical significance. 

Round 4 

  Because of the lack of consensus among either group on any of the three categories, the 

Round 3 surveys were copied for Round 4. The coefficient of concordance values for each 

category were included and explained to the participants so they would have information on the 

level of consensus they had achieved. The median rank values were also provided so the experts 

could weigh their preferences against those of the rest of the group. The items for each category 

were listed in order of their median rankings from Round 3. 

The links for the final round’s surveys were distributed by email on May 23, 2016. 

Participants were this time given nine days to complete the survey because of a holiday. The 

structure was identical to that utilized in the previous round with academic and industry experts 

providing split feedback. Email reminders were sent out on the fourth and on the ninth days. 

There were 20 experts who participated in the final round. All eleven industry members 

participated (100%) and nine of the twelve academic experts (75%) completed their surveys. 

The same process was used to analyze the data. Ranking values were downloaded to an Excel 

spreadsheet and the same formulas were used as in Round 3. 

Course Competencies 

Round 4 rankings for competencies by both groups are presented in Table 21. The 

academic group made few changes to their rankings for competencies from Round 3. The order 

of the competencies’ rankings was highly similar to that in the previous round with only slight 

exceptions. “Write functional procedural programs employing programming fundamentals” was 



113 

again the most important competency and “describe the need for computer and data security and 

identify best practices” the least important. Overall, the ordered rankings were more defined in 

Round 4 as there were only two competencies with equivalent rankings. The competencies 

dealing with operating systems and recursion in programming both exhibited median rankings of 

13.0 whereas both had achieved median rankings of 12.0 in the previous round. Other than this 

minor difference, the ordered rankings of the competencies were identical in Round 4 for the 

academic group. Additionally, the IQR values decreased for all but one of the competencies. The 

sole exception was the item dealing with computer and data security, which had an IQR value of 

2.5 compared with 2.0 in the previous round. The lower IQR values indicated less variation in 

the final round of item rankings in this category. 

The situation was similar for the industry group’s rankings, though to a reduced extent. 

“Demonstrate critical thinking” was promoted to a median ranking of 2.0, joining “demonstrate 

problem solving” as the most important competency. “Illustrate the use of databases and apply 

SQL” was again the lowest ranked item. A notable change in the ordered list of competencies for 

the industry professionals was that “implement good documentation practices in programming” 

was promoted ahead of “write functional object-oriented programs employing programming 

fundamentals” and “describe common programming languages and their popular uses.” Other 

than this minor difference, the list was generally comparable to what was generated by the group 

in Round 3. Most items experienced a decrease in IQR, again pointing to less variation in the 

ranked values of competencies. The two exceptions were the competencies dealing with object-

oriented programming (3.8 to 5.0) and common programming languages (6.3 to 7.0).



 

Table 21 

Round 4 Median Rankings of Competencies for Introductory Computer Science  

Competency Academic Group 

Ranking 

Industry Group 

Ranking 

 Median IQR Median IQR 

Analyze algorithms for effectiveness and efficiency 9.0 2.0 7.0 3.0 

Describe different types of data representation (e.g. graphics, binary numbers, etc.) - - 7.0 4.0 

Describe basic computer architecture and organization 11.0 3.0 6.0 7.0 

Illustrate the use of databases and apply SQL - - 11.0 2.0 

Explain the functionality of operating systems and provide examples 13.0 2.5 - - 

Describe common programming languages and their popular uses - - 9.0 7.0 

Demonstrate use of recursion in a program 13.0 2.0 - - 

Describe the need for computer and data security and identify best practices  15.0 2.5 - - 

Explain the role of modeling and simulation in computing 14.0 1.5 - - 

Describe process and practices in SE 10.0 1.0 3.0 5.0 

Write functional object-oriented programs employing programming fundamentals 2.0 0.5 9.0 5.0 

Write functional procedural programs employing programming fundamentals 1.0 1.0 6.0 5.0 

Implement good documentation practices in programming 7.0 2.5 8.0 5.0 

Demonstrate teamwork and interpersonal group skills 8.0 2.5 6.0 3.0 

Demonstrate algorithmic thinking 4.0 4.0 - - 

Demonstrate computational thinking 6.0 0.5 - - 

Demonstrate problem solving 3.0 1.0 2.0 2.0 

Demonstrate critical thinking and reasoning 5.0 2.0 2.0 5.0 

Note. N = 9 for academic group (16 items ranked) and N = 11 for industry group (12 items ranked). 

 

 1
1
4

 



115 

Programming Languages 

The Round 4 results for programming languages are shown in Table 22. The academic 

group changed little in their rankings from Round 3 to Round 4. Java remained the top language, 

(Median = 1.0, IQR = 2.0), followed by C++ (Median = 2.0, IQR = 1.5). The experts gave 

JavaScript a median ranking of 6.0 in Round 4 compared with a 7.0 in Round 3, which had then 

represented the least important language. This change came at the expense of C#, which went 

from a ranking of 6.0 to 8.0 (last in Round 4). 

 

 

 

Table 22 

Round 4 Median Rankings of Programming Languages for Introductory Computer Science  

Programming Language Academic Group Ranking Industry Group Ranking 

 Median IQR Median IQR 

Assembly Language - - 11.0 9.0 

C 4.0 4.0 7.0 5.0 

C# 8.0 3.0 4.0 3.0 

C++ 2.0 1.5 6.0 4.0 

HTML5 - - 6.0 4.0 

Java 1.0 2.0 3.0 7.0 

JavaScript 6.0 3.5 3.0 4.0 

PHP 6.0 2.0 9.0 5.0 

PL/SQL - - 8.0 4.0 

Python 4.0 1.0 3.0 4.0 

Ruby 6.0 1.0 9.0 6.0 

Shell - - 8.0 3.0 

Note. N = 9 for academic group (8 items ranked) and N = 11 for industry group (12 items 

ranked). 

 

 

 

 

 The industry group had a few more noteworthy changes in their rankings of programming 

languages in the final round. Java (median rank = 3.0, IQR = 2.0), joined Python (median rank = 



116 

3.0, IQR = 1.0) and JavaScript (median rank = 3.0, IQR = 4.0) as the most important languages. 

Assembly language held its position as last in the list (median rank = 11.0) but experienced a 

sizable increase in variability (IQR = 9.0) among its rankings. It was notable that two industry  

experts chose assembly language as the most important language on their lists while another five 

ranked it least important. The only other major change involved the group’s dropping of PHP 

from a ranking of 6.0 in Round 3 (IQR = 7.3) to 9.0 in Round 4 (IQR = 5.0). 

Assessments 

 The final round rankings for assessments by each group are shown in Table 23. Again, 

the academic group exhibited little difference in their ranked lists. Lab exercises were deemed 

the most important assessment device by the group (Median rank = 1.0, IQR = 1.5), followed by 

smaller programming activities (Median rank = 2.0, IQR = 1.0). The least important assessment 

chosen by the group was again interviews with professionals (Median rank = 11.0, IQR = 3.0). 

The only other noteworthy change in the rankings was the equivalent ranking of final exams 

(Median rank = 8.0, IQR = 3.5) and case studies (Median rank = 8.0, IQR = 2.5). The former had 

been ranked just ahead of the latter in the previous round.  

The industry group ranked assessments slightly differently than they had in Round 3. 

Smaller programming activities (Median rank = 1.0, IQR = 4.0) was still chosen as the most 

important assessment device, though on its own in Round 4. The other previously top ranked   

assessment device, term projects, was demoted to third on the list (Median rank = 4.0, IQR = 

5.0), surpassed by lab exercises (Median rank = 3.0, IQR = 2.0). Online threaded discussions 

(Median rank = 11.0, IQR = 3.0) were again ranked as the least important assessments by the 

group. 

 



117 

Table 23 

Round 4 Median Rankings of Assessments for Introductory Computer Science  

Assessment Academic Group Ranking Industry Group Ranking 

 Median IQR Median IQR 

Case Studies 8.0 2.5 7.0 1.0 

Code Reviews 6.0 3.0 5.0 4.0 

Concept Questions 4.0 3.5 5.0 3.0 

Final Exams 8.0 3.5 9.0 3.0 

Online Threaded Discussions 10.0 1.0 11.0 3.0 

Interviews with Professionals 11.0 3.0 9.0 4.0 

Lab Exercises 1.0 1.5 3.0 2.0 

Quizzes 6.0 2.5 8.0 8.0 

Smaller Programming Activities 2.0 1.0 1.0 4.0 

Team Programming Assignments 3.0 2.5 6.0 4.0 

Term Projects 6.0 3.0 4.0 5.0 

Note. N = 9 for academic group (11 items ranked) and N = 11 for industry group (11 items 

ranked). 

 

 

 

 

Group Concordance 

Kendall’s coefficient of concordance (W) tests were again computed in Round 4. The 

results are presented in Table 24. Consensus, as defined by the threshold of W = 0.7, was only 

achieved by the academic group on the rankings for competencies (WAC = 0.84, rAC = 0.82, p < 

0.001). Though concordance values increased for both groups on each of the three categories, the  

academic experts again showed higher conformity than the experts from industry. Kendall’s W 

values again showed statistically significant agreement by the academic group on the 

competencies, programming languages (WAL = 0.63, rAL = 0.58, p < 0.001), and assessments 

(WAA = 0.67, rAA = 0.62, p < 0.001). The concordance values for the industry group again 

revealed less agreement in their rankings but this time achieved statistical significance in their 

agreement for both competencies (WIC = 0.32, rIC = 0.25, p < 0.001) and assessments (WIA = 



118 

0.37, rIA = 0.31, p < 0.001). The industry group, however, displayed little agreement on 

programming languages (WIL = 0.12, rIL = 0.02, p = 0.25). 

 

 

 

Table 24 

 

Kendall’s W Values for Round 4 

 

 Levels of Agreement 

Expert Group Competencies Programming 

Languages 

Assessments 

Academic WAC = 0.84  WAL = 0.63 WAA = 0.67 

Industry WIC = 0.32 WIL = 0.12 WIA = 0.38 

Note. N = 9 for academic group and N = 11 for industry group. 

 

 

 The synopsis of these findings are presented in Chapter 5. The implications of the results 

from the rankings by the academic and industry experts are discussed. This information is useful 

to the curriculum designer of introductory courses in CS, and to those who may wish to replicate 

the study elsewhere. 

 

 

 

 

 

 

 

 

 

  



119 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 The aim of this research was to define the competencies, programming languages, and 

assessments for an introductory CS course recommended by experts in academia and industry in 

California’s Central Valley. This chapter will examine the findings presented in the previous one 

and present conclusions and recommendations for curriculum designers in this geographic region 

and those individuals who have an interest in teaching introductory CS. 

Roberts (2011) pointed to the dependence of our economy on persons trained in CS. The 

increased national emphasis on the teaching of CS at the K-12 level (Fisher, 2016) and initiatives 

such as Hour of Code, which recently boasted almost 200,000 events worldwide (Dopplick, 

2015), point to continued growth in the popularity of introductory courses in the field. Creating 

courses to meet this increased demand can be difficult as there are myriad topics and tools 

available for curriculum designers to consider.  

This research identified recommendations for some major components for an 

introductory course in CS. Competencies help to determine the scope of an instructional course, 

which in turn helps to define curriculum (Brown & Green, 2011). Assessments are sources of 

student and instruction evaluation and also play an instrumental role in a course’s design (Brown 

& Green, 2011; Ornstein & Hunkins, 2013). Though the possibilities for what to include in a 

course in CS are wide (Gupta, 2007), programming tends to be included as a significant 

component to introductory CS courses (JTFCC, 2013).  

 Recommendations of experts in academia and industry were solicited using a Delphi 

approach. Elements were used from Okoli and Pawlowski’s (2004) design to obtain feedback on 

potential competencies, programming languages, and assessments. The industry group ranked 12 



120 

competencies, 12 programming languages, and 11 assessments whereas the academic group 

provided feedback on 15 competencies, 8 programming languages, and 11 assessments.  

Recommendations for Course Competencies 

 The competencies for the introductory CS course help to identify the topics to be covered 

and the level of mastery required by students (Koszalka, Russ-Eft, & Reiser, 2013). The first 

research question addressed course competencies: 

RQ1: What competencies do subject matter experts recommend for students in 

California’s Central Valley to master in an undergraduate introductory CS course? 

A primary concern is the scope of the content in a course’s design. Herlo (2015) 

recommended that learning outcomes should be “limited in number” (p. 38) and based on 

competencies. Barker et al. (2009) found perceived “pace and workload” (p. 156) to be 

significant predictors of CS0 students’ intent to pursue a CS major. It is desirable, therefore, to 

narrow the focus the competencies for an introductory course. 

There was a high degree of commonality reached between the academic and industry 

groups though they ranked items separately. Nine competencies were selected by both groups in 

Round 2. See Table 25 for this list of competencies. Of these nine, only “describe basic computer 

architecture and organization” failed to place in the top ten competencies for each of the groups; 

as it came in eleventh for the academic group. Similarities were strong and the experts from 

academia and industry appear to give a somewhat unified recommendation to an introductory CS 

course designer.  

For example, there was strong emphasis on professional skills, programming, and the 

software development process to teach the fundamentals of CS. The professional skills of  

problem solving, critical thinking and reasoning, teamwork and interpersonal group skills are 



121 

typical CS program level outcomes and a focus can often be found in introductory courses 

(Whitfield, 2003). The industry group ranked solving problems as the most important 

competency in Rounds 3 and 4. The academic group selected it as the third most important 

competency in the final round. Both groups also achieved a high degree of consensus on their 

rankings of problem solving as evidenced by their low corresponding IQR values.  

 

 

 

Table 25 

Top Recommended Competencies for Introductory Computer Science by Both Groups 

Competency 

Demonstrate problem solving 

Demonstrate critical thinking and reasoning 

Write functional procedural programs employing programming fundamentals 

Describe process and practices in SE 

Demonstrate teamwork and interpersonal group skills 

Write functional object-oriented programs employing programming fundamentals 

Implement good documentation practices in programming 

Analyze algorithms for effectiveness and efficiency 

Describe basic computer architecture and organization 

 

 

 

 

 The importance attributed to problem solving in introductory computing courses is often 

found in other research (Schneider, 2004; Schulte & Bennedsen, 2006; Wang et al., 2011; 

Whitfield, 2003) and this focus is certainly not limited to the United States. The ability to solve 

problems has been identified as one of the most important required by business and CS industry 

in the Czech Republic (Poulova & Klimova, 2015), though it is often overlooked as an 

educational outcome in undergraduate programming courses (Krpan, Mladenović, & Rosić, 

2015). 



122 

 Another professional skill that was given high priority by both groups was critical 

thinking. The industry group rated the competency to “demonstrate critical thinking and 

reasoning” as tied for most important while the academic group included it in their top five. The 

skill has often been identified as one of the most recognizable goals for students in a CS program 

(Muñoz et al., 2013; Tasneem, 2012). 

 The experts in this study attributed high importance to students learning how to program. 

Though introductory CS courses don’t always rely on programming they typically focus on this 

activity (JTFCC, 2013; Marling & Juedes, 2016; Stamey & Sheel, 2010). CS0 courses, 

specifically, vary widely in their focus on programming (Davies et al., 2011). The professionals 

in this study recommended an emphasis on programming and software development skills over 

other topics, such as networking, operating systems, or databases, to introduce students to the 

field of CS.  

The competency to “write functional procedural programs employing programming 

fundamentals” was among the highest ranked in this study. The academic group chose it as the 

top competency and with minimal variation and the industry experts ranked it in their top five. 

The writing of functional object-oriented programs was also important to both groups but was 

ranked lower than the competency related to procedural programming in each case. The 

academic group ranked object-oriented programming second most important and the industry 

experts placed it in their top ten. Object-oriented programming has been emphasized in 

introductory computing courses (Elarde & Fatt-Fei, 2011; Tew, 2010). The inclusion of both 

procedural and object-oriented paradigms is consistent with the findings of Goldman et al. 

(2008), who also found topics in both approaches to be among the most important for CS1 

courses. Surakka (2005) also reported that procedural and object-oriented programming were 



123 

among the most important topics as reported by academic and industry professionals. Schulte 

and Bennedsen (2006) found that introductory programming courses shared many of the same 

learning objectives, regardless of the use of the procedural or objects paradigm. The 

recommendation from the experts in this study appears to be to focus on procedural 

programming and include elements of object-oriented programming in an introductory CS 

course. 

 Two competencies ranked in the top five of one group and in the top ten of the other. The 

competency “demonstrate teamwork and interpersonal group skills” was ranked in the top five of 

the industry group and in the top ten of the academic group. The ability to work well with other 

students is typically a desired competency for introductory CS courses (McDowell et al., 2006; 

Moura and van Hattum-Janssen, 2011; Muñoz et al., 2013; Soper, 2014) and the experts in this 

research agreed. Additionally, the competency to “describe process and practices in SE” was 

ranked third by the industry experts and tenth by the academic group. It was of little surprise the 

industry group rated this skill prominently for an introductory course as it is of primary 

importance in software development (Lutz et al., 2014; Surakka, 2007). This recognition by the 

academic experts was noteworthy. Introduction to CS course designers should consider giving 

students opportunities to work in teams and utilize SE processes in their development of code. 

 The two groups also included two additional competencies in their top ten rankings. The 

ability to “implement good documentation practices in programming” is covered as a 

recommended skill by the JTFCC (2013) but has been noted as being often overlooked in 

introductory courses (McMaster & Zastre, 2011). The skill acquired attention by both academic 

and industry experts in this case. Additionally, the ability to “analyze algorithms for 

effectiveness and efficiency” was also ranked in the top ten of both groups. This competency, 



124 

suggested by the JTFCC (2013) and LACS (2007) curriculum recommendations is also found as 

an area of focus in the literature for introductory courses (Dodds et al., 2008; Gal-Ezer, Vilner, & 

Zur, 2003; Gorn, 1963; Schulte & Bennedsen, 2006) as well as more advanced courses in 

computing (Enbody et al., 2009). 

 The final competency selected by both groups in Round 2 and placing in the top ten of 

the industry group was related to computer architecture. This topic was covered extensively in 

each of the three textbooks reviewed in the literature (Anderson et al., 2011, Schneider & 

Gersting, 2016; Dale & Lewis, 2016). Surakka (2005) found that separate groups of software 

developers and professors in Finland considered the topic important for software development as 

they both rated the topic as at least a 3.0 on a 4-point Likert scale. It was notable that the industry 

group ranked this competency as tied for fourth along with the competencies related to 

procedural programs and teamwork. This fact, coupled with the academic group ranking it just 

outside the top ten provides justification for including it as one of the top competencies to 

consider for introductory courses in CS. It is important to note, however, that both groups had 

the most dispersed rankings for this competency among those listed in Table 25. The 

introductory CS course designer, might be advised to pay attention to the level of focus given to 

topics in computer architecture. A compromise would be to include this competency as a 

secondary one to consider for the course and this is the suggestion here. 

Another nine competencies were selected by only one of the two groups in Round 2. 

Competencies related to algorithmic and computational thinking were among the most important 

to the academic group, ranking fourth and sixth, respectively; but were not selected by the 

industry group. The competency related to data representation was likewise considered important 

by the industry group (Median rank = 7) but not selected by the academic group. Because these 



125 

competencies were not considered important by both groups, a curriculum designer might 

consider using them as enabling objectives or as areas to cover in other courses. A reduced 

emphasis on these secondary topics will allow for more focus on those considered most 

important by both academic and industry experts. 

Additional support for this suggestion comes from the level of consensus among both 

groups on the competencies listed in Table 25 as compared to these other ten. The IQR values for 

the suggested primary and secondary competencies are shown in Table 26 for both groups. 

Goldman et al. (2008) found CS topics that were outliers or controversial garnered weak 

consensus and this situation is confirmed here. 

 

 

 

Table 26 

 

Round 4 Interquartile Range Values for Suggested Primary and Secondary Competencies 

 

Expert Group Primary Secondary 

Academic 1.56 2.29 

Industry 4.13 5.00 

Note. N = 8 for primary competencies and N = 9 for secondary competencies. 

 

 

 

 

Recommendations for Programming Languages 

The next aspect of the introductory CS course’s design to be researched was the selection 

of programming languages. It was clear from the experts’ preferences for competencies relating 

to programming and software development that the language would play an important role in the 

course. The related research question read as follows: 

RQ2: What programming languages do subject matter experts recommend for students in 

California’s Central Valley to use in an undergraduate introductory CS course? 



126 

The choice of language to teach programming concepts has been researched and 

discussed extensively (Dodds et al., 2008; Forte & Guzdial, 2005; Guzdial, 2009; Settle, Lalor, 

& Steinbach, 2015; Schulte & Bennedsen, 2006; Shein, 2015). Academic institutions typically 

use one language in introductory courses (Lewis, Blank, Bruce, & Osera, 2016) though there are 

instances in which as many as three languages have been utilized (Mahmoud, Dobosiewicz, & 

Swayne, 2004). The top four languages recommended by the academic experts in this study were 

Java, C++, Python, and C. These top four perfectly matched the results reported by Ben Arfa 

Rabai et al. (2015). The industry group, however, were less uniform in their selection and 

rankings of languages, again consistent with the findings of Ben Arfa Rabai et al. (2015). They 

selected twelve languages, compared to eight by the academic group, and their rankings 

exhibited an average IQR value of 4.83, compared to 2.25 for those of the academic experts. The 

reason was not investigated as part of this study but may have been a result of the developers’ 

emphases and company sizes (Meyerovich & Rabkin, 2013).  

The academic and industry groups both recommended Java as the top language for an 

introductory CS course. Java earned the top ranking by the academic group in both the final two 

rounds. This result was consistent with the findings of Ben Arfa Rabai et al. (2015). The industry 

group also promoted it to be tied with two other languages (JavaScript and Python) deemed most 

important in the final round. This preference for Java was somewhat expected as the language 

has been among the most popular for use in introductory programming courses for some time 

(Ben Arfa Rabai et al., 2015; Guo, 2014; Schulte & Bennedsen, 2006). The language was ranked 

as most popular in four of the six resources used to gauge national industry preferences presented 

in Chapter II. Davies et al. (2011) conducted a survey of undergraduate CS departments and 

found that over 40% used Java in their CS1 and CS2 courses. It is worth noting, however, that 



127 

the industry experts exhibited high variability in their final ranking of Java (IQR = 7.0) and that 

only assembly language had higher variation in its rank. There was thus wide discrepancy in the 

opinions of the industry professionals on the importance of Java for introductory CS courses. It 

can be inferred that Java is still considered highly important in several domains of the software 

development industry (TIOBE Index for December 2015), but there is recognition the language 

is more difficult for beginners to learn than other options (Ali & Mensch, 2008; Ali & Smith, 

2014; Cheng et al., 2010). 

The preference for Java by academic and industry experts was, however, at odds with 

both groups’ higher ranking of the competency related to procedural programming over the one 

dealing with object-oriented programming. It might have been more expected that a procedural 

language would have been recommended higher by both groups. The industry group also 

selected JavaScript, a language that spans several paradigms, and Python, which can also include 

object-oriented elements and support multiple paradigms (Agarwal, Agarwal, & Fife, 2012), as 

top ranked choices.  

JavaScript has been used in introductory courses (Baldwin et al., 2010; Elarde & Fatt-Fei, 

2011; Mahmoud et al., 2004; Schneider, 2004) and has been used in CS0 and first computing 

courses (Ben Arfa Rabai et al., 2015; Davies et al., 2011). It is more widely known, however, for 

its use in industry (Guo, 2014; Meyerovich & Rabkin, 2013; Shein, 2015). The academic group 

also ranked JavaScript in their list (Median rank = 6.0), but did so below Python (Median rank = 

4.0), which equated to third most popular and tied with C. 

There was an indication in this research that Python is becoming increasingly important 

in the eyes of industry, or that there is a recognition of its value in teaching introductory 

programming. This situation confirms what has been reported about the continuous growth of its 



128 

popularity nationwide (Ben Arfa Rabai et al., 2015; Davies et al., 2011; Guo, 2014; JTFCC, 

2013; Meyerovich & Rabkin, 2013; Shein, 2015). Many curriculum designers have chosen to use 

Python for initial computing courses (Agarwal et al., 2012; Ben Arfa Rabai et al., 2015; Cheng et 

al., 2010; Davies et al., 2011; Guzdial, 2009; Norman & Adams, 2015) and lead up to using Java 

or C++ in later programming classes (Davies et al., 2011; Dodds et al., 2008; Enbody et al., 

2009). Python’s attractiveness in introductory courses is a result of its relative ease to learn 

(Enobdy et al., 2009; Meyerovich & Rabkin, 2013; Shein, 2015). 

The C++ programming language was also highly ranked by both groups. The academic 

group ranked it second, again with a high degree of consensus, whereas the industry group 

ranked it in their top five, with some level of agreement. The language is still highly popular in 

industry but has been more associated with CS1 and CS2 courses than CS0 courses (Ben Arfa 

Rabai et al., 2015; Davies et al., 2011). 

Visual programming languages, such as Alice and Scratch, have been recommended as 

gateways to introduce students to programming (Ali & Mensch, 2008; Ali & Smith, 2014; 

desJardins & Littman, 2010; JTFCC, 2013; Malan & Leitner, 2007; Tanrikulu & Schaefer, 2011) 

or as remedial aids for introductory programmers (Chang, 2014). Davies et al. (2011) found 

Alice to be the most widely used language in CS0 courses. The experts in this study, however, 

did not choose any of the three visual programming languages available and this omission was 

likely due to lack of awareness. For example, 17 of 21 participants in Round 1 were not familiar 

with Greenfoot. Scratch and Alice were not known by 12 of the experts. Ben Arfa Rabai et al. 

(2015) lamented at the lack of adoption of visual programming languages to teach programming 

in academia. Despite this lack of awareness by the experts in this study, these languages merit 

consideration as they have been shown to be successful tools to teach students programming 



129 

skills (Malan & Leitner, 2007; Rizvi, Humphries, Major, Jones, & Lauzun, 2011) and preferred 

by non-majors (Elarde & Fatt-Fei, 2011). 

There was consistency between the recommendations of experts in California’s Central 

Valley to those located nationwide and beyond. The preferences from both groups of participants 

in this research coupled with the literature appear to call for the use of Java in an introductory CS 

course. It is apparent the language is valued in industry and has a consistent track record in use in 

academia. Java could also be supplemented with a visual programming language, such as Scratch 

or Alice, to introduce programming topics early in the course. Another strong possibility would 

be to use Python instead of Java to introduce topics in programming. This suggestion would 

appear to have increased merit especially if accessibility was a concern. Python also seems to 

better match the preference for competencies relating to both procedural and object-oriented 

programming. It would again be a good idea to ease into teaching the course with a visual 

programming language. 

Recommendations for Assessments 

The final components of the introductory CS course studied were assessments. These 

elements would help to define the level of student mastery of the course competencies. The 

research question guiding this portion of the study was: 

RQ3: What assessments do subject matter experts recommend for students in California’s 

Central Valley to demonstrate mastery of competencies for an undergraduate introductory 

CS course? 

 The participants in this research also provided preferences for the assessments to be used 

in an introductory CS course. A review of the syllabi referenced or presented in the literature 

(desJardins & Littman, 2010; Fulton & Schweitzer, 2011; Kunkle, 2010; Muñoz et al., 2013; 



130 

Xiang & Ye, 2009; Zhao et al., 2015) and select course syllabi used at Harvard University 

(Malan, 2012), Massachusetts Institute of Technology (Kaelbling et al., 2011), and Stanford 

University (Parlante, 2014) identified the use of two to six distinct categories of assessments 

used in introductory CS classes. 

 The academic and industry experts had some level of similarity in the assessments they 

recommended. Five of the suggested assessments were placed in the top five of both groups. 

These items are shown in Table 27. Smaller programming activities were ranked as the top 

assessment by the industry group and second by the academic group. The academic group had 

more uniformity in its placement of smaller programming activities (IQR = 1.0) than did the 

industry group (IQR = 4.0). It is noteworthy that these types of exercises strongly relate to the 

emphasis on programming exhibited by the experts and their preferred competencies. 

 

 

 

Table 27 

Top Recommended Assessments for Introductory Computer Science by Both Groups 

Assessment 

 

Smaller programming assignments 

Lab exercises 

Concept questions 

Term projects 

Code reviews 

Team programming assignments 

 

 

 

 

Lab exercises were also ranked highly by academic and industry experts. The faculty 

members ranked this assessment type at the top of their list while the industry professionals 



131 

ranked it second most important. The academic and industry groups were both in high agreement 

of their rankings of this assessment yielding IQR values of 1.5 and 2.0, respectively.  

 The major conclusion on the preference for these two items is that experts believe that 

students need to learn by doing. There has been an increased call for active learning 

opportunities in engineering and CS classes (Crawley, Malmqvist, Östlund, Brodeur, & Eström, 

2014) and the experts in this research appear to agree. 

 Concept questions were often mentioned in the literature as being important components 

of introductory CS courses (Cortina, 2007; Fulton & Schweitzer, 2011; Horton et al., 2014; 

Muñoz et al., 2013; Whitfield, 2003). Another observation is that concept questions, along with 

lab exercises and smaller programming activities are more formative in nature. It appears the 

experts also preferred shorter and more periodic assessment for an introductory CS course. This 

preference has also been reflected in the literature (Cardona, Vélez, Tobón, 2014; Bälter et al., 

2013) and a CS course curriculum designer should accordingly emphasize these types of 

experiences.  

 Term projects were also highly recommended as they placed tied for fifth in the academic 

group’s rankings and third in those of the industry group. Term projects are summative 

experiences and encompass more time during a semester. They have been noted as important 

components in introductory CS courses emphasizing active learning (Moura & van Hattum-

Janssen, 2011). 

Finally, code reviews also received notable support from academic and industry 

professionals. The academic group ranked them as fifth most important (tied with quizzes) and 

the industry group attributed a fourth place ranking (Median rank = 5.0, tied with concept 

questions). Code reviews or artifact examinations (Cohoon et al., 2013) mimic activities in a 



132 

professional setting and allow students to review programs together. These types of assessments 

have been shown to be highly beneficial to student learning (Harding & Engelbrecht, 2015; Law 

et al., 2010). Hauswirth and Adamoli (2013) noted that “having to evaluate their peer’s solutions 

(after submitting their own) increases the chance that [students] will recognize their knowledge 

gaps and that they will become interested in filling those gaps by asking questions during the 

subsequent discussion phase” (pp. 511-512). Code reviews, therefore, appear to potentially play 

an important role in an introductory CS course and merit consideration. 

Another item, team programming assignments received strong support from the groups, 

placing in the top five of one and in the top ten of the other. Team programming assignments not 

only emphasize the competencies relating to programming, but also the one dealing with 

teamwork. The academic group ranked the item as third most important whereas the industry 

group ranked it just outside their top five (Median rank = 6.0). These types of experiences, and 

pair programming specifically, have been associated with increased proficiency and confidence 

of programmers and increased representation of underrepresented groups (McDowell et al., 

2006). Although the addition of a sixth type of assessment might appear to lead to a crowded 

syllabus, team aspects could certainly be added to other assessments recommended by the 

experts (e.g. lab exercises, smaller programming assignments, etc.). 

The remaining assessments were not as highly regarded by the participants in this study. 

More traditional activities, such as quizzes, case studies, and final exams were not deemed as 

important to assess learning in introductory CS courses as those previously mentioned. These 

items, though still popular (Fulton & Schweitzer, 2011; Horton et al., 2014; Muñoz et al., 2013; 

Rolka & Remshagen, 2015; Wang et al., 2011), were not valued as much by either group of 

experts. One possible explanation might be the aforementioned desire for more active learning 



133 

experiences associated with the higher ranked assessment selections. It is important to note, 

however, that quizzes constitute opportunities for formative assessment and could help at 

improving student outcomes (Bälter et al., 2013). 

Additionally, online threaded discussions were likely seen as not as important as they are 

associated with the online and blended modalities (Harmon, Alpert, & Lambrinos, 2014; 

Singleton, 2013) and some participants may not have been familiar with these approaches to 

learning. Interviews with professionals were also ranked low on both academic and industry lists. 

These assessments would likely be more useful for courses with more major students than those 

with a considerable non-major population. 

Overall Course Recommendations and Future Research 

 The overall goal of this study was to identify regional experts’ recommendations to help 

better design an introductory CS course for majors and non-majors. While there are diverse 

needs to address in such a course, curriculum designers must do their best to prepare a positive 

learning experience. Professionals in academia and industry can provide invaluable input on the 

content for such a course. Though their interests are varied, there can be consensus on course 

components such as competencies, programming languages, and assessments. The experts in this 

study recommended a CS course that provides students with a focus on programming and SE 

process along with training in so-called soft skills; such as problem solving, critical thinking, and 

teamwork. Assessments should be based on the opportunity to learn by doing; in the form of 

smaller and team programming activities, lab exercises, and term projects, and more traditional 

concept questions. Code reviews should also be used to help students learn best practices and 

build their own knowledge. These recommendations seemingly point more to an introductory 



134 

course in SE, than one in CS. This change would be more in line with the intended course as part 

of as SE program. 

 The choice of programming languages to use in introductory CS courses will likely 

remain a contentious one. A curriculum designer is well advised to use a language like Java, 

which continues to thrive in the classroom and in industry. It is important, however, to consider 

the audience and keep a close eye on the dynamic programming field. Python continues to 

increase in popularity and its accessibility and versatility make it a strong choice, especially for 

courses with non-majors. Visual programming languages like Alice, Greenfoot, and Scratch 

should continue to be considered to introduce concepts in programming before transitioning to a 

language like Java or Python. 

 This research identified the recommendations of stakeholders and two major groups were 

considered: academic and industry professionals. The context for this study was an introductory 

CS course at a small private university launching a new SE program. It would be beneficial to 

obtain feedback on course content from graduates and their employers. While this situation was 

not conducive to that type of information, it is the intent to solicit the opinions of both of these 

groups at a future date. Course designers at other institutions are encouraged to seek out the 

opinions of various stakeholders and continuously update curriculum. With these types of 

activities academic professionals can be more confident that they provide students with the 

opportunities they need to develop the required skills for their future careers. 

 A final suggestion for future research would be to include focus groups or one-on-one 

interviews with academic and industry professionals. The online Delphi approach used in this 

study was successful in that 20 academic and industry professionals remained engaged through 

four rounds and provided valuable information. Alternate designs, however, would allow for the 



135 

study of the differences between the groups. Separate interviews would help to identify the 

reasons for experts’ choices and help the curriculum designer make more informed decisions. 

Most academic programs in computing have industry advisory groups and their members would 

be excellent candidates to provide this level of detail and for development efforts aimed at 

continuous improvement.  



136 

References 

Aarts, D. (2015). The dropout founder myth. Canadian Business, 88(14), 24. 

Agarwal, K. K., Agarwal, A., & Fife, L. (2012). Python and Visual Logic: A good combination 

for CS0. Journal of Computing Sciences in Colleges, 27(4), 22-27. 

Ali, A. (2009). A conceptual model for learning to program in introductory programming 

courses. Issues in Informing Science and Information Technology, 6, 517-529. 

Ali, A., & Mensch, S. (2008). Issues and challenges for selecting a programming language in a 

technology update course. Information Systems Education Journal, 7(85), 1-10. 

Retrieved from http://isedj.org/7/85/ISEDJ.7%2885%29.Ali.pdf 

Ali, A., & Smith, D. (2014). Teaching an introductory programming language in a general 

education course. Journal of Information Technology Education: Innovations in Practice, 

13, 57-67. Retrieved from http://www.jite.org/documents/Vol13/JITEv13IIPp057-

067Ali0496.pdf  

Alvarado, C., & Dodds, Z. (2010). Women in CS: An evaluation of three promising practices. In 

Proceedings of the 41st ACM Technical Symposium on Computer Science Education, 

Milwaukee, WI (pp. 57-61). New York: ACM. doi:10.1145/1734263.1734281 

Anderson, G., Ferro, D., & Hilton, R. (2011). Connecting with computer science (2nd ed.). 

Boston, MA: Course Technology. 

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: 

A revision of Bloom’s taxonomy of educational objectives. Boston, MA: Allyn & Bacon. 

Arden, B. W. (1964). On introducing digital computing. Communications of the ACM, 7(4), 212-

214. 



137 

Association for Computing Machinery Curriculum Committee on CS. (1965). An undergraduate 

program in computer science--preliminary recommendations. Communications of the 

ACM, 8(9), 543-552. 

Austing, R. H., Barnes, B. H., Bonnette, D. T., Engel, G. L., & Stokes, G. (Eds.). (1978). 

Curriculum ’78: Recommendations for the undergraduate program in computer science. 

Communications of the ACM, 22(3), 147-166. 

Bacon, C. J., & Fitzgerald, B. (2001). A systematic framework for the field of information 

systems. The DATA BASE for Advances in Information Systems, 32(2), 46-67. 

Baldwin, D., Brady, A., Danyluk, A., Adams, J., & Lawrence, A. (2010). Case studies of liberal 

arts computer science programs. ACM Transactions on Computing Education, 10(1), 1-

30. doi:10.1145/1731041.1731045 

Bälter, O., Enström, E., & Klingenberg, B. (2013). The effect of short formative diagnostic web 

quizzes with minimal feedback. Computers & Education, 60, 234-242. 

Barberà, E., Layne, L., & Gunawardena, C. N. (2014). Designing online interaction to address 

disciplinary competencies: A cross-country comparison of faculty perspectives. The 

International Review of Research in Open and Distributed Learning, 15(2), 142-169. 

Barker, L. J., McDowell, C., & Kalahar, K. (2009). Exploring factors that influence computer 

science introductory course students to persist in the major. ACM SIGCSE Bulletin, 

41(1), 153-157.  

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved 

and what is the role of the computer science education community? ACM Inroads, 2(1), 

48-54. 



138 

Beck, K, Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., … 

Thomas, D. (2001). Manifesto for Agile Software development. Retrieved from 

http://www.agilemanifesto.org/iso/en/ 

Beech, B. (1999). Go the extra mile – Use the Delphi technique. Journal of Nursing 

Management, 7(5), 281-288. 

Ben Arfa Rabai, L., Bai, Y. Z., & Mili, A. (2011). A quantitative model for software engineering 

trends. Information Sciences, 181(22), 4993-5009. 

Ben Arfa Rabai, L., Cohen, B., & Mili, A. (2015). Programming language use in US academia 

and industry. Informatics in Education, 14(2), 143-160. 

Bernhard, M. P. (2014, September 11). CS50 logs record-breaking enrollment numbers. The 

Harvard Crimson. Retrieved from http://www.thecrimson.com/article/2014/9/11/cs50-

breaks-enrollment-records/?page=single 

Bishop-Clark, C., Courte, J., Evans, D., & Howard, E. V. (2007). A quantitative and qualitative 

investigation of using Alice Programming to improve confidence, enjoyment and 

achievement among non-majors. Journal of Educational Computing Research, 37(2), 

193-207. 

Black Duck Software. (2015). This year’s language use. Retrieved from 

https://www.blackducksoftware.com/resources/data/this-years-language-use 

Boone, Jr. H. N., & Boone, D. A. (2012). Analyzing Likert data. Journal of Extension, 50(2), 1-

5. Retrieved from http://www.joe.org/joe/2012april/tt2.php 

Bothe, K., Budimac, Z., Cortazar, R., Ivanović, M., & Zedan, H. (2009). Development of a 

modern curriculum in software engineering at master level across Countries. Computer 

Science & Information Systems, 6(1), 1-21. 



139 

Brace-Govan, J., Farrelly, F., Joy, S., Luxton, S., & Davey, I. (2001). Delphi revisited: A concise 

method for industry consultation on curriculum. Australian and New Zealand Journal of 

Vocational Education Research, 9(1), 1-19. 

Bramwell, A., & Wolfe, D. A. (2008). Universities and regional economic development: The 

entrepreneurial University of Waterloo. Research Policy, 37(8), 1175-1187. 

Bransford, J., Brown, A., & Cocking, R. (1999). How people learn: Brain, mind experience and 

school. Washington, DC: National Research Council. Retrieved from 

http://www.nap.edu/catalog/6160/how-people-learn-brain-mind-experience-and-school 

Brookshear, G. (1997). Computer science: An overview. (5th ed.). Boston, MA: Addison-

Wesley. 

Brookshear, G. (2003). Computer science: An overview. (7th ed.). Boston, MA: Addison-

Wesley. 

Brown, A., & Green, A. (2011). The essentials of instructional design; connecting fundamental 

principles with process and practice. (2nd ed.). Boston, MA: Pearson. 

Bruce, K. B., Cupper, R. D., & Drysdale, R. L. S. (2010). A history of the liberal arts computer 

science consortium and its model curricula. ACM Transactions on Computing Education, 

10(1), 1-12. 

Bruce, R., Fowler, C., Guzdial, M., King, M. S., & Woszczynski, A. (2005). CS0/CS1 - Filter or 

funnel: Recruitment, retention, and student success. In Proceedings of the 43rd Annual 

Southeast Regional Conference, Kennesaw, GA (pp. 29-30). New York, NY: ACM. 

doi:10.1145/1167350.1167370 

Brungs, A., & Jamieson, R. (2010). Identification of legal issues for computer forensics. Journal 

of Digital Forensic Practice, 3(2-4), 140-149. 



140 

Bureau of Labor Statistics, U.S. Department of Labor. (2015). Occupational outlook handbook, 

2014-15 edition. Retrieved from http://www.bls.gov/ooh/computer-and-information-

technology/home.htm 

California State University. (2015a). In the spotlight. Retrieved from http://www.calstate.edu/ 

California State University. (2015b). CSU student enrollment in degree programs, analytic 

studies. Retrieved from http://www.calstate.edu/as/stat_reports/degree.shtml 

Carbonelle, P. (2015). PYPL PopularitY of programming language. Retrieved from 

http://pypl.github.io/PYPL.html 

Cardona, S., Vélez, J., Tobón, S. (2014). Towards a model for the development and assessment 

of competences through formative projects. CLEI Electronic Journal, 17(3), 1-16. 

Case Western Reserve University. (2015). History. Retrieved from https://engineering.case.edu/ 

eecs/about/history 

Chand, D. R. (1974). Computer science education in business schools. SIGCSE Bulletin, 6(3), 

91-97. 

Chang, C-K. (2014). Effects of using Alice and Scratch in an introductory programming course 

for corrective instruction. Journal of Educational Computing Research, 51(2), 185-204. 

Cheng, T. K., Jayasuriya, M., & Lim, J. (2010). Removing the fear factor in programming. The 

Python Papers Monograph, 2, 1-9. 

Clark, C. B., Courte, J., Evans, D., & Howard, E. V. (2007). A quantitative and qualitative 

investigation of using Alice Programming to improve confidence, enjoyment and 

achievement among non-majors. Journal of Educational Computing Research, 37(2), 

193-207. 



141 

Cohoon, J. P., Cohoon, M., & Soffa, M. L. (2013). Educating diverse computing science students 

at the University of Virginia. Computer, 46(3), 52-55. 

Colson, N. (2015). The two-to-four year plan. Business NH Magazine, 32(8), 36-38. 

Committee for the Workshops on Computational Thinking & Computer Science and 

Telecommunications Board. (2010). Report of a workshop on the scope and nature of 

computational thinking. Washington, D.C.: The National Academies Press. Retrieved 

from http://www.nap.edu/ download.php?record_id=12840 

Committee on Uses of Computers. (1966). Digital computer needs in universities and colleges. 

Washington, D.C.: National Academy of Sciences, National Research Council. 

Computing Research Association. (2015). The Taulbee survey. Retrieved from http://cra.org/ 

resources/taulbee-survey/ 

Cooper, S. (2010). The design of Alice. ACM Transactions on Computing Education, 10(4), 1-

16. doi:10.1145/1868358.1868362 

Cortina, T. J. (2007). An introduction to computer science for non-majors using principles of 

computation. ACM SIGCSE Bulletin, 39(1) 218-222. 

Courte, J., & Howard, E. V. (2005). Using Alice in a computer science survey course. ACM 

SIGCSE Bulletin, 39(1), 213-217. 

Crawley, E. F., Malmqvist, J., Östlund, S., Brodeur, D. R., & Eström, K. (2014). Rethinking 

engineering education: The CDIO approach (2nd ed.). New York, NY: Springer.  

CSin3. (n.d.). Retrieved from https://sites.google.com/site/csitin3/ 

(CT)2 basic information. (n.d.). OhioHigherEd. Retrieved from https://www.ohiohighered.org/ 

transfer/ct2/basicinfo 



142 

Czerkawski, B., & Lyman, E. (2015). Exploring issues about computational thinking in higher 

education. Tech Trends: Linking Research & Practice to Improve Learning, 59(2), 57-65. 

Dale, N., & Lewis, J. (2016). Computer science illuminated (6th ed.). Burlington, MA: Jones & 

Bartlett Learning. 

Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use 

of experts. Management Science, 9(3), 458-467. 

Daly, T. (2011). Minimizing to maximize: An initial attempt at teaching introductory 

programming using Alice. Journal of Computing Sciences in Colleges, 26(5), 23-30. 

Davies, S., Polack-Wahl, J. A., & Anewalt, K. (2011). A snapshot of current practices in 

teaching the introductory programming sequence. In Proceedings of the 42nd ACM 

Technical Symposium on Computer Science Education Dallas, TX (pp. 625-630). New 

York, NY: ACM. doi:10.1145/1953163.1953339 

Denning, P. J. (2013). The science in computer science. Communications of the ACM, 56(5), 35-

38. 

Denning, P. J., & Gordon, E. E. (2015). A technician shortage. Communications of the ACM, 

58(3), 28-30. 

desJardins, M., & Littman, M. (2010). Broadening student enthusiasm for computer science with 

a great insights course. In Proceedings of the 41st ACM technical symposium on 

computer science education Milwaukee, WI (pp. 157-161). New York, NY: ACM. 

doi:10.1145/ 1734263.1734317 

Diakopoulos, N., & Cass, S. (2015, July 20). Interactive: The top programming languages 2015. 

Retrieved from http://spectrum.ieee.org/static/interactive-the-top-programming-

languages-2015 



143 

Dodds, Z., Libeskind-Hadas, R., Alvarado, C., & Kuenning, G. (2008). Evaluating a breadth-first 

CS1 for scientists. ACM SIGCSE Bulletin, 40(1), 266-270 

Dopplick, R. (2015, December 7). Celebrate Computer Science Education Week, December 7-

13. [Web log comment]. Retrieved from https://techpolicy.acm.org/?p=5379 

Dorn, B. (2011). Education reaching learners beyond our hallowed halls. Communications of the 

ACM, 54(5), 28-30. 

Dye, E. (2014, September 22). 2014 year-to-date trends in higher education marketing. Retrieved 

from http://sparkroom.com/blog/tag/marketing-analytics/ 

Dziallas, S., & Fincher, S. (2015). ACM curriculum reports: A pedagogic perspective. In 

Proceedings of the 11th Annual International Conference on International Computing 

Education Research, Omaha, NE (pp. 81-89). New York, NY: ACM. doi:10.1145 

/2787622.2787714 

Elarde, J. V., & Fatt-Fei, C. (2011). Introductory computing course content: Educator and 

student perspectives. In Proceedings of the 2011 Conference on Information Technology 

Education West Point, NY (pp. 55-60). New York, NY: ACM. doi:10.1145 

/2047594.2047610 

Elena, B., Layne, L., & Gunawardena, C. N. (2014). Designing online interaction to address 

disciplinary competencies: A cross-country comparison of faculty perspectives. 

International Review of Research in Open & Distance Learning, 15(2), 142-169. 

Elledge, R. O. C., & McAleer, S. (2015). Planning the content of a brief educational course in 

maxillofacial emergencies for staff in accident and emergency departments: A modified 

Delphi study. British Journal of Oral & Maxillofacial Surgery, 53(2), 109-113. 



144 

Enbody, R., J., Puch, W. F., McCullen, M. (2009). Python CS1 as preparation for C++ CS2. 

ACM SIGCSE Bulletin, 41(1), 116-120. 

Eskandari, H., Sala-Daikanda, S., & Ruterer, S. (2007). Enhancing the undergraduate industrial 

engineering curriculum: Defining desired characteristics and emerging topics. Education 

& Training, 49(1), 45-55. 

Fallows, J. (2015, March 14). California’s centers of technology: Bay Area, L.A., San Diego, 

and … Fresno? The Atlantic. Retrieved from http://www.theatlantic.com/national/ 

archive/2015/03/californias-centers-of-technology-bay-area-la-san-diego-and-

fresno/387808/ 

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). Thousand Oaks, CA: Sage 

Publications Inc. 

Fisher, L. M. (2016). A decade of ACM efforts contribute to computer science for all. 

Communications of the ACM, 59(4), 25-27. 

Forte, A., & Guzdial, M. (2004). Computers for communication, not calculation: Media as a 

motivation and context for learning. In Proceedings from 37th Hawaiian International 

Conference of Systems Sciences, Big Island, HI (pp. 1-10). Retrieved from 

http://www.andreaforte.net/ ForteGuzdialCommNotCalc.pdf 

Forte, A., & Guzdial, M., (2005). Motivation and nonmajors in computer science: Identifying 

discrete audiences for introductory courses. IEEE Transactions on Education, 48(2), 248-

253. 

Foster, P. (1997). Lessons from history: Industrial arts/technology education as a case. Journal of 

Vocational and Technical Education, 13(2), 5-15. 



145 

Franklin, D. (2015). Putting the computer science in computing education research. 

Communications of the ACM, 58(2), 34-36. 

Fulton, S., & Schweitzer, D. (2011). Impact of giving students a choice of homework 

assignments in an introductory computer science class. International Journal for the 

Scholarship of Teaching and Learning, 5(1), 1-12. 

Gal-Ezer, J., Vilner, T., & Zur, E. (2003). Teaching algorithm efficiency in a CS1 course: A 

different approach. In Proceedings of the 8th Annual Conference on Innovation and 

Technology in Computer Science Education Thessaloniki, Greece (p. 256). New York, 

NY: ACM. doi:10.1145/961511.961616 

Gerwing, T. G., Rash, J. A., Gerwing, A. M. A., Bramble, B., & Landine, J. (2015). Perceptions 

and incidence of test anxiety. Canadian Journal for the Scholarship of Teaching & 

Learning, 6(3), 1-14. Retrieved from http://ir.ib.uwo.ca/cjsotl_rcacea/vol6/iss3/3 

Gibbs, N. E., & Tucker, A. B. (1986). A model curriculum for a liberal arts degree in computer 

science. Communications of the ACM, 29(3), 202-210. 

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., & Zilles, C. 

(2008). Identifying important and difficult concepts in introductory computing courses 

using a Delphi process. ACM SIGCSE Bulletin, 40(1), 256-260. 

Goodman, C. M. (1987). The Delphi technique: A critique. Journal of Advanced Nursing, 12(6), 

729-734. 

Gorn, S. (1963). The computer and information sciences: A new basic discipline. SIAM Review, 

5(2), 150-155. 

Grandgenett, N., Thiele, L., Pensabene, T., & McPeak, B. (2015). It takes a village to raise an 

information technology project: Suggestions on collaboration from our 10-community-



146 

college consortium. Community College Journal of Research and Practice, 39(7), 647-

658. 

Gray, K, C., & Herr, E. L. (1998). Workforce education. Needham Heights, MA: Allyn & Bacon. 

Guercio, A., & Sharif, B. (2012). Being Agile in computer science classrooms. AURCO Journal, 

18, 41-62. 

Guo, P. (2014, July 7). Python is now the most popular introductory teaching language at top 

U.S. universities. [Web log comment]. Retrieved from http://cacm.acm.org/blogs/blog-

cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-

universities/fulltext 

Gupta, G. K. (2007). Computer science curriculum developments in the 1960s. IEEE Annals of 

the History of Computing, 29(2), 40-64. 

Guu, Y. H., Lin, K-Y., & Lee, L-S. (2014). Identifying professional competencies of the flip-

chip packaging engineer in Taiwan. Turkish Online Journal of Educational Technology, 

13(4), 61-70. 

Guzdial, M. (2009). Teaching computing to everyone. Communications of the ACM, 52(5), 31-

33. 

Hambrusch, S., Libeskind-Hadas, R., & Aaron, E. (2015). Understanding the U.S. domestic 

computer science Ph.D. pipeline. Communications of the ACM, 58(8), 29-32. 

Harding, A., & Engelbrecht, J. (2015). Personal learning network clusters: A comparison 

between mathematics and computer science students. Educational Technology & Society, 

18(3), 173-184. 

Harmon, O. R., Alpert, W. T., & Lambrinos, J. (2014). Testing the effect of hybrid lecture 

delivery on learning outcomes. Journal of Online Learning & Teaching, 10(1), 112-121. 



147 

Hartell, R. W., & Foegeding, E. A. (2006). Learning: Objectives, competencies, or outcomes? 

Journal of Food Science Education, 3(4), 69-70. 

Hasson, F., Keeney, S., & McKenna, Hugh. (2000). Research guidelines for the Delphi survey 

technique. Journal of Advanced Nursing, 32(4), 1008-1015. 

Hauswirth, M., & Adamoli, A. (2013). Teaching Java programming with the Informa clicker 

system. Science of Computer Programming, 78(5), 499-520. 

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an 

introductory-level computer programming course. Computers & Education, 54, 1127-

1136. 

Hays, D.G. & Singh, A.A. (2012) Qualitative inquiry in clinical and educational settings.  New 

York, New York: Guilford. 

Herlo, D. (2015). New trends in curriculum design process for higher education. Journal Plus 

Education / Educatia Plus, 13(2), 36-41. 

Hertz, M. (2010). What do “CS1” and “CS2” mean?: Investigating differences in the early 

courses. In Proceedings of the 41st ACM Technical Symposium on Computer Science 

Education Milwaukee, WI (pp. 199-203). New York, NY: ACM. doi:10.1145 

/1734263.1734335 

Horton, D., Craig, M., Campbell, J., Gries, P., & Zingaro, D. (2014). Comparing outcomes in 

inverted and traditional CS1. In Proceedings of the 2014 Conference on Innovation & 

Technology in Computer Science Education Uppsala, Sweden (pp. 261-266). New York, 

NY: ACM. doi: 10.1145/2591708.2591752 



148 

Huang, T. (2008). Restructuring the introductory computer science course with topics from AI. 

In Papers from the AAAI Spring Symposium: Using AI to Motivate Greater Participation 

in Computer Science (pp. 100-101). Menlo Park, CA: AAAI Press. 

IEEE Computer Society. (2015). IEEE Computer Society Certification and Credential Program. 

Retrieved from http://www.computer.org/web/education/certifications 

International Organization for Standardization [ISO]/International Electrotechnical Commission 

[IEC]. (1994). ISO International Standard ISO/IEC 7498-1 – Information technology – 

Open systems interconnection – Basic reference model: The basic model. Geneva, 

Switzerland: International Organization for Standardization (ISO). Retrieved from 

http://www.ecma-international.org/activities/Communications/TG11/s020269e.pdf 

Israel, D. (2008). Data analysis in business research: A step-by-step nonparametric approach. 

Thousand Oaks, CA: SAGE Publications, Inc. 

Joint Interim Review Task Force. (2008). Computer science curriculum 2008: An interim 

revision of CS 2001. New York: Author. Retrieved from 

http://www.acm.org/education/curricula/ ComputerScience2008.pdf 

Joint Task Force on Computing Curricula. (1990). Computing curricula 1991. Communications 

of the ACM, 34(6), 68-84. 

Joint Task Force on Computing Curricula. (2001). Computing curricula 2001. New York: 

Author. Retrieved from http://www.acm.org/sigcse/cc2001 

Joint Task Force for Computing Curricula 2005. (2006). Computing Curricula 2005: The 

overview report covering undergraduate programs in computer engineering, computer 

science, information systems, information technology, software engineering. Los 



149 

Alamitos, CA: Author. Retrieved from 

http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf 

Joint Task Force on Computing Curricula. (2013). Computer science curricula 2013: 

Curriculum guidelines for undergraduate degree programs in computer science. New 

York: Author. Retrieved from https://www.acm.org/education/CS2013-final-report.pdf 

Joint Task Force on Computing Curricula. (2014). Software engineering 2014: Curriculum 

guidelines for undergraduate degree programs in software engineering. New York: 

Author. Retrieved from https://www.acm.org/education/se2014.pdf 

Joyner, H. S., & Smith, D. (2015). Using Delphi surveying techniques to gather input from non-

academics for development of a modern dairy manufacturing curriculum. Journal of 

Food Science Education, 14(3), 88-115. 

Kaelbling, L., White, J., Abelson, H., Freeman, D. Lozano-Pérez, T., & Chuang, I. (2011). 

Introduction to Electrical Engineering and Computer Science I, (Massachusetts Institute 

of Technology: MIT OpenCourseWare) [Course Syllabus]. Cambridge, MA: Department 

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. 

Retrieved from http://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-

2011/Syllabus/ 

Katai, Z. (2014). The challenge of promoting algorithmic thinking of both sciences- and 

humanities-oriented learners. Journal of Computer Assisted Learning, 31(4), 287-299. 

Keenan, T. A. (1964). Computers and education. Communications of the ACM, 7(4), 205-209. 



150 

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of 

programming environments and languages for novice programmers. ACM Computing 

Surveys, 37(2), 83-137. 

Keller, A., & Volkov, A. (2014). Mathematics education in oriental antiquity and Middle Ages. 

History of mathematical education in ancient, medieval and pre modern India. In 

Handbook on the history of mathematics (pp. 70-83). New York, NY: Springer. Retrieved 

from https://halshs.archives-ouvertes.fr/halshs-01006132/document 

Kelly, D. F. (2007). A software chasm: Software engineering and scientific computing. IEEE 

Software, 24(6), 120-+.  

Kelly, D. (2013). Software engineering and scientific software - Farther apart than ever. Software 

Practitioner, 23(3), 4-6. 

Kenny, N., & Desmaris, S. (2012). A guide to developing and assessing learning outcomes at the 

University of Guelph. Retrieved from http://www.uoguelph.ca/vpacademic/avpa/pdf/ 

LearningOutcomes.pdf 

Kinnersley, B. (n.d.). Collected information on about 2500 computer languages, past and present. 

Retrieved from http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm 

Kiss, G. (2013, November 26). Teaching programming in the higher education not for 

engineering students. Procedia - Social and Behavioral Sciences, 103, 922-927. 

doi:10.1016/j.sbspro.2013.10.414 

Koffman, E. B., & Finerman, A. (2004). Education in computer science. In E.D. Reilly (Ed.), 

Concise encyclopedia of computer science (289-292). Hoboken, NJ: John Wiley & Sons, 

Inc. 



151 

Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions on Computing 

Education, 10(4), 1-21. doi:10.1145/1868358.1868361 

Koszalka, T. A., Russ-Eft, D. F., Reiser, R., & Senior, F. A. (2013). Instructional designer 

competencies:  The standards (4th ed.). Charlotte, NC: Information Age Publishing, Inc. 

Krpan, D., Mladenović, S., & Rosić, M. (2015). Undergraduate programming courses: Students' 

perception and success. Procedia - Social and Behavioral Sciences, 174, 3868-3872. 

doi:10.1016/j.sbspro.2015.01.1126 

Kunkle, W. M. (2010). The impact of different teaching approaches and languages on student 

learning of introductory programming concepts (Doctoral Dissertation. Retrieved from 

ProQuest. (3430595) 

LaFrance, J., & Roth, R. W. (1972). Computer science for liberal arts colleges. ACM SIGCSE 

Bulletin, 4(4), 22-31. 

Lan, Y-F., Tsai, P-W., Yang, S-H., & Hung, C-L. (2012). Comparing the social knowledge 

construction behavioral patterns of problem-based online asynchronous discussion in 

e/m-learning environments. Computers & Education, 59(4), 1122-1135. 

Land, S. K., & Reisman, S. (2012). Software engineering certification in today's environment. IT 

Professional, 14(3), 50-54. 

Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated 

computer programming courses. Computers & Education, 55(1), 218-228. 

Lazowska, E., Roberts, E., & Kurose, J. (2014, May). Tsunami or sea change? Responding to the 

explosion of student interest in computer science [PowerPoint slides]. Retrieved from 

http://lazowska.cs.washington.edu/NCWIT.pdf 



152 

Leedy, P.D., & Ormrod, J.E. (2014). Practical research: Planning and design (10th ed.). Upper 

Saddle River, NJ: Pearson Education. 

Levin, J. S., Cox, E. M., Cerven, C., & Haberler, Z. (2010). The recipe for promising practices in 

community colleges. Community College Review, 38(1), 31-58. 

Lewis, C., Jackson, M. H., & Waite, W. M. (2010) Student and faculty attitudes and beliefs 

about computer science. Communications of the ACM, 53(5), 78-85. 

Lewis, M. C., Blank, D., Bruce, K., & Osera, P-M. (2016). Uncommon teaching languages. In 

Proceedings of the 47th ACM Technical Symposium on Computing Science Education 

Memphis, TN (pp. 492-493). New York, NY: ACM. doi:10.1145/2839509.2844666 

Liberal Arts Computer Science Consortium (LACS). (2007). A 2007 model curriculum for a 

liberal arts degree in computer science. ACM Journal on Educational Resources in 

Computing, 7(2), 1-35. doi:10.1145/1240200.1240202 

Liming, D., & Wolf, M. (2008). Job outlook by education, 2006-16. Occupational Outlook 

Quarterly, 52(3), 2-29. 

Linstone, H. A., & Turoff, M. (1975). Introduction. In Linstone, H. A., & Turoff, M. (Eds.), The 

Delphi method: Techniques and applications (3-12). Reading, Massachusetts: Addison-

Wesley Publishing Company. 

Linstone. H. A., & Turoff, M. (2011). Delphi: A brief look backward and forward. Technological 

Forecasting & Social Change, 78(9), 1712-1719. 

Lopez, A. A., Raymond, R., & Tardiff, R. (1977). A survey of computer science offerings in 

small liberal arts colleges, Communications of the ACM, 20(2), 902-906. 



153 

Lunt, B., Ekstrom, J., Lawson, E. A., Kamali, R., Miller, J., Gorka, S., & Reichgelt, H. (2005). 

Defining the IT curriculum: The results of the past 3 years. Issues in Informing Science 

and Information Technology Education, 2, 259-270. 

Lutz, M. J., Naveda, J. F., & Vallino, J. R. (2014). Undergraduate software engineering. 

Communications of the ACM, 57(8), 52-58. 

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2004). Redesigning introductory computer 

programming with HTML, JavaScript, and Java. ACM SIGCSE Bulletin, 36(1), 120-124. 

Malan, D. J. (2012). This is CS50 [Course Syllabus]. Cambridge, MA: Computer Science 

Department, Harvard University.  Retrieved from https://cs50.harvard.edu/docs/ 

syllabus.pdf 

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE 

Bulletin, 39(1), 223-227. 

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch 

programming language and environment. ACM Transactions on Computing Education, 

10(4), 1-15. doi:10.1145/1868358.1868363 

Mamelok, J. (2013). Achieving a consensus on educational objectives and assessments for 

extended specialty training programmes for licensing in general practice. Education for 

Primary Care, 24(4), 258-265. 

Marling, C., & Juedes, D. (2016). CS0 for computer science majors at Ohio University. In 

Proceedings of the 47th ACM Technical Symposium on Computing Science Education 

Memphis, TN (pp. 138-143). New York, NY: ACM. 



154 

Matsui Foundation awarding over $1M in scholarships. (2015, July 27). The Californian. 

Retrieved from http://www.thecalifornian.com/story/news/education/2015/07/27/matsui-

foundation-awarding-scholarships/30752057/ 

May, K. (1980). Historiography: A perspective for computer scientists. In N. Metropolis (Ed.), A 

History of Computing in the Twentieth Century (pp. 11-18). New York, NY: Academic 

Press. 

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves 

student retention, confidence, and program quality. Communications of the ACM, 49(8), 

90-95. 

McIver, L. (2001). Syntactic and semantic issues in introductory programming education 

(Doctoral dissertation). Retrieved from http://www.csse.monash.edu.au/~lindap/papers/ 

LindaMcIverThesis.pdf 

McMaster, G., & Zastre, M. (2011). More concepts for teaching introductory programming. In 

Proceedings of the 16th Western Canadian Conference on Computing Education Prince 

George, BC, Canada (pp. 7-11). New York, NY: ACM. doi:10.1145/1989622.1989625 

Meyerovich, L. A., & Rabkin, A. (2013). Empirical analysis of programming language adoption. 

Paper presented at the 2013 ACM SIGPLAN International Conference on Object 

Oriented Programming Systems Languages & Applications, Indianapolis, IN. Retrieved 

from http://sns.cs.princeton.edu/docs/asr-oopsla13.pdf 

Mitchell, V. W. (1991). The Delphi technique: an exposition and application. Technology 

Analysis & Strategic Management, 3(4), 333–358 

Moffitt, C. (2012, March 30). Formal education not always desired for computer programmers. 

Business Journal Serving Fresno & the Central San Joaquin Valley, pp. 8, 9. 



155 

Molnár, P., Toth, D. M., Vincent-Finley, R. E. (2014). Development of undergraduate and 

graduate programs in computational science. Concurrency & Computation: Practice & 

Experience, 26(13), 2329-2335. 

Moskal, B., Cooper, S., Munson, A., & Dann, W. (2008, June). The impact of the Alice 

curriculum on community college students’ attitudes and learning with respect to 

computer science. Paper presented at the 2008 Annual Conference & Exposition, 

Pittsburgh, PA. https://peer.asee.org/3306 

Moura, I. C., & van Hattum-Janssen, N. (2011). Teaching a CS introductory course: An active 

approach. Computers & Education, 56(2), 475-483. 

Muñoz, M, Martínez, C., Cárdenas, C., & Cepeda, M. (2013). Active learning in first-year 

engineering courses at Universidad Católica de la Santísima Concepción, Chile. 

Australasian Journal of Engineering Education, 19(1), 27-38.  

Norman, V., & Adams, J. (2015). Improving non-CS major performance in CS1. In Proceedings 

of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, 

MO (pp. 558-562). New York, NY: ACM. doi:10.1145/2676723.2677214 

Norton, R. E. (1998). Quality instruction for the high performance workplace: DACUM. 

Retrieved from http://files.eric.ed.gov/fulltext/ED419155.pdf 

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design 

considerations and applications. Information & Management, 42(1), 15-29. 

O*NET Online. (2015). Summary report for: 15-1121.00 - computer systems analysts, 15-

1131.00 - computer programmers, 15-1132.00 - applications software developers, 15-

1133.00 - systems software developers, & 15-1141.00 - database administrators. In 

O*Net online. Retrieved from http://www.onetonline.org/link/summary/15-1131.00 



156 

Ornstein, A., & Hunkins, F. (2013). Curriculum foundations, principles and theory (6th ed.). 

Boston, MA: Allyn and Bacon. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic 

Books, Inc. 

Parlante, N. (2014). Computer Science 101 [Course Syllabus]. Stanford, CA: Computer Science 

Department, Stanford University. Retrieved from https://web.stanford.edu/class/cs101/ 

syllabus.html 

Pearson, G. & Young, A. T. (Eds.). (2002). Technically speaking. Washington, DC: National 

Academy Press. 

Perlis, A. J. (1964). Programming of digital computers. Communications of the ACM, 7(2), 210-

211. 

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory 

programming: What works? Communications of the ACM, 58(8), 34-36. 

Porter, L., & Simon, B. (2013). Fostering creativity in CS1 by hosting a computer science art 

show. ACM Inroads, 4(1), 29-31. 

Poulova, P., & Klimova, B. (2015). Education in computational sciences. Procedia Computer 

Science, 51, 1996-2005. 

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: Teaching CS0 with 

Alice. ACM SIGCSE Bulletin, 39(1), 213-217. 

Pratt, M. K. (2015). Technology nourishes the food chain. Computerworld Digital Magazine, 

2(1), 20-26. 



157 

Rajlich, V. (2013). Teaching developer skills in the first software engineering course. In 

Proceedings of the 2013 International Conference on Software Engineering San 

Francisco, CA (pp. 1109-1116). Piscataway, NJ: IEEE Press. 

RedMonk. (2015a). The RedMonk programming language rankings: June 2015. Retrieved from 

https://redmonk.com/sogrady/category/programming-languages/ 

RedMonk (2015b). Academia and programming language preferences. Retrieved from 

http://redmonk.com/sogrady/2013/04/04/academia-and-programming-languages/ 

Reigeluth, C. M. (Ed.). (1999). In Instructional-design theories and models (Vol. 2, pp. 1-29). 

Mahwah, NJ: Lawrence Erlbaum Associates. 

Riabov, V. V. (2013). Tools and methodologies for teaching online computer-science courses in 

LMS environment. In Y. Kats (Ed.), Learning management systems and instructional 

design: Best practices in online education (144-177). Hershey, PA: IGI Publishing. 

Rizvi, M., Humphries, T., Major, D., Jones, M., & Lauzun, H. (2011). A CS0 course using 

Scratch. Journal of Computing Sciences in Colleges, 26(3), 19-27. 

Roach, S., & Sahami, M. (2015). CS2013: Computer science curricula 2013. Computer, 48(3), 

114-116. 

Roberts, E. S. (2011). Meeting the challenges of rising enrollments. ACM Inroads, 2(3), 4-6. 

Rochester Institute of Technology. (2004). College of computing & information sciences 

timeline. RIT History. Retrieved from https://www2.rit.edu/175/timelineGCCIS.html 

Rolka, C., & Remshagen, A. (2015). Showing up is half the battle: Assessing different 

contextualized learning tools to increase the performance in introductory computer 

science courses. International Journal for the Scholarship of Teaching & Learning, 9(1), 

1-18. 



158 

Romero, E. D. (2014). Not just ag: Growing tech in the Central Valley. The California Report. 

Retrieved from http://audio.californiareport.org/archive/R201408221630/d 

Rotondi, A., & Gustafson, D. (1996). Theoretical, methodological and practical issues arising out 

of the Delphi method. In Adler, M., & Ziglio, E. (Eds.), Gazing into the Oracle: The 

Delphi Method and Its Application to Social Policy and Public Health (34-55). Bristol, 

UK: Jessica Kingsley Publishers, Ltd. 

Rubio, M. A., Romero-Zaliz, R., Mañoso, C., de Madrid, A. P. (2015). Closing the gender gap in 

an introductory programming course. Computers & Education, 82, 409-420. 

Sami, S. (2007). What subjects and skills are important for software developers? 

Communications of the ACM, 50(1), 73-78. 

Sander, L. (2008). For work-force training, a plan to give college credit where it’s due. Chronicle 

of Higher Education. 54(39), A22-A23. 

Scheibe, M., Skutsch, M., & Schofer, J. (1975). Experiments in Delphi methodology. In 

Linstone, H. A., & Turoff, M. (Eds.), The Delphi method: Techniques and applications 

(257-281). Reading, Massachusetts: Addison-Wesley Publishing Company. 

Schmidt, R. C. (1997). Managing Delphi surveys using nonparametric statistical techniques, 

Decision Sciences, 28(3), 763-744. 

Schneider, G. M. (2004). A model for a three course introductory sequence. ACM SIGCSE 

Bulletin, 36(2), 40-43.  

Schneider, G. M., & Gersting, J. L. (2016). Invitation to computer science (7th ed.). Boston, MA: 

Cengage Learning. 



159 

Schulte, C., & Bennedsen, J. (2006). What do teachers teach in introductory programming? In 

Proceedings of the Second International Workshop on Computing Education Research 

Canterbury, UK (pp. 17-28). New York, NY: ACM Press. 

Scott, T. (2003). Bloom's taxonomy applied to testing in computer science classes. Journal of 

Computing Sciences in Colleges, 19(1), 267-274. 

Settle, A., Lalor, J., & Steinbach, T. (2015, March 4-7). Reconsidering the impact of CS1 on 

novice attitudes. Paper presented at the 46th ACM Technical Symposium on Computer 

Science Education, Kansas City, MO (229-234). New York, NY: ACM. 

Shaw, A. (2010). Modifying computer programming education courses to support Web 2.0 and 

social computing paradigms. Journal of Information Systems Technology & Planning, 

3(6), 54-60. 

Sheehan, T. (2014, June 26). Tech growth spurs Bitwise Industries expansion in downtown. The 

Fresno Bee. Retrieved from http://www.fresnobee.com/2014/06/25/3996542/tech-

growth-spurs-bitwise-industries.html 

Shein, E. (2014). Should everybody learn to code? Communications of the ACM, 57(2), 16-18. 

Shein, E. (2015). Python for beginners. Communications of the ACM, 58(3), 19-21. 

Shell, D. F., & Soh, L. (2013). Profiles of motivated self-regulation in college computer science 

courses: Differences in major versus required non-major courses. Journal of Science 

Education & Technology, 22(6), 899-913. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 

Researcher, 15(2), 4-14. 

Sheehan, T. (2014, June 26). Tech growth spurs Bitwise Industries expansion in downtown. The 

Fresno Bee. 



160 

Siegle, D. (2010, November 24). Importance. Likert Scale. Retrieved from 

http://www.gifted.uconn.edu/siegle/research/instrument%20reliability%20and%20validit

y/likert.html 

Simon, B., Hanks, B., McCauley, R., Morrison, B., Murphy, L., & Zander, C. (2009). For me, 

programming is.... In Proceedings of the 5th International Computing Education 

Research Workshop Berkeley, CA (pp. 105-116). New York, NY: ACM. doi:10.1145 

/1584322.1584335 

Singleton, D. M. (2013). Transitioning to blended learning: The importance of communication 

and culture. Journal of Applied Learning Technology, 3(1), 12-15. 

Sitlington, H. (2015). Using the Delphi technique to support curriculum development. Education 

+ Training, 57(3), 306-321. 

Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi method for graduate research. 

Journal of Information Technology Education, 6, 1-21. 

Sonnier, D. L. (2013). Computer science in a liberal arts school: Convincing the skeptic. Journal 

of Computing Sciences in Colleges, 28(5), 115-121. 

Soper, T. (2014, June 6). Analysis: The exploding demand for computer science education, and 

why America needs to keep up. [Web log comment]. Retrieved from: 

http://www.geekwire.com/2014/analysis-examining-computer-science-education-

explosion/ 

Sprinthall, R. C. (2012). Basic statistical analysis. Boston, MA: Allyn & Bacon. 

Stamey, J., & Sheel, S. (2010). A boot camp approach to learning programming in a CS0 course. 

Journal of Computing Sciences in Colleges, 25(5), 34-40. 



161 

Starr, C. W., Manaris, B., & Stalvey, R. H. (2008). Bloom’s Taxonomy Revisited: Specifying 

Assessable Learning Objectives in Computer Science. ACM SIGCSE Bulletin, 40(1), 

261-265. 

State of California Employment Development Department. (2015). Employment projections. 

Retrieved from http://www.labormarketinfo.edd.ca.gov/data/employment-

projections.html#Long 

Stefik, A., & Gellenbeck, E. (2011). Empirical studies on programming language stimuli. 

Software Quality Journal, 19(1), 65-99. 

Strauss, H. J., & Zeigler, L. H. (1975). Delphi technique and its uses in social science research. 

Journal of Creative Behavior, 9(4), 253-259. 

Sultana, S. G. (2015). Computer science education needs in Fresno. Unpublished manuscript. 

Surakka, S. (2005). Needs assessment of software systems graduates (Doctoral dissertation). 

Retrieved from http://lib.tkk.fi/Diss/2005/isbn9512279517/ 

Surakka, S. (2007). What subjects and skills are important for software developers? 

Communications of the ACM, 50(1), 73-78. 

Symonds, W. C., Schwartz, R.B., Ferguson, R. F. (2011). Pathways to prosperity: meeting the 

challenge of preparing young Americans for the 21st Century. Cambridge, MA: 

Pathways to Prosperity Project, Harvard Graduate School of Education. 

Syslo, M. M. (2015). From algorithmic to computational thinking: On the way for computing for 

all students. In Proceedings of the 2015 ACM Conference on Innovation and Technology 

in Computer Science Education Vilnius, Lithuania (p. 1). New York, NY: ACM. 

doi:10.1145/2729094.2742582 



162 

Tan, G., & Venables, A. (2010). Designing a network and systems computing curriculum: The 

stakeholders and the issues. Journal of Information Technology, 9, 103-112. 

Tanrikulu, E., & Schaefer, B. C. (2011). The users who touched the ceiling of scratch. Procedia - 

Social and Behavioral Sciences, 28, 764-769. 

Tasneem, S. (2012). Critical thinking in an introductory programming course. Journal of 

Computing Sciences in Colleges, 27(6), 81-83. 

Teague, D., & Roe, P. (2007). Learning to program: Going pair-shaped. Innovations in Teaching 

and Learning in Information and Computer Sciences, 6(4), 4-22. 

Tew, A. E. (2010). Assessing fundamental introductory computing concept knowledge in a 

language independent manner (Doctoral Dissertation). Retrieved from ProQuest. 

(3451304) 

The Editors at JIST (Ed.). (2010). Young person's occupational outlook handbook (7th ed.). 

Indianapolis, IN: JIST Publishing. 

The United States Bureau of Labor Statistics. (2015). Quarterly census of employment and 

wages. Retrieved from http://www.bls.gov/cew/apps/ 

data_views/data_views.htm#tab=Tables 

TIOBE Index for December 2015. (2015). Retrieved from http://www.tiobe.com/index.php/ 

content/paperinfo/tpci/index.html 

Trendy Skills. (2015). About Trendy Skills. Retrieved from http://trendyskills.com/about 

Turner, A. J. (1991). Report of the joint ACM/IEEE-CS curriculum task force. In Proceedings of 

the 19th Annual Conference on Computer Science San Antonio, TX (p. 707). New York, 

NY: ACM. doi:10.1145/327164.328873 



163 

University of Cambridge. (2004, August 11). The history of the computer lab. Retrieved from 

http://www.cl.cam.ac.uk/relics/history.html 

Urness, T., & Manley, E. (2011). Building a thriving CS program at a small liberal arts college. 

Journal of Computing Sciences in Colleges, 26(5), 268-274. 

U.S. News & World Report. (2015). University Directory. Retrieved from 

http://www.usnewsuniversitydirectory.com/ 

van der Spuy, R. (2012). Foundation game design with HTML5 and JavaScript. New York, NY: 

Springer. 

Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computers in a learning 

environment. Egyptian Computer Science Journal, 36(4), 28-46. 

Vitkutė-Adžgauskienė, D. & Vidžiūnas, A. (2012). Problems in choosing tools and methods for 

teaching programming. Informatics in Education, 11(2), 271-282. 

Walker, H. M., & Kelemen, C. (2010). Computer science and the liberal arts: A philosophical 

examination. ACM Transactions on Computing Education, 10(1), 1-10. doi:10.1145 

/1731041.1731043 

Walker, H. M., & Schneider, G. M. (1996). A revised model curriculum for a liberal arts degree 

in computer science. Communications of the ACM, 39(12), 85-95. 

Wang, T., Su, X. Ma, P., Wang, Y., & Wang, K. (2011). Ability-training-oriented automated 

assessment in introductory programming. Serious Games, Computers & Education, 

56(1), 220-226. 

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited. In 

Proceedings of the 2014 Conference on Innovation & Technology in Computer Science 



164 

Education Uppsala, Sweden (pp. 39-44). New York, NY: ACM. doi:10.1145 

/2591708.2591749 

Whitfield, D. (2003). From university wide outcomes to course embedded assessment of CS1. 

Journal of Computing Sciences in Colleges, 18(5), 210-220.  

Wilhelm, W. J. (2001). Alchemy of the oracle: The Delphi technique. Delta Pi Epsilon Journal, 

43(1), 6-26. 

Winberg, S. (2014). 'Responsiveness' and 'responsibility': Determining what matters in a 

computer engineering curriculum. South African Journal of Higher Education, 28(3), 

983-102. 

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. 

Winter, V. (2014). Bricklayer: An authentic introduction to the functional programming 

language SML. In J. Caldwell, P. Hölzenspies, & P. Achten (Eds.), Electronic 

Proceedings in Theoretical Computer Science at 3rd International Workshop on Trends 

in Functional Programming in Education, Soesterberg, the Netherlands (pp. 33-49). 

doi:10.4204/EPTCS.170.3  

Wu, H-T., Hsu, P-C., Lee, C-Y., Wang, H-J., & Sun, C-K. (2014). The impact of supplementary 

hands-on practice on learning in introductory computer science course for freshmen. 

Computers & Education, 701-8. 

Xiang, J., & Ye, L. (2009). A general software framework based on reform in formative 

assessment. Journal of Software, 4(10), 1076-1083. 

Zaiontz, C. (2013). Real statistic using Excel. Retrieved from http://www.real-statistics.com/ 

kendalls-w/ 



165 

 Zhao, Y. (n.d.). What knowledge has the most worth? Retrieved from http://www.aasa.org/ 

SchoolAdministratorArticle.aspx?id=6032 

Zhao, L., Su, X., & Wang, T. (2015). Bring CS2013 recommendations into a C programming 

course. Procedia - Social and Behavioral Sciences, 176, 194-199. 

Zur, E., Vilner, T., & Shay, T. (2014). Integrating Greenfoot into CS1: A case study. 

Mathematics & Computer Education, 48(1), 29-42. 

  



166 

APPENDIX A 

INVITATION TO PARTICIPANTS 

March 14, 2016 

Dear ________________: 

You have been identified as a subject matter expert in computer science, software engineering, or 

a related information technology field. You meet the criterion of having at least five years of 

experience working as a computing professional or teaching in the field with at least a master’s 

degree. Your participation is requested in a three to four round Delphi study that will focus on 

identifying the competencies, programming languages, and assessments to be used for an 

introductory course in computer science that will be offered as part of a software engineering 

program, minor, and as an elective at Fresno Pacific University. You will be asked to select from 

suggested items for these three fields or rate them on a Likert-type scale. All involvement will 

take place online via the SurveyMonkey web site. 

Your participation in this process will help to shape an introductory course that will equip 

students with an understanding of the fields of computer science and software engineering and 

with an elementary ability to develop basic code. Though your input would be a valuable 

contribution to this process, your participation in this study will be totally voluntary throughout 

the duration of the study. Should you choose to be involved in this study for any length of time, 

your identification will remain completely confidential.  

If you choose to agree to participate, you will receive a survey that will include basic questions 

on your professional background. You will be asked to return the survey within one week. You 

will be reminded throughout this process that your involvement is completely voluntary and that 

you can feel free to depart the study at any time. You will receive no direct benefit by 

participating. If you decide to agree to contribute your time and input to this study, please 

respond by March 27, 2016. 

Please feel free to forward this message to anyone who might be interested. 

Thank you for your consideration, 

 

 

Simon Sultana     Philip Reed  

Ph.D. Candidate, Education   Associate Professor, STEM Education & 

Professional Studies 

Old Dominion University   Old Dominion University 

 

 

 



167 

 

APPENDIX B 

HUMAN SUBJECTS INFORMED CONSENT 

Researcher: Simon Sultana 

Study: Local experts’ recommendations for competencies, content, and delivery in an 

introduction to computer science course 

I am asking for your voluntary participation in this research study being conducted as part of a 

dissertation. Please reference the information concerning this study below. If you agree to 

participate, please sign your name below. 

Purpose of the study: The purpose of this study is to define the competencies, programming 

languages, and assessments for an introductory computer science course at a small private 

nonprofit university that seeks to address the industrial needs of California’s Central Valley.  

Your involvement: You will be asked to participate in three to four rounds of a Delphi study by 

completing surveys, which will be made available over the internet. The Round 1 survey will ask 

you for demographic information, including age, current employment, years of experience, 

highest education earned in computer science or a related field, and the number of programming 

languages in which you are fluent. Round 1 questions will ask participants to rate the 

applicability of course competencies, programming languages, and assessment methods on a 

five-point Likert scale. You will also be able to submit your own suggestions for items you deem 

worthy of inclusion. In Round 2 you will be provided ranked lists of each item analyzed with 

their median scores from Round 1. You will be asked to select at least ten competencies, 

programming languages, and assessment methods provided. In Round 3 you will be asked to 

rank an updated list of items for each of the three categories on a five-point Likert scale. If 

agreement is reached by the panel, the study will end. If not, one more round, identical to Round 

3 will be conducted. 

Potential risks to you: There are no identifiable risks to you as a result of your participation. 

Benefits: There are no foreseeable benefits to you as a result of your participation in this study. 

Confidentiality procedures:  Your name will not be recorded in the research data but will be 

replaced by an untraceable identifier which will be tied only to your campus location. All data 

will be kept in a password-protected database existing only on the researcher’s laptop. This 

computer will also be password-protected. 

Participation and withdrawal: Your participation in this study is completely voluntary. If you 

choose to participate in this study, you may withdraw at any time by notifying the researcher. 

If at any time you feel pressured to participate, or if you have any questions about your rights or 

this form, then you should contact Dr. Edwin Gomez, Chair of the Darden College of Education 

Human Subjects Review Committee, Old Dominion University, at egomez@odu.edu.  



168 

If you have any questions, please feel free to contact: 

Simon Sultana     Dr. Philip Reed 

Principal Researcher    Responsible Project Investigator 

(559) 453-5501    (757) 683-4307 

Simon.sultana@fresno.edu   preed@odu.edu 

Consent: I completely understand all the information presented about my voluntary participation 

in this study and agree to my involvement.  

____________________________________________ Subject printed name 

____________________________________________ Subject signature/date 

Investigator’s Statement: I certify that I have explained to this participant the nature and purpose 

of this research, including benefits, risks, costs, and any experimental procedures.  I have 

described the rights and protections afforded to human subjects and have done nothing to 

pressure, coerce, or falsely entice this subject into participating.  I am aware of my obligations 

under state and federal laws, and promise compliance.  I have answered the participant's 

questions and have encouraged him/her to ask additional questions at any time during the course 

of this study.  I have witnessed the above signature(s) on this consent form. 

____________________________________________ Researcher printed name 

____________________________________________ Researcher signature/date 

  



169 

APPENDIX C 

SUMMARY OF THE STUDY 

March 30, 2016 

Dear ________________: 

Thank you for agreeing to share your insight in this study on identifying the competencies, 

programming languages, and assessment methods recommended for an introductory computer 

science course. We are appreciative of your time and efforts and feel that your input will be most 

valuable in this endeavor. If you know of others who might also qualify as subject matter experts 

in software development and have at least five years of experience as a professional in industry 

or academics, please consider sending contact information to the researcher at 

simon.sultana@fresno.edu.  

Overview of the Study 

EXPERTS’ RECOMMENDATIONS FOR COMPETENCIES, CONTENT, AND DELIVERY 

IN AN INTRODUCTION TO COMPUTER SCIENCE COURSE 

Purpose: Students who enroll in an introduction to computer science course do so for various 

reasons. First, students may be enrolled in a bachelor’s level software engineering program that 

requires the course as an introduction to computer science and software development. Second, 

students may be pursuing a minor in software engineering and the course is among those 

required. Finally, students from other majors may want to take the course as a general elective to 

learn about the computing field and obtain an elementary ability to write computer programs. 

The competencies for a course are general objectives detailing the desired content and abilities 

students are expected to master as a result of learning (Koszalka, Russ-Eft, & Reiser, 2013). 

Competencies help to identify the focus of the curriculum content. This particular course is 

intended to provide a survey of the areas within computer science and give students to develop 

an entry level ability to program a computer. There are several possible areas of focus for this 

type of course and various different programming languages might be considered. Numerous 

assessments and experiences are also available. Assessments include those that are formative in 

nature, whereby students and instructors can gauge their learning during a course; or those that 

are summative, which provide an overall appraisal of learning (Ornstein & Hunkins, 2013). 

Instructions: This research will consist of three to four rounds of a Delphi study. You will access 

each round via the SurveyMonkey web site. The link for the Round 1 questionnaire will be made 

available to you by email. You will first be asked to provide some demographic information 

about yourself. You will not be asked for your name. This information is being collected to 

summarize the background and expertise of the professionals in this study. Remember that all 

identifiable information collected will be kept strictly confidential.  

The second part of the Round 1 survey will present three lists of potential course competencies, 

programming languages, and assessment experiences for an introduction to computer science 

course. You will be asked to rate the applicability of each of these items in each of the three 



170 

categories on a five-point Likert scale. You will also be given the opportunity to submit your 

own items for any of the three categories, in the event that you feel an important topic is missing. 

Insert any additional suggestions in the blank fields provided. If you would like to submit more 

than three, please send an email message to ssult004@odu.edu. You will also be asked to rate the 

applicability of any new entries using the Likert scale and to explain your entry so your 

suggestion can be described to other participants in this study. 

When you have completed the study, please submit your responses. The SurveyMonkey resource 

will keep your responses anonymous. Once all questionnaires have been submitted by the study’s 

participants, the responses will be aggregated and the researcher will consult with a research 

subject matter expert for verification of the results. Once there is agreement on the results and 

new entries provided by participants, the Round 2 survey will be created and distributed in the 

same way as in Round 1. In Round 2 you will be asked to select at least ten items from each 

category (competencies, programming languages, and assessments). Items that are selected by at 

least half of the group you are in (academic or industry) will be retained for Round 3. In the third 

round you will be asked to rank the items in each category from most important to least 

important. Each group’s rankings will be checked for consensus for each category 

(competencies, programming languages, and assessments). Categories that reach consensus will 

be deemed complete whereas those that are not in agreement in Round 3 will be carried over into 

a final Round 4. 

Thank you again for agreeing to participate in this study. Your time and input are very much 

valued. Should you have any issues or concerns, please feel free to contact Simon Sultana at 

ssult004@odu.edu or by cell phone at (734) 765-7340.  

Sincerely, 

 

 

Simon Sultana     Philip Reed  

Ph.D. Candidate, Education Associate Professor, STEM Education & 

Professional Studies 

Old Dominion University   Old Dominion University 

ssult004@odu.edu    preed@odu.edu 

 

 

References 

Koszalka, T. A., Russ-Eft, D. F., Reiser, R., & Senior, F. A. (2013). Instructional designer 

competencies: The standards (4th ed.). Charlotte, NC: Information Age Publishing, Inc. 

Ornstein, A., & Hunkins, F. (2013). Curriculum foundations, principles and theory (6th ed.). 

Boston, MA: Allyn and Bacon. 

  



171 

APPENDIX D 

ROUND 1 SURVEY 

April 1, 2016 

Dear ________________: 

Thank you for agree to share your insight in this study on identifying the competencies, 

programming languages, and assessment methods recommended for an introductory computer 

science course. We are appreciative of your time and efforts and feel that your input will be most 

valuable in this endeavor. Below you will find the survey for Round 1. Part 1 asks some 

questions about your background. This information is being collected to characterize the 

experience level of the group and will be reported in aggregate only. Your information will be 

kept confidential. Part 2 of the questionnaire lists competencies, programming languages, and 

assessments to be used in an introduction to computer science course. Students enrolling in this 

course may be pursuing a bachelor’s degree in software engineering, a minor in software 

engineering, or taking the class as a general elective. The topics in each of the three sections are 

to be weighted in terms of their applicability for such a course. 

Part 1 – Demographic Data 

1. Age: _____ 

 

2. Gender: ____ 

 

3. Ethnicity origin (e.g. African American, Asian, Caucasian, Hispanic, Native American, 

etc.): ___________ 

 

4. How many years of experience do you have as a professional teaching or developing 

computer systems or software? _____ 

 

5. What is the highest level of formal education you have in a field related to computer 

science (including information technology, information systems, computer engineering, 

software engineering, etc.)?    __________________________ 

 

6. In what area of study is this degree? __________________________ 

 

Experience questions (if any of the below questions do not apply, please indicate "N/A") 

7. In how many programming languages are you fluent? _____ 

 

8. If you are employed in industry what is the focus of the company at which you are 

employed: _______________________________________________________________ 

 

9. If you are a faculty member, please indicate the courses you teach: 

________________________________________________________________________ 



172 

 

10. List any professional certifications you have related to computing: 

________________________________________________________________________ 

 

  



173 

Part 2 – Content for an Introduction to Computer Science Course 

A. Rate the following competencies in terms of their importance in an introduction to 

computer science course as very important, important, moderately important, of little 

importance, or unimportant. 

 

 

Competency 

v
er

y
 

im
p
o
rt

an
t 

im
p
o
rt

an
t 

m
o
d
er

at
el

y
 

im
p
o
rt

an
t 

o
f 

li
tt

le
 

im
p
o
rt

an
ce

 

u
n
im

p
o
rt

an
t 

1 Analyze algorithms for effectiveness and 

efficiency 

     

2 Illustrate concepts in artificial intelligence      

3 Summarize basic computability, theory of 

computation, and its limits 

     

4 Describe different types of data representation 

(e.g. graphics, binary numbers, etc.) 

     

5 Illustrate the use of Boolean logic and basic 

combinational digital circuits 

     

6 Describe basic computer architecture and 

organization 

     

7 Summarize the history of computing and its 

ramifications to implementation today 

     

8 Explain the factors contributing to human-

computer interaction in computing 

     

9 Illustrate the use of databases and apply SQL      

10 Explain the operation of compilers      

11 Discuss the operation of networks and related 

practices (e.g. data compression, etc.) 

     

12 Explain the functionality of operating systems and 

provide examples 

     

13 Describe common programming languages and 

their popular uses 

     

14 Describe benefit and operation of parallel and 

distributed systems and programming 

     

15 Demonstrate use of recursion in a program      

16 Describe the need for computer and data security 

and identify best practices 

     

17 Explain the role of modeling and simulation in 

computing 

     

18 Describe societal impact of computing      

19 Describe the World Wide Web and select internet 

protocols 

     

 



174 

 

Competency 

v
er

y
 

im
p
o
rt

an
t 

im
p
o
rt

an
t 

m
o
d
er

at
el

y
 

im
p
o
rt

an
t 

o
f 

li
tt

le
 

im
p
o
rt

an
ce

 

u
n
im

p
o
rt

an
t 

20 Describe process and practices in software 

engineering 

     

21 Plan a career in CS      

22 Write functional object-oriented programs 

employing programming fundamentals 

     

23 Write functional procedural programs employing 

programming fundamentals 

     

24 Implement good documentation practices in 

programming 

     

25 Demonstrate teamwork and interpersonal group 

skills 

     

26 Demonstrate algorithmic thinking.      

27 Demonstrate computational thinking      

28 Demonstrate problem solving      

29 Demonstrate critical thinking and reasoning      

30 Demonstrate systems thinking      

31 Demonstrate creativity in programming      

32 Demonstrate time and resource management skills 

in a project 

     

33 Exhibit entrepreneurship in computing      

34 Communicate effectively orally and in writing      

35 Describes self-learning and assesses self      

36 Exhibit digital literacy      

37 Explain and choose from different file structures      

38 Explain and utilize effective procedures in 

software verification and validation 

     

 

Identify any competencies not included here that you feel would be important to include 

in an introduction to computer science course. Also indicate the rating for this topic. 

1. _________________________________________________________    __________ 

2. _________________________________________________________    __________ 

3. _________________________________________________________    __________ 

 

Comment on why you feel these competencies merit consideration. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 



175 

B. Rate the following programming languages in terms of their importance in an 

introduction to computer science course as very important, important, moderately 

important, of little importance, or unimportant. 

 

 

Programming Language 

v
er

y
 

im
p
o
rt

an
t 

im
p
o
rt

an
t 

m
o
d
er

at
el

y
 

im
p
o

rt
an

t 

o
f 

li
tt

le
 

im
p
o
rt

an
ce

 

u
n
im

p
o
rt

an
t 

1 Alice      

2 Assembly Language      

3 C      

4 C#      

5 C++      

6 Greenfoot      

7 Haskell      

8 Java      

9 JavaScript      

10 MATLAB      

11 Objective-C      

12 Perl      

13 PHP      

14 PL/SQL      

15 Python      

16 R      

17 Ruby      

18 Scala      

19 Scheme      

20 Scratch      

21 Shell      

22 Swift      

23 Visual Basic      

 

Identify any programming languages not included here that you feel would be important 

to include in an introduction to computer science course. Also indicate the rating for this 

topic. 

1. _________________________________________________________    __________ 

2. _________________________________________________________    __________ 

3. _________________________________________________________    __________ 

 

Comment on why you feel these competencies merit consideration. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 



176 

C. Rate the following assessments in terms of their importance in an introduction to 

computer science course as very important, important, moderately important, of little 

importance, or unimportant. 

 

 

Assessment 

v
er

y
 

im
p
o
rt

an
t 

im
p
o
rt

an
t 

m
o
d
er

at
el

y
 

im
p
o
rt

an
t 

o
f 

li
tt

le
 

im
p
o
rt

an
ce

 

u
n
im

p
o
rt

an
t 

1 Case studies      

2 Code reviews      

3 Concept questions      

4 Essays      

5 Final Exams      

6 Online threaded discussions      

7 Interviews with professionals      

8 Lab exercises      

9 Quizzes      

10 Smaller programming activities      

11 Term projects      

 

Identify any assessments not included here that you feel would be important to include in 

an introduction to computer science course. Also indicate the rating for this topic. 

1. _________________________________________________________    __________ 

2. _________________________________________________________    __________ 

3. _________________________________________________________    __________ 

 

Comment on why you feel these competencies merit consideration. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

 

 

 

 

  



177 

APPENDIX E 

ROUND 2 SURVEY 

April 15, 2016 

Dear ________________: 

Thank you for agree to share your insight in this study on identifying the competencies, 

programming languages, and assessment methods recommended for an introductory computer 

science course. We are appreciative of your time and efforts and feel that your input will be most 

valuable in this endeavor. Below you will find the questionnaire for Round 2. The questionnaire 

lists the competencies, programming languages, and assessments to be used in an introduction to 

computer science course. Their median rank values are included as insight to how the study’s 

group assessed their importance. Remember that students enrolling in this course may be 

pursuing a bachelor’s degree in software engineering, a minor in software engineering, or as a 

general elective.  

You are to select the topics in each of the three categories that should be included for 

consideration in subsequent rounds. You may select no more than ten items in each of the three 

categories. 

Content for an Introduction to Computer Science Course 

A. Select competencies from the following in terms of their importance in an introduction to 

computer science course. Select at least ten competencies. 

 

 Competency Select 

1 Analyze algorithms for effectiveness and efficiency  

2 Illustrate concepts in artificial intelligence  

3 Summarize basic computability, theory of computation, and its limits  

4 Describe different types of data representation (e.g. graphics, binary numbers, etc.)  

5 Illustrate the use of Boolean logic and basic combinational digital circuits  

6 Describe basic computer architecture and organization  

7 Summarize the history of computing and its ramifications to implementation today  

8 Explain the factors contributing to human-computer interaction in computing  

9 Illustrate the use of databases and apply SQL  

10 Explain the operation of compilers  

11 Discuss the operation of networks and related practices (e.g. data compression, etc.)  

12 Explain the functionality of operating systems and provide examples  

13 Describe common programming languages and their popular uses  

14 Describe benefit and operation of parallel and distributed systems and 

programming 

 

15 Demonstrate use of recursion in a program  

16 Describe the need for computer and data security and identify best practices  

17 Explain the role of modeling and simulation in computing  

18 Describe societal impact of computing  



178 

19 Describe the World Wide Web and select internet protocols  

20 Describe process and practices in software engineering  

21 Plan a career in CS  

22 Write functional object-oriented programs employing programming fundamentals  

23 Write functional procedural programs employing programming fundamentals  

24 Implement good documentation practices in programming  

25 Demonstrate teamwork and interpersonal group skills  

26 Demonstrate algorithmic thinking.  

27 Demonstrate computational thinking  

28 Demonstrate problem solving  

29 Demonstrate critical thinking and reasoning  

30 Demonstrate systems thinking  

31 Demonstrate creativity in programming  

32 Demonstrate time and resource management skills in a project  

33 Exhibit entrepreneurship in computing  

34 Communicate effectively orally and in writing  

35 Describes self-learning and assesses self  

36 Exhibit digital literacy  

37 Explain and choose from different file structures  

38 Explain and utilize effective procedures in software verification and validation  

 

B. Select programming languages from the following in terms of their importance in an 

introduction to computer science course. Select at least ten languages. 

 

 Programming Language Select 

1 Alice  

2 Assembly Language  

3 C  

4 C#  

5 C++  

6 Greenfoot  

7 Haskell  

8 Java  

9 JavaScript  

10 MATLAB  

11 Objective-C  

12 Perl  

13 PHP  

14 PL/SQL  

15 Python  

16 R  

17 Ruby  

18 Scala  

19 Scheme  



179 

20 Scratch  

21 Shell  

22 Swift  

23 Visual Basic  

 

C. Select competencies from the following in terms of their importance in an introduction to 

computer science course. Select at least ten competencies. 

 

 Assessment Select 

1 Case studies  

2 Code reviews  

3 Concept questions,  

4 Essays  

5 Final exams,  

6 Online threaded discussions  

7 Interview with software professional  

8 Lab exercises or smaller programming activities  

9 Quizzes  

10 Smaller programming activities  

11 Term projects  

 

 

  



180 

APPENDIX F 

ROUND 3 SURVEY FOR ACADEMIC GROUP 

May 9, 2016 

Welcome to Round 3! Thank you for sharing your insight in this study on experts' 

recommendations for the competencies, programming languages, and assessment methods for an 

introductory computer science course. We are appreciative of your time and efforts and feel that 

your input will be most valuable in this endeavor. 

Below you will find the survey for Round 3. Please be sure to answer the three questions on the 

three separate pages. Items selected by at least five of the ten experts participating in Round 2 are 

included in Round 3. You are asked to rank these items for each of the three categories. Consider 

your thoughts in relation to the importance attributed to it by the overall group of experts in 

Round 2 (via the indicated number of experts selecting each item in the previous round). 

The rankings for competencies, programming languages, and assessments will be checked for 

conformity among the group. Categories that have achieved conformity will be deemed complete 

while those that do not achieve agreement will be carried over to a final Round 4. As before your 

information will be kept confidential. This survey will close on Monday, May 16, 2016 so thank 

you for completing it before then. 

This page lists potential competencies to be used in an introductory computer science survey 

course. Please note: Students enrolling in this course may be pursuing a bachelor’s degree in 

software engineering, a minor in software engineering, or taking the class as a general elective. 

Content for an Introduction to Computer Science Course 

Q1: Rank the following competencies for an introduction to computer science course. 

You can click and drag or numerically rank items from most important (1) to least 

important (15). 

 

Analyze algorithms for effectiveness and efficiency (Selected by 5 of 10 in Round 2)  

Describe basic computer architecture and organization (Selected by 7 of 10 in Round 2)  

Explain the functionality of operating systems and provide examples (Selected by 6 of 10 

in Round 2) 

 

Demonstrate use of recursion in a program (Selected by 5 of 10 in Round 2)  

Describe the need for computer and data security and identify best practices (designing, 

implementing, and verifying hacker-resistant safe code) (Selected by 5 of 10 in Round 2) 

 

Explain the role of modeling and simulation in computing (Selected by 5 of 10 in Round 

2) 

 

Describe process and practices in software engineering (Selected by 6 of 10 in Round 2)  

Write functional object-oriented programs employing programming fundamentals 

(Selected by 8 of 10 in Round 2) 

 

Write functional procedural programs employing programming fundamentals (Selected 

by 9 of 10 in Round 2) 

 



181 

Implement good documentation practices in programming (Selected by 6 of 10 in Round 

2) 

 

Demonstrate teamwork and interpersonal group skills (Selected by 8 of 10 in Round 2)  

Demonstrate algorithmic thinking (Selected by 6 of 10 in Round 2)  

Demonstrate computational thinking (Selected by 6 of 10 in Round 2)  

Demonstrate problem solving (Selected by 8 of 10 in Round 2)  

Demonstrate critical thinking and reasoning (Selected by 7 of 10 in Round 2)  

 

Q2: Rank these programming languages to potentially be used in an introduction to 

computer science course. You can click and drag or numerically rank items from most 

important (1) to least important (8). 

 

C (Selected by 9 of 10 in Round 2)  

C# (Selected by 8 of 10 in Round 2)  

C++ (Selected by 10 of 10 in Round 2)  

Java (Selected by 10 of 10 in Round 2)  

JavaScript (Selected by 10 of 10 in Round 2)  

PHP (Selected by 5 of 10 in Round 2)  

Python (Selected by 10 of 10 in Round 2)  

Ruby (Selected by 6 of 10 in Round 2)  

 

Q3: Rank the following assessments to potentially be used in an introduction to computer 

science course. You can click and drag or numerically rank items from most important 

(1) to least important (11). 

 

Case studies (Selected by 9 of 10 in Round 2)  

Code reviews (Selected by 9 of 10 in Round 2)  

Concept questions (Selected by 10 of 10 in Round 2)  

Final exams (Selected by 10 of 10 in Round 2)  

Online threaded discussions (Selected by 8 of 10 in Round 2)  

Interviews with professionals (Selected by 5 of 10 in Round 2)  

Lab exercises (Selected by 10 of 10 in Round 2)  

Quizzes (Selected by 10 of 10 in Round 2)  

Smaller programming activities (Selected by 10 of 10 in Round 2)  

Team programming assignments (Selected by 9 of 10 in Round 2)  

Term projects (Selected by 9 of 10 in Round 2)  

 

 

  



182 

APPENDIX G 

ROUND 3 SURVEY FOR INDUSTRY GROUP 

May 9, 2016 

Welcome to Round 3! Thank you for sharing your insight in this study on experts' 

recommendations for the competencies, programming languages, and assessment methods for an 

introductory computer science course. We are appreciative of your time and efforts and feel that 

your input will be most valuable in this endeavor. 

Below you will find the survey for Round 3. Please be sure to answer the three questions on the 

three separate pages. Items selected by at least six of the eleven experts participating in Round 2 

are included in Round 3. You are asked to rank these items for each of the three categories. 

Consider your thoughts in relation to the importance attributed to it by the overall group of 

experts in Round 2 (via the indicated number of experts selecting each item in the previous 

round). 

The rankings for competencies, programming languages, and assessments will be checked for 

conformity among the group. Categories that have achieved conformity will be deemed complete 

while those that do not achieve agreement will be carried over to a final Round 4. As before your 

information will be kept confidential. This survey will close on Monday, May 16, 2016 so thank 

you for completing it before then. 

This page lists potential competencies to be used in an introductory computer science survey 

course. Please note: Students enrolling in this course may be pursuing a bachelor’s degree in 

software engineering, a minor in software engineering, or taking the class as a general elective. 

Content for an Introduction to Computer Science Course 

Q1: Rank the following competencies for an introduction to computer science course. 

You can click and drag or numerically rank items from most important (1) to least 

important (12). 

 

Analyze algorithms for effectiveness and efficiency (Selected by 8 of 11 in Round 2)  

Describe different types of data representation (e.g. graphics, binary numbers, etc.) 

(Selected by 7 of 11 in Round 2) 

 

Describe basic computer architecture and organization (Selected by 6 of 11 in Round 2)  

Illustrate the use of databases and apply SQL (Selected by 7 of 11 in Round 2)  

Describe common programming languages and their popular uses (Selected by 9 of 11 in 

Round 2) 

 

Describe process and practices in software engineering (Selected by 7 of 11 in Round 2)  

Write functional object-oriented programs employing programming fundamentals 

(Selected by 8 of 11 in Round 2) 

 

Write functional procedural programs employing programming fundamentals (Selected 

by 8 of 11 in Round 2) 

 



183 

Implement good documentation practices in programming (Selected by 6 of 11 in Round 

2) 

 

Demonstrate teamwork and interpersonal group skills (Selected by 8 of 11 in Round 2)  

Demonstrate problem solving (Selected by 6 of 11 in Round 2)  

Demonstrate critical thinking and reasoning (Selected by 8 of 11 in Round 2)  

 

Q2: Rank these programming languages to potentially be used in an introduction to 

computer science course. You can click and drag or numerically rank items from most 

important (1) to least important (12). 

 

Assembly Language (Selected by 6 of 11 in Round 2)  

C (Selected by 6 of 11 in Round 2)  

C# (Selected by 9 of 11 in Round 2)  

C++ (Selected by 9 of 11 in Round 2)  

HTML5 (Selected by 9 of 11 in Round 2)  

Java (Selected by 9 of 11 in Round 2)  

JavaScript (Selected by 11 of 11 in Round 2)  

PHP (Selected by 6 of 11 in Round 2)  

PL/SQL (Selected by 7 of 11 in Round 2)  

Python (Selected by 10 of 11 in Round 2)  

Ruby (Selected by 7 of 11 in Round 2)  

Shell (Selected by 7 of 11 in Round 2)  

 

Q3: Rank the following assessments to potentially be used in an introduction to computer 

science course. You can click and drag or numerically rank items from most important 

(1) to least important (11). 

 

Case studies (Selected by 10 of 11 in Round 2)  

Code reviews (Selected by 11 of 11 in Round 2)  

Concept questions (Selected by 10 of 11 in Round 2)  

Final exams (Selected by 9 of 11 in Round 2)  

Online threaded discussions (Selected by 8 of 11 in Round 2)  

Interviews with professionals (Selected by 11 of 11 in Round 2)  

Lab exercises (Selected by 11 of 11 in Round 2)  

Quizzes (Selected by 9 of 11 in Round 2)  

Smaller programming activities (Selected by 11 of 11 in Round 2)  

Team programming assignments (Selected by 10 of 11 in Round 2)  

Term projects (Selected by 11 of 11 in Round 2)  

 

 

 

  



184 

APPENDIX H 

ROUND 4 SURVEY FOR ACADEMIC GROUP 

Please read before starting. 

 Welcome to Round 4, the final round of the survey! The group did not achieve conformity on 

any of the three categories in Round 3 so we will proceed with one final round of rankings. The 

level of conformity of the rankings in Round 3 was computed using Kendall's W, which ranges 

from 0 (zero agreement) to 1 (full agreement). You will see the value achieved by the group in 

each of the three questions. Please be sure to answer the three questions on the three separate 

pages. You are again asked to rank these items for each of the three categories. The items are 

listed according to the results in Round 3. Consider your thoughts in relation to the importance 

attributed to it by the overall group of experts (via the median ranking) in Round 3. 

As before your information will be kept confidential. This survey will close on Tuesday, May 31, 

2016 so thank you for completing it before then. 

This page lists potential competencies to be used in an introductory computer science survey 

course. Please remember: Students enrolling in this course may be pursuing a bachelor’s degree 

in software engineering, a minor in software engineering, or taking the class as a general 

elective. Content for an Introduction to Computer Science Course 

Q1: Rank the following competencies for an introduction to computer science course. 

You can click and drag or numerically rank items from most important (1) to least 

important (15). The level of conformity (as indicated by Kendall's W ranging from 0-no 

agreement to 1-full agreement) for this category was 0.56 (moderate agreement) in 

Round 3. 

 

Competency Rank 

Write functional procedural programs employing programming fundamentals (Round 3 

median rank = 1) 

 

Write functional object-oriented programs employing programming fundamentals 

(Round 3 median rank = 3) 

 

Demonstrate problem solving (Round 3 median rank = 3)  

Demonstrate algorithmic thinking (Round 3 median rank = 5)  

Demonstrate critical thinking and reasoning (Round 3 median rank = 5)  

Demonstrate computational thinking (Round 3 median rank = 6)  

Implement good documentation practices in programming (Round 3 median rank = 7)  

Demonstrate teamwork and interpersonal group skills (Round 3 median rank = 8)  

Analyze algorithms for effectiveness and efficiency (Round 3 median rank = 9)  

Describe process and practices in software engineering (Round 3 median rank = 11)  

Describe basic computer architecture and organization (Round 3 median rank = 12)  

Explain the functionality of operating systems and provide examples (Round 3 median 

rank = 12) 

 

Demonstrate use of recursion in a program (Round 3 median rank = 12)  

Explain the role of modeling and simulation in computing (Round 3 median rank = 12)  



185 

Describe the need for computer and data security and identify best practices (designing, 

implementing, and verifying hacker-resistant safe code) (Round 3 median rank = 14) 

 

 

Q2: Rank these programming languages to potentially be used in an introduction to 

computer science course. You can click and drag or numerically rank items from most 

important (1) to least important (8). The level of conformity (as indicated by Kendall's W 

ranging from 0-no agreement to 1-full agreement) for this category was 0.63 (moderate 

agreement) in Round 3. 

 

Programming Language Rank 

Java (Round 3 median rank = 1)  

C++ (Round 3 median rank = 2)  

C (Round 3 median rank = 4)  

Python (Round 3 median rank = 4)  

C# (Round 3 median rank = 6)  

PHP (Round 3 median rank = 6)  

Ruby (Round 3 median rank = 6)  

JavaScript (Round 3 median rank = 7)  

 

Q3: Rank the following assessments to potentially be used in an introduction to computer science 

course. You can click and drag or numerically rank items from most important (1) to least 

important (11). The level of conformity (as indicated by Kendall's W ranging from 0-no 

agreement to 1-full agreement) for this category was 0.53 (weak agreement) in Round 3. 

Assessment Rank 

Lab exercises (Round 3 median rank = 2)  

Smaller programming activities (Round 3 median rank = 2)  

Team programming assignments (Round 3 median rank = 4)  

Concept questions (Round 3 median rank = 5)  

Code reviews (Round 3 median rank = 6)  

Quizzes (Round 3 median rank = 6)  

Term projects (Round 3 median rank = 6)  

Final exams (Round 3 median rank = 7)  

Case studies (Round 3 median rank = 9)  

Online threaded discussions (Round 3 median rank = 10)  

Interviews with professionals (Round 3 median rank = 10)  

  



186 

APPENDIX I 

ROUND 4 SURVEY FOR INDUSTRY GROUP 

Please read before starting 

Welcome to Round 4, the final round of the survey! The group did not achieve conformity on 

any of the three categories in Round 3 so we will proceed with one final round of rankings. The 

level of conformity of the rankings in Round 3 was computed using Kendall's W, which ranges 

from 0 (zero agreement) to 1 (full agreement). You will see the value achieved by the group in 

each of the three categories. Please be sure to answer the three questions on the three separate 

pages. You are again asked to rank these items for each of the three categories. The items are 

listed according to the results in Round 3. Consider your thoughts in relation to the importance 

attributed to it by the overall group of experts (via the median ranking) in Round 3. 

As before your information will be kept confidential. This survey will close on Tuesday, May 31, 

2016 so thank you for completing it before then. 

This page lists potential competencies to be used in an introductory computer science survey 

course. Please remember: Students enrolling in this course may be pursuing a bachelor’s degree 

in software engineering, a minor in software engineering, or taking the class as a general 

elective. 

Q1: Rank the following competencies for an introduction to computer science course. 

You can click and drag or numerically rank items from most important (1) to least 

important (12). The level of conformity (as indicated by Kendall's W ranging from 0-no 

agreement to 1-full agreement) for this category was 0.13 (little to no agreement) in 

Round 3. 

 

Competency Rank 

Demonstrate problem solving (Round 3 median rank = 2.5)  

Demonstrate critical thinking and reasoning (Round 3 median rank = 3)  

Describe process and practices in software engineering (Round 3 median rank = 5)  

Write functional procedural programs employing programming fundamentals (Round 3 

median rank = 5.5) 

 

Demonstrate teamwork and interpersonal group skills (Round 3 median rank = 6)  

Describe basic computer architecture and organization (Round 3 median rank = 6.5)  

Analyze algorithms for effectiveness and efficiency (Round 3 median rank = 7)  

Describe different types of data representation (e.g. graphics, binary numbers, etc.) 

(Round 3 median rank = 7) 

 

Write functional object-oriented programs employing programming fundamentals 

(Round 3 median rank = 7) 

 

Describe common programming languages and their popular uses (Round 3 median rank 

= 7.5) 

 

Implement good documentation practices in programming (Round 3 median rank = 8.5)  

Illustrate the use of databases and apply SQL (Round 3 median rank = 9.5)  

 



187 

Q2: Rank these programming languages to potentially be used in an introduction to 

computer science course. You can click and drag or numerically rank items from most 

important (1) to least important (12). The level of conformity (as indicated by Kendall's 

W ranging from 0-no agreement to 1-full agreement) for this category was 0.11 (little to 

no agreement) in Round 3. 

 

Programming Language Rank 

JavaScript (Round 3 median rank = 3)  

Python (Round 3 median rank = 3)  

C# (Round 3 median rank = 4.5)  

Java (Round 3 median rank = 4.5)  

C++ (Round 3 median rank = 5.5)  

HTML5 (Round 3 median rank = 5.5)  

PHP (Round 3 median rank = 6)  

C (Round 3 median rank = 7)  

PL/SQL (Round 3 median rank = 8)  

Shell (Round 3 median rank = 9)  

Ruby (Round 3 median rank = 9.5)  

Assembly Language (Round 3 median rank = 10)  

 

Q3: Rank the following assessments to potentially be used in an introduction to computer science 

course. You can click and drag or numerically rank items from most important (1) to least 

important (11). The level of conformity (as indicated by Kendall's W ranging from 0-no 

agreement to 1-full agreement) for this category was 0.20 (little to no agreement) in Round 3. 

Assessment Rank 

Smaller programming activities (Round 3 median rank = 3)  

Term projects (Round 3 median rank = 3)  

Lab exercises (Round 3 median rank = 4)  

Code reviews (Round 3 median rank = 4.5)  

Concept questions (Round 3 median rank = 6)  

Team programming assignments (Round 3 median rank = 6)  

Case studies (Round 3 median rank = 6.5)  

Final exams (Round 3 median rank = 8)  

Interviews with professionals (Round 3 median rank = 8.5)  

Quizzes (Round 3 median rank = 8.5)  

Online threaded discussions (Round 3 median rank = 9)  

  



188 

VITA 

 

Simon Sultana 

 

Darden College of Education 

Old Dominion University 

Norfolk VA, 23529 

 

Academic Degrees 

 M.B.A. Wayne State University  2003 Business Administration 

 M.S. Wayne State University   2000 Electrical Engineering 

 B.S. The University of Michigan  1995 Electrical Engineering 

 

Professional Experience 

2015-Present Fresno Pacific University, Faculty Software Engineering & 

Computer Information Systems 

2006-2015 DeVry University, Program Dean College of Engineering 

& Information Sciences 

2005-2006 ASI Systems Integrators, Senior Engineering Consultant 

2004-2005 Motorola, Inc., Senior Engineer 

1995-2004 Chrysler Corporation, Senior Engineer 

 

Affiliations 

 2015-Present   Association for Computing Machinery 

 2012, 2014-2015  American Society for Engineering Education 

2014-2015 Association of Technology, Management, and Applied 

Engineering 

 2008-2009   Institute of Electrical and Electronics Engineers 

 

Publications 

Sultana, S. (2015). [Review of the book Rethinking engineering: The CDIO approach by 

Crawley, Malmqvist, Östlund, Brodeur, & Eström]. Journal of Technology Education, 

26(2), 74-79. 

Sultana, S., Amer, H., Johnson, R., Soderlund, T., & Draper, D. (2015). Acme portable motion 

projector: Wile E. Coyote’s learning device? Tech Trends, 59(3), 15-16. 

Sultana, S. (2015). Impressions of engineering technology faculty on student mathematics 

comprehension. Unpublished Manuscript. 

Sultana, S. (2015). Efforts to improve the mathematics ability of online students in an electronic 

circuits course. Unpublished Manuscript. 

 

 


	Old Dominion University
	ODU Digital Commons
	Summer 2016

	Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course
	Simon Sultana
	Recommended Citation


	tmp.1476812392.pdf.4zeOU

