
Robust Distributed Planning Strategies for Autonomous

Multi-Agent Teams

by

Sameera S. Ponda

S.M. in Aeronautics and Astronautics,
Massachusetts Institute of Technology (2008)

S.B. in Aerospace Engineering with Information Technology,
Massachusetts Institute of Technology (2004)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 23, 2012

Certified by. .
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Mary L. Cummings

Associate Professor of Aeronautics and Astronautics

Certified by. .
Devavrat Shah

Jamieson Associate Professor of Electrical Engineering and Computer Science

Accepted by .
Eytan H. Modiano

Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

Robust Distributed Planning Strategies for Autonomous Multi-Agent

Teams

by

Sameera S. Ponda

Submitted to the Department of Aeronautics and Astronautics
on August 23, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

The increased use of autonomous robotic agents, such as unmanned aerial vehicles (UAVs)
and ground rovers, for complex missions has motivated the development of autonomous task
allocation and planning methods that ensure spatial and temporal coordination for teams of
cooperating agents. The basic problem can be formulated as a combinatorial optimization
(mixed-integer program) involving nonlinear and time-varying system dynamics. For most
problems of interest, optimal solution methods are computationally intractable (NP-Hard),
and centralized planning approaches, which usually require high bandwidth connections
with a ground station (e.g. to transmit received sensor data, and to dispense agent plans),
are resource intensive and react slowly to local changes in dynamic environments. Dis-
tributed approximate algorithms, where agents plan individually and coordinate with each
other locally through consensus protocols, can alleviate many of these issues and have been
successfully used to develop real-time conflict-free solutions for heterogeneous networked
teams.

An important issue associated with autonomous planning is that many of the algorithms
rely on underlying system models and parameters which are often subject to uncertainty.
This uncertainty can result from many sources including: inaccurate modeling due to simpli-
fications, assumptions, and/or parameter errors; fundamentally nondeterministic processes
(e.g. sensor readings, stochastic dynamics); and dynamic local information changes. As dis-
crepancies between the planner models and the actual system dynamics increase, mission
performance typically degrades. The impact of these discrepancies on the overall quality of
the plan is usually hard to quantify in advance due to nonlinear effects, coupling between
tasks and agents, and interdependencies between system constraints. However, if uncer-
tainty models of planning parameters are available, they can be leveraged to create robust
plans that explicitly hedge against the inherent uncertainty given allowable risk thresholds.

This thesis presents real-time robust distributed planning strategies that can be used to
plan for multi-agent networked teams operating in stochastic and dynamic environments.
One class of distributed combinatorial planning algorithms involves using auction algo-
rithms augmented with consensus protocols to allocate tasks amongst a team of agents
while resolving conflicting assignments locally between the agents. A particular algorithm
in this class is the Consensus-Based Bundle Algorithm (CBBA), a distributed auction pro-
tocol that guarantees conflict-free solutions despite inconsistencies in situational awareness
across the team. CBBA runs in polynomial time, demonstrating good scalability with
increasing numbers of agents and tasks. This thesis builds upon the CBBA framework to

address many realistic considerations associated with planning for networked teams, includ-
ing time-critical mission constraints, limited communication between agents, and stochastic
operating environments.

A particular focus of this work is a robust extension to CBBA that handles distributed
planning in stochastic environments given probabilistic parameter models and different
stochastic metrics. The Robust CBBA algorithm proposed in this thesis provides a dis-
tributed real-time framework which can leverage different stochastic metrics to hedge against
parameter uncertainty. In mission scenarios where low probability of failure is required, a
chance-constrained stochastic metric can be used to provide probabilistic guarantees on
achievable mission performance given allowable risk thresholds. This thesis proposes a
distributed chance-constrained approximation that can be used within the Robust CBBA
framework, and derives constraints on individual risk allocations to guarantee equivalence
between the centralized chance-constrained optimization and the distributed approximation.
Different risk allocation strategies for homogeneous and heterogeneous teams are proposed
that approximate the agent and mission score distributions a priori, and results are pro-
vided showing improved performance in time-critical mission scenarios given allowable risk
thresholds.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

Acknowledgments

There are several people I would like to acknowledge as being instrumental to the devel-

opment of this thesis. First of all I would like to thank my advisor Prof. Jonathan How

for his endless support, advice and inspiration. You have helped me grow immeasurably,

both as a researcher and as a person, and I am very grateful to have had the privilege

of working with you. Your invaluable support and mentorship, not just throughout my

research, but in my other endeavors at MIT as well, have made these past four years an

amazing experience. I would like to thank my colleague and friend Luke Johnson, who I’ve

had the pleasure of working with on most of my research projects. This thesis would really

not have been possible without your continued support, brilliance, and inspiration. To my

committee members, Prof. Missy Cummings and Prof. Devavrat Shah, thank you for your

support and advice throughout this thesis. To my thesis readers, Prof. Han-Lim Choi and

Prof. Julie Shah, thank you for your detailed revisions and insightful feedback. And to all

my colleagues and friends at the Aerospace Controls Lab, especially Andrew K., Buddy,

Dan, Tuna, Trevor, Kemal, Brandon, Frank, Josh and Vishnu, thanks for your friendship,

for your willingness to always help me out with my technical crises, and for making the last

four years at ACL such a fabulous experience.

I would also like to thank the Aero/Astro faculty, especially Prof. Karen Willcox, Prof.

Dava Newman, Prof. Jeff Hoffman, Prof. Jaime Peraire, Prof. Dave Darmofal and Prof.

Ian Waitz, for their endless support of the Women’s Graduate Association of Aeronautics

and Astronautics (WGA3) and for being so encouraging in general. It has been a truly

wonderful experience being part of Aero/Astro and I have learned so much from all of you.

To my fellow WGA3 ladies Sunny and Chelsea, thanks for sharing your vision with me and

for all your hard work, creativity and inspiration. I have no doubt that you will continue

to accomplish many great things. And to the Aero/Astro staff, especially Marie Stuppard,

Kathryn Fischer, Beth Marois, Barbara Lechner, Dave Robertson, Dick Perdichizzi, and Bill

Litant thanks for always being there to help me out with grad school and other projects

at MIT, for always being so willing to do tours and other favours for me, and for all your

encouragement, support, and friendship.

I would also like to thank all my dear friends for making these past four years unfor-

gettable, especially the Aero/Astro gang: Sunny, Francois, Arde, Bjoern, Andreas, Leo,

Fabio, Beenie, Amy, Josh, Irene, Namiko, Jeff, and many more, and to my undergrad bud-

dies especially Laura, Cara, and Debbie. Thanks for all your support and friendship, for

listening to all my rants, for always being there for me, and for all the wonderful times

we’ve had together. I couldn’t have done it without you guys. And most importantly to

my family, thank you for always supporting me, loving me, and being there for me. And in

particular, to my parents, I’m really grateful for the plentiful opportunities you have given

me throughout my life. You have always been a source of inspiration and encouragement

and I love you both very much.

This work was supported by MURI (FA9550-08-1-0356). The views and conclusions

contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of the U.S.

Government.

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Literature Review . 20

1.2.1 Planning Strategies . 20

1.2.2 Robust and Stochastic Optimization 21

1.2.3 Representing Uncertainty . 23

1.2.4 Remaining Challenges . 25

1.3 Thesis Contributions . 27

1.4 Thesis Layout . 29

2 Problem Statement 33

2.1 Problem Formulations . 33

2.1.1 Multi-Agent Task Allocation . 33

2.1.2 Multi-Agent Task Allocation With Time-Varying Score Functions . 35

2.1.3 Simplifying Assumptions and Constraint Specifications 36

2.1.4 Planning in Uncertain Domains . 40

2.2 Solution Algorithms . 43

3 Distributed Planning 47

3.1 Distributed Planning Components . 47

3.1.1 Planning Architectures . 47

3.1.2 Coordination Techniques . 51

3.1.3 Consensus . 54

3.1.4 Distributed Performance Metrics . 57

3.2 Distributed Planning Algorithms . 59

7

3.2.1 Distributed Problem Formulation . 59

3.2.2 Distributed Solution Strategies . 61

4 Consensus-Based Bundle Algorithm (CBBA) and Extensions 67

4.1 CBBA Algorithm Description . 67

4.1.1 Bundle Construction Phase . 70

4.1.2 Task Consensus Phase . 74

4.1.3 Diminishing Marginal Gains . 75

4.2 CBBA with Time-Varying Score Functions 79

4.2.1 Bundle Construction with Time-Varying Score Functions 79

4.2.2 Example Applications . 84

4.3 Distributed Planning with Network Disconnects 90

4.3.1 Dynamic Network Handling Protocols 90

4.3.2 Example Applications . 92

4.4 Ensuring Network Connectivity in Dynamic Environments 95

4.4.1 Scenario Description . 96

4.4.2 CBBA with Relays . 98

4.4.3 Example Applications . 103

4.5 Summary . 109

5 Distributed Planning in Uncertain Domains 111

5.1 Stochastic Distributed Problem Formulation 112

5.1.1 Uncertain Parameter Types . 112

5.1.2 General Stochastic Distributed Framework 113

5.1.3 Distributing Stochastic Metrics . 115

5.2 Robust Extension to CBBA . 119

5.2.1 Computing Stochastic Scores . 119

5.2.2 CBBA with Nonsubmodular Score Functions 124

5.2.3 Stochastic Bundle Construction . 125

5.3 Example Applications . 129

6 Distributed Risk-Aware Planning in Uncertain Domains 141

6.1 Distributed Chance-Constrained Problem Formulation 141

8

6.2 Allocating Agent Risks in Distributed Chance-Constrained Planning 144

6.3 Chance-Constrained Extension to CBBA . 149

6.3.1 Agent Risk Allocation Strategies . 149

6.3.2 Stochastic Bundle Construction . 156

6.4 Example Applications . 159

6.4.1 Homogeneous Agents . 160

6.4.2 Heterogeneous Agents . 162

7 Conclusions 169

7.1 Summary of Contributions . 169

7.2 Future Work . 171

A Derivations of Agent Risk Allocation Strategies 175

A.1 Homogeneous Agent Risk Allocation Strategies 175

A.1.1 Gaussian Risk Allocation Heuristic 177

A.1.2 Exponential Risk Allocation Heuristic 178

A.1.3 Gamma Risk Allocation Heuristic 179

A.2 Heterogeneous Agent Risk Allocation Strategies 181

B Distributed Information-Rich Planning and Hybrid Sensor Fusion 187

B.1 Introduction . 188

B.2 Problem Formulation and Background . 190

B.3 Decentralized Planning and Fusion Framework 193

B.3.1 Proposed Information-based Control Architecture 194

B.3.2 Decentralized Information-Rich Planning 195

B.3.3 Recursive Bayesian Hybrid Data Fusion 203

B.4 Indoor Target Search and Track Experiments 211

B.4.1 Experimental Setup . 211

B.4.2 Search Performance Metrics and Results 214

B.4.3 Discussion . 217

B.5 Conclusions and Ongoing Work . 221

References 227

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

1-1 Example ISR mission scenario . 18

1-2 Examples of current ISR system components 18

2-1 Task allocation example for a multi-UAV networked team 34

2-2 Examples of time-varying score functions for different types of tasks. 36

2-3 Example of task coupling given uncertain task durations 41

3-1 Centralized vs. Distributed Planning . 50

4-1 Example UAV mission with 1 agent and 2 tasks. 76

4-2 Monte Carlo simulation results validating the performance of CBBA with

Time-Varying Score Functions . 85

4-3 Real-time distributed task allocation architecture for a heterogeneous net-

worked team. 88

4-4 Simulation showing 12 agents (6 UAVs & 6 UGVs) bidding on and accom-

plishing a dynamic set of tasks. 89

4-5 Real-time mission planning for a heterogeneous networked team using the

CBBA planning framework (Aerospace Controls Lab, MIT). 89

4-6 Comparison of mission scores, completed tasks and fuel consumption as a

function of communication radius for different network handling protocols. . 94

4-7 Example mission scenario illustrating the benefits of cooperative planning in

communication-limited environments . 96

4-8 Results for a single simulation run of a 6 agent mission, comparing Baseline

CBBA, CBBA with Network Prediction, and CBBA with Relays 104

11

4-9 Monte Carlo simulation results for a 6 agent mission, comparing the perfor-

mance of Baseline CBBA, CBBA with Network Prediction, and CBBA with

Relays . 105

4-10 Real-time indoor autonomous vehicle experiments, at the MIT Aerospace

Controls Lab, demonstrating CBBA with Relays 106

4-11 Real-time indoor experimental results for a 6 agent mission, comparing Base-

line CBBA, CBBA with Network Prediction, and CBBA with Relays 107

4-12 Real-time autonomous vehicle outdoor flight experiments demonstrating CBBA

with Relays . 108

4-13 Real-time outdoor flight test results for a 3 agent mission, comparing Baseline

CBBA, CBBA with Network Prediction, and CBBA with Relays 108

5-1 Example UAV mission with 1 agent and 2 tasks. 123

5-2 Monte Carlo simulation results for a stochastic 6 agent mission with homo-

geneous agents, demonstrating the performance of Robust Expected-Value

CBBA . 130

5-3 Individual agent contributions using Robust Expected-Value CBBA for a

stochastic 6 agent mission with homogeneous agents 131

5-4 Monte Carlo simulation results for a stochastic 6 agent mission with homo-

geneous agents, demonstrating the performance of Robust Worst-Case CBBA 132

5-5 Individual agent contributions using Robust Worst-Case CBBA for a stochas-

tic 6 agent mission with homogeneous agents 133

5-6 Monte Carlo simulation results for a stochastic 6 agent mission with hetero-

geneous agents, demonstrating the performance of Robust Expected-Value

CBBA . 134

5-7 Individual agent contributions using Robust Expected-Value CBBA for a

stochastic 6 agent mission with heterogeneous agents 135

5-8 Monte Carlo simulation results for a stochastic 6 agent mission with hetero-

geneous agents, demonstrating the performance of Robust Worst-Case CBBA 136

5-9 Individual agent contributions using Robust Worst-Case CBBA for a stochas-

tic 6 agent mission with heterogeneous agents 137

5-10 Comparison of planner run time for the different stochastic planning algorithms138

12

6-1 Illustration of the chance-constrained metric 142

6-2 Relationship between agent risks and chance-constrained score in distributed

chance-constrained planning . 149

6-3 Illustration of the Central Limit Theorem 150

6-4 Agent score distributions for risk heuristics 152

6-5 Monte Carlo simulation results for a stochastic mission with 6 homogeneous

agents, validating Chance-Constrained CBBA 161

6-6 Monte Carlo simulation results for a stochastic mission with 6 homogeneous

agents, comparing the performance of Chance-Constrained CBBA using dif-

ferent risk allocation strategies . 165

6-7 Histograms of mission and agent scores . 166

6-8 Monte Carlo simulation results for a stochastic mission with 6 heterogeneous

agents, validating Chance-Constrained CBBA 166

6-9 Monte Carlo simulation results for a stochastic mission with 6 heterogeneous

agents, comparing the performance of Chance-Constrained CBBA using dif-

ferent risk allocation strategies . 167

6-10 Histograms of mission and agent scores for different heterogeneous risk allo-

cation strategies . 168

A-1 Agent score distributions for risk heuristics 177

B-1 General system block diagram for proposed planning and fusion framework. 195

B-2 System block diagram for indoor human-robot target search and track ex-

periment . 196

B-3 Block diagrams illustrating the overall CBBA+IRRT integrated architecture. 197

B-4 Example MMS models and updates . 208

B-5 Real-time search and track experiments for human-robot teams performed

at Cornell’s Autonomous Systems Lab . 212

B-6 Screenshots from the HRI console available to the human operator 222

B-7 Field map showing walls (magenta lines), true target locations (red triangles),

initial target prior for combined target GM, and initial vehicle locations (cir-

cles) with camera detection field of view (black triangles). 223

13

B-8 Results for Human Operator Soft Input Experiments: Comparison of mission

durations and distances traveled with and without human operator soft inputs.224

B-9 Results for Information-Based Search and Track Experiments: Comparison

of mission durations and distances traveled 225

B-10 Results for Information-Based Search and Track Experiments 226

14

List of Algorithms

1 CBBA(I,J) . 68

2 CBBA-Bundle-Construction(Ai, Ci,J) 72

3 Time-Varying-CBBA-Bundle-Construction(Ai, Ci,J) 81

4 CBBA-Relays(I,J) . 100

5 Prune-Task-Space(r, J̄ , A) . 101

6 Compute-Stochastic-Path-Score(pi) - (Expected Value) 121

7 Compute-Stochastic-Path-Score(pi) - (Worst-Case Value) 122

8 Robust-CBBA-Bundle-Construction(Ai, Ci,J) 126

9 Compute-Stochastic-Path-Score(pi) - (Chance-Constrained) 160

10 IRRT, Tree Expansion . 202

11 IRRT, Execution Loop . 202

12 Importance Sampling Measurement Update Algorithm 209

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 1

Introduction

1.1 Motivation

The increased use of robotic agents, such as unmanned aerial vehicles (UAVs) and au-

tonomous ground rovers, has motivated the development of autonomous cooperative task

allocation and planning methods. Teams of heterogeneous networked agents are regu-

larly employed in several different types of autonomous missions including intelligence,

surveillance, and reconnaissance (ISR) operations [1, 2], environmental disaster relief [146],

search and rescue operations [219], fighting forest fires [207], precision agriculture [197], and

weather forecasting [84]. Such missions typically involve executing several different activi-

ties, sometimes simultaneously, where agents must coordinate and interact with each other

to perform the requisite mission tasks. Agents within these networked teams are usually

heterogeneous, possessing different resources and capabilities, and some agents are better

suited to handle certain types of tasks than others leading to different roles and responsi-

bilities within the mission. For example, UAVs equipped with video can perform search,

surveillance, and target tracking tasks, human operators can visually classify targets, mon-

itor system status, and perform supervisory tasks, and ground teams can be deployed to

perform rescue operations or engage targets. Figure 1-1 illustrates an example ISR mission

scenario involving numerous networked agents performing a variety of search, track, and

surveillance tasks, and Figure 1-2 shows a few examples of real systems that are currently

used in ISR missions including small and large UAVs and human-in-the-loop operators.

Ensuring proper coordination and collaboration between the different agents in the team

is crucial to efficient and successful mission execution, motivating the development of au-

17

Figure 1-1: Illustration of an example ISR mission scenario involving numerous agents
performing a variety of search, track, and surveillance tasks.

tonomous task allocation and planning methods for heterogeneous networked teams. The

goal of such planning algorithms is to distribute the required mission tasks amongst the

agents so as to optimize overall mission efficiency, and to ensure spatial and temporal syn-

chronization of the team while considering mission costs, available resources and network

constraints. Furthermore, the advancement of communication systems, sensors, and em-

bedded technology has significantly increased the value of those solutions that are scalable

to larger teams, from dozens to hundreds or even thousands of agents [1, 2]. However, as the

number of systems, components, and mission tasks grows, planning for such teams becomes

increasingly complex.

(a) Remotely piloted small UAV (b) Predator UAV (c) Predator UAV operator

Figure 1-2: Examples of current systems and components comprising ISR missions.

18

Autonomous mission planning for teams of networked agents has several inherent chal-

lenges. Firstly, task allocation involves solving complex combinatorial (mixed-integer) de-

cision problems (NP-hard), which scale poorly and for which optimal solutions are usually

computationally intractable for large numbers of agents and tasks [36]. Developing useful

agent models that can be embedded within a planning framework is typically a complex en-

deavor. Agent dynamics are not usually well understood or cannot be well represented, and,

as such, the underlying agent models typically involve several simplifying assumptions about

the problem structure, agent dynamics, system states and the operating environment. In

spite of these simplifications, the resulting models often involve nonlinear and time-varying

transition dynamics and constraints that are difficult to handle within a combinatorial op-

timization framework. This challenging problem is further complicated by realistic mission

considerations such as resource limitations (fuel, payload, ordnance, etc), varying communi-

cation constraints, cooperative task execution, time-varying score functions, and unknown

dynamic environments for which limited a priori information is available [71, 114, 174, 220].

Finally, since mission operations usually involve dynamic environments, where agents’ sit-

uational awareness and underlying models change rapidly as new information is acquired,

the planning strategies employed must consist of computationally efficient algorithms that

can adjust or recompute solutions in real time.

A major limitation associated with deterministically planning for heterogeneous net-

worked teams is that the problem formulation and planning solutions rely on the underly-

ing system models and parameters. In unknown and dynamic environments, these models

and parameters are typically uncertain, and deterministic planning methods must therefore

use parameter approximations to make decisions (e.g. maximum likelihood estimate of the

parameters given the agent’s current situational awareness). Discrepancies between these

planner models and the actual system dynamics cause degradations in mission performance

and solution quality. Furthermore, the impact of these discrepancies on the overall quality

of the plan is typically hard to quantify in advance due to nonlinear effects, coupling be-

tween tasks and agents, and interdependencies between system constraints. For example, if

an agent takes longer than predicted to complete a task, this will not only affect the score

obtained for that task, but is also likely to impact the arrival time of his next task. In

time-critical missions, this compounding effect will cause deteriorations in the performance

of the overall mission. As difficulties arise, agents can replan to reassign the team’s as-

19

sets in light of new information, however, it is likely that the initial imprecise allocations

will have caused the team to consume resources (e.g. fuel, power, ordnance) and may have

positioned agents such that it is difficult for them to respond effectively to new threats

and targets. Thus it is often better to explicitly hedge against the uncertainty, selecting

plans that “expect the unexpected” and are less sensitive to modeling errors and imprecise

information. In particular, if additional information or models for the planning parame-

ters are available, these can be leveraged to produce plans that exhibit good robustness

properties [34, 35]. Examples of parameter uncertainty models could include probabilis-

tic distributions, stochastic metrics such as moments, central moments or bounds, Markov

models, Gaussian processes, Bayesian nonparametric models, etc. The tradeoff for this in-

crease in planner performance is a substantial (often exponential) growth in computational

complexity, since the planner must now consider the many possible outcomes provided by

the uncertainty models in addition to enumerating the planning options.

This thesis presents real-time distributed robust planning strategies that can effectively

embed uncertainty models of planning parameters into the score functions, transition dy-

namics, and constraints, creating plans that hedge against the inherent uncertainty. The

next few sections provide further insight into the key technical challenges and current solu-

tion methodologies associated with generating such planning strategies.

1.2 Literature Review

There are several research areas that address aspects of the robust planning problem for

large heterogeneous networked teams. Some of these are described in the following sections

and include cooperative planning strategies for autonomous networked teams, stochastic

planning approaches and robust optimization, and efficient inference techniques to represent

and sample from complex uncertainty models.

1.2.1 Planning Strategies

Many different methods have been considered for allocating tasks amongst a team of agents.

The basic problem can be formulated as a combinatorial optimization mixed-integer pro-

gram, involving nonlinear dynamics and integer and continuous decision variables. Mixed-

integer problems are significantly harder to solve than their linear programming counter-

20

parts, and exhibit poor scalability since computation time increases exponentially with the

problem size [36]. For most problems of interest, optimal solution methods are compu-

tationally intractable motivating the development of many approximation techniques [36].

Centralized planning approaches, where a control center plans and distributes tasks to all

agents, usually require high bandwidth connections with a ground station (e.g. to transmit

received sensor data, and to dispense agent plans), and thus are resource intensive and re-

act slowly to local changes in dynamic environments. Distributed algorithms, where agents

plan amongst themselves and coordinate with each other, present several advantages over

centralized solutions [51, 63, 148, 202], such as fewer resource requirements and faster re-

action times to local information changes. One class of distributed combinatorial planning

algorithms involves using auction algorithms augmented with consensus protocols to allo-

cate tasks over a team of agents while resolving conflicting assignments locally among the

agents [3, 58, 194]. An example is the Consensus-Based Bundle Algorithm (CBBA) [58], a

distributed auction protocol that guarantees conflict-free solutions despite inconsistencies in

situational awareness across the team. CBBA runs in polynomial time, demonstrating good

scalability with increasing numbers of agents and tasks, and enabling real-time distributed

planning for multi-agent networked teams1.

Although several of these distributed planning algorithms have been successfully demon-

strated through simulation and experimentation, their solution quality is dependent on the

accuracy of the underlying system models. Since plans generated deterministically are typ-

ically rigid and do not allow for much slack in plan execution, performance can degrade

substantially if the planning parameters are different than expected, possibly leading to

plan infeasibility [144]. Furthermore, since the underlying optimization problem is dis-

crete in nature, it is difficult to predict and quantify in advance the repercussions of plan

deviations, motivating the study of robust planning strategies.

1.2.2 Robust and Stochastic Optimization

The problem of robust combinatorial optimization has been extensively explored in the lit-

erature, mostly within the context of centralized planning. Stochastic planning techniques

have been employed in several applications, ranging from operations research, to robust

1This thesis builds upon the CBBA framework to address many realistic considerations associated with
planning for networked teams operating in uncertain and dynamic environments, in particular focusing on
robustness to communication and parameter uncertainty.

21

portfolio optimization strategies [74, 143, 226], from dynamic vehicle routing [213], to UAV

operations [38, 40, 122, 123, 147, 187, 188]. The airline scheduling community has also ex-

plored the robust planning problem in the context of airline operations, focusing on issues

such as minimizing the impact of delays on fleet schedules, robust crew and resource allo-

cation, and optimizing runway and taxi operations [15, 17, 18, 59, 125, 128, 129, 136, 200].

While these varied approaches provide valuable insights into the challenges and benefits

associated with robust planning, they also highlight several key issues. Firstly, robust plan-

ning involves solving large combinatorial optimization problems which scale poorly as the

problem size increases, especially when uncertainty must be explicitly accounted for (curse

of dimensionality [30]), and most approaches consider centralized solutions which cannot

easily be extended to distributed environments. Secondly, developing scoring and constraint

functions in the robust problem formulation involves coupling and combining probability

distributions, which is usually nontrivial unless limiting assumptions on the underlying

probability models are made (e.g. independent identically distributed parameters). Even

when analytic expressions for the combined distributions can be derived, stochastic metrics

(such as moments or expectations) cannot usually be computed in closed form. Finally,

as parameter distributions are updated (as additional information is acquired), the scoring

and constraint functions, combined distributions, and planner solution must be completely

recomputed to account for the new information.

Many of the stochastic planning algorithms employed in the above examples involve

maximizing the expected-value or average system performance [28]. In missions where

stronger performance guarantees than optimizing average scores are required, a stochastic

metric to mitigate the worst-case possible system performance can be used instead. Classical

“robust” formulations, that optimize worst-case system performance, have been considered

for integer programming problems [25, 34, 43, 154–156]. However, these approaches typi-

cally involve making several limiting assumptions about the problem formulation and the

form of the uncertainty, in order to maintain analytic and computational tractability (i.e.

linear program formulation, bounded and symmetric or ellipsoidal uncertainty models, in-

dependence between parameter distributions, etc.), which restrict the scope of the solution

methodologies making generalization to more complex realistic mission scenarios difficult.

Additionally, mitigating worst-case system performance is often too conservative, motivat-

ing the development of probabilistic planning approaches that reduce the risk of failure to

22

within a predefined threshold [120, 121, 190]. In [35], the degree of conservatism can be

controlled by setting the maximum number of parameters that take their worst-case val-

ues, and the problem can be converted into an equivalent deterministic problem and solved

using standard approaches. Their solution provides robustness bounds for each constraint

being violated, but does not address the robustness of the overall solution. An alternative

chance-constrained formulation, presented in [55], guarantees system performance within

an allowable risk threshold. However, the coupling of the uncertainty under this formu-

lation limits the applicability of the approach, especially when uncertainty is present in

the constraints, and the computational requirements associated with solving this optimiza-

tion are much higher than the previous approaches. Recent work in [144] extends some of

these classical formulations to address robustness of the total solution and computational

tractability of the algorithms, however, the approach in [144] still assumes linear cost and

constraint formulations and specific forms of parameter uncertainty, and cannot be easily

extended to support the types of system dynamics and uncertainty models of interest in

this thesis (time-varying, nonlinear, nonmonotonic score functions, and nonsymmetric or

unbounded distributions, etc).

1.2.3 Representing Uncertainty

As mentioned in the previous section, working with uncertainty models within an opti-

mization framework requires combining distributions and evaluating stochastic metrics, for

which analytic expressions cannot usually be derived unless the underlying distributions

are of very specific types (e.g. independent identically distributed random variables, Gaus-

sian, exponential or Bernoulli distributions, etc). This limits the practical applicability

of using a typical Bayesian framework that, while theoretically sound, cannot be imple-

mented directly except in a few very special cases, since the integrals required for most of

the essential Bayesian calculations (normalization, marginalization, computing moments,

etc) are often intractable [11, 67, 86]. To address these inference related issues, sampling

algorithms, that approximate complex distributions with a finite number of representative

samples, have been extensively explored. These algorithms, commonly known as Monte

Carlo methods, were originally developed in the 40’s [150] and have been widely used to

efficiently solve complex high-dimensional problems in a variety of fields such as statistics,

econometrics, decision analysis, physics and machine learning [11, 86]. Examples of com-

23

monly used Monte Carlo methods include rejection sampling, importance sampling and

Markov Chain Monte Carlo (MCMC). MCMC methods in particular, have been widely

used in the literature, due to their simplicity, computational efficiency, and ability to rep-

resent very complex high-dimensional systems [11]. The most popular MCMC method is

the Metropolis-Hastings algorithm [97] and consists of the following steps: initialize the

system, draw a sample from some proposal distribution which is a function of the current

state, use the sample as the new state with some acceptance probability. A key feature

of the algorithm is that the acceptance probability involves a ratio of the proposal and

actual probability distributions and therefore does not require computing the normaliza-

tion constant of either distribution, a property that can be exploited by many algorithms

involving Bayesian propagation. The Metropolis-Hastings algorithm is the most general

form of MCMC and it can be shown that several of the popular MCMC algorithms (Gibbs

sampling, simulated annealing, independence sampling, symmetric random walk Metropo-

lis, etc.) are special cases of the Metropolis-Hastings algorithm that use specific forms of

proposal distributions and acceptance probabilities [11, 67].

The main issues associated with MCMC algorithms are that they usually require a large

number of samples to obtain accurate representations, and algorithm convergence and per-

formance are highly dependent on the choice of proposal distribution. It is difficult to design

a proposal distribution that is easy to sample from yet provides a realistic representation of

the underlying complex system, and this approach is typically empirical and problem de-

pendent. Furthermore, it is difficult to assess convergence to stationarity and errors in the

estimates, since the very nature of the problem does not typically allow for the calculation

of a baseline truth [73]. But in spite of these difficulties, MCMC methods are promising

solutions to problems where there are often no other alternatives, and if specific distribution

forms are available (e.g. conditional conjugate distributions, etc), then algorithm conver-

gence is typically fast and accurate. Another advantage of sampling algorithms, is that

individual samples can often be updated online using Bayesian updates or transition dy-

namics as the environment changes or more information is acquired (e.g. sequential Monte

Carlo or particle filtering algorithms [11, 189]), allowing for a reusable framework that does

not require resampling all the particles every time the uncertainty models are updated.

Stochastic planning algorithms that use sampling methods for inference have been devel-

oped mainly for continuous optimization problems (e.g. trajectory optimization, collision

24

avoidance, etc), however, extensions to discrete optimization problems such as task alloca-

tion are nontrivial.

A key design decision, that drastically impacts the performance of the stochastic plan-

ning and sampling algorithms employed, consists of choosing the underlying uncertainty

models to represent the stochastic parameters of interest. This typically involves a tradeoff

between modeling the uncertain distributions as accurately as possible, and using uncer-

tainty representations that work well within the planning framework. For example, if the

stochastic planning algorithms involve computing metrics over sums of random variables,

then only very few distributions under limiting assumptions allow these computations to be

performed analytically in closed form (e.g. independent identically distributed random vari-

ables with Gaussian, exponential or Bernoulli distributions), or if distribution parameters

must be updated in real time given new data acquired, then using conjugate distributions

allows for convenient recursive updates within the planner (e.g. gamma, Dirichlet, Gaus-

sian), but generic distributions typically require recomputing the parameters given the new

data. The use of sampling algorithms within a stochastic planning framework allows for a

wider variety of uncertainty representations, alleviating several of these limitations, however

the performance and computational efficiency of these algorithms is highly dependent on

the uncertainty representations used (choice of proposal distribution, parameter dimension-

ality, number of modes, etc). A special example is the Gibbs sampler, where the use of

conditional conjugate distributions (such as Dirichlet) drastically improves algorithm per-

formance, allowing for very efficient measurement updates [67]. The main challenges and

questions to consider when developing the underlying uncertainty representations are: how

to balance the tradeoff between choosing an efficient model versus realistically representing

the system dynamics, how accurately does the model represent the system given the current

data, how efficiently can the model be updated, and how well can the model adapt as new

information is acquired.

1.2.4 Remaining Challenges

The goal of this research is to develop real-time distributed robust planning strategies that

can effectively embed uncertainty models of planning parameters into the score functions,

transition dynamics, and constraints, creating plans that hedge against the inherent uncer-

tainty. Although the current literature described in Section 1.2.2 provides many insights and

25

useful lessons, the inherent assumptions adopted in most of the approaches (e.g. linearity,

independent homogeneous distributions, etc.) limits their applicability when planning for

more general realistic mission scenarios. The dynamic models associated with networked

teams of heterogeneous agents executing missions with temporal and spatial constraints

typically involve nonlinear time-varying functions, and the uncertainty models of interest

consist of nonsymmetric dependent distributions for which analytic expressions for sums of

random variables are usually not available. Due to these limitations, this thesis explores

the development of computationally efficient planning strategies that are flexible enough to

allow for heterogeneous agent dynamics and varied uncertainty representations.

There are several key challenges associated with this problem. The first involves de-

veloping methods to embed general models of parameter uncertainty into the planning

framework. This work explores numerical methods to efficiently represent complex uncer-

tainty models, combined distributions, and stochastic metrics of interest through sampling

approaches (e.g. expectations, percentile thresholds, etc). Furthermore, to enable real-time

computationally efficient planning, this work employs polynomial-time approximation al-

gorithms that incrementally build solutions (e.g. sequential greedy) rather than optimal

algorithms that enumerate all possible assignments (NP-hard). The main challenge therein

is to ensure that the uncertainty of the total solution is represented appropriately when

making these incremental decisions. Furthermore, when planning for large-scale networked

teams operating in dynamic environments it is advantageous to consider distributed plan-

ning strategies, however, most of the distributed approaches described in Section 1.2.1 can-

not be trivially extended to account for parameter uncertainty and robustness. This work

presents a robust distributed planning framework that extends state-of-the-art distributed

algorithms to include uncertainty models. Since most of these distributed algorithms involve

consensus on plans between the different agents, the key challenge here lies in ensuring that

the uncertainty can be represented locally within each agent’s planning process, while still

guaranteeing convergence of the distributed algorithm. This thesis extends the Consensus-

Based Bundle Algorithm (CBBA) presented in [58] and leverages its converge guarantees

under varying agent situational awareness to ensure that agents can create robust plans

locally given their own uncertainty representations. The next section provides details on

the specific extensions of CBBA and contributions of this thesis.

26

1.3 Thesis Contributions

This thesis addresses the problem of real-time robust distributed planning for multi-agent

networked teams operating in uncertain and dynamic environments. In particular, several

extensions and variants to the baseline CBBA algorithm presented in [58] are proposed and

discussed, enabling distributed real-time planning in time-critical, communication-limited,

and uncertain environments. The specific contributions of this thesis are described as fol-

lows:

1. This thesis extends CBBA to handle time-critical mission considerations, where time-

varying score functions can be optimized within the CBBA algorithmic framework to

enable dynamic planning for agents and tasks with specific timing constraints (e.g.

task time-windows of validity, time-varying rewards for time-critical tasks, agent ve-

locities). In particular, the CBBA with Time-Varying Score Functions algorithm

proposed in Section 4.2 modifies the bundle construction process of CBBA to explic-

itly optimize task execution times as well as agent assignments, enabling both spatial

and temporal coordination of multi-agent teams in dynamic mission scenarios. The

algorithm performance was validated through simulations, and a real-time replanning

architecture was designed and implemented to enable real-time experiments for het-

erogeneous networked teams. Flight test experiments involving multi-agent dynamic

search and track missions were performed in an indoor flight test facility at the MIT

Aerospace Controls Lab using heterogeneous teams of quadrotor UAVs and robotic

ground vehicles, demonstrating the real-time applicability of the distributed planning

algorithms.

2. This thesis extends the CBBA planning framework to enable conflict-free distributed

planning in the presence of network disconnects due to communication-limited op-

erating environments. The proposed approach, described in Section 4.3, employs a

local distributed task space partitioning strategy, where the sets of tasks available

to the different agent sub-networks are disjoint, thus ensuring conflict-free solutions.

Simulation and experimental flight tests validated the proposed algorithms, showing

improved performance over the baseline CBBA algorithm, but with lower communi-

cation and computational overhead than centralized strategies which require a priori

task space partitioning at every replan iteration.

27

3. In Section 4.4, we develop a distributed cooperative planning algorithm that builds

upon the CBBA framework to enable agents to maintain network connectivity in

communication-limited environments. The algorithm, named CBBA with Relays,

guarantees network connectivity for agents performing tasks that require a live con-

nection (e.g. video streaming), by locally incentivizing under-utilized agents to act as

communication relays for other agents within a distributed framework. The proposed

algorithm explicitly handles the joint network connectivity constraints through a lo-

cal distributed network prediction phase, and cooperation between agents is enabled

through the local creation of relay tasks by the agents that require a network connec-

tion. The CBBA with Relays algorithm is guaranteed to converge, runs in real-time,

and guarantees network connectivity while tasks are being executed. The algorithm

was validated through simulation, and indoor and outdoor flight test experiments,

demonstrating real-time applicability.

4. In Chapter 5, we extend the CBBA with Time-Varying Score Functions algorithm of

Section 4.2 to explicitly account for robustness in the planning process. A real-time

distributed robust planning framework, named Robust CBBA, is proposed, which

can leverage probabilistic models of planning parameters and different distributable

stochastic metrics to hedge against parameter uncertainty. The algorithm employs

sampling approaches to compute agent path scores given different stochastic metrics

within the CBBA bundle construction process, enabling polynomial-time algorithm

convergence. The Robust CBBA framework leverages a recent submodular extension

of CBBA proposed by Johnson [106] to guarantee distributed algorithm convergence

given different stochastic metrics, and uses the convergence guarantees of CBBA under

varying situational awareness to allow agents to individually construct their robust

plans given local uncertainty representations. The Robust CBBA algorithm was im-

plemented using two stochastic metrics, the expected-value metric and the worst-case

stochastic metric, and used to plan for heterogeneous multi-agent teams performing

search and track missions in uncertain environments. Simulation results are provided

demonstrating real-time applicability, and showing that Robust CBBA improves per-

formance over the baseline CBBA algorithm and achieves results similar to centralized

planning strategies, validating the distributed approach.

28

5. In Chapter 6, we extend the Robust CBBA framework proposed in Chapter 5 to

optimize performance in environments where low probability of failure is required.

The approach uses a chance-constrained stochastic metric that provides probabilis-

tic guarantees on achievable mission performance given allowable risk thresholds. A

distributed approximation to the chance-constrained metric is proposed to enable the

use of Robust CBBA in these risk-aware environments, and constraints on individual

risk allocations are derived to guarantee equivalence between the centralized chance-

constrained optimization and the distributed approximation. Different risk allocation

strategies for homogeneous and heterogeneous teams are proposed that approximate

the agent and mission score distributions a priori, and results are provided comparing

the performance of these in time-critical mission scenarios. The distributed chance-

constrained CBBA algorithm was validated through simulation trials, and the results

showed improved performance over baseline CBBA and over worst-case conserva-

tive planning strategies given allowable risk thresholds. Furthermore, the distributed

chance-constrained approximation algorithm proposed in Chapter 6 achieved similar

results to those obtained by centralized chance-constrained methods, validating the

distributed approximation.

The next section describes the layout of the thesis.

1.4 Thesis Layout

The remainder of this thesis is organized as follows. Chapter 2 defines the task allocation

problem statement, the time-varying version of the task allocation problem statement, and

the specific task allocation formulation considered in this thesis. It also provides a discus-

sion on different robust metrics that can be used in stochastic planning environments and

formalizes the language and variables used throughout this thesis. The chapter ends by

discussing common solution approaches to multi-agent planning problems explored in the

literature within a centralized framework.

Chapter 3 provides background on distributed planning, describing various architec-

tural decisions that must be addressed when implementing real-time planning algorithms

for autonomous multi-agent teams. In particular, insights are provided on when central-

ized, distributed, and decentralized architectures can be used given the communication

29

infrastructure and available computational resources of the multi-agent system. Different

considerations and challenges associated with distributed planning are discussed, and al-

gorithms that can be utilized within distributed planning frameworks are identified. One

particular algorithm, the Consensus-Based Bundle Algorithm (CBBA) [58], is highlighted as

an algorithm which is well-suited to dynamic real-time planning environments, and provides

the foundation for the remainder of the work in this thesis.

Chapter 4 describes the Consensus-Based Bundle Algorithm (CBBA) developed by Choi

et al. [58], and presents key extensions and variants developed in this thesis to address

dynamic mission planning in realistic environments. Section 4.1 describes the baseline

CBBA algorithm proposed in [58]. Section 4.2 proposes an extension to CBBA that enables

optimization given time-varying score functions and dynamic mission scenarios (CBBA

with Time-Varying Score Functions). Section 4.3 presents strategies to ensure conflict-

free solutions in the presence of network disconnects through local task space partitioning

methods. And, Section 4.4 proposes a cooperative planning algorithm (CBBA with Relays),

that builds upon the baseline CBBA framework to enable cooperative mission execution in

communication-limited environments through the use of relay tasks.

Chapter 5 describes how uncertainty models of planning parameters can be leveraged

within the distributed planning framework to create robust plans that explicitly hedge

against the uncertainty. A stochastic planning extension to the distributed CBBA algo-

rithm is proposed (Robust CBBA), describing how expected-value and worst-case stochastic

metrics can be embedded within the planning framework using numerical sampling tech-

niques. Finally results for homogeneous and heterogeneous networked teams are provided

demonstrating performance improvements for multi-agent teams operating in uncertain and

dynamic environments.

Chapter 6 explores the use of the chance-constrained stochastic metric, which provides

more flexibility over the conservatism of the solution, and discusses the different distributed

planning considerations associated with risk-aware planning. A distributed approximation

of the centralized chance-constrained optimization is proposed which can be used within

the Robust CBBA framework, and different methods to allocate risk amongst the differ-

ent agents are discussed. Finally, simulation results for homogeneous and heterogeneous

networked teams are provided, validating the proposed approach. Chapter 7 presents a

summary of the thesis contributions and directions for future work.

30

Appendix A provides detailed derivations for the different risk allocation strategies pro-

posed in Chapter 6, discussing how risk can be allocated amongst the different agents given

homogeneous and heterogeneous teams. And finally, Appendix B describes joint work with

Cornell University, where a distributed information-based planning framework was created

to address the issue of how to obtain better data to improve models and reduce uncertainty.

The proposed approach involves a novel planning and estimation architecture, where the

goal of maximizing information is a primary objective for each of the algorithms at ev-

ery step, producing a cohesive framework that strategically addresses the main mission

objectives.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

Chapter 2

Problem Statement

This chapter defines the generic problem formulation and a few key variants, formalizing

the language and variables used throughout this thesis. It also discusses common solution

approaches to multi-agent planning problems.

2.1 Problem Formulations

2.1.1 Multi-Agent Task Allocation

Given a team of Na agents and set of Nt tasks, the goal of the task allocation algorithm is to

find a matching of tasks to agents that maximizes some global reward (see Figure 2-1). The

global objective function for the mission is given by a sum over local objective functions for

each agent-task pair, which are in turn functions of the agent assignments and the set of

planning parameters. This task assignment problem can be written as the following integer

program,

max
x

Na∑
i=1

Nt∑
j=1

cij(x,θ) (2.1)

s.t. G(x,θ) ≤ b

x ∈ X

where the decision variable x is the global assignment comprised of all agent-task pairings

xij denoting whether agent i is assigned to task j (i.e. X , {0, 1}Na×Nt). In the above

formulation, θ is a set of planning parameters that affect the score calculation (e.g. fuel

33

Figure 2-1: Task allocation example for a networked team of UAVs performing target search
and track tasks at different locations. Blue arrows denote the path of each UAV, and the
red X’s represent task locations with associated score values.

costs, task rewards, agent and task positions, etc.), and cij is the reward agent i receives

for task j given the overall assignment x and parameters θ. The optimization problem is

subject to a set of constraints, G(x,θ) ≤ b, where G = [g1, . . . ,gNc]
T and b = [b1, . . . , bNc]

T

defining Nc possibly nonlinear constraints of the form gk(x,θ) ≤ bk, capturing vehicle

transition dynamics, resource limitations, etc. This generalized problem formulation can

accommodate several different design objectives and constraints commonly used in multi-

agent decision making problems. Some examples include search and surveillance missions

where cij could represent the value of acquired information and the constraints gk could

capture fuel limitations and no-fly zones, or human-robot missions where cij and gk could

capture interactions between operators and autonomous agents.

An important observation is that, in Eq. (2.1), the scoring and constraint functions are

explicitly dependent upon the decision variables in x, making this complex combinatorial

decision problem very difficult to solve in general (NP-hard) due to the inherent system

interdependencies [36]. Examples of this type of multi-agent multi-task allocation prob-

lem include the well-studied Traveling Salesman Problem (TSP) and the Dynamic Vehicle

Routing Problem (DVRP) [213], which are widely recognized as complex, computationally-

intensive optimization problems.

34

2.1.2 Multi-Agent Task Allocation With Time-Varying Score Functions

It is often of interest to consider dynamic task allocation problems where rewards can

change over time. For example, some tasks, such as scheduled landings at airports, can

have specific time-windows of validity, or other tasks, such as rescue operations, may be

time-critical favouring earlier task service times (see Figure 2-2 for examples of time-varying

score functions). In these types of time-dependent scenarios, the task allocation framework

can be extended to include selection of task service times as well as task allocations. This

can be formulated as the following mixed-integer program,

max
x,τ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) (2.2)

s.t. G(x, τ ,θ) ≤ b

x ∈ X

τ ∈ T

where τ is an additional set of real-positive decision variables τij indicating when agent

i will execute its assigned task j, and τij = ∅ if task j is not assigned to agent i (i.e.

T , {R+∪∅}Na×Nt). In this formulation the constraints are functions of the task execution

times as well, gk(x, τ ,θ) ≤ bk, allowing time-varying constraints to be represented in the

optimization (e.g. time-varying agent dynamics, temporal constraints and dependencies

between tasks, etc.). Examples of time-varying multi-agent multi-task allocation problems

in the literature include DVRP with time-windows (DVRPTW) [213], servicing impatient

customers with strict service time-windows [167], and developing MILP frameworks and

hybrid models for DVRPTW problems [71, 110].

The above formulations specified in Eqs. (2.1) and (2.2) are generic enough to accom-

modate explicit agent cooperation through coupled score functions. As an example, if a

task requires two (or more) agents for successful completion (e.g. remotely piloted UAV’s

require assigning the UAV asset and the human operator simultaneously), then the two

agents i and k must collaborate to perform task j, thus xij and xkj are both 1, and cij and

ckj depend upon both xij and xkj being assigned. Similarly, tasks may have dependencies

between them. For example, a rescue mission might require a UAV search task to locate

the victim and a subsequent ground convoy task to perform the rescue. In this framework,

35

Figure 2-2: Examples of time-varying score functions for different types of tasks.

the ground convoy rescue task m would only receive a positive score if the UAV search task

j is assigned as well, thus for any agent i, cim is dependent on both xim and x?j being as-

signed1. These types of coupled problems are very complex and difficult to solve, especially

in distributed environments, due to all the inherent interdependencies in the system. Fur-

thermore, because of this extreme generality, the cardinality of the state-space in Eq. (2.2)

is uncountably infinite and thus is a very difficult space to search, even approximately.

The following section describes some simplifying assumptions regarding task independence

and agent independence that are typically added to the above formulations to make solu-

tion approaches tractable. For further discussion on cooperative planning through coupled

constraints see Whitten et al. [220].

2.1.3 Simplifying Assumptions and Constraint Specifications

The first assumption employed in this thesis is that every task may be assigned to at

most one agent (i.e. two or more agents cannot be assigned to the same task). This is a

standard assumption often made in the task allocation literature [58], and is beneficial for

the optimization framework because it has the effect of dramatically reducing the cardinality

of X . This task service uniqueness constraint is formalized as

Na∑
i=1

xij ≤ 1, ∀j ∈ J (2.3)

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

where I , {1, . . . , Na} and J , {1, . . . , Nt} are the index sets that iterate over agents

and tasks respectively. The constraint in Eq. (2.3) ensures that the algorithm returns a

conflict-free matching of tasks to agents that maximizes the global reward2. Even though

this constraint explicitly prohibits multiple agents from performing the same task, it still

1In this notation ? is used to represent any agent. In other words, the score that agent i receives for
selecting task m is dependent on whether task j is assigned (possibly to another agent) or not.

2An assignment is said to be conflict-free if each task is assigned to no more than one agent.

36

allows for cooperation given some creative task construction. For example, some approaches

like posting multiple tasks at the same location and time (implying cooperation will take

place) are a brute force way to establish cooperation at a task location. Other approaches

encode this cooperation explicitly as more complicated coupling constraints (see Whitten

et al. [220]).

The second assumption employed is that the scores agents receive for their tasks are

independent of other agents’ assignments, locations, and plans3. Therefore, agent i’s score

is a function of xi , {xi1, . . . , xiNt}, a subset of the global assignment x denoting the task

assignments for agent i, and τ i , {τi1, . . . , τiNt}, a vector of corresponding task execution

times for agent i which is a subset of τ . Using this assumption, the global objective function

for the mission can be written as a sum over local objective functions for each agent, where

each local reward is determined as a function of the tasks assigned to that agent xi, the

times at which those tasks will be executed τ i, and the set of planning parameters θ. The

expression for the global objective function is given by

max
x,τ

Na∑
i=1

 Nt∑
j=1

cij(xi, τ i,θ)

A third simplifying assumption that would be useful to reduce the coupling between

decision variables involves task independence, where the score achieved for each task is

independent of the completion of all other tasks and locations of all other agents. Unfor-

tunately, in time-varying domains, tasks are not usually independent, since what an agent

does prior to arriving at a task potentially impacts the agent’s arrival time at that particular

task. It is useful in the optimization, however, to encode this temporal task dependence

into the task execution decision variables explicitly (i.e. τij is a function of the tasks agent

i does prior to executing task j). This enables the reward function to be decoupled so

that the only two things that affect the score of the task are the capabilities of the agent

servicing the task (including the availability of the agent due to commitments of servicing

other tasks) and what time the task is actually serviced. The local agent-task scores cij

thus become functions of τij and θ only. Using these simplifications the global objective

3This assumption is employed throughout most of the algorithms used in this thesis, however, Section
4.4 considers a more complex problem that involves coupling between agents’ assignments. In particular, in
Section 4.4, task scores are dependent on network connectivity, which is a function of the agents’ positions
over time. The CBBA with Relays algorithm proposed in that section further illustrates how complex it is
to explicitly include cooperation and coupling between agents in distributed planning environments.

37

function can be written as

max
x,τ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (2.4)

where the new variable pi is the path agent i takes given assignment vector xi. The path

pi , {pi1, . . . , pi|pi|} is an ordered sequence of tasks composed of elements pin ∈ J for

n = {1, . . . , |pi|}, where the kth element, pik ∈ J , is the index of the task that agent i

conducts at the kth point along the path.

Note that implicit in the task allocation optimization is a path-generation problem

which further exacerbates the computational complexity of the combinatorial optimization

(i.e. a full solution to the task allocation optimization not only specifies which tasks agents

will perform, but also in what order they will execute these). Typically path generation

involves finding the most efficient order in which to execute the tasks specified by xi. For

time-varying domains this involves solving

max
τ i,pi

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

which can be thought of as a two-step process,

max
pi

max
τ i

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

where the inner optimization is solved to obtain the optimal task service times τ ?i for each

given path pi, and the outer optimization iterates over all possible paths pi to obtain the

best path p?i . In most planning algorithms, conservative estimates of the maneuvering

capabilities of the agents are typically used to make predictions about routes and timing

[22, 179, 195]. Most algorithms in the literature employ path approximations, such as

straight-line paths or Dubin’s car paths, and the accuracy of the timing and cost estimates

used in the planner depend upon these approximation models, possibly leading to poor

performance if the actual optimized paths vary greatly from those assumed in the task

allocation process.

Finally, it is sometimes useful to impose a maximum path length for each agent, Li,

limiting the amount of tasks that can be assigned to that agent. The maximum path length

38

constraint can be written as

Nt∑
j=1

xij ≤ Li, ∀i ∈ I (2.5)

and can be used to simulate resource constraints (e.g. fuel, ordnance) instead of explicitly

accounting for these in the optimization, thus further simplifying the problem statement.

More importantly, this constraint can be imposed as an artificial constraint to help with

computation and communication efficiency in the planning algorithms, and is often paired

with an implicit receding time horizon to guarantee that an agent does not commit to tasks

too far in the future, exhausting its path length.

Similar simplifications regarding agent and task independence can be introduced in the

constraint formulations, G(x, τ ,θ) ≤ b, to reduce the complexity and coupling associated

with the multi-agent optimization. This work assumes that there are no constraints other

than those imposed by conflict-free assignments and maximum path lengths as described

above. Combining the assumptions and simplifications specified in Eqs. (2.3), (2.4) and

(2.5) gives the following problem formulation for multi-agent task allocation in time-varying

environments which will be used throughout this thesis:

max
x,τ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (2.6)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

An advantage of formulating the problem as in Eq. (2.6) is that distributing the computation

across multiple agents becomes significantly easier. Given a global assignment x, composed

of individual agent assignments xi, each agent can optimize its own path pi and select

its own task service times τ i. Thus the primary source of distributed coupling in the task

allocation problem is restricted to the choice of the assignment vector x and the conflict-free

constraint.

39

Even with the above simplifications, this optimization problem remains a complex com-

binatorial decision problem, with many nonlinearities and interdependencies, for which

optimal solution approaches are NP-hard [36]. Furthermore, the planning process depends

on the system parameters θ, which are usually assumed to be deterministic. However, in

realistic missions, the true values of the planning parameters are typically unknown and

only approximations are available (estimates, distributions, etc.). Given stochastic plan-

ning parameters, the planning process must account for the uncertainty in θ in Eq. (2.6),

further exacerbating computational intractability [31]. The next section provides details on

how to model this uncertainty within the planning framework.

2.1.4 Planning in Uncertain Domains

An important issue associated with planning for networked multi-agent teams is that plan-

ning algorithms rely on underlying system models, which are often subject to uncertainty.

This uncertainty can result from many sources including: inaccurate modeling due to simpli-

fications, assumptions, and/or parameter errors; fundamentally nondeterministic processes

(e.g. sensor readings, stochastic dynamics); and dynamic local information changes. Differ-

ences between planner models and actual system dynamics cause degradations in mission

performance. Furthermore, the impact of these discrepancies on the overall quality of the

plan is typically hard to quantify in advance due to nonlinear effects, coupling between

tasks and agents, and interdependencies between system constraints. For example, longer-

than-expected task service times not only affect the scores received for those tasks, but also

impact the arrival times of subsequent tasks in an agent’s path (see Figure 2-3). These

types of propagation effects can be catastrophic in certain environments (e.g. time-critical

missions), however, if uncertainty models of planning parameters are available they can be

leveraged to create robust plans that explicitly hedge against the inherent uncertainty to

improve mission performance.

For example, consider the problem definition introduced in Eq. (2.6) but where the

planning parameters θ are random variables. Assume that a model of the uncertainty

is available, where θ ∈ Θ and is distributed according to the joint probability density

function (PDF), f(θ). Stochastic planning algorithms can use the information provided in

f(θ) to create plans that explicitly account for the variability and coupling of the uncertain

parameters in the score functions cij . There are several metrics that can be used to account

40

(a) Proposed Schedule (b) Actual Schedule

Figure 2-3: Illustration of task coupling given uncertain task durations. Figure (a) shows
the agent’s proposed schedule. Figure (b) shows the agent’s actual achieved task durations,
where the longer-than-expected duration of the first task impacted the arrival times for the
second and third tasks as well. In time-critical missions, this would result in lower-than-
expected task scores for all three impacted tasks.

for uncertainty in the planning formulation. Perhaps the most common approach is to

maximize the expected mission performance [28], where the objective function from Eq. (2.6)

becomes,

max
x,τ

Eθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (2.7)

Note that optimizing Eq. (2.7) is not the same as deterministically planning using the

mean values of uncertain planning parameters θ̄ = Eθ{θ}, which can often lead to poor

planning performance since the problem formulation fails to capture the nontrivial coupling

of uncertainty in scores, dynamics and constraints. This is especially problematic when

scores are coupled, and can lead to biased predictions that drastically misrepresent the

actual expected performance.

While optimizing Eq. (2.7) provides a plan that maximizes the expected performance

of the system, an actual single run execution of this best expected plan is still subject to

the uncertainty in the environment, and may result in a relatively poor plan (worse than

expected) with some non-zero probability. If the current mission tolerance to failure is very

low, a more conservative planning objective involves maximizing the worst-case scenario

(sometimes referred to as robust in the literature [33]),

max
x,τ

min
θ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (2.8)

41

Optimizing Eq. (2.8) guarantees that the plan execution will result in a score no worse than

that predicted by the algorithm, however, in general, execution of the robust plan typically

leads to scores higher than the worst case, and for missions of general interest, maximizing

this worst-case lower bound is usually far too conservative.

Several robust optimization and stochastic optimization methods, that find the best so-

lution within some predefined risk threshold, have been developed to mitigate this issue of

conservatism [33, 157]. One such approach involves optimizing a risk-adjusted expected per-

formance, where a risk function R(cij) biases the original cost function cij towards more con-

servative solutions to account for the acceptable level of risk. Another approach is to bound

the domain of the uncertainty set θ to be within certain ranges, θ ∈ [Θmin,Θmax] ⊂ Θ

(e.g. ellipsoids for specified confidence intervals [24]), or to take on a set of discrete repre-

sentative values θ ∈ [θ1, . . . ,θk] ⊂ Θ (e.g. by constructing representative uncertainty sets

[32, 56]), thus limiting the support of the uncertain parameters. Classical robust convex op-

timization techniques can then be used to solve the resulting approximate problem [25, 31].

Although these approaches provide methods to control the conservatism or risk associated

with the planning solution, there are a few issues which makes their practical implementa-

tion difficult. Firstly, it is not usually obvious how to design the risk functions R(cij) or

the bounded uncertainty sets for θ, and the selection of these is typically problem specific,

time consuming and ad-hoc. A more serious issue, however, is that when a global risk

threshold is available, the metric of interest is the cumulative risk of the total solution, not

the individual parameter or task risks, and it is difficult to quantify how these individual

parameter bounds will affect the risk of the global solution. Nonlinearities in the cost func-

tions, complex variable coupling and interdependencies, and discrete optimization effects,

often affect the solution in unpredictable ways, and it is therefore hard to ensure that the

total mission outcome is within the desired risk threshold by simply bounding the support

of the random variables individually.

An alternative approach that guarantees that the global mission performance will be

within a certain risk threshold is the chance-constrained formulation [45, 66, 157],

max
x,τ

y (2.9)

s.t. Pθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > y

 ≥ 1− ε

42

The goal of Eq. (2.9) is to maximize the worst-case score within the allowable risk threshold

specified by ε (can be interpreted as guaranteeing that solution will be at least as good as

y with probability greater than or equal to 1 − ε). When ε = 0, the score is guaranteed

to be at least y with probability one (absolute worst-case), and the chance-constrained

formulation reduces to the robust formulation of Eq. (2.8). When ε = 0.5, the chance-

constrained formulation is equivalent to optimizing the median performance of the system

(similar to optimizing the mean for symmetric distributions). Thus setting the risk value

ε appropriately provides control over the conservatism of the solution within a consistent

framework. The main drawback of the chance-constrained formulation is that it makes

the optimization difficult to solve (analytically and computationally), especially given the

extensive coupling between agents and tasks (double sum over distributions). Previous

work has mainly considered linear or quadratic optimization with continuous variables [45,

66, 157], where, under special circumstances, optimal solutions and bounds can be found

analytically. However, the task allocation formulation presented in Eq. (2.6) is a mixed-

integer program, and these techniques cannot be easily extended to discrete optimization,

especially given nonlinear and heterogeneous score functions with coupled distributions.

Furthermore, these solution strategies are centralized and cannot be trivially extended to

distributed environments. This thesis addresses these issues by proposing robust distributed

planning strategies that can incorporate the stochastic metrics described in this section

to improve the performance of multi-agent networked teams operating in uncertain and

dynamic environments.

2.2 Solution Algorithms

Task allocation for autonomous multi-agent systems has been widely considered through-

out the literature, and various researcher have addressed many aspects of the problem [19,

22, 52, 53, 112, 127, 148, 166, 184, 191, 198, 201], including traditional methods for solv-

ing Traveling Salesman Problems (TSPs) and Vehicle Routing Problems (VRPs) from the

operations research (OR) and artificial intelligence (AI) communities [60, 213]. Exact op-

timization methods such as Branch and Bound, Branch and Cut, Constraint Satisfaction

Problems (CSPs), and Dynamic Programming (DP) have been used to solve the problem

to optimality, using standard software solvers such as CPLEX [102]. While guaranteed

43

to yield optimal results, these methods are computationally intensive, and the complexity

associated with most combinatorial optimization problems typically make optimal solution

techniques intractable. As a result, numerous approximation methods have been proposed

to address these complexity issues.

An important observation is that, not only are optimal solution techniques computa-

tionally intractable for most problems of interest, they are also only optimal with respect to

the objective function and underlying system models, which are often necessarily approx-

imate, further motivating the use of approximation methods. Classical heuristic methods,

such as constructive and two phase methods, have been used to solve large VRP problems

relatively quickly [126], but these methods often generate solutions that are far from op-

timal. Different heuristic methods such as Tabu-Search [92], Cross-Entropy [64, 140, 215],

Particle Swarm Optimization [62, 192], Genetic Algorithms [57, 72, 203] and Evolutionary

Algorithms [158, 175] have also been proposed in recent years to solve these complex opti-

mization problems. Although these approximations help to reduce the computation time as

compared to exact methods, most of these algorithms are still computationally intractable

for real-time replanning environments with complex constraints.

Several strategies have been considered in the literature to further reduce the com-

putation time required to solve these problems. One approach is to reduce the problem

size by limiting the duration (in time or plan length) using a receding horizon formulation

[9, 52, 113]. A key challenge here, however, is to develop an effective and computation-

ally efficient approximation of the “cost-to-go” from the terminal point of the plan, to

avoid having an overly short-sighted planner. Other authors have identified several effi-

cient mixed-integer linear programming formulations that dramatically reduce the number

of variables and constraints in the problem, significantly alleviating the computational ef-

fort required. Although problem specific and applicable only in certain environments, these

formulations cover a variety of UAV task assignment problems of practical interest [5, 6].

Other approaches have considered fast constant-factor approximate algorithms for multi-

UAV assignment problems, which involve making mild assumptions to approximate the

vehicle dynamics (e.g. constraints on turning radius, etc.) [179]. Finally, recent work has

considered employing learning techniques to guide the MILP solution process [16]. The ap-

proach involves using machine learning to efficiently estimate the objective function values

of the LP-relaxations to within an error bound, and to use that information to perform fast

44

inference at run time for new but similar relaxation problems that occur when the system

dynamics and/or the environment changes slightly.

Although not the primary focus of this thesis, it is worth mentioning that planning for

autonomous multi-agent teams has been considered within frameworks other than mixed-

integer programming. In particular, the Markov Decision Process (MDP) framework has

been widely studied in the literature for both deterministic and stochastic planning prob-

lems. The following is a very brief description of MDPs, however, it is interesting to note that

the primary issues with mixed-integer multi-agent planning (e.g. computational tractability

and scalability, agent modeling and representations, real-time dynamic planning, etc.) are

major considerations within this framework as well. Markov Decision Processes provide

a formal architecture for representing stochastic sequential decision making problems for

multi-agent teams [49, 209]. Cooperative planners based on MDPs have shown tremendous

versatility in modeling multi-agent systems [41, 96, 206, 217], and the associated solution

algorithms, such as dynamic programming, have enabled near-optimal solutions in many

application domains. As with mixed-integer programming however, a well-known issue

is that MDPs and related dynamic programming techniques suffer from bad scalability

[23], and quickly become intractable as the number of participating agents increases. As

a result, many approximation algorithms have been developed to mitigate this computa-

tional challenge, including linear function approximation, Bellman residual minimization,

least-squares temporal difference, and other approximate dynamic programming strate-

gies [28, 48, 49, 75, 89, 124, 138, 196, 208, 210]. While many of these approaches have

been successfully used to solve large multi-agent problems which would otherwise remain

intractable [42, 206], most have fundamental challenges similar to mixed-integer program-

ming methods, such as difficulty in selecting appropriate approximation architectures or

absence of proper guidance in tuning algorithm parameters. For further details on MDPs

and multi-agent MDPs the reader is referred to [42, 88, 171, 182].

Most of the approaches discussed in this section are centralized solution strategies,

meaning that all of the planning relevant computation occurs in a single location. The

following chapter discusses how to break this centralized assumption and highlights different

strategies, issues, and challenges associated with distributing the optimization over multiple

agents.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Chapter 3

Distributed Planning

This chapter discusses various architectural decisions that must be addressed when im-

plementing online planning algorithms for autonomous multi-agent teams. In particular,

insights are provided on when centralized, distributed, and decentralized architectures can

be used given the communication infrastructure and available computational resources of

the multi-agent system. Different considerations and challenges associated with distributed

planning are discussed, and algorithms that can be utilized within distributed planning

frameworks are identified.

3.1 Distributed Planning Components

3.1.1 Planning Architectures

When planning for autonomous multi-agent networked teams, there are several planning

architectures that can be considered depending on the mission scenario, available resources,

operating environment, and communication infrastructure [105, 171, 201, 204]. This section

formalizes definitions for three planning architectures that can be employed given different

computational resources and communication environments: centralized, distributed, and

decentralized. The differences between these architectures are highlighted with regards

to how agents can handle consensus and cooperation in the assignment space, whether

the underlying algorithms require synchronization or not, and how these choices affect the

performance of algorithms within these respective environments1.

1For a more detailed description of centralized, distributed, and decentralized architectures, and the
different issues associated with underlying planning algorithms within these environments, the reader is
referred to [105, 171].

47

Centralized planning architectures refer to multi-agent algorithms that can run on a sin-

gle machine, and where information exchange between different modules of the algorithm

occurs through shared memory. Fast centralized algorithms are often implemented using

parallelized computation structures that can take advantage of the large number of cores

available in modern computer systems. Since all modules in the algorithm have instant

access to the current global shared memory state, communication cost between modules is

effectively negligible (communication cost includes both the additional resources required

to facilitate communication and the associated delays introduced by explicit message pass-

ing). As a result, centralized planning architectures are often very good choices, even when

planning for multi-agent teams. Figure 3-1(a) illustrates an example of planning for a net-

worked team of UAVs using a centralized planning architecture. In some environments,

however, enabling agents with more autonomy may be more suitable. For example, if

planning parameters are changing rapidly (e.g. agent state, task parameters, environment

variables), and large amounts of data have to be transmitted to the centralized solver’s

location, a centralized architecture may not be ideal. Remote processing of data to extract

useful information prior to communicating with the base station may be more appropriate

(referred to as distributed processing [204]), or the agents could converge locally on new

assignments given the updated information without ever communicating with a centralized

location (referred to as distributed problem solving [204]). Furthermore, the solution speed

and quality of centralized solvers is limited by the accuracy of the communication and the

rate at which information is received. Given slow, unreliable, or expensive communication

channels, passing large amounts of (possibly irrelevant) data through the network may not

be justifiable. If most of the information needed by each agent to create its cooperative

assignments is obtained locally, much faster response times might be obtained by keeping

all relevant planning computations local as well, and sharing only the results of these local

computations with other agents.

Distributed planning architectures consist of algorithms that run as separate modules,

where each of these distributed algorithmic pieces uses its own memory partition to store

data associated with the planning process, and where relevant information is shared be-

tween the modules through reliable communication channels. This communication aspect

introduces an additional layer of complexity over centralized algorithms, since there are

communication costs and delays typically associated with sharing information. Distributed

48

algorithms typically rely on a strong communication infrastructure, meaning that each dis-

tributed node has knowledge of the existence of all other nodes it is able to communicate

with, and assumes that messages between nodes will be sent and received reliably and with

low latency. The main trade-off to consider when moving from a centralized to a distributed

architecture is that the additional time and resources associated with message communi-

cation must be offset by the additional computation available by using multiple machines.

For example, if the computational load of an optimization problem is too immense for

a single (possibly multi-core) machine, distributed algorithms could be used to split the

problem into modules over multiple machines communicating through reliable channels.

For the multi-agent applications considered in this thesis, distributed algorithms are better

suited than centralized algorithms, since they perform better when information is being

acquired remotely (see Figure 3-1(b)). For example, in cooperative planning environments,

this could involve an agent observing a local event, changing its own plan based on this

newly observed information, and then reliably communicating the results to the rest of the

distributed modules, as opposed to communicating the raw data associated with the local

event. This local processing tends to dramatically reduce the overall communication load

on the system while using a similar amount of computation as a centralized architecture.

As mentioned before, distributed algorithms rely on stable communication channels and

information sharing. If communication links are not sufficiently reliable, performance may

degrade significantly, motivating the use of decentralized algorithms.

A decentralized planning architecture consists of independent agents planning autonomously

for themselves in environments with unreliable and sporadic communication infrastructures,

where there are no rigid constraints and guarantees placed on message delays, network con-

nectivity, program execution rates, or message arrival reliability. In these types of envi-

ronments, algorithms cannot rely on information being shared appropriately between the

modules, thereby limiting the amount of coordination and cooperation achievable. As a

result, these algorithms may be conservative and have lower performance than distributed

architectures when communication conditions are actually favorable, but they are also more

robust to drastic changes in the communication environment. Fully decentralized algorithms

enable the sparsely connected agents with a high degree of autonomy, since they do not place

rigid rules on how agents must interact. In addition, in weak communication environments,

decentralized algorithms can allow large teams to interact efficiently, without bogging down

49

(a) Centralized Planning (b) Distributed and Decentralized Planning

Figure 3-1: Illustration of centralized and distributed/decentralized planning for a net-
worked team of UAVs performing target search and track tasks at different locations. In
centralized planning, agents communicate with a ground station to receive plans. In dis-
tributed/decentralized architectures, agents can plan individually and perform consensus
through local communication.

the entire network with restrictive message passing requirements.

Given the three planning architectures described above, choices can be made about how

to coordinate the parallelized computation and communication amongst the different mod-

ules. In particular, consideration needs to be given about whether these interactions will

happen synchronously or asynchronously and how that impacts the convergence and perfor-

mance of the algorithms. Highly structured synchronous algorithms enforce constraints on

when computation and communication can take place, whereas at the other extreme asyn-

chronous algorithms provide extreme flexibility for each module to execute these at their

own pace. Synchronization is typically used by most iterative algorithms, and involves re-

stricting computations to occur only after certain event driven triggers, to ensure that the

algorithm has a predictable state during program execution. During typical synchronous

operation, the individual modules perform parallel computations, share state variables, and

then wait until a certain trigger (e.g. heartbeat, scheduled time) before computing the next

50

iteration of the algorithm. The main benefit of synchronous planning is that guarantees

can be made about the state of each agent, as well as allowing the algorithms to make

assumptions about the information states of the other modules. This information can be

leveraged to increase planning performance and rate of convergence. The drawback, how-

ever, is that in some environments it may take significant effort to enforce synchronous

behavior (referred to as the synchronization penalty [29]). In distributed and decentralized

algorithms, the computation triggers are often not local and must therefore be inferred

through inter-module communication. In centralized approaches, the mechanisms required

to enforce synchronization are fairly lightweight, but when information is being shared

across a network, and modules must spend time waiting for messages to arrive from phys-

ically separated machines, this synchronization penalty can become severe. On the other

hand, asynchronous computation can be used when the algorithmic modules are executed

relatively independently of one another, such as in decentralized algorithms, where informa-

tion is incorporated into the planning process whenever it is available instead of on a rigid

schedule. There is fundamental trade-off, therefore, between enforcing synchronicity which

allows the algorithm to make assumptions about algorithmic states, versus adopting a more

flexible asynchronous architecture while taking a performance hit for losing information

assumptions and state guarantees. Typically, in centralized and distributed environments,

the synchronization penalty is weak enough to encourage the use of synchronous compu-

tation, while in decentralized approaches the synchronization penalty is much higher and

asynchronous computation is often preferable.

3.1.2 Coordination Techniques

As mentioned in Chapter 2, in most general cases of interest, the score functions and con-

straints in the optimization are dependent upon the team decision variables. This produces

nontrivial coupling between the agents when solving the optimization within a distributed

or decentralized architecture. Since each agent’s decisions depend upon the assignments and

plans of the other agents in the team, the agents need to coordinate and reach agreement

on consistent values of the decision variables to maximize team performance, or at least

to ensure constraint satisfaction. In this section, three strategies are discussed to achieve

this consistency: (1) a priori task space partitioning, where the task space is divided into

disjoint sets and allocated amongst the agents prior to planning; (2) implicit coordination,

51

where agents perform situational awareness consensus and then plan independently; and

(3) coordinated planning, where agents directly incorporate constraint feasibility into the

planning process through the use of communication and consensus algorithms.

A priori task space partitioning effectively divides the task space into disjoint sets,

and only allows each agent to select assignments from a subset of the overall task set.

Given a higher-level task allocation or a human supervisor, it may be reasonable to use

this method for small teams in relatively static environments, especially when roles and

responsibilities of each agent are well defined in advance (e.g. specialized agents specifically

designed for certain tasks). However, in environments with large numbers of relatively

homogeneous agents, or in dynamic environments, the task partitioning problem can become

very complex. Although this strategy enables rapid plan computation for each agent and

ensures conflict-free team assignments, by creating this partition outside of the optimization

the algorithm is placing artificial constraints on which allocations are available, which may

result in arbitrarily poor performance.

The second strategy, implicit coordination, requires that agents perform consensus on

situational awareness (SA) prior to running the planning algorithm. Situational awareness

consensus refers to the process by which all agents agree on all variables relevant to the

initial conditions of the task allocation problem (e.g. environment variables, agent states,

task parameters, etc.). After this consensus process, the agents independently run central-

ized planners to obtain the global team assignment, and then select their portion of the

plan to execute. The basic premise of this method is that, by running identical planners

with consistent planning parameters, each agent will generate identical final allocations

that satisfy constraint feasibility and maximize team performance. This method has been

widely explored in the literature [9, 98, 151, 159, 162, 184–186, 211, 222], and its popularity

stems from the fact that it is a relatively straightforward way to distribute a task allocation

algorithm. One main benefit of using implicit coordination over task space partitioning is

that, by not limiting the assignment space a priori, the algorithm can account for local

information changes often encountered in dynamic environments (e.g. dynamic tasks, addi-

tional state information, updated model parameters, etc.). In the task space partitioning

method, any changes in planning state usually require a full repartitioning of the task space,

whereas implicit coordination can account for information changes through the situational

awareness consensus protocol during replans, thus producing more relevant and higher per-

52

forming assignments. Furthermore, by solving the full centralized planner on each agent,

implicit coordination can capture and exploit coupling and cooperation between agents well,

and can therefore lead to good performance and cooperative behaviors in highly coupled

environments. A drawback, however, is that the situational awareness consensus process

which must be executed prior to the planning phase requires coming to consensus on all

planning parameters, which may be time consuming and require large amounts of communi-

cation bandwidth [9]. This is especially cumbersome in robust planning environments where

consensus must be performed not just on parameter values but on uncertainty models (e.g.

distributions) as well. Another potential issue with implicit coordination algorithms is that

planning parameters must be known precisely in order to guarantee that agents produce

identical assignments, thus requiring that the consensus process be conducted until errors

in situational awareness become very small. In fact, since the planning process does not

explicitly guarantee constraint satisfaction, it is often the case that if the final estimates of

the planning parameters do not converge to within arbitrarily tight bounds, the resulting

team assignment may not be conflict free.

Finally, the third coordinated planning strategy involves performing task consensus by

directly incorporating constraint feasibility into the planning process through the use of

communication and consensus algorithms, thus guaranteeing conflict-free solutions. Since

the communication effort is spent on achieving consistent values for the agent assignments

rather than the situational awareness planning parameters, the bandwidth requirements are

often lower, especially in scenarios with few inter-agent and inter-task constraints (the more

coupled the task environment, the more communication effort it takes to explicitly ensure

constraint feasibility). Furthermore, if the communication environment is not necessarily

reliable such that it would be difficult to reach complete team-wide consistent situational

awareness, these types of coordinated planning strategies are often preferred, to ensure

that the team assignment remains conflict free even with varying situational awareness

amongst the agents. For example, in many decentralized applications, the primary goal

is achieving a conflict-free distribution of tasks that performs well, rather than requiring

intense cooperation between agents to achieve the best possible assignment. Given that in

these decentralized environments the communication links are often unreliable, especially

across larger distances, broadcasting only information directly relevant to the assignment

constraints may be preferable (e.g. the CBBA algorithm [58] described later in Section 4.1).

53

There is a trade-off between implicit coordination and assignment consensus, where the

choice is motivated by the specific planning problem and the communication environment,

and whether it is easier to converge on a consistent assignment vector or to converge on all

other significant state variables (within arbitrarily tight bounds).

For the scenarios considered in this thesis, given the size and static nature of the as-

signment vector x, the independence and simplification assumptions described in Chapter

2, and the relatively light constraints imposed on the system, it is typically easier to em-

ploy the third strategy to explicitly ensure conflict-free assignments through task consensus,

rather than performing situational awareness consensus on all the dynamic and uncertain

environment parameters. The CBBA algorithm and its variants discussed later in Chapter

4 use this third strategy to perform distributed planning. It is worth noting that the three

coordination strategies discussed above are not mutually exclusive, and cooperative plan-

ning algorithms may use combinations of all three to improve system performance given the

particular application and communication environment2. Ongoing research is addressing

how to combine these three strategies to optimize performance and the interested reader

is referred to the work of Johnson et al.3 The next section provides details on consensus

algorithms employed by distributed multi-agent teams to perform coordination between

agents.

3.1.3 Consensus

A key component of distributed cooperative decision making involves performing consensus

amongst agents, which is defined as reaching an agreement on quantities of interest, such

as plans, situational awareness, or other desired parameters. Most distributed planning ap-

proaches employ consensus algorithms, which are sets of rules, or protocols, that determine

how information is exchanged between agents to ensure that the team will convergence on

the parameters of interest.

As a simple illustrative example, the following linear consensus protocol can be used to

2For example, Section 4.3 proposes an extension to CBBA to handle communication-limited environ-
ments, which involves combining (local) task space partitioning and task consensus to achieve conflict-free
assignments in the presence of network disconnects.

3http://acl.mit.edu/members/johnson.htm

54

converge on a continuous parameter z,

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), ∀i (3.1)

xi(0) = zi, zi ∈ R

where each agent i computes errors with its set of neighbors Ni and uses these to correct

its parameter estimate [161]. Collectively the team dynamics for n agents can be written

as an nth order linear system,

ẋ(t) = −Lx(t) (3.2)

where L = D −A is known as the graph Laplacian, which is computed using an adjacency

matrix A describing connectivity between agents (the elements aij are 1 if j is a neighbor

of i and 0 otherwise), and a degree matrix D = diag(d1, . . . , dn), with elements di =
n∑
j=1

aij

(number of connections for agent i). The maximum degree, denoted as ∆ = maxi di, is

useful in bounding the eigenvalues of L, which for an undirected connected network can be

ordered sequentially as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2∆. (3.3)

The eigenvalues of L can be used to predict convergence rates and stability properties of

these linear consensus algorithms (in particular, λ2 is related to speed of convergence and λn

provides stability bounds in time-delayed networks [161]). As shown above, the nontrivial

eigenvalues are all positive (all except λ1), and since Eq. (3.2) describes a linear system,

the consensus algorithm is globally asymptotically stable and converges exponentially to an

equilibrium with rate given by λ2 [161]. Furthermore, for the system described in Eq. (3.1),

the algorithm is guaranteed to achieve a unique equilibrium, z̄ =
1

n

n∑
i=1

zi, where z̄ is the

average of all the agents’ initial values.

Recent research has explored the effects of more realistic mission environments on these

types of linear consensus algorithms for multi-agent teams. Some examples include analyz-

ing the impact of time-delayed messages and dynamic network topologies on convergence

and stability properties of the consensus algorithms. The work in [161] shows that global

exponential convergence guarantees can be extended to dynamic networks as long as the

network remains connected at each time t. The agents are guaranteed to reach consensus

55

with convergence rate greater than or equal to λ?2 = min
t
λ2(G(t)), where λ2(G(t)) is the

second eigenvalue of the Laplacian for the graph at time t, G(t). Similar guarantees can

be made for time-delayed networks, where messages are received after a delay τ instead of

instantaneously. The system dynamics can be modified as follows,

ẋ(t) = −Lx(t− τ) (3.4)

and global exponential convergence guarantees are retained for delays within the range

τ < π/2λn. Note that convergence rates and robustness to time-delays can be improved by

actively controlling the network structure (modifying G and L), which is an active area of

research [46, 103, 161, 184, 186].

Consensus algorithms have been applied to a wide variety of distributed decision making

applications, ranging from flocking to rendezvous [20, 76, 103, 135, 161, 183, 184]. Most

of these consensus algorithms are computationally inexpensive and guarantee convergence

of team situational awareness, even over large, complex, and dynamic network topolo-

gies [98, 211, 222]. A common issue with classical consensus algorithms is that agents’

observations are often treated with equal weight, whereas in reality some agents may have

more precise information than others. Extending classical consensus algorithms to account

for this uncertainty in local information, Kalman consensus approaches have been devel-

oped that approximate the inherent uncertainty in each agent’s observations using Gaussian

distributions [8, 185]. These algorithms produce consensus results that are more heavily

influenced by agents with smaller covariance (therefore higher certainty) in their estimates.

A limitation of Kalman consensus approaches is that Gaussian approximations may not be

well-suited to model systems with arbitrary noise characteristics, and applying Kalman filter

based consensus methods to the mean and covariance of other distributions can sometimes

produce biased steady-state estimation results [82].

Other Bayesian decentralized data and sensor fusion methods have been explored to

determine the best combined Bayesian parameter estimates given a set of observations [95,

139, 218]. A major challenge, however, is that these decentralized data fusion approaches

require channel filters to handle common or repeated information in messages between

neighboring nodes. These channel filters are difficult to design for arbitrary network struc-

tures, and generic channel filter algorithms have not been developed other than for simple

56

network structures (e.g. fully connected and tree networks), thus limiting the applicability

of decentralized data fusion methods [95]. Recent work has addressed this issue by show-

ing that, through a combination of traditional consensus-based communication protocols

and decentralized data fusion information updates, scalable representative information fu-

sion results can be achieved, without requiring complex channel filters or specific network

topologies [82, 83, 160, 223]. In particular, the work in [160] utilized dynamic-average con-

sensus filters to achieve an approximate distributed Kalman filter, while [223] implemented

a linear consensus protocol on the parameters of the information form of the Kalman filter,

permitting agents to execute a Bayesian fusion of normally-distributed random variables.

However, as previously noted, these Kalman based methods are derived specifically for

normally-distributed uncertainties [160, 223], and thus can produce biased results if the lo-

cal distributions are non-Gaussian. Recent work has extended these combined filtering and

data fusion approaches to allow networked agents to agree on the Bayesian fusion of their

local uncertain estimates under a range of non-Gaussian distributions [83]. In particular,

the approach exploits conjugacy of probability distributions [87], and can handle several

different types of conjugate distributions including members of the exponential family (e.g.

Dirichlet, gamma, and normal distributions) [82, 83]. The approach in [83] is termed hyper-

parameter consensus, and has demonstrated flexibility in handling several realistic scenarios,

including ongoing measurements and a broad range of network topologies, without the need

for complex channel filters.

3.1.4 Distributed Performance Metrics

This section discusses several metrics that are useful in characterizing the performance of

distributed algorithms. These metrics serve as a benchmark to assess the usefulness of

different algorithms given the relative importance of each metric for the particular scenario

at hand.

• Score performance measures the overall score obtained by the team given the objec-

tive function defined. It serves to characterize the importance of finding a solution

that optimizes the global objective function, as opposed to optimizing other metrics

such as convergence time. The relative importance of score performance is scenario

dependent. For example, for scenarios with significant coupling between agents and

57

tasks, finding a good plan becomes difficult and typical distributed algorithm strate-

gies might perform poorly. In these problems it may be desirable for an algorithm to

have strong performance guarantees with respect to the optimal. On the other hand,

in other scenarios it may be relatively easy to find near-optimal allocations, and other

considerations might become the limiting factors.

• Run time specifically refers to how much computational time the entire algorithm

takes to complete. This is typically considered a global measure for the entire team,

as opposed to local convergence time as discussed below. Acceptable measures of run

time can vary significantly depending upon the application at hand. For example,

for offline solutions, acceptable run times are usually considered in terms of hours

(or possibly days). On the other hand, for real-time dynamic systems such as those

considered in this thesis, acceptable run times are usually on the order of seconds.

• Convergence time is a more flexible metric that can be used to describe the amount

of time required to obtain a solution at the agent level or at the team level. In

terms of global algorithmic convergence, run time and convergence time are equiva-

lent. When referring to local agent convergence or partial system (component) con-

vergence, convergence time measure the time required for the particular algorithmic

piece to complete its computations. As intuition suggests, smaller convergence times

are preferable, since fast convergence times allow for more rapid adaptation to dy-

namic changes in the environment. For highly dynamic and uncertain environments,

replanning often is a useful tool, and thus convergence time is typically considered

one of the most important metrics.

• Reaction time, which is closely related to convergence time, looks specifically at the

turn around time between acquiring information and incorporating it into the plan

cycle. In some less flexible algorithms, information cannot be incorporated into the

planner mid-convergence, whereas other algorithms (such as decentralized ones) allow

for the inclusion of new information at any time. During algorithm design, trade-offs

between convergence time and score performance must be addressed to enable faster

reaction times to local situational awareness changes.

• Convergence detection is typically a very difficult thing to quantify in distributed

58

and decentralized environments. During post processing given global information, it

is usually trivial to detect when convergence occurred. However, at the local agent

level, it may be difficult to determine if the full system has reached convergence (this

is especially true in decentralized environments). As a result, different algorithms

have employed different definitions of “convergence”, including full global convergence,

local module convergence, and partial system convergence (e.g. decisions about the

next immediate tasks are consistent, but future decisions are still unsure) [105, 171].

The type of convergence criteria employed will impact what type of information is

communicated as well as how much total communication is actually required by the

system.

This section presented various architectural and performance considerations that need

to be addressed when planning for autonomous multi-agent systems. For a more thorough

review of distributed planning considerations the reader is referred to [105, 171]. The next

section provides more details on the specific distributed problem formulation considered

in this thesis, discusses some of the assumptions employed and outlines common solution

approaches considered in the literature.

3.2 Distributed Planning Algorithms

3.2.1 Distributed Problem Formulation

Recall from Chapter 2 that the multi-agent task allocation formulation, with all the as-

sumptions discussed in Section 2.1.3, can be written as

max
x

Na∑
i=1

 Nt∑
j=1

cij(pi(xi),θ) xij

 (3.5)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

59

To solve this optimization in a distributed fashion, each agent can optimize its own plan,

subject to the joint team constraints and coupling in score functions with other agents.

For this particular problem statement, this implies that each agent i ∈ I must solve the

following optimization,

max
xi

Nt∑
j=1

cij(pi(xi),θ) xij (3.6)

s.t.

Nt∑
j=1

xij ≤ Li,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

where each agent i selects its best assignment vector xi. The main issue with this distributed

formulation is the coupling between agents’ decision vectors. In Eq. (3.6), this coupling

comes in through the second set of constraints,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

which specify whether an assignment is conflict free (i.e. at most one agent can be assigned to

each task). Therefore, agent i’s decision for task j, xij , depends upon other agents’ decisions

for task j. This coupling between agents becomes an issue in distributed environments and

solution algorithms must carefully design consensus protocols to address the coupling. For

example, if no other agent is assigned to task j (i.e. xkj = 0, ∀k 6= i), then agent i is free to

make its own independent decision for xij . If, however, one or more other agents are assigned

to task j, then agent i must decide whether this task is infeasible for him, or whether he

should “overrule” the other agents’ decisions and add it anyway, informing the others that

the task is infeasible for them instead. The CBBA algorithm [58], discussed later in Section

4.1, addresses this issue through an auction algorithm, where agents place bids on tasks,

and the highest bidders get to keep their assignments. The consensus protocol of CBBA

is designed specifically to address the joint constraint in Eq. (3.6), ensuring convergence to

conflict-free assignments (given certain criteria on score functions, details provided later).

The formulation presented in Eq. (3.6) does not include very severe coupling between agents,

60

however for more general scenarios, the more coupling there is (e.g. more joint constraints,

coupled score functions) the harder it becomes to design adequate consensus protocols.

The time-varying version of Eq. (3.6) considered in this thesis, which corresponds to the

full time-varying optimization presented earlier in Eq. (2.6), Chapter 2, can be written as

follows,

max
xi,τ i

Nt∑
j=1

cij(τij(pi(xi)),θ) xij (3.7)

s.t.

Nt∑
j=1

xij ≤ Li,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

τij ∈ {R+ ∪ ∅}, ∀j ∈ J

where each agent must optimize the additional decision variables τ i corresponding to the

execution times of the assignments selected in xi. In this distributed time-varying problem

statement, the only coupling between agents is again through the joint constraint speci-

fying conflict-free assignments, and therefore the same deconfliction rules can be used in

the consensus protocol. Of interest in this thesis are the robust variants of the distributed

optimization presented in Eq. (3.7). As described in Section 2.1.4, robust metrics that can

be used include the expected value metric, optimizing worst-case performance, and chance-

constrained optimization which optimizes worst-case performance within an allowable risk

threshold. Chapters 5 and 6 present the robust variants of this distributed problem for-

mulation and provide details on how robust distributed optimization can be executed in

uncertain and dynamic real-time environments. The next section describes how to design

distributed algorithms and highlights different distributed approaches that have been con-

sidered in the literature.

3.2.2 Distributed Solution Strategies

As mentioned before, the main issue associated with distributed planning is deciding how to

handle the coupling between individual agent problem statements. Therefore a key technical

challenge involves designing appropriate consensus protocols to ensure constraint feasibility

61

and score maximization. The consensus protocol must specify what information agents must

communicate with each other and define rules for agents to process received information

and modify their plans accordingly. The specific design of the consensus protocol employed

by a distributed algorithm has a huge impact on the convergence rate and the performance

of the algorithm. Coupling can enter the optimization through agent score functions and

through joint team constraints. Furthermore, agents’ individual optimizations are based on

each agent’s local knowledge of the world and planning parameter values. Both coupling

and varying situational awareness affect the performance of the global optimization since

they directly impact agent score functions. The rules specified in the consensus protocol

affect how agents share information and what decisions they make given new information.

For example, in auction algorithms, when agents are outbid for assignments they typically

drop those tasks and replan to select new ones. As a result, the deconfliction rules specified

in the consensus protocol affect the rate of convergence of the algorithm. Furthermore,

when designing consensus protocols consideration must be given to the communication

environment and message passing requirements between agents. Given all these effects, it

is often important to consider what performance and convergence guarantees can be made

for different distributed algorithms.

Several approaches have been explored in the literature to solve distributed mixed-

integer programming problems [51, 63, 148, 202]. Many of these methods often assume

perfect communication links with infinite bandwidth in order to ensure that agents have the

same situational awareness before planning. In the presence of inconsistencies in situational

awareness, these distributed tasking algorithms are augmented with consensus algorithms

to converge on a consistent state before performing the task allocation [9, 98, 151, 159,

162, 185, 186, 211, 222], a strategy described as implicit coordination in Section 3.1.2.

Although these consensus algorithms guarantee convergence on information, they may take

a significant amount of time and often require transmitting large amounts of data [7].

Alternately, distributed algorithms can be designed to perform consensus in the task space

by sharing information about agent assignments rather than situational awareness. One

class of planning algorithms in this category are market-based or auction algorithms, which

are able to efficiently solve mixed-integer cooperative assignment problems in distributed

and decentralized settings [68, 69]. Typically, these market-based approaches use an auction

mechanism [27, 28], where each agent computes rewards associated with tasks or sets of

62

tasks, and then uses these reward values to place bids on the most desirable assignments.

Auctions may be run via an auctioneer [90, 91, 145], where agents communicate their bids

to a central location, and the auctioneer determines the winner for each task. These types

of methods guarantee conflict-free solutions, since the auctioneer only selects one agent as

the winner for each assignment, and are distributed since bids are calculated at spatially

separated locations, however they do require a designated auctioneer (central location or

specific agent) to resolve the conflicts. More flexible auction-based methods do not need to

designate a single agent as the auctioneer, but utilize consensus protocols where the winner

is decided based on a set of self-consistent rules [51, 58, 107]. Such methods have been shown

to produce approximate solutions efficiently when reward functions satisfy a property called

submodularity [3, 14, 106, 130, 194]. A particular algorithm of interest is the Consensus-

Based Bundle Algorithm (CBBA) [58], a polynomial-time market-based approach that uses

consensus to reach agreement on the cooperative assignment. The following chapter provides

more details on CBBA and proposes key extensions that build upon the CBBA framework.

Example applications involving multi-agent missions are presented, illustrating how these

types of distributed auction algorithms can produce provably good approximate solutions

in real-time distributed environments.

Although not the primary focus of this thesis, other major distributed multi-agent plan-

ning frameworks widely studied in the literature include Decentralized MDPs (Dec-MDPs)

and Game Theory. Similar to mixed-integer programming methods, these frameworks suffer

from many of the same issues and challenges as those described above, such as computa-

tional tractability and scalability, agent modeling and representations, communication and

consensus design, and real-time dynamic planning. These frameworks are briefly described

below and similarities to the distributed mixed-integer programming problem formulations

are highlighted.

For most centralized multi-agent MDP formulations, all agents are assumed to have ac-

cess to the global state. However, when agents are making decisions and observations locally

this is generally an impractical assumption, since it would require each agent to communi-

cate their observations to every other agent at every time step with zero communication cost

(referred to as free comm). To address this issue, Decentralized MDP (Dec-MDP) formula-

tions have been proposed that extend centralized multi-agent MDP problems to explicitly

account for communication between agents [26], however, this additional layer increases

63

the dimensionality of the problem and thus the computational complexity4. Variants of

Dec-MDPs include Dec-POMDPs to model uncertain environments, Dec-POMDP-COMs

[93, 94] which explicitly model message passing as actions which incur costs, and Multi-

Agent Team Decision Problems (MTDPs) and COM-MTDPs [176], which are very similar

to Dec-POMDPs and Dec-POMDP-COMs5. These algorithms have all been shown to be

NEXP-complete (nondeterministic exponential time), suffering from bad scalability as the

number of agents and actions increases, motivating the development of approximate problem

formulations that make assumptions on independence and communication between agents to

reduce the computational complexity. Similar to mixed-integer programming algorithms,

Dec-MDP approximation algorithms exploit the structure of the domain to make intelli-

gent decisions about which assumptions to make given the scenario at hand (independence,

feature-based representations, etc.), leading to trade-offs between optimality and computa-

tional tractability. The most notable of these approximation algorithms is the Transition

Independent Decentralized MDP (TI-Dec-MDP) [21], which assumes that agents are inde-

pendent collaborating entities connected through a global reward that is a function of all

agents’ states and actions (i.e. agents have independent transition and observation dynam-

ics), thus reducing computational complexity. Other approximation algorithms include: the

Decentralized Sparse-Interaction MDP (Dec-SIMDP) [149], which deals with computational

limitations by separating the parts of the state space where agents need to cooperate from

the parts where they can act independently; the Group-Aggregate Dec-MMDP [181], which

uses features to compress other agents’ state-action spaces to highlight the properties of in-

terest for each agent (e.g. how many agents are in an area of interest, versus where is every

agent in the environment); and the Auctioned POMDP [50], where each agent solves its own

POMDP locally and communicates with other agents via an auction algorithm to achieve

consensus on plans. Although these algorithms have demonstrated reduced computational

complexity and real-time feasibility for large teams of cooperating agents, the approxima-

tion strategies involved are typically ad-hoc and problem dependent, and developing good

approximation strategies for cooperating agents remains an active area of research.

4Dec-MDPs are NEXP (nondeterministic exponential time). As a reminder, the complexity hierarchy is
given by P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP denoting which classes of problems are subsets of other
classes with regards to increasing computational complexity. For more details and discussion on complexity
classes the reader is referred to [26, 163, 164].

5In fact, the MTDP, Dec-POMDP, COM-MTDP, and Dec-POMDP-COM have all been shown to be
equivalent in terms of computational complexity and expressiveness of representation [199].

64

The field of game theory presents an alternate way of addressing the multi-agent plan-

ning problem by treating the interaction between agents as a game. The basic idea behind

game theory is that agents are individual decision making entities that perform actions

to maximize their own local utility based on knowledge of other agents and the environ-

ment. As such, game-theoretic frameworks are very similar to distributed mixed-integer

programming strategies, and lend themselves naturally to solving autonomous task alloca-

tion problems in a distributed or decentralized fashion, motivating significant work in this

area [12, 54, 85, 141, 142, 152, 155, 214]. Since in game theory agents make individual

decisions about their own actions, these frameworks are useful for modeling noncoopera-

tive environments, however, enforcing cooperation is difficult because it involves ensuring

that individual agent utility functions and incentives are aligned with the global mission

goals. Therefore, the main challenge associated with game-theoretic cooperative planning

strategies involves designing proper utility functions and negotiation strategies to ensure

appropriate levels of coordination and collaboration between agents in order to maximize

global mission performance, much like the consensus protocol design challenges described

above for mixed-integer programming problems. Given that autonomous networked teams

typically have limited bandwidth and communication constraints, it is desirable to find util-

ity functions that keeps the amount of global information an agent requires to a minimum,

while still aligning the agent’s local utility with the global utility. A few localized utility

functions proposed in the literature include Range-Restricted Utility, Equally Shared Util-

ity and Wonderful Life Utility (see [12, 152, 214] for further details). Several multi-player

learning algorithms have recently been developed that guarantee converge to stable feasi-

ble solutions (referred to as Pure-Strategy Nash Equilibria (PSNE) in the game-theoretic

literature). Some of these include Action-Based Fictitious Play, Utility-Based Fictitious

Play, Regret Matching (and variants) and Spatial Adaptive Play [12]. A primary issue with

most of these distributed game theoretic algorithms is that while convergence to a PSNE is

guaranteed, the resulting solution may often be far from optimal. To mitigate this problem

it is necessary to carefully design negotiation strategies (similar to consensus protocols)

such that the resulting algorithm converges to a near-optimal PSNE, a challenging task

that has generated much interest in the research community [12, 152]. One algorithm that

ensures convergence to a near-optimal PSNE with arbitrarily high probability is the Spatial

Adaptive Play (SAP) algorithm [12], providing probabilistic guarantees that can be tuned

65

to obtain higher performance (at the expense of longer convergence times).

This section summarized many of the distributed planning algorithms considered in the

literature. Of interest for this thesis is one particular algorithm, the Consensus-Based Bun-

dle Algorithm (CBBA) [58], which provides guarantees on performance and convergence

for autonomous multi-agent task allocation, and is well-suited to dynamic real-time plan-

ning environments. The next chapter describes CBBA, proposes key extensions that build

upon the CBBA framework, and presents some example applications to illustrate how these

distributed planning strategies can be used for real-time multi-agent mission planning.

66

Chapter 4

Consensus-Based Bundle Algorithm

(CBBA) and Extensions

This chapter describes the Consensus-Based Bundle Algorithm (CBBA) developed by Choi

et al. [58], and presents key extensions and variants. Section 4.1 describes the baseline CBBA

algorithm proposed in [58], Section 4.2 discusses how to modify the bundle construction pro-

cess to handle time-varying score functions within CBBA, and Sections 4.3 and 4.4 propose

algorithms that build upon CBBA to enable mission execution in communication-limited

environments. Section 4.3 presents a local distributed algorithm to ensure conflict-free

solutions in the presence of network disconnects, and Section 4.4 proposes a cooperative

distributed algorithm where agents can act as each other’s relays to prevent network dis-

connects during task execution.

4.1 CBBA Algorithm Description

The Consensus-Based Bundle Algorithm (CBBA), originally developed by Choi, Brunet,

and How [58], is a distributed auction algorithm that provides provably good approximate

solutions for multi-agent multi-task allocation problems over random network structures.

CBBA has been shown to work well in practice for various application, and can handle

complex agent and task models within a real-time distributed framework, guaranteeing

converge to conflict-free solutions despite possible inconsistencies in situational awareness

between agents. CBBA has provable performance guarantees, and ensures solutions that

achieve at least 50% optimality [58], although empirically its performance is shown to be

67

Algorithm 1 CBBA(I,J)

1: Initialize {Ai, Ci}, ∀i ∈ I
2: while ¬converged do
3: (Ai, Ci)← CBBA-Bundle-Construction(Ai, Ci,J), ∀i ∈ I
4: Ci ← CBBA-Communicate(Ci, CNi

), ∀i ∈ I
5: (Ai, Ci)← CBBA-Bundle-Remove(Ai, Ci), ∀i ∈ I
6: converged←

∧
i∈I

Check-Convergence(Ai)

7: end while
8: A ←

⋃
i∈I
Ai

9: return A

above 90% optimality [37]. The bidding process runs in polynomial time, demonstrating

good scalability with increasing numbers of agents and tasks, making it well suited to real-

time dynamic environments. This section describes the Consensus-Based Bundle Algorithm

in detail, discussing the different algorithm phases and highlighting some key algorithmic

subtleties.

The basic CBBA algorithm consists of iterations between two phases: a bundle con-

struction phase where each agent greedily generates an ordered bundle of tasks, and a task

consensus phase where conflicting assignments are identified and resolved through local

communication between neighboring agents. These two phases are repeated until the algo-

rithm reaches convergence. A summary of the overall Consensus-Based Bundle Algorithm

is provided in Algorithm 1. To further explain the relevant details of CBBA, some notation

will first be formalized. Each agent i keeps track of certain data structures associated with

its own assignment status Ai or with its local knowledge of the current winning agents and

winning bids Ci. The data structures associated with agent i’s assignment Ai include:

• A bundle, bi , {bi1, . . . , bi|bi|}, which is a variable length set of tasks currently assigned

to agent i, whose elements are defined by bin ∈ J for n = {1, . . . , |bi|}. The current

length of the bundle is denoted by |bi|, which cannot exceed the maximum length Li

(see Eq. (3.6)), and an empty bundle is represented by bi = ∅ with |bi| = 0. The

bundle is ordered chronologically with respect to when the tasks were added (i.e. task

bin was added before task bi(n+1)), which enables the algorithm to keep track of which

tasks are dependent on others.

• A path, pi , {pi1, . . . , pi|pi|}, which is a set of tasks containing the same tasks as the

bundle, but whose order is used to represent the order in which agent i will execute

68

the tasks in its bundle. The path is therefore the same length as the bundle, with

elements pin ∈ bi for n = {1, . . . , |pi|}, and is not permitted to be longer than Li (i.e.

|pi| = |bi| ≤ Li).

The data structures associated with agent i’s local knowledge of the current winning

agents and winning bids Ci include:

• A winning agent list, zi , {zi1, . . . , ziNt}, of size Nt, with elements zij ∈ {I ∪ ∅}

for j = {1, . . . , Nt}, indicating who agent i believes is the current winner for task j.

Specifically, the value in element zij is the index of the agent who is currently winning

task j according to agent i’s local information, and is zij = ∅ if agent i believes that

there is no current winner.

• A winning bid list, yi , {yi1, . . . , yiNt}, also of size Nt, where the elements yij ∈ [0,∞)

represent the corresponding winners’ bids and take the value of 0 if there is no winner

for the task.

• And finally, a vector of communication timestamps, ti , {ti1, . . . , tiNa}, of size Na,

where each element tik ∈ [0,∞) for k = {1, . . . , Na} represents the timestamp of the

last information update agent i received about agent k, either directly or through a

neighboring agent.

The bundle construction process, described in detail in Section 4.1.1, involves agents

independently optimizing their own assignments Ai, where each agent locally computes

task scores and uses these to place bids on desirable tasks (Algorithm 1, Line 3). An

important point to note is that these bids are computed in a distributed fashion, using each

agent’s local score functions, local knowledge of other agents’ assignments, and local values

for planning parameters (i.e. local situational awareness). The bundle construction phase

is then followed by a task consensus phase, described in Section 4.1.2, where all agents

share their local knowledge of winning agents and winning bids Ci with their neighbors Ni,

and process the newly received information to update their local knowledge and assignment

vectors (Algorithm 1, Lines 4 and 5). The consensus protocol of CBBA specifies what

information agents must share with neighboring agents, how each agent can locally merge

information about winning agents and winning bids after communications have occurred,

and how agent assignment vectors can be updated given the newly acquired information.

69

The algorithm iterates over these two phases until convergence is reached. Note that while

lines 6 and 8 of Algorithm 1 summarize the global convergence and global assignment

status of CBBA, each agent locally detects its own convergence status (see Section 4.1.2 for

details), and each agent returns its own assignment Ai along with information about the

overall team assignment (contained in Ci). The following sections provide more details on

the different phases of CBBA.

4.1.1 Bundle Construction Phase

The bundle construction phase of CBBA (Algorithm 1, Line 3), involves each agent inde-

pendently solving Eq. (3.6) by selecting which tasks it would like to execute given the full

list of available tasks J , {1, . . . , Nt} and the current assignment vector x which includes

other agents’ decisions up to the current time (summarized in Ci as described above). Given

spatially separated task locations, optimizing the assignment vector (finding x?i) implicitly

involves solving a path optimization problem for every possible feasible vector xi. In other

words, for any xi considered, the agent must solve the following optimization

max
pi

Nt∑
j=1

cij(pi(xi),θ) xij

to find the optimal path p?i and thus the optimal score for that given assignment vector.

This path optimization problem is similar to the Traveling Salesman Problem (TSP) which

is known to be NP-hard [36, 213]. The agent must then consider several possible task

combinations (i.e. all different feasible xi vectors) to obtain its optimal assignment x?i .

Therefore, finding an optimal assignment, even at the single agent level is considered an

NP-hard problem which scales poorly as the number of tasks increases.

Several strategies have been proposed to address this tractability issue for single agent

task optimization. The first involves limiting the plan horizon to only allow decisions over

the next Li tasks, similar to the maximum path length constraint of Eq. (3.6). The smaller

Li is the fewer combinations exist for xi (and the fewer options exist for pi as well)1. A lot of

1All possible combinations for xi are given by 2Nt (i.e. a task is either assigned or not assigned). Imposing

a maximum path length constraint limits the available combinations to

Li∑
k=0

(
Li
k

)
< 2Nt , thus making the

problem more tractable. Note that

Nt∑
k=0

(
Nt
k

)
= 2Nt .

70

algorithms proposed in the literature only consider single-task allocation (i.e. the case where

Li = 1) and then replan to assign more tasks. Although significantly easier and faster to

solve, these approaches yield poor performance due to their myopic nature. CBBA considers

situations where Li > 1, thus assigning bundles of tasks to agents, where Li can be regulated

given the available computational resources. The next strategy is to design approximation

algorithms to reduce the solution space in order to maintain computational tractability.

This can be accomplished using two methods: (1) partitioning the task space into bundles

of tasks, where agents can select to add entire bundles, and (2) incrementally building

bundles by selecting one task at a time. The first method effectively reduces the cardinality

of the search space by grouping tasks together (can be thought of as a new smaller problem

with 2Ñt “mega-tasks”, where the possible combinations are 2Ñt < 2Nt). Bidding on bundles

of tasks has been explored significantly in the literature [10, 65, 165], and has the advantage

of being able to capture coupling between tasks better than incrementally building bundles

(e.g. clustered tasks, dependent tasks, etc). The main disadvantage, however, is that a

decision must be made on how best to partition bundles, where enumerating all possible

combinations is intractable. Incrementally building bundles, on the other hand, involves

selecting the next best task in a greedy fashion (next highest scoring task). This greedy

task selection approach reduces the search space to O(NtLi) making it very attractive from

a computational standpoint, however, it often leads to suboptimal performance since it is

myopic and fails to adequately capture coupling between dependent tasks. Furthermore,

complications with this approach involve deciding how to assign individual scores to tasks

given task coupling in the bundle (e.g. clustered tasks where task 2 might only be attractive

because task 1 is already in the agent’s bundle). One approach is to compute marginal

scores, or the improvement in bundle score as a result of adding the new task to the bundle.

There are a few issues with this approach given dependencies between tasks (for example,

a task may only be attractive because the agent will be in the area after doing another

task, and if the first task is dropped, the second one is not valuable anymore). CBBA uses

this sequential greedy approach with marginal scores to create bundles of tasks and bids for

each task, however, restrictions are made on the allowable score allocations to address these

coupling issues. More details regarding the specific CBBA process are provided next, but

for a thorough description of the more general issues and options associated with different

bundle allocation strategies the reader is referred to [105].

71

Algorithm 2 CBBA-Bundle-Construction(Ai, Ci,J)

1: while |pi| ≤ Li do
2: for j ∈ J \ pi do

3: J(pi⊕n?
j
j) = max

nj

Nt∑
j=1

cij((pi ⊕nj j),θ) xij

4: ∆Jij(pi) = J(pi⊕n?
j
j) − Jpi

5: hij = I(∆Jij(pi) > yij)
6: end for
7: j? = argmax

j∈J\pi

∆Jij(pi) hij

8: if (∆Jij?(pi) hij? > 0) then
9: bi ← (bi ⊕end j

?)
10: pi ← (pi ⊕nj

? j?)
11: zij? ← i
12: yij? ← ∆Jij?(pi)
13: else
14: break
15: end if
16: end while
17: Ai ← {bi,pi}
18: Ci ← {zi,yi, ti}
19: return (Ai, Ci)

The full bundle construction process used within the CBBA framework is summarized

in Algorithm 2. During this bundle construction phase, each agent starts with an initial

assignment Ai = {bi,pi} from the previous CBBA iteration (empty for the first iteration),

and with initial values of the current winning agents and winning bids Ci = {zi,yi, ti}.

Recall that the score agent i obtains for a given path is,

Jpi =

Nt∑
j=1

cij(pi,θ) xij (4.1)

where xij = 1 for all tasks in the path. To determine which task to add to the bundle next,

each agent executes the following process for every available task j ∈ J \ pi (i.e. j ∈ J ,

j /∈ pi). First, task j is “inserted”2 into the path at all possible locations nj to find the

optimal position in the path,

J(pi⊕n?
j
j) = max

nj

Nt∑
j=1

cij((pi ⊕nj j),θ) xij (4.2)

2The notion of inserting task j into the path at location nj involves shifting all path elements from nj
onwards by one and changing path element at location nj to be task j (i.e pi(n+1) = pin,∀n ≥ nj and
pinj = j).

72

where each new path is denoted (pi ⊕nj j), with ⊕n signifying that task j is inserted at

location nj , and where n?j is the optimal location for task j that maximizes the above score

(Algorithm 2, line 3). The marginal score for task j is then given by the increase in score

as a result of adding task j,

∆Jij(pi) = J(pi⊕n?
j
j) − Jpi (4.3)

as specified in Algorithm 2, line 4. Once the marginal scores for all possible tasks are

computed (∆Jij(pi) for all j ∈ J \ pi), the scores need to be checked against the winning

bid list, yi, to see if any other agent has a higher bid for the task. The binary variable

hij = I(∆Jij(pi) > yij) is defined, where I(·) is an indicator function that equals 1 if the

argument is true and 0 if it is false, so that ∆Jij(pi) hij will be nonzero only for viable

bids (Algorithm 2, line 5). The final step is to select the highest scoring task to add to the

bundle (Algorithm 2, line 7),

j? = argmax
j∈J\pi

∆Jij(pi) hij (4.4)

If the bid for this best task is positive, the bundle, path, winning agents list, and winning

bids list are then updated to include the new task,

bi ← (bi ⊕end j
?)

pi ← (pi ⊕nj? j?)

zij? ← i

yij? ← ∆Jij?(pi)

The bundle building recursion continues until either the bundle is full (the limit Li is

reached), or no tasks with positive score can be added for which the agent is not outbid

by some other agent (i.e. ∆Jij(pi) hij ≤ 0 for all j ∈ J \ pi). Algorithm 2 provides a full

description of the bundle construction process.

73

4.1.2 Task Consensus Phase

Once agents have built their bundles of desired tasks they need to communicate with each

other to resolve conflicting assignments amongst the team. Each agent shares its winning

agent list and winning bid list with neighboring agents, and this new information, along

with timestamp data, is then passed through a decision table (see [58], Table 1 for details)

that provides all of the conflict resolution logic to merge local bid information (CBBA-

Communicate function, Algorithm 1, Line 4). For further details on this consensus process

the reader is referred to [58], but in general, the consensus logic favours higher valued and

more recent bids.

After merging information from neighboring agents about the winning agents and cor-

responding winning bids, each agent can determine if it has been outbid for any task in its

bundle. Since the bundle building recursion, described in the previous section, depends at

each iteration upon the tasks in the bundle up to that point, if an agent is outbid for a

task, it must release it and all subsequent tasks from its bundle3 (CBBA-Bundle-Remove

function, Algorithm 1, Line 5). If the subsequent tasks are not released, then the marginal

scores computed for those tasks would not be accurate leading to a degradation in perfor-

mance. If the consensus phase has occurred more than twice the network diameter times

without any change in bid information, then the algorithm has converged and terminates

(Algorithm 1, Line 6); if not, each agent re-enters the bundle building phase and the al-

gorithm continues. It should be noted that these conflict resolution rules specified by the

CBBA consensus protocol explicitly address the conflict-free constraint of Eq. (3.6).

The worst-case complexity of the bundle construction phase of CBBA is O(NtLi) per

iteration, and CBBA is guaranteed to converge within max{Nt, LiNa}D iterations, where

D is the network diameter (always less than Na). Thus, CBBA has polynomial-time conver-

gence guarantees and scales well with the size of the network and/or the number of tasks,

making it well suited to real-time applications. More detailed discussions regarding the

consensus phase and the interaction between the two CBBA phases can be found in [58]

and [105].

3A task in the bundle is only dependent on tasks that are located in the bundle prior to it, and is therefore
independent of all tasks added after it. Keeping track of dependencies in this way has the effect of adding
stability to the consensus space, since the number of dependencies between tasks is reduced and therefore
convergence rates can increase.

74

4.1.3 Diminishing Marginal Gains

One requirement that is fundamental to all the convergence and performance guarantees of

CBBA, is that the score functions used must satisfy a property called Diminishing Marginal

Gains (DMG) . This DMG condition is a subset of the well-studied submodularity condition,

and was recognized in the original description of CBBA [58], and further studied in recent

work [106]. The DMG condition can be formalized as,

∆Jij(pi) ≥ ∆Jij(pi ⊕n?k k), ∀j, k ∈ J \ pi, j 6= k, ∀i ∈ I (4.5)

Intuitively, the condition states that the score for any agent i and task j cannot increase

as more things are added to the bundle (e.g. if a task was unattractive before, its appeal

cannot suddenly increase as a result of a longer bundle). Given score functions that satisfy

DMG, CBBA is guaranteed to converge to a conflict-free solution, however, if this condition

is not met it could lead to cycling of assignments between the agents and the algorithm

would fail to converge.

To further illustrate this cycling behavior consider the following simple scenario with 2

agents and 2 tasks. In the first case, summarized in Example 1, assume that score functions

satisfy DMG. During bundle construction, assume Agent 1 computes a score y11 = S for

Task 1 and a score y12 < S for Task 2, and therefore adds Task 1 to its bundle first,

{(1, S)}, where the syntax denotes (task ID, task score). The agent then considers Task

2, and since the score functions satisfy the DMG condition of Eq. (4.5), y12 is necessarily

less than y11 and will therefore be denoted as y12 = S − ε with ε > 0. Task 2 is added

to the bundle to give {(1, S), (2, S − ε)}. Similarly, assume that Agent 2 builds its bundle,

where Task 2 is preferred over Task 1, and the computed scores yield the following bundle:

{(2, S), (1, S−ε)}. During the consensus phase, Agent 1 realizes it has been outbid for Task

2 and drops the task from its bundle. Similarly, Agent 2 realizes it has been outbid for Task

1 and drops it from its bundle. The agents then return to the bundle construction phase,

but since no more tasks can be added, a consistent assignment has been reached and the

algorithm terminates.

When nonsubmodular score functions are used instead, the algorithm may result in

cycles and convergence is not guaranteed. To illustrate this effect in the above example,

consider the bundle construction for Agent 1 where Task 1 is added with score S as before,

75

Example 1: Task allocation with score functions that satisfy DMG

Iteration 1

Agent 1: {(1, S), (2, S − ε)}
Agent 2: {(2, S), (1, S − ε)}

Iteration 2

Agent 1: {(1, S)}
Agent 2: {(2, S)}

{(1, S)}. Task 2 is now considered, but since score functions need not satisfy DMG, the

score for Task 2 as a result of adding Task 1 to the bundle could increase, y12 > S. This

new nonsubmodular score is denoted as y12 = S + ε with ε > 0, and Agent 1’s bundle

becomes, {(1, S), (2, S+ ε)}. Similarly, Agent 2 could construct a bundle {(2, S), (1, S+ ε)}

using a similar process. During the consensus phase, Agent 1 realizes it has been outbid

for Task 1 and therefore must drop both Task 1 and Task 2 (since Task 2 depended on

Task 1). Likewise, Agent 2 realizes it has been outbid for Task 2 and therefore drops both

tasks from its bundle. The agents then enter the bundle construction phase, but since both

agents still think that the other agent’s bids are higher, no new tasks are added to either

agents’ bundles. The agents perform consensus again and each realizes that the other agent

has dropped all its tasks. The bundle construction phase is entered for a 3rd time, and since

there are no valid bids for either agent the construction process is unconstrained and the

result is the same as for Iteration 1. This process, summarized in Example 2, leads to a

cycle that would continue forever, and the algorithm therefore would never converge to a

consistent assignment.

(a) True Agent Path (b) Heuristic Path Approximation

Figure 4-1: Example UAV mission with 1 agent and 2 tasks.

The above example shows the importance of satisfying the DMG condition, however,

76

Example 2: Task allocation with nonsubmodular score functions

Iteration 1

Agent 1: {(1, S), (2, S + ε)}
Agent 2: {(2, S), (1, S + ε)}

Iteration 2

Agent 1: {}
Agent 2: {}

Iteration 3

Agent 1: {(1, S), (2, S + ε)}
Agent 2: {(2, S), (1, S + ε)}

for many scenarios of interest this could be a limiting requirement. For example, consider

a multi-agent multi-task UAV mission, such as that depicted in Figure 2-1, where agents

must perform target search and track tasks which involve traveling to and servicing tasks

at different locations. The planning parameters in this scenario include elements such as

task locations, task rewards, fuel penalties, etc. The total objective function for each agent

can be written as,

Ji =

 Nt∑
j=1

Rj xij

− fi di(pi) (4.6)

where Rj is a fixed reward for executing task j, fi is the fuel cost per unit distance, and

di(pi) represents the total distance traveled by agent i given path pi. This score function,

which is a very naturally occurring example, is not submodular due to the fuel penalty

component, since some tasks may look more attractive when more tasks are added to the

path if the travel distances become shorter. As an example, consider the scenario in Figure

4-1(a) with task rewards Rj = R, ∀j. In the first iteration of the bundle construction

process, the scores obtained for Tasks 1 and 2 are yi1 = (R− fi di1) and yi2 = (R− fi di2)

respectively, where di1 and di2 represent the distances from the agent’s initial position to

the task locations. Since di1 < di2, the score for Task 1 is higher and therefore this task

is added to the path. In the second iteration, the score for Task 2 is computed using the

77

marginal score calculation ∆Jij(pi) = J(pi⊕n?
j
j) − Jpi which yields,

yi2 = (2R− fi (di1 + d12))− (R− fi di1)

= (R− fi d12)

Since d12 < di2, the new score for Task 2, yi2 = (R − fi d12), is higher than it was during

the first iteration (since most of the fuel cost is subsumed into the score of the first task),

which breaks the DMG condition specified in Eq. (4.5). This type of score function using

fuel penalties is a very natural example arising in many situations (e.g. clusters of tasks,

traveling salesman problem), and therefore the DMG condition can be quite limiting. In

early work [174], we proposed a submodular heuristic version of the score function specified

in Eq. (4.6), where the true path distance was approximated using a distance heuristic,

Ĵi =

Nt∑
j=1

(
Rj − fi d̂ij

)
xij (4.7)

In Eq. (4.6), d̂ij is the distance from the agent’s initial position to task j instead of the

true distance (see Figure 4-1(b)), but since d̂ij remains constant for each task j regardless

of which tasks are in the path before or after it, the score for any task j cannot increase as

the path becomes longer and therefore the DMG condition of Eq. (4.5) is satisfied.

As shown in the above example, implementing CBBA for real-world multi-agent prob-

lems involves designing heuristic score functions such as Eq. (4.7) that can approximate

the true score functions while still satisfying the diminishing marginal gains property. In

general, using heuristic approximations within the planner leads to suboptimal performance

with respect to using the true score functions. Therefore choosing a good heuristic function

is a key design step which may not be easy given the scenario at hand. This issue is further

aggravated in stochastic planning situations, where stochastic metrics and numerical ap-

proximations make heuristic DMG satisfying score functions difficult to design. However,

in several scenarios of interest involving multi-agent teams, good heuristics score functions

can be created and CBBA can be successfully employed, especially when the suboptimality

arising from using approximate score functions can be mitigated by replanning.

As a last major note, recent work by Johnson et al. [106] proposed an algorithmic

extension to embed the DMG condition into the algorithmic framework itself, enabling

78

the use of CBBA with arbitrary score functions. This extension alleviates the burden of

having to design heuristic score functions, and is explained fully in Section 5.2.2, especially

with regards to how it enables the distributed stochastic planning framework described in

Chapters 5 and 6.

4.2 CBBA with Time-Varying Score Functions

Of interest for this thesis are dynamic environments with time-varying rewards, as described

in Chapter 2 and Section 3.2.1. In these environments agents must optimize the time-varying

score function,

max
xi,τ i

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

where the decision variables include the proposed task execution times τij ∈ {R+ ∪ ∅}

corresponding to the task assignment decision variables xij . In this section, we propose an

extension to the baseline CBBA algorithm to handle these time-varying score functions in

the bundle construction process, describing the additional variables and algorithmic steps

(see publication [174]).

4.2.1 Bundle Construction with Time-Varying Score Functions

To enable the use of time-varying score functions, the CBBA bundle construction process

can be modified to explicitly include optimization of task execution times. The agent

assignment Ai can be augmented to include an additional data structure τ i, representing

a vector of times τ i , {τi1, . . . , τi|τ i|}, whose elements are defined by τin ∈ [0,∞) for

n = {1, . . . , |τ i|}, denoting the times at which agent i will execute the tasks in its path.

The process to compute task scores is modified as follows and is summarized in Algorithm

3. For all tasks j ∈ J \ pi, each task j is inserted into the path at all possible locations nj

to find the optimal position in the path. For each location nj , this step involves finding the

optimal times τ ?i for all tasks in the new path (Algorithm 3, line 4),

τ ?i = argmax
τ i

Nt∑
j=1

cij(τij(pi ⊕nj j),θ) xij (4.8)

79

and repeating the process described in Eq. (4.8) for all locations nj , giving the following

expression for the cost (Algorithm 3, line 6),

J(pi⊕n?
j
j) = max

nj

Nt∑
j=1

cij(τ
?
ij(pi ⊕nj j),θ) xij (4.9)

The marginal score for task j is then given by the increase in score as a result of adding

task j (Algorithm 3, line 7),

∆Jij(pi) = J(pi⊕n?
j
j) − Jpi (4.10)

and the optimal task to add is given by,

j? = argmax
j∈J\pi

∆Jij(pi) hij (4.11)

as before (Algorithm 3, line 10). The bundle, path, times, winning agents list, and winning

bids list are then updated to include the new task,

bi ← (bi ⊕end j
?)

pi ← (pi ⊕nj? j?)

τ i ← (τ i ⊕nj? τ?ij?(pi ⊕nj? j?))

zij? ← i

yij? ← ∆Jij?(pi)

The recursion continues until no tasks can be added anymore. The bundle construction

process for time-varying CBBA is summarized in Algorithm 3. The marginal score calcu-

lations including time optimization satisfy the DMG condition of Eq. (4.5), since adding

more tasks to the path has the effect of further constraining the time optimization process

of Eq. (4.8). In other words, as more tasks are added to the path, there are less possible

options for the task execution times τ i subject to agent and environment dynamics, and

thus the values τ ?i computed in Eq. (4.8) are the result of a more constrained optimiza-

tion problem. Therefore, as long as the original (non-time-varying) score functions satisfy

DMG, the extra step of optimizing task execution times does not affect the requirement of

80

Algorithm 3 Time-Varying-CBBA-Bundle-Construction(Ai, Ci,J)

1: while |pi| ≤ Li do
2: for j ∈ J \ pi do
3: for nj ∈ {1, . . . , (|pi|+ 1)} do

4: τ ?
i = argmax

τ i

Nt∑
j=1

cij(τij(pi ⊕nj j),θ) xij

5: end for

6: J(pi⊕n?
j
j) = max

nj

Nt∑
j=1

cij(τ
?
ij(pi ⊕nj

j),θ) xij

7: ∆Jij(pi) = J(pi⊕n?
j
j) − Jpi

8: hij = I(∆Jij(pi) > yij)
9: end for

10: j? = argmax
j∈J\pi

∆Jij(pi) hij

11: if (∆Jij?(pi) hij? > 0) then
12: bi ← (bi ⊕end j

?)
13: pi ← (pi ⊕nj

? j?)
14: τ i ← (τ i ⊕nj

? τ?ij?(pi ⊕nj
? j?))

15: zij? ← i
16: yij? ← ∆Jij?(pi)
17: else
18: break
19: end if
20: end while
21: Ai ← {bi,pi, τ i}
22: Ci ← {zi,yi, ti}
23: return (Ai, Ci)

Eq. (4.5).

Even though the CBBA with Time-Varying Score Functions algorithm operates in con-

tinuous time, the specific task execution time optimizations can exploit a few properties

associated with this problem formulation to maintain computational tractability. The first

property is that there is a causal dependence between tasks in the path, therefore early

tasks are not affected by later tasks in the path. Leveraging this causal relationship, the

optimization of task execution times in Eq. (4.8) involves optimizing these task times se-

quentially, where the optimal task time for the first task in the path becomes a constant

when optimizing the second task in the path, etc. Using this sequential process greatly

reduces the search space associated with the optimization and, due to the causal depen-

dence between tasks, produces the same results as optimizing all the task execution times

simultaneously. Now that the optimization of Eq. (4.8) involves optimizing each continu-

ous decision variable separately, and since each variable τij only affects the corresponding

task score cij , we can leverage knowledge of the particular task score functions and employ

81

fast line search algorithms to find the best τij that optimizes cij subject to the temporal

constraints specified by tasks earlier in the path. For certain types of score functions (e.g.

unimodal functions, functions of the forms specified in Figure 2-2), efficient line search algo-

rithms such as gradient descent and Newton’s method can be used to find the optimal task

times, enabling real-time optimization of Eq. (4.8) within the CBBA with Time-Varying

Score Functions framework (Algorithm 3, line 4).

It is important to note that during the iterative bundle construction process, the task

execution time optimization of Eq. (4.8) involves re-optimizing all the times for tasks in the

path after location nj at every step to appropriately represent the impact of adding task j to

the path. Even after leveraging the properties described above when optimizing Eq. (4.8),

this re-optimization of task execution times is typically a computationally intensive step

which slows down the convergence rate of the algorithm significantly (as compared to the

original CBBA). A constraint that can be imposed to reduce this computational effort and

speed up convergence, is to restrict new tasks to be inserted into the path only if they do not

impact the proposed times for the tasks already in the path. This constrained optimization

involves computing the time for the new task j only, without having to re-compute the times

of the tasks later in the path, thus reducing the required computations. The optimization

can be written as,

τ?ij(pi ⊕nj j) = argmax
τij∈[0,∞)

cij(τij(pi ⊕nj j),θ) (4.12)

subject to: τ?ik(pi ⊕nj j) = τ?ik(pi), ∀k ∈ pi

where the constraints state that the insertion of the new task j into path pi cannot impact

the current times (and corresponding scores) for the tasks already in the path [174]. Using

this constraint, the marginal score is simply the score for the new task j, since the scores

for other tasks are not subject to change, therefore

∆Jij(pi) = cij(τ
?
ij(pi ⊕n?j j),θ)

which reduces computation time significantly. The DMG property is again satisfied for

this modified problem, as explained below. To ensure the DMG condition of Eq. (4.5) the

82

following is required,

cij(τ
?
ij(pi ⊕n?j j),θ) ≥ cij(τ

?
ij(p

′
i ⊕n?j j),θ), ∀j ∈ J \ pi

where the score for a task not currently in the path can only decrease as more tasks are

added to the path, and where p′i = (pi ⊕m) for any task m ∈ J \ pi, m 6= j. Since the

calculation of the best arrival time for task j when the current path is p′i instead of pi is

given by,

τ?ij(p
′
i ⊕nj j) = argmax

τij∈[0,∞)
cij(τij(p

′
i ⊕nj j),θ)

subject to: τ?ik(p
′
i ⊕nj j) = τ?ik(p

′
i), ∀k ∈ p′i

the constraints can be rewritten recursively as the following set of constraints,

τik(pi ⊕m⊕nj j) = τ?ik(pi ⊕m) = τ?ik(pi), ∀k ∈ pi

τim(pi ⊕m⊕nj j) = τ?im(pi ⊕m)

Therefore, calculation of τ?ij(p
′
i⊕nj j) involves solving an optimization with the same objec-

tive function but an additional constraint. Thus, the optimal objective value for this opti-

mization cannot be greater than that for τ?ij(pi⊕nj j), in other words cij(τ
?
ij(pi⊕n?j j),θ) ≥

cij(τ
?
ij(p

′
i ⊕n?j j),θ), which means the DMG property is satisfied.

This work is significant since most algorithms that can handle time-windows in the liter-

ature are centralized and/or computationally intensive. For example, recent game theoretic

approaches have attracted significant interest as distributed task allocation algorithms for

assigning tasks to agents in time-varying environments [12, 54, 141, 142], however, these

approaches rely on discretizing time, severely increasing the computational complexity of

the problem. In contrast, CBBA with Time-Varying Score Functions does not require time

discretization, and, for certain score function types as described above (e.g. unimodal),

the algorithm is able to address the optimization of these additional decision variable in

polynomial-time, ensuring both spatial and temporal coordination amongst the agents,

while still preserving the robust convergence properties of the original algorithm.

83

4.2.2 Example Applications

To show the real-time applicability of CBBA with time-varying score functions, consider a

dynamic planning scenario involving a multi-agent multi-task UAV/UGV mission, such as

that depicted in Figure 2-1, where agents must perform time-critical tasks which involve

traveling to and servicing tasks at different locations and during different times (see Figure

2-2). This type of scenario could include rescue operations, where victims must be found and

attended to in a timely manner, or even time-critical services within urban environments

such as pizza delivery or taxi routing. This section provides details on the implementation

of CBBA for multi-agent networked teams operating in dynamic environments.

Simulation Results

A simulation was created to demonstrated the performance of CBBA with Time-Varying

Score Functions when planning for multi-agent networked teams operating in time-critical

mission scenarios. For these types of time-varying missions, the planning parameters θ

associated with agents and tasks could include elements such as task locations, task reward,

task service times, task time-windows of validity, agent positions, agent travel velocities,

fuel penalties, etc. In this thesis, we consider time-varying task rewards of the following

form,

Rij(τij) =

 Rj e
−λj∆τij , tjstart ≤ τij ≤ tjend

0, otherwise

where tjstart is the first time the task becomes available, the task time-window [tjstart , tjend]

represents the period of time in which the task must be completed, τij is the time at which

agent i finishes executing task j, and ∆τij = max{0, τij − (tjstart + tjduration)} represents the

time in excess of the expected task completion time. The exponential decay represents the

time-critical nature of the task, where the discount factor λj is used to reduce the nominal

reward Rj according to the delay ∆τij . The total objective function for each agent can be

written as,

Ji =

Nt∑
j=1

Rij(τij) xij − fi di(pi) (4.13)

84

0 20 40 60 80 100 120
400

600

800

1000

1200

1400

1600

1800

2000

Number of Total Tasks

M
is

si
on

 S
co

re
s

Mission Scores

CBBA
CBBA TC
SGA

0 20 40 60 80 100 120
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Number of Total Tasks

N
or

m
al

iz
ed

 M
is

si
on

 S
co

re
s

Normalized Mission Scores

CBBA
CBBA TC
SGA

0 20 40 60 80 100 120
0

5

10

15

20

25

Number of Total Tasks

T
im

e
[s

ec
]

Planner Run Time

CBBA
CBBA TC
SGA

Figure 4-2: Monte Carlo simulation results for a 6 agent networked team performing
time-critical missions. The simulations compare three planning algorithms: the CBBA
with Time-Varying Score Functions algorithm proposed in this section (CBBA); CBBA
with Time-Varying Score Functions using time constraints during sequential task selection
(CBBA TC), as explained in Eq. (4.12); and a centralized sequential greedy algorithm
(SGA). Figure (a) shows the achieved mission scores, (b) shows the mission scores normal-
ized against the sequential greedy results, and (c) shows the planner run time as a function
of the number of available tasks in the environment.

where di(pi) represents the distance traveled by agent i given path pi and fi is the fuel cost

per unit distance as described in the example of Section 4.1.3. Since this score function is

not submodular due to the fuel penalty component, as explained in Section 4.1.3, a heuristic

approximation that satisfies DMG can be employed instead,

Ĵi =

Nt∑
j=1

(
Rij(τij)− fi d̂ij

)
xij (4.14)

where d̂ij is an approximation of the true distance which satisfies DMG (since d̂ij is constant

for each j regardless of which tasks are in the path). This approximate submodular score

85

function was used within the CBBA with Time-Varying Score Functions algorithm in sim-

ulation to approximate the agents’ path scores while still satisfying the DMG requirement.

Figure 4-2 shows Monte Carlo simulation results validating the performance of CBBA with

Time-Varying Score Functions for a 6 agent networked team performing time-critical mis-

sions. The simulations compare three planning algorithms: the CBBA with Time-Varying

Score Functions algorithm proposed in this section (CBBA); CBBA with Time-Varying

Score Functions using time constraints during sequential task selection (CBBA TC), where

tasks can only be added if they do not impact the other tasks already in the bundle as

explained in Eq. (4.12); and a centralized sequential greedy optimization algorithm (SGA)

which uses the true score function of Eq. (4.13) within the optimization (since DMG does

not affect centralized algorithms). Figure 4-2(a) shows that the mission scores achieved

using the distributed CBBA with Time-Varying Score Functions algorithm are similar to

those obtained using a centralized sequential greedy optimization algorithm (SGA), vali-

dating the distributed approach and the submodular approximate score function. Figure

4-2(b) shows the mission scores normalized against the sequential greedy results, where

CBBA with Time-Varying score functions achieves performance that is within 98% of that

obtained using the centralized SGA approach. As shown in Figure 4-2(c), the planner run

time required for the CBBA with Time-Varying Score Functions algorithm is higher than

that of the centralized sequential greedy algorithm, since the algorithm requires more itera-

tions to resolve conflicts amongst agents. The reduction in run time which occurs between

100 and 120 tasks is associated with the fact that agents have more choices and are there-

fore less likely to conflict, leading to fewer iterations of CBBA. In general, the distributed

CBBA run time is a function of the number of tasks explored by each agent, the number of

conflicts between agents (and thus iterations of CBBA), and the amount of time required to

compute each path score within each agent’s bundle optimization process. As a disclaimer,

all computations were done in single threads, programmed in MATLAB, on an Alienware

computer with an Intel Core i7 processor and 12 GB RAM, and these results show the

total computation time for all agents combined. In practical real-time implementations,

the computation would be distributed/parallelized over several computers and written in a

more efficient language than MATLAB (e.g. C++), therefore the true computation time

would be reduced by at least a factor of N (since each agent would compute its own plans),

and would possibly be even faster given a more efficient programming language. Of course,

86

the distributed implementation would also have to account for communication speed be-

tween agents, which, depending on the application at hand, may introduce further delays

(see [105] for a detailed analysis on message passing requirements of CBBA). As mentioned

in the previous section, the time optimization step of Eq. (4.8) requires re-optimizing all

the times for tasks in the path after location nj to appropriately represent the impact of

adding task j to the path, which can be quite computationally intensive. The constraint

specified in Eq. (4.12) reduces this computational effort by only optimizing the task execu-

tion time of the new task j. As shown in Figure 4-2, the CBBA with Time-Varying Score

Functions algorithm using this time constraint (CBBA TC) is able to significantly reduce

the computation time required by the algorithm leading to much lower run times (Figure

4-2(c)), and the performance achieved by imposing this artificial constraint is still very close

to that of the unconstrained CBBA (Figures 4-2(a)-(b)) and is within 93% of the central-

ized sequential greedy performance. The algorithms developed later in Sections 4.3 and 4.4

have higher computation requirements than the baseline CBBA with Time-Varying Score

Functions algorithm, and thus can really benefit from the computational savings associated

with this time constraint to enable real-time performance for networked teams.

Real-Time Replanning Architecture

In order to ensure that the task allocation remains relevant in a dynamically changing

environment it is necessary to replan in real-time. Replanning at a fast enough rate ensures

that vehicle states and network topologies are up to date, new tasks are accounted for and

older or irrelevant tasks are pruned, and that the impact of discrepancies between the agent

models in the planner and the actual agent behavior is minimized given the deterministic

planning parameters. We have embedded the CBBA with Time-Varying Score Functions

algorithm described in this section within a real-time dynamic planning framework for

heterogeneous agents, illustrated in Figure 4-3. The overall architecture is comprised of a

mission control center that manages a dynamic task list, the CBBA task allocation algorithm

to coordinate planning for the team, models of the agents and the network structure that

are updated in real time, and vehicle managers, actuators and sensors that enable agents

to interact with the environment. The mission control center supplies an initial set of tasks

with time-windows of validity to the agents, in addition to creating new pop-up tasks at

a specified rate. The distributed CBBA planner receives the dynamic list of tasks and

87

Figure 4-3: Real-time distributed task allocation architecture for a heterogeneous networked
team.

allocates them to the agents. The network detection algorithms use the position of the

vehicles to determine the network graph and/or the set of subnetworks at any given time.

And the vehicle managers consist of finite state machines that enable the execution of tasks

for each agent. Given the latest agent models, network configuration information, and

current task list, the planning architecture can allocate the tasks to the respective agents

over some planning horizon, thereby creating schedules for each of the heterogeneous agents.

This real-time replanning architecture was used to validate the performance of the plan-

ning algorithms for heterogeneous networked UAV/UGV teams performing dynamic ISR

missions, both in simulation and in experimental flight tests at MIT’s Real-time indoor

Autonomous Vehicle test ENvironment (MIT RAVEN) [99]. This indoor flight facility is

equipped with motion-capture systems which yield accurate, high-bandwidth position and

attitude data for all tracked vehicles within the flight volume. Flight experiments were

conducted for heterogeneous teams of agents including quadrotor air vehicles, helicopter

UAVs, and various ground vehicles, demonstrating the real-time applicability of the ap-

proach [174]. Figure 4-4 shows a snapshot of the simulation interface showing the agent

paths and schedules over the course of the mission. The display on the left shows the agents

and their proposed paths and the tasks along with a countdown to their expiry time. The

88

Figure 4-4: Simulation showing 12 agents (6 UAVs & 6 UGVs) bidding on and accomplishing
a dynamic set of tasks.

Figure 4-5: Real-time mission planning for a heterogeneous networked team using the CBBA
planning framework (Aerospace Controls Lab, MIT).

89

right display shows the agent schedules, including the past history and the proposed fu-

ture schedule (on either side of the time line). The time-windows of validity for the tasks

are shown (in black) along with the actual time that the agent executed the task (colored

block). Figure 4-5 shows an example mission using this CBBA planning framework in a

real-time flight experiment at the MIT Aerospace Controls Lab4.

4.3 Distributed Planning with Network Disconnects

An issue associated with distributed planning using CBBA is that the planning algorithm

will only converge if the agents maintain network connectivity. The network graph can

change over time, but must be connected in order for agents to perform consensus. If the

network becomes disconnected, agents will not know about other agents’ bids outside of

their sub-network, nor will they be able to communicate with these other agents in order

to execute consensus. In this situation the planner may not converge and multiple agents

from different sub-networks might bid on the same tasks leading to conflicting assignments.

This section describes these communication challenges and proposes strategies for handling

network disconnects.

4.3.1 Dynamic Network Handling Protocols

For missions involving multi-vehicle teams operating in communication-limited environ-

ments, the network structure is often dynamic. As agents move throughout the environment

performing tasks, communication links between them can be dynamically created and de-

stroyed, leading to varying network topologies and potentially disconnected networks. For

example, if vehicles need to be within a certain distance of each other in order to commu-

nicate (communication radius), but if there exist some tasks such that a vehicle is forced to

travel outside of this communication radius, then the vehicle must lose connectivity with its

neighbors in order to accomplish these tasks. In these situations, CBBA fails to converge,

since the vehicle is not able to communicate its current winning bids to the other agents,

and thus the next round of replanning may assign that agent’s tasks to other agents. This

conflicting situation is undesirable since sending multiple agents to do the same tasks leads

to unnecessary fuel consumption. Furthermore, it is assumed that when vehicles get within

4An online video demonstrating the CBBA planning framework is available at:
http://acl.mit.edu/projects/cbba.html

90

communication distance of each other they will be able to resolve the assignment conflict,

but if the planner replan rate is not fast enough, they may not be able to deconflict in time,

possibly leading to collisions. It is necessary, therefore, to have a method to ensure that

task assignments remain conflict-free in the presence of network disconnects.

One strategy that ensures conflict-free assignments involves using task space partitioning

(see Section 3.1.2), where the task space is divided into disjoint sets and allocated amongst

the sub-networks prior to planning. As discussed in Section 3.1.2, for several scenarios of

interest the task partitioning problem can be very complex, and by creating a task partition

outside of the optimization, the algorithm places artificial constraints on which allocations

are available resulting in arbitrarily poor performance. Furthermore, doing task space

partitioning at a centralized location (e.g. ground station) can be cumbersome, and involves

having the centralized system partition the task space, and communicate the partition to

the corresponding agents in the respective sub-networks, where each sub-network can then

run distributed local planners. An alternate strategy is to have the agents locally partition

the task space themselves. This can be accomplished by only allowing bids on tasks that

are currently carried by agents in their specific sub-networks (including tasks won and new

tasks that agents know about locally). This strategy ensures conflict-free assignments if

the tasks each agent carries are unique, since viable tasks are only shared locally within

each sub-network. Therefore, this local adjustment of the available task lists guarantees

conflict-free team assignments in the presence of network disconnects, without requiring

the intense communication and computational overhead associated with a ground station

performing centralized a priori task space partitioning at every replan iteration.

In this work, three different methods of handling varying network topologies are com-

pared. The first involves the default CBBA behavior, where all agents know about and are

free to bid on any task in the entire task list (No task list adjustment). If the network is

disconnected, the task allocation algorithm will run locally within each sub-network, and

the global allocation may contain conflicting assignments between agents in different sub-

networks. The second strategy requires that the mission control center perform task space

partitioning, where the tasks are uniquely distributed amongst the agents by assigning each

task only to the closest compatible agent (Central task list adjustment). Agents can then

run the task allocation algorithm locally within their sub-network over the set of tasks that

are assigned to agents in that sub-network to re-optimize the allocation if a better assign-

91

ment is achievable. This approach guarantees conflict-free assignments but requires the

mission control center to redistribute the entire task list amongst the agents every time a

replan is required, which for realistic missions would involve significant communication and

computational overhead, limiting the real-time performance of the team. The third strategy

considered is the local distributed algorithm proposed in this thesis, and involves replanning

locally within each sub-network over the set of tasks that are currently in the paths and in

the new task lists for all agents within that sub-network (Local task list adjustment). To

ensure that the new task lists are unique between agents, the mission control center notifies

only the closest compatible agent every time a new task is created. Since each agent’s

paths and new task lists are unique, running CBBA locally within each sub-network will

lead to conflict-free assignments for the entire team. This local strategy has the additional

benefit that each sub-network can decide to replan on their own schedule, as opposed to the

centralized strategy that synchronizes replans between the sub-networks by distributing the

task lists to all sub-networks at the same time. This can reduce computational overhead if

certain sub-networks do not need to replan (i.e. nothing has really changed).

Both the central and local task list adjustment methods require that the mission con-

trol center maintain updated agent and task information, however, the local adjustment

method requires that the mission control center communicate with the closest agent once

per new task, whereas the central adjustment method requires communication messages to

redistribute all the current tasks amongst the agents every time a replan is required. Thus

the local adjustment method significantly reduces the amount of communication overhead

required by the mission control center, while still ensuring deconflicted task assignments

given disconnected agents. The next section describes experiments comparing these three

different methods.

4.3.2 Example Applications

Simulation Results

The scenario used to test the different task adjustment approaches described above involved

a team of 12 heterogeneous agents (6 UAVs and 6 ground robots). The simulation was

initialized with 12 UAV tasks with random start times, 40 sec time windows and 5 sec

durations. Once the UAV tasks were started a secondary ground robot rescue task was

92

created for each UAV task. Additional pop-up UAV tasks were created at 5 sec intervals

and the task allocation algorithm replanned every 2 sec. The simulation consisted of a

mission control center, a network detector, the distributed planning algorithms, and local

agent simulations (see Figure 4-3). The network detector used the vehicle positions and

a communication radius parameter to determine if two vehicles were able to communicate

and returned a list of subnetworks. The local agent simulations implemented models of the

vehicles to execute the tasks in each agent’s path. The mission control center maintained the

list of tasks by creating pop-up tasks and pruning completed tasks from the list, in addition

to implementing the responsibilities for the different task adjustment methods described

in the previous section. The overall mission score was obtained by adding the individual

scores for the agents using the score function described in Section 4.2.2.

Using this simulation infrastructure as a testbed, the three methods described in the

previous section were implemented, and Monte Carlo simulations of 200 iterations were

executed to compare the mission performance for these three approaches under different

communication radii. Figure 4-6 shows the overall mission scores, the number of completed

tasks and the team fuel consumption as a function of the communication radius normalized

by the maximum distance of the theater of operation. The results show that for all three

methods the mission score increases as the communication radius increases, since agent

coordination improves with communication. With a normalized communication radius of

about 0.3 and higher and with a team of 12 agents, the network remains connected in

most cases and all three methods yield similar performance. With less agents this com-

munication radius threshold would be higher, since for a given communication radius, it

is more likely that the network would lose connectivity with fewer agents. The baseline

case (no adjustment) is seen to have the lowest score and highest fuel consumption, espe-

cially at low communication radii. This is because without task list adjustments there will

be many assignment conflicts between different subnetworks, resulting in unnecessary fuel

usage from having multiple agents attempt to perform the same tasks as well as a lower

number of overall completed tasks (since agents are busy traveling to tasks that they will

never accomplish). As the connectivity decreases and the number of subnetworks increases

this problem becomes worse. With task list adjustments the mission performance greatly

improves as seen in the results for both the central and local task list adjustment methods.

Since the task allocation is guaranteed to be conflict-free over the entire team there is no

93

Figure 4-6: Comparison of mission scores, completed tasks and fuel consumption as a
function of communication radius for different network handling protocols.

excess fuel usage and the total number of completed tasks is higher since the coordination

of the team is improved. The central adjustment method has lower total fuel consumption

than the local adjustment method, however, as described in the previous section, this strat-

egy involves redistributing all tasks amongst agents at every replan iteration, and thus the

communication requirements associated with this strategy do not scale well with increasing

numbers of agents and tasks. The local adjustment method achieves a similar number of

completed tasks as the central adjustment method, and although the fuel usage is slightly

higher (less efficient paths), the communication overhead required to implement this local

adjustment strategy is significantly lower (one message per new task to only one agent).

94

Experimental Results

Flight experiments for the above scenario were conducted at the MIT Aerospace Controls

Lab for a heterogeneous team of 6 agents (3 quadrotor air vehicles and 3 ground vehicles),

with a normalized communication radius of 0.1. CBBA with time-varying score functions

was used to perform the task allocation and the different replanning architectures with task

list adjustments described in the previous sections were implemented. The flight results,

shown in Table 4.1, exhibit similar trends to those shown in the simulation results. Both

the central and local adjustment methods achieved similar scores and number of tasks com-

pleted. The central adjustment method performed slightly better than the local adjustment

method, with a lower overall fuel consumption as expected, but with a higher computational

and communication overhead. With no task list adjustments the team performance was

fairly poor with more fuel consumed and less overall tasks completed.

Table 4.1: Flight Test Results

Adjustment Method Score Tasks Fuel

No Adjustment 897.32 22 111.35

Central Adjustment 1561.44 37 62.79

Local Adjustment 1458.46 34 71.51

Overall, the simulation and experimental flight tests showed that implementing local

task list adjustments can drastically improve mission performance in low communication

environments, with only marginal increases in required computational overhead, validating

the proposed approach. For more details, the reader is referred to [174].

4.4 Ensuring Network Connectivity in Dynamic Environments

The previous section introduced strategies to handle communication disconnects. Some

domains, however, require that the team satisfy connectivity requirements during mission

execution, since multi-vehicle systems rely on communications to exchange command and

control messages and remotely sensed mission data. The inability to communicate sensor

data to a base station in real time (e.g. live video) may render the multi-agent system

ineffective [104]. Furthermore, failure to properly exchange command and control messages

can lead to potentially dangerous system failures. This section presents a cooperative dis-

95

Figure 4-7: Example mission scenario illustrating the benefits of cooperative planning in
communication-limited environments. The left box (Initial Environment) shows the initial
mission scenario: 4 agents (blue circles) with limited communication range, a base station
(red diamond), and 3 tasks of different values (gray x’s). The black lines denote connectiv-
ity. On the right are 3 different planning strategies. Box A (Naive Task Assignment) shows
the team’s actions when communication constraints are not considered. Box B (Network
Prediction) depicts a conservative solution where each agent detects its own constraint vio-
lations and drops tasks, but does not collaborate with other agents explicitly. Finally, Box C
(Planning with Relays) shows a cooperative plan where some agents act as communication
relays for others, increasing mission performance.

tributed planning algorithm that ensures network connectivity for a team of heterogeneous

agents operating in dynamic and communication-limited environments. The algorithm,

named CBBA with Relays, builds upon CBBA with time-varying score functions described

in 4.2. Information available through the consensus phase of CBBA is leveraged to predict

the network topology and to propose relay tasks to repair connectivity violations. Under-

utilized agents can then be employed as communication relays, improving the range of the

team without limiting the scope of the active agents, thus improving mission performance.

The CBBA with Relays algorithm ensures network connectivity during task execution but

still preserves the distributed and polynomial-time guarantees of CBBA. The next sections

describe the scenario and the algorithm in more detail, and results are presented to validate

the algorithm through simulations and experimental indoor and outdoor field tests.

4.4.1 Scenario Description

Consider the scenario shown in Fig. 4-7 where agents must perform surveillance around a

base station. Vehicles are tasked to select locations to stream live video back to the base,

however, agents have a limited communication radius, as in the previous section, and cannot

96

successfully transmit data if disconnected from the base. The left box of Fig. 4-7 shows

the initial environment with 4 agents, a base station, and 3 possible tasks with associated

values. The halos around each agent and around the base station depict circles of half of

the communication radius, therefore, their intersections signify connectivity. Box A (Naive

Task Assignment) shows the results of a plan made without considering communication

constraints, where a disconnected network occurs and agents 2 and 4 receive a score of 0

for their tasks since they cannot stream data back to the base.

To prevent disconnects, communication constraints can be explicitly considered in the

planning process. Task allocation information, such as task locations and planned execution

times, can be leveraged by the agents to predict the network topology at execution. For

example, in Box B of Fig. 4-7 (Network Prediction) agents predict the network topology

for the proposed assignment and drop tasks that cause disconnects (agents 2 and 4 both

drop their assignments and the mission results in only one serviced task). This approach

guarantees network connectivity, but is conservative because agents can only accomplish

tasks in the local vicinity. An improved solution is to use some agents as communication

relays, where data can be transmitted back to the base station through neighboring agents.

This requires explicit cooperation between agents to determine where relay tasks are re-

quired, which agents should execute these relay tasks, and which agents can execute the

main mission tasks. Box C of Fig. 4-7 (Planning with Relays) illustrates this cooperative

scenario, where agents predict the network connectivity, detect the potential disconnects,

create relay tasks that fix these disconnects, and propose the relay tasks to the rest of the

team. Here, Agents 3 and 4 drop their assignments to service relay tasks proposed by Agent

2. This results in a team capability to accomplish higher value tasks, increasing the overall

mission score.

While the cooperative planning strategy proposed in the above scenario improves team

performance, its formulation is nontrivial. Predicting the topology over time can be compu-

tationally intensive as the network is dynamic. Planning algorithms are highly interdepen-

dent because the task assignment and network connectivity prediction processes are closely

coupled. This complicates network prediction, even for small perturbations in the agent as-

signments, making it difficult to optimize assignments given connectivity constraints. The

challenge of coordinating a multi-agent team to control its communication network has been

widely explored in the literature. Studies have investigated motion planning strategies for

97

teams of agents using methods such as gradient ascent [70], potential fields [224], reactive

control [100], and adaptive strategies [153] to steer vehicles to stay within communication

range of each other. Other works have explored the problem of optimizing the deployment

of designated mobile relay agents to support a network of sensor nodes, using both graph

theoretic [101, 161, 225] and network optimization schemes [61].

The CBBA with Relays algorithm presented in this section differs from previous studies

by simultaneously optimizing relay and task assignments, instead of preallocating agents to

specific roles and then solving decoupled task assignment and network connectivity planning

problems. By explicitly coupling the task assignment and relay planning processes, the team

is able to better optimize the use of agent resources given the current mission needs, leading

to improved performance and added flexibility in real-time dynamic mission scenarios.

4.4.2 CBBA with Relays

The purpose of the CBBA with Relays algorithm is to efficiently allocate agents to tasks

while ensuring that the network remains connected to a predefined base station during task

execution. In this problem, the assumption of agent independence described in Section 2.1.3

and summarized in Eq. (2.4) no longer holds, since the scores agents receive for doing tasks

are now dependent on maintaining network connectivity, and thus are functions of other

agents’ positions over time. However, within the distributed CBBA planning framework,

agents have access to other agents’ assignments and proposed task times shared through

the consensus phase of CBBA, and this information can be leveraged by each agent to

predict network connectivity at the agent’s proposed task execution times to determine

if the proposed tasks will be connected to the base station. As described in Box C of

Fig. 4-7, the network connectivity of the team can be adjusted in real-time by using free

agents as relays. The CBBA with Relays algorithm achieves this connectivity by leveraging

the task allocation capabilities of CBBA with an outer loop that enforces connectivity

constraints. In particular, given a set of initial tasks Ji that each agent i can bid on, and a

set of required relay tasks R, CBBA can be used to solve the allocation problem, creating

assignments A of agent-task pairs (here A is a set of valid assignments extracted from

(x, τ) returned by CBBA). Since CBBA does not guarantee that all available tasks will

be assigned, the assignment from a single iteration of CBBA may result in a disconnected

network. Network prediction after a CBBA execution can be used to determine if an

98

assigned task will cause the network to become disconnected at its execution time. Each

disconnected task may be removed from the task set that the current winning agent i is able

to bid on in future iterations. The form of the function that decides if a task will be removed

from the available task set is a nontrivial decision that has important implications for both

performance and convergence rate (further discussion provided later in this section). For all

remaining assigned (non-relay) tasks that are disconnected from the base, new relay tasks

are introduced. The criteria for placing these relays is that, if assigned, they would create a

connected network. The process then repeats with CBBA generating a new assignment over

the new task space that includes all available tasks and newly placed relays. The algorithm

converges when CBBA returns a connected assignment with all current relay tasks assigned.

The full CBBA with Relays algorithm is presented in Algorithms 4 and 5. For clarifi-

cation, a few functions and notation elements will be defined first:

• Ji is the subset of tasks that are currently available to agent i. J̄ = {J1, . . . ,JNa ,R}

describes the current available tasks for the team (individual agent available task sets

Ji and relay tasks R).

• Winning-Agent(j) returns the current winning agent for task j.

• Dependent-Relays(j) returns the indexes of all relay tasks that are required to be

assigned for task j to be connected to the base.

• Dependent-Tasks(r) returns the indexes of all tasks that rely on relay task r being

serviced.

• Keep-Task(j,A) returns true or false indicating whether j should be dropped. Keep-

Task(j,A) can be deterministic or stochastic, but must have the property that re-

peated calling to the function will eventually return false with probability 1 (required

for algorithm convergence).

• Place-Relays(j, J̄ ,A) creates relay tasks required to connect a disconnected task j

to the base station. The function is responsible for specifying appropriate locations,

values, and time-windows for these relay tasks (further discussion is provided below).

• Predict-Disconnects(J̄ ,A) returns a set of tasks that will be disconnected at the time

of their execution given the proposed assignment A. This function iterates over the

99

Algorithm 4 CBBA-Relays(I,J)

1: Ji = J , ∀i ∈ I; R = ∅
2: J̄ = {J1, . . . ,JNa

,R}
3: while ¬ converged do
4: A ← CBBA(I, J̄) (See Algorithm 1)
5: for (r ∈ R) & (r /∈ A) do
6: (J̄ ′,A′) ← Prune-Task-Space(r, J̄ , A)
7: end for
8: Jdisconnected ← Predict-Disconnects(J̄ ′, A′)
9: for j ∈ Jdisconnected do

10: J̄ ′′ ← Place-Relays(j, J̄ ′, A′)
11: end for
12: if (J̄ ′′ = J̄) & (A′ = A) then
13: converged ← true
14: end if
15: J̄ ← J̄ ′′; A ← A′
16: end while
17: return A

assigned tasks and uses the information available in the algorithm to predict the

network structure and detect disconnects for each assigned task.

A few important algorithmic considerations are described next. In Algorithm 4, line

4, CBBA with time-varying score functions presented in Section 4.2 (see Algorithm 1) is

used as a black box that produces assignments given the set of agents I and a task list

J̄ including the initial tasks J and relay tasks R. The additional algorithmic pieces of

Algorithm 4 enforce agent cooperation and network connectivity constraints, such that,

with probability 1, CBBA will return a connected assignment. An important point to note

is that, in the Predict-Disconnects algorithm, the network prediction for each assigned task

j only involves agents that are currently executing tasks at the time of task j (termed “active

agents”). This is because “inactive agents” are subject to change their schedules to satisfy

relay tasks, and this would invalidate the network prediction if they were included. Another

important observation is that this network prediction step can be performed locally by each

agent using information available through the CBBA consensus phase, and each agent only

needs to check network connectivity during the task execution times of its assigned tasks

j, as opposed to most common approaches that involve discretizing time over the entire

duration of the mission. By performing these network predictions locally and only at select

crucial mission times, the computation associated with this algorithm remains distributed

and tractable.

The Place-Relays algorithm is responsible for creating relay tasks with locations and

100

Algorithm 5 Prune-Task-Space(r, J̄ , A)

1: J̄ ← J̄ \ {r}
2: for j ∈ Dependent-Tasks(r) do
3: for r′ ∈ Dependent-Relays(j) do
4: Dependent-Tasks(r′) ← Dependent-Tasks(r′) \ {j}
5: if Dependent-Tasks(r′) = ∅ then
6: J̄ ← J̄ \ {r′}
7: A ← A \ {r′} if r′ ∈ A
8: end if
9: end for

10: Dependent-Relays(j) ← ∅
11: keep← Keep-Task(j,A)
12: if ¬keep then
13: A ← A \ {j}
14: JWinning−Agent(j) ← JWinning−Agent(j) \ {j}
15: end if
16: end for
17: return (J̄ ′, A′)

time-windows that ensure connectivity for the main task they are designed to connect.

This process can be executed locally by each agent assigned to a disconnected task, and

is dependent on the environment and connectivity models available for that agent. For

the results in this thesis, the connectivity was modeled as a function of communication

radius, and the relays were placed between the closest pair of agents that would ensure

connectivity for the disconnected task j given the network prediction. The time-windows

and durations were set such that the relays would be in place during task j’s proposed

execution time. The reward value for the relays was equal to the bid made on task j

divided by the number of relays placed to create the connection. Note that during mission

execution, agents performing relay tasks do not actually receive a score, but they do incur

fuel penalties. In a sense, the relay scores are “virtual scores”, but setting them to fractions

of task j’s bid guarantees that the total mission scores obtained (scores for connected tasks

minus all fuel usage) will never be negative. Current research is exploring alternate ways to

place relays that explicitly consider link capacities and bit error rates, rather than simply

shortest relay distance [116, 117].

As alluded to above, the form of the Keep-Task function impacts the convergence perfor-

mance of the algorithm. In order to guarantee convergence of CBBA with Relays, agents can

only be allowed to propose relays for a disconnected task for a finite number of iterations.

Eventually, the agent will have to “give up” and add the task to its “do-not-allow” list.

In this way, the number of task choices available to the agents decreases as the algorithm

101

iterations proceed. As a reminder, relay tasks are associated with the actual tasks that

they are designed to connect, and are only valid for one iteration of the CBBA with Relays

algorithm (any unassigned relay tasks are deleted), so as the number of actual task choices

decreases, so will the number of relay tasks. Given this diminishing task space, the CBBA

with Relays algorithm will converge, since eventually every agent will have no remaining

valid tasks to bid on. Therefore, to guarantee convergence of CBBA with Relays, the only

requirement is that the Keep-Task function must return false with positive probability for

every agent-task pair, so that successive repeated calls to the function will eventually return

false with probability 1 (and thus the agent will not be able to bid on that task again).

A trivial form of the Keep-Task function is to always return false (i.e. agents only get to

try for a disconnected task for 1 iteration), since this strategy has a positive probability of

returning false which is required for convergence. This has the effect of making all agents

drop their disconnected tasks simultaneously, which causes coordination problems amongst

the agents. As an illustrative example, consider a stale-mate case, where 2 agents have tasks

assigned that are both disconnected from the base and thus both agents require relays. Since

both agents are occupied, they cannot satisfy the relay requirement for the other agent. As

a result, in the next iteration, both agents drop their tasks (and are never allowed to bid

on them again), and select other assignments instead. A more coordinated approach would

have resulted if one agent had dropped its assignment and satisfied the relay requirement

of the other agent. However, in this situation, it is difficult to predict which agent should

drop its task first and satisfy the relay requirement for the other agent. An obvious method

would be for each agent to solve a centralized problem involving both agents, and to select

the action that leads to the highest team score. This method does not scale well, however,

because this type of stalemate can happen with many more than 2 agents simultaneously

and with more than a single task per agent. Furthermore, not only do the distributed agents

need to predict their own plans, they would also need to model the decisions of all other

agents (whether they will drop their tasks, and what assignments they will select after a

possible drop), making the problem intractable even with small teams of agents.

As an alternative, a stochastic approach can be used where agents probabilistically keep

tasks for subsequent iterations. In this work, a probabilistic rule is employed, where the

function returns false with probability p that is proportional to the bid value on task j

(normalized against the maximum obtainable task score). This stochastic aspect of the

102

algorithm prevents all agents from releasing their tasks simultaneously, thus breaking the

symmetry associated with conflicted assignments, and allowing other agents the opportu-

nity to bid on relay tasks. The probability of dropping a disconnected task is proportional

to the current bid of that task, so, on average, higher value tasks are kept around longer.

For the environments considered in this thesis, this heuristic approach works well, has low

computational overhead, and is guaranteed to converge since there is a positive probability

p that the Keep-Task function will return false at any given iteration, and thus that the

disconnected tasks will be dropped (forever) from agents’ assignments. Therefore all dis-

connected tasks will eventually be unavailable to all agents with probability 1. It is worth

noting, however, that for smaller or highly structured domains more complex rules could

be developed that improve algorithm performance, but for general scenarios of interest

this probabilistic strategy performs well and, in practice, the CBBA with Relays algorithm

converged rapidly, enabling real-time applicability.

4.4.3 Example Applications

This section presents simulation and hardware results that validate the performance of

CBBA with Relays. The algorithm is compared against the two other planning meth-

ods discussed above (see Figure 4-7): the first is baseline CBBA which does not include

communication constraints in the planning process, where the algorithm fails to detect po-

tential disconnects leading to reduced mission performance (Fig. 4-7(a)); and the second

algorithm, termed CBBA with Network Prediction, involves conservatively dropping tasks

that are likely to cause network disconnects (Fig. 4-7(b)). In this algorithm, agents execute

CBBA to obtain task assignments and then predict the network structure to check whether

connectivity constraints will be violated. Tasks that will cause disconnects are dropped and

the corresponding agents are not allowed to rebid on them. The algorithm then executes

CBBA again, iterating until the team assignment remains constant and no more tasks are

being dropped.

Simulation Results

This section shows simulation results for a 6 agent dynamic mission, where the simulation

architecture consisted of a mission control center, a network detector, the distributed plan-

ning algorithms, and local agent simulations as described before (see Figure 4-3). In this

103

(a) Mission Scores (b) Number of Disconnected Tasks

Figure 4-8: Results for a single simulation run of a 6 agent mission, comparing Base-
line CBBA, CBBA with Network Prediction, and CBBA with Relays. The plots show
the achieved mission scores as a function of time, and the number of disconnected tasks
throughout the mission execution.

scenario, tasks appeared at a constant rate, with randomly distributed positions, and values

proportional to the distance from the base station (representing the fact that information

further from the base is more valuable since it is less likely to be known). The communi-

cation radius for the agents was set to 20% of the environment, and agents were only able

to execute tasks and receive rewards for them if they were connected to the base station

at the time of task execution. If they were not connected to the base, then they had to

abandon the corresponding task and move to the next one in their task list. Figure 4-8(a)

shows the mission scores as a function of time and Figure 4-8(b) shows the number of dis-

connected tasks during execution. As seen in the plots, Baseline CBBA causes significant

network disconnects leading to poor performance. CBBA with Network Prediction improves

the mission performance by preventing network disconnects, but is very conservative in the

tasks it schedules achieving only marginally higher performance. CBBA with Relays clearly

outperforms the other algorithms by allowing cooperative task execution, achieving a higher

score throughout the mission and ensuring connectivity during task execution.

To further analyze the performance of CBBA with Relays, a Monte Carlo simulation

was implemented, using the scenario described above but varying the communication radius

for the agents. Figure 4-9 shows the mean mission scores, number of tasks done, number of

disconnected tasks, and planner run-time as a function of communication radius, with 25%

104

(a) Mission Scores (b) Number of Tasks Done

(c) Average Disconnected Tasks (d) Average Planner Run Time

Figure 4-9: Monte Carlo simulation results for a 6 agent mission, comparing the performance
of Baseline CBBA, CBBA with Network Prediction, and CBBA with Relays. The plots show
the mission scores, the number of tasks done, the average number of disconnected tasks,
and the average planner run time, as a function of normalized communication radius.

and 75% error bars shown on the plots. Once again CBBA with Relays achieves higher

mission performance than the other two approaches, with higher scores (Fig. 4-9(a)) and

greater number of tasks done (Fig. 4-9(b)). Both CBBA with Network Prediction and

Baseline CBBA achieve similar number of tasks performed, however, in the baseline case

agents attempt to execute tasks which will cause disconnects, and thus waste fuel without

being able to perform the far tasks, thus leading to lower mission scores. Both CBBA

with Relays and CBBA with Network Prediction ensure network connectivity during task

execution (Fig. 4-9(c)). The planner run-time for CBBA with Relays is higher than that for

the other two algorithms, and is highest when several relays must be assigned (Fig. 4-9(d)).

105

(a) iRobot Create (b) Indoor Experimental Mission

Figure 4-10: Real-time indoor autonomous vehicle experiments, at the MIT Aerospace
Controls Lab, demonstrating CBBA with Relays. The figures show a robotic platform
consisting of the iRobot Create and an indoor experimental 6 agent mission using the
CBBA with Relays algorithm.

It drops off as the connectivity improves and also at really low communication radii5. For

the 6 agent missions considered here, at a normalized communication radii higher than 0.3

(i.e. 30% of the theater of operation) the network remains mostly connected and all the

algorithms achieve similar performance.

Experimental Results

To validate the real-time performance of CBBA with Relays, hardware experiments were

conducted at the MIT Aerospace Control Lab. For these missions, the robotic platform

consisted of iRobot Creates (Fig. 4-10(a)), equipped with an xBee-PRO wireless module

for communication, where high-bandwidth position and attitude data was provided by a

motion-capture system. Figure 4-10(b) shows a snapshot of a 6 agent mission, where the

front agent is connected to the base (further back) through two relay agents. The hardware

results for this mission scenario in Figure 4-11 are similar to those discussed in Figure

4-8, demonstrating the real-time applicability of the algorithm. Once again the mission

scores are highest using CBBA with Relays, and the algorithm ensures that no tasks are

disconnected throughout the mission.

To demonstrate the algorithm in a more operationally realistic setting, further exper-

iments were conducted in an outdoor flight testing environment using a team of UAVs,

5At very low communication radii the number of relays required is greater than the available agents,
making the tasks infeasible immediately, thus lowering the plan time.

106

(a) Mission Scores (b) Number of Disconnected Tasks

Figure 4-11: Real-time indoor experimental results for a 6 agent mission, comparing Base-
line CBBA, CBBA with Network Prediction, and CBBA with Relays. The plots show
the achieved mission scores as a function of time, and the number of disconnected tasks
throughout the mission execution.

consisting of Ascending Technologies Pelican Quadrotors (Fig. 4-12(a)) [118]. Each vehi-

cle was 2.5 lbs, had a flight endurance of 18 minutes, and was capable of GPS waypoint

navigation while communicating with the base station using a Digi-Mesh XBee 2.4 GHz

radio module. The missions were performed in software simulation and then executed in

outdoor flight tests in restricted airspace at a military facility (see Fig. 4-12(b)). Figure 4-13

shows the results of the flight experiments (solid lines) along with their simulation predic-

tions (dotted lines). As before, using CBBA with Relays agents collaborated to accomplish

valuable tasks in the search area, achieving scores which were more than double of those ob-

tained using the non-cooperative CBBA with Network Prediction strategy, and significantly

higher than the Baseline CBBA algorithm which achieved negative scores (since most tasks

resulted in failures). One disconnect did occur using CBBA with Relays in flight testing.

Due to modeling inaccuracies, imperfect state estimation, and environmental effects, one

of the UAVs actually reached a task ahead of the predicted time and therefore started it

early. Once finished, it moved on early to the next task, allowing another task dependent

on it at the predicted time to disconnect. A modification to the algorithm has since been

proposed which forces agents to wait until the predicted time to start their tasks in order to

maintain the planning schedule. This event highlights the importance of hardware testing

in environments less controlled than simulation. The results also show that the algorithm,

107

(a) Ascending Technologies Pelican Quadrotor (b) Outdoor Flight Experiment

Figure 4-12: Real-time autonomous vehicle outdoor flight experiments demonstrating
CBBA with Relays. The figures show a quadrotor UAV platform consisting of the Ascend-
ing Technologies Pelican Quadrotor, and an outdoor experimental 3 agent mission using
the CBBA with Relays algorithm.

(a) Mission Scores (b) Number of Disconnected Tasks

Figure 4-13: Real-time outdoor flight test results for a 3 agent mission, comparing Base-
line CBBA, CBBA with Network Prediction, and CBBA with Relays. The plots show
the achieved mission scores as a function of time, and the number of disconnected tasks
throughout the mission execution.

108

even without the fix, generally worked well in conditions with moderate uncertainty, and

closely followed the trends observed in simulation. More details and results for the CBBA

with Relays algorithm are available in [118, 170, 173].

4.5 Summary

This chapter presented several key extensions to the baseline CBBA algorithm proposed in

[58] to address dynamic mission planning in realistic environments. Section 4.2 proposed an

extension to CBBA that enabled optimization given time-varying score functions and dy-

namic mission scenarios (CBBA with Time-Varying Score Functions). Section 4.3 presented

strategies to ensure conflict-free solutions in the presence of network disconnects through

local task space partitioning methods. And, Section 4.4 proposed a cooperative planning

algorithm (CBBA with Relays), that builds upon the baseline CBBA framework to enable

cooperative mission execution in communication-limited environments through the use of

relay tasks, thus improving mission performance.

The algorithms presented in this chapter focused mostly on deterministic planning sce-

narios. As mentioned in Section 2.1.4, a major consideration is that planning algorithms

rely on underlying system models, which are often subject to uncertainty, and discrepan-

cies between these planner models and the actual system dynamics can cause significant

degradations in mission performance. The next chapters address this issue by proposing

stochastic planning extensions to the distributed CBBA algorithm that enable agents to

hedge against parameter uncertainty using the different stochastic metrics discussed in Sec-

tion 2.1.4.

109

THIS PAGE INTENTIONALLY LEFT BLANK

110

Chapter 5

Distributed Planning in Uncertain

Domains

As described in Chapter 2, planning algorithms rely on underlying system models which

are often subject to uncertainty. This uncertainty can result from many sources includ-

ing: inaccurate modeling due to simplifications, assumptions, and/or parameter errors;

fundamentally nondeterministic processes (e.g. sensor readings, stochastic dynamics); and

dynamic local information changes. As discrepancies between the planner models and the

actual system dynamics increase, mission performance typically degrades. The impact of

these discrepancies on the overall quality of the plan is usually hard to quantify in advance

due to nonlinear effects, coupling between tasks and agents, and interdependencies be-

tween system constraints (e.g. longer-than-expected task durations can impact the arrival

times of subsequent tasks in the path, as previously described in Figure 2-3). However,

if uncertainty models of planning parameters are available they can be leveraged within

the planning framework to create robust plans that explicitly hedge against the inherent

uncertainty to improve mission performance. This chapter proposes an extension to the

deterministic CBBA with time-varying score functions algorithm described in Section 4.2,

which enables the use of different stochastic metrics to mitigate the effects of parameter

uncertainty given probabilistic agent and task models. The Robust CBBA algorithm is de-

scribed in detail in the following sections, and results are presented to validate this robust

distributed real-time framework, showing improved performance for teams of networked

agents operating in uncertain and dynamic environments.

111

5.1 Stochastic Distributed Problem Formulation

Consider the problem definition introduced in Eq. (2.6) but where the planning parameters

θ are random variables (θ is a vector of planning parameters including elements such as

agent velocities, task durations, wind speed and direction, etc.). Assume that models of

the uncertainty are available, where θ ∈ Θ with distribution given by the joint probability

density function (PDF), f(θ). The goal of stochastic planning is to use the information

provided in f(θ) to create plans that explicitly account for the variability and coupling of

the uncertain parameters in the score functions cij .

5.1.1 Uncertain Parameter Types

The uncertain planning parameters θ involve 3 main types of variables: agent specific pa-

rameters, task specific parameters, and environment parameters. Agent specific parameters

include variables such as fuel consumption and cruise velocities, which are specific to each

agent and therefore do not usually affect the performance of other agents. Task specific

parameters could include stochastic task durations, uncertain task locations (e.g. tracking a

moving target), and other random variables that can usually be associated with individual

tasks. Environment parameters include variables that affect all agents performing tasks in

a certain area (for example, wind velocity and direction), or could be localized to specific

areas (e.g. wind in a canyon may be different than wind over a plain). The uncertain param-

eters could include combinations of these groups as well. For example, an agent executing a

certain task may have a different stochastic distribution over task duration than a different

agent performing the same task. There could also be coupling between different parameters.

For example, long task durations for some tasks may be correlated with long task durations

for other tasks (e.g. a bad sensor reading could impact target identification time as well as

the time required to search for and localize the target).

In general, accounting for all these different coupling effects is difficult, particularly in

distributed planning environments, since it would require that agents consider the coupling

between parameters with other agents when making their individual plans. An assumption

that can be made to reduce the complexity of the planning problem is that the uncertain

parameters can be partitioned among the agents so that agent scores are independent. This

assumption is valid for agent specific parameters (e.g. distributions over agent velocities

112

affect agents individually), and is also true for task specific parameters assuming conflict-

free solutions since no two agents are assigned to the same task1. Using this assumption,

agents can plan independently using their own situational awareness and planning param-

eter distributions, instead of having to coordinate with other agents during the planning

process to account for coupling between agent scores. Cases that produce coupling between

agent score functions such as environment parameters (e.g. wind direction) are much more

difficult to consider when planning in distributed environments, requiring consensus pro-

tocol modifications and additional communication requirements between agents to account

for coupling between agent assignments during the task selection process, and are therefore

beyond the scope of this thesis.

5.1.2 General Stochastic Distributed Framework

To enable real-time robust distributed planning for networked teams operating in stochastic

environments, the main questions to consider are: how does the uncertainty in planning pa-

rameters propagate through each agent’s plan due to coupling between the tasks (e.g. tem-

poral coupling), how can the stochastic optimization be distributed given the additional

complexity associated with uncertain planning parameters, and how can computational

tractability be maintained to ensure real-time performance given the additional planning di-

mensions associated with the uncertain planning parameters? The Robust CBBA algorithm

described throughout this chapter addresses these three key concerns, enabling real-time

robust planning within a distributed framework. To address the first question, the Robust

CBBA algorithm employs different stochastic metrics to propagate the effects of parameter

uncertainty through the mission score. Equation (5.1) shows the general problem formula-

tion, where the stochastic metric Mθ(·) is used to quantify the effect of uncertainty on the

mission score. There are several stochastic metrics that have been considered throughout

the literature [25, 28, 33], however, most of these have been considered within a centralized

1During the CBBA planning process, two agents can have the same task in their bundles, and therefore
their stochastic scores would not be independent. This coupling, however, is similar to the deterministic
case where agents’ bundle scores could be inaccurate mid-iteration, since one of the agents would eventually
have to drop the task. Therefore, as long as the algorithm returns a conflict-free solution, the final result
will be such that agent score distributions are independent.

113

optimization framework (as described in Eq. (5.1)).

max
x,τ

Mθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.1)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

In order to use these stochastic metrics within the Robust CBBA distributed planning

framework, the sum over agent scores must be extracted from the metric Mθ(·) in Eq. (5.1)

(i.e. no coupling between agents due to the stochastic metric). If this is possible, then the

centralized optimization in Eq. (5.1) can be broken down into Na distributable sub-problems

of the form shown in Eq. (5.2), where each agent i can solve its own individual optimization.

max
xi,τ i

Mθ

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.2)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

τij ∈ {R+ ∪ ∅}, ∀j ∈ J

Given the distributed stochastic problem statement of Eq. (5.2), the only coupling between

agents is through the conflict-free constraint, as specified previously in Eq. (2.3), which can

be handled through the CBBA consensus protocol as before. Since agent scores are assumed

to be independent, if the stochastic metric is distributable, agents can build their bundles

independently using their own situational awareness and planning parameter distributions,

instead of having to communicate with other agents while building their bundles to account

for coupling between agent scores. As a result, the number of messages required between

114

agents to come to consensus on plans is only associated with ensuring that plans remain

conflict free, and is thus equivalent to the deterministic CBBA message requirements.

5.1.3 Distributing Stochastic Metrics

In this section, we revisit the stochastic metrics introduced in Section 2.1.4 and show how

these can be used within the distributed Robust CBBA planning framework. The first

metric considered is the expected-value metric which optimizes average mission performance

given the stochasticity in the system [28]. Using this metric, a stochastic version of Eq. (2.6)

can be written as follows,

max
x,τ

Eθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.3)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

Note that optimizing Eq. (5.3) is not the same as deterministically planning using the

mean values of uncertain planning parameters θ̄ = Eθ{θ}. Using just the mean values fails

to capture the coupling of uncertainty in the score function, leading to potentially poor

planning performance. Leveraging the fact that the expected value of a sum of random

variables is equivalent to the sum of the expected values, i.e.

Eθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 =

Na∑
i=1

Eθ

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.4)

the sum over agents can be moved outside of the stochastic metric (note that Eq. (5.4) is

true even when agent score functions are not independent). Thus the centralized problem

can be decomposed into sub-problems of the form,

max
xi,τ i

Eθ

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.5)

115

s.t.

Nt∑
j=1

xij ≤ Li,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

τij ∈ {R+ ∪ ∅}, ∀j ∈ J

where each agent i must solve the optimization in Eq. (5.5), and summing over the local

agent expected-value scores gives the global expected-value mission score.

The second metric considered in Section 2.1.4 involves maximizing the worst case per-

formance of the system, which can be used when the current mission tolerance to failure is

very low, requiring stronger performance guarantees than those provided by expected value

planning. Using this metric, Eq. (2.6) becomes,

max
x,τ

min
θ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.6)

s.t.

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

Optimizing Eq. (5.6) guarantees that the plan execution will result in a score no worse

than that predicted by the algorithm. Therefore the score returned by the planner is a

lower bound on the attainable mission performance. Unfortunately, extracting the sum

over agents out of the stochastic metric is not as straightforward as in the expected-value

case. This is because, given a sum of non-independent random variables, the value of the

uncertain parameters that cause each random variable to take on their minimum value could

be different. Therefore, it may not be possible to find a single realization of the uncertainty

θ that causes all the random variables to take on their lowest values simultaneously. Thus,

minimizing over each random variable separately and then summing over these minimum

values could give a lower score than minimizing over the sum of the random variables. In

116

particular, extracting the sum over agents out of the stochastic metric gives the following

relationship,

min
θ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 ≥
Na∑
i=1

min
θ

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.7)

For cases where the agent scores are independent random variables (i.e. θ can be partitioned

into disjoint sets between the agent score functions), the inequality in Eq. (5.7) becomes an

equality, but in the general case, the right-hand side of Eq. (5.7) provides a lower bound on

the minimum attainable mission score given the uncertainty in θ. Breaking the centralized

optimization of Eq. (5.6) into sub-problems gives,

max
xi,τ i

min
θ

Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 (5.8)

s.t.

Nt∑
j=1

xij ≤ Li,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

τij ∈ {R+ ∪ ∅}, ∀j ∈ J

where each agent i can solve the optimization in Eq. (5.8) individually, and summing over

the local agent scores gives a lower bound on the the worst-case global mission score. The

true worst-case mission score may be higher that the score predicted by the distributed

planner if there is coupling between the uncertain parameters, but for the cases considered

in this thesis, where agent scores are independent, the centralized and distributed problem

statements are equivalent, and therefore the distributed planner scores accurately predict

the worst-case mission score.

As mentioned in Section 2.1.4, maximizing the worst-case mission score is usually too

conservative, and a chance-constrained metric can be used instead, which guarantees that

the global mission performance will be at least as good as the proposed plan value within

a certain allowable risk threshold. Using the chance-constrained metric, Eq. (2.6) can be

117

modified as follows,

max
x,τ

y (5.9)

s.t. Pθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > y

 ≥ 1− ε

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

In Eqs. (5.3) and (5.6), which use the expected value and worst-case value metrics re-

spectively, the uncertain variables θ do not affect any joint constraints between agents.

Therefore, extending CBBA to include these stochastic metrics only involves modifying

the bundle construction process, and the consensus protocol of CBBA (task consensus

phase described in Section 4.1.2), which explicitly handles the joint conflict-free constraint

(Eq. (2.3)), can be used without modification as long as valid bids are available (recall that,

in distributed planning algorithms, consensus protocols are usually required to ensure satis-

faction of joint constraints between agents). Unfortunately, the chance-constrained problem

formulation considered in Eq. (5.9) includes a joint probability constraint that couples the

agents’ task assignments (2nd line of Eq. (5.9)). In this formulation, the sum over agents

cannot be easily extracted from the stochastic metric, and therefore the decomposition of

Eq. (5.2) cannot be employed. As a result, solving this optimization in a distributed manner

using the CBBA framework would require modifying the consensus protocol to ensure that

the joint probabilistic constraint is met, which is a nontrivial endeavor.

The Robust CBBA algorithm proposed in this chapter specifically optimizes distributable

stochastic metrics, such as the expected-value and the worst-case metrics, within a dis-

tributed framework. The more complex chance-constrained metric considered in Eq. (5.9)

is revisited in Chapter 6, and a robust extension to CBBA is proposed that allows an ap-

proximation of the chance-constrained problem to be solved in a distributed fashion. The

next section describes how CBBA can be modified to account for uncertainty in planning

118

parameters, focusing in particular on how stochastic scores can be computed during the

bundle building process and how valid bids can be constructed to ensure algorithm conver-

gence.

5.2 Robust Extension to CBBA

5.2.1 Computing Stochastic Scores

Within the distributed CBBA framework, agents select assignments that optimize their

own local score functions and then perform consensus amongst each other to resolve con-

flicts. These score calculations are performed using each agent’s local understanding of

the planning parameters, and CBBA is guaranteed to converge even when agents have

varying situational awareness. In the robust extension to the CBBA algorithm proposed

in this section, this property of CBBA is leveraged. In particular, within Robust CBBA,

agents use their own local situational awareness of the uncertain planning parameters and

associated distributions when building their bundles. As described in the previous section,

this requires that agents have knowledge about parameters that affect them only (e.g. agent

specific parameters, task parameters for relevant tasks, and environment parameters for rel-

evant operating areas), and irrelevant information that doesn’t affect the particular agent

scores can safely be ignored. It is important to note that, in situations where agent scores

are coupled (for example, through coupled tasks with other agents, or through environment

parameters affecting all agents), the distributed CBBA framework can still be used and

is still guaranteed to converge, although the performance of the team may decrease if the

coupling is not explicitly considered.

When optimizing agent scores, one main issue with evaluating the stochastic planning

metrics described in the previous section is that the agent score functions consist of sums

of non-independent heterogeneous task scores. Therefore, computing the distribution of an

agent’s score involves combining task score distributions for all tasks in the agent’s assign-

ment in nontrivial ways (e.g. convolution if independent), which is only tractable given very

specific distribution types (e.g. i.i.d random variable, Gaussian distributions, exponential-

Erlang, etc.). As a result, analytically computing the integrals, convolutions, and coupling

effects associated with the stochastic metrics in closed form is usually impossible unless

several limiting assumptions on the allowable distributions, uncertainty models, and score

119

functions are made. Another issue particular to this problem, which complicates these

computations even further, is that evaluating scores for agents’ paths implicitly involves

selecting the optimal task execution times for the current agent’s path. Recall that, in the

deterministic case, the score that agent i obtains for a given path pi is,

Jpi =

Nt∑
j=1

cij(τ
?
ij(pi),θ) xij (5.10)

where xij = 1 for all tasks in the path, and where the optimal task execution times τ ?i are

found by solving,

τ ?i = argmax
τ i

Nt∑
j=1

cij(τij(pi),θ) xij (5.11)

In stochastic environments, the task execution times are usually random variables which are

subject to the uncertainty in the system. This makes the step of computing the “optimal”

execution times nontrivial, since these times may be different for different realizations of

the uncertainty. Therefore, when optimizing stochastic path scores, the computation must

take into account that different optimal execution times may result for a given path subject

to the uncertainty in the environment. For example, using the expected-value metric, the

stochastic path score is given by,

Jpi = Eθ

Nt∑
j=1

cij(τ
?
ij(pi),θ) xij

 =

∫
θ∈Θ

 Nt∑
j=1

cij(τ
?
ij(pi),θ) xij

 f(θ) dθ (5.12)

where for each realization of the uncertainty θ ∈ Θ the optimal task execution times τ?ij

must be determined. Analytically computing these effects is very difficult, motivating the

use of sampling methods to approximate these stochastic score calculations. An example of

the sampling process used within the Robust CBBA framework is provided in Algorithm 6.

Here, numerical techniques that efficiently sample from f(θ) can be used to approximates

the distribution of θ, generating a set of representative samples, {θ1, . . . ,θN} (Alg. 6, line

1), with corresponding probability weights {w1, . . . , wN} (Alg. 6, line 2), where
N∑
k=1

wk = 1.

120

Algorithm 6 Compute-Stochastic-Path-Score(pi) - (Expected Value)

1: {θ1, . . . ,θN} ∼ f(θ)

2: {w1, . . . , wN} ← {w1, . . . , wN}/
N∑

k=1

wk

3: for k ∈ {1, . . . , N} do

4: τ ?
i = argmax

τ i

Nt∑
j=1

cij(τij(pi),θk) xij

5: Jk
pi

=

Nt∑
j=1

cij(τ
?
ij(pi),θk) xij

6: end for

7: Jpi
=

N∑
k=1

wk J
k
pi

8: return (Jpi
)

Using sampling, an approximation to the expected-value score for path (pi) is given by

Ĵpi =
N∑
k=1

wk

 Nt∑
j=1

cij(τ
?
ij(pi),θk) xij

where the expected value integral is replaced by a summation over the individual weighted

samples. Note that within this sampling approximation, the optimal times τ?ij can be

deterministically computed for each realization of the uncertainty θk (Alg. 6, line 4), along

with the associated path scores (Alg. 6, line 5). These sample path scores can then be

used to approximate the stochastic metric, where for the expected-value path score the

approximation is given by a sum over weighted score samples (Alg. 6, line 7). In addition

to maintaining analytic tractability, another advantage of using sampling is that, although

stochastic planning increases the computational complexity of the planning process with

respect to the deterministic formulation, the number of samples can be adjusted given the

available computational resources. Therefore, there is a trade-off between the accuracy of

the approximation versus the amount of time required for the algorithm to run, and real-

time convergence guarantees can be preserved by lowering the amount of samples used. In

particular, the robust extension to CBBA proposed in this chapter preserves polynomial-

time convergence (although the plan time does increase roughly linearly with the number

of samples N).

When computing the worst-case path score given the uncertainty in θ, the sampling

step can be avoided if intuition about how the uncertainty affects the score function is

121

Algorithm 7 Compute-Stochastic-Path-Score(pi) - (Worst-Case Value)

1: τ ?
i = argmax

τ i

Nt∑
j=1

cij(τij(pi),θworst) xij

2: Jpi =

Nt∑
j=1

cij(τ
?
ij(pi),θworst) xij

3: return (Jpi)

available. For example, if θ represents uncertainty in task durations and/or travel times,

then θworst can be chosen as the longest task durations and the slowest travel times. This

is illustrated in Algorithm 7, where the worst-case path score can be analytically computed

given the parameter realization θworst. If the score functions are more complex, and intuitive

predictions of how the uncertainty will propagate are hard to make, then the sampling

approach used in Algorithm 6 can be employed instead, where line 7 is replaced by Jpi =

min
k
Jkpi . One issue with using sampling to represent the worst-case performance is that

many more samples are required to ensure that low probability catastrophic events are

adequately represented. This increases the computational complexity of the algorithm and

thus the convergence time (higher N). The field of rare event simulation has addressed this

issue by employing smarter sampling methods that focus the sampling process on the low

probability zones of the distribution (e.g. importance sampling [11]). These methods could

be used to sample efficiently if intuitive predictions on worst-case performance are hard to

make.

As discussed in Section 4.1.3, one primary concern with using the distributed CBBA

framework is that score functions within CBBA must satisfy a submodularity condition

referred to as diminishing marginal gains (DMG) in order to ensure algorithm conver-

gence [58]. If the score functions do not satisfy DMG, then the algorithm could lead to

cycles between agents’ assignments, thus preventing convergence (see Section 4.1.3 for an

example). Unfortunately, explicit coupling in the score functions between tasks can often

violate this submodularity condition. This is especially true in stochastic scenarios where

task scores are coupled through the uncertainty in the planning parameters, and even when

the analytic stochastic metrics employed do satisfy submodularity, the use of numerical

sampling techniques to compute stochastic path scores could violate DMG, and therefore

CBBA is not guaranteed to converge.

As an illustrative example, consider a deterministic time-critical situation with constant-

122

Figure 5-1: Example UAV mission with 1 agent and 2 tasks.

velocity agents, where task scores decrease as a function of time. Figure 5-1 shows an

example of this scenario, where an agent has a choice between a far task and a closer task. In

this situation, agent i will take longer to reach Task 2 than Task 1, and therefore the score the

agent computes for Task 2 is lower than that of Task 1. Thus Task 1 is added to the bundle

first. The agent then recomputes a score for Task 2 (which is solely a function of time), and

due to the triangle inequality, since the travel distance to Task 2 is now longer than in the

previous case without Task 1 in the bundle, the score for Task 2 is necessarily lower than

before, satisfying the DMG condition. In uncertain planning environments, however, if the

agent velocity is stochastic and sampling methods are employed, it is possible to unluckily

select “low-velocity samples” when computing the original score for Task 2, and then “high-

velocity samples” when computing the second score for Task 2. Therefore, the algorithm

could produce a higher score for Task 2 after Task 1 is added to the bundle, violating the

DMG property required by CBBA. As the number of samples goes to infinity, the expected-

value score functions may satisfy submodularity, however, given a fixed number of samples,

the DMG property is not guaranteed, and therefore Robust CBBA is not guaranteed to

converge (as shown in Section 4.1.3, even a violation of DMG by a small value ε can cause

cycles between agents). In these stochastic settings, designing heuristic approximate score

functions that ensure submodularity in bids is a nontrivial exercise, limiting the use of

the original CBBA algorithm. This property was identified as part of this work, and it

was demonstrated through numerical simulations that this is a crucial issue, leading to

cycles within the planner where the algorithm fails to converge [172]. To address this

major issue, recent work by Johnson et al. [106] proposed a key algorithmic extension that

embeds the DMG condition into the algorithmic framework itself, enabling the use of CBBA

with arbitrary (nonsubmodular) score functions. This algorithmic extension was leveraged

123

within the Robust CBBA framework proposed in this thesis, enabling the use of stochastic

metrics while guaranteeing algorithm convergence in distributed stochastic environments.

The extension to enable CBBA with nonsubmodular score functions is briefly described in

the following section.

5.2.2 CBBA with Nonsubmodular Score Functions

As mentioned in Section 4.1.3, the submodularity requirement imposed by the DMG con-

dition limits the types of objective functions and problem representations allowed within

the CBBA framework. For many natural problems of interest, it would be beneficial to

allow the use of supermodular objective functions (e.g. clustered tasks, traveling salesman

problems, dependent tasks). In recent work [106], we implemented an extension to CBBA

proposed by Johnson that enables the algorithm to use score functions that do capture

these nonsubmodular effects without having to sacrifice convergence guarantees. A short

description of the algorithmic extension is provided here. For further details and proofs of

performance and convergence guarantees the reader is referred to [106].

The basic idea behind this nonsubmodular extension to CBBA stems from the key insight

that the scores themselves need not be submodular, but the bids agents make and share with

each other must satisfy DMG. Therefore, as long as the bids shared between agents appear

to be submodular, CBBA is guaranteed to converge. The proposed algorithmic solution

in [106] involves using a bid warping function, to adjust the task scores before placing

bids, where the resulting bids appear as if they had been made using a submodular score

function. This can be accomplished as follows. First, the marginal scores for all available

tasks are computed using whatever internal (possibly nonsubmodular) score function the

agent wishes to use, ∆Jij(pi), ∀j ∈ J \pi. Next, each of these task scores are warped using

the following bid warping function,

sij = min(∆Jij(pi), yik), ∀k ∈ pi (5.13)

where the yik values are the current bids that agent i has placed on all the tasks in its bundle,

k ∈ pi (recall that if a task k is in agent i’s bundle, then yik holds the corresponding bid

value, since agent i believes it is the winner of k and therefore zik = i). The bid warping

function in Eq. (5.13) guarantees that each new bid made cannot be greater than the bids

124

already placed for tasks in the agent’s bundle, thus ensuring that all bids satisfy DMG, as if

they were made using a submodular score function. Finally, these new bid values, sij , must

be checked against the winning bid list as before, where hij = I(sij > yij) is computed for

each available task j ∈ J \ pi. A key point is that the best task, however, is selected using

the true score functions instead of the warped bid values,

j? = argmax
j /∈pi

∆Jij(pi) hij (5.14)

This separation between scores and bids allows agents to rank their preferences for tasks

using the true (possibly supermodular) score functions yet preserves the convergence guar-

antees of the original algorithm associated with DMG, thus enabling higher performance.

Results are provided in [106] demonstrating the performance improvements achieved in

several different planning scenarios by using this novel nonsubmodular extension of CBBA.

5.2.3 Stochastic Bundle Construction

This section describes the stochastic bundle construction process used in Robust CBBA. The

full process is summarized in Algorithm 8 and is explained below as follows. As described

in Section 4.2, the bundle construction phase of CBBA with time-varying score functions

involves each agent iterating over all available tasks j ∈ J \pi, where each task j is inserted

into the path at all possible locations nj to find the optimal position in the path (Algorithm

8, line 3). Using the expected-value stochastic metric, this involves solving the following

optimization for each j,

J(pi⊕n?
j
j) = max

nj
Eθ

Nt∑
j=1

cij(τ
?
ij(pi ⊕nj j),θ) xij

 (5.15)

and for the worst-case performance metric, the optimization becomes,

J(pi⊕n?
j
j) = max

nj
min
θ

Nt∑
j=1

cij(τ
?
ij(pi ⊕nj j),θ) xij

 (5.16)

where in both cases the effect of the uncertainty must be propagated throughout the entire

path. For the applications considered in this thesis, the uncertainty in the planning process

includes variables such as task durations, task positions, and agent velocities. This affects

125

Algorithm 8 Robust-CBBA-Bundle-Construction(Ai, Ci,J)

1: while |pi| ≤ Li do
2: for j ∈ J \ pi do
3: J(pi⊕n?

j
j) ← max

nj

Compute-Stochastic-Path-Score(pi ⊕nj
j)

4: ∆Jij(pi) = J(pi⊕n?
j
j) − Jpi

5: sij = min(∆Jij(pi), yik), ∀k ∈ pi

6: hij = I(sij > yij)
7: end for
8: j? = argmax

j /∈pi

∆Jij(pi) hij

9: if (∆Jij?(pi) hij? > 0) then
10: bi ← (bi ⊕end j

?)
11: pi ← (pi ⊕nj

? j?)
12: τ i ← (τ i ⊕nj

? τ?ij?(pi ⊕nj
? j?))

13: zij? ← i
14: yij? ← sij?

15: else
16: break
17: end if
18: end while
19: Ai ← {bi,pi, τ i}
20: Ci ← {zi,yi, ti}
21: return (Ai, Ci)

the times at which tasks will be executed, thus affecting their scores. In particular, insert-

ing a task into the path will impact arrival times for all subsequent tasks, subject to the

uncertainty in the system. The stochastic metrics in Eqs. (5.15) and (5.16) capture this

coupling between task scores. Note that, as mentioned before in Section 5.2.1, evaluating

these stochastic metrics involves finding the optimal task execution times τ?ij for all tasks

in the path, for each possible realization of the uncertain parameters θ. Given the exten-

sive coupling and the complications associated with optimizing the task execution times,

sampling methods can be used to approximate the stochastic path scores in Eqs. (5.15) and

(5.16) instead. In particular, in Algorithm 8, line 3, the function Compute-Stochastic-

Path-Score(pi⊕nj j) numerically computes the score associated with path (pi⊕nj j) using

Algorithm 6 for the expected-value metric and Algorithm 7 for maximization of worst-case

performance, as described previously in Section 5.2.1.

The marginal score for each task j is then given by the increase in agent score as a result

of adding task j to the path,

∆Jij(pi) = J(pi⊕n?
j
j) − Jpi (5.17)

126

as computed by the corresponding stochastic metric (Algorithm 8, line 4). Once the

marginal scores ∆Jij(pi) for all available tasks j ∈ J \ pi are computed, the next step

is to determine what bid values to make for each task. This involves using the bid warping

function described in Section 5.2.2, where each bid is given by

sij = min(∆Jij(pi), yik), ∀k ∈ pi (5.18)

as shown in Algorithm 8, line 5. The bids are then checked against the current winning bid

list as before, where hij = I(sij > yij) (Algorithm 8, line 6), and the optimal task to add

to the bundle is computed using,

j? = argmax
j /∈pi

∆Jij(pi) hij (5.19)

where the true internal score values are used to select the highest performing task (Algorithm

8, line 8). Finally, if the score for j? is positive, the bundle, path, times, winning agents

list, and winning bids list are updated to include the new task,

bi ← (bi ⊕end j
?)

pi ← (pi ⊕nj? j?)

τ i ← (τ i ⊕nj? τ?ij?(pi ⊕nj? j?))

zij? = i

yij? = sij?

This process repeats until no new tasks can be added to the bundle (either because the

bundle limit Li is reached or because no new tasks with positive scores remain).

Note that in this framework, the use of marginal scores within the bundle construction

process allows the algorithm to appropriately represent the impact of the uncertainty during

every iteration. In other words, even though the bundle is being constructed sequentially,

computing the marginal score for tasks requires computing the effect of adding that task

on the entire bundle, therefore the coupling between tasks is correctly captured within a

consistent framework. Furthermore, even though accounting for uncertainty increases the

computational complexity of the planning process with respect to the deterministic problem

127

formulation, using numerical methods to compute stochastic score functions allows the

number of samples to be adjusted given the available computational resources. Therefore,

this robust extension to CBBA preserves polynomial-time convergence (although the plan

time does increase roughly linearly with the number of samples N).

The sampling methods discussed in this section involve each agent independently sam-

pling from its own local knowledge of the parameter distributions. As such, the number

of samples used by each agent can be independently selected given each agent’s available

computational resources. The accuracy of the internal scores and bids used within Robust

CBBA will depend on how good the local situational awareness is for each agent and how

many samples are used. The Robust CBBA algorithm, however, is guaranteed to converge

even when the situational awareness between agents is different or the bids computed are

inaccurate, since it leverages the consensus protocol of the original CBBA algorithm which

guarantees convergence even with varying situational awareness between agents [58]. In sit-

uations where there is coupling between agent score functions (e.g. through coupled tasks

with other agents, or through environment parameters affecting all agents), the distributed

CBBA framework can still be used and is still guaranteed to converge, although the per-

formance of the team may decrease if the coupling is not explicitly considered. In these

environments, agents would need to share information about the uncertainty to capture the

coupling explicitly and improve team performance. Sharing samples between agents would

typically require too much communication and thus seems impractical. Current research is

considering hyper-parameter consensus methods, where agents can share knowledge about

planning parameter distributions (means, variances, etc.) to improve situational awareness

and thus increase team performance. In scenarios with explicit coupling, agents might want

to share a few representative sample values (e.g. worst-case samples, sigma-points, samples

of largest KL-divergence from neighboring agents’ distributions, etc.), but deciding what

these should be is a nontrivial question which is beyond the scope of this thesis. The next

section provides results for example applications validating the performance of the Robust

CBBA algorithm proposed in this chapter.

128

5.3 Example Applications

The distributed Robust CBBA algorithm was implemented in simulation and tested on

time-varying UAV missions similar to those described in Section 4.2. The score functions

and task and agent parameters were similar to those considered previously in Eq. (4.13),

with task rewards defined as,

Rij(τij) =

 Rj e
−λj∆τij , tjstart ≤ τij ≤ tjend

−Rj , otherwise

where reward Rj is obtained if the task is done on time, an exponential discount is applied

to the reward to penalize late tasks according to delay ∆τij = max{0, τij−(tjstart + t̄jduration)}

(i.e. delay ∆τij represents the amount of time in excess of the expected task duration if the

task had been started on time), and finally a negative reward of −Rj is incurred for failing

to do the task within the time-window (e.g. representing loss of resources and opportunity

cost associated with committing to a task and failing to perform it). In these missions,

the length of the actual task durations for some tasks j, tjduration , were considered random

variables sampled from a gamma distribution with mean t̄jduration . Three types of tasks were

defined: high-reward high-uncertainty tasks, medium-reward tasks with low uncertainty,

and low reward tasks but with deterministic service times (same mean duration for all

tasks). Two sets of experiments were considered. The first involved using a homogeneous

team of UAVs with uncertain velocities (uniform distribution over speed), where all agents

had the same statistical properties associated with their stochastic velocities. The second

set of experiments considered a heterogeneous UAV mission, where half the team consisted

of fast but unpredictable agents (high mean and high variance), and the other half involved

slower speed but more predictable agents (lower mean and lower variance), both having

uniform distributions on velocities. This section presents results validating the performance

of Robust CBBA using the expected-value metric and the worst-case stochastic metric for

these two scenarios.

In the first set of experiments, Monte Carlo simulations were performed for stochastic

missions of the type described above, where the UAV team consisted of 6 homogeneous

agents, and the task space included 50% high-variance tasks, 45% low-variance tasks and

5% deterministic tasks. In these simulations, 3 planning algorithms were used. The first

129

0 20 40 60 80 100 120
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Total Tasks

M
ea

n
S

co
re

s

Stochastic Expected Value Scores

Baseline CBBA − Plan
Baseline CBBA − Actual
Expected CBBA − Plan
Expected CBBA − Actual
Expected SGA − Plan
Expected SGA − Actual

(a) Proposed planner scores vs. actual achieved
scores

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Number of Total Tasks

M
ea

n
T

as
ks

 D
on

e

Stochastic Expected Value Tasks Done

Baseline CBBA − Plan
Baseline CBBA − Actual
Expected CBBA − Plan
Expected CBBA − Actual
Expected SGA − Plan
Expected SGA − Actual

(b) Proposed planner vs. actual achieved tasks done

Figure 5-2: Monte Carlo simulation results for a stochastic 6 agent mission with homo-
geneous agents, comparing average mission performance as a function of the number of
total available tasks. The plots show the proposed planner output vs. the actual system
performance for 3 planning algorithms: Baseline (deterministic) CBBA which uses the
mean values of the planning parameters, the distributed Robust Expected-Value CBBA
algorithm proposed in this chapter, and a centralized expected-value sequential greedy al-
gorithm (SGA) also optimizing expected-value performance. Figure (a) shows the proposed
planner scores (dotted lines) and actual average mission scores (solid lines), and Figure (b)
shows the proposed planner tasks vs. the actual number of tasks performed.

algorithm consisted of the baseline deterministic CBBA algorithm using the mean values

for all the planning parameters (mean task durations and agent velocities). The second

algorithm was the distributed Robust CBBA framework proposed in this chapter using the

expected-value metric, where the score was computed numerically as described in Algo-

rithm 6 using N = 10000 samples. The third algorithm consisted of a stochastic centralized

sequential greedy algorithm which also optimized expected-value performance and returned

plans for all agents. Figure 5-2 shows the Monte Carlo simulation results comparing the

average mission performance of the 6 agent team, as a function of the number of total avail-

able tasks in the environment. The plots show the proposed planner output and the actual

team performance for the 3 planning algorithms described above: Baseline (deterministic)

CBBA (red), the distributed Robust Expected-Value CBBA algorithm proposed in this

chapter (cyan), and the centralized expected-value sequential greedy algorithm (SGA) also

optimizing expected-value performance (black). Figure 5-2(a) shows the proposed planner

scores (dotted lines) and the actual average mission scores achieved by the team (solid

130

0 20 40 60 80 100 120
50

100

150

200

250

300

350

400

Number of Total Tasks

S
co

re
s

Agent Planner Scores

Baseline CBBA − Agent Score
Expected CBBA − Agent Score

(a) Proposed planner scores for individual agents

0 20 40 60 80 100 120
50

100

150

200

250

300

350

400

Number of Total Tasks

S
co

re
s

Agent Expected Value Scores

Baseline CBBA − Agent Score
Expected CBBA − Agent Score

(b) Actual average scores for individual agents

Figure 5-3: Monte Carlo simulation results showing individual agent contributions for a
stochastic 6 agent mission with homogeneous agents. The results compare the agents’
average performance using Baseline (deterministic) CBBA and the distributed Robust
Expected-Value CBBA algorithm proposed in this chapter. The plots show the proposed
planner scores and actual average scores for each individual agent as a function of the
number of tasks.

lines). Figure 5-2(b) shows the number of tasks proposed by the planner (dotted lines)

and the actual number of tasks performed on average by the team (solid lines). As seen

in Figure 5-2, the Robust Expected-Value CBBA algorithm achieves higher mean mission

performance than Baseline CBBA, since the deterministic baseline planner fails to capture

the coupling between tasks, i.e. the fact that delays caused by longer than expected task

durations impact the scores for the remaining tasks in the path, leading to poor perfor-

mance. Robust CBBA is able to hedge against this uncertainty to obtain an improved plan,

leading to higher average scores and a greater number of completed tasks. It is also worth

noting that the distributed Robust CBBA algorithm achieves similar performance to the

centralized stochastic sequential greedy algorithm, validating the distributed approach. A

further interesting point is that the proposed planner scores and the number of proposed

tasks (dotted lines) using the deterministic Baseline CBBA algorithm are higher than using

Robust CBBA, even though the actual average mission scores and tasks done are lower.

This is because the deterministic CBBA algorithm tries to squeeze tasks into the current

path based on expected values of the planning parameters. Therefore it fails to capture that

taking longer than expected on early tasks will likely cause later task execution times to be

outside the task time-windows, thus resulting in task failures. As a result, the deterministic

131

0 20 40 60 80 100 120
−1500

−1000

−500

0

500

1000

1500

2000

2500

Number of Total Tasks

W
or

st
−

C
as

e
S

co
re

s
Stochastic Worst−Case Scores

(a) Proposed planner scores vs. actual achieved
scores

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Number of Total Tasks

W
or

st
−

C
as

e
T

as
ks

 D
on

e

Stochastic Worst−Case Tasks Done

Baseline CBBA − Plan
Baseline CBBA − Done
Expected CBBA − Plan
Expected CBBA − Done
Worst−Case CBBA − Plan
Worst−Case CBBA − Done
Worst−Case SGA − Plan
Worst−Case SGA − Done

(b) Proposed planner vs. actual achieved tasks done

Figure 5-4: Monte Carlo simulation results for a stochastic 6 agent mission with homo-
geneous agents, comparing worst-case mission performance as a function of the number
of total available tasks. The plots show the proposed planner output vs. the actual sys-
tem performance for 4 planning algorithms: Baseline (deterministic) CBBA, the Robust
Expected-Value CBBA algorithm (optimizing average performance, not worst-case), the
proposed Robust Worst-Case CBBA algorithm, and a centralized worst-case sequential
greedy algorithm (SGA) explicitly optimizing worst-case team performance. Figure (a)
shows the proposed planner scores (dotted lines) and actual worst-case mission scores (solid
lines), and Figure (b) shows the proposed planner tasks vs. the actual number of tasks
performed in the worst case.

planner assigns more tasks overall, but often fails to execute all the tasks in its path since

some of these tasks are pushed outside their time-windows. Robust CBBA, on the other

hand, accounts for these potential delays and will not add tasks to the path if they impact

the arrival times of high value tasks later in the path. As a result, Robust CBBA creates a

more conservative plan with fewer assigned tasks and more buffers between them, but also

succeeds in correctly executing more of these tasks, thus achieving higher scores. Figure 5-3

shows the score performance for each individual agent using the baseline CBBA algorithm

and the Robust Expected-Value CBBA algorithm. Figure 5-3(a) shows the proposed plan-

ner scores for each agent, and Figure 5-3(b) shows the average mission scores achieved by

each agent. As seen in the plots, all agents propose very similar plans and achieve similar

average scores, since the team is homogeneous, demonstrating that the CBBA algorithm

distributes the tasks evenly amongst the agents. Furthermore, each agent’s actual score is

higher using the Robust CBBA algorithm (Figure 5-3(b)), and the planner predictions are

132

0 20 40 60 80 100 120

−200

−100

0

100

200

300

400

Number of Total Tasks

S
co

re
s

Agent Planner Scores

Baseline CBBA − Agent Score
Expected CBBA − Agent Score
Worst−Case CBBA − Agent Score

(a) Proposed planner scores for individual agents

0 20 40 60 80 100 120

−200

−100

0

100

200

300

400

Number of Total Tasks

S
co

re
s

Agent Worst−Case Scores

Baseline CBBA − Agent Score
Expected CBBA − Agent Score
Worst−Case CBBA − Agent Score

(b) Actual worst-case scores for individual agents

Figure 5-5: Monte Carlo simulation results showing individual agent contributions for a
stochastic 6 agent mission with homogeneous agents. The results compare the agents’ worst-
case performance using Baseline (deterministic) CBBA, Robust Expected-Value CBBA, and
the proposed Robust Worst-Case CBBA algorithm. The plots show the proposed planner
scores and actual worst-case scores for each individual agent as a function of the number of
tasks.

more accurate as well (proposed and actual scores using Robust CBBA are much closer

than those using deterministic baseline CBBA).

In missions with low tolerance to failure, the worst-case performance is often of more

interest than the average mission performance. To compare the performance of the differ-

ent planning algorithms in these settings, the experiments described above were repeated,

this time analyzing the worst-case mission performance. In these simulations, 4 planning

algorithms were used. The first algorithm consisted of the baseline deterministic CBBA al-

gorithm using the mean values for all the planning parameters. The second algorithm was

Robust CBBA using the expected-value metric as before (optimizing average performance,

not worst-case). The third algorithm was Robust CBBA, but using the worst-case stochas-

tic metric as described in Algorithm 7, and the fourth consisted of a stochastic centralized

sequential greedy algorithm (SGA) explicitly optimizing worst-case team performance as

well. Figure 5-4 shows the Monte Carlo simulation results comparing the worst-case mission

performance of the 6 agent team, as a function of the number of total available tasks in

the environment. The plots show the proposed planner output and the actual team perfor-

mance for the 4 planning algorithms described above: Baseline (deterministic) CBBA (red),

Robust Expected-Value CBBA (cyan), the proposed Robust Worst-Case CBBA algorithm

133

0 20 40 60 80 100 120
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Total Tasks

M
ea

n
S

co
re

s

Stochastic Expected Value Scores

Baseline CBBA − Plan
Baseline CBBA − Actual
Expected CBBA − Plan
Expected CBBA − Actual
Expected SGA − Plan
Expected SGA − Actual

(a) Proposed planner scores vs. actual achieved
scores

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Number of Total Tasks

M
ea

n
T

as
ks

 D
on

e

Stochastic Expected Value Tasks Done

Baseline CBBA − Plan
Baseline CBBA − Actual
Expected CBBA − Plan
Expected CBBA − Actual
Expected SGA − Plan
Expected SGA − Actual

(b) Proposed planner vs. actual achieved tasks done

Figure 5-6: Monte Carlo simulation results for a stochastic 6 agent mission with hetero-
geneous agents, comparing average mission performance as a function of the number of
total available tasks. The plots show the proposed planner output vs. the actual system
performance for 3 planning algorithms: Baseline (deterministic) CBBA which uses the
mean values of the planning parameters, the distributed Robust Expected-Value CBBA
algorithm proposed in this chapter, and a centralized expected-value sequential greedy al-
gorithm (SGA) also optimizing expected-value performance. Figure (a) shows the proposed
planner scores (dotted lines) and actual average mission scores (solid lines), and Figure (b)
shows the proposed planner tasks vs. the actual number of tasks performed.

(blue), and the centralized worst-case sequential greedy algorithm (black). Figure 5-4(a)

shows the proposed planner scores (dotted lines) and the actual worst-case mission scores

achieved by the team (solid lines). Figure 5-4(b) shows the number of tasks proposed by

the planner (dotted lines) and the actual number of tasks performed in the worst case by

the team (solid lines). As seen in Figure 5-4, the Robust Worst-Case CBBA algorithm

achieves significantly higher mission performance in this worst-case than Baseline CBBA

or Robust Expected-Value CBBA, since these planners fail to capture the fact that really

long task execution times may occur for the stochastic tasks. Robust Worst-Case CBBA,

on the other hand, is able to explicitly maximize the worst-case performance by accounting

for the extreme values of the parameter distributions. The proposed planner scores and

the number of proposed tasks (dotted lines) were highest for the deterministic Baseline

CBBA algorithm, and the achieved performance was the lowest (solid lines), since this de-

terministic algorithm did not account for any uncertainty in the planning parameters. The

Robust Expected-Value CBBA algorithm achieved slightly better planner predictions and

134

0 20 40 60 80 100 120
50

100

150

200

250

300

350

400

Number of Total Tasks

S
co

re
s

Agent Planner Scores

Baseline CBBA − Low−Variance Agents
Baseline CBBA − High−Variance Agents
Expected CBBA − Low−Variance Agents
Expected CBBA − High−Variance Agents

(a) Proposed planner scores for individual agents

0 20 40 60 80 100 120
50

100

150

200

250

300

350

400

Number of Total Tasks

S
co

re
s

Agent Expected Value Scores

Baseline CBBA − Low−Variance Agents
Baseline CBBA − High−Variance Agents
Expected CBBA − Low−Variance Agents
Expected CBBA − High−Variance Agents

(b) Actual average scores for individual agents

Figure 5-7: Monte Carlo simulation results showing individual agent contributions for a
stochastic 6 agent mission with heterogeneous agents. The results compare the agents’
average performance using Baseline (deterministic) CBBA and the distributed Robust
Expected-Value CBBA algorithm proposed in this chapter. The plots show the proposed
planner scores and actual average scores for each individual agent as a function of the
number of tasks.

slightly higher performance than the deterministic case, since the coupling in parameter un-

certainty was being captured, but the worst-case performance was still quite low since the

algorithm was optimizing the average team performance. The Robust Worst-Case CBBA

algorithm was able to explicitly optimize the worst-case scenarios, leading to accurate plan-

ner predictions and higher worst-case team performance. As before, the distributed Robust

Worst-Case CBBA algorithm achieved similar performance to the centralized stochastic se-

quential greedy algorithm, validating the distributed approach. Figure 5-5 shows the score

performance for each individual agent using the baseline CBBA algorithm, the Robust

Expected-Value CBBA algorithm, and the Robust Worst-Case CBBA algorithm. Figure

5-5(a) shows the proposed planner scores for each agent, and Figure 5-5(b) shows the worst-

case mission scores achieved by each agent. Again, as seen in the plots, all agents propose

very similar plans and achieve similar worst-case scores, since the team is homogeneous,

demonstrating that CBBA distributes the tasks evenly amongst the agents. Furthermore,

each agent’s actual score is highest using the Robust Worst-Case CBBA algorithm (Fig-

ure 5-5(b)), and the planner predictions are more accurate as well (proposed and actual

scores using Robust Worst-Case CBBA are identical, which is not the case for the other

two algorithms).

135

0 20 40 60 80 100 120
−1500

−1000

−500

0

500

1000

1500

2000

2500

Number of Total Tasks

W
or

st
−

C
as

e
S

co
re

s
Stochastic Worst−Case Scores

(a) Proposed planner scores vs. actual achieved
scores

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Number of Total Tasks

W
or

st
−

C
as

e
T

as
ks

 D
on

e

Stochastic Worst−Case Tasks Done

Baseline CBBA − Plan
Baseline CBBA − Done
Expected CBBA − Plan
Expected CBBA − Done
Worst−Case CBBA − Plan
Worst−Case CBBA − Done
Worst−Case SGA − Plan
Worst−Case SGA − Done

(b) Proposed planner vs. actual achieved tasks done

Figure 5-8: Monte Carlo simulation results for a stochastic 6 agent mission with hetero-
geneous agents, comparing worst-case mission performance as a function of the number
of total available tasks. The plots show the proposed planner output vs. the actual sys-
tem performance for 4 planning algorithms: Baseline (deterministic) CBBA, the Robust
Expected-Value CBBA algorithm (optimizing average performance, not worst-case), the
proposed Robust Worst-Case CBBA algorithm, and a centralized worst-case sequential
greedy algorithm (SGA) explicitly optimizing worst-case team performance. Figure (a)
shows the proposed planner scores (dotted lines) and actual worst-case mission scores (solid
lines), and Figure (b) shows the proposed planner tasks vs. the actual number of tasks
performed in the worst case.

In the second set of experiments, the simulation trials described above were repeated,

but using a heterogeneous UAV team instead, where half of the agents consisted of fast but

unpredictable vehicles (high mean and high variance), and the other half involved slower

speed but more predictable agents (lower mean and lower variance), both having uniform

distributions on velocities. Figures 5-6 and 5-7 show the average mission performance for the

heterogeneous team, and Figures 5-8 and 5-9 show the worst-case mission performance. As

seen in Figures 5-6 and 5-8, the results obtained for the heterogeneous team were very similar

to those obtained for the homogeneous team scenarios. The breakdown of scores for each

agent, however, were different in these heterogeneous cases, since the agents had different

planning parameters and statistical properties. In Figure 5-7(a), the results show that the

scores proposed by the deterministic planner were higher for the high-variance agents than

the low-variance agents, since the high-variance agents had higher mean velocities as well.

The actual average performance of the high-variance agents, however, was worse than that

136

0 20 40 60 80 100 120

−200

−100

0

100

200

300

400

Number of Total Tasks

S
co

re
s

Agent Planner Scores

Baseline CBBA − Low−Variance Agents
Baseline CBBA − High−Variance Agents
Expected CBBA − Low−Variance Agents
Expected CBBA − High−Variance Agents
Worst−Case CBBA − Low−Variance Agents
Worst−Case CBBA − High−Variance Agents

(a) Proposed planner scores for individual agents

0 20 40 60 80 100 120

−200

−100

0

100

200

300

400

Number of Total Tasks

S
co

re
s

Agent Worst−Case Scores

Baseline CBBA − Low−Variance Agents
Baseline CBBA − High−Variance Agents
Expected CBBA − Low−Variance Agents
Expected CBBA − High−Variance Agents
Worst−Case CBBA − Low−Variance Agents
Worst−Case CBBA − High−Variance Agents

(b) Actual worst-case scores for individual agents

Figure 5-9: Monte Carlo simulation results showing individual agent contributions for a
stochastic 6 agent mission with heterogeneous agents. The results compare the agents’
worst-case performance using Baseline (deterministic) CBBA, Robust Expected-Value
CBBA, and the proposed Robust Worst-Case CBBA algorithm. The plots show the pro-
posed planner scores and actual worst-case scores for each individual agent as a function of
the number of tasks.

of the low-variance agents (see Figure 5-7(b)), since the higher variance in agent velocities

coupled into the task scores and propagated through the agents’ paths, negatively impacting

the average performance (e.g. higher probabilities of being late for tasks, or being outside

the task time-windows). The Robust Expected-Value CBBA planner, on the other hand,

was able to predict this coupling effect, and therefore proposed more conservative plans

(with lower scores) for the high-variance agents. This effect is seen in Figure 5-9 as well

comparing the worst-case performance for each agent. Here the Robust Worst-Case CBBA

planner accounts for the fact that the worst-case velocities achieved for the high-variance

agents are slower than for the low-variance agents (even though the mean velocities are

faster), and therefore more conservative plans are proposed for the high-variance agents

(with correspondingly lower scores).

Finally, comparisons of planner run time for the different stochastic planning algorithms

are provided in Figure 5-10, including the Baseline (deterministic) CBBA algorithm, the

Robust Expected-Value CBBA algorithm, the Robust Worst-Case CBBA algorithm, the

centralized Expected-Value sequential greedy algorithm, and the centralized Worst-Case se-

quential greedy algorithm. As shown in the plots, the worst-case robust algorithms perform

the fastest. This is because the worst-case stochastic metric employed in these scenarios

137

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

Number of Total Tasks

T
im

e
[s

ec
]

Planner Run Time

Baseline CBBA
Expected CBBA
Worst−Case CBBA
Expected SGA
Worst−Case SGA

(a) Planner run time (homogeneous case)

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

Number of Total Tasks

T
im

e
[s

ec
]

Planner Run Time

Baseline CBBA
Expected CBBA
Worst−Case CBBA
Expected SGA
Worst−Case SGA

(b) Planner run time (heterogeneous case)

Figure 5-10: Comparison of planner run time for the different stochastic planning algo-
rithms, including Baseline (deterministic) CBBA, Robust Expected-Value CBBA, Robust
Worst-Case CBBA, centralized Expected-Value SGA, and centralized Worst-Case SGA.
All computations were done in single threads, programmed in MATLAB, on an Alienware
computer with an Intel Core i7 processor and 12 GB RAM. These results show the total
computation time (for all agents combined).

exploited domain knowledge to perform the worst-case path score computations analyti-

cally instead of using samples, thus lowering the computation time. The baseline CBBA

algorithm run time is higher than for the worst-case algorithms because the number of tasks

selected (and explored) during the planning process for the worst-case algorithms is lower,

since these algorithms are very conservative, and therefore the number of iterations during

the task selection process is also lower. The expected-value algorithms use sampling to rep-

resent the stochastic path scores and are thus the most computationally intensive, however,

the algorithm run time is still reasonable and scales roughly linearly given the number of

tasks in the environment (also scales roughly linearly with the number of agents). The re-

duction in run time for the Robust Expected-Value CBBA algorithm which occurs between

100 and 120 tasks is associated with the fact that agents have more choices and are there-

fore less likely to conflict, leading to fewer iterations of CBBA. In general, the distributed

CBBA run time is a function of the number of tasks explored by each agent, the number of

conflicts between agents (and thus iterations of CBBA), and the amount of time required to

compute each path score within each agent’s bundle optimization process. Both centralized

sequential greedy algorithms were faster than their distributed counterparts, since more

iterations are required to deconflict plans using the distributed CBBA algorithms than in

138

the centralized case. These experiments demonstrate the functionality and applicability of

the algorithms proposed in this thesis, and the results in Figure 5-10 serve to illustrate the

relative run time of the different algorithms with respect to each other. As a disclaimer,

all computations were done in single threads, programmed in MATLAB, on an Alienware

computer with an Intel Core i7 processor and 12 GB RAM, and these results show the total

computation time for all agents combined. In practical real-time implementations, the com-

putation would be distributed/parallelized over several computers and written in a more

efficient language than MATLAB (e.g. C++), therefore the true computation time would

be reduced by at least a factor of N (since each agent would compute its own plans), and

would possibly be even faster given a more efficient programming language. Of course, the

distributed implementation would also have to account for communication speed between

agents, which, depending on the application at hand, may introduce further delays.

This chapter extended the deterministic CBBA with time-varying score functions algo-

rithm to optimize performance in stochastic environments, providing a distributed real-time

framework which can leverage different stochastic metrics to hedge against parameter un-

certainty given probabilistic agent and task models. There are several key features of this

Robust CBBA algorithm. Firstly, the algorithm has the ability to handle the nontrivial cou-

pling between the stochastic metrics and the decision variables, associated with optimizing

the task execution times, using sampling methods. Secondly, the algorithm leverages the

convergence guarantees of CBBA under differing situational awareness [58] to allow agents

to individually sample their uncertainty when building their bundles. The algorithm also

leverages a recent CBBA extension to allow nonsubmodular score functions within the

planning framework [106] to enable the use of sampling methods within the bundle con-

struction process. Using sampling to approximate stochastic metrics allows Robust CBBA

to maintain analytic and computational tractability, providing polynomial-time convergence

guarantees. And finally, within the distributed framework, agents can independently select

the number of samples used within the scoring functions given their own available resources,

leading to a tradeoff between solution quality and algorithm convergence time which can

be optimized given the specific mission requirements.

The Robust CBBA framework was demonstrated using the expected-value metric, achiev-

ing improvements in average team performance, but with fairly large variability associated

with mission scores. For missions where stronger performance guarantees are required, the

139

Robust CBBA framework can use a worst-case stochastic metric to optimize the lowest

achievable mission scores, where the score predicted by the planner provides a lower bound

on the achievable mission performance. However, for most scenarios of interest this worst-

case approach is too conservative, and an intermediate approach which can mitigate the

conservatism of the solution while still providing performance guarantees would be more

desirable. The next chapter describes a chance-constrained stochastic extension to CBBA

that allows finer control over the degree of conservatism used in the planner, creating robust

plans that optimize performance within allowable risk thresholds.

140

Chapter 6

Distributed Risk-Aware Planning in

Uncertain Domains

The previous chapter discussed how to extend CBBA to account for stochastic environ-

ments by optimizing expected-value plans and maximizing worst-case mission performance.

The chance-constrained formulation [45, 66, 157], which guarantees that the global mission

performance will be at least as good as the proposed plan value within a certain allowable

risk threshold, provides more flexibility over the conservatism of the solution. Unfortu-

nately, as described in the previous chapter, the chance-constrained formulation couples

agent assignments through a joint probability constraint, making distributed implementa-

tion difficult. This chapter revisits the chance-constrained formulation, and proposes an

extension to CBBA that allows an approximation of the chance-constrained problem to

be solved in a distributed fashion. The following sections provide more details about the

distributed problem formulation and the proposed approach.

6.1 Distributed Chance-Constrained Problem Formulation

Consider the chance-constrained problem formulation defined in Eq. (5.9) and repeated

in Eq. (6.1) for convenience. An intuitive illustration of the chance-constrained metric is

provided in Figure 6-1. The problem formulation in Eq. (6.1) is the chance-constrained

extension of the deterministic problem formulation considered in Eq. (2.6) with all the

simplifying assumptions described previously in Section 2.1.3. Not addressed in this thesis

is the more general chance-constrained case involving probabilistic coupled constraints,

141

Figure 6-1: Illustration of the chance-constrained metric, which involves optimizing the
worst-case performance within an allowable risk threshold ε. Here the chance-constrained
score is given by y, and can be obtained by integrating and removing the low-probability
zone, where the area under the curve is of size ε.

which are typically much harder to deal with [157]. In the general chance-constrained

formulation, this requires ensuring that constraints are satisfied within a given probability,

e.g. Pθ (G(x, τ ,θ) ≤ b) > α, for some specified probability bound α.

max
x,τ

y (6.1)

s.t. Pθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > y

 ≥ 1− ε

Nt∑
j=1

xij ≤ Li, ∀i ∈ I

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀(i, j) ∈ I × J

τij ∈ {R+ ∪ ∅}, ∀(i, j) ∈ I × J

The major difficulty with solving Eq. (6.1) in a distributed manner is that the agents’ as-

signments are now coupled through a joint probability constraint (2nd line of Eq. (6.1)).

As mentioned previously in Chapter 3, any joint constraint between the agents requires

designing adequate consensus protocols within the distributed algorithm. Therefore ex-

tending CBBA to solve the above chance-constrained problem would require modifying the

consensus process to ensure that the probabilistic constraint is met. Since this is a nontriv-

142

ial endeavor [220, 221], an alternate strategy is to formulate a distributed approximation

to the above chance-constrained formulation. This is accomplished by decomposing the

centralized problem of Eq. (6.1) into distributable sub-problems of the following form,

max
xi,τ i

yi (6.2)

s.t. Pθ

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > yi

 ≥ 1− εi,

Nt∑
j=1

xij ≤ Li,

Na∑
i=1

xij ≤ 1, ∀j ∈ J

xij ∈ {0, 1}, ∀j ∈ J

τij ∈ {R+ ∪ ∅}, ∀j ∈ J

where the chance-constrained mission score, y, is approximated by a sum over the individ-

ual agent chance-constrained scores yi (i.e. ŷ =

Na∑
i=1

yi is an approximation of the original

centralized chance-constrained mission score y). Note that in these individual agent chance-

constrained sub-problems, the allowable risk thresholds for each agent are given by εi, which

are in general not equal to the mission risk ε, and the values selected for these individual risk

allotments impact the accuracy of the approximation given by ŷ. It is therefore essential to

select proper values of the individual risk thresholds, εi, such that solving the distributed

chance-constrained optimizations in Eq. (6.2) gives a good approximation to the centralized

chance-constrained optimization (Eq. (6.1)). More details on how to select these risk values

are provided in Section 6.2.

Using this distributed chance-constrained approximation within the CBBA framework,

each agent i can solve its own chance-constrained optimization to maximize yi subject to

its individual risk threshold εi, while ensuring, through communication with other agents,

that the joint constraint for a non-conflicting solution remains satisfied (i.e. the constraint

specifying that each task can be assigned to at most one agent, as described previously in

Eq. (2.3)). The planner score for the team predicted by CBBA is then given by the sum

over the local chance-constrained agent scores. The challenge with solving this distributed

chance-constrained optimization involves developing analytic expressions that relate each

143

agent’s risk εi to the global risk ε within a theoretically sound framework, to make the dis-

tributed approximation ŷ as close as possible to the original centralized score y of Eq. (6.1).

Expressions for choosing each agent’s risks are typically analytically intractable and prob-

lem specific, so the challenge lies in developing good approximations to relate the global

and local risk thresholds, which is the subject of the next section.

6.2 Allocating Agent Risks in Distributed Chance-Constrained

Planning

As mentioned previously, a key question in this problem is characterizing how the agent

risks used in the distributed chance-constrained approximation relate to the global mission

risk. Revisiting the centralized problem statement in Eq. (6.1), the global mission score is

maximized by solving,

max
x,τ

y (6.3)

s.t. Pθ

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > y

 ≥ 1− ε

whereas in the distributed chance-constrained optimization of Eq. (6.2), each agent’s score

is maximized by solving,

max
xi,τ i

yi (6.4)

s.t. Pθ

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

 > yi

 ≥ 1− εi

and the global mission score is approximated by ŷ =

Na∑
i=1

yi. The following describes how

these two optimizations can be related.

To simplify the notation, we first define new random variables z and zi, ∀i, representing

the uncertain mission score and agent scores respectively, which are given by,

z =

Na∑
i=1

 Nt∑
j=1

cij(τij(pi(xi)),θ) xij

144

zi =

Nt∑
j=1

cij(τij(pi(xi)),θ) xij , ∀i ∈ I

where z =

Na∑
i=1

zi. Fixing values for the assignments x and the task execution times τ , the

distribution (PDF) of the mission score f(z) can be derived from the joint distribution of

the uncertainty parameters, f(θ), for each given plan specified by x and τ (note that this

distribution cannot usually be computed in closed form and numerical approximations are

often employed as described in the next section). Given a plan x and τ and the associated

random mission score z, Eq. (6.3) can be written as,

max y

s.t. Pz {z > y} ≥ 1− ε

or equivalently,

max y

s.t. Pz {z ≤ y} ≤ ε

And, using the cumulative distribution function (CDF) of the random variable z, Fz(y) =

Pz {z ≤ y}, the optimization in Eq. (6.3) can be re-written as,

max y (6.5)

s.t. Fz(y) ≤ ε

In similar fashion, given plans for each agent i, xi and τ i, and the associated random agent

scores, zi, Eq. (6.4) for each agent can be written as,

max yi (6.6)

s.t. Fzi(yi) ≤ εi

where Fzi(yi) = Pzi {zi ≤ yi} is the CDF of each agent’s score.

Given Eqs. (6.5) and (6.6) which describe the centralized and distributed chance-constrained

optimizations, the goal is to ensure that solving Eq. (6.6) for all agents i adequately rep-

145

resents solving the global optimization of Eq. (6.5). In the following derivation, we will

show that a constraint can be imposed on the agent risks εi given a global mission risk

threshold ε, and that adding this constraint to the distributed chance-constrained opti-

mization of Eq. (6.6) ensures that the solution to the distributed approximation will satisfy

the chance-constraint imposed in the centralized optimization of Eq. (6.5).

To begin the derivation, we will start from Eq. (6.5) and write successively more con-

strained problems until an equivalence with Eq. (6.6) is reached. First, we assume that

CDFs for the mission and agent score distributions are invertible, i.e. F−1
z (·) and F−1

zi (·) ex-

ist (e.g. for continuous random variables), and leveraging the fact that CDFs are monotonic

functions, Eq. (6.5) can be re-written as,

max y

s.t. y ≤ F−1
z (ε)

Next, we consider a more constrained version of this optimization given by,

max

Na∑
i=1

yi

s.t. y ≤ F−1
z (ε)

Na∑
i=1

yi ≤ y

where the decision variables yi must be maximized subject to the constraint

Na∑
i=1

yi ≤ y.

Since this is a more constrained optimization than that of Eq. (6.5), a score obtained

by summing over the values of yi that optimize this problem is guaranteed to satisfy the

constraint specified in Eq. (6.5). In similar fashion, we introduce a new constraint next

using variables F−1
zi (εi), producing a further constrained optimization,

max

Na∑
i=1

yi

s.t. y ≤ F−1
z (ε)

Na∑
i=1

F−1
zi (εi) ≤ y

146

Na∑
i=1

yi ≤
Na∑
i=1

F−1
zi (εi)

Finally, we note that when yi ≤ F−1
zi (εi),∀i, the last constraint,

∑Na
i=1 yi ≤

∑Na
i=1 F−1

zi (εi),

is always satisfied (although the converse is not true), leading to a further constrained

optimization

max

Na∑
i=1

yi

s.t. y ≤ F−1
z (ε)

Na∑
i=1

F−1
zi (εi) ≤ y

yi ≤ F−1
zi (εi), ∀i

Rearranging the equations in the above optimization and merging constraints gives the

following optimization problem,

max

Na∑
i=1

yi (6.7)

s.t. yi ≤ F−1
zi (εi), ∀i

Na∑
i=1

F−1
zi (εi) ≤ F−1

z (ε)

which looks very similar to the distributed chance-constrained approximation specified in

Eq. (6.6), but with an additional constraint imposed on the agent risk thresholds. Solving

the optimization in Eq. (6.7) ensures satisfaction of the centralized chance-constraint in

Eq. (6.5), since Eq. (6.7) was derived as a more constrained version of the original opti-

mization in Eq. (6.5) (in other words, Fz(ŷ) ≤ ε is guaranteed to be true given ŷ =

Na∑
i=1

yi

where the decision variables yi are given by solving the optimization in Eq. (6.7)). There-

fore, setting the agent risks εi such that the constraint in Eq. (6.7) is met, ensures that, by

solving the distributed approximation, the centralized chance-constraint will be satisfied.

Note that the above set of optimizations are maximized when yi = F−1
zi (εi), y = F−1

z (ε),

and y =

Na∑
i=1

yi. Therefore, for a given value of ε, and for a given plan x and τ (with xi

and τ i specified for all agents), with associated mission and agent distributions f(z) and

147

f(zi),∀i, the constraint that specifies how to set agent risks given mission risk is written as,

Na∑
i=1

F−1
zi (εi) = F−1

z (ε) (6.8)

The main practical issue associated with using Eq. (6.8) to allocate agent risks within a

planning framework is that the agent score distributions f(zi) and the mission score distri-

bution f(z) are not usually available a priori. Therefore, using Eq. (6.8) within the planner

involves approximating these score distributions with heuristics. A second challenge is that,

even if the distributions f(zi),∀i and f(z) were available, there are some risk allocations

εi that result in higher performance than others, and predicting which of these allocations

are better is nontrivial. This is explained as follows: since F−1
z (ε) can be thought of as

a constant for given Fz(·) and ε, and since the variables εi are unspecified, there are in-

finite possible solutions for setting the εi variables (all solutions that lie on the boundary

of

Na∑
i=1

F−1
zi (εi) ≤ F−1

z (ε)). Recall that the primary optimization objective of Eq. (6.1) is

to maximize the chance-constrained scores by selecting plan values x and τ that improve

performance (i.e. max
x,τ

y), therefore a question that can be asked is: when setting agent risks

according to Eq. (6.8), are some allocations of εi better than others, such that “better” plans

(x, τ) can be obtained? Answering this question is tricky, since obtaining “better” plans

involves producing plans with “better” distributions f(z) and f(zi) such that the chance-

constrained score y = F−1
z (ε) is maximized. The complexity associated with this process is

illustrated in Figure 6-2, which shows how the individual agent risks relate to the chance-

constrained mission score given a distributed chance-constrained planning framework. As

shown in the diagram, the agent risk allocations are used by the distributed planner to make

agent plans, the score distributions associated with these agent plans are then convolved

to derive the mission distribution, and finally the chance-constrained mission score can be

computed given the mission score CDF and the allowable mission risk threshold. There

are several parts of this process which make it virtually impossible to analytically derive

the relationship between agent risks and chance-constrained mission score, but the most

complex part is associated with the fact that the distributed planner will typically gener-

ate different plans given different risk allocations for εi. As a result, making predictions

about chance-constrained mission performance given different agent risk allocations is very

difficult and is thus an open research question.

148

Figure 6-2: This figure shows the process relating individual agent risks to the chance-
constrained mission score given a distributed chance-constrained planning framework. The
main pieces include the distributed planner, which uses the risk allocations to make agent
plans, a convolution block that combines the agent score distributions associated with the
agent plans to derive the mission score distribution, and a final block that computes the
chance-constrained mission score given the mission score distribution and the allowable
mission risk threshold.

In this work, we develop heuristic strategies that approximate the planner output dis-

tributions for mission and agent scores, and use these to allocate risks amongst the agents

within the CBBA framework according to Eq. (6.8). The next section describes how the dis-

tributed approximation to the chance-constrained problem presented here can be leveraged

within the stochastic CBBA framework, and how the agent risks can be set using different

heuristic strategies.

6.3 Chance-Constrained Extension to CBBA

6.3.1 Agent Risk Allocation Strategies

Although the decomposition in Equation (6.2) makes the problem easier to solve in a dis-

tributed fashion, it also introduces the additional complexity of picking the parameters εi

such that the goal of maximizing the chance-constrained score of the mission distribution,

y =

Na∑
i=1

yi, given the mission risk ε, is adequately represented. For generic task allocations,

the relationship between the mission ε and each of the agents’ εi’s is nontrivial, as described

in Section 6.2, however, given certain probability models, the complexity of picking these

values can be reduced (note that doing this efficiently is still an open research question).

This thesis addresses these issues by employing different heuristic strategies that attempt

to model the individual agents’ risks as a function of the global mission risk.

The heuristic risk allocation methods employed in this work use the expression provided

by Eq. (6.8) to determine how to set the agent risks given the mission risk. The first case

149

Figure 6-3: Illustration of the Central Limit Theorem, showing the distributions for sums
of N uniform random variables for different values of N .

considered is for teams of homogeneous agents, where all agents in the team have similar

planning parameters and underlying distributions. The heuristic strategies employed in this

case assume that the distributions of the agent scores are all identical, and that the risk

values εi will be the same for all agents. Using these assumptions, Eq. (6.8) reduces to

εi = Fzi

(
1

Na
F−1

z (ε)

)
(6.9)

where the agent risks εi are assumed to be identical. The expression in Eq. (6.9) can be

used to describe any homogeneous team, however, specifying the mission distribution f(z)

may be difficult given certain agent score distributions f(zi). In this work, we invoke the

Central Limit Theorem, and use a Gaussian distribution to approximate the mission score

(sum of agent score random variables), where the mean and variance of the distribution are

given by the sum of the means and variances of the agent distributions respectively (i.e.

z ∼ N
(
Naµi, Naσ

2
i

)
, where µi and σ2

i are the mean and variance of f(zi)). As motivation

for using this Gaussian assumption consider Figure 6-3, which shows the distributions for

sums of N uniform random variables for different values of N . The baseline distribution

is shown in the N = 1 frame, the distribution for a sum of two of these random variables

is shown in the N = 2 frame, etc. As shown in these figures, the Central Limit Theorem

converges very quickly, and with as few as 3 random variables the distributions of the

sums look approximately Gaussian. Therefore, for multi-agent teams of 3 or more agents,

approximating the mission scores as Gaussian is a reasonable assumption to make.

As a reminder, the CDF and inverse CDF expressions for a Gaussian distribution are

150

given by,

FX(x) =
1

2

(
1 + erf

(
x− µ√

2σ2

))
(6.10)

F−1
X (ε) = µ+

√
2σ2 erf−1(2ε− 1)

Using this Gaussian approximation for the mission score distribution, Eq. (6.9) can be

written as

εi = Fzi

(
µi +

√
2

Na
σi erf−1(2ε− 1)

)
(6.11)

The expression provided in Eq. (6.11) can be used with many different forms of the agent

distributions f(zi). The full derivation associated with these expressions is provided in

Appendix A. In this thesis, we explored three different heuristics for homogeneous agents,

assuming distributional forms based on Gaussian, exponential and gamma distributions

for f(zi). These three heuristic strategies are derived in detail in Appendix A and are

summarized in Eq. (6.12) below,

Gaussian : εi =
1

2

(
1 + erf

(√
1

Na
erf−1(2ε− 1)

))
(6.12)

Exponential : εi = e
−
(

1−
√

2
Na

erf−1(2ε−1)
)

Gamma : εi = 1− 1

Γ(k)
γ

(
k, k −

√
2k

Na
erf−1(2ε− 1)

)

Illustrations of the agent score distribution forms used in these three different homogeneous

risk heuristics are provided in Figure 6-4. The intuition behind using the two nonsymmetric

distributions shown in the exponential and gamma cases was that, for the types of time-

critical mission scenarios considered throughout this thesis, the score distributions for agents

tended to have probability masses clustered around maximum task rewards and diminishing

probabilities associated with obtaining lower scores. This was because arriving at a task on

time or early resulted in agents receiving the full task score, whereas arriving late (but within

the window of validity) resulted in exponentially decreasing task scores. The three heuristics

presented in Eq. (6.12) were leveraged within the distributed CBBA framework, and used

to plan for homogeneous teams operating in stochastic environments. Their performance is

compared later in Section 6.4.

151

(a) Gaussian Risk (b) Exponential Risk (c) Gamma Risk

Figure 6-4: Agent score distributions used in the three different homogeneous risk heuristics.

Setting the risk values for heterogeneous agents is a bit more complicated, since the

assumptions made in Eq. (6.9) regarding identical agent distributions and identical risk

values may no longer hold. For general problems, Eq. (6.8) will have infinite possible

combinations of εi as valid solutions for a given specific value of ε, therefore specifying

different individual agent risks becomes difficult. There are two main goals associated with

allocating risks amongst the agents. The first goal is that the risks given to individual

agents should be such that the global mission risk level is adequately captured by the

team. This was the purpose of Eq. (6.8) which identified a relationship between mission

risk and agent risks given available plan distributions. The second goal is that the risks

allocated to the agents should encourage agents to pick “better” plans, such that the chance-

constrained mission score F−1
z (ε) be as high as possible. This involves finding a distribution

for the mission score z that maximizes F−1
z (ε), however, f(z) is a function of the agent

score distributions f(zi) (e.g. a convolution of these agent distributions if the agents are

independent), and the distributions f(zi) are in turn functions of the risk levels εi and of

the inner workings of the planner (which are hard to predict). This severe coupling makes

the goal of optimizing the εi allotments to achieve the best plan very difficult. Another

issue in distributed planning environments, is that the agents must be able to select their

own values εi given statistics about the mission and the other agents, or must be able to

share information with each other (e.g. distributions, moments, or even εi allocations) to

converge on a consistent allocation of the risk levels εi.

With these issues in mind, this thesis considers a few different heuristic strategies to

allocate risks amongst agents given a heterogeneous team. The different risk allocation

strategies are explained in detain in Appendix A and are summarized in this section. The

152

first heuristic considered assumes that all agents are given identical risk values εi (note that

this does not imply that the agents have identical distributions). Invoking the Central Limit

Theorem again, the mission is assumed to be Gaussian, where the mission score distribution

is given by z ∼ N
(
µ, σ2

)
with mean µ =

Na∑
i=1

µi and variance σ2 =

Na∑
i=1

σ2
i , and Eq. (6.8) can

be rewritten as,

Na∑
i=1

F−1
zi (εi) = µ+

√
2σ2 erf−1(2ε− 1) (6.13)

Since the agent distributions are possibly all different, the left side of Eq. (6.13) is still

difficult to compute, depending on the particular CDFs of the agent score distributions. In

this work, we assume that agent distributions are also Gaussian, zi ∼ N
(
µi, σ

2
i

)
, where the

agent means and variances are assumed to be different since the team is heterogeneous. Us-

ing identical risk values and heterogeneous Gaussian distributions in Eq. (6.13), an analytic

expression for the agent risks εi is given by,

εi =
1

2

(
1 + erf

(
H erf−1(2ε− 1)

))
(6.14)

H =

√∑Na

i=1 σ
2
i∑Na

i=1

√
σ2
i

with the constant value H representing the team heterogeneity with regards to variance in

agents’ scores. This expression has several interesting properties. Firstly, the agent risk

values for the Gaussian case do not depend on the means of the agent distributions or

mission distribution, they only depend on the variances. This is similar to the observation

made about the homogeneous risk allocation strategies, where the means of the distributions

and scale parameters did not affect the risk allocation. However, in the heterogeneous case,

the relative scale parameters do affect the risk allocation, as captured by the constant H in

Eq. (6.14). Given the expression in Eq. (6.14), if the agents are homogeneous (with identical

distributions), then H = 1/
√
Na and the expression is equivalent to the homogeneous

Gaussian risk allocation presented in Eq. (6.12). On the other hand, if the entire mission

distribution comes from only 1 agent’s contribution (all other agents are deterministic with

no variance), then H = 1 and εi = ε as expected. This shows that team heterogeneity

can be represented via the parameter H, which is a function of Na and of the relative

153

scales of the agent distributions with respect to one another. The range of H is given by

H ∈
[

1√
Na
, 1
]
. A major advantage of using this heuristic versus more complex allocations

between heterogeneous agents, is that agents can select a number within the range of H

that roughly represents how heterogeneous the team is (possibly performing consensus on

this number), and then use H to compute εi individually. This is significantly faster than

coming to consensus on a consistent allocation of the individual parameters εi.

An alternate heuristic risk allocation strategy considered involves assigning different

risk values εi to different types of agents, where agents of the same type would be assigned

identical values of εi. For example, considering a scenario with 2 types of agents, and with

equal numbers of each type of agent, Eq. (6.8) becomes,

Na

2
F−1

z1 (ε1) +
Na

2
F−1

z2 (ε2) = F−1
z (ε) (6.15)

where the distributions and risks for each different agent type k are given by zk and εk. As-

suming Gaussian agent scores, and Gaussian mission scores as in the previous risk allocation

strategy, Eq. (6.15) simplifies to the following expression,

σ1√
σ2

1 + σ2
2

erf−1(2ε1 − 1) +
σ2√
σ2

1 + σ2
2

erf−1(2ε2 − 1) =

√
2

Na
erf−1(2ε− 1) (6.16)

Similar expressions can be derived given 3 or more types of agents. In Eq. (6.16), each of the

terms on the left hand side include a scaling parameter that is proportional to the standard

deviation for that agent type (normalized by the standard deviation of the mission). The

right hand side of Eq. (6.16) includes the number of agents Na and is typically a function of

the number of agent types as well. Given the expression in Eq. (6.16), a key question involves

deciding how to partition the risk amongst the agent types. This can be accomplished by

splitting the right hand side of Eq. (6.16) into shares, and then solving for εk for each agent

type k (where the agent risks would be set using εi = εk for agents belonging to type k). It is

not obvious, however, how these shares should be divided amongst the agent types. In this

thesis we consider two cases, one involving equal shares, and one setting shares proportional

to the standard deviation of the agent type σk.

The first strategy, which uses equal shares, divides the right hand side of Eq. (6.16) into

154

two equal parts, giving the following risk values εk for each group k,

εk =
1

2

(
1 + erf

((√
σ2

1 + σ2
2

2σk

√
2

Na

)
erf−1(2ε− 1)

))
(6.17)

The quantity preceding the inverse error function in Eq. (6.17) can be thought of as a scaling

constant Hk to represent agent heterogeneity, where

Hk =

(√
σ2

1 + σ2
2

2σk

√
2

Na

)
(6.18)

in Eq. (6.17). Different values of Hk will lead to different risk allocations εk, and again it is

not immediately obvious how to partition the shares (how to set Hk) to get an allocation

of εi’s for all agents that optimizes the chance-constrained mission score.

The second strategy used in this thesis assumes that the shares agents get are pro-

portional to their standard deviation, thus the right hand side of Eq. (6.16) is divided

into shares of size σk/
∑

k σk. Given this division, each group computes the following risk

thresholds εk given by,

εk =
1

2

(
1 + erf

((√
σ2

1 + σ2
2

σ1 + σ2

√
2

Na

)
erf−1(2ε− 1)

))
(6.19)

where the constant Hk becomes

Hk =

(√
σ2

1 + σ2
2

σ1 + σ2

√
2

Na

)
(6.20)

Note that in this case, the constant Hk is not explicitly dependent on the individual pa-

rameter σk anymore, but rather considers statistics over the variances for all agent types.

As a result, Hk will be constant for all agent types k and therefore the risk values εk will

all be the same, leading to equal risks for all agents in the team (but still capturing the

heterogeneity associated with the different variances for agent scores). It is shown in Sec-

tion 6.4 that this last strategy, where risks are equal for all agents, performs significantly

better than the strategy shown in Eq. (6.17). This is because by balancing the risks more

evenly throughout the team, no agent can take on its extreme plan values (very determin-

istic taking no risk at all, or taking too much risk and not considering how it might affect

the mission as a whole), which increases the performance of the team. Furthermore, the

155

heuristic strategy employed in Eq. (6.14), which also assigned equal risks to all the agents,

also achieved high performance which was significantly better than the strategy shown in

Eq. (6.17), and on par with the strategy of Eq. (6.19). On closer inspection, the value for

Hk in Eq. (6.19) looks very similar to that of H in Eq. (6.14), explaining why the per-

formance of both heuristics was similar, since they both capture the same relative scaling

effects associated with the heterogeneous agent variances.

The different heuristics described in this section can be used within the CBBA frame-

work to allocate risk amongst the agents given knowledge of the team heterogeneity and

approximations of the agent score distribution forms. The performance of these different

heuristics is compared later in Section 6.4. Of course, there are many other heuristics that

can be used, and designing risk allocation strategies that work well for general scenarios of

interest remains an active area of research. The next section describes how the distributed

chance-constrained approximation can be utilized within the CBBA framework given a

specific risk allocation for the agents.

6.3.2 Stochastic Bundle Construction

The previous section specified how to allocate risk amongst the agents using different heuris-

tic strategies. Given these individual risk allotments εi, each agent can solve its own dis-

tributed chance-constrained optimization, as specified in Eq. (6.2), to select its best set of

assignments. This section describes how the robust CBBA framework proposed in Chap-

ter 5 can be used to solve the distributed chance-constrained approximation. Within the

bundle construction phase of CBBA, the greedy process by which each agent constructs

its task bundle needs to ensure that, for every bid, the task scores satisfy the probabilistic

constraints specified by Eq. (6.2). This problem involves solving the following optimization

for all available tasks j ∈ J \ pi, where each task j is inserted into the path at all possible

path locations nj ,

J(pi⊕n?
j
j) = max

nj
yi

s.t. Pθ

 Nt∑
j=1

cij(τ
?
ij(pi ⊕nj j),θ) xij

 > yi

 ≥ 1− εi (6.21)

156

Here the chance-constraint captures the effect of the uncertainty on the entire bundle given

the probabilistic constraint. As described previously in Chapter 5, the uncertainty in the

system affects the times at which tasks will be executed, thus affecting their scores (e.g.

inserting a task into the path will impact arrival times for all subsequent tasks, subject to

the uncertainty in the system). The chance-constrained calculation in Eq. (6.21) accounts

for this coupling between task scores. The marginal score for each task j is then given by

the increase in yi as a result of adding task j,

∆Jij(pi) = J(pi⊕n?
j
j) − Jpi

and the optimal task to add is given by,

j? = argmax
j /∈pi

∆Jij(pi) hij (6.22)

where hij is again computed using the warped bid, sij = min(∆Jij(pi), yik), ∀k ∈ pi, as

described in Section 5.2.2. The bundle, path, times, winning agents list, and winning bids

list are then updated to include the new task,

bi ← (bi ⊕end j
?)

pi ← (pi ⊕nj? j?)

τ i ← (τ i ⊕nj? τ?ij?(pi ⊕nj? j?))

zij? = i

yij? = sij

Two complications arise with this process, similar to the issues described previously in

Chapter 5:

1. The first is that the task execution times are random variables that are subject to the

uncertainty in the system, which makes the step of computing the “optimal” execution

times nontrivial, since these times may be different for different realizations of the

uncertainty. Therefore, when optimizing the path score in Eq. (6.21), the computation

must take into account that different optimal execution times may result for the

same path given different values of θ. Again, analytically computing these time-

157

optimization effects is usually intractable, motivating the use of numerical methods

to approximate the score calculation in Eq. (6.21).

2. The second issue is that computing the probabilities of the score function specified

in Eq. (6.21) usually involves finding the distribution of a sum of non-independent

heterogeneous task scores. This expression is again analytically intractable for most

types of problems due to nontrivial coupling of distributions within the score function,

motivating the use of sampling methods.

The numerical approach employed to sample the score function in Eq. (6.21) addresses

these tractability issues and is described later in this section (see Algorithm 9). The use

of marginal scores within the bundle construction process allows the algorithm to appro-

priately represent the impact of the probabilistic chance-constraint during every iteration.

Therefore, even though the bundle is being constructed sequentially, computing the marginal

score for tasks requires computing the effect of adding each task on the entire bundle in

the associated probabilistic constraint, therefore the coupling between tasks is correctly

captured within a consistent framework.

To approximate the probabilistic score functions, this work employed a sampling ap-

proach to generate a set of representative samples, {θ1, . . . ,θN}, with associated weights,

{w1, . . . , wN}, that approximate the distribution of θ. Using sampling, an approximation to

the score function used in the bundle construction process involves executing the following

steps, which are summarized in Algorithm 9:

1. For each sample value θk, the score for task j being inserted at location nj can be

deterministically computed by,

J(pi⊕nj j)k =

Nt∑
j=1

cij(τ
?
ij(pi ⊕nj j),θk) xij

Note that this step involves optimizing the task execution times τ?ij given the specific

realization of the uncertain random variables θk. Even though this process involves

optimizing the set of task execution times in continuous time, for the decaying cost

functions described previously in this thesis (see Section 5.3), there are only a discrete

number of continuous times that could maximize this sample’s score for the task,

therefore computing the optimal task times remains tractable.

158

2. Step 1 is repeated for all N samples, {θ1, . . . ,θN}, where N must be large enough

to create a representative probability distribution of the scores obtained from adding

this task.

3. The samples are then sorted in increasing order based on the values of the sam-

pled scores, J(pi⊕nj j)k. We define the variable that indexes this ordered set as k̄ ∈

{1, . . . , N}. The resulting sorted sampled scores, along with their probabilistic weights

wk, describe a discrete probability distribution that approximates the true score PDF.

As a reminder, finding the value yi in the chance-constrained formulation given risk

threshold εi is equivalent to integrating the PDF up to εi and determining what value

of yi this corresponds to. Given the discrete PMF specified through the sampling

process, this integration can be approximated by summing the weights of the ordered

samples until the threshold εi is reached. This can be written formally as,

max
k̄∈{1,...,N}

J(pi⊕nj j)k̄

∣∣∣∣∣∣
k̄∑
i=1

wi ≤ εi

 (6.23)

where the resulting J(pi⊕nj j)k̄?
provides a lower bound on the path score within the

allowable risk threshold. The full stochastic bundle construction process is equivalent

to the one described previously in Algorithm 8, where the Compute-Stochastic-

Path-Score(pi ⊕nj j) function is replaced with the chance-constrained score calcu-

lation described in this section (see Algorithm 9).

As mentioned in the previous chapter, another advantage of using sampling is that,

although stochastic planning increases the computational complexity of the planning pro-

cess with respect to the deterministic formulation, the number of samples can be adjusted

given the available computational resources. Therefore, the chance-constrained extension

to CBBA preserves polynomial-time convergence (although the plan time increases linearly

with the number of samples N).

6.4 Example Applications

The distributed chance-constrained CBBA algorithm was implemented in simulation and

tested on time-varying UAV missions similar to those described in Section 5.3. The first set

of experiments involved a stochastic mission with 6 homogeneous agents and 60 tasks, where

159

Algorithm 9 Compute-Stochastic-Path-Score(pi) - (Chance-Constrained)

1: {θ1, . . . ,θN} ∼ f(θ)

2: {w1, . . . , wN} ← {w1, . . . , wN}/
N∑

k=1

wk

3: for k ∈ {1, . . . , N} do

4: τ ?
i = argmax

τ i

Nt∑
j=1

cij(τij(pi),θk) xij

5: Jk
pi

=

Nt∑
j=1

cij(τ
?
ij(pi),θk) xij

6: end for

7:
(
J k̄
pi
, wk̄

)
← Sort-Scores

(
Jk
pi
, wk

)
8: k̄? = argmax

k̄∈{1,...,N}

J k̄
pi

∣∣∣∣∣∣
k̄∑

i=1

wi ≤ εi

9: return (J k̄?

pi
)

the team had to optimize performance for various mission risk thresholds. In this scenario,

task durations were uncertain and were distributed according to a gamma distribution.

There were three types of tasks: high-reward high-uncertainty tasks, medium-reward tasks

with low variance, and deterministic tasks with much lower rewards. The UAV team was

also composed of homogeneous agents with uncertain velocities (with a uniform distribu-

tion). In the second set of experiments, the task scenario was equivalent, but the team was

now composed of heterogeneous agents consisting of fast but unpredictable agents (high

mean and high variance), and slower speed but more predictable agents (low mean and low

variance), both having uniform distributions on velocities. The following sections discuss

the results for these two different scenarios.

6.4.1 Homogeneous Agents

Figure 6-5 show Monte Carlo simulation results for a stochastic mission with 6 homogeneous

agents showing chance-constrained mission performance as a function of the mission risk

level for different planning algorithms. In the experiments, the following 8 planning algo-

rithms were compared: the Baseline (deterministic) CBBA algorithm, the Expected-Value

CBBA algorithm from Chapter 5, the Worst-Case CBBA algorithm from Chapter 5, the

Chance-Constrained CBBA algorithm proposed in this chapter, but with no risk allocation

between the agents (all agents planned with the mission risk εi = ε which typically leads

160

0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

Baseline CBBA
Expected CBBA
Worst−Case CBBA
CC CBBA No Risk
CC CBBA Gaussian Risk
CC CBBA Gamma Risk
CC CBBA Exponential Risk
CC SGA

(a) Chance-constrained scores

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−600

−400

−200

0

200

400

600

800

1000

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

(b) Chance-constrained scores (log scale)

Figure 6-5: Monte Carlo simulation results for a stochastic mission with 6 homogeneous
agents showing chance-constrained mission performance as a function of the mission risk
level. The plots show the chance-constrained mission scores (worst score within allowable
risk threshold) for 8 different planning algorithms: Baseline (deterministic) CBBA, the
Expected-Value CBBA algorithm, the Worst-Case CBBA algorithm, the proposed Chance-
Constrained CBBA algorithm with no risk allocation, Chance-Constrained CBBA using
Gaussian risk allocation, Chance-Constrained CBBA using Gamma risk allocation, Chance-
Constrained CBBA using Exponential risk allocation, and a centralized chance-constrained
sequential greedy algorithm (SGA). Figure (a) shows the chance-constrained mission scores
as a function of mission risk, and Figure (b) shows the same information as Figure (a) but
on a log-scale to highlight the performance at low risk levels.

to a very conservative estimate of the risk), the Chance-Constrained CBBA using the dif-

ferent risk allocation strategies including Gaussian, exponential and gamma, and finally a

centralized chance-constrained sequential greedy algorithm (SGA) planning for all agents

simultaneously. Figure 6-5 shows the chance-constrained mission scores (worst score within

allowable risk threshold) for the 8 different planning algorithms, where Figure 6-5(a) shows

the chance-constrained mission scores as a function of mission risk, and Figure 6-5(b) shows

the same scores on log-scale to highlight the performance at low risk levels. As seen in

the plots, all the chance-constrained planning approaches do significantly better than the

baseline (deterministic) CBBA algorithm and the 2 robust CBBA variants presented in

Chapter 5.

To highlight the difference between these chance-constrained approached, Figure 6-6

shows a close up of the mission scores achieved plotted on a linear scale (Fig. 6-6(a)) and

on a log scale (Fig. 6-6(b)). The results show that the three heuristics algorithms achieved

161

higher performance than without a risk allocation strategy, and the the exponential heuris-

tic performed best at higher risk thresholds, whereas the Gaussian risk performed better at

lower risk thresholds (although the performance of all three strategies was very close, espe-

cially at low risk thresholds). Figures 6-6(b) and 6-6(d) show the achieved mission risk level

corresponding to the individual agent risk levels εi. The dotted line on the plots represents

a perfect match between desired and actual mission risk. As shown in the figures, without

risk allocation the team performs conservatively, achieving a much lower mission risk than

allowed and thus sacrificing performance. With the risk allocation methods, the team is

able to more accurately predict the mission risk, achieving higher performing plans within

the allowable threshold. The results show that when algorithms match the mission risk well

the performance of the planner increases, further motivating the need for good risk alloca-

tion strategies. Furthermore, the distributed Chance-Constrained CBBA planner achieves

performance on par with the centralized sequential greedy approach, thus validating the dis-

tributed approximation to the centralized chance-constrained problem. Finally Figure 6-7

shows histograms for the mission scores (Fig. 6-7(a)) comparing the baseline (deterministic)

CBBA, the worst-case robust CBBA, and Chance-Constrained CBBA using the exponential

risk allocation heuristic. As seen in the plots, the distributions for the multi-agent mission

scores are nearly Gaussian, justifying the use of the Gaussian approximation for mission

scores in the risk allocation heuristics. Figure 6-7(b) shows the individual agent distri-

butions, showing how the exponential and gamma distribution approximations (explained

fully in Appendix A) are good choices to approximate the agent scores distributions.

6.4.2 Heterogeneous Agents

The second set of experiments involved a heterogeneous team with different statistical prop-

erties on their uncertain planning parameters. Figure 6-8 show Monte Carlo simulation

results for a stochastic mission with 6 heterogeneous agents showing chance-constrained

mission performance as a function of the mission risk level for different planning algorithms.

In the experiments, the following 8 planning algorithms were compared: the Baseline (de-

terministic) CBBA algorithm, the Expected-Value CBBA algorithm from Chapter 5, the

Worst-Case CBBA algorithm from Chapter 5, the Chance-Constrained CBBA algorithm

proposed in this chapter, but with no risk allocation between the agents (all agents planned

with the mission risk εi = ε), the Chance-Constrained CBBA algorithm using the 3 different

162

heterogeneous risk allocation strategies described in Section 6.3.1, and finally a centralized

chance-constrained sequential greedy algorithm (SGA) planning for all agents simultane-

ously. The 3 risk allocation strategies consisted of the equal risk heuristic approximation

described in Eq. 6.14 (termed “Risk 1”), the heterogeneous risk allocation using equal shares

described in Eq. 6.17 (termed “Risk 2”), and the heterogeneous risk allocation strategy with

risks proportional to agents standard deviations (“Risk 3”, which effectively led to equal

risks amongst agents). Figure 6-8 shows the chance-constrained mission scores (worst score

within allowable risk threshold) for the 8 different planning algorithms, where Figure 6-8(a)

shows the chance-constrained mission scores as a function of mission risk, and Figure 6-8(b)

shows the same scores on log-scale to highlight the performance at low risk levels. As seen

in the plots, all the chance-constrained planning approaches do significantly better than

the baseline (deterministic) CBBA algorithm and the 2 robust CBBA variants presented in

Chapter 5.

To highlight the difference between these chance-constrained approached, Figure 6-9

shows a close up of the mission scores achieved plotted on a linear scale (Fig. 6-9(a)) and

on a log scale (Fig. 6-9(b)). The results show that the two heuristics algorithms with equal

risks achieved higher performance than without a risk allocation strategy, however, the het-

erogeneous risk allocation strategy with different agent risks performed rather poorly. Fig-

ures 6-9(b) and 6-9(d) show the achieved mission risk level corresponding to the individual

agent risk levels εi. The dotted line on the plots represents a perfect match between desired

and actual mission risk. As shown in the figures, without risk allocation the team per-

forms conservatively, achieving a much lower mission risk than allowed and thus sacrificing

performance. With the equal risk allocation methods, the team is able to more accurately

predict the mission risk, achieving higher performing plans within the allowable threshold.

The results show that when algorithms match the mission risk well the performance of the

planner increases, in general, however, as seen in the results for “Risk 2”, even though the

achieved risk levels were similar to “Risk 3” the performance was significantly lower. This

is due to the fact that agents had unequal distributions, therefore some agents developed

really aggressive plans whereas others selected plans that were too conservative. In general,

having a more equitable risk distribution for the team led to higher performing plans. In

general, however, it is hard to determine these effects in advance further motivating the need

for good risk allocation strategies. Once again, the distributed Chance-Constrained CBBA

163

planner achieved performance on par with the centralized sequential greedy approach, thus

validating the distributed approximation to the centralized chance-constrained problem.

Finally Figure 6-10 shows histograms for the mission scores (on the left) comparing

the baseline (deterministic) CBBA, the worst-case robust CBBA, and Chance-Constrained

CBBA using the different risk allocation strategies. As seen in the plots, the distributions

for the multi-agent mission scores are nearly Gaussian, justifying the use of the Gaussian

approximation for mission scores in the risk allocation heuristics. The left set of plots

in Figure 6-10 show the individual agent distributions for the different chance-constrained

algorithms. The first and third risk strategies (with equal risks for all agents) achieved

similar looking agent distributions which were well balanced between the agents. The

second risk strategy, where agents planned with heterogeneous risk allotments, achieved

different score performance between the predictable agents (right) and the unpredictable

agents (left). In particular, agents assigned a higher risk had distributions that were too

spread out whereas agents planning with very low risk had distributions that were too

conservative (very low variance). As a result, the chance-constrained score associated with

the overall team distribution was lower (Fig. 6-10(c))

This chapter presented a distributed chance-constrained task allocation framework that

can be used to plan for multi-agent networked teams operating in stochastic and dynamic

environments. The results in both this chapter and Chapter 5 showed that by explicitly ac-

counting for uncertainty propagation during the task allocation process large improvements

can be made for distributed multi-agent teams operating in stochastic environments.

164

0 1 2 3 4 5

760

780

800

820

840

860

880

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

CC CBBA No Risk
CC CBBA Gaussian Risk
CC CBBA Gamma Risk
CC CBBA Exponential Risk
CC SGA

(a) Chance-constrained scores (zoom)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

Desired Mission Risk (ε
in

)
A

ct
ua

l M
is

si
on

 R
is

k
(ε

ou
t)

Actual Mission Risk vs. Desired Mission Risk

CC CBBA No Risk
CC CBBA Gaussian Risk
CC CBBA Gamma Risk
CC CBBA Exponential Risk

Ideal ε
out

=ε
in

(b) Achieved mission risk

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

600

650

700

750

800

850

900

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

CC CBBA No Risk
CC CBBA Gaussian Risk
CC CBBA Gamma Risk
CC CBBA Exponential Risk
CC SGA

(c) Chance-constrained scores (zoom, log scale)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Desired Mission Risk (ε
in

)

A
ct

ua
l M

is
si

on
 R

is
k

(ε
ou

t)

Actual Mission Risk vs. Desired Mission Risk

CC CBBA No Risk
CC CBBA Gaussian Risk
CC CBBA Gamma Risk
CC CBBA Exponential Risk

Ideal ε
out

=ε
in

(d) Achieved mission risk (log scale)

Figure 6-6: Monte Carlo simulation results for a stochastic mission with 6 homogeneous
agents, comparing the performance of Chance-Constrained CBBA using different risk al-
location strategies. Figure (a) shows a zoomed-in version of Figure 6-5(a); (b) shows the
achieved mission risk corresponding to the distributed risk approximation for the different
risk allocation strategies, versus desired mission risk; (c) shows a zoomed-in version of Fig-
ure 6-5(b) on a log scale to highlight the performance at low risk levels; and (d) shows the
achieved mission risk on a log scale highlighting the performance at low risk levels.

165

−500 0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

Mission Scores

S
co

re
 D

is
tr

ib
ut

io
n

Histogram of Scores for 6 Agent Mission

Baseline CBBA
Worst−Case CBBA
CC CBBA Exp Risk
0.1% Risk Scores

(a) Histogram of mission scores

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

0 100 200 300
0

0.05

0.1

Agent Score

D
is

tr
ib

ut
io

n

(b) Histograms of agent scores

Figure 6-7: Simulation results for a stochastic mission with 6 homogeneous agents show-
ing the achieved distributions and chance-constrained mission scores. Figure (a) shows
histograms and chance-constrained scores for Baseline (deterministic) CBBA, Worst-Case
CBBA, and Chance-Constrained CBBA using a 0.1% risk level. Figure (b) shows histograms
of the scores achieved by the 6 agents using the Chance-Constrained CBBA algorithm with
exponential risk allocation.

0 1 2 3 4 5
−1000

−800

−600

−400

−200

0

200

400

600

800

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

Baseline CBBA
Expected CBBA
Worst−Case CBBA
CC CBBA No Risk
CC CBBA Risk 1
CC CBBA Risk 2
CC CBBA Risk 3
CC SGA

(a) Chance-constrained scores

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−800

−600

−400

−200

0

200

400

600

800

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

(b) Chance-constrained scores (log scale)

Figure 6-8: Monte Carlo simulation results for a stochastic mission with 6 heterogeneous
agents showing chance-constrained mission performance as a function of the mission risk
level. The plots show the chance-constrained mission scores (worst score within allowable
risk threshold) for 8 different planning algorithms: Baseline (deterministic) CBBA, the
Expected-Value CBBA algorithm, the Worst-Case CBBA algorithm, the proposed Chance-
Constrained CBBA algorithm with no risk allocation, Chance-Constrained CBBA using 3
different risk allocation strategies (described in the text), and finally a centralized chance-
constrained sequential greedy algorithm (SGA). Figure (a) shows the chance-constrained
mission scores as a function of mission risk, and Figure (b) shows the same information as
Figure (a) but on a log-scale to highlight the performance at low risk levels.

166

0 1 2 3 4 5
400

450

500

550

600

650

700

750

800

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

CC CBBA No Risk
CC CBBA Risk 1
CC CBBA Risk 2
CC CBBA Risk 3
CC SGA

(a) Chance-constrained scores (zoom)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Desired Mission Risk (ε
in

)
A

ct
ua

l M
is

si
on

 R
is

k
(ε

ou
t)

Actual Mission Risk vs. Desired Mission Risk

CC CBBA No Risk
CC CBBA Risk 1
CC CBBA Risk 2
CC CBBA Risk 3

Ideal ε
out

=ε
in

(b) Achieved mission risk

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

400

450

500

550

600

650

700

750

Allowable Mission Risk %

S
co

re
s

W
ith

in
 A

llo
w

ab
le

 R
is

k

Risk Optimized Scores for 6 Agent Mission

CC CBBA No Risk
CC CBBA Risk 1
CC CBBA Risk 2
CC CBBA Risk 3
CC SGA

(c) Chance-constrained scores (zoom, log scale)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Desired Mission Risk (ε
in

)

A
ct

ua
l M

is
si

on
 R

is
k

(ε
ou

t)

Actual Mission Risk vs. Desired Mission Risk

CC CBBA No Risk
CC CBBA Risk 1
CC CBBA Risk 2
CC CBBA Risk 3

Ideal ε
out

=ε
in

(d) Achieved mission risk (log scale)

Figure 6-9: Monte Carlo simulation results for a stochastic mission with 6 heterogeneous
agents, comparing the performance of Chance-Constrained CBBA using different risk al-
location strategies. Figure (a) shows a zoomed-in version of Figure 6-8(a); (b) shows the
achieved mission risk corresponding to the distributed risk approximation for the different
risk allocation strategies, versus desired mission risk; (c) shows a zoomed-in version of Fig-
ure 6-5(b) on a log scale to highlight the performance at low risk levels; and (d) shows the
achieved mission risk on a log scale highlighting the performance at low risk levels.

167

−1000 −500 0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mission Scores

S
co

re
 D

is
tr

ib
ut

io
n

Histogram of Scores for 6 Agent Mission

Baseline CBBA
Worst−Case CBBA
CC CBBA Risk 1
0.1% Risk Scores

(a) Histogram of mission scores (Risk 1)

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

(b) Histograms of agent scores (Risk 1)

−1000 −500 0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mission Scores

S
co

re
 D

is
tr

ib
ut

io
n

Histogram of Scores for 6 Agent Mission

Baseline CBBA
Worst−Case CBBA
CC CBBA Risk 2
0.1% Risk Scores

(c) Histogram of mission scores (Risk 2)

−100 0 100 200
0

0.1

0.2

Agent Score
D

is
tr

ib
ut

io
n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n
−100 0 100 200

0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n
−100 0 100 200

0

0.1

0.2

Agent Score
D

is
tr

ib
ut

io
n

(d) Histograms of agent scores (Risk 2)

−1000 −500 0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mission Scores

S
co

re
 D

is
tr

ib
ut

io
n

Histogram of Scores for 6 Agent Mission

Baseline CBBA
Worst−Case CBBA
CC CBBA Risk 3
0.1% Risk Scores

(e) Histogram of mission scores (Risk 3)

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

−100 0 100 200
0

0.1

0.2

Agent Score

D
is

tr
ib

ut
io

n

(f) Histograms of agent scores (Risk 3)

Figure 6-10: Simulation results for a stochastic mission with 6 heterogeneous agents. The
figures on the left show achieved mission distributions and chance-constrained scores for
Baseline CBBA, Worst-Case CBBA, and Chance-Constrained CBBA using different risk
allocation strategies, for a 0.1% mission risk level. The figures on the right show histograms
of the individual agent scores achieved using Chance-Constrained CBBA with the different
risk allocation strategies.

168

Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis addressed the problem of real-time robust distributed planning for multi-agent

networked teams operating in uncertain and dynamic environments. In particular, several

extensions and variants to the baseline CBBA algorithm presented in [58] were proposed and

discussed, enabling distributed real-time planning in time-critical, communication-limited,

and uncertain environments. The specific contributions of this thesis are described as fol-

lows:

1. This thesis extended CBBA to handle time-critical mission considerations, where time-

varying score functions could be optimized within the CBBA algorithmic framework

to enable dynamic planning for agents and tasks with specific timing constraints (e.g.

task time-windows of validity, time-varying rewards for time-critical tasks, agent ve-

locities). In particular, the CBBA with Time-Varying Score Functions algorithm

proposed in Section 4.2 modified the bundle construction process of CBBA to explic-

itly optimize task execution times as well as agent assignments, enabling both spatial

and temporal coordination of multi-agent teams in dynamic mission scenarios. The

algorithm performance was validated through simulations, and a real-time replanning

architecture was designed and implemented to enable real-time experiments for het-

erogeneous networked teams. Flight test experiments involving multi-agent dynamic

search and track missions were performed in an indoor flight test facility at the MIT

Aerospace Controls Lab using heterogeneous teams of quadrotor UAVs and robotic

ground vehicles, demonstrating the real-time applicability of the distributed planning

169

algorithms.

2. This thesis extended the CBBA planning framework to enable conflict-free distributed

planning in the presence of network disconnects due to communication-limited oper-

ating environments. The proposed approach, described in Section 4.3, employed a

local distributed task space partitioning strategy, where the sets of tasks available to

the different agent sub-networks were disjoint, thus ensuring conflict-free solutions.

Simulation and experimental flight tests validated the proposed algorithms, showing

improved performance over the baseline CBBA algorithm, but with lower communi-

cation and computational overhead than centralized strategies which require a priori

task space partitioning at every replan iteration.

3. In Section 4.4, we developed a distributed cooperative planning algorithm that built

upon the CBBA framework to enable agents to maintain network connectivity in

communication-limited environments. The algorithm, named CBBA with Relays,

guarantees network connectivity for agents performing tasks that require a live con-

nection (e.g. video streaming), by locally incentivizing under-utilized agents to act as

communication relays for other agents within a distributed framework. The proposed

algorithm explicitly handles the joint network connectivity constraints through a lo-

cal distributed network prediction phase, and cooperation between agents is enabled

through the local creation of relay tasks by the agents that require a network connec-

tion. The CBBA with Relays algorithm is guaranteed to converge, runs in real-time,

and guarantees network connectivity while tasks are being executed. The algorithm

was validated through simulation, and indoor and outdoor flight test experiments,

demonstrating real-time applicability.

4. In Chapter 5, we extended the CBBA with Time-Varying Score Functions algorithm

of Section 4.2 to explicitly account for robustness in the planning process. A real-time

distributed robust planning framework, named Robust CBBA, was proposed, which

can leverage probabilistic models of planning parameters and different distributable

stochastic metrics to hedge against parameter uncertainty. The algorithm employed

sampling approaches to compute agent path scores given different stochastic metrics

within the CBBA bundle construction process, enabling polynomial-time algorithm

convergence. The Robust CBBA framework leverages a recent submodular extension

170

of CBBA proposed by Johnson [106] to guarantee distributed algorithm convergence

given different stochastic metrics, and uses the convergence guarantees of CBBA under

varying situational awareness to allow agents to individually construct their robust

plans given local uncertainty representations. The Robust CBBA algorithm was im-

plemented using two stochastic metrics, the expected-value metric and the worst-case

stochastic metric, and used to plan for heterogeneous multi-agent teams performing

search and track missions in uncertain environments. Simulation results were provided

demonstrating real-time applicability, and showing that Robust CBBA improves per-

formance over the baseline CBBA algorithm and achieves results similar to centralized

planning strategies, validating the distributed approach.

5. In Chapter 6, we extended the Robust CBBA framework proposed in Chapter 5 to

optimize performance in environments where low probability of failure is required.

The approach used a chance-constrained stochastic metric that provides probabilis-

tic guarantees on achievable mission performance given allowable risk thresholds. A

distributed approximation to the chance-constrained metric was proposed to enable

the use of Robust CBBA in these risk-aware environments, and constraints on indi-

vidual risk allocations were derived to guarantee equivalence between the centralized

chance-constrained optimization and the distributed approximation. Different risk

allocation strategies for homogeneous and heterogeneous teams were proposed that

approximate the agent and mission score distributions a priori, and results were pro-

vided comparing the performance of these in time-critical mission scenarios. The dis-

tributed chance-constrained CBBA algorithm was validated through simulation trials,

and the results showed improved performance over baseline CBBA and over worst-

case conservative planning strategies given allowable risk thresholds. Furthermore,

the distributed chance-constrained approximation algorithm proposed in Chapter 6

achieved similar results to those obtained by centralized chance-constrained methods,

validating the distributed approximation.

7.2 Future Work

There are several areas in which this research could be further extended. This section

highlights a few promising research directions and discusses the associated challenges and

171

benefits of each.

In realistic mission scenarios, agent score functions are often coupled through environ-

mental effects that impact all agents simultaneously (e.g. wind, magnetic variations, poor

visibility, etc.), however, as mentioned in Section 5.1.1, handling coupling between agent

score functions within a distributed planning framework is a nontrivial endeavor, and is

thus an open area of research. In these types of scenarios, the distributed Robust CBBA

framework presented in this thesis can still be used and is still guaranteed to converge, how-

ever, the performance of the team may suffer if the coupling is not explicitly considered. To

improve team performance in these coupled stochastic environments, agents would need to

share information about the uncertainty to capture the coupling explicitly throughout the

planning process. Sharing samples between agents would typically require too much com-

munication and thus seems impractical. Current research is considering hyper-parameter

consensus methods [83], where agents can share knowledge about planning parameter dis-

tributions (means, variances, etc.) to improve situational awareness and thus increase

team performance. In scenarios with explicit coupling, agents might want to share a few

representative sample values (e.g. worst-case samples, sigma-points, samples of largest KL-

divergence from neighboring agents’ distributions, etc.), but deciding what these should be

is a nontrivial question motivating further research.

Within the Robust CBBA framework, sampling algorithms were employed to approxi-

mate the different stochastic metrics while maintaining analytic and computational tractabil-

ity. For stochastic metrics focusing on low probability events (e.g. chance-constrained or

worst-case metrics), several rare-event or importance sampling methods have been suc-

cessfully used throughout the literature to reduce the number of samples required by the

algorithms [11]. Implementing these within the Robust CBBA framework is nontrivial given

the complex distribution types and score functions considered throughout this thesis, espe-

cially given the fact that the task execution time decision variables must be re-optimized

within the stochastic metrics for each realization of the random variables. These impor-

tance sampling methods hold promise, however, and can really improve real-time algorithm

convergence, motivating further research in this area.

The robust planning algorithms proposed in this thesis relied on models of the param-

eter uncertainty being available. Given observations of the uncertain planning parameters,

several estimation and inference techniques can be used to create probabilistic models that

172

can be leveraged within the planning framework. As new data is acquired however, these

models need to be updated to ensure that the planner predictions account for the latest

knowledge provided by these new measurements. Online learning algorithms have been

extensively explored in the literature, and the integration of robust planning and model

learning, especially in distributed and dynamic environments, remains an active area of

research [180]. Several recent approaches have explored the use of Nonparametric Bayesian

models as powerful frameworks to capture unknown system dynamics and behavior models.

These approaches seem particularly useful for representing complex unknown environments

since they do not require prior knowledge about the number of system modes (e.g. operator

behavior modes, vehicle types, target intents, etc), but as new modes are discovered the

models are automatically updated to include them. Furthermore, several of these Non-

parametric Bayesian approaches work well with limited amounts of data and are able to

generalize the models to predict performance over unexplored regions of the model, as well

as provide quantification of the uncertainty over the different model regions [108, 178]. This

flexible and modular structure is characteristic of Nonparametric Bayesian models making

them very well suited to perform inference in unknown and uncertain environments. A

few examples of Nonparametric Bayesian models include the Hierarchical Dirichlet Process

over Hidden Markov Models (HDP-HMM) [79–81], and the Dirichlet Process over Gaus-

sian Processes (DPGP) approach, presented in [108]. The HDP-HMM algorithm applies a

hierarchical Dirichlet process structure to learn the modes and parameters of the under-

lying HMM model that represents the system of interest. The algorithm is applied to an

example problem showing its usefulness for tracking a maneuvering target. The DPGP

algorithm consists of a Dirichlet Process (DP) applied over a variable set of Gaussian Pro-

cesses (GPs) [108]. The DP is used to update the number of modes and GP parameters

as more data becomes available. The algorithm is used to predict trajectories of vehicles

in an urban environment using example trajectory data for taxi services. These flexible

Nonparametric Bayesian models could be leveraged within a robust planning framework to

improve mission performance, especially given dynamic mission scenarios.

Given that the models used within the planning framework are derived from the avail-

able data, and are thus subject to the uncertainty and accuracy associated with the data

set, an active area of research involves developing information-rich planning strategies that

aim to explicitly reduce parameter uncertainty through the acquisition of higher quality

173

data that maximizes information content [39, 168]. An example of planning with the spe-

cific object of reducing uncertainty is provided in Appendix B, where we have extended the

distributed CBBA framework to enable information-rich task allocation. In this extension,

obtaining higher quality data with higher information content is an explicit goal in the

planning process, which is balanced alongside the other mission objectives. The approach

quantifies the predicted uncertainty reduction by computing the Fisher Information asso-

ciated with different vehicle trajectories and sensing locations [168]. In joint work with

Cornell University and multiple authors (see Appendix B for details), this information-rich

CBBA planning algorithm was embedded into a larger distributed information-based con-

trol architecture (Section B.3.1), presenting a novel planning and estimation framework,

where the goal of maximizing information was a primary objective for each of the algo-

rithms at every step. The proposed framework was validated through a set of real-time

experiments at Cornell University, involving a human-robot team performing a multi-target

search mission, demonstrating the viability of the approach [169].

174

Appendix A

Derivations of Agent Risk Allocation

Strategies

The heuristic risk allocation methods employed in this work use the expression provided by

Eq. (6.8) to determine how to set the agent risks given the mission risk. For convenience,

the risk equation derived in Section 6.2, Eq. (6.8), is repeated below in Eq. (A.1),

Na∑
i=1

F−1
zi (εi) = F−1

z (ε) (A.1)

This Appendix shows how the different risk allocation methods discussed in Section 6.3.1

can be derived from Eq. A.1.

A.1 Homogeneous Agent Risk Allocation Strategies

The first case considered is for teams of homogeneous agents, where all agents in the team

have similar planning parameters and underlying distributions. The heuristic strategies

employed in this case assume that the distributions of the agent scores, f(zi), are all iden-

tical, and that the risk values εi will be the same for all agents. Using these assumptions,

Eq. (A.1) reduces to

Na F−1
zi (εi) = F−1

z (ε)

175

where the identical agent risks are given by

εi = Fzi

(
1

Na
F−1

z (ε)

)
(A.2)

The expression in Eq. A.2 can be used to describe any homogeneous team, however, spec-

ifying the mission distribution f(z) may be difficult given certain agent score distributions

f(zi). In this work, we invoke the Central Limit Theorem, and use a Gaussian distribu-

tion to approximate the mission score (sum of agent score random variables). Using this

assumption gives,

z ∼ N
(
µ, σ2

)
µ =

Na∑
i=1

µi

σ2 =

Na∑
i=1

σ2
i

where the mean and variance of the mission distribution are given by the sum of the

means and variances of the agent distributions respectively. Given identical agent dis-

tributions f(zi)) with mean µi and variance σ2
i , the mission score distribution becomes

z ∼ N
(
Naµi, Naσ

2
i

)
. For Gaussian random variables, the CDF and inverse CDF are given

by the following expressions,

FX(x) =
1

2

(
1 + erf

(
x− µ√

2σ2

))
(A.3)

F−1
X (ε) = µ+

√
2σ2 erf−1(2ε− 1)

Using this Gaussian approximation for the mission score distribution, Eq. (A.2) can be

written as

εi = Fzi

(
1

Na

(
Naµi +

√
2Naσ2

i erf−1(2ε− 1)

))
(A.4)

= Fzi

(
µi +

√
2

Na
σi erf−1(2ε− 1)

)

The expression provided in Eq. (A.4) can be used with many different forms of the agent

distributions f(zi). In this thesis, we explored three different agent score distribution forms

176

(a) Gaussian Risk (b) Exponential Risk (c) Gamma Risk

Figure A-1: Agent score distributions used in the three different homogeneous risk heuris-
tics.

for homogeneous agents based on Gaussian, exponential and gamma distributions for f(zi).

Illustrations of the distribution shapes for these three different homogeneous risk heuristics

are provided in Figure A-1. The intuition behind using the two nonsymmetric distributions

shown in the exponential and gamma cases of Figure A-1 is that, for the types of time-

critical mission scenarios considered throughout this thesis, the score distributions for agents

tended to have probability masses clustered around maximum task rewards and diminishing

probabilities associated with obtaining lower scores. This was because arriving at a task on

time or early resulted in agents receiving full task scores, whereas arriving late (but within

the window of validity) resulted in exponentially decreasing task scores. The derivations

for these three homogeneous risk allocation strategies are provided in the next sections.

A.1.1 Gaussian Risk Allocation Heuristic

In this risk allocation strategy, the agent scores are assumed to be Gaussian random vari-

ables zi ∼ N
(
µi, σ

2
i

)
with mean µi and variance σ2

i . Replacing Fzi in Eq. (A.4) with a

Gaussian CDF (see Eq. (A.3)) gives the following derivation for the agent risks,

εi = Fzi

(
µi +

√
2

Na
σi erf−1(2ε− 1)

)
(A.5)

=
1

2

1 + erf

µi +
√

2
Na
σi erf−1(2ε− 1)− µi
√

2σi

=

1

2

(
1 + erf

(√
1

Na
erf−1(2ε− 1)

))

177

The expression in Eq. (A.5) provides a way to set the agent risks εi given the mission

risk ε which will be accurate when the agent scores approach Gaussian distributions. In

many scenarios of interest, however, agents often have non-symmetric score distributions.

In particular, for the types of time-varying score functions considered throughout this thesis

(see Section 5.3), the maximum task score is obtained when agents arrive at tasks early or on

time, and the score diminishes when agents are late to their tasks. This leads to agent scores

with hybrid distributions containing both discrete and continuous components (since there

is a delta function at the maximum score value), which are difficult to handle analytically

within the risk allocation framework (as an example, see Figure 6-7(b)). In particular, the

risk equivalence in Eq. (6.8) was derived assuming that CDFs for the distributions were

invertible (e.g. continuous random variables). In this work, we approximate these hybrid

distributions for agent scores using non-symmetric continuous distributions. In particular,

two strategies are explored involving exponential distributions and gamma distributions.

As shown in Figure 6-7(b), the agent score distributions resemble exponential or gamma

distributions flipped about the vertical axis and shifted over by some amount. This type

of transformation (flipping and sliding), involves applying a linear transformation to the

random variable, Y = aX + b, where a = −1 (flip) and b is some quantity corresponding

to the shift. For linear transformations of random variables, given Y = aX + b and the

original CDF FX(x), the CDF of the transformed random variable is computed using,

FY (y) =

 FX

(
y−b
a

)
, a > 0

1− FX

(
y−b
a

)
, a < 0

(A.6)

The exponential and gamma risk allocation strategies proposed in this thesis make use of

these transform equations and are explained in detail next.

A.1.2 Exponential Risk Allocation Heuristic

For a random variable distributed according to an exponential distribution, with parameter

λ, the CDF, mean, and variance are given by the following expressions,

FX(x) = 1− e−λx (A.7)

µX =
1

λ

178

σ2
X =

1

λ2

Since we are interested in agent score distributions that resemble an exponential random

variable flipped about the vertical axis and shifted by some amount, we apply the transform

described above with a = −1 and some shift value b, where the CDF transform expression

is given by Eq. (A.6) using a < 0. The CDF, mean, and variance for this transformed

exponential random variable are given by the following expressions,

FY (y) = e−λ(b−y) (A.8)

µY =
−1

λ
+ b

σ2
Y =

1

λ2

Using the CDF, mean, and variance of this transformed random variable in Eq. (A.4) gives

the following expression for agent risks,

εi = Fzi

(
µi +

√
2

Na
σi erf−1(2ε− 1)

)
(A.9)

= e
−λ
(
b−µi−

√
2
Na

σi erf−1(2ε−1)
)

= e
−λ
(
b+ 1

λ
−b−

√
2
Na

(1
λ) erf−1(2ε−1)

)

= e
−
(

1−
√

2
Na

erf−1(2ε−1)
)

Although exponential random variables are non-symmetric and do capture the types of

agent scores observed in this thesis, the shape of the distribution is fixed (the scale can

be controlled through the parameter λ but the shape is fixed). In some situations, it is

preferable to use a gamma distribution instead, since it provides more control over the

shape of the distribution as well as the scale. The next section describes a risk allocation

strategy using gamma distributions.

A.1.3 Gamma Risk Allocation Heuristic

A very similar strategy to the one used in the exponential heuristic is used to derive the

gamma risk allocation heuristic. For a random variable distributed according to a gamma

distribution, with parameters k and θ (controlling the shape and scale respectively), the

179

CDF, mean, and variance are given by the following expressions,

FX(x) =
1

Γ(k)
γ
(
k,
x

θ

)
(A.10)

µX = kθ

σ2
X = kθ2

where Γ(k) is the gamma function and γ(k, x) is the incomplete gamma function given by,

Γ(k) =

∫ ∞
0

e−ttk−1dt

γ(k, x) =

∫ x

0
e−ttk−1dt

Since we are interested in agent score distributions that resemble a gamma random variable

flipped about the vertical axis and shifted by some amount, we apply a linear transform with

a = −1 and some shift value b, where the CDF transform expression is given by Eq. (A.6)

using a < 0. The CDF, mean, and variance for this transformed gamma random variable

are given by the following expressions,

FY (y) = 1− 1

Γ(k)
γ

(
k,
b− y
θ

)
(A.11)

µY = −kθ + b

σ2
Y = kθ2

Using the CDF, mean, and variance of this transformed random variable in Eq. (A.4) gives

the following expression for agent risks,

εi = Fzi

(
µi +

√
2

Na
σi erf−1(2ε− 1)

)
(A.12)

= 1− 1

Γ(k)
γ

(
k,

1

θ

(
b− µi −

√
2

Na
σi erf−1(2ε− 1)

))
= 1− 1

Γ(k)
γ

(
k,

1

θ

(
b+ kθ − b−

√
2k

Na
θ erf−1(2ε− 1)

))

= 1− 1

Γ(k)
γ

(
k, k −

√
2k

Na
erf−1(2ε− 1)

)

180

In the case where k = 1 the gamma distribution and the exponential distribution are

equivalent (where θ is related to λ by θ = 1/λ), and thus the risk allocation heuristics for

gamma and for exponential random variables return the same values for εi.

The risk expressions for the three homogeneous risk allocation heuristics presented here

are summarized in Eq. A.13,

Gaussian : εi =
1

2

(
1 + erf

(√
1

Na
erf−1(2ε− 1)

))
(A.13)

Exponential : εi = e
−
(

1−
√

2
Na

erf−1(2ε−1)
)

Gamma : εi = 1− 1

Γ(k)
γ

(
k, k −

√
2k

Na
erf−1(2ε− 1)

)

Note that in all of these homogeneous risk allocation expressions, the individual agent

risk values are not affected by the shift and scale parameters of the distributions (e.g. µ

and σ in the Gaussian case, b and λ in the exponential case, and b and θ in the gamma

case). The heuristic risk allocation remains constant regardless of the means and variances

of the underlying distributions. Since the agent score distributions are convolved to give

the mission distribution, means and variances cancel out in Eq. (6.8) since they appear

on both sides of the equation in equal magnitudes. The intuition behind this observation

is that the risk allocation process is affected by the geometry and shape associated with

the distributions (particularly the tails), and not the scale and shift parameters or the

distributions themselves.

A.2 Heterogeneous Agent Risk Allocation Strategies

Setting the risk values for heterogeneous agents is a bit more complicated, since the assump-

tions made in Eq. (A.2) regarding identical agent distributions and identical risk values may

no longer hold. For general problems, Eq. (A.1) will have infinite possible combinations of

εi as valid solutions for a given specific value of ε, therefore specifying different individual

agent risks becomes difficult. There are two main goals associated with allocating risks

amongst the agents. The first goal is that the risks given to individual agents should be

such that the global mission risk level is adequately captured by the team. This was the

purpose of Eq. (A.1) which identified a relationship between mission risk and agent risks

given available plan distributions. The second goal is that the risks allocated to the agents

181

should encourage agents to pick “better” plans, such that the chance-constrained mission

score F−1
z (ε) be as high as possible. This involves finding a distribution for the mission

score z that maximizes F−1
z (ε), however, f(z) is a function of the agent score distributions

f(zi) (e.g. a convolution of these agent distributions if the agents are independent), and the

distributions f(zi) are in turn functions of the risk levels εi and of the inner workings of

the planner (which are hard to predict). This severe coupling makes the goal of optimiz-

ing the εi allotments to achieve the best plan very difficult. Another issue in distributed

planning environments, is that the agents must be able to select their own values εi given

statistics about the mission and the other agents, or must be able to share information with

each other (e.g. distributions, moments, or even εi allocations) to converge on a consistent

allocation of the risk levels εi.

With these issues in mind, this thesis considers a few different heuristic strategies to

allocate risks amongst agents given a heterogeneous team. The first heuristic considered

assumes that all agents are given identical risk values εi (note that this does not imply that

the agents have identical distributions). Invoking the Central Limit Theorem again, the

right hand side of Eq. (A.1) is assumed to be Gaussian, where the mission score distribution

is given by,

z ∼ N
(
µ, σ2

)
µ =

Na∑
i=1

µi

σ2 =

Na∑
i=1

σ2
i

and Eq. (A.1) can be re-written as,

Na∑
i=1

F−1
zi (εi) = µ+

√
2σ2 erf−1(2ε− 1) (A.14)

Since the agent distributions are possibly all different, the left side of Eq. (A.1) is still

difficult to compute, depending on the particular CDFs of the agent score distributions.

In this work, we assume that agent distributions are also Gaussian, zi ∼ N
(
µi, σ

2
i

)
, where

the agent means and variances are assumed to be different since the team is heterogeneous.

Using identical risk values and heterogeneous Gaussian distributions in Eq. (A.14), an

182

analytic expression for the agent risks εi can be obtained as follows,

Na∑
i=1

(
µi +

√
2σ2

i erf−1(2εi − 1)

)
=

Na∑
i=1

µi +

√√√√2

Na∑
i=1

σ2
i erf−1(2ε− 1) (A.15)

erf−1(2εi − 1)

(
Na∑
i=1

√
σ2
i

)
=

√√√√ Na∑
i=1

σ2
i erf−1(2ε− 1)

erf−1(2εi − 1) =

√∑Na

i=1 σ
2
i∑Na

i=1

√
σ2
i

 erf−1(2ε− 1)

where solving for the risk value εi gives,

εi =
1

2

(
1 + erf

(
H erf−1(2ε− 1)

))
(A.16)

H =

√∑Na

i=1 σ
2
i∑Na

i=1

√
σ2
i

with the constant value H representing the team heterogeneity with regards to variance in

agents’ scores. This expression has several interesting properties. Firstly, the agent risk val-

ues for the Gaussian case do not depend on the means of the agent distributions or mission

distribution, they only depend on the variances. This is similar to the observation made

about the homogeneous risk allocation strategies, where the means of the distributions and

scale parameters did not affect the risk allocation. However, in the heterogeneous case, the

relative scale parameters do affect the risk allocation, as captured by the constant H in

Eq. (A.16). Given the expression in Eq. (A.16), if the agents are homogeneous (with iden-

tical distributions), then H = 1/
√
Na and the expression is equivalent to the homogeneous

Gaussian risk allocation presented in Eq. (A.13). On the other hand, if the entire mission

distribution comes from only 1 agent’s contribution (all other agents are deterministic with

no variance), then H = 1 and εi = ε as expected. This shows that team heterogeneity

can be represented via the parameter H, which is a function of Na and of the relative

scales of the agent distributions with respect to one another. The range of H is given by

H ∈
[

1√
Na
, 1
]
. A major advantage of using this heuristic versus more complex allocations

between heterogeneous agents, is that agents can select a number within the range of H

that roughly represents how heterogeneous the team is (possibly performing consensus on

183

this number), and then use H to compute εi individually. This is significantly faster than

coming to consensus on a consistent allocation of the individual parameters εi.

An alternate heuristic risk allocation strategy considered involves assigning different

risk values εi to different types of agents, where agents of the same type would be assigned

identical values of εi. For example, consider a scenario with 2 types of agents, and with

equal numbers of each type of agent. For this scenario, Eq. (A.1) becomes,

Na

2
F−1

z1 (ε1) +
Na

2
F−1

z2 (ε2) = F−1
z (ε) (A.17)

where the distributions and risks for each different agent type k are given by zk and εk. As-

suming Gaussian agent scores, and Gaussian mission scores as in the previous risk allocation

strategy, Eq. (A.17) simplifies to the following expression,

σ1√
σ2

1 + σ2
2

erf−1(2ε1 − 1) +
σ2√
σ2

1 + σ2
2

erf−1(2ε2 − 1) =

√
2

Na
erf−1(2ε− 1) (A.18)

Similar expressions can be derived given 3 or more types of agents. In Eq. (A.18), each

of the terms on the left hand side include a scaling parameter that is proportional to

the standard deviation for that agent type (normalized by the standard deviation of the

mission). The right hand side of Eq. (A.18) includes the number of agents Na and is typically

a function of the number of agent types as well. Given the expression in Eq. (A.18), a key

question involves deciding how to partition the risk amongst the agent types. This can be

accomplished by splitting the right hand side of Eq. (A.18) into shares, and then solving

for εk for each agent type k (where the agent risks would be set using εi = εk for agents

belonging to type k). It is not obvious, however, how these shares should be divided amongst

the agent types. In this thesis we consider two cases, one involving equal shares, and one

setting shares proportional to the standard deviation of the agent type σk.

The first strategy, which uses equal shares, divides the right hand side of Eq. (A.18)

into two equal parts, giving the following expression for each group k,

σk√
σ2

1 + σ2
2

erf−1(2εk − 1) =
1

2

√
2

Na
erf−1(2ε− 1) (A.19)

184

Each agent type k must then solve for εk as follows,

εk =
1

2

(
1 + erf

((√
σ2

1 + σ2
2

2σk

√
2

Na

)
erf−1(2ε− 1)

))
(A.20)

The quantity preceding the inverse error function in Eq. (A.20) can be thought of as a

scaling constant Hk to represent agent heterogeneity, where

Hk =

(√
σ2

1 + σ2
2

2σk

√
2

Na

)
(A.21)

in Eq. (A.20). Different values of Hk will lead to different risk allocations εk, and again it

is not immediately obvious how to partition the shares (how to set Hk) to get an allocation

of εi’s for all agents that optimizes the chance-constrained mission score.

The second strategy used in this thesis assumes that the shares agents get are propor-

tional to their standard deviation, thus the right hand side of Eq. (A.18) is divided into

shares of size σk/
∑

k σk. Given this division, each group has the following expression,

σk√
σ2

1 + σ2
2

erf−1(2εk − 1) =
σk

σ1 + σ2

√
2

Na
erf−1(2ε− 1) (A.22)

and solving for εk gives,

εk =
1

2

(
1 + erf

((√
σ2

1 + σ2
2

σ1 + σ2

√
2

Na

)
erf−1(2ε− 1)

))
(A.23)

where the constant Hk becomes

Hk =

(√
σ2

1 + σ2
2

σ1 + σ2

√
2

Na

)
(A.24)

Note that in this case, the constant Hk is not explicitly dependent on the individual pa-

rameter σk anymore, but rather considers statistics over the variances for all agent types.

As a result, Hk will be constant for all agent types k and therefore the risk values εk will

all be the same, leading to equal risks for all agents in the team (but still capturing the

heterogeneity associated with the different variances for agent scores). It is shown in Sec-

tion 6.4 that this last strategy, where risks are equal for all agents, performs significantly

better than the strategy shown in Eq. (A.20). This is because by balancing the risks more

185

evenly throughout the team, no agent can take on its extreme plan values (very determin-

istic taking no risk at all, or taking too much risk and not considering how it might affect

the mission as a whole), which increases the performance of the team. Furthermore, the

heuristic strategy employed in Eq. (A.16), which also assigned equal risks to all the agents,

also achieved high performance which was significantly better than the strategy shown in

Eq. (A.20), and on par with the strategy of Eq. (A.23). On closer inspection, the value for

Hk in Eq. (A.23) looks very similar to that of H in Eq. (A.16), explaining why the per-

formance of both heuristics was similar, since they both capture the same relative scaling

effects associated with the heterogeneous agent variances.

186

Appendix B

Distributed Information-Rich Planning

and Hybrid Sensor Fusion

Chapters 5 and 6 of this thesis presented methods for planning in distributed environments,

with particular focus on how to plan robustly given uncertainty in the environment. Meth-

ods for embedding distribution models into the planner were described with the objective of

hedging against the uncertainty in the environment to improve planning performance. A key

consideration, however, is that the plans obtained, even using robust planning strategies, are

directly affected by the distribution models available and the amount of uncertainty associ-

ated with the planning parameters. A more active approach to handling uncertainty within

the planner involves explicitly accounting for uncertainty reduction through information-rich

planning strategies. The basic notion is that, by actively controlling the measurement pro-

cess (e.g. sensor locations, vehicle trajectories), the uncertainty associated with the planner

models can be further reduced through the collection of higher quality data that maximizes

information content.

This appendix presents a novel planning and estimation architecture leveraging CBBA,

where the goal of maximizing information is a primary objective for each of the algorithms at

every step, producing a cohesive framework that strategically addresses the main mission ob-

jectives. The unified system architecture consists of: distributed task planning using CBBA

extended to include an information-based objective criteria, decentralized information-based

trajectory planning using the IRRT algorithm [133], and a hybrid Bayesian information fu-

sion algorithm that uses Gaussian mixture models to represent target position [4]. The

proposed framework is validated through a set of real-time experiments involving a human-

187

robot team performing a multi-target search mission, demonstrating the viability of the

approach.

The work presented in this appendix consists of joint efforts with Cornell University,

with several participating authors, including: Nisar Ahmed (Cornell), Brandon Luders

(MIT), Daniel Levine (MIT), Eric Sample (Cornell), Tauhira Hoossainy (Cornell), Danelle

Shah (Cornell), Mark Campbell (Cornell), and Jonathan P. How (MIT). This research was

supported in part by MURI FA9550-08-1-0356 and a National Science Foundation Graduate

Research Fellowship. For more details the reader is referred to [169].

B.1 Introduction

Modern day mission operations often involve large teams of networked agents, with het-

erogeneous capabilities, interacting together to perform the requisite mission tasks. Such

missions typically involve executing several different types of task at once, such as in-

telligence, surveillance, and reconnaissance (ISR), target classification, rescue operations,

scientific exploration, and security monitoring [1, 2]. Furthermore, within the heteroge-

neous team, some specialized agents are better suited to handle certain types of tasks than

others. For example, autonomous air and ground vehicles equipped with video can be used

to perform target search and track, human operators can be used for target classification

tasks, and ground teams can be deployed to perform rescue operations or engage targets.

Ensuring proper coordination and collaboration between agents in the team is crucial

to efficient and successful mission execution. As a result, there has been increasing interest

in exploring efficient methods to plan for mixed human-robot teams for various types of

missions. Furthermore, the advancement of communication systems, sensors, and embedded

technology has significantly increased the value of those solutions that are scalable to larger

teams, from dozens to hundreds or even thousands of agents [1, 2]. In such complex systems,

care must be taken to balance the resources allocated to primary mission tasks (e.g. search

and tracking) and related secondary tasks (e.g. maintenance, monitoring, safety, retrieval,

etc).

There are many technical challenges associated with developing algorithms that can

effectively coordinate the behavior of such teams. For example, consider a scenario where

a team of human operators and autonomous robots is tasked with searching for, tracking,

188

and classifying unknown targets in an obstacle-filled environment. A key research question

is how to efficiently allocate limited agent resources with the objective of minimizing target

state uncertainty as quickly as possible, while simultaneously executing required secondary

tasks (e.g. vehicle status monitoring, etc). Furthermore, this task assignment process

must take into account the challenges associated with the underlying autonomous motion

planning and navigation that the agents must perform to successfully accomplish their

tasks. For example, the vehicles must be able to autonomously plan trajectories in obstacle-

filled and potentially uncertain search environments, minimizing target state uncertainty

while also ensuring safety. An additional consideration for this problem is that, given that

many disjoint and heterogeneous agents are collaborating to search the environment, it is

important to employ efficient information fusion methods, which can be used to effectively

combine sensor data acquired by different mobile agents with information from human

operators. Since most planning strategies rely on underlying agent models, developing

accurate and efficient representations for agents in the team, including human operators, is

crucial. In particular, modeling human agents for use in autonomous task allocation and

information fusion algorithms remains a challenging problem [205]. Finally, any approach

considered should be able to scale with the problem size, characterized by the number of

agents and targets, without straining available computational or communication resources.

This work presents an algorithmic approach to tackle task allocation, trajectory plan-

ning and information fusion within a unified framework, with the objective of reducing

uncertainty in the target search and tracking process, while considering the complex con-

straints associated with realistic human-robot missions. In this novel approach, the goal

of maximizing information is a primary objective for each of the algorithms at every step,

producing a cohesive framework that strategically addresses the main mission objectives.

Both task planning and vehicle path planning are information based, enabling intelligent

and efficient cooperative search and track strategies that are balanced alongside other mis-

sion objectives. The task allocation and trajectory planning algorithms employed are dis-

tributed, making the system scalable to large teams of operators and autonomous agents

with diverse potential task sets. Furthermore, the information fusion algorithms presented

in this work provide strategies to directly include “soft” inputs from human agents, that can

be combined with conventional autonomous sensor information via robust particle filtering

algorithms, enabling convenient recursive Bayesian updates for efficient replanning. The

189

unified task allocation, trajectory planning and information fusion framework is validated

in a real-time human-robot multi-target search experiment, demonstrating the viability of

the approach.

This paper is organized as follows. Section B.2 defines the problem statement considered

by this work. Section B.3 presents the distributed planning and information fusion frame-

work developed to address this problem, including the overall system architecture (Section

B.3.1), the information-rich planning algorithms (Section B.3.2), and the Bayesian hybrid

data fusion algorithms (Section B.3.3). Indoor target search and track experiments for

human-robot teams using the proposed framework are presented and analyzed in Section

B.4, followed by concluding remarks in Section B.5. Note that related work is provided

throughout the paper, in the corresponding sections.

B.2 Problem Formulation and Background

This work considers the problem of planning for a team of autonomous robotic mobile

agents1 and human operators, tasked with searching for, tracking, and classifying unknown

targets in an obstacle-filled dynamic environment. The robotic agents consist of hetero-

geneous vehicles equipped with onboard computers and a variety of sensors, such as laser

range-finders, cameras and visual detection software. The human operators are static and

can interact with the robotic agents directly through a computer console. The team’s mis-

sion is to locate and identify a known number of targets as quickly and accurately as possible

in a real-time environment. The details of this search and track problem are described be-

low.

Assume that search region S ⊆ R3 contains N static targets with fixed labels i ∈

{1, . . . , N} and unknown positions xi = [xi, yi, zi]
T with respect to some fixed origin (N

is known a priori). The uncertainty in xi is initially modeled by the probability density

function (PDF) p(xi). This PDF represents any prior beliefs about xi (e.g. as obtained from

intelligence information, previous experience, or physical considerations). Using the initial

target PDFs, {p(x1), . . . , p(xN)}, and a set of observations, Z, acquired by the human-robot

team throughout the mission, the primary objective is to detect, identify and localize all N

targets in S as quickly and efficiently as possible. The exact specification of this objective

1The framework considered in this paper can be extended to incorporate human-operated mobile agents,
though this is not discussed further.

190

function might include a maximum time limit, a maximum uncertainty covariance for each

target, a weighted sum of these factors, or several other considerations (such as specific

vehicle constraints).

It is assumed here that each target distribution p(xi) is a known Mi-term Gaussian

mixture (GM),

p(xi) =

Mi∑
m=1

wi,m N (µi,m,Σi,m), (B.1)

where the parameters wi,m, µi,m, and Σi,m are respectively the weight, mean, and covariance

matrix for component m of target i, with
∑Mi

m=1wi,m = 1. It is well-known that GMs can

approximate arbitrarily complex PDFs for suitably chosen Mi and mixing components[44],

and are thus quite useful in general estimation problems with significant non-Gaussian

uncertainties[119]. At any given time, the aggregated estimate of each target is given by

the mean of the distribution which can be computed from the individual modes as

x̂i =

Mi∑
m=1

wi,m µi,m, (B.2)

with target covariance given by

Pi =

Mi∑
m=1

wi,m
[
Σi,m + (µi,m − x̂i)(µi,m − x̂i)

T
]
. (B.3)

The target locations are further assumed to be marginally independent, so that the joint

target PDF is given by

p(x̄) = p(x1, ...,xN) =
N∏
i=1

p(xi). (B.4)

If the human-robot team acquires a set of shared target observations Zk up to time step k,

then the distribution for xi can be updated via Bayes’ rule as

p(xi|Zk) =
1

K
p(xi)p(Zk|xi), (B.5)

K =

∫
p(xi)p(Zk|xi)dxi,

191

where p(Zk|xi) is the likelihood function for the observations Zk, and K is a normalizing

constant.

In the context of mixed human-robot search teams, the likelihood function, p(Zk|xi), is

composed of several independent models describing how measurements from various sens-

ing platforms are stochastically generated as a function of the underlying target states.

For robotic agents, the likelihood function characterizes measurements arising from typi-

cal robot sensing platforms, such as cameras and LIDAR. In human-robot search teams,

human operators also contribute important target information, particularly with respect

to target identification and high-level target behaviors [134], but this information typically

has limited usefulness in reducing uncertainty in xi, since it is either not very related (e.g.

target classification), or cannot be properly modeled in p(Zk|xi) unless the target has been

extensively characterized through an a priori behavioral model. However, human operator

insight is often valuable in guiding search missions, and, in many cases, it is desirable to

include these “low-level” observations from operators as “soft inputs” in Zk in Equation

(B.5), thus allowing human insight to be treated as a sensor that returns continuous or

categorical observations of continuous states, such as the target locations [4, 111].

An alternative characterization of the search and track problem described above involves

modeling the search mission as an optimal control problem, where the objective is to place

the sensing agents on trajectories that maximize the probability of finding the targets over

a given time horizon. One strategy to accomplish this is to minimize the uncertainty in

the posterior (Equation (B.5)), for example, by using a receding horizon planning strategy

that accounts for sensor platform dynamics [47]. For heterogeneous multi-agent search

teams, a centralized planning approach with a shared information set could be used in

the optimization, but such methods usually scale poorly with the size of the search area,

target population, and the number of agents. Recent work [77] considers how to perform

decentralized target search in two dimensions, via a discretized representation; however, this

approach also scales poorly in three dimensions and with increasing problem sizes, as well

as with other realistic constraints such as target dynamics and communication constraints.

In this work, an information-based approach is employed to address the search and track

problem at both the task assignment and trajectory planning levels. The solution method-

ologies do not require the discretization of the search space, although the environment is

assumed to be bounded and non-convex. The task assignment process determines which

192

agents are best suited to track which targets given their sensor configurations, current pose,

and the prior target estimates provided by the GMs (Section B.3.2). Once the targets are

assigned to the respective vehicles, the motion planning algorithm designs information-rich

kinodynamically feasible trajectories which traverse this continuous environment while sat-

isfying all state and input constraints [133] (Section B.3.2). The vehicles are assumed to

have known dynamics and sensor/detection models (though they may be nonlinear), such

that predicted trajectories can be generated deterministically. Reliable pose estimates and

environmental obstacle maps are assumed to be available to each agent for convenience, al-

though extensions to uncertain pose and maps are also possible and will be studied in future

work. Furthermore, all trajectory planning is decentralized and performed by each vehicle

independently; the paths of other agents are assumed unknown, although this information

could be shared among the agents. While more efficient sensor fusion can be achieved in

such extended search problems using GM representations [216], there has been little prior

work on how to effectively embed GMs into the planning framework. The algorithms pro-

posed by this paper incorporate the GM target representations at each level of planning,

including task allocation, trajectory planning, and human operator interface. By using

computationally efficient algorithms in each of these phases, it is possible for large teams

to develop real-time plans which explicitly account for the nature of the target uncertainty

at every level.

B.3 Decentralized Planning and Fusion Framework

This section outlines the proposed framework for managing a team of human operators and

autonomous vehicles engaged in a generalized target search, tracking, and identification

mission. The presented approach consists of three primary algorithmic components: task

allocation, trajectory planning, and information fusion. The key contribution of this work is

the development of a unified framework which integrates these algorithms, allowing for the

explicit consideration of target uncertainty reduction, complex constraints, and secondary

objectives (e.g. safety, refueling, etc.) at every level of planning. Section B.3-B.3.1 presents

the overall system architecture. Section B.3-B.3.2 reviews the task planning and vehicle

path planning algorithms, describing how information gains are directly accounted for in

the planning process, enabling the algorithms to balance information collection with other

193

mission objectives. Finally, Section B.3-B.3.3 presents the hybrid Bayesian fusion strategy,

which combines traditional sensor models with low-level categorical human observations of

target states.

B.3.1 Proposed Information-based Control Architecture

This section presents the overall system architecture for the types of planning and fusion

problems considered in this work, describing the relationship between the individual com-

ponents. A diagram of the generalized framework is presented in Figure B-1. The main

components, as shown in the figure, consist of task allocation, path planning, vehicle and

sensor configurations, and state estimation and sensor fusion. The task allocation algorithm

receives the latest state estimates of both the vehicles and targets, and uses this informa-

tion, along with accurate models of the agents and sensors, to determine the assignment of

targets to vehicles. These task assignments are then communicated to the individual vehi-

cle path planners. The path planning algorithms design trajectories for the vehicles that

minimize the target state uncertainty while considering resource consumption and obstacle

avoidance. The vehicles then implement these trajectories, update their pose estimates, and

collect observations via their sensors. The individual agent state and sensor data is sent to

a state estimation and sensor fusion module that combines all this information to obtain

the latest estimates of the agent and target states, along with measures of the estimation

uncertainty.

Figure B-2 shows a diagram of the proposed information-rich planning and fusion frame-

work presented in this paper. The task allocation algorithm in the proposed approach

consist of the decentralized Consensus-Based-Bundle Algorithm (CBBA) [58] augmented

with information metrics, the path planning uses the Information-rich Rapidly-exploring

Random Tree (IRRT) [133] algorithm, and the state estimation is performed by a recursive

hybrid Bayesian fusion strategy. The hardware platform used to obtain experimental results

consisted of a Pioneer rover equipped with cameras (Section B.4). The key principle behind

this framework is that task allocation, trajectory planning, and sensor fusion all consider

acquiring information and reducing target uncertainty as the primary objectives, creating a

unified framework for target tracking that addresses the main mission goals at every level.

A secondary advantage is that both the task assignment and trajectory planning are de-

centralized, as illustrated in Figure B-2, providing a scalable solution methodology which

194

Figure B-1: General system block diagram for proposed planning and fusion framework.

remains computationally tractable as the number of agents and targets increases. An addi-

tional contribution illustrated in this framework is the explicit use of human operators in the

control and estimation loop, via a human-robot interface (HRI). In this formulation, human

operators provide “soft inputs” to the sensor fusion, validating the identity of all potential

target detections in addition to other target state information which assists the robots in

their search (e.g. these can include fuzzy descriptions of perceived target locations such as

‘nearby landmark A’ or perceived target behaviors such as ‘moving quickly through the side

door’). Operators may also be used to handle some secondary tasks, such as monitoring

refueling operations or responding to automation failures. The following sections provide

further details on these algorithmic system components.

B.3.2 Decentralized Information-Rich Planning

The performance of dynamic search and track missions is typically measured in terms of

the efficiency with which the agents involved reduce target estimation uncertainty. How-

ever, trajectories that achieve this uncertainty reduction are subject to a complex set of

internal and external constraints, including dynamic constraints, environmental restric-

tions, and sensor limitations. By using the recently-proposed Information-rich Rapidly-

exploring Random Tree (IRRT) algorithm [132], a team of agents can quickly identify

feasible, uncertainty-reducing paths that explicitly embed the latest target probability dis-

tributions, whilst satisfying these constraints. While IRRT is capable of handling multiple

195

Figure B-2: System block diagram for indoor human-robot target search and track experi-
ment

vehicles and targets [133], algorithmic efficiency is lost when considering realistic large-scale

ISR missions. Trajectories identified for such scenarios must embed both the vehicle routing

problem (in selecting which distant targets to visit) and the constrained sensor problem (in

finding a vantage point to view nearby targets), and become computationally intractable

as the number of agents and targets increases. By pursuing a distributed approach that

partitions the target environment into disjoint tasks and allocates these tasks amongst the

agents, the computational burden on the motion planners is reduced. In this work we use

a decentralized task allocation algorithm called the Consensus-Based Bundle Algorithm

(CBBA) [58] to distribute the targets to the individual agents. The score functions used

within the CBBA task allocation framework explicitly account for the information that

agents are able to obtain about their assigned targets.

The combination of IRRT+CBBA results in a novel multi-level algorithm which em-

beds information-rich trajectory planning within a task allocation framework, efficiently

assigning targets and planning paths for teams of agents at the mission planning level.

This real-time algorithm can leverage networks of mobile sensor agents to perform dynamic

task reallocation as target estimates are updated, resulting in improved coordination and

collaboration between agents while executing the mission. Figure B-3 shows the proposed

IRRT+CBBA architecture, where each vehicle runs an instance of the decentralized CBBA

196

task allocation algorithm as well as its own IRRT planner. The next sections provide further

detail on these two components of the decentralized planning process.

(a) Overall Architecture

(b) Single Vehicle Architecture (leftmost block of Figure B-3(a))

Figure B-3: Block diagrams illustrating the overall CBBA+IRRT integrated architecture.

Decentralized Information-Based Task Allocation

The problem of task allocation has been extensively studied and many different methods

have been considered for enabling agents to distribute tasks amongst themselves from a

known mission task list [58]. Centralized planners, which rely on agents communicating

their state to a central server that generates a plan for the entire fleet, are commonly used

in the literature. However, most of these planning architectures require high communication

bandwidth, computational resources, and are typically slower to react to changes in local

information. Decentralized planning algorithms, where agents make their own plans and

communicate amongst themselves, have gained recent popularity, and offer several advan-

197

tages over centralized planning methods [63, 148]. Many of these decentralized algorithms

have to be augmented with consensus algorithms for agents to converge on consistent situ-

ational awareness prior to planning [161, 185], a process that can take a significant amount

of time and often requires transmitting large amounts of data [7]. A unique decentral-

ized auction algorithm called the Consensus-Based Bundle Algorithm (CBBA) [58] uses a

consensus protocol that acts upon the task space only, guaranteeing conflict-free solutions

despite possible inconsistencies in situational awareness. CBBA is guaranteed to achieve at

least 50% optimality [58], although empirically its performance is shown to be within 93%

of the optimal solution [37]. The task selection process of CBBA runs in polynomial time,

demonstrating good scalability with increasing numbers of agents and tasks, making it well

suited to real-time dynamic environments.

This work uses CBBA to allocate targets to the best suited agents. Figure B-3(a) shows

the overall target allocation architecture which is described in this section. Prior to the

task allocation process, the targets are grouped into sets using K-means clustering on the

target means obtained from the latest target Gaussian mixture estimates. These target sets

or “tasks” can then be allocated to the individual agents using CBBA. A key advancement

of the CBBA algorithm is a novel information-based scoring framework called the Task

Information Heuristic (TIH), which embeds an approximation of the information gain in

the assessed value of a target cluster to an agent or team. The TIH consists of selecting a

starting location to enter the target cluster2, followed by a one-step optimization process to

find the best information-rich path within the cluster, providing an estimate of the locally

optimal information-gathering trajectory. The path optimization involves minimizing the

average A-optimality of the individual Fisher Information Matrices for each target [168],

and the algorithm continues to extend the path until this average A-optimality is below

some uncertainty threshold (or some timeout is reached). The individual target Fisher

Information Matrices are initialized using the inverses of the target covariance matrices

obtained from the latest target PDFs, thus accounting for the actual acquired information

thus far. Finally, the estimated score for the task is computed as the expected acquired

information for all targets, minus the fuel resources consumed by following the optimized

path. Likewise, the arrival time and task duration are approximated using the agent’s

2The task start location for each vehicle is determined by computing the closest point on the outer edge of
a sphere around the cluster’s centroid, whose radius is given by the average cluster spread, with an additional
margin to avoid starting inside any target’s no-fly zone.

198

arrival time at the selected start point, and the time required to traverse the optimized

path, respectively. Using the estimated scores, task durations, and arrival times, CBBA

is able to allocate the tasks to the individual agents producing target lists and expected

schedules for each vehicle.

Information-Rich Path Planning

Given the target lists produced by the task allocation process, each agent must plan a

trajectory that enables the vehicle to search and track the targets assigned to it as efficiently

as possible. Due to its explicit consideration of target uncertainty reduction, this work

employs the Information-rich Rapidly-exploring Random Tree (IRRT) algorithm [132, 133].

IRRT uses a closed-loop state prediction in conjunction with sensor models and target prior

distributions to simulate a tree of candidate trajectories. Using Fisher information [78],

the value of successful measurement poses along each path can be quantified, allowing

trajectories to be selected via a trade-off between uncertainty reduction and path duration.

As an extension of RRT, the IRRT algorithm is amenable to the general, complex constraint

characterizations often encountered in real-world planning problems. This section reviews

the IRRT formulation and describes, in particular, how information collection is quantified.

From the perspective of information collection, path quality is a function of the path

measurement sequence. And while CL-RRT also enjoys the benefits of smoother path

planning on a stabilized vehicle model, it is the added disturbance robustness over open-

loop RRT[137] and the associated accurate state prediction that are particularly useful

for measurement pose prediction and, therefore, for information-based planning. Because

the vehicle’s state trajectory is usually simulated with high fidelity, and the result of its

prediction is notably accurate, a list of predicted measurement poses M = 〈µ1, µ2, ..., µl〉

can be interpolated for each of many (possibly independent) sensors on the platform. These

sensors need not have the same characteristics. Each sensor’s list of predicted measurement

poses is generated once per node, and thereafter has no need to be updated. Given the most

recent modal state estimates x̂i,m of target i with modesm ∈ {1, . . . ,Mi}, each measurement

pose µk, k ∈ {1, . . . , l} can be checked against the sensor and environment models to assess

visibility. The information for measurements deemed visible is quantified, as described

below, and stored in the resulting node nnew. Visibility and information quantification of

the M elements may be recomputed as target estimation data is updated.

199

A myriad of information-theoretic metrics exist to quantify the value of a set of measure-

ments; we use the Fisher Information Matrix (FIM) JZ(x), which describes the information

contained in a set of measurements z about an estimation process for the vector x. The

inverse JZ(x)−1 of the Fisher Information Matrix is exactly the Cramér-Rao Lower Bound

(CRLB), a lower bound on the achievable estimation error covariance and thus a quantity

to be minimized.[177] A discrete system with linear state transitions and measurements,

subject to additive Gaussian white noise, can be modeled as

xk+1 = Φk+1|kxk + wk, (B.6)

zk = Hkxk + vk,

where Φk+1|k is the state transition matrix, Hk is the linear measurement matrix, wk is the

process noise, and vk is the sensing noise. The process and sensing noises are assumed to be

Gaussian, zero-mean and uncorrelated, with covariances given by Qk and Rk respectively.

For such systems, the recursive update equation for the FIM is given by [189]

Jk+1 = (Qk + Φk+1|kJ
−1
k ΦT

k+1|k)
−1 +HT

k+1R
−1
k+1Hk+1. (B.7)

For stationary targets, Qk = 0 and Φk+1|k = I for all k, and the recursion becomes

Jk+1 = Jk +HT
k+1R

−1
k+1Hk+1, (B.8)

a particularly convenient form since the FIM in this case is additive, and the information

content of a path is just the sum of the FIMs along the path edges. Using this form provides

considerable computational savings over planning methods that propagate the covariance,

since it does not require the computation of matrix inverses.

The linearity assumption on the observation system can be relaxed by utilizing the

linearized FIM as an approximation of the CRLB inverse. Consider systems with discrete

measurements z that are nonlinear in both the target state xi and measurement pose µ,

and are thus of the form

zk = h(µk,xi) + vk, (B.9)

200

where vk is a vector of zero-mean, white Gaussian sequences. The approximate FIM can

be formulated by defining Hk to be the Jacobian of the nonlinear measurement function,

i.e.,

Hk(µk, x̂i) ,
∂h

∂x

∣∣∣∣
µk=µk, xi=x̂i(t)

. (B.10)

Note that the assumption of Gaussian noise is retained.

The expected measurement poses 〈µ1, . . . , µl〉 can be used in the framework of the FIM

to quantify the information content of a particular node in the tree. The approach is to

compute FIMs for each target mode separately, approximate a lower bound on the target

mixture covariance, and combine the information error from all N targets. The modal FIMs

are stored in that node and are used as the initial information conditions for its children.

Assuming a Gaussian mixture prior, the recursion is initiated at the root node nroot with

Jroot(x̂i,m) = Pi,m(t)−1, where Pi,m(t) = E
[
(xi,m − x̂i,m(t))(xi,m − x̂i,m(t))T

]
is the error

covariance matrix for mode m of target i at time t. For each target i, for each mode m, the

FIM Jb(x̂i,m) of a child node nb is formed by a recursive update from its parent node na,

Jb(x̂i,m) = Ja(x̂i,m) +

l∑
k=1

ν(µk, x̂i,m, Ê)HT
k (µk, x̂i,m)R−1

k Hk(µk, x̂i,m), (B.11)

where l is the number of measurements along the path segment, Ê is the environment

representation, and ν is a binary-valued function capturing the success/occlusion of a mea-

surement. In this way, the tree FIMs are populated and can be recomputed, for example,

after the target distributions have been updated.

In the presented approach, the cost associated with information for target i at node

na is specified as the A-optimality criterion on a lower bound of the mixture covariance,

specifically,

Ia(x̂i) = trace

(
Mi∑
m=1

wi,mJ
−1
a (x̂i,m)

)
. (B.12)

The A-optimality criterion has been shown to be better suited than other FIM optimality

conditions for the 3D target tracking case[168]. In the multi-target case, convex combina-

201

Algorithm 10 IRRT, Tree Expansion

1: Take a sample xsamp from the environment
2: Identify the nearest node nnear using mixture

of exploration, optimization, and information
heuristics

3: x(t+ k)← final state of nnear
4: while x(t + k) ∈ Xfree and x(t + k) has not

reached xsamp do
5: Use reference law to generate r(t+ k)
6: Use control law to generate u(t+ k)
7: Use prediction model to simulate x(t+ k+ 1)

8: k ← k + 1
9: end while

10: for each feasible node n generated do
11: Update cost estimates for n
12: Compute simulated measurement poses n.M

13: Compute FIMs using (B.11)
14: Add n to T
15: end for

Algorithm 11 IRRT, Execution Loop

1: t← 0
2: Initialize tree T with node at x(0)
3: while x(t) 6= xgoal do
4: Update the current state x(t) and target es-

timates x̂i ∀i
5: Propagate the state x(t) by ∆t→ x(t+ ∆t)
6: while time remaining for this timestep do
7: Expand tree by adding nodes
8: end while
9: Update FIMs throughout T using (B.11)

10: Use information-based cost metric to identify
best feasible path, {nroot, . . . , nselect}

11: Apply best feasible path, if one exists
12: t← t+ ∆t
13: end while

tions of the A-optimality costs can be found by summing over the targets,

Ia =

N∑
i=1

qi Ia(x̂i),
N∑
i=1

qi = 1 (B.13)

where the relative weights qi can be used to bias information collection towards some targets

(e.g. mission-critical targets). Summation of the A-optimality costs is consistent with the

nature of the multi-objective problem.3

The ability to simulate expected measurement poses is used in two ways to extend

the CL-RRT algorithm for information gathering. First, these expected measurements

are used to bias tree growth toward regions of high information-gain [133] (Algorithm 10)4.

Second, the vehicle selects paths from the tree that minimize a cost function which explicitly

considers information, in addition to path cost and remaining cost-to-go.

Whenever new feasible nodes nnew are generated for the tree, the predicted measurement

posesM are stored within the node (line 12). These measurement poses are used to compute

the FIMs based on the current target estimates x̂i,m for all i and m, both when the node is

created (line 13) and whenever the best path is selected, as discussed next.

3It should be noted that simply summing the FIMs (and not the associated A-optimality costs) over all
targets at a given measurement pose is imprudent; for example, two targets with singular FIMs could in their
sum form a nonsingular FIM, thereby masking the momentary unobservability of each target’s estimation
process.

4See [137] for more information on existing components.

202

The IRRT execution loop is presented in Algorithm 11. In the IRRT algorithm, a single,

multi-objective cost metric is used (Algorithm 11, line 10), which considers both progress

toward the goal and the value of information collection. This cost function here takes the

form

C(na) = αττ (na|nroot) + τ∗ (na) + αIIa, (B.14)

where τ(na|nroot) is the simulated time to travel from the root node nroot to node na, τ
∗(na)

is the lower-bound cost-to-go (e.g. Euclidean or Dubins length divided by average speed)

from na to the goal, and Ia is the information-related cost component. The weights ατ

and αI can be adjusted to reflect the relative importance of information gathering and of

following minimal-time paths to the goal. To ensure all recent measurements are taken into

account, the latest target estimates are measured at the beginning of each execution loop

(line 4), which are then used to update the FIM of each node in the tree (line 9). Though this

FIM update is performed on the entire tree on each pass, this is a computationally efficient

operation compared to other aspects of the algorithm, such as constraint evaluation.

Of particular note with this cost function is that it can be shown to result in “smooth”

mission-level behaviors, in the sense that negligible churning between information collection

and goal directedness exists. Rather, the planner is always conscious of the inherent tradeoff

and will generate behaviors that, for example, conclude missions by maneuvering to collect

information while remaining relatively close to the goal. It should also be noted as a

limitation of IRRT, and RRTs in general, that mission-critical requirements like maximum

allowable duration and/or minimum required information collection are not well handled;

it is difficult enough to find, let alone guarantee that one could find, a feasible solution to

such requirements in finite time. Despite this, IRRT has been shown through simulations

to perform well empirically under a number of previously prohibitive general constraints.

Furthermore, recent flight results have demonstrated the viability of the IRRT approach,

incorporating multiple vehicles, complex uncertainty models and sensors in the loop[133].

B.3.3 Recursive Bayesian Hybrid Data Fusion

This section describes the components of the “State Estimation” block in Figure B-2, which

combines observations made by human and robot agents to update the Gaussian Mixture

target PDFs used by the CBBA task allocation algorithm and IRRT path planning algo-

203

rithm for each agent. The proposed sensor fusion process is centralized and leads to recur-

sive Bayesian GM updates. Decentralized recursive Bayesian fusion with GMs remains a

challenging problem [109] and will be addressed in future work.

Overview of Gaussian Mixture Fusion Updates and Measurement Models

Let Zk =
{
Ztotal1 , . . . ,Ztotalk

}
be the set of all available observations up to time k from human

and robot agents, where Ztotalk =
{
Zrk,Z

h
k

}
is the set of observations Zrk from robot agents at

time k and the set of observations Zhk from human agents at time k. For Nr robot agents and

Nh human agents, Zrk contains Nk
r ≤ Nr measurements zr,jk ∈ Rnr×1 for j ∈ {1, . . . , Nr} and

Zhk contains Nk
h ≤ Nh measurements zh,jk ∈ Rnh×1 for j ∈ {1, . . . , Nh}, where nr and nh are

the fixed sizes of the robot and human measurement vectors, respectively. The observations

zr,jk and zh,jk are generally non-linear and described stochastically by non-Gaussian likelihood

functions p(zr,jk |xi) and p(zh,jk |xi), where it is assumed that reliable agent state estimates

and environment maps are available so that only xi is uncertain. A more general treatment

of the fusion problem that includes uncertain target dynamics, agent states and environment

maps is also possible, but is omitted here for brevity.

If Zrk and Zhk are conditionally independent given xi, the Bayesian posterior (Equation

(B.5)) can be recursively computed as

p(xi|Zk) =
1

K
p(xi|Zk−1)p(Ztotalk |xi) =

1

K
p(xi|Zk−1)p(Zrk|xi)p(Zhk |xi), (B.15)

where

K =

∫
p(xi|Zk−1)p(Zrk|xi)p(Zhk |xi)dxi (B.16)

is a normalization constant, and

p(Zrk|xi) =
∏

zr,jk ∈Zrk

p(zr,jk |xi), (B.17)

p(Zhk |xi) =
∏

zh,jk ∈Zhk

p(zh,jk |xi),

p(xi|Z0) = p(xi).

Since p(xi|Zk) = p(xi|Zk−1,Z
r
k,Z

h
k), Equation (B.15) is factored into sequential Bayesian

204

updates for Zrk and Zhk ,

p(xi|Zk−1,Z
r
k) =

1

Kr
p(xi|Zk−1)p(Zrk|xi) (B.18)

p(xi|Zk−1,Z
r
k,Z

h
k) =

1

Kh
p(xi|Zk−1,Z

r
k)p(Z

h
k |xi), (B.19)

where

Kr =

∫
p(xi|Zk−1)p(Zrk|xi)dxi,

Kh =

∫
p(xi|Zk−1,Z

r
k)p(Z

h
k |xi)dxi.

Finally, (B.18) and (B.19) are evaluated using Nk
r and Nk

h recursive Bayesian updates,

respectively,

p(xi|Zk−1, ..., z
r,j
k) =

1

Kr,j
k

p(xi|Zk−1, ..., z
r,j−1
k)p(zr,jk |xi), (B.20)

p(xi|Zk−1,Z
r
k, ..., z

h,j
k) =

1

Kh,j
k

p(xi|Zk−1,Z
r
k, ..., z

h,j−1
k)p(zh,jk |xi), (B.21)

where the indices (r, j) and (h, j) respectively denote the agents with measurements in

Zrk and Zhk for j ∈
{

1, ..., N r
k or Nh

k

}
, and the constants Kr,j

k and Kh,j
k are the required

normalizing integrals. After (B.18) and (B.19) are evaluated at each time step k for each

target i, the updated GM PDFs are fed back to the agents so that they can replan and

execute tasks more efficiently via CBBA and IRRT in light of newly acquired information.

Zrk and Zhk are both assumed here to contain discrete multi-category observations with

respect to xi. Prior to actual target acquisition, the discrete target detector outputs for each

robot vehicle can be used to update the continuous target PDFs via Equation (B.18), as

the probability of detection/no detection function can be treated as the likelihood p(zr,jk |xi)

for the binary observation zr,jk ∈ {“no detection”, “detection”} [47, 77]. Since zr,jk depends

on the vehicle pose at time k and on xi, the fusion of “no detection” observations squashes

p(xi|Zk−1) with vehicle j’s “no detection” likelihood at time k, thus shifting probability

mass to regions of S where the target is more likely to be detected.

Similar “GM squashing” updates can also be induced in Equation (B.19) by “soft”

human observations zh,jk that take the form of ambiguous categorical location descriptions.

For instance, a human agent might observe “something is around landmark A”, “something

205

is behind wall 2”, or “nothing is in front of the robot”, where the prepositional phrases

“around landmark A”, “behind wall 2”, and “in front of the robot” can be treated as fuzzy

categorical labels for coarse range and bearing measurements relative to known locations

on a common map. As with probability of detection models, such terms can be modeled

probabilistically via likelihood functions that squash the target PDFs towards/away from

specified map reference points via Bayes’ rule.

The likelihood functions p(zr,jk |xi) and p(zh,jk |xi) are modeled here via multimodal soft-

max (MMS) models, which enable simple piecewise linear representations of “continuous-to-

discrete” probability surface mappings [4]. The top left of Figure B-4(b) shows an example

2D MMS model of a triangular probability of detection region for a camera-based target

detector mounted to a robot agent facing east. This particular MMS likelihood model has

the form

p(zr,jk = c|xi) =

∑
s∈σ(c) exp(wTs ξ)∑

r∈{σ(D)∪σ(ND)} exp (wTr ξ)
, (B.22)

where ξ = [xi, 1]T , c ∈ {“no detection” (ND), “detection” (D)} is the observed category of

zr,jk . The weights ws in (B.22) are parameters for the two mutually exclusive subcategories,

σ(D) and σ(ND), that geometrically define the possible observation categories of zr,jk as a

function of ξ, where s ∈ σ(ND) or s ∈ σ(D). The camera detection model in Figure B-4(b)

uses 3 subcategories in σ(ND) to describe zr,jk = “no detection” as being most probable

outside of the triangle, and 1 subcategory in σ(D) to describe zr,jk = “detection” as being

most probable inside the triangle. The bottom left of Figure B-4(b) shows an example 2D

MMS likelihood model corresponding to a coarse human range observation relative to a

robot vehicle, with 3 possible categorical values zh,jk ∈ {“next to”, “around”, “far from”}.

The form of the likelihood function p(zh,jk = c|xi) for this ternary model is similar to that

of the binary camera model in (B.22); here σ(“next to”) contains 1 subcategory (defining

the hole of the ring), σ(“around”) contains 8 subcategories (each defining a segment of the

octagon ring), and σ(“far from”) contains 8 subcategories (each defining a convex region

extending from an outer face of the ring), for a total of 17 weights5.

Despite their flexibility, the highly nonlinear/non-Gaussian nature of MMS likelihood

models means that the exact posteriors on the left-hand sides of Equations (B.20) and (B.21)

5See [4] for further details on MMS models.

206

are unfortunately no longer closed-form, since the required integrals for the normalizing

constants Kr,j
k and Kh,j

k cannot be determined analytically. In fact, the resulting hybrid

Bayesian updates in (B.20) and (B.21) can only be performed via approximation methods

such as discretization or Monte Carlo sampling [131].

Hybrid Bayesian Gaussian Mixture Updates via Monte Carlo Importance Sam-

pling

As discussed in [4], fast Monte Carlo importance sampling techniques can be used to obtain

accurate GM approximations for the required posteriors on the left-hand sides of Equations

(B.20) and (B.21) when the right-hand sides contain GM priors and MMS likelihoods. This

leads to a recursive approximate Bayesian fusion strategy in which the priors and posteriors

in (B.20) and (B.21) are always represented as GMs, thus ensuring that human and robot

agents can incorporate new information from each other in a consistent and compact form.

The basic importance sampling algorithm used here to evaluate Equations (B.20) and

(B.21) for non-dynamic GM priors and MMS likelihoods is given in Algorithm 12. Impor-

tance sampling approximates expectations under an intractable posterior distribution by

using weighted samples drawn from a known “importance” distribution q(xi), which ideally

has a similar shape to the posterior; this idea underlies the well-known particle filter, which

represents the priors and posteriors for non-Gaussian Bayesian filtering via weighted sam-

ples at each time step [13]. Algorithm 12 extends this representation by treating the input

prior as a full GM and compressing the weighted particles from importance sampling mea-

surement updates into a new GM posterior model. This not only provides a consistent and

compact uncertainty representation for task and path planning for all time steps, but also

helps avert sample degeneracy problems that can lead to inaccurate/unreliable Bayesian

fusion [13].

Since the importance distribution q should be as close as possible to the true posterior for

efficient sampling [13], Algorithm 12 also tailors q to the measurement updates in (B.20) and

(B.21). For updates via Equation (B.20), q is set to the mth component of the input GM,

since its components are typically very close to the true posterior modes when “detection/no

detection” observations arrive from robot vehicles at a sufficiently high rate. For updates

via Equation (B.21), a variational Bayes algorithm is used to determine a q close to the true

posterior, which can shift far away from the modes of the input GM when human agents

207

(a)

(b)

Figure B-4: (a) Bimodal GM prior with µ1 = [0, 4]T , µ2 = [0,−4]T , Σ1 = Σ2 = 5 ·
I2, and w1 = w2 = 0.5, (b) left (top and bottom): MMS likelihood models for camera
detection probability and human range observation, where probabilities are close to 1 for
red and close to 0 for blue; right (top and bottom): corresponding Gaussian mixture posterior
approximations for GM prior in (a) (robot vehicle position indicated by magenta circle).

208

Algorithm 12 Importance Sampling Measurement Update Algorithm

Inputs: Agent type t ∈ {r, h}, agent index j ∈
{

1, ..., N t
k

}
, input GM p(xi|Zk−1, ..., z

t,j−1
k) =∑Mi

m=1 wi,m N (µi,m,Σi,m),
MMS observation likelihood p(zt,jk |xi), observation zt,jk with Sz subcategories in p(zt,jk |xi)
Output: Posterior GM p(xi|Zk−1, ..., z

t,j
k) =

∑Sz ·Mi
h=1 wh,i N (µh,i,Σh,i)

Initialize h ← 0
for Input GM component m = 1 to Mi do

for Each subcategory s ∈ σ(zt,jk) do
Set h ← h + 1
if t = r for updating via (B.20) then

Set q(xi) = N (µi,m,Σi,m)
else if t = h for updating via (B.21) then

Set q(xi) using variational Bayes method (see [4])
end if
1. Draw N samples

{
x1
i , ...,x

N
i

}
from q(xi)

2. Evaluate importance weights
{
ω1, ..., ωN

}
(see [4])

3. Estimate the conditional measurement likelihood l(m, s) = 1
N

∑N
n=1 ω

n

4. Re-normalize importance weights so that
∑N
n=1 ω

n = 1
5. Estimate posterior component h mixing weight wh,i, mean µh,i and covariance Σh,i,

wh,i = wi,m · l(m, s), µh,i =

N∑
n=1

ωnxni , Σh,i =

N∑
n=1

ωn(xni x
nT
i)− µh,iµTh,i (B.23)

end for
end for
Re-normalize mixing weights so that

∑Sz ·Mi
h=1 wh,i = 1

make “surprising” observations (in such cases, severe sample degeneracy could result if q

were instead set to the mth component of the input GM). A more detailed description of

Algorithm 12, including further details on the selection of q and evaluation of the importance

weights ωn in step 2, can be found in [4].

Figure B-4 illustrates some typical fusion results using Algorithm 12 . Figure B-4(a)

shows the 2 component GM prior used in this demonstration with the MMS observation

likelihoods shown in Figure B-4(b). The top right of Figure B-4(b) shows the 6 component

GM posterior following an update with a robot vehicle “no detection” observation, which

pushes probability mass away from the triangular detection region of the robot’s camera.

The bottom right of Figure B-4(b) shows an 18 component GM posterior following the

human observation “target around robot”, where almost all of the probability mass from

the GM in Figure B-4(a) is forced into the ring-shaped region of the corresponding MMS

likelihood model.

209

Practicalities

Mixture management: If the input GM of Algorithm 12 has Mi components and

p(zt,jk |xi) has Sz relevant subcategories corresponding to zt,jk , then the output GM will

have Mi · Sz components. Thus, GM compression techniques should be used after each

measurement update to prevent the number of GM terms in Equations (B.20) and (B.21)

from becoming prohibitively large after each time step. As discussed in [4], many GM com-

pression algorithms can be used, although all incur some information loss with respect to

the original output GM. Salmond’s merging algorithm [193] is used here after each appli-

cation of Algorithm 12, so that the compressed output GM contains no more than Mmax

mixands that preserve the overall mean and covariance of the uncompressed output GM.

While the best value of Mmax is strongly problem/implementation-dependent, Mmax must

in general be tuned to balance between (i) minimizing the time costs of evaluating and com-

pressing (B.20) and (B.21) for each target (so that agents can replan in a timely manner)

and (ii) maintaining the most accurate possible GM approximation of (B.5) for each target

(so that agents can use as much information as possible for replanning). To this end, it

should also be noted that the fusion updates for multiple independent target GMs can be

run in parallel, while the nested for loops in Algorithm 12 can be split into Mi ·Sz parallel

importance sampling updates.

False alarms and data association for ambiguous human observations: It is as-

sumed here that human agents perfectly filter out false target detections from Zrk, and that

the soft location information in Zhk is completely reliable. While it is theoretically possi-

ble to extend the proposed fusion process to accommodate false alarms in Zrk and human

errors/uncertainties in Zhk , these extensions are omitted here for brevity.

Data association issues arise in Equation (B.21) when human observations zh,jk are not

target specific (e.g. if a human reports the location of “something” or “nothing” in the ab-

sence of target ID information). For example, the “positive” observation zh,jk =“Something

is nearby the robot” could apply to any remaining target, but only truly corresponds to one

target. However, the “negative” observation zh,jk =“Nothing is nearby the tree” corresponds

to all remaining targets. The fusion of such ambiguous measurements can be handled by

probabilistic data association techniques [115]. The naive data association method of [4] is

used here for the typical case where human observations only describe either “something”

210

or “nothing” without target ID information.

B.4 Indoor Target Search and Track Experiments

This section describes the experiments conducted at Cornell’s Autonomous Systems Lab

to validate the proposed planning and fusion methods for an actual cooperative human-

robot target search and identification mission. Five static targets (orange traffic cones with

numbered labels) were hidden in an obstacle-filled environment and assigned random state

priors. A human-robot team consisting of two completely autonomous ground rovers and a

human analyst were tasked with detecting, identifying, and localizing all N = 5 targets in

under 10 minutes. The 5m x 10.5m indoor search area used for the experiment is shown in

Figure B-5(a).

Due to the relatively small scale of the problem, in these experiments, only the robotic

agents were involved in the “Task Allocation” and “Path Planning” process described in

Figure B-1; the human operator was instead considered a stationary sensor whose sole task

was to provide information (i.e. target verification and possibly soft location information)

through a desktop computer console to the “State Estimation and Sensor Fusion” block.

The targets i ∈ {1, . . . , 5} were placed at fixed locations xtruei throughout a field featuring

four movable wall obstacles measuring between 1m and 1.5m, which obstructed the human

operator’s direct line-of-sight to some of the targets when seated at the console. The

operator had access to the live video streams from the vehicle cameras, displayed at the

console, to assist in the classification process. The operator could also send information to

the robots via the Human-Robot Interface (HRI) to improve their autonomous search.

B.4.1 Experimental Setup

Hardware

The robot platform used for these experiments was the Pioneer 3DX with the following

mounted devices: Mini ATX based computer with a 2.00 GHz Intelr CoreTM 2 processor,

2 GB of RAM and WiFi networking to control the robot, a Unibrain Fire-I OEM Board

camera, and a Hokuyo URG-04 LX LIDAR sensor (Figure B-5(b)). A computer with a 2.66

GHz Intelr CoreTM 2 Duo processor and 2 GB of RAM performed the State Estimation

and Human-Robot Interface (HRI) tasks. An additional computer with similar hardware

211

(a) Search area used for experiment (b) Pioneer 3DX rover equipped
with computer, LIDAR, and
camera

Figure B-5: Real-time search and track experiments for human-robot teams performed at
Cornell’s Autonomous Systems Lab

executed task allocation in a simulated decentralized environment. A computer with two

2.66 GHz Intelr Xeonr processors and 4 GB of RAM implemented high-level path planning

for the experimental trials. A Vicon motion-tracking system performed robot localization

and pose calculations.

Messaging, Local Controller, and Target Detection Algorithms

The Pioneers sent three types of messages: images, detected targets, and robot data. Each

robot data message was sent at 20 Hz and contained the robot’s name, ID number, pose,

local timestamp, most recent LIDAR scan, current path, current trajectories, and path

completion status. This data was processed for high-level task and path planning, as well

as low-level local robot control and target detection.

Local Pioneer robot controllers enabled the vehicles to autonomously follow the waypoint

trajectories created by the path planners while avoiding dynamic collisions. The Pioneer

controllers were provided with a map of the search environment in order to plan around

known obstacles as well as state data for any dynamic obstacles. Local path following used

a D* planning algorithm to find an optimal path and a pure pursuit controller to generate

velocity commands. The D* planner was required to avoid newly detected obstacles and

other robots in the field, as well as to provide a safety measure against possible inconsisten-

cies between Vicon localization and actual field positions. Objects detected by the Pioneer

LIDAR units were considered collision hazards if they were within a 0.4m threshold, with a

212

bearing between 0 and π radians (in front of the vehicle). When a collision was imminent,

the robots searched their latest LIDAR scan returns for possible escape directions that

avoided these potential collisions. In some cases, a robot could get ‘stuck’ inside obstacles

if they strayed too close to them, which necessitated human intervention to ‘rescue’ the

robot.

The positions of other robots were unknown to the local path planners in this experimen-

tal setup, and the local robot controllers were instead responsible for avoiding robot-robot

collisions6. The state data for each robot was broadcast at 2 Hz so that each local D*

planner could model the other robot as a dynamic obstacle. A simple fixed precedence

algorithm was used to resolve potential robot-robot collisions if the robots came within a

fixed distance of each other. The trajectories sent from the vehicle computer to the Pioneer

controller were varied between rates of 4 sec and 10 sec; the effects of these two different

rates are examined below.

To detect and localize potential targets, the Pioneer computer used OpenCV “blob” de-

tection algorithms on areas of the camera images that were within thresholds corresponding

to the color of a standard traffic cone under the lab’s lighting conditions. A cone detection

algorithm developed in OpenCV was then employed to provide the HRI with a bounding

box of possible cone-shaped blobs in a “potential target detection” message. To simulate

realistic mission conditions given the small size of the field, the HRI restricted detection

ability to a forward range of 1m by ignoring potential targets with bounding boxes of in-

sufficient height. The HRI associated potentially valid targets with the generated image,

and with the LIDAR scan with the closest timestamp to that image. The location of the

possible target was then roughly estimated using the LIDAR points with the best match

in bearing to the bounding box. If the estimated location was not for an already identified

target or a false alarm, this information was prompted to the user, who either identified the

specified target or classified it as a false alarm.

Human-Robot Interface

In addition to assisting in target detection, the HRI, shown in Figure B-6, allowed the

human operators to send soft sensor information to update the Gaussian mixture model

6Note that IRRT has the capability to perform dynamic obstacle/agent avoidance if augmented with
the appropriate state data for those dynamic obstacles/agents. This capability was not leveraged in these
experiments, however, in the next set of trials this feature will be enabled.

213

for each target, as described in Section III.B.3.3. The observations from the human agent

involved positive/negative information using the previously described “something/nothing”

format and the preposition models shown in Section III.B.3.3 to describe target location

information relative to field landmarks or the robots themselves via a scroll menu. Using the

HRI, the operator also had available the camera views of each Pioneer and a top-down map

view of the field, which included all known obstacles, robot locations, identified target/false

alarm locations, and the latest combined target PDF. Note that the vehicles were fully

autonomous and that the HRI could not directly send any control signals to the robots

(except for an emergency stop command). Any operator inputs to the robots were via

“soft” observations only, as described in Section III.B.3.3.

B.4.2 Search Performance Metrics and Results

Each target i ∈ {1, . . . , 5} was assigned a Gaussian prior p(xi) = N (µi,Σi) with covariance

Σi = I and mean µi. The values for µi and xtruei that were used for the experiments were

µ1 = [1.50, 1.30]T , xtrue1 = [0.103, 1.526]T

µ2 = [4.25,−1.70]T , xtrue2 = [2.648, 1.28]T

µ3 = [1.25, 0.55]T , xtrue3 = [−0.973,−0.214]T

µ4 = [−1.75, 1.55]T , xtrue4 = [2.867,−0.201]T

µ5 = [6.00, 1.05]T , xtrue5 = [5.012,−0.679]T .

The PDF surface for the combined target prior is shown in Figure B-7, along with the 2D

field map, initial search vehicle locations and orientations, and the true target locations and

labels. Note that in some cases, xtruei is sometimes quite far from the specified µi prior,

which creates a fairly challenging search problem.

Multiple search trials were conducted to compare team search performance using sev-

eral metrics under different planning and information fusion modalities. The experiments

included trials with and without human operator soft inputs and varied task allocation

replan rates. Planner performance was evaluated via the following metrics: (1) number

of targets detected/identified, (2) individual and combined vehicle distances traveled (not

including rotations in place), (3) time required to find the targets, and (4) information

acquired throughout the mission. The latter metrics reflect the efficiency of the combined

214

decentralized planning algorithms in exploring the search space7. The information gain at

each time-step, following updates from the GM target state estimator, was computed via

the Kullback-Leibler divergence (KLD) between the updated combined (undetected) target

GM posterior in Equation (B.24) at time-step k+ 1 and the combined target GM posterior

from time-step k, given by

KL [p(x̄|Zk+1)||p(x̄|Zk)] =

∫ ∞
−∞

p(x̄|Zk+1) ln

[
p(x̄|Zk+1)

p(x̄|Zk)

]
dx̄. (B.24)

As discussed in [47], the KLD can be thought of as a distance measure between two probabil-

ity distributions, which quantifies the amount of information acquired about the combined

target estimate x̄ from time k to k + 1. KLDs are nonnegative and are zero only if both

PDFs in the integrand are identical, which implies that no new information is acquired.

The sum of the KLD over the mission duration reflects the overall average changes in the

uncertainty of the undetected target locations during the search mission. The cumulative

sum of Equation (B.24) from mission start to end was computed for each trial offline via

discretization techniques.

Effect of Human Operator Soft Inputs

To quantify the benefit of the human operator soft inputs to the Bayesian fusion perfor-

mance, trials were conducted to compared the proposed GM target state estimator which

fused soft human information to a baseline GM target state estimator that ignored soft

human information. A basic greedy Markov Decision Process (GMDP) path planner served

to generate default trajectories. For each robot, the GMDP discretized the combined target

PDF for the robot’s assigned targets, and then selected the cell with the largest PDF share

as the goal location. A path to that location was then planned using value iteration [212],

where the robot was allowed to move into adjacent cells by moving either left, right, up,

down, or diagonally. For the trials where the soft human observations were ignored, only

the probability of no detection information from the robot camera and pose information

7Note that mission duration could be less than the allotted 10 minutes either because: all targets were
found and identified successfully, or because the trajectory planner or robot controller became “stuck” in
an irrecoverable state (e.g. inside an obstacle buffer), in which case the mission was terminated since
the robots could not continue autonomously without significant human intervention. Hence, the mission
termination condition also served as a loose qualitative measure of planner performance, although it should
be emphasized that this is sensitive to the particular tuning and implementations of the local robot controllers
and the experimental environment.

215

were used to update the target GMs. In such cases, the human agent was instructed not to

send any observations to the robots, other than responding to target confirmations. For the

trials where the human’s observations were fused, the human could send soft information

observations to the robots at will, as long as the robots were not awaiting target confir-

mation responses. In all cases, the maximum number of GM components per target was

set to 15. The trials were repeated using a 4 sec replan rate for the CBBA task allocation

component and a 10 sec replan rate. Table B.1 shows the detected targets along with the

time it took the team to find them in each of the trials.

Table B.1: Results for Human Operator Soft Input Experiments: Targets Detected and
Time to Detect Targets (in order of acquisition)

Case Targets, no Human Time (s), no Human Targets, with Human Time (s), with Human

4 sec CBBA 2,5,4,1 98,246,496,543 4,3,2,1,5 25,199,241,286,336

10 sec CBBA 1,4,5,3 65,209,262,427 2,4,3,1,5 49,60,79,347,365

Figure B-8 compares the mission performance for the different trials, showing the vehicle

distances traveled (Figure B-8(a)) and the mission durations (Figure B-8(b)) for each case.

These results highlight the benefit of the human operator soft inputs, showing that by fusing

in the information provided by the operator, the robotic team is able to locate and identify

the targets more quickly and efficiently than without the operator inputs.

Information-Based Search and Track

Next, the IRRT trajectory planning approach described in Section III.B.3.2 was imple-

mented and used to generate information-based paths for the robotic agents. Multiple trials

were conducted for different task allocation replan rates (4 sec vs. 10 sec), and for cases

with and without the human operator soft inputs described above. Table B.2 presents the

results for these trials, showing the targets acquired throughout the mission along with the

time it took the team to located and identify them. Figure B-9 shows the mission durations

and vehicle distances traveled for the different trials, and Figure B-10 shows the information

acquired by the team throughout the mission for the different experiments. There are some

interesting observations that can be made from these results. Firstly, as shown in Figure

B-10, the trials incorporating human soft inputs achieved a higher information content than

216

the trials without human inputs for both the 10 sec and 4 sec replan cases. In fact, in the

4 sec replan case the autonomous team found only 2 out of the 5 targets, but using human

inputs it was able to find 4 (see Table B.2). A second observation is that the information

acquired using a 10 sec replan rate was consistently higher than that obtained using a 4 sec

replan rate (for both with and without human inputs). This is due to a tradeoff between

replanning often to include the latest target estimate information vs. allowing IRRT enough

time to generate a quality plan before using it. Finally, it is worth noting that the impact of

human inputs and replan rates on vehicle distances and total mission completion times was

inconclusive for this set of experiments. This is partly due to the fact that vehicle distances

and mission times were affected by the collision avoidance software that would sometimes

stop or reroute vehicles before returning them to the trajectories planned by IRRT. The

next section provides a more detailed discussion on the different elements that impacted

the results, especially with regards to mission times and vehicle distances.

Table B.2: IRRT Targets Detected and Time to Detect Targets (in order of acquisition)

Case Targets, no Human Time (s), no Human Targets, with Human Time (s), with Human

4 sec CBBA 5,3 148,287 3,4,1,5 77,176,178,282

10 sec CBBA 5,4,2,1 27,85,121,339 4,2,1,5 30,144,222,421

B.4.3 Discussion

The hardware implementation results for the multi-target search and identification mission

provide several interesting and useful insights about the proposed information-rich planning

and hybrid fusion framework for human-robot teams. This section describes the benefits of

the proposed architecture as well as lessons learned and suggestions for future work.

Effects of soft human inputs on Bayesian fusion performance

The performance metrics above show that the fusion of human information generally im-

proved target search efficiency; in particular, the rates of average information gain with

respect to the undetected target PDF without human inputs were smaller than the rates

of average information gain with human input. This shows that although human agents

217

are rate limited and less precise than conventional robot sensors, proper Bayesian fusion of

soft categorical human data can lead to significant improvements in team performance for

information-based tasks. Soft categorical human inputs are especially interesting to con-

sider for data fusion in ISR-type missions, due to their natural interpretability to human

operators and their high degree of flexibility. The GM-based data fusion framework pre-

sented here for soft human inputs can also readily accommodate existing Bayesian fusion

methods for conventional sensors (e.g. such as those based on Kalman filtering).

However, care must always be taken in practice to properly characterize the context

of soft human inputs before fusion takes place. For example, the meaning (and hence the

likelihood functions) of ‘nearby’ is quite different in the statements ‘the car is nearby the

tree’ and ‘Newark is nearby New York City’. In the experiments presented here, this issue is

resolved through the use of a simple messaging protocol and a limited but unambiguous set

of contextual cues (i.e. the ‘wall’ and ‘robot’ location reference points) that can be passed

to an interpreter, which is constructed offline. More sophisticated messaging protocols

or interfaces (e.g. natural language) could also be implemented with additional effort for

other applications, as long as sufficient training data is available for properly translating

the desired soft categories into meaningful probabilistic likelihood functions, as described

in Section B.3.

Interestingly, while human sensor inputs are clearly advantageous from an information

fusion perspective, they remain challenging to directly accommodate and account for within

information-based planning algorithms, since humans are not as predictable or reliable as

conventional sensors such as cameras and LIDAR. In particular, the highly intermittent

and nonlinear/non-Gaussian nature of soft categorical human inputs makes it difficult to

predict the expected amount of information to be contributed by human sensor agents over

a finite horizon. As a result, information-based planners must be tuned carefully to the

styles of different human operators in order to ensure good team performance. Future work

will explore different strategies for coping with these issues, such as explicitly polling the

human operator for inputs to improve predictability and calculation of information gain

bounds with respect to intermittent human observations.

218

Analysis of information-based search and track

While the experiments using the proposed IRRT-CBBA fusion architecture illustrated the

viability of a unified information-based planning framework, there were several interesting

issues observed and lessons learned. Firstly, the experiments using a 4 sec task allocation

replan rate vs. a 10 sec replan rate highlighted a tradeoff between plan relevance and plan

quality. The quality of the plans generated by IRRT improves the longer the algorithm

is allowed to run, thus the 10 sec replan rate created more informative trajectories which

enabled the team to acquire larger amount of information throughout the mission (see Figure

B-10). On the other hand, a faster replan rate ensures that the current plan remains relevant

in light of changing information, such as updated GM estimates and critical information

provided by human operators. For this particular mission, a 10 sec task allocation replan

rate proved more efficient than a 4 sec rate, but in a more dynamic environment it is likely

that the relevance of the plan will become more important than the quality, thus favoring

faster replan rates. This tradeoff is problem and implementation dependent, and should be

carefully considered when implementing these system to achieve the best performance.

Secondly, the complications associated with performing actual hardware experiments

impacted the performance of the system resulting in discrepancies between expected and

actual performance. For example, the information-based trajectories planned by the IRRT

component were not being executed exactly by the rovers during the experiments for a

variety of reasons such as collision avoidance, delays, and modeling inaccuracies. The low-

level dynamic collision avoidance software often changed the shape of the trajectory, creating

detours so that the vehicles would not hit each other. These detours often resulted in

larger vehicle distances and longer mission completion times. Although the IRRT algorithm

presented in [133] accounts for dynamic collision avoidance, the distributed hardware nature

of the experiment did not allow us to take advantage of this feature, however, this capability

will be included in future iterations of these experiments. The other reason mentioned above

involved delays between planning the trajectory and communicating it to the vehicles.

Although minor, these delays impacted the trajectory following capability and the next

iteration of experiments will attempt to minimize these delays as much as possible. The

third reason was due to mismatches between the IRRT’s model of the vehicle dynamics and

sensor model, and those actually used by the rovers during execution (such as many of the

219

D? effects). IRRT specifies exact trajectories that include position, orientation and sensor

location, but the low-level path following software consisted only of waypoint following,

causing discrepancies between the planned and actual sensor location/orientation required

for obtaining accurate measurements (although the vehicles often got really close to taking

a proper measurement, they would pass by without looking directly at the target, and

therefore there would be no reward for executing the almost perfect trajectory). In addition,

the actual measurement procedure was slightly different than that modeled in the IRRT

framework, causing mismatches in predicted and actual performance. In particular, the

vehicle sensor limitations in the vision processing software were more conservative than the

sensor models used by IRRT. Thus, while the trajectories generally exhibited good behavior,

the “reward” in terms of valid observations was often insufficient. Furthermore, there was

significant sensitivity in the actual measurement procedure making it difficult to obtain a

good measurement. For example, the target cones had to be centered at a certain height

and distance for the vision processing software to accept them, and white labels used to

mark the targets were interfering with the vision software’s classifiers, therefore, even when

the vehicles were looking directly at the targets, a proper measurement was not received.

These real-world considerations are hard to model within the IRRT framework, and future

work should consider ways to incorporate robustness into both the planning and image

processing components.

Lastly, it should also be noted that, out of all these trials, only the two GMDP trials

with human input terminated in under 10 minutes because all targets were successfully

detected and identified. All other trials ended either because the 10 minute time limit was

reached (GMDP, no human, 4 sec CBBA replan rate) or because the robots determined

that they were irreversibly “trapped” by obstacles (often by moving too close to previously

detected targets or walls), thus requiring human intervention to break free (all other trials).

To ensure some consistency for meaningful comparisons in light of these difficulties, these

latter trials were only accepted after at least 5 minutes of the search had elapsed, otherwise

the trial was discarded and restarted. As mentioned before, early termination due to motion

infeasibility was usually caused by discrepancies in the low level controllers, Vicon state

estimation, and/or environmental setup, which are issues that will be addressed in the next

iteration of trials. In spite of all the real-world considerations that arise when dealing with

actual hardware, note that at least 4 out of the 5 targets were successfully detected and

220

identified in all but one of the eight total trials, illustrating the potential benefits of this

information-based planning and fusion architecture for search and track missions.

B.5 Conclusions and Ongoing Work

Motivated by the need for scalable and flexible information-based planning algorithms and

robust fusion methods to exploit heterogeneous information sources in large-scale semi-

autonomous systems, this paper introduces a new planning and estimation framework for

optimizing information collection in cooperative human-robot missions. To this end, a

unified approach to high-level distributed task planning, information-based path planning,

and hybrid Bayesian information fusion using Gaussian mixtures is presented and validated

in a real hardware experiment involving multi-target search with a cooperative human robot

team. The results illustrate the benefits of including information acquisition as a goal at

every level of planning, as well as showing that by including human operator soft inputs

into the Bayesian fusion framework the performance and efficiency of the autonomous search

team can be greatly improved.

Future work will consider extending the proposed planning and fusion framework in

several ways to accommodate other realistic estimation problems for cooperative human-

robot search missions. These extensions include (but are not limited to): dynamic tar-

get tracking with continuous sensor information fusion and multiple model uncertainties;

environmental map uncertainties to accommodate simultaneous localization and mapping

(SLAM) [212]; 3D target dynamics and sensor model updates (e.g. using UAV sensor plat-

forms); decentralized fusion with Gaussian mixtures; and improved false alarm modeling

and data association techniques for soft information fusion. Future work will also consider

task-planning extensions for human sensor agents and for human-operated mobile agents,

as well as task and path planning for mobile human agents. Since CBBA is well-suited

to handling heterogeneous agents that can perform a wide variety of tasks, extensions to

incorporate realistic secondary mission objectives such as refueling and automation failure

handling (e.g. assignment of a human agent to tele-operate a ‘trapped’ robot to rescue it)

will also be studied.

221

(a) Main operator user interface window, with menus for soft inputs and windows
for camera feeds

(b) Overhead field map with the combined target GM PDF, walls, and robot loca-
tions

Figure B-6: Screenshots from the HRI console available to the human operator

222

Figure B-7: Field map showing walls (magenta lines), true target locations (red triangles),
initial target prior for combined target GM, and initial vehicle locations (circles) with camera
detection field of view (black triangles).

223

(a) Individual and combined vehicle distances traveled during each
trial

(b) Total mission duration for each trial

Figure B-8: Results for Human Operator Soft Input Experiments: Comparison of mission
durations and distances traveled with and without human operator soft inputs.

224

(a) Individual and combined vehicle distances traveled during each
trial

(b) Total mission duration for each trial

Figure B-9: Results for Information-Based Search and Track Experiments: Comparison of
mission durations and distances traveled

225

(a) (b)

(c) (d)

Figure B-10: Results for Information-Based Search and Track Experiments: KLD informa-
tion gain for the combined undetected target PDF. Plots show information acquired for (a)
10 sec CBBA replan with human inputs, (b) 10 sec CBBA replan without human inputs,
(c) 4 sec CBBA replan with human inputs, and (d) 4 sec CBBA replan without human
inputs. Red lines indicate target detection/ID events and black diamonds denote instances
where a soft human observation message is fused.

226

Bibliography

[1] FY2009-2034: Unmanned systems integrated roadmap. Technical report, Office of

the Secretary of Defense, USA, April 2009.

[2] Technology horizons: A vision for air force science and technology during 2010-2030.

Technical report, Office of the Chief Scientist of the U.S. Air Force (AF/ST), May

2010.

[3] A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha. Task assignment

for a physical agent team via a dynamic forward/reverse auction mechanism. In

International Conference on Integration of Knowledge Intensive Multi-Agent Systems,

2005.

[4] N. Ahmed, E. Sample, K. Ho, T. Hoossainy, and M. Campbell. Categorical soft data

fusion via variational bayesian importance sampling with applications to cooperative

search. In American Control Conference (ACC), pages 1268–1273. IEEE, 2011.

[5] B. Alidaee, H. Wang, and F. Landram. A note on integer programming formulations

of the real-time optimal scheduling and flight path selection of UAVs. Control Systems

Technology, IEEE Transactions on, 17(4):839–843, 2009.

[6] B. Alidaee, H. Wang, and F. Landram. On the flexible demand assignment prob-

lems: Case of unmanned aerial vehicles. Automation Science and Engineering, IEEE

Transactions on, (99):1–1, 2011.

[7] M. Alighanbari and J. P. How. Decentralized task assignment for unmanned aerial

vehicles. In IEEE Conference on Decision and Control (CDC), pages 5668–5673,

12–15 Dec. 2005.

[8] M. Alighanbari and J. P. How. An Unbiased Kalman Consensus Algorithm. AIAA

Journal of Aerospace Computing, Information, and Communication, 5(9):298–311,

Sept 2008.

[9] M. Alighanbari and J. P. How. A robust approach to the UAV task assignment prob-

lem. International Journal of Robust and Nonlinear Control, 18(2):118–134, January

2008.

227

[10] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for combinatorial

auction winner determination. In Proceedings of the Fourth International Conference

on MultiAgent Systems, 2000.

[11] C. Andrieu, N. De Freitas, A. Doucet, and M.I. Jordan. An introduction to MCMC

for machine learning. Machine learning, 50(1):5–43, 2003.

[12] G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vehicle-target assignment:

A game-theoretical formulation. Journal of Dynamic Systems, Measurement, and

Control, 129:584, 2007.

[13] M.S. Arulumpalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. 50(2):174–188, 2002.

[14] M. L. Atkinson. Results analysis of using free market auctions to distribute control

of UAVs. In AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and

Exhibit, 2004.

[15] H. Balakrishnan and B. Chandran. Algorithms for Scheduling Runway Operations

under Constrained Position Shifting. Operations Research, 58(6), 2010.

[16] A. G. Banerjee, M. Ono, N. Roy, and B. C. Williams. Regression-based LP solver

for chance-constrained finite horizon optimal control with nonconvex constraints. In

Proceedings of the American Control Conference, San Francisco, CA, 2011.

[17] C. Barnhart and A. Cohn. Commissioned Paper Airline Schedule Planning: Ac-

complishments and Opportunities. Manufacturing & service operations management,

6(1):3–22, 2004.

[18] C. Barnhart and Massachusetts Institute of Technology. Planning and Control of

Transportation Systems: Robust Airlines Planning. New England University Trans-

portation Center, Massachusetts Institute of Technology, 2000.

[19] R. W. Beard, T. W. McLain, M. A. Goodrich, and E. P. Anderson. Coordinated

Target Assignment and Intercept for Unmanned Air Vehicles. IEEE Transactions on

Robotics and Automation, 18:911–922, 2002.

[20] R.W. Beard and V. Stepanyan. Information consensus in distributed multiple vehicle

coordinated control. In IEEE Conference on Decision and Control (CDC), volume 2,

pages 2029–2034, Dec. 2003.

[21] R. Becker. Solving transition independent decentralized markov decision processes.

Computer Science Department Faculty Publication Series, page 208, 2004.

228

[22] J. Bellingham, A. Richards, and J. P. How. Receding horizon control of autonomous

aerial vehicles. In American Control Conference (ACC), volume 5, pages 3741–3746,

2002.

[23] Richard Bellman. Dynamic Programming. Dover Publications, March 2003.

[24] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Opera-

tions Research, pages 769–805, 1998.

[25] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper-

ations Research Letters, 25(1):1–14, 1999.

[26] D.S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of de-

centralized control of markov decision processes. Mathematics of operations research,

pages 819–840, 2002.

[27] D. P. Bertsekas. The auction algorithm for assignment and other network flow prob-

lems. Technical report, MIT, 1989.

[28] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I-II, 3rd Ed.

Athena Scientific, Belmont, MA, 2007.

[29] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:

Numerical Methods. Prentice-Hall, 1989.

[30] D.P. Bertsekas and D.A. Castanon. Rollout algorithms for stochastic scheduling prob-

lems. Journal of Heuristics, 5(1):89–108, 1999.

[31] D. Bertsimas. Probabilistic combinatorial optimization problems. PhD thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, 1988.

[32] D. Bertsimas and D.B. Brown. Constructing uncertainty sets for robust linear opti-

mization. Operations research, 57(6):1483–1495, 2009.

[33] D. Bertsimas, D.B. Brown, and C. Caramanis. Theory and applications of robust

optimization. Arxiv preprint arXiv:1010.5445, 2010.

[34] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathe-

matical Programming, 98(1):49–71, 2003.

[35] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,

2004.

[36] D. Bertsimas and R. Weismantel. Optimization over integers. Dynamic Ideas Belmont,

MA, 2005.

229

[37] L. F. Bertuccelli, H.-L. Choi, P. Cho, and J. P. How. Real-time Multi-UAV Task As-

signment in Dynamic and Uncertain Environments. In AIAA Guidance, Navigation,

and Control Conference (GNC), August 2009 (AIAA 2009-5776).

[38] L. F. Bertuccelli and J. P. How. Uav search for dynamic targets with uncertain motion

models. In IEEE Conference on Decision and Control (CDC), pages 5941–5946, 13-15

Dec. 2006.

[39] Luca Bertuccelli and Jonathan How. Active exploration in robust unmanned vehicle

task assignment. Journal of Aerospace Computing, Information, and Communication,

8:250–268, 2011.

[40] Luca F. Bertuccelli. Robust planning for heterogeneous UAVs in uncertain environ-

ments. Master’s thesis, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA,

June 2004.

[41] B. Bethke, J. P. How, and J. Vian. Group health management of UAV teams with

applications to persistent surveillance. In American Control Conference (ACC), pages

3145–3150, Seattle, WA, 11-13 June 2008.

[42] Brett M. Bethke. Kernel-Based Approximate Dynamic Programming Using Bellman

Residual Elimination. PhD thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, Cambridge MA, February 2010.

[43] J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Verlag,

1997.

[44] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[45] L. Blackmore and M. Ono. Convex chance constrained predictive control without

sampling. AIAA Proceedings.[np]. 10-13 Aug, 2009.

[46] Vincent D. Blondel, Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis.

Convergence in multiagent coordination, consensus, and flocking. In Proceedings of

the IEEE Conference on Decision and Control, 2005.

[47] Frédéric Bourgault. Decentralized Control in a Bayesian World. PhD thesis, Univer-

sity of Sydney, 2005.

[48] S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference

learning. Journal of Machine Learning Research (JMLR), 22:33–57, 1996.

[49] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement Learning

and Dynamic Programming Using Function Approximators. CRC Press, Boca Raton,

Florida, 2010.

230

[50] J. Capitán, M.T.J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot coop-

eration with auctioned pomdps. In Sixth Annual Workshop on Multiagent Sequential

Decision Making in Uncertain Domains (MSDM-2011), page 24, 2011.

[51] D. A. Castanon and C. Wu. Distributed algorithms for dynamic reassignment. In

IEEE Conference on Decision and Control (CDC), volume 1, pages 13–18, 9-12 Dec.

2003.

[52] D.A. Castanon and J.M. Wohletz. Model predictive control for stochastic resource

allocation. Automatic Control, IEEE Transactions on, 54(8):1739 –1750, aug. 2009.

[53] P. R. Chandler, M. Pachter, D. Swaroop, J. M. Fowler, J. K. Howlett, S. Rasmussen,

C. Schumacher, and K. Nygard. Complexity in UAV Cooperative Control. In Amer-

ican Control Conference (ACC), Anchorage AK, May 2002.

[54] A. C. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings. Decentralized Dynamic

Task Allocation Using Overlapping Potential Games. The Computer Journal, 2010.

[55] A. Charnes and W.W. Cooper. Chance-constrained programming. Management Sci-

ence, 6(1):73–79, 1959.

[56] W. Chen, M. Sim, J. Sun, and C.P. Teo. From cvar to uncertainty set: Implications

in joint chance constrained optimization. Operations research, 58(2):470–485, 2010.

[57] T. Chockalingam and S. Arunkumar. A randomized heuristics for the mapping prob-

lem: The genetic approach. Parallel Computing, 18(10):1157–1165, 1992.

[58] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for

robust task allocation. IEEE Transactions on Robotics, 25(4):912–926, August 2009.

[59] R.R. Clewlow, I. Simaiakis, and H. Balakrishnan. Impact of Arrivals on Departure

Taxi Operations at Airports. In Proceedings of the AIAA Guidance, Navigation, and

Control Conference, August 2010.

[60] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[61] E. Craparo, J. P. How, and E. Modiano. Throughput optimization in mobile backbone

networks. In SIAM Conference on Optimization, May 2008.

[62] J.B. Cruz Jr, G. Chen, D. Li, and X. Wang. Particle swarm optimization for resource

allocation in uav cooperative control. In AIAA Guidance, Navigation, and Control

Conference and Exhibit, pages 1–11. Providence, USA, 2004.

[63] J. Curtis and R. Murphey. Simultaneous area search and task assignment for a team of

cooperative agents. In AIAA Guidance, Navigation, and Control Conference (GNC),

2003 (AIAA-2003-5584).

231

[64] P.T. De Boer, D.P. Kroese, S. Mannor, and R.Y. Rubinstein. A tutorial on the

cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

[65] S. de Vries and R. Vohra. Combinatorial auctions: A survey. INFORMS Journal of

Computing, 15(3):284–309, 2003.

[66] E. Delage and S. Mannor. Percentile optimization for markov decision processes with

parameter uncertainty. Operations research, 58(1):203–213, 2010.

[67] P. Dellaportas and G.O. Roberts. Introduction to mcmc. 2001.

[68] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot coordination:

A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270, 2006.

[69] M. Bernardine Dias and Anthony Stentz. A free market architecture for distributed

control of a multirobot system. In 6th International Conference on Intelligent Au-

tonomous Systems IAS-6, pages 115–122, 2000.

[70] C. Dixon and E.W. Frew. Maintaining optimal communication chains in robotic sensor

networks using mobility control. Mobile Networks and Applications, 14(3):281–291,

2009.

[71] R. Dondo and J. Cerdá. An MILP framework for dynamic vehicle routing problems

with time windows. Latin American Applied Research, 36(4):255–261, 2006.

[72] Y. Eun and H. Bang. Cooperative task assignment/path planning of multiple un-

manned aerial vehicles using genetic algorithms. Journal of aircraft, 46(1):338, 2010.

[73] M. Evans and T. Swartz. Methods for approximating integrals in statistics with special

emphasis on bayesian integration problems. Statistical Science, 10(3):254–272, 1995.

[74] F.J. Fabozzi, P.N. Kolm, and D. Pachamanova. Robust portfolio optimization and

management. Wiley, 2007.

[75] Amir Massoud Farahmand, Mohammad Ghavamzadeh, Csaba Szepesvári, and Shie

Mannor. Regularized policy iteration. In Daphne Koller, Dale Schuurmans, Yoshua

Bengio, and Léon Bottou, editors, Advances in Neural Information Processing Systems

(NIPS), pages 441–448. MIT Press, 2008.

[76] J.A. Fax and R.M. Murray. Information flow and cooperative control of vehicle for-

mations. IEEE Transactions on Automatic Control, 49(9):1465–1476, Sept. 2004.

[77] S. Ferrari, G. Foderaro, and A. Tremblay. A probability density function approach to

distributed sensors’ path planning. In Proc. of the 2010 Int’l Conf. on Robotics and

Automation (ICRA 2010), pages 432–439, Anchorage, Alaska.

232

[78] Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philo-

sophical Transactions of the Royal Society of London, Series A: Mathematical and

Physical Sciences, 222:309–368, 1922.

[79] E. B. Fox, E. B. Sudderth, and A. S. Willsky. Hierarchical Dirichlet processes for

tracking maneuvering targets. In Proc. International Conference on Information Fu-

sion, July 2007.

[80] E.B. Fox, D.S. Choi, and A.S. Willsky. Nonparametric bayesian methods for large

scale multi-target tracking. In Fortieth Asilomar Conference on Signals, Systems and

Computers (ACSSC ’06), pages 2009 –2013, Nov 2006.

[81] E.B. Fox, E.B. Sudderth, M.I. Jordan, and A.S. Willsky. Nonparametric Bayesian

learning of switching linear dynamical systems. Advances in Neural Information Pro-

cessing Systems (NIPS), 2009.

[82] C. S. R. Fraser, L. F. Bertuccelli, and J. P. How. Reaching consensus with imprecise

probabilities over a network. In AIAA Guidance, Navigation, and Control Conference

(GNC), Chicago, IL, August 2009 (AIAA-2009-5655).

[83] Cameron S.R. Fraser, Luca F. Bertuccelli, Han-Lim Choi, and Jonathan P. How.

A hyperparameter consensus method for agreement under uncertainty. Automatica,

48(2):374–380, February 2012.

[84] E. W. Frew and B. Argrow. Embedded reasoning for atmospheric science using un-

manned aircraft systems. In AAAI 2010 Spring Symposium on Embedded Reasoning:

Intelligence in Embedded Systems, Palo Alto, CA, 2010.

[85] D Fudenberg and J Tirole. Game Theory. MIT Press, 1991.

[86] A.E. Gelfand. Sampling-based approaches to calculating marginal densities. Journal

of the American statistical association, 85(410):398–409, 1990.

[87] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman

and Hall, 2nd edition, 2004.

[88] Alborz Geramifard. Practical Reinforcement Learning Using Representation Learn-

ing and Safe Exploration for Large Scale Markov Decision Processes. PhD thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,

February 2012.

[89] Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How.

Online discovery of feature dependencies. In Lise Getoor and Tobias Scheffer, editors,

International Conference on Machine Learning (ICML), pages 881–888. ACM, June

2011.

233

[90] B. Gerkey and M. Mataric. Sold!: Auction methods for multirobot coordination.

IEEE Transactions on Robotics and Automation, 18(5):758–768, 2002.

[91] B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of task allocation

in multi-robot systems. International Journal of Robotics Research, 23(9):939–954,

2004.

[92] F. Glover and R. Marti. Tabu search. Metaheuristic Procedures for Training Neutral

Networks, pages 53–69, 2006.

[93] C.V. Goldman and S. Zilberstein. Optimizing information exchange in cooperative

multi-agent systems. In Proceedings of the second international joint conference on

Autonomous agents and multiagent systems, pages 137–144. ACM, 2003.

[94] C.V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cat-

egorization and complexity analysis. J. Artif. Intell. Res. (JAIR), 22:143–174, 2004.

[95] S. Grime and H.F. Durrant-Whyte. Data fusion in decentralized sensor networks.

Control Engineering Practice, 2(5):849 – 863, 1994.

[96] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored

mdps. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors,

NIPS, pages 1523–1530. MIT Press, 2001.

[97] W.K. Hastings. Monte carlo sampling methods using markov chains and their appli-

cations. Biometrika, 57(1):97, 1970.

[98] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE Transactions

on Automatic Control, 50(11):1867–1872, Nov 2005.

[99] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor autonomous

vehicle test environment. IEEE Control Systems Magazine, 28(2):51–64, April 2008.

[100] M. A. Hsieh, A. Cowley, R. V. Kumar, and C. J. Taylor. Maintaining network con-

nectivity and performance in robot teams. IEEE Journal, 25(1-2):111–131, 2008.

[101] A. S. Ibrahim, K.G. Seddik, and K. J. R. Liu. Connectivity-aware network main-

tenance via relays deployment. IEEE Transactions on Wireless Communications,

8(1):356–366, January 2009.

[102] ILOG. Cplex, 2006. http://www.ilog.com/products/cplex/.

[103] A. Jadbabaie, Jie Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988–1001, June 2003.

234

[104] Nidal Jodeh and Mark Mears. An overview of the cooperative operations in urban

terrain (counter) program. In AIAA Guidance, Navigation, and Control Conference

(GNC), August 2008.

[105] Luke Johnson. Decentralized Task Allocation for Dynamic Environments. Master’s

thesis, Massachusetts Institute of Technology, January 2012.

[106] Luke B. Johnson, Han-Lim Choi, Sameera S. Ponda, and Jonathan P. How. Allowing

non-submodular score functions in distributed task allocation. In IEEE Conference

on Decision and Control (CDC), Dec 2012 (to appear).

[107] Luke B. Johnson, Sameera S. Ponda, Han-Lim Choi, and Jonathan P. How. Asyn-

chronous decentralized task allocation for dynamic environments. In Proceedings of

the AIAA Infotech@Aerospace Conference, St. Louis, MO, March 2011.

[108] J. Joseph, F. Doshi-Velez, and N. Roy. A Bayesian Nonparametric Approach to

Modeling Mobility. In Proceedings of the Twenty-Fourth Conference on Artificial

Intelligence. AAAI, 2010.

[109] S.J. Julier. An empirical study into the use of chernoff information for robust, dis-

tributed fusion of gaussian mixture models. In FUSION 2006, pages 1–8, 2006.

[110] Q. Jun, J. Wang, and B. Zheng. A Hybrid Multi-objective Algorithm for Dynamic

Vehicle Routing Problems. Lecture Notes in Computer Science, 5103:674–681, 2008.

[111] T Kaupp, B. Douillard, F. Ramos, A. Makarenko, and B. Upcroft. Shared environment

representation for a human-robot team performing information fusion. Journal of

Field Robotics, 24(11):911–942, 2007.

[112] Y. Kim, D.W. Gu, and I. Postlethwaite. Real-time optimal mission scheduling and

flight path selection. Automatic Control, IEEE Transactions on, 52(6):1119–1123,

2007.

[113] E. King, Y. Kuwata, M. Alighanbari, L. Bertuccelli, and J. P. How. Coordination

and control experiments on a multi-vehicle testbed. In American Control Conference

(ACC), pages 5315–5320, Boston, MA, 30 June-2 July 2004.

[114] E. King, Y. Kuwata, M. Alighanbari, and J. How. Coordination and control experi-

ments for uav teams. Advances in the Astronautical Sciences, 118:1–11, 2004.

[115] T. Kirubarajan and Y. Bar-Shalom. Probabilistic data association techniques for

target tracking in clutter. Proc. of the IEEE, 92(3):536 – 557, 2004.

[116] Andrew N. Kopeikin. Dynamic Mission Planning for Communication Control in Mul-

tiple Unmanned Aircraft Teams. Master’s thesis, Massachusetts Institute of Technol-

ogy, June 2012.

235

[117] Andrew N. Kopeikin, Sameera S. Ponda, Luke B. Johnson, and Jonathan P. How.

Multi-UAV Network Control through Dynamic Task Allocation: Ensuring Data-

Rate and Bit-Error-Rate Support. In Wi-UAV 2012, 3rd International Workshop on

Wireless Networking and Control for Unmanned Autonomous Vehicles at the IEEE

GlobeComm Conference, Dec 2012 (to appear).

[118] Andrew N. Kopeikin, Sameera S. Ponda, Luke B. Johnson, Olivier Toupet, and

Jonathan P. How. Real-Time Dynamic Planning to Maintain Network Connectivity

in a Team of Heterogeneous Unmanned Systems. In Wi-UAV 2011, 2nd International

Workshop on Wireless Networking for Unmanned Autonomous Vehicles at the IEEE

GlobeComm Conference, Dec 2011.

[119] J. Kotecha and P.M. Djuric. Gaussian sum particle filtering. IEEE Trans. on Sig.

Proc., 51(10):2602–2612, 2003.

[120] P. Krokhmal, R. Murphey, P. Pardalos, S. Uryasev, and G. Zrazhevsky. Robust deci-

sion making: Addressing uncertainties in distributions. Cooperative Control: Models,

Applications, and Algorithms, pages 165–185, 2003.

[121] P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with conditional

value-at-risk objective and constraints. Journal of Risk, 4:43–68, 2002.

[122] Y. Kuwata, A. Richards, T. Schouwenaars, and J. P. How. Decentralized robust

receding horizon control for multi-vehicle guidance. In American Control Conference

(ACC), pages 2047–2052, Minneapolis, MN, June 2006.

[123] Y. Kuwata, T. Schouwenaars, A. Richards, and J. P. How. Robust constrained re-

ceding horizon control for trajectory planning. In AIAA Guidance, Navigation, and

Control Conference (GNC), San Francisco, CA, August 2005 (AIAA-2005-6079).

[124] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of

Machine Learning Research (JMLR), 4:1107–1149, 2003.

[125] S. Lan, J.P. Clarke, and C. Barnhart. Planning for robust airline operations: Opti-

mizing aircraft routings and flight departure times to minimize passenger disruptions.

Transportation Science, 40(1):15–28, 2006.

[126] G. Laporte and F. Semet. Classical Heuristics for the Capacitated VRP. In P. Toth

and D. Vigo, editors, The Vehicle Routing Problem. SIAM, Philadelphia, 2002.

[127] S. Leary, M. Deittert, and J. Bookless. Constrained uav mission planning: A compar-

ison of approaches. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, pages 2002 –2009, nov. 2011.

236

[128] H. Lee and H. Balakrishnan. Fuel cost, delay and throughput tradeoffs in runway

scheduling. In American Control Conference, 2008, pages 2449–2454. IEEE, 2008.

[129] H. Lee, I. Simaiakis, and H. Balakrishnan. A comparison of aircraft trajectory-based

and aggregate queue-based control of airport taxi processes. In Digital Avionics Sys-

tems Conference (DASC), 2010 IEEE/AIAA 29th, pages 1–B. IEEE, 2010.

[130] T. Lemaire, R. Alami, and S. Lacroix. A Distributed Task Allocation Scheme in

Multi-UAV Context. In IEEE International Conference on Robotics and Automation

(ICRA), volume 4, pages 3622–3627, 2004.

[131] U. Lerner. Hybrid Bayesian Networks for Reasoning About Complex Systems. PhD

thesis, Stanford University, 2002.

[132] D. Levine, B. Luders, and J. P. How. Information-rich path planning with general

constraints using rapidly-exploring random trees. In AIAA Infotech@Aerospace Con-

ference, Atlanta, GA, April 2010. (AIAA-2010-3360).

[133] Daniel S. Levine. Information-rich path planning under general constraints using

rapidly-exploring random trees. Master’s thesis, Massachusetts Institute of Technol-

ogy, Department of Aeronautics and Astronautics, Cambridge MA, June 2010.

[134] M. Lewis, H. Wang, P. Velgapudi, P. Scerri, and K. Sycara. Using humans as sensors

in robotic search. In FUSION 2009, pages 1249–1256.

[135] J. Lin, A.S. Morse, and B.D.O. Anderson. The multi-agent rendezvous problem. In

IEEE Conference on Decision and Control (CDC), volume 2, pages 1508–1513, Dec.

2003.

[136] G.F. List, B. Wood, L.K. Nozick, M.A. Turnquist, D.A. Jones, E.A. Kjeldgaard, and

C.R. Lawton. Robust optimization for fleet planning under uncertainty. Transporta-

tion Research Part E: Logistics and Transportation Review, 39(3):209–227, 2003.

[137] B. Luders, S. Karaman, E. Frazzoli, and J. P. How. Bounds on track error using

closed-loop rapidly-exploring random trees. In American Control Conference (ACC),

pages 5406–5412, Baltimore, MD, June/July 2010.

[138] Sridhar Mahadevan, Mauro Maggioni, and Carlos Guestrin. Proto-value functions:

A Laplacian framework for learning representation and control in Markov decision

processes. Journal of Machine Learning Research (JMLR), 8:2007, 2006.

[139] Alexei Makarenko and Hugh Durrant-Whyte. Decentralized Bayesian algorithms for

active sensor networks. International Conference on Information Fusion, 7(4):418 –

433, 2006.

237

[140] Nguyen Duc Manh, Le Thi Hoai An, and Pham Dinh Tao. A Cross-Entropy Method

for Nonlinear UAV Task Assignment Problem. In IEEE International Conference on

Computing and Communication Technologies, Research, Innovation, and Vision for

the Future (RIVF), pages 1–5, Nov 2010.

[141] J. R. Marden, G. Arslan, and J. S. Shamma. Cooperative control and potential

games. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

39(6):1393–1407, 2009.

[142] J. R. Marden and A. Wierman. Overcoming Limitations of Game-Theoretic Dis-

tributed Control. Joint 48th IEEE Conference on Decision and Control and 28th

Chinese Control Conference, 2009.

[143] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[144] Lavanya Marla. Robust optimization for network-based resource allocation problems

under uncertainty. Master’s thesis, Department of Civil and Environmental Engineer-

ing and Operations Research Center, MIT, Cambridge, MA, June 2007.

[145] Maja J. Mataric, Gaurav S. Sukhatme, and Esben H. Ostergaard. Multi-robot task

allocation in uncertain environments. Autonomous Robots, vol. 14, no. 2-3, pp. 255-

263, 2003.

[146] I. Maza, F. Caballero, J. Capitán, JR Mart́ınez-de Dios, and A. Ollero. Experimental

results in multi-uav coordination for disaster management and civil security applica-

tions. Journal of intelligent & robotic systems, 61(1):563–585, 2011.

[147] W.M. McEneaney and BG Fitzpatrick. Control for uav operations under imperfect

information. In Proceedings First AIAA UAV Symposium, Portsmouth, VA. Citeseer,

2002.

[148] T. M. McLain and R. W. Beard. Coordination variables, coordination functions, and

cooperative timing missions. AIAA Journal on Guidance, Control, and Dynamics,

28(1):150–161, 2005.

[149] Fransisco S. Melo and Manuela Veloso. Decentralized mdps with sparse interactions.

Artificial Intelligence, 175:1757–1789, 2011.

[150] N. Metropolis and S. Ulam. The monte carlo method. Journal of the American

Statistical Association, 44(247):335–341, 1949.

[151] C. C. Moallemi and B. V. Roy. Consensus propagation. IEEE Transactions on

Information Theory, 52(11):4753–4766, 2006.

[152] D. Monderer and L.S. Shapley. Potential games. Games and economic behavior,

14:124–143, 1996.

238

[153] Y. Mostofi. Decentralized communication-aware motion planning mobile networks:

An information-gain approach. Journal of Intelligent Robot Systems, 56(2):718–740,

2009.

[154] J.M. Mulvey, R.J. Vanderbei, and S.A. Zenios. Robust optimization of large-scale

systems. Operations research, 43(2):264–281, 1995.

[155] RA Murphey. Target-based weapon target assignment problems. Nonlinear assign-

ment problems: Algorithms and applications, 7:39–53, 1999.

[156] R.A. Murphey. An approximate algorithm for a weapon target assignment stochastic

program. Nonconvex optimization and its applications, 42:406–421, 2000.

[157] A. Nemirovski and A. Shapiro. Convex approximations of chance constrained pro-

grams. SIAM Journal on Optimization, 17(4):969–996, 2007.

[158] I. Nikolos, E. Zografos, and A. Brintaki. Uav path planning using evolutionary algo-

rithms. Innovations in Intelligent Machines-1, pages 77–111, 2007.

[159] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents

with switching topology and time-delays. IEEE Transactions on Automatic Control,

49(9):1520–1533, 2004.

[160] Reza Olfati-saber. Distributed Kalman filtering and sensor fusion in sensor networks.

In Network Embedded Sensing and Control, volume 331, pages 157–167. Springer-

Verlag, 2006.

[161] Reza Olfati-Saber, Alex Fax, and Richard M. Murray. Consensus and cooperation in

networked multi-agent systems. IEEE Transactions on Automatic Control, 95(1):215–

233, January 2007.

[162] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in distributed consensus and

averaging. In IEEE Conference on Decision and Control (CDC), pages 3387–3392,

2006.

[163] C.H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[164] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of markov decision processes.

Mathematics of operations research, pages 441–450, 1987.

[165] D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions:theory and practice.

In Proceedings of the 17th National Conference on Artificial Intelligence, 2000.

[166] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, and

M. Baum. Cooperative control for autonomous air vehicles. Cooperative control and

optimization, pages 233–271, 2002.

239

[167] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle

routing problem with time windows and customer impatience. Mobile Networks and

Applications, 14(3):350–364, 2009.

[168] Sameera S. Ponda. Trajectory optimization for target localization using small un-

manned aerial vehicles. Master’s thesis, Massachusetts Institute of Technology, De-

partment of Aeronautics and Astronautics, Cambridge MA, September 2008.

[169] Sameera S. Ponda, Nisar Ahmed, Brandon Luders, Eric Sample, Tauhira Hoossainy,

Danelle Shah, Mark Campbell, and Jonathan P. How. Decentralized information-rich

planning and hybrid sensor fusion for uncertainty reduction in human-robot missions.

In AIAA Guidance, Navigation, and Control Conference (GNC), Portland, OR, Au-

gust 2011 (AIAA Best Paper Award). (AIAA-2011-6238).

[170] Sameera S. Ponda, Luke B. Johnson, Han-Lim Choi, and Jonathan P. How. En-

suring network connectivity for decentralized planning in dynamic environments. In

Proceedings of the AIAA Infotech@Aerospace Conference, St. Louis, MO, March 2011.

[171] Sameera S. Ponda, Luke B. Johnson, Alborz Geramifard, and Jonathan P. How.

Handbook of Unmanned Aerial Vehicles, chapter Cooperative Mission Planning for

Multi-UAV Teams. Springer, 2012 (to appear).

[172] Sameera S. Ponda, Luke B. Johnson, and Jonathan P. How. Distributed chance-

constrained task allocation for autonomous multi-agent teams. In American Control

Conference (ACC), June 2012.

[173] Sameera S. Ponda, Luke B. Johnson, Andrew N. Kopeikin, Han-Lim Choi, and

Jonathan P. How. Distributed planning strategies to ensure network connectivity for

dynamic heterogeneous teams. IEEE Journal on Selected Areas in Communications,

30(5):861 –869, June 2012.

[174] Sameera S. Ponda, Joshua Redding, Han-Lim Choi, Jonathan P. How, Matt A. Vav-

rina, and John Vian. Decentralized planning for complex missions with dynamic

communication constraints. In American Control Conference (ACC), Baltimore, MD,

July 2010.

[175] A. Pongpunwattana, R. Rysdyk, J. Vagners, and D. Rathbun. Market-based co-

evolution planning for multiple autonomous vehicles. In Proceedings of the AIAA

Unmanned Unlimited Conference, 2003.

[176] D.V. Pynadath and M. Tambe. The communicative multiagent team decision problem:

analyzing teamwork theories and models. Journal of Artificial Intelligence Research,

16(1):389–423, 2002.

240

[177] Calyampudi Radakrishna Rao. Information and the accuracy attainable in the es-

timation of statistical parameters. Bulletin of the Calcutta Mathematical Society,

37:81–89, 1945.

[178] C.E. Rasmussen. Gaussian processes in machine learning. Advanced Lectures on

Machine Learning, pages 63–71, 2004.

[179] S. Rathinam, R. Sengupta, and S. Darbha. A resource allocation algorithm for multi-

vehicle systems with nonholonomic constraints. Automation Science and Engineering,

IEEE Transactions on, 4(1):98 –104, jan. 2007.

[180] J. Redding, A. Geramifard, A. Undurti, H. Choi, and J. How. An intelligent coop-

erative control architecture. In American Control Conference (ACC), pages 57–62,

Baltimore, MD, July 2010.

[181] J. D. Redding, N. Kemal Ure, J. P. How, M. Vavrina, and J. Vian. Scalable, MDP-

based Planning for Multiple, Cooperating Agents. In American Control Conference

(ACC), June 2012.

[182] Joshua D. Redding. Approximate Multi-Agent Planning in Dynamic and Uncertain

Environments. PhD thesis, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, Cambridge MA, February 2012.

[183] Wei Ren. Consensus based formation control strategies for multi-vehicle systems. In

American Control Conference (ACC), pages 6–12, June 2006.

[184] Wei Ren, R. W. Beard, and E. M. Atkins. Information consensus in multivehicle

cooperative control. IEEE Control Systems Magazine, 27(2):71–82, April 2007.

[185] Wei Ren, R. W. Beard, and D. B. Kingston. Multi-agent Kalman consensus with

relative uncertainty. In American Control Conference (ACC), volume 3, pages 1865–

1870, 8-10 June 2005.

[186] Wei Ren and R.W. Beard. Consensus seeking in multiagent systems under dynamically

changing interaction topologies. IEEE Transactions on Automatic Control, 50(5):655–

661, May 2005.

[187] A. Richards and J. How. A decentralized algorithm for robust constrained model

predictive control. In American Control Conference, 2004. Proceedings of the 2004,

volume 5, pages 4261–4266. IEEE, 2005.

[188] A. Richards and J. How. Decentralized model predictive control of cooperating UAVs.

In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages

4286–4291. IEEE, 2005.

241

[189] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter: Particle

Filters for Tracking Applications. Artech House Publishers, Boston, MA, 2004.

[190] R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal

of risk, 2:21–42, 2000.

[191] R.O. Saber, W.B. Dunbar, and R.M. Murray. Cooperative control of multi-vehicle

systems using cost graphs and optimization. In American Control Conference, 2003.

Proceedings of the 2003, volume 3, pages 2217–2222. IEEE, 2003.

[192] A. Salman, I. Ahmad, and S. Al-Madani. Particle swarm optimization for task as-

signment problem. Microprocessors and Microsystems, 26(8):363–371, 2002.

[193] D.J. Salmond. Mixture reduction algorithms for uncertain tracking. Technical Report

88004, Farnborough, UK: Royal Aerospace Est., 1988.

[194] S. Sariel and T. Balch. Real time auction based allocation of tasks for multi-robot

exploration problem in dynamic environments. In AIAA Workshop on Integrating

Planning Into Scheduling, 2005.

[195] K. Savla, E. Frazzoli, and F. Bullo. On the point-to-point and traveling salesperson

problems for Dubins’ vehicle. In American Control Conference (ACC), pages 786–791,

June 2005.

[196] Bruno Scherrer. Should one compute the Temporal Difference fix point or minimize the

Bellman Residual? The unified oblique projection view. In International Conference

on Machine Learning (ICML), 2010.

[197] D. G. Schmale, B.R. Dingus, and C. Reinholtz. Development and application of

an autonomous unmanned aerial vehicle for precise aerobiological sampling above

agricultural fields. Journal of Field Robotics, 25(3):133–147, 2008.

[198] C. Schumacher, P. R. Chandler, and S. Rasmussen. Task Allocation for Wide Area

Search Munitions via Network Flow Optimization. In Proceedings of the American

Control Conference, pages 1917–1922, Anchorage AK, May 2002.

[199] S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized decision

making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17(2):190–

250, 2008.

[200] S. Shebalov and D. Klabjan. Robust airline crew pairing: Move-up crews. Trans-

portation Science, 40(3):300, 2006.

[201] T. Shima and S. J. Rasmussen. UAV cooperative decision and control: challenges and

practical approaches, volume 18. Society for Industrial Mathematics, 2009.

242

[202] T. Shima, S. J. Rasmussen, and P. Chandler. UAV team decision and control using

efficient collaborative estimation. In American Control Conference (ACC), volume 6,

pages 4107–4112, 8-10 June 2005.

[203] T. Shima, S.J. Rasmussen, A.G. Sparks, and K.M. Passino. Multiple task assignments

for cooperating uninhabited aerial vehicles using genetic algorithms. Computers &

Operations Research, 33(11):3252–3269, 2006.

[204] R Smith and R. Davis. Frameworks for cooperation in distributed problem solving.

pages 61–70, January 1981.

[205] Daniel Southern. Human-Guided Management of Collaborating Unmanned Vehicles

in Degraded Communication Environments. Master’s thesis, MIT Department of

Electrical Engineering and Computer Science, June 2010.

[206] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning for

RoboCup-soccer keepaway. International Society for Adaptive Behavior, 13(3):165–

188, 2005.

[207] P. B. Sujit, D. Kingston, and R. Beard. Cooperative forest fire monitoring using

multiple UAVs. In IEEE Conference on Decision and Control, pages 4875–4880,

2007.

[208] Richard S. Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In Advances in Neural Information Processing Systems 8,

pages 1038–1044. The MIT Press, 1996.

[209] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998.

[210] Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David

Silver, Csaba Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for

temporal-difference learning with linear function approximation. In International

Conference on Machine Learning (ICML), ICML ’09, pages 993–1000, New York,

NY, USA, 2009. ACM.

[211] A. Tahbaz-Salehi and A. Jadbabaie. On consensus over random networks. In 44th

Annual Allerton Conference, 2006.

[212] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,

MA, 2005.

[213] Paolo Toth and Daniele Vigo. The vehicle routing problem. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2001.

243

[214] K. Tumer and D. Wolpert. A survey of collectives. Collectives and the Design of

Complex Systems, pages 1–42, 2004.

[215] Aditya Undurti and Jonathan P. How. A Cross-Entropy Based Approach for UAV

Task Allocation with Nonlinear Reward. In AIAA Guidance, Navigation, and Control

Conference (GNC), August 2010. AIAA-2010-7731.

[216] B. Upcroft, L.L. Ong, S. Kumar, M. Ridley, and T. Bailey. Rich probabilistic repre-

sentations for bearing-only decentralised data fusion. In FUSION 2005, 2005.

[217] M. Valenti, B. Bethke, J. P. How, D. P. de Farias, and J. Vian. Embedding Health

Management into Mission Tasking for UAV Teams. In American Control Conference

(ACC), pages 5777–5783, New York City, NY, 9-13 July 2007.

[218] E. Waltz and J. Llinas. Multisensor data fusion. Artech House Boston, London, 1990.

[219] Richard V. Welch and Gary O. Edmonds. Applying robotics to HAZMAT. In The

Fourth National Technology Transfer Conference and Exposition, volume 2, pages

279–287, 2003.

[220] A. K. Whitten, H.-L. Choi, L. Johnson, and J. P. How. Decentralized task alloca-

tion with coupled constraints in complex missions. In American Control Conference

(ACC), pages 1642 – 1649, June 2011.

[221] Andrew K. Whitten. Decentralized planning for autonomous agents cooperating in

complex missions. Master’s thesis, Massachusetts Institute of Technology, Department

of Aeronautics and Astronautics, Cambridge MA, September 2010.

[222] C. W. Wu. Synchronization and convergence of linear dynamics in random directed

networks. IEEE Transactions on Automatic Control, 51(7):1207–1210, 2006.

[223] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on

average consensus. In International Symposium on Information Processing in Sensor

Networks, pages 63–70, April 2005.

[224] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas. Graph theoretic connectivity

control of mobile robot networks. IEEE Journal, 99(9):1525–1540, 2011.

[225] H. Zhu, A. L. Swindlehurst, and K. Liu. Optimization of manet connectivity via

smart deployment/movement of unmanned air vehicles. IEEE Journal of Vehicular

Technology, 58(7):3533–3546, 2009.

[226] S. Zhu and M. Fukushima. Worst-case conditional value-at-risk with application to

robust portfolio management. Operations research, 57(5):1155–1168, 2009.

244

	Introduction
	Motivation
	Literature Review
	Planning Strategies
	Robust and Stochastic Optimization
	Representing Uncertainty
	Remaining Challenges

	Thesis Contributions
	Thesis Layout

	Problem Statement
	Problem Formulations
	Multi-Agent Task Allocation
	Multi-Agent Task Allocation With Time-Varying Score Functions
	Simplifying Assumptions and Constraint Specifications
	Planning in Uncertain Domains

	Solution Algorithms

	Distributed Planning
	Distributed Planning Components
	Planning Architectures
	Coordination Techniques
	Consensus
	Distributed Performance Metrics

	Distributed Planning Algorithms
	Distributed Problem Formulation
	Distributed Solution Strategies

	Consensus-Based Bundle Algorithm (CBBA) and Extensions
	CBBA Algorithm Description
	Bundle Construction Phase
	Task Consensus Phase
	Diminishing Marginal Gains

	CBBA with Time-Varying Score Functions
	Bundle Construction with Time-Varying Score Functions
	Example Applications

	Distributed Planning with Network Disconnects
	Dynamic Network Handling Protocols
	Example Applications

	Ensuring Network Connectivity in Dynamic Environments
	Scenario Description
	CBBA with Relays
	Example Applications

	Summary

	Distributed Planning in Uncertain Domains
	Stochastic Distributed Problem Formulation
	Uncertain Parameter Types
	General Stochastic Distributed Framework
	Distributing Stochastic Metrics

	Robust Extension to CBBA
	Computing Stochastic Scores
	CBBA with Nonsubmodular Score Functions
	Stochastic Bundle Construction

	Example Applications

	Distributed Risk-Aware Planning in Uncertain Domains
	Distributed Chance-Constrained Problem Formulation
	Allocating Agent Risks in Distributed Chance-Constrained Planning
	Chance-Constrained Extension to CBBA
	Agent Risk Allocation Strategies
	Stochastic Bundle Construction

	Example Applications
	Homogeneous Agents
	Heterogeneous Agents

	Conclusions
	Summary of Contributions
	Future Work

	Derivations of Agent Risk Allocation Strategies
	Homogeneous Agent Risk Allocation Strategies
	Gaussian Risk Allocation Heuristic
	Exponential Risk Allocation Heuristic
	Gamma Risk Allocation Heuristic

	Heterogeneous Agent Risk Allocation Strategies

	Distributed Information-Rich Planning and Hybrid Sensor Fusion
	Introduction
	Problem Formulation and Background
	Decentralized Planning and Fusion Framework
	Proposed Information-based Control Architecture
	Decentralized Information-Rich Planning
	Recursive Bayesian Hybrid Data Fusion

	Indoor Target Search and Track Experiments
	Experimental Setup
	Search Performance Metrics and Results
	Discussion

	Conclusions and Ongoing Work

	References

