230 research outputs found

    BEHAVIORAL COMPOSITION FOR HETEROGENEOUS SWARMS

    Get PDF
    Research into swarm robotics has produced a robust library of swarm behaviors that excel at defined tasks such as flocking and area search, many of which have potential for application to a wide range of military problems. However, to be successfully applied to an operational environment, swarms must be flexible enough to achieve a wide array of specific objectives and usable enough to be configured and employed by lay operators. This research explored the use of the Mission-based Architecture for Swarm Composability (MASC) to develop mission-specific tactics as compositions of more general, reusable plays for use with the Advanced Robotic Systems Engineering Laboratory (ARSENL) swarm system. Three tactics were developed to conduct autonomous search of a geographic area and investigation of generated contacts of interest. The tactics were tested in live-flight and virtual environment experiments and compared to a preexisting monolithic behavior implementation completing the same task. Measures of performance were defined and observed that verified the effectiveness of solutions and confirmed the advantages that composition provides with respect to reusability and rapid development of increasingly complex behaviors.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Dynamic behavior-based control and world-embedded knowledge for interactive artificial intelligence

    Get PDF
    Video game designers depend on artificial intelligence to drive player experience in modern games. Therefore it is critical that AI not only be fast and computation- ally inexpensive, but also easy to incorporate with the design process. We address the problem of building computationally inexpensive AI that eases the game de- sign process and provides strategic and tactical behavior comparable with current industry-standard techniques. Our central hypothesis is that behavior-based characters in games can exhibit effec- tive strategy and coordinate in teams through the use of knowledge embedded in the world and a new dynamic approach to behavior-based control that enables charac- ters to transfer behavioral knowledge. We use dynamic extensions for behavior-based subsumption and world-embedded knowledge to simplify and enhance game character intelligence. We find that the use of extended affordances to embed knowledge in the world can greatly reduce the effort required to build characters and AI engines while increasing the effectiveness of the behavior controllers. In addition, we find that the technique of multi-character affordances can provide a simple mechanism for enabling team coordination. We also show that reactive teaming, enabled by dynamic extensions to the subsumption architecture, is effective in creating large adaptable teams of characters. Finally, we show that the command policy for reactive teaming can be used to improve performance of reactive teams for tactical situations

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Mission programming for flying ensembles: combining planning with self-organization

    Get PDF
    The application of autonomous mobile robots can improve many situations of our daily lives. Robots can enhance working conditions, provide innovative techniques for different research disciplines, and support rescue forces in an emergency. In particular, flying robots have already shown their potential in many use-cases when cooperating in ensembles. Exploiting this potential requires sophisticated measures for the goal-oriented, application-specific programming of flying ensembles and the coordinated execution of so defined programs. Because different goals require different robots providing different capabilities, several software approaches emerged recently that focus on specifically designed robots. These approaches often incorporate autonomous planning, scheduling, optimization, and reasoning attributable to classic artificial intelligence. This allows for the goal-oriented instruction of ensembles, but also leads to inefficiencies if ensembles grow large or face uncertainty in the environment. By leaving the detailed planning of executions to individuals and foregoing optimality and goal-orientation, the selforganization paradigm can compensate for these drawbacks by scalability and robustness. In this thesis, we combine the advantageous properties of autonomous planning with that of self-organization in an approach to Mission Programming for Flying Ensembles. Furthermore, we overcome the current way of thinking about how mobile robots should be designed. Rather than assuming fixed-design robots, we assume that robots are modifiable in terms of their hardware at run-time. While using such robots enables their application in many different use cases, it also requires new software approaches for dealing with this flexible design. The contributions of this thesis thus are threefold. First, we provide a layered reference architecture for physically reconfigurable robot ensembles. Second, we provide a solution for programming missions for ensembles consisting of such robots in a goal-oriented fashion that provides measures for instructing individual robots or entire ensembles as desired in the specific use case. Third, we provide multiple self-organization mechanisms to deal with the system’s flexible design while executing such missions. Combining different self-organization mechanisms ensures that ensembles satisfy the static requirements of missions. We provide additional self-organization mechanisms for coordinating the execution in ensembles ensuring they meet the dynamic requirements of a mission. Furthermore, we provide a solution for integrating goal-oriented swarm behavior into missions using a general pattern we have identified for trajectory-modification-based swarm behavior. Using that pattern, we can modify, quantify, and further process the emergent effect of varying swarm behavior in a mission by changing only the parameters of its implementation. We evaluate results theoretically and practically in different case studies by deploying our techniques to simulated and real hardware.Der Einsatz von autonomen mobilen Robotern kann viele AblĂ€ufe unseres tĂ€glichen Lebens erleichtern. Ihr Einsatz kann Arbeitsbedingungen verbessern, als innovative Technik fĂŒr verschiedene Forschungsdisziplinen dienen oder RettungskrĂ€fte im Einsatz unterstĂŒtzen. Insbesondere Flugroboter haben ihr Potenzial bereits in vielerlei AnwendungsfĂ€llen gezeigt, gerade wenn mehrere in Ensembles eingesetzt werden. Das Potenzial fliegender Ensembles zielgerichtet und anwendungsspezifisch auszuschöpfen erfordert ausgefeilte Programmiermethoden und Koordinierungsverfahren. Zu diesem Zweck sind zuletzt viele unterschiedliche und auf speziell entwickelte Roboter zugeschnittene SoftwareansĂ€tze entstanden. Diese verwenden oft klassische Planungs-, Scheduling-, Optimierungs- und Reasoningverfahren. WĂ€hrend dies vor allem den zielgerichteten Einsatz von Ensembles ermöglicht, ist es jedoch auch oft ineffizient, wenn die Ensembles grĂ¶ĂŸer oder deren Einsatzumgebungen unsicher werden. Die genannten Nachteile können durch das Paradigma der Selbstorganisation kompensiert werden: Falls Anwendungen nicht zwangslĂ€ufig auf OptimalitĂ€t und strikte Zielorientierung ausgelegt sind, kann so Skalierbarkeit und Robustheit im System erreicht werden. In dieser Arbeit werden die vorteilhaften Eigenschaften klassischer Planungstechniken mit denen der Selbstorganisation in einem Ansatz zur Missionsprogrammierung fĂŒr fliegende Ensembles kombiniert. In der dafĂŒr entwickelten Lösung wird von der aktuell etablierten Ansicht einer unverĂ€nderlichen Roboterkonstruktion abgewichen. Stattdessen wird die Hardwarezusammenstellung der Roboter als zur Laufzeit modifizierbar angesehen. Der Einsatz solcher Roboter erfordert neue SoftwareansĂ€tze um mit genannter FlexibilitĂ€t umgehen zu können. Die hier vorgestellten BeitrĂ€ge zu diesem Thema lassen sich in drei Punkten zusammenfassen: Erstens wird eine Schichtenarchitektur als Referenz fĂŒr physikalisch konfigurierbare Roboterensembles vorgestellt. Zweitens wird eine Lösung zur zielorientierten Missions-Programmierung fĂŒr derartige Ensembles prĂ€sentiert, mit der sowohl einzelne Roboter als auch ganze Ensembles instruiert werden können. Drittens werden mehrere Selbstorganisationsmechanismen vorgestellt, die die autonome AusfĂŒhrung so erstellter Missionen ermöglichen. Durch die Kombination verschiedener Selbstorganisationsmechanismen wird sichergestellt, dass Ensembles die missionsspezifischen Anforderungen erfĂŒllen. ZusĂ€tzliche Selbstorganisationsmechanismen ermöglichen die koordinierte AusfĂŒhrung der Missionen durch die Ensembles. DarĂŒber hinaus bietet diese Lösung die Möglichkeit der Integration zielorientierten Schwarmverhaltens. Durch ein allgemeines algorithmisches Verfahren fĂŒr auf Trajektorien-Modifikation basierendes Schwarmverhalten können allein durch die Änderung des Parametersatzes unterschiedliche emergente Effekte in einer Mission erzielt, quantifiziert und weiterverarbeitet werden. Zur theoretischen und praktischen Evaluierung der Ergebnisse dieser Arbeit wurden die vorgestellten Techniken in verschiedenen Fallstudien auf simulierter sowie realer Hardware zum Einsatz gebracht

    Robust distributed planning strategies for autonomous multi-agent teams

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 225-244).The increased use of autonomous robotic agents, such as unmanned aerial vehicles (UAVs) and ground rovers, for complex missions has motivated the development of autonomous task allocation and planning methods that ensure spatial and temporal coordination for teams of cooperating agents. The basic problem can be formulated as a combinatorial optimization (mixed-integer program) involving nonlinear and time-varying system dynamics. For most problems of interest, optimal solution methods are computationally intractable (NP-Hard), and centralized planning approaches, which usually require high bandwidth connections with a ground station (e.g. to transmit received sensor data, and to dispense agent plans), are resource intensive and react slowly to local changes in dynamic environments. Distributed approximate algorithms, where agents plan individually and coordinate with each other locally through consensus protocols, can alleviate many of these issues and have been successfully used to develop real-time conflict-free solutions for heterogeneous networked teams. An important issue associated with autonomous planning is that many of the algorithms rely on underlying system models and parameters which are often subject to uncertainty. This uncertainty can result from many sources including: inaccurate modeling due to simplifications, assumptions, and/or parameter errors; fundamentally nondeterministic processes (e.g. sensor readings, stochastic dynamics); and dynamic local information changes. As discrepancies between the planner models and the actual system dynamics increase, mission performance typically degrades. The impact of these discrepancies on the overall quality of the plan is usually hard to quantify in advance due to nonlinear effects, coupling between tasks and agents, and interdependencies between system constraints. However, if uncertainty models of planning parameters are available, they can be leveraged to create robust plans that explicitly hedge against the inherent uncertainty given allowable risk thresholds. This thesis presents real-time robust distributed planning strategies that can be used to plan for multi-agent networked teams operating in stochastic and dynamic environments. One class of distributed combinatorial planning algorithms involves using auction algorithms augmented with consensus protocols to allocate tasks amongst a team of agents while resolving conflicting assignments locally between the agents. A particular algorithm in this class is the Consensus-Based Bundle Algorithm (CBBA), a distributed auction protocol that guarantees conflict-free solutions despite inconsistencies in situational awareness across the team. CBBA runs in polynomial time, demonstrating good scalability with increasing numbers of agents and tasks. This thesis builds upon the CBBA framework to address many realistic considerations associated with planning for networked teams, including time-critical mission constraints, limited communication between agents, and stochastic operating environments. A particular focus of this work is a robust extension to CBBA that handles distributed planning in stochastic environments given probabilistic parameter models and different stochastic metrics. The Robust CBBA algorithm proposed in this thesis provides a distributed real-time framework which can leverage different stochastic metrics to hedge against parameter uncertainty. In mission scenarios where low probability of failure is required, a chance-constrained stochastic metric can be used to provide probabilistic guarantees on achievable mission performance given allowable risk thresholds. This thesis proposes a distributed chance-constrained approximation that can be used within the Robust CBBA framework, and derives constraints on individual risk allocations to guarantee equivalence between the centralized chance-constrained optimization and the distributed approximation. Different risk allocation strategies for homogeneous and heterogeneous teams are proposed that approximate the agent and mission score distributions a priori, and results are provided showing improved performance in time-critical mission scenarios given allowable risk thresholds.by Sameera S. Ponda.Ph.D

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option
    • 

    corecore