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ABSTRACT

Research into swarm robotics has produced a robust library of swarm behaviors
that excel at defined tasks such as flocking and area search, many of which have potential
for application to a wide range of military problems. However, to be successfully applied
to an operational environment, swarms must be flexible enough to achieve a wide array
of specific objectives and usable enough to be configured and employed by lay operators.
This research explored the use of the Mission-based Architecture for Swarm
Composability (MASC) to develop mission-specific tactics as compositions of more
general, reusable plays for use with the Advanced Robotic Systems Engineering
Laboratory (ARSENL) swarm system. Three tactics were developed to conduct
autonomous search of a geographic area and investigation of generated contacts of
interest. The tactics were tested in live-flight and virtual environment experiments and
compared to a preexisting monolithic behavior implementation completing the same task.
Measures of performance were defined and observed that verified the effectiveness of
solutions and confirmed the advantages that composition provides with respect to

reusability and rapid development of increasingly complex behaviors.
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CHAPTER 1

Introduction

1.1 Motivation

The U.S. military has a long history of research and utilization of unmanned aerial vehicles
(UAVs), predating World War II. More recently, introduction of the Predator UAV, first as
a reconnaissance platform and later as an armed combatant revolutionized modern warfare.
The advantages of using a Predator-type UAV are numerous and well documented, however
this class of systems does not provide a universal solution for every type of mission. System
availability, portability, logistic and maintenance requirements, manpower specialization,
and ethical implications are just some of the factors that limit the propagation of UAVs
to all levels of the operational force. Some believe that the next revolution in warfare will
stem from swarm technologies: large numbers of low-cost autonomous vehicles that employ

cooperative behaviors and decentralized control to achieve mission objectives [1]-[3].

Considerable work to extend the behavior, capabilities, and command and control (C2) of
UAV swarms has been conducted in the last decade. Previous research within the Naval Post-
graduate School’s Advanced Robotic Systems Engineering Laboratory (ARSENL) group
has advanced development of mission-focused approaches to C2 [4] and swarm auton-
omy via decentralized dynamic task allocation [5]. However, designing swarm systems still
presents unique challenges in describing high-level behaviors and objectives and implement-
ing them in a robust distributed system of robotic agents. Current behavior implementations
tend to be monolithic, and effective design requires expert programming. This research
explores methods for composing primitive swarm behaviors within a hierarchical mission-
oriented framework to achieve complex mission objectives autonomously. The application
of behavioral composition techniques within a mission-oriented framework promotes sim-
plified behavior development and reuse with potential to accelerate creation of complex

mission-focused swarm behaviors for military application.
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1.1.1 The Case for Swarms

Swarming vehicles do not provide benefits and capabilities that will completely replace
the current unmanned aerial systems (UAS), but they do have the potential for subsuming
many current capabilities. More interesting, however, is a swarm’s potential to force a
technological shift in the conduct of warfare. In [1] Arquilla presents swarming as form of
warfare founded on small units of highly connected and maneuverable capabilities that can
quickly disperse and aggregate in clusters. Scharre [2] and Hurst [3] expound on the concept
of swarm warfare with analysis of robotic swarm attributes and their potential impact on
modern battlefield. When compared with current UAS, swarms differentiate themselves via
vehicle heterogeneity that provides a wide range of capabilities not available in single UAV.
In particular, the speed of decision making and execution that is enabled by cooperative
behavior and decentralized control, possibly augmented with artificial intelligence (Al),
give swarm systems potentially decisive operational advantages. Or as noted in [2], “having

the most intelligent algorithms may be more important than having the best hardware.”

The DOD has recognized the possibilities inherent in swarming technologies and lists
swarm behavior as one of the Al technologies with “massive potential to advance unmanned
systems” [6]. The recognition is further manifested in Defense Advanced Research Projects
Agency (DARPA) programs such as OFFensive Swarm-Enabled Tactics (OFFSET) [7].
The service components are individually exploring swarm technologies as well [8] with
successful proof of concept demonstrations including the Office of Naval Research (ONR)
Low Cost UAV Swarming Technology (LOCUST) [9], the Naval Air Systems Command
(NAVAIR) Perdix system [10], and NAVAIR’s acquisition of DARPA’s CODE program [11].
These programs explore not only the development of autonomous cooperative systems but
the C2 and human-system interface (HSI) requirements associated with these systems as
well. Both swarm C2 and HSI have been identified as being at the crux of recommended

research to bring the technology into the reach of military applications [2], [6], [8].

1.1.2 Swarm Characteristics

The study of swarm robotics arose from earlier research in the area of cellular automata. A
cellular automaton can generally be described as a mathematical model for a group of cells
in which individual cell states are determined by some function of their neighbors’ states

over time [12]. The utility of a cell by itself is limited, but a group of cells can effectively

2
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simulate natural and biological patterns, and some cellular automata have been shown to be

able to simulate any computational machine [12].

Early work by Beni [13] applied the concept of the automaton to robotics. His work with
Wang [14] coined the term “swarm intelligence” as “systems of non-intelligent robots
exhibiting collectively intelligent behavior evident in the ability to unpredictably produce
specific ordered patterns of matter in the external environment.” The definition was later
refined, to state that an intelligent swarm is “a group of non-intelligent robots capable
of universal material computation” [15]. This collective intelligence concept is a basic
property of swarms. For this research the notion can be simplified to state that a swarm is
a collection of UAVs that are individually capable only of simple behaviors, but that are
capable of producing specific additional and more complex behaviors when aggregated into

a collective system.

Ensuring that the collective behaviors in a swarm produce the ultimate intended behavior is a
foundational concept in swarm engineering [ 16]. Swarm behaviors often rely on emergence
which can be defined as the realization of a system-wide behavior that is produced from
the collective behaviors of individual agents [17]. While emergence is a desirable and
fundamental characteristic for swarms, it is not easily predicted. Unexpected emergent
behaviors can manifest with potential negative consequences that degrade trust in the
system [16], [17]. Emergent behaviors are studied extensively not only in regards to swarm
intelligence, but also more generally in the context of multi-agent systems covering a broad
range of applications including economics, logistics, and engineering. As such there is
a large base of behavioral problems with emergent algorithm solutions that have become
fundamental in the field. Directly applicable to the field of robotic swarming is the collection
of biologically-based behaviors such as flocking [18], ant and bee colony optimization [19],
and particle swarm optimization [20], [21]. In each of these problems the individual agent,
a single UAV in this research, decides its own best action based on local knowledge and

limited knowledge of the rest of the swarm.

The decentralized control and collective behaviors enable the key swarm attributes com-
monly cited in literature: adaptability (flexibility), robustness, and scalability [22]. Precise
definitions of these attributes as they apply to swarm robotics and swarm intelligence are

provided in [22]-[24]. In general, adaptability is the result of emergent behavior and the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



swarm’s ability to achieve the range of tasks in a dynamic environment. Robustness stems
from decentralized control in that individual swarm agents can still make an appropriate
decision regardless of other agents’ failures; that is, the swarm can still collectively complete
the behavior even if individual agents fail. Scalability is similar in that the size of the swarm

should be adjustable as required to complete particular objectives within constraints.

1.1.3 Robotic Swarms

Practical implementations of swarms have progressed quickly over the last decade with the
proliferation of low-cost robotics and communication components. Open source robots such
as the Kilobot [25] are readily available and more advanced platforms like the Naval Post-
graduate School (NPS) ARSENL’s Zephyr II fixed wing and Mosquito Hawk quadcopter
UAVs can be easily fabricated [26]. Simulation environments like Autonomous Robots Go
Swarming (ARGoS) [27], Open Robotics’ Gazebo simulator [28], and ArduPilot’s software-
in-the-loop (SITL) environment [29] are freely available for testing behaviors in conjunction

with physical systems to speed up the pace of development.

C2 systems for physical robotic swarms are not as well developed as the simulators, and
there are few overarching frameworks for managing swarms. Notable frameworks include
the Aerostack [30] for UAVs, and ARSENL’s Mission-based Architecture for Swarm Com-
posability (MASC) [4] based framework. Additionally, C2 requirements are closely linked
to the study of HSI for swarms. Swarms present unique challenges to human interaction
given the potential size of swarms and the complexity of behaviors relative to a person’s
cognitive abilities [31]. HSI is of particular interest for military applications due to the
emergent nature of collective behaviors paired with the rigid operational control structures
inherent in military environments [32]. The use of unmanned vehicles in offensive maneu-
ver is already a source of ethical debate, and the autonomous nature of swarms can only

compound that issue [33].

1.1.4 Current State of the Art
Significant current research efforts into multi-robot system and multi-robot task allocation
(MRTA) are focused on enabling planning and execution of complex behaviors in robotic

swarms. Multi-robot systems often rely on task allocation techniques and high-level planning
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to determine individual vehicle actions required to achieve global swarm objectives. Tasked
robots may utilize swarm intelligence and emergence to achieve subtask objectives, but
more deliberative approaches are also possible. Khaldi [23] and Arnold, et al. [34] provide
a comparison and analysis of multi-robot systems and swarm robotics with an emphasis on

the application of swarm intelligence.

Advances in MRTA are enabling increasingly complex task domains through aggregate ca-
pability matching that accounts for time and task precedence constraints [35], [36]. Previous
research by the NPS’s ARSENL group, for instance, has advanced the development of de-
centralized, market-based task allocation [5], [37] that has been successfully demonstrated
in complex multi-domain swarm operations [26]. ARSENL has successfully employed large
swarms to cooperatively execute well-defined complex tasks. Effective control of these sys-

tems still requires real-time operator oversight.

Recent papers like [38] apply machine learning and Al techniques to swarm systems to
enable behavior development. There are relatively few works in this realm and goal of
achieving advanced swarm autonomy that operates by “providing commander’s intent and
the system is able to figure out from that commander’s intent what the system is able to
do” [11] is still quite distant.

1.2 Research Objectives

The objective of this research is to implement and evaluate hierarchical MASC-based solu-
tions for combining distinct plays capable of autonomous search and investigate tasks into
more robust tactics for execution on a heterogeneous swarm. Market-based task allocation is
adapted to assign behavior roles to vehicles participating in the tactics. This thesis hypothe-
sizes that composing simple behaviors in this manner can achieve comparable performance
characteristics to more monolithic behaviors and that the approach is broadly applicable to
the creation of mission-oriented tactics in general. This objective provides a step towards the
MASC goals of promoting simple behavior design and reuse and creation of increasingly

capable tactics for mission application.

Analysis of developed solutions is conducted to validate the use of composite task-allocation

methods and provides a basis for recommendations for future implementation and research
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into heterogeneous multi-UAV swarm performance and C2. In particular, this thesis ad-

dresses the following research questions.

* Does a swarm operating with composed behaviors have comparable performance to
a swarm utilizing monolithic behaviors?

* What, if any, benefits with regards to effectiveness and usability do composable
behaviors provide over more monolithic versions?

* What measures of performance are appropriate for comparing behavior implementa-
tions?

* How can the suggested behavior development approach be extended to support de-
velopment of behaviors applicable to arbitrary tasks?

* Do the developed methods provide the required flexibility and interfaces to be included

in a larger mission control framework?

The scope of this research was limited to the utilization of primitive plays and algorithms to
compose robust tactics. It did not explore or develop algorithms for execution of behaviors
on individual vehicles. Similarly, it was not the intent of this work to research alternative

algorithms for decentralized task allocation within a cooperative swarm.

1.2.1 Methodology

Three swarm behaviors conforming to the idea of a MASC tactic composed of more primi-
tive plays as described in [4] were developed. The tactics are implemented as compositions
of existing ARSENL plays. Each tactic is comprised of a search play that directs a vehicle’s
participation in a coordinated area search and an investigate play that directs a vehicle in the
coordinated investigation of one or more contacts of interest. Both plays utilize previously
developed auction algorithms for task allocation [37]. The tactics dynamically assign each
vehicle to one of the plays, and only the assigned play is used to control of the vehicle at

any given time.

The tactics were developed for use with heterogeneous swarms composed of vehicles with
unique characteristics affecting their suitability for execution of the search and investigate
behaviors. The tactics utilize market-based approaches (i.e., auction algorithms) to account

for individual vehicle capabilities and are described as follows:
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* SearchTacticStatic. A tactic in which the searcher and investigator roles are
statically assigned to specific vehicles when the behavior is initialized. Assignments
provide for a minimum number of searchers and effectively prioritize assignments by
aircraft type (e.g., faster fixed-wing UAVs assigned to be searchers).

e SearchTacticDynamic. With this tactic, all vehicles start off in a search role
but can dynamically switch between searcher and investigator roles as the behavior
progresses. A single item auction is used to reassign roles as contacts are encountered.
Vehicles for whom a role change is required delay execution of the transitions to the
new roles until after the currently assigned task is completed.

* SearchTacticImmediate. This tactic implements the same assignment method
as the SearchTacticDynamic tactic; however, transitions between searcher and
investigator roles occur immediately rather than upon completion of a currently
assigned task. That is, an in-progress search cell or investigation task will be aborted

if a vehicle is required to switch roles.

1.3 Thesis Organization

This thesis is organized into five chapters. Chapter 1 discusses the current state of aerial
swarm systems, their relevance to the DOD, and motivation for this research. Chapter 2
provides more detailed discussion of relevant swarm research areas and their relationships
to this research. Chapter 3 describes the implementation of the composed behaviors and
compares them to previously implemented monolithic behaviors. Chapter 4 describes the
experimentation process that was utilized and discusses the data collected to provide a
comparison between the implemented tactics performance and the theoretical optimal per-
formance. Finally, Chapter 5 provides the conclusions of this work and suggestions for

future work in this area.
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CHAPTER 2:

| iterature Review

In this chapter we discuss relevant research upon which this research builds including multi-
UAV C2 frameworks, behavior composition, MRTA, and auction algorithms. Additionally,
we present the MASC framework and ARSENL libraries in the context of their use in
implementing and evaluating the described behaviors.

2.1 Frameworks for Multi-Robot Command and Control

Well-defined frameworks for modeling and engineering swarm systems assist in the design
and operation of these complex systems by facilitating the description of relationships that
connect high-level goals to the intricate details of software and electronic design. In swarms,
complex group behaviors are often realized by interactions between individual agents exe-
cuting simple autonomous behaviors. Ensuring that the correct behavior is achieved and that
unwanted emergent behaviors do not manifest is of paramount importance if system trust is
to be achieved [16]. In addition, characteristics of flexibility, robustness, and scalability that
can make the swarm usable across a range of operations present additional considerations
for the system designers and operators. These various considerations are influenced by a
range of disciplines and do not have a single comprehensive solution [39]. Considering the
range of requirements, a successful framework will help bridge the gaps between swarm
behavior developers and engineers and swarm operators. Ultimately, this will better enable

the system to achieve the desired results.

2.1.1 Hierarchical Multi-Robot Frameworks

Brooks’ subsumption architecture [40], a hierarchical, task-based control system, was pro-
posed in 1986 as an alternative to control approaches relying on traditional Al. The sub-
sumption architecture and its immediate successors were intended for single-robot systems,
but the approach provides advantages such as eliminating the need for central control that are
directly applicable to swarm systems as well. Brooks described this approach as “levels of

competence” [40] aligned to a bottom-up design process where higher levels of competence
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were added as needed.

More recently, researchers with the Oak Ridge National Laboratory [41] proposed the
ALLIANCE architecture for use with heterogeneous robot teams. The proposal outlines
many of the considerations and obstacles associated with the application of a control
framework to heterogeneous multi-robot systems. Of note, it pays significant attention to
the decomposition and distribution of problems across the system to enable decentralized
autonomy and achieve group goals in a fault tolerant and reliable fashion. The ALLIANCE
architecture achieves this robustness through a layered approach where agents maintain
behavior sets from which appropriate behaviors are selected based on the locally perceived

current situation. Limitations were noted for overall coordination of subtasks, however [41].

Both the subsumption and ALLIANCE architectures approach behavior development in
a bottom-up fashion. That is, simple primitives are iteratively combined into increasingly
complex behaviors. McLurkin [42], on the other hand, suggested that a top-down approach
to designing multi-robot swarms was needed while also noting the difficulty of such an
approach. McClurkin’s observations acknowledge the problem of attempting to program a
large number of systems to achieve a group objective by programming individual robots.
In the end, the paper proposes a bottom-up, composable solution that attempts to “break
group behaviors into smaller behaviors that can be combined to achieve a larger goal” [42]

with an emphasis on designing to achieve predictable swarm behavior.

In the same year, Miller, et al. [43] proposed the use of a “playbook” as a human interface
layer above the robot control system. Playbooks are based on the familiar concept of sports
plays in which each participating agent has a specific role contributing to a larger objective.
The concept was specifically applied to a military setting and sought to “enable a small unit
soldier, with minimal training, to control or request services from multiple, heterogeneous
UAVs” [43]. This top-down method is supported by an intermediate supervisory layer
that decomposes the requested behavior into sequential sub-tasks for assignment via a
hierarchical task network planning system. It was noted that the system supported the
planning goal, but that the developed plans were not necessarily optimal [43]. The playbook
concept forms the basis of the MASC approach described in Section 2.1.3.

Browning, et al. [44] extended the playbook model with a hierarchical planning method
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called Skills, Tactics, and Plays (STP) for multi-robot systems. STP defines a more structured
approach to playbooks with a three-level hierarchy for selecting and executing behaviors.
Plays are defined as group behaviors that can be selected from a playbook. Once selected,
plays delegate roles, or behaviors, to individual robots. Each role is executed through a
series of tactics to collectively achieve the play objectives. At the lowest level, each tactic
is performed by the execution of skills according to tactic-specific state machines. This
top-down approach achieves the usability goals for control and operation within a robot
team, however development of the skills and appropriate state machines was challenging.

Development of new tactics and plays was non-trivial [44].

More recent frameworks have sought to increase the levels of autonomy and the reusability
of components across behaviors and vehicle types. The Aerostack framework, for instance
provides for a layered approach in which each layer comprised of distinct systems associated
with specific functional tasks [30]. Each system is based on composable processes with
a standard interface that facilitates messaging between components using open source
software. Aerostack operators direct the swarm by initiating high-level behaviors that are
implemented through task trees that utilize specific robot skills. This framework achieves a
high level of autonomy and ease of operator interaction but comes with the trade off of high

system complexity.

2.1.2 Composition

The frameworks discussed in Section 2.1.1 leverage composition in both modeling and
programming of behaviors to achieve abstraction through layering. That is, they use a
hierarchical approach to distance high-level behaviors from the low-level primitives upon
which they rely. With composition, systems are represented as structured aggregations of,
and interactions between, subsystems or components. Composition is a foundational concept
of object-oriented programming and Component-Based Development (CBD), and its study
is prevalent in the swarm-related disciplines of agent-based modeling, multi-agent systems,

and complex adaptive systems.

Davis and Anderson [45] cite model composability within the DOD as a requirement for
component reuse and modeling of complex systems. However, following an analysis of

prior composition efforts they assert that composition in systems modeling is more difficult
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than general software composition. Additionally they state that the idea of plug-and-play
mechanics for composition is a fallacy in either domain and that successful composition
inevitably requires specific efforts for adaptation. They do submit that continued study will

improve composition adaptation and implementation methods.

While software development and system modeling are different disciplines, Bartholet, et
al. [46] argue that the study of composition across the two are fundamentally similar and
that application software techniques will benefit modeling efforts. The argument compares
two general types of composition, syntactic and semantic, and identifies commonalities
between them. Syntactic composition is attributed to software development with focus on
implementations of exposed interfaces and data types within domains in order to build
complex systems. Semantic composition, on the other hand, focuses on the validity of
compositions and the resulting systems, which is relevant to modeling. [46] highlights the
convergence of semantic results within both CBD and modeling and simulation and notes
that the existing semantic challenges are shared between the two. This provides a basis
for considering composability for both the system behavior modeling perspective and the

software design perspective.

Lau and Rana [47] take a CBD-based approach in providing a survey of composition
methods. They describe categorical view of composition that is comparable to [46] in that
the highest level of modeling, the CBD View, specifies that component units conform to
component models with distinctions similar to semantic modeling in [46]. In line with this
thesis, they define the basic component of composition as a behavior and that “composition
mechanisms compose pieces of behavior into larger pieces of behavior” [47]. The mech-
anisms: containment, connection, extension, and coordination define the basic composite
relationships upon which systems are built. Of interest to this thesis, the defined coordination
model is described as coordinating multiple behaviors such that the behaviors communicate
only with the controller via defined connector or via exogenous composition. The behaviors
composed under a controller are fully decoupled from each other, meaning that they do not

have any interaction or dependencies directly with each other [47].

The coordination mechanism was discussed in a previous work by Lau and Ornaghi [48]
that defined exogenous composition. In this work, exogenous composition is described as

behavior encapsulation to support control via hierarchy. However, composing behaviors in
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this manner requires the behaviors and resulting composition be of the same type, without
external dependencies. To maintain the hierarchical control, behaviors used in exogenous
composition must not call or pass control to external behaviors. Control is passed only
through the composition [48]. This is comparable to the plugin_behavior construct in
the ARSENL software library.

Zhu, et al. [49] provide an examination of complex adaptive systems modeled as agent-
based systems. In their approach, a three-level hierarchy comprised of component models
(behaviors), agent models, and a system model is used to represent a multi-agent system.
The hierarchy is comparable to the coordination mechanism described in [47], with the
system model acting as the connector and the agents as the decoupled behaviors. However
Zhu, et al.’s model control is not solely passed through the composition method as agents
react to events that are distributed within their hierarchy [49]. Notably, Zhu, et al. extend
the requirement for decoupling to the agents’ sub-components in that an agent also acts
as coordination mechanism for all of its systems. This composition model provides a
complimentary perspective to system design for multi-agent systems when compared to
non-agent based hierarchies that emphasize low-level interfaces and varying degrees of

component coupling.

Weisel [50] goes so far as to provide a formal mathematical theory for determining the
validity of composability, specifically for semantic, or model-based, composability. Validity
in this case means that the model matches, or closely matches, the system it was designed
to represent at all points of simulation. In this context, a model is formally defined as a
computable function mapping from a state model to an output model. Weisel then asserts
that “because models have been defined as computable functions, composition of models
becomes composition of functions [and that because] the set of computable functions is
closed under composition, any set of models can be composed if the composition exists” [50].
Unfortunately, this notion of composition does not guarantee that the resultant composed

behavior will be valid in terms of the otherwise valid model.

Finally, Sarjoughian, et al. [51] examine composability through the lens of a multi-layer mod-
eling concept founded on formal mathematical and algorithmic representations of distinct
systems and present optimization or process models as an example. Composition methods

are then classified into mono, super, meta, and poly methods that provide structure for com-

13

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



posing heterogeneous formalisms. Composition methods are described in conjunction with
the use of Knowledge Interchange Brokers, and adapters required for model interactions
with emphasis on the role of domain knowledge. This analysis applies to the structure of
frameworks which are multi-level and compose heterogeneous models. Additionally, the
authors’ observation that “all of the composability approaches lend themselves to distributed

execution,” [51] makes their findings potentially applicable to a swarm operation.

The works presented in this subsection are a sample of the broad study of composition
within the considered domains. While none were swarm focused, the discussions related
to composition methods within hierarchical systems and multi-agent systems are closely
related and applicable to the objective of designing and composing behaviors and supporting

algorithms.

2.1.3 Mission-based Architecture for Swarm Composability (MASC)

The work presented in this thesis relies heavily on the MASC framework [4] as utilized by
the ARSENL multi-UAV system. Here we present an overview of MASC and describe its
relationship to the ARSENL system.

The impetus behind the creation of the MASC framework was the intersection between
swarm robotics with military C2 and the desire for a system design that enables construction
of mission packages through a hierarchy of reusable modular, composable behaviors [4].
This objective is influenced by design constraints that were introduced in Chapter 1 and
Section 2.1 such as mission planning processes and requirements, adherence to doctrine,
system trust, and human-swarm interaction. These considerations were not a focus of the
work of this thesis but are mentioned here to frame the goals of the tactics described in
Chapter 3. Ultimately this design promotes the usability of robotic swarms through all

phases of mission planning and execution.

The MASC hierarchy is comprised of five levels that represent behaviors with different
granularities: missions, phases, tactics, plays, and algorithms [4]. This conceptualization
differs from other approaches but is founded on the work of other multi-robot frameworks
discussed in Section 2.1.1. Elements at each level are composed of one or more sub-level
objects that in combination achieve higher-level element’s goals. A brief description of each

level follows; however this research focuses on composability of MRTA functions limited
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to the tactic and play levels.

Mission Mission definitions are the top level of the hierarchy and describe the overall
objective. The mission associated with this thesis, for instance, is the conduct of a
search of a predefined area and the investigation of any contacts of interest.

Phase A mission is comprised of seven sequential, temporal phases: staging, mission
planning, preflight, ingress, on station, egress, and postflight. These phases encompass
the full scope of mission planning and execution and largely align with the phases
associated with an ARSENL event [52]. The work of this thesis is limited to actions
within the on station phase.

Tactics A tactic is behavior that “commands the ordered formation and employment of
individual agents to perform a specific task as a cooperative group” [4]. In short,
a tactic applies the high-level logic necessary to achieve a single desired objective.
Tactics associated with this research, for instance, direct the swarm as it searches the
area of interest and responds to contacts as they are identified.

Plays Plays define the cooperative behaviors that perform a single well defined and reusable
action that is potentially useful in multiple tactics. Plays are the discrete activities
that when combined effect the aggregate actions to achieve a tactical objective. This
research relies on a search play that divides a large area into smaller cells that are
searched by swarm members and an investigation play that directs a chosen vehicle
to a contact of interest.

Algorithms Algorithms make up the lowest level of the hierarchy. They consist of the
functions that provide common control sequences and that assist in geospatial aware-
ness, motion planning and positioning, robotic control functions, communications,
and task allocation. Examples of algorithms upon which this work relies include path

planning and transit to a contact of interest and pattern execution over a search cell.

The MASC framework provides a single approach that balances the top-down and bottom-up
design methods utilized in mission planning and swarm engineering. Mission planners can
think in terms of mission objectives and their decomposition into tactics while developers
think in terms of algorithms and plays that can be combined into tactics. The design method
also provides for modular, composable, and reusable components that can enable the full

spectrum of mission planning and operations [4].
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2.2 Individual Task Assignment within the Swarm

An implicit aspect of the MASC framework is the notion that discrete elements of the swarm
may execute different tactics or plays simultaneously in support of higher-level goals. That
1s, a tactic may call for heterogeneous plays to be assigned to subswarms. This necessitates
logic for swarm division and subtask assignment. This process is referred to as MRTA, a
research area focused on the assignment of goals or tasks to specific agents or groups of
agents. This deliberative, task-specific organization is distinct from swarm behaviors such
as flocking that rely on emergence associated with local agent interactions [53]. This section
reviews MRTA concepts with an emphasis on auction-based approaches utilized in the plays
described in Section 2.3.2.

2.2.1 Multi-Robot Task Allocation (MRTA)

An overview and taxonomy of MRTA is provided by Gerkey and Matari¢ [54]. This tax-
onomy describes MRTA as an optimization problem that maximizes benefit or minimizes
cost. As such, utility is the basic attribute required for making optimization decisions, and
each robot estimates its own utility for a task based on its anticipated cost to perform the

task and its suitability for completing the task.

Gerkey and Matari¢ [54] propose classification of a problem set into robot-task-assignment
categories that can be collectively examined for application of optimization techniques.
Classifications are binary with robots classified as able to perform a single task (ST) or
multiple tasks simultaneously (MT), tasks classified as to whether they require one robot
(SR) or multiple robots (MR) to complete, and assignments classified as to whether they
require immediate assignment with no future planning (IA) or information is available to
support assignment or scheduling in the future (TA). Thus, a problem’s classification is
represented by a tuple such as ST-SR-IA. This particular classification would describe a
multi-robot problem in which each robot is capable of one task, where each task is to be
completed by a single robot, and tasks are to be allocated immediately without planning for

the future.

Gerkey and Matari¢’s taxonomy [54] does not directly address creation of subswarms as
would be used in the control of a tactic but does assess the ST-MR-IA classification as

being equivalent to swarm coalition formation. Swarm coalitions are formed when the

16

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



task requires capabilities of more than one robot, such as the need for different sensors or
physical domain actions. Coalition formation for a multi-agent system is discussed in [55] in
which the authors also note the improved efficiency of groups relative to single agents when
completing tasks. Agents in [55] are characterized by a capability vector while independent
tasks have specific capability vector requirements. Coalitions are formed such that the union
of the group’s capability vectors satisfies the required capability vector of the tasks assigned
to the group. The optimization problem then becomes a maximization of aggregate coalition

utility in addition to agent utility.

Korsah et al. [53] expand Gerkey and Matari¢’s taxonomy to include consideration of task
decomposition and constraints for task dependencies such as sequencing requirements and
intertask dependencies. Additionally the concept of synergy and group utility is presented
as an additional measure for coalition comparison. Task relationships and dependencies
amount to an additional layer applied to the tuple representation proposed in [54] to rep-
resent effects on task utility values imposed by the constraints. The proposed categories
are no task dependencies, in-schedule dependencies (i.e., dependencies between tasks to
which a single agent has been assigned), cross-schedule dependencies (i.e., dependencies
on another robot’s task), and complex dependencies (i.e., dependencies between complex
tasks). The definitions associated with task composition are drawn from [56] which defines
elemental tasks, simple tasks, compound tasks, and complex tasks. These definitions can be
used to describe relationships between decomposed subtasks and robot allocations for the

development of task dependency categories.

Implementations can further be classified according to swarm organization and information
flow. Organizationally, the centralized paradigm appoints one robot to receive, process, and
disseminate tasking information to the swarm. In the decentralized paradigm each agent
is responsible for information processing, determination of its tasking, and communicating

with other swarm members when necessary [36].

Some swarm behaviors may require global information to be available to individual agents
while others may rely solely on local knowledge. Johnson, et al. [5S7] provide examples
relating organizational paradigms, information assumptions, and their effects on multi-robot
systems beyond the pure optimization problem. In particular, even the most basic scenario

requires some level of on-line communication and planning, and this requirement imposes
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computational and time constraints. Additionally, when the communications environment is
poor, global information is difficult to synchronize, and both centralized and decentralized

planning efforts suffer as a result.

The taxonomical conceptualization of MRTA described in this section provides a basis
for discussion of MRTA implementations. The next subsection presents a brief overview
of MRTA optimizations and explanation of the market-based techniques including the

ARSENL auction algorithm utilized in the plays and tactics described in Chapter 3.

2.2.2 Optimization in Swarm Task Allocation

MRTA is an optimization problem as stated in Section 2.2.1 and many techniques have
been applied to the problem in general to fit the various taxonomies and organizational
paradigms. Optimization in this respect is studied under combinatorial optimization with
emphasis on linear programming techniques, namely the assignment problem which has
linear programming solutions [54], [58]. Non-linear techniques incorporating heuristic or
relaxation techniques are also applicable for distributed solutions and swarm taxonomies,
such as coalition forming, that are more difficult and require solutions that balance compu-
tation and time with optimization [35], [54], [55], [59], [60].

In practical application, [54] clarifies the definition of optimization beyond the pure math-
ematical sense that given “union of all information available in the system it is impossible
to construct a solution with higher overall utility” which accounts for the environment and
information factors discussed in 2.2.1. Viguria and Howard [61] emphasized this concept
with a probabilistic analysis noting that “In most of the cases, the quality of the solution

(closeness to the optimal solution) depends on the information accessibility.”

Within the optimization problem set, the most basic solution is the greedy heuristic approach,
which selects the best choice at the time based on current knowledge. This approach is sub-
optimal in most cases and measured as a competitive ratio defining the minimum expected
performance compared to the optimal [54]. The greedy approach is ubiquitous throughout
the literature and provides a useful comparison when assessing trade-offs in more complex

heuristic approaches.
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2.2.3 Auction-based Task Allocation
Market-based approaches have become prolific throughout MRTA implementations. The

application of market-based approaches is credited to Smith [62] and the contract net proto-
col which assumes that a distributed agent structure with no a priori or global knowledge of
tasks can achieve a global objective. Agents are dual purposed as managers who bid for the
tasks and monitor results, and contractors who execute or decompose and subcontract tasks.
Dias, et al. [56] provide a formal definition of these aspects in that the global objective is
decomposable, that a global objective function exists defining the desired solution, and that
individual objective functions manage contribution to the global with respect to individual

preferences and constraints.

Auctions are a common implementation of market-based MRTA. There are many forms
of auctions including single-item, multi-item, and combinatorial auctions with both cen-
tralized and decentralized implementations [56]. Single-item auctions are characterized by
a single bidder-to-task pairing, whereas in multi-item auctions bidders can place bids on
multiple tasks simultaneously [63]. Combinatorial auctions package tasks to be sold as
multi-task bundles as opposed to individual tasks. Multi-item and combinatorial auctions
present opportunities in the MR, MT, and TA taxonomies, however they come with distinct
challenges in implementation and optimization [63], [64]. The remainder of the auction

discussion will be limited to single-item auctions that can be applied iteratively to task sets.

Bertsekas [58], [59] provided a method to apply the auction algorithm directly to the
assignment problem through a relaxation method incorporating e-complimentary slackness
(e-CS) to the pricing scheme. In this auction method bids are increased by an amount no
less than € to ensure that the price vectors for available tasks are maintained at a minimum
throughout bidding and assignment. Bertsekas shows that when utilizing this auction method
that a complete assignment, where each distinct object is assigned a complete task, will
occur and that assignment will be optimal when & < 1/N, where N is the number of agents

that can be assigned tasks [59].

Bertsekas’ auction algorithm provides an optimal assignment solution in a distributed
system with shared global knowledge. However, Stentz [60] highlights obstacles to achieving
desired optimality when using market-based algorithms on multi-robot systems that have

imperfect global knowledge. Additionally, Viguria [61] provides analysis of market-based
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global cost divergence from the expected optimum when all information is not known at the
start. Other considerations when implementing auctions include defining appropriate utility
functions and making accurate cost estimates and task decomposition schemes which may

“not consider the complete solution space and may find highly inefficient solutions” [56].

Hopchak [37] implemented a distributed variation of Bertseka’s auction algorithm in the
ARSENL software architecture using a consensus mechanism to synchronize global swarm
and auction states. The implementation conducts an area search function with a heteroge-
neous fixed-wing UAV swarm by first decomposing the search area into search cell tasks
and auctioning each cell. Campbell [5] expanded this work to include both fixed-wing and
quadcopter UAVs and dynamic task allocation for investigation tasks that are added over
the course of the area search. In this implementation the utility functions were modified to

introduce a preference modifier for pairing task types to specific vehicle capability.

2.2.4 Auction Coalition Implementations

There are numerous works implementing auction-based approaches to the MRTA problem
in both ST-SR-IA and swarm coalition applications. In swarm coalitions groups of robots
are assigned to a task to capitalize on synergy of aggregated robot capabilities. This is

analogous to the creation of subswarms for assignment to roles within a hierarchy.

Stentz and Dias [60], for instance, propose a market-based approach to coalition formation
and introduce several coalition concepts. One is that agents bid not only on tasks but also on
the services. That is, they bid on both preferred tasks that they will complete and services
that they want other agents to provide. Vig and Adams [64], on the other hand, propose using
a combinatorial auction framework in which the tasks are the bidding agents competing for

robots in order to form coalitions with the required resources.

Liu and Shell [65] propose manipulation of a distributed swarm utility matrix to create
a task-agent grouping, or hypergraph, representation of subswarms. This is accomplished
through coarsening, or dropping low utility values, and then conducting matrix partitioning
to identify groups. Subswarms can assign tasks via decentralized solutions like auctions,
or they can recursively divide the tasks into new hypergraphs. This is a comparatively
simple implementation for subswarms; however, it is not fully decentralized as the updates

to the utility matrix upon which it relies are conducted through lead and sub-lead robots.
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Further, dynamic updates are only allowed to modify existing tasks and not to introduce
new tasks [65].

Guerrero and Oliver [66] utilize a double round auction in which work capacity and group
capacity are introduced to provide a mechanism for incorporating time constraints. A
selected leader first solicits bids for capacity from available robots and then calculates the
necessary composition in a greedy manner to meet constraints. A second auction is then
conducted in which the leader presents bids to the selected robots to form the coalition.
Ifran and Farooq [67] took a similar approach that incorporates task workload and robot
work capacity. In their proposal, leaders are first elected via auction, then the coalitions
are formed via auction so that coalition capacity satisfies workload requirements. Their
approach also introduces intra-coalition swapping to allow for exchanging robots between
coalitions when work capacity is not met or when there are dynamic changes to the work
environment. This exchange is accomplished via auction by coalition leaders and presented

results demonstrate improved matching of coalition capacity to workload requirements [67].

In [68], de Mendonca and Nedjah propose a local dynamic task allocation method that
ensures a desired global proportion of homogeneous robots are assigned to available tasks.
Robots maintain localized task assignment tables for the swarm robots and known tasks. If
there are more robots assigned to a task than the desired proportion dictates, then that task
has over-allocated resources. The robots determine transfer options locally to balance the
proportion of robots allocated to a task. Transfer decisions rely on a combination of known
differences in global proportion requirements and robot id to avoid over-correction. This
simple localized technique was shown to provide fast convergence to desired task allocation

that lends itself to easy comparisons in a hierarchical organization [68].

Kose, et al. [69] expanded on previous work that assigned roles to members of a robot
soccer team using market-based mechanisms. Their extension allows dynamic, multi-role
assignments after the initial assignment. Assignment is supported by reinforcement learning
mechanisms and a generalization of the role definitions. The reinforcement learning utilizes
a state vector representation of the perceived game state in addition to the auction costs to

dynamically determine the set of robots best suited for the attack and defend roles.

These MRTA implementations provide background and fundamental works in the do-
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main; however, none are completely analogous to the hierarchical task decomposition of a
framework like MASC. While this thesis does not require the task and capability planning
mechanisms of advanced coalition formations, the segmentation schemes provide insight
to techniques that can be adapted to the control of tactics and subswarms in the MASC
framework. In particular, at the tactic level, decentralized single-item auctions are utilized

to form subswarms to which specific plays are assigned.

2.3 The Advanced Robotic Systems Engineering Labora-
tory (ARSENL)

This research was conducted on the NPS ARSENL UAV swarm system and utilized their
behavior library based on the MASC framework [26]. In this work, the search and inves-
tigation components are implemented as MASC plays that are combined into factics as
described in Chapter 1. We use the term role to describe the objective of the play assigned
to an individual swarm agent at a particular time and the term behavior to refer to the swarm

(or subswarm) objective more broadly.

The NPS ARSENL conducts research and concept development for robotic unmanned sys-
tems. Its history of innovation in swarm development is highlighted by events such as the
50 fixed-wing UAV demonstration in 2015 [70] and complex multi-domain field experi-
mentation in 2021 [26]. ARSENL swarm vehicles operate using common open architecture
and open-source hardware and software components. The swarm is comprised of hetero-
geneous, multi-domain vehicles, including fixed-wing aircraft, quadcopters, and ground
vehicles [26]. ARSENL experiments are conducted in both live-fly events at Camp Roberts

California and in a robust SITL simulation environment [71].

2.3.1 ARSENL Software

The ARSENL on-UAV software implements the MASC framework for mission planning
and operations. Figure 2.1 depicts the state sequence for a mission that loosely corresponds
to the MASC phase level, with the Swarm Ready state representing the On Station MASC

phase. This is the state in which the mission tactics and plays are executed.

In the ARSENL software architecture, the tactic and play implementations are contained
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Figure 2.1. ARSENL Swarm State Sequence. Adapted from: [52]
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in their own libraries: arsenl_tactics and arsenl_plays. Tactics and plays both im-
plement the abstract plugin_behavior which provides the general interface for swarm

tasking and control.

The majority of behaviors implemented in the ARSENL library exist as plays. These
include behaviors such asDirectTransit, SequencedLanding, SwarmSearch, Contact
Investigation, and CuedSearch. Each of these plays is a self-contained behavior that
relies on one or more algorithms. Each can be executed in isolation or incorporated into a
tactic. A number of these plays might be better implemented as tactics since they implicitly
incorporate the functionality of other plays. The cued_search play, for instance both

searches a geographic area and investigates contacts of interest.

The MASC algorithm level is represented by several supporting libraries. Notably, algo-

rithms that support characteristics described in Section 1.1.2 such as path planning, transit,
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collision avoidance, as well as biologically inspired algorithms like flocking are provided
to support the basic swarm maneuvering. Additionally, utilities supporting specific tasks
such as decomposing a geographic area into cells are available at this level. The ARSENL
algorithms library also implements a number of task allocation strategies including single

item auctions.

2.3.2 ARSENL Goals

As noted, the cued_search play highlights a case of reproduction of code that is not
aligned with the reusability and composability goals of MASC. The work in this the-
sis reproduces and extends the CuedSearch functionality in the form of the tactics de-
scribed in Section 1.2.1. These tactics utilize compositions of the SwarmSearch and

ContactInvestigation plays in line with the intent of the MASC framework.

While outwardly simple, this decomposition is complicated by the need to implement the
task allocation mechanism to support the hierarchical architecture. That is, it is not enough
to simply build a tactic as a consolidation of plays. Assignment of roles (i.e., plays) and

parameterization of those plays must also be implemented within the tactic.

The primary goal of this research is the implementation of tactics performing complex search
and investigate behaviors that are created through composition of primitive search and
investigate plays in a hierarchical C2 framework. The tactics utilize a market-based approach
to dynamically assign the primitive behavioral roles to participating swarm members. Live
demonstration and simulation of the composed tactics to similar monolithic behaviors
utilizing market-based approaches provides empirical evidence that a composed behavior
has similar performance characteristics as the monolithic behavior and provides flexibility

for creation of increasingly complex behaviors.

2.4 Conclusion

This chapter provided a literature review that highlighted many of the considerations asso-
ciated with achieving the goals of this research. Namely, considerations of global utility,
individual utilities, organizational paradigm, and trade-offs with the allocation methods

and optimality were shown to be of importance. Chapter 3 will describe the application
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of these concepts, most importantly MASC and MRTA, to the development of specific

search-and-investigate tactics for the ARSENL swarm system.
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CHAPTER 3:

Implementation

This chapter details the development of the three tactics described in Section 1.2.1 using
the ARSENL codebase. Each tactic combines existing ARSENL plays into one ARSENL
tactic. Design choices related to composition and models discussed in Chapter 2 are high-
lighted. The first part of the chapter describes the mechanics of each play and provides
a description of the CuedSearch play that is used as the comparison baseline. Options
for the tactic implementation are then discussed. The remainder of the chapter describes
the three implemented tactics themselves and focuses on their state machines and auction
metrics. Finally, specific barriers to implementation are discussed with respect to creating

composable behaviors with multiple auctions.

3.1 Existing Advanced Robotic Systems Engineering Lab-
oratory (ARSENL) Functionality and Behaviors

The existing plays in the ARSENL library used for composition in this experiment were
SwarmSearch and ContactInvestigation. Each play relies on algorithms and utili-
ties provided by the ARSENL codebase arsenl_algorithms and arsenl_utilities
packages.

3.1.1 Plug-in Methods

All ARSENL behaviors, including plays and tactics, inherit from the PluginBehavior
class. This class provides member variables and methods that are common across swarm
behaviors such as variables containing records for all swarm participants and methods for
passing essential information to other swarm participants. The PluginBehavior class also
contains virtual methods that child classes (i.e., plays and tactics) use to implement behavior-
specific functionality. Of particular interest are the parameterize method that is used to
set specific execution values, the maneuver_command method that directs the vehicle as the
behavior is executed, and the process_behavior_data method that processes messages

received from other swarm members.
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The parameterize method is executed once upon initiation of a behavior. It is used to
initialize the behavior’s parameters to satisfy a specific set of objectives (e.g., the search of a
particular geographic area) as directed by the swarm operator. The initial behavioral state is
set prior to the first iteration of the behavior’s control loop. With respect to composition and
transition between behaviors, parameters may be passed through the composition hierarchy

as appropriate by calling contained plays’ parameterize methods.

The maneuver_command method is executed once with each iteration of the UAV’s 10
hertz control loop [52]. Its primary purpose is to provide maneuver commands for the UAV;
however, supporting algorithms such as checking and updating vehicle and component
state values are also typically applied within this method to ensure synchronization among
components. With regards to tactic implementation, role assignment and activation of

contained plays are the most important tasks that must be completed by this function.

The process_behavior_data method is used to process messages received from other
swarm participants. Since message receipt is asynchronous, the process_behavior_data
method is not run within the confines of the maneuver control loop. Rather, it is executed
as a callback when messages are received. State changes or actions stemming from mes-
sages can be made from within the method, but actions such as role changes that are
associated with state changes should be effected during the control loop execution by the
maneuver_command method. Implementing composed behaviors requires consideration of
the appropriate processing and dissemination of messages between the tactic and composed
plays. Messages may be passed to the play associated with the tactic’s current role (and

possibly other included plays) by invocation of its process_behavior_data method.

3.1.2 Role and Task Auctions

The tactics and plays in this research utilize single-item auctions for task allocation. The
auction algorithms used in this work were adapted from those described in [37] and [5] and
are broadly described in Section 2.2.3. This section details the current implementation of the
auctions within the ARSENL library and outlines their utilization for both task allocation
and task execution in a composition framework. More detailed information on the auction
bidding and concurrency mechanisms in support of search and pounce actions are available

in [37] and [5] respectively.
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Resource Records

At the tactic level, auctions are utilized to assign individual UAVs to roles that are effected
by the contained plays. Available role assignments are represented as auction resources for
which the vehicles bid. Within the ARSENL auction library, this is implemented through
a ResourceRecord class [5]. The ResourceRecord class contains a reference to the
associated object for auction (e.g., a search cell or pounce target) and auction-specific
parameters such as the auction ID, the resource ID, current price, and resource status. The
resource status within the ResourceRecord equates to the current task’s state and is used

for both conducting an auction and managing tasks in hierarchical composition.

ResourceRecords are contained in a ResourceSet class object which is instantiated as a
member object of a specific auction. The ResourceSet class contains basic accessor and
mutator functions for ResourceRecords. These methods are used for all manipulation and

querying of individual ResourceRecords during an auction’s conduct.

Utility Values

An ResourceRecord’s utility value captures the value of the resource to a specific UAV
and is a required member for a ResourceRecord. It is calculated locally and used in
the vehicle’s bid determination. Utility values are generated by the SingleItemAuction
instance using a function that is provided by the supported tactic or play. This allows the
behavior to evaluate available resources as required to account for different types of tasks

and vehicles.

The utility function implemented by the tactics and plays in this work utilizes the basic
formulas described in [5] that incorporate a base value for the task, a multiplicative modifier
for each airframe type, and a calculation of the estimated time to complete the task. For

each vehicle, 7, the utility value for a resource, r is calculated as

U, = Up — (mg *t,) (3.1

where v,, is the local utility value, v, is the task’s base value, m, is the vehicle-specific
airframe multiple, and ¢, is the estimated time required to complete the task. The estimated

time to complete the task is calculated as
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ty, +1;, +1, 3.2)

where ¢, is the estimated time required to complete a currently assigned task, #;, is the
estimated transit time to the location of the resource task, and ¢, is the estimated time

required to complete the resource task.

The base task value captures the raw importance of a task in terms of its contribution to the
behavior’s overall objective. In this work the base values were drawn from [5] and set to
250 for SwarmSearch tasks and 350 for ContactInvestigation tasks in order to slightly

prioritize contact investigation over area search.

Fixed-wing and quadcopter airframe multiples of 1.0 and 3.0 respectively were uses for
SwarmSearch tasks. Conversely, fixed-wing and quadcopter airframe multiples of 3.0 and
1.0 were respectively used for ContactInvestigation tasks. This makes the search tasks
more costly for quadcopter UAV and pounce tasks more costly for fixed-wing UAV and
intentionally biases their respective preferences towards the task type for which they are
most suited (i.e., faster fixed-wing UAVs prefer search tasks and hover-capable quadcopters
prefer investigations). These multiples are slightly higher than those used by Campbell to
account for the transit distance to outweigh airframe suitability when assigning pounce tasks

in larger search areas [5].

As described above the utility functions leverage swarm heterogeneity via the airframe
multiple to match UAV types to tasks they are best suited for, and relative task importance
is captured by the different base values so that more valuable tasks can be prioritized. As
shown by [5], implementing this combination of utility metrics in a single-item auction
achieves the desired task allocation performance characteristics when utilized by a het-
erogeneous swarm. An adaptation of Campbell’s work is implemented in the ARSENL
library as the CuedSearch play. This play is used as a baseline for comparison to the tactic

implementations described in the remainder of this chapter.
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3.1.3 Swarm Search

The SwarmSearch play is based on [37] and directs swarm vehicles to complete a full search
of a rectangular geographic area. It is initialized with coordinates that define the geographic
area, divides the area into rectangular search cells, iteratively allocates cells to individual
vehicles via auction, and maneuvers the vehicles to effect the search of their assigned cells.
The behavior derives a search pattern for a cell as a series of geographic waypoints that
are transited by the UAV. Upon reaching the last waypoint, the search cell task, is marked
as complete and a new auction is commenced if there are unassigned cells remaining. The

play continues until all cells have been completed.

The geographic search area is represented by a RectangleSearchArea object that imple-
ments the algorithm for dividing the search area into cells. The algorithm divides the area

into equally sized cells of length L..;; and width W,,;; as

Lar
Lee = — (3.3)
Larea
’VLmllx -‘
W,
Weenr = Warea (3.4)
[z

where L,., and W,,., are the length and width of the search area respectively, and L,

and W,,,, are the maximum length and width of each search cell.

The resulting RectangleSearchCell objects include a method to generate a search path
through the cell based on a vehicle-specific sweep width and search altitude. The generated
path is stored in a WaypointSequencer object that includes methods to direct the vehicle
along the path. The path generation method is not called until the vehicle commences
execution of the search task. This allows the derived search pattern to account for the UAV’s

transit to the cell.

The ARSENL framework provides a number driver classes for controlling vehicle tran-
sits. Among these is a SearchPatternDriver that is utilized by the SwarmSearch

behavior to control the movement of the UAV as it completes the search of a single
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cell. The driver is a member of the SearchCellResource object, a subclass the of the
ResourceRecord described in Section 3.1.2, rather than the search area or search cell ob-
ject. The SearchCellResource objects are generated by the behavior after the creation of
the search area and derivation of the search cells and used to initialize a SingleItemAution

object.

The SwarmSearch play’s SingleItemAuction objectis initialized during parameterize
execution. Each UAV participates in the swarm auction completing assigned tasks as de-
scribed above until the search of the area is complete. Progression through the auction
and execution of maneuver via the active resource’s driver are implemented within play’s
maneuver_command method, which is called once for every iteration of the UAV’s main

control loop.

3.1.4 Contact Investigation

The ContactInvestigation play is used to direct the investigation of a contacts (i.e., a
“pounce”). The pounce action consists of a direct transit to a reported contact’s geographical
location and a loiter for a predetermined amount of time. The pounce is considered complete
after the UAV has been “on top” of the contact for the specified amount of time. As
with SwarmSearch, contacts are allocated to swarm members as tasks via auction. Unlike
the SwarmSearch behavior, ContactInvestigation is initiated with an empty list of
contacts, and contacts are added as they are identified and reported via contact reports from

other swarm members.

The overall design of the ContactInvestigation play is less complex than the
SwarmSearch play since there is no large task (i.e., search area) that must be decom-
posed into smaller tasks (i.e., search cells). It does, however, have to dynamically add
new contacts as they are reported. Individual contacts are represented as Contact ob-
jects that specify the geographic location and altitude of the contact as well as the
time at which it was reported. Each Contact object is created when the contact is re-
ported and incorporated into an InvestigationResource object, another subclass of
the ResourceRecord class, that is added to the behavior’s SingleItemAuction in-
stance. The InvestigationResource object contains supporting members and meth-

ods, including a ContactInvestigationDriver that serves the same purpose as the
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SearchCellResource class’s SearchPatternDriver.

The code for adding newly reported contacts to the auction is contained in the
process_behavior_data method that is invoked upon receipt of behavior-related mes-
sages from other UAVs (i.e., contact report messages in this case). The Contact ob-
ject and associated resource are added to the play’s SingleItemAuction. Addition of a
new contact also requires immediate initiation of a new auction process or restart of an
in-progress auction. The process_behavior_data method effects this by changing an
auction_state variable that causes an auction restart upon the next execution of the

play’s maneuver_command method.

3.1.5 CuedSearch

The CuedSearch play is a monolithic combination of the SwarmSearch and Contact
Investigation play functionality based on the work presented in [5]. It utilizes the
resource classes discussed in Sections 3.1.3 and 3.1.4 to enable allocation of both
SearchCellResource and InvestigationResource objects by the same single-item

auction.

The CuedSearch parameterize method instantiates a SingleItemAuction object
and initializes it with SearchCellResource objects in the same manner as the
SwarmSearch play. The process_behavior_data method functions exactly as the
ContactInvestigation version and dynamically adds InvestigationResource ob-

jects to the auction as new contacts are reported.

The methods controlling maneuver state, auction progression, and task status for the
CuedSearch play are similar to those of the other plays. One minor exception is that

the utility function that calculates task values must account for both types of resources.

3.2 Contact Generation and Reporting

To ensure consistency across all of the experiments, searchers were designed to “discover”
contacts in predetermined cells over the course of the search. The cells in which contacts
were to be identified were incorporated into the CuedSearch play and the tactics discussed

in Section 3.4 so that the vehicles that eventually executed those search tasks could report
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the contacts appropriately. Section 4.1 provides more detail regarding the specific placement

of contacts within the search cells.

3.3 Tactic Development Considerations

Developing tactics from composable, reusable plays presented several design challenges and
key questions. In particular, automation via task allocation had to properly combine local
and global information and objectives; developed models needed to promote the hierarchical
integration and reuse of the task allocation method; and tactics were subject to the constraint
that individual UAVs execute only one play at a time. These considerations align solutions
to an ST-SR-IA taxonomy and not a ST-MR-IA coalition as discussed in Section 2.2.1. This
section expands on these principles and requirements and examines methods to compose

the plays described in Section 3.1 into higher-level tactics in the ARSENL framework.

3.3.1 Play and Tactic Composition

At the most basic level, the tactic must implement logic to determine what play to execute
at any given time. Chapter 2 discussed relevant composition mechanisms and examples to
this end, including the coordinator mechanism and system-agent-component model. From
these examples, it is evident that the tactic should delegate or pass control of the UAV
to a component play until either rescinding control and assigning control to another play
or receiving control back from the play when appropriate conditions are met. The former
option is achievable through direct action implemented in the tactic’s control logic (i.e., its
maneuver_command method). The latter option can be achieved by implementing it in the
play’s control loop or via an event-based framework. Each of these approaches lends itself
to specific architectures. This research implemented a hybrid approach using direct control
of play selection by the tactic and an event-based system for play-to-tactic notifications.

Section 3.4.1 details the implementation.

The case was made in Section 2.1.2 that optimization and allocation techniques, an auction
in this research, can be considered a component within the model and as such should be
added in accordance with the composition mechanisms. However, as noted in Section 3.1
the ARSENL auction utilized in SwarmSearch and ContactInvestigation is tightly
coupled with the play’s control loop and local UAV maneuver state. For this reason this
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research chose to use an exogenous composition in which control is passed to a play
once per cycle and returned to the tactic after the play’s maneuver is determined. Thus,
when a behavior is implemented as a tactic, the tactic explicitly calls the active play’s

maneuver_command method to effectively cede control to the play for one control cycle.

3.3.2 Play and Tactic Objectives

The ultimate objective of the tactics remains the effective assignment of swarm vehicles to
roles that maximize the total utility. When composed, the single-item auctions used in the
SwarmSearch play and ContactInvestigation play are independent auctions contained
within the respective plays. These auctions maximize utility for the local objective of the play
but do not account for broader objectives of the tactic. That is, these auctions are distinct,
have no awareness of other auctions or tasks, and require that the participants in the auction
be known. Additionally, the play’s task state is intrinsically tied to the auction and UAV
maneuver states. This segregation creates several issues that must be addressed by the tactic
to synchronize play- and tactic-level knowledge on a single UAV. Tactics and plays must also
synchronize required knowledge with the rest of the swarm. Swarm-wide synchronization
has been addressed in the ARSENL system through existing consensus algorithms [37],
[71]. Synchronization of the tactics and the plays of which they are composed, on the other

hand, must be dealt with as a tactic is developed.

Section 2.1.2 covered suggestions from Lau [48] regarding information flow for an ex-
ogenous composition. For the ARSENL cases this can occur via defined communication
mechanisms or through parameterization of the maneuver_command method with a state
vector or via a return value. The maneuver_command method is an important element
within the hierarchical ARSENL framework with specific return-value requirements, so
this research did not choose to modify it. It does, however, present a compelling case
for information flow in a composition through passed parameters. Chapter 5 recommends
exploration of this concept. Ultimately this research chose to incorporate communication
mechanisms into the composed plays to allow direct inspection by the tactic and to provide
key event notifications as described in Section 3.4.

Since physical control of the UAV is the responsibility of the play associated with the

assigned role, the main function of the tactic control logic becomes the management of
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the role-allocation process on each UAV. In this context, the roles, then, can be considered
tasks that are managed by the tactic, and the tactic itself can be developed to solve the
MRTA problem. To accomplish this in a distributed manner, all UAVs must agree on the
role requirements (i.e., the number of vehicles to be assigned to each role), and the agreed-
upon requirements will make up the auction’s available tasks. The discussions that follow
are focused on the tactic allocation methods that are used by the tactics developed for this

research.

3.3.3 Role Assignment Approaches

There are many possible solutions for determining each UAV’s role within the tactic. In the
simplest scheme roles can be determined once when the behavior is initiated. This type of
role assignment is referred to as “static” for the remainder of the paper and implies that
once assigned a role, the UAV remains in that role until behavior completion. More robust
approaches to role assignment might allow for a UAV’s role to change over the course of
the tactic’s execution. “Dynamic” determination will refer to an approach that allows for
the assignment or reassignment of roles due to changes in task availability. Determining the
appropriate number of UAVs for each role is the primary focus of dynamic swarm control

at the tactic level.

Static Role Assignment

In the ARSENL framework static allocation is most easily executed when the tactic is
initialized by the parameterize method. Once assigned, the vehicle will maintain that role
until conclusion of the tactic. Each UAV then, participates in only one play, and therefore

one auction for the duration of the tactic.

One approach to static allocation is to assign roles heuristically based on some metric or
feature associated with the swarm or the UAVs. With this approach, Using the vehicle type
is one example of this type of allocation. A search-and-investigate tactic might take this
approach and assigns all fixed wing UAVs to the searcher role (i.e., SwarmSearch play)
and all quadcopters to the pouncer role (i.e., ContactInvestigation play) in order to
align the roles with the specific vehicle capabilities. This approach effectively segregates

the swarm into homogeneous coalitions or subswarms that only indirectly interact.
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This scheme is acceptable for some scenarios, but discounts any benefit from heterogeneity
of the UAV swarm and limits potentially useful emergent behaviors that might arise as a
result. It also assumes that the swarm will include a sufficient number every type of vehicle

to satisfy the requirements of all roles.

Other approaches to static role assignment might include randomized assignment, more ro-
bust heuristics, and collaborative approaches such as auctions. These approaches might yield
advantageous combinations that better leverage heterogeneous capabilities to meet system-
wide role requirements. The exploration of these approaches, however, would amount to
little more than a stepping stone to the dynamic role-assignment approaches discussed in

the next section and is left to future work.

Dynamic Role Assignment

With dynamic role assignment a UAV can be assigned to any role at any point during
execution of the tactic. For this research there is only one role available at initialization,
so all UAVs are initially assigned to the searcher role. UAV transition to the pouncer role
occurs as contacts are generated and the composition of available search and investigate tasks
changes. The goal of assigning each UAV to a role in a way that attempts to maximize global
utility can occur through any number of task allocation schemes including those discussed
in Chapter 2. The tactic implementations in this research use a single-item auction for
dynamic role assignment in attempt to achieve performance characteristics similar to those

of the CuedSearch play.

The dynamic tactics created for this research utilize a greedy approach implemented with an
auction to assign pouncer roles as contacts become available. This auction is only conducted
when conditions of a role membership function are met to constrain the number of UAVs
assigned to each role. The auction only accounts for transition tasks to the pouncer role

since searching is the default.

Initial experimentation utilized coalition formation techniques that balanced the ratio of
UAVs assigned to each role based on available tasks or quantifiable work requirements
associated with each role. However, this is not directly analogous to the search-and-pounce
tactic in which contact discovery depends on continued search progression. Stated differ-

ently, in rare cases this approach can over-allocate pouncers and halt search progress before
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eventually self correcting. In the final implementation, a function was utilized to limit the
number of pouncers rather than continually balancing the pouncer-to-search ratio. The final

tactic capped the number of vehicles assigned to the investigate role as

Ppay =min (Lrp # n),n — 1) (3.5)

where P, is the maximum number of pouncers allowed at one time, and r, is the preferred
ratio of pouncers relative to the number of available UAVs, n. This ensures that at least one
will be allowed to remain in the search task even if r equals 1.0 and that at least one pouncer

will be allowed so long as r;, * n is greater than or equal to 1.0.

This simple approach allows for component plays to conduct their auctions for task as-
signment while the tactic assigns additional UAVs to the role. The tactic’s auction utilizes
the same utility as the component play to identify the best candidates for transition to the
pouncer role. When properly implemented, transitioned UAVs will remain in the pouncer
role as long as work is available and will transition back to a searcher role once all available

pounce work is complete.

3.4 Tactic Implementation

Three tactics were developed using plays, composition, and role-assignment meth-
ods discussed in this chapter: SearchTacticStatic, SearchTacticDynamic, and
SearchTacticImmediate. This section discusses their implementation and the motivation

behind the various design decisions.

3.4.1 Common Components

All three tactics rely on a number of common data structures and composition components.
Role definitions are managed as string-ID pairs that are stored in a bidirectional lookup
table, and lists of UAVs assigned to each role are stored as Python sets. The sets for both

roles are stored in a Python dictionary that is keyed with the role IDs.

Exchanging role information as UAVs transition from one role to another is required to

maintain UAV role awareness across the swarm. A TacticState message containing a
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UAV’s ID and an updated role ID was added to the ARSENL library to support this
requirement. Three supporting methods were incorporated into the tactics to process these

messages and manage the current role sets:

1. The send_role_change method is used to notify the swarm when a local role change
occurs. It creates the TacticState message with the updated role information and
uses the default PlugInBehavior base class method to broadcast the message to the
rest of the swarm.

2. The process_role_update method processes TacticState messages received
from other UAVs. It is called by the receiving UAV’s process_behavior_data
method and calls the update_role_sets method after unpacking the message to
effect the update.

3. The update_role_sets method determines whether the message’s UAV and role
IDs represent a change from the current role sets. If so, it updates the role sets
accordingly and ensures that the intersection of the two sets is empty. It also calls the

methods for both component plays to update their participant lists.

The ContactInvestigation play was modified from the original ARSENL version to
allow addition of locally generated contacts (i.e., contacts generated while UAV was in
the searcher role) since vehicles do not receive their own ContactReport messages. This
update simply duplicated functionality from the in process_behavior_data method that

processes contacts reported by other swarm members.

Rather than patching the SwarmSearch play, all three tactics were designed to implement
contact generation and reporting as described in Section 3.1.5 at the tactic level. Either
approach would be functionally equivalent, but this design decision was based on the
observation that that there is no role-to-role communication in the implementation. In
particular, this choice recognizes that both the parent tactic and the component plays need

to be aware of generated contacts.

The component plays were also updated to support event-based state change notification.
Finally, two supporting classes, Role and Auctioneer, were developed to wrap component
objects and provide accessor and mutator functions for play maneuver, task, and auction

states.
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The Role Class

A Role class was developed as a wrapper for the composed SwarmSearch and
ContactInvestigation plays within the containing tactics. The Role class’s primary
function is to provide accessor methods for the play’s underlying data, to abstract com-
ponent play data for use by the parent tactic, and to provide a tactic interface for play

parameterization and state data management during role transitions.

The Role class also provides methods that are specific to managing the component play’s
auction. When the UAV’s role changes, these methods ensure that there is a graceful
transition between plays by setting the auction and task states appropriately and notifying
the swarm of any updates. The auction-management methods provided by the Role class

are as follows:

1. The exit_auction method sets the conditions to transition out of an active com-
ponent play. It ensures that the swarm is notified of any recently completed task,
and in the case of search tasks being relinquished prior to transition, it updates the
search cell’s resource status to “available,” notifies the swarm of the status change and
then immediately calls the force_auction_restart method to force the remaining
participants to auction the now available resource. Finally, it updates the component
play’s current and next task references to None so that the play does not restart a task
if it transitions back to this role later.

2. The force_auction_restart method sets the conditions to initiate a new auction
among the remaining role participants. Specifically, the composed play’s auction
state is set to INACTIVE, and the component play’s auction restart method is called.
The restart method sends an auction reset request to the remaining participants and
changes the local auction state to RESTART. The restart ensures that any relinquished
task is auctioned off immediately, and setting the play’s auction state to RESTART
ensures that an auction will be conducted immediately if the play is reactivated later

as a result of a subsequent role transition.

The Role class also registers the tactic as an observer to the play to enable event-driven
notification of state changes within the play. This approach was chosen as an alternative to
adding parameters to the maneuver_command method to avoid changes that would affect

the control approach discussed in Section 3.3.1. Play-level state change notification enables
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the tactic to initiate a role transition immediately upon completion of an assigned play task
(i.e., prior to commencing a follow-on task) if desired. Event notification is implemented
by an update to the composed plays’ compute_maneuver methods.

The Auctioneer Class

An Auctioneer class was developed to provide an object and event-driven replication
of the state-machine for auction execution and to provide accessor and mutator methods
for frequently used auction information. Essentially a convenience class, the Auctioneer
reduced the complexity of integrating the auction with the tactic control cycle. As such, its
use was a design decision that facilitated the development process and was not essential to

achieve the overall composition goals.

The primary advantage of the Auctioneer class is the encapsulation of specific methods that
were replicated in the plays SwarmSearch, ContactInvestigation, and CuedSearch
plays. However, many of the auction methods are actually assigned when the auction is ini-
tialized meaning that the implementing tactic or play must still provide some of the support-
ing methods and algorithms. In particular, the utility function evaluate_auction_tasks
must still be provided since it implements the auction-specific utility calculations and task
comparisons. Similarly, the init_auction_tasks method differs between auctions since
different task types call for different initialization parameters. Chapter 5 provides sugges-

tions for further encapsulating of these methods.

The Auctioneer class utilizes an abstract AuctionState class with four methods: update,
resume_auction, network_resume_request, and add_resource. These methods im-
plement state-specific requirements of the original play implementations in a manner that
allows for transparent interaction with the tactic. Concrete classes are defined for each
Auction class state and the abstract member functions are implemented with only the
state-specific code. The advantage of this approach is that it decouples the auction state

from the maneuver state.

Tactic Control
The composition of plays within the tactic makes implementation of the actual control

function fairly straight forward. To execute the play, the tactic simply calls the active
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play’s compute_maneuver method from the tactic’s compute_maneuver method. As
noted previously, the most important component of the tactic’s control function is role
assignment. Since this is implemented differently for each tactic, it will be covered with the
specific tactics. There are, however, functions supporting role assignment that are common

to all three tactics.

1. The get_investigator_limit method implements the role membership function
and calculates the maximum number of allowed investigators as described in Sec-
tion 3.3.3.

2. The notify_role_end method is an event-driven method called by the component
plays observers. It is called when the play’s maneuver and auction states are set to
COMPLETE indicating all tasks associated with the role have been completed. When
invoked, it initiates a transition to the other role if that role has remaining tasks.
For all tactics this method is called by the composed SwarmSearch play so that
searchers will always transition to pouncers when the search area is complete. With
the SearchTacticDynamic and SearchTacticImmediate tactics, this function
will also be invoked by the composed ContactInvestigation play to transition
pouncers back to the searcher role when there are no remaining contacts to be inves-
tigated.

3. The calculate_center_mass method calculates a point central to the current
swarm geographic distribution. This point is used as a “loiter” point for UAVs with
no assigned task. The function ensures that both composed plays are using the same

loiter point so that UAVs are in closer proximity to potential future tasks.

Finally, it is worth noting that the tactics’ proccess_behavior_data and parameterize
methods did not benefit from composition like the maneuver_command did. Instead these
two methods needed to account for all requirements of the tactic and all of the composed
plays. That is, these methods must ensure not only that initialization and message data
handled correctly at the tactic level, but also that data is passed to component plays correctly.
This meant that even when there was commonality among the tactics, small differences in

initialization and communication requirements precluded reuse by multiple tactics.

The common components described in this subsection comprise the majority of the imple-

mentation details associated with the composition of plays within a tactic. Tactic imple-
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mentations then, are primarily differentiated by their approaches to role assignment. The

remainder of this chapter will discuss role assignment for each of the three tactics.

3.4.2 Static Role Assignment

The SwarmTacticStatic role-assignment implementation is the simplest of the three
tactics. It was not developed to prioritize anything more than ease of implementation and
there were few specific performance expectations. It does, however, provide a point of

comparison to the more robust approaches of the other two tactics.

The SwarmTacticStatic role assignment occurs within the tactic’s parameterize
method, and roles do not change during execution except at the end of the behavior when
there are no remaining SwarmSearch tasks. Role assignment utilizes the maximum pouncer
ratio (Equation 3.5) with an r value of 0.5 to divide the swarm evenly between pouncers
and searchers. Quadcopter UAVs are assigned to the pouncer role in vehicle-ID-order until
the desired number of pouncers has been identified or there are no remaining quadcopters.
If there are an insufficient number of quadcopters, fixed-wing UAVs are assigned to the
pouncer role by vehicle ID as required. All UAVs not assigned to the pouncer role are
assigned to the searcher role. The swarm composition of the experiments described in
Chapter 4 always led to role assignments in which all quadcopters were assigned to the

pouncer role and all fixed-wing UAVs to the searcher role.

No additional methods were required for this tactic. Of note, vehicles assigned to the pouncer
role have no assignments until contacts are generated. This led to an assumption that under

use of loitering vehicles might negatively affect search performance.

3.4.3 Dynamic Role Assignment

The dynamic role assignment that occurs in the SearchTacticDynamic and Search
TacticImmediate tactics and utilizes a single-item auction to identify suitable UAVs to
transition to a pounce role as contacts are generated. For the SearchTacticDynamic tactic
the actual transition to a new role does not occur until the selected UAV has completed any
ongoing search task. The SearchTacticImmediate tactic, on the other hand, immediately

transitions the selected UAV to the new role. The differences between these two approaches
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are presented in Section 3.4.4, but it is worth noting here that both tactics utilize similar

auction processes to select UAVs for transition.

Dynamic assignment was implemented to replicate the semantics of the CuedSearch play.
Since the role-assignment auction is conducted when contacts are generated to poten-
tially transition searchers to a pouncer role, the process is analogous to UAVs winning
available pounce tasks. In line with this reasoning, the SearchTacticDynamic tactic
auction utilizes the same basic utility function from Section 3.1.2 that is used by the
ContactInvestigation and SwarmSearch plays (i.e., Equations 3.1 and 3.2). From the
standpoint of the searchers, pounce tasks equate to role transitions and are thus specified as
transition tasks in the tactic auction. The auction that will eventually assign the newly
reported contacts occurs within the ContactInvestigation play and will be limited to

that role’s participants (to include recently transitioned searchers).

The tactics consider each newly reported contact as a transition opportunity and conduct
transition auctions to assign all available transition tasks. In the simplest case, one searcher
is identified for transition to a newly available task. It is possible however, that the best-
suited UAVs are already assigned a pouncer role. In these situations, UAVs already in the
pouncer role will win the available transition tasks, and no transition will occur. Situations
also exist in which multiple transition tasks are available, so multiple searchers might win
transition tasks. When this occurs, a greedy approach is taken, and the UAVs that is first able
to execute their transition will do so. Once the maximum number of pouncers is reached
(i.e., per the role membership ratio), no further UAVs will be permitted to transition even if
they previously won a transition task. When a pouncer completes an assigned task with no
additional pounce tasks available, it will immediately transition back to a searcher role. This
transition scheme is designed to mirror the semantics of the CuedSearch play in which
UAVs executing investigation tasks are more likely to be awarded additional investigation

tasks than UAVs executing search tasks.

The basic approach to transition auctions and post-auction transition of UAVs is presented in
Algorithm 1. The algorithm specifically implements the SearchTacticDynamic semantics
and requires completion of an in-progress search task before a transitioning to a pouncer
role. As noted in the last paragraph, it also prevents transitions that would result in too many

pouncer-role UAVs. The current and next variables represent transition tasks and are
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used to initiate transitions and update task status. A non-NONE value in the current task
indicates that the UAV is already in the pouncer role, while a non-NONE next task indicates

that the UAV is queued for transition to the pouncer role.

Algorithm 1 Dynamic Role Assignment

Require: new_task
Require: 77 = |[...]
T, =T, Unew_task
Auction.state < RESET
while assignment = NULL do
assignment < auction.update()
end while
if current_role = SEARCHER then
next «— assignment
assignment «— null
else
next «<— NONE
end if
Require: role.current.state «— COMPLETE
if role = SEARCHER then
remaining < membership_limit — len(S,)
if next and remaining > 0 then
current < next
role < POUNCER
else
next «<— NONE
end if
else if role = POUNCER then
Ty [current].state «<— COMPLETE
current «<— NONE
end if

A new transition task is created for any reported contact using that contact’s ID and ge-
ographic information. Upon adding the new resource, a new auction is initiated. After
completion of the auction, the awarded task is copied to the next variable if the UAV is
currently in a searcher role (there is no need to update UAVs in a pouncer role since the
awarded task represents a potential transition to the pouncer role). If the auction resulted in

the award of a transition task, this queues the tactic for a role transition.
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When called for, a UAV transitions to the pouncer role as soon as the UAV finishes its
current search task. This notification is made by the observer member added to component
plays during role initialization. The observer invokes the tactic’s notify_task_complete
method which verifies the next task for UAVs in the searcher role. If the next value is a
valid transition task, it then checks the current size of the role set against the role size limit.
If the limit has not been reached the method initiates the role change. If the UAV’s role was

already a pouncer, the current task resource is updated to the COMPLETE state.

Algorithm 1 functionality is implemented across several methods including the previ-
ously mentioned notify_task_complete, process_behavior_data, and compute_
maneuver. One additional method, notify_new_task, was implemented to main-
tain task synchronization between the role-assignment auction and play auction. The
notify_new_task method is the handler method for another event-driven addition that
informs the tactic when the play has started a new task. This method updates the corre-
sponding transition resource to ACTIVE and assigns the tactic’s current task to the new
resource. This method also accounts for instances where null tasks are assigned in either
role. In this case, pouncers will immediately transition back to searchers and searchers will

transition to pouncers if the pounce limit has not been reached.

The role-assignment algorithm was chosen to minimize the number of auctions occurring
at the tactic level so that the number of auctions executed equals the number of contacts
discovered. That diverges slightly from the CuedSearch play auction approach, but was

considered a reasonable concession to reduce overhead.

3.4.4 Immediate Role Assignment

As implemented in the SearchTacticDynamic tactic and CuedSearch play, role tran-
sitions do not occur until a UAV has completed its most recently assigned task. The
SearchTacticImmediate tactic was developed to prioritize for contact response by tran-
sitioning to the pouncer role immediately. To achieve the immediate transition, the role
assignment algorithm is modified as depicted in Algorithm 2 by removing the task comple-

tion requirement.

The immediate role-transition algorithm must also to account for the fact that multiple UAV's

may transition immediately after an auction if more than one transition task is available.
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Algorithm 2 Immediate Role Assignment

Require: new_task
Require: 7; = [...]
T, =T, Unew_task
Auction.state < RESET
while assignment = NULL do
assignment < auction.update()
end while
if current_role = SEARCHER then
if —assignment.isnull() then
remaining < membership_limit — len(S),)
if remaining > 0 then
available <« len(Ty.available_ids())
available < min(available,remaining)
if assignment.id € Ty .available_ids()[0...available] then
current < assignment
role < POUNCER
end if
end if
end if
end if

This could lead to a violation of the role membership ratio if too many UAVs transition. To
account for the immediate transition Algorithm 2 compares number of available pouncer
roles to the number of remaining available transition tasks and selects the smaller of the two.
It uses this number to identify a subset of the oldest available tasks. If the UAV’s assigned
task is an element of this subset, the UAV transitions to the pouncer role. Otherwise the
transition is discarded. This approach effectively prioritizes older contacts over newer ones

when the number of contacts exceeds the maximum number of pouncers.

The logic for Algorithm 2 is primarily primarily implemented in a process_auction_win
method of the tactic. The event callback, notify_task_complete, is still utilized to
provide synchronization support to the SearchTacticImmediate tactic, but the original

dynamic transition logic is no longer required.

One additional factor must be considered if tasks are to be aborted in lieu of a higher

priority task: effort already invested into a task becomes more relevant than effort required
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to complete the task. To account for this, the utility function for the immediate transition
auctions was modified to account for time already spent on the current task, #;, instead of
time remaining in a task #,,. This results in the following formula for the time component
of the utility function:

tg, +1;, +1, (3.6)

Incorporating time spent on the current task into the equation amounts to a bias towards
searchers that have completed less of their search assignment than other bidders. The intent

is to decrease the time eventually spent researching relinquished cells.

3.4.5 Summary

This chapter described the development of three UAV swarm tactics for performing a
search-and-pounce mission in which a geographic area is searched and contacts that are
identified over the course of the search are investigated. All three tactics are composed
of the ARSENL SwarmSearch and ContactInvestigation plays. Each tactic utilizes a
different approach to the assignment of investigators to contact investigation (i.e., pounce)
tasks: static assignment the pounce role, dynamic assignment with delayed transition, and
dynamic assignment with immediate transition. The compositions were achieved with a
common set of supporting functions requiring only role allocation methods be modified
to achieve specific goals. This supports the MASC goals of reusing simple behaviors for
creation of more complex tactics. The intent of all three tactics is to produce a behavior that
is similar to a play implemented from monolithic code. Chapter 4 describes experimentation
with these behaviors to include a description of the metrics of interest and performance

comparisons to the preexisting ARSENL CuedSearch play.
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CHAPTER 4

Results

This chapter presents results of simulation and live-flight experimentation for the four
behaviors that were described in Chapter 3. The three tactics, SearchTacticDynamic,
SearchTacticImmediate, SearchTacticStatic, and one play CuedSearch were each
tested on heterogeneous multi-UAV swarms within the ARSENL SITL environment and
during live-flight testing at McMillan Airfield. Further reference to the tactics will be
abbreviated to Dynamic, Immediate, and Static. Tests directed swarms to search a
predetermined geographic area, and investigate a predetermined number of dynamically
generated contacts. Live-flight testing was conducted to demonstrate real-world applicability

and verify simulation results.

The performance of the three tactics composed of Contact Investigation and
SwarmSearch plays are compared to the analogous CuedSearch play. The chapter is
presented in three sections: experimentation methods, data preparation, and experimen-
tal results. The experimentation methods section details the testing environment including
search area descriptions and contact generation. The data preparation section describes
the data post-processing that was conducted to account for observed anomalies and dis-
cusses the causes of those anomalies. Finally, the results section presents an analysis of
the experimental outcomes with emphasis on timed metrics, vehicle utilization, and task

distribution.

4.1 Experimentation Methods

Experimentation consisted of events conducted in the SITL simulation environment and
live flights conducted at McMillan Airfield, Camp Roberts, CA. Both simulation and live-
flight events utilized heterogeneous UAV swarms composed of Zephyr II fixed-wing and

Mosquito Hawk quadcopter vehicles. The characteristics of these vehicles is provided in
Table 4.1

Experiments utilized two geographic search areas, both anchored on an initial geographic

location at McMillan Airfield but varying in size. The live-flight search area was defined as a
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Table 4.1. ARSENL UAV Platform Characteristics. Adapted from [26]

Dimensions Maximum | Cruise | Autopilot | Companion

Endurance | Speed | Computer | Computer

Zephyr IT 1.45m 50min 18m/s | Pixhawk | Odroid U3
(blended wing) | (wingspan)

. 0.29m

Mosquito Hawk | i - axis to | 20min 15m/s | PixRacer | Odroid CO
(quadcopter) .
motor axis)

575 meter by 750 meter rectangle located as depicted in Figure 4.1. Both live-flight and SITL
environment experiments were conducted with this area. SITL simulation experiments were
also conducted in a large search area defined by 1200 by 1950 meter rectangle as depicted
in Figure 4.2. Safety-of-flight requirements and airspace limitations precluded live-flight
experimentation in the large area.

.~§.

Figure 4.1. Live-Flight Search Area Cells.

Search cells were generated at runtime to partition the specified search areas using functions
from the arsenl_behavior_tools package’s search_planners subpackage. These
functions divide an area into equally sized cells according to maximum length and width
parameters. Plays in this experiment used maximum length and width of 200 and 225 me-
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Figure 4.2. Large Search Area Cells.

ters respectively. This resulted in 12 search cells arranged in a three-by-four grid for the
live-flight search area and 54 search cells arranged in a six-by-nine grid for the large search
area. Note that the size of the search cells in the live-flight area were 191 meters by 185.7
meters, which was slightly smaller than the 200 meter by 216.6 meter search cells in the
large search area. This is due to approach used by the RectangleSearchArea’s algorithm

described in Section 3.1.3 to create equally sized cells.

Simulated contacts were associated with specific search cells to force consistency of dis-
covery events across multiple tests. The live-flight search area was seeded with six contacts
located in cells 1, 4, 5, 7, 8, 10 of Figure 4.1, and the large search area contained 18
contacts located in cells 1, 4, 5, 8, 11, 13, 16, 17, 19, 21, 24, 26, 27, 30, 31, 32, 35, 39
of Figure 4.2. Contacts were generated within the specified cells by the vehicles searching
those cells and reported to other members of the swarm accordingly. The discovery event
for a contact occurred after a vehicle completed searching 35 percent of the respective area.
The subsequent report contained the contact’s location and a unique contact identification

(integer).

SITL environment and live-flight tests were conducted for swarm sizes of three to 10 UAVs
for the live-flight search area, and SITL environment tests with swarm sizes of six to 10
UAVs were conducted in the large search area. All swarms consisted of a near-even mix of

fixed-wing and quadcopter vehicles. For swarms of n UAVs, the number of quadcopters,
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ng, was |n/2], and the number of fixed-wing UAVs, n s, was n — ny. In the SITL simulation,
each swarm size was tested a minimum of five times, with additional tests conducted if
permitted by simulated vehicle battery life. A single live-flight experiment was conducted

for each presented swarm configuration to validate the SITL environment results.

4.1.1 Test Adjustments

Two versions of the code base were utilized during testing, both of which are represented in
the analyzed results. Version one testing was conducted using both the SITL environment and
during live-flight events at McMillan Airfield. Implementation errors that did not manifest
in simulation were identified during testing at McMillan Airfield. Code corrections applied
in the field allowed the successful completion of two Immediate behavior tests of swarm
size eight, but other behaviors and swarm sizes were not completed due to time constraints.
Version two is the version described in Chapter 3. It was utilized in the SITL environment
for both search area sizes and is the exclusive data set used for the large area analysis. The

CuedSearch play was not affected by these changes.

4.2 Data Preparation

The data gathered from testing was verified to ensure the expected number of search cell and
contact tasks were assigned and completed for each test. During the course of verification
a number of anomalies including repeated tasks and incomplete tasks were noted. This
section analyzes these events and proposes possible causes along with mitigation steps used

to continue analysis.

Results from 390 total simulations were included in the analysis presented in Section 4.3.
Preliminary verification of test performance revealed reports of both search and pounce
tasks completed more than once, in some cases by multiple vehicles. This was not expected
since the task allocation mechanism was implemented with the goal of tasks being assigned
and completed only one time. The set of simulations with repeated tasks consisted of 158
unique tests with a total of 191 repeated search and pounce tasks. The breakout is displayed
in Table 4.2.

There was also one case noted where a contact was reported twice, but this duplicate report
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Table 4.2. Number of Simulations with Repeated Tasks.

Behavior Area Searches | Pounces || Total
CuedSearch Large 23 19 42
Live-flight 6 16 22
SearchTacticDynamic Large 11 22 33
Live-flight 2 14 16
SearchTacticImmediate Large 9 23 32
Live-flight 11 16 27
SearchTacticStatic Large 4 10 14

Live-flight 0 5 5

total/event 76 125 191

did not result in a duplicate pounce. The second detection was determined to stem from a
searcher that relinquished a cell to pounce on a contact (i.e., when executing the Immediate
tactic). The cell was subsequently searched again, resulting in the contact being generated

a second time.

Finally, three tests were discarded after determining that the behavior was terminated prior
to the last task being finished.

Investigation of the duplicates found two primary causes. The first was a race condition,
and the second was an incomplete auction participation. The race condition occurred when
an auction was conducted when at least one vehicle already had a next task identified. If
the vehicle finished its current task and began the next task before the auction completed,
the auction would effectively include a task that had already commenced. The change in
task status from one of the available statuses to Active is checked as part of the new bid
submission process; however, when a vehicle is already the high bidder for that task, the
same bid is resubmitted without conducting the check. When this occurred, the task was
often awarded to the same vehicle. In this case, after completing the task initially, the task
is again assigned as current task. The task was noted as complete upon the first control loop
iteration, however, and the task was immediately relinquished. If necessary, a new auction

was then initiated. Overall search performance was not significantly affected in this case,

53

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



with time to execute an additional auction being the most significant cost. If, on the other
hand, the auction assigned the task to another vehicle, the assigned vehicle would complete
the task despite its having already been completed by another vehicle. This occurred because
the control loop checked the resource record’s driver for the complete state rather than the
resource record’s state (i.e., it determined when it had physically completed the task as

opposed to whether the task had been completed in general).

The root cause of inconsistent auction participation could not be definitively determined
from the data collected. In this implementation, a new task-assignment auction is requested
immediately by a newly assigned vehicle. The plays, however, ignore auction restart requests
during an active auction. It was hypothesized that the possibility existed for vehicles to
transition to a new role while an auction was in progress. Regardless, the errors do not
coincide with the expected behavior for this case which would be a hung auction in any
instance where a vehicle is added after the second round bidding. Evidence suggests that
issues with the auction participant list or another issue with the transitioned vehicle’s internal
auction state prevented it from participating in the ongoing auction correctly. In either case

a task is repeated.

Analysis of the duplicate task anomalies showed that a significant number were caused by
the race condition and won by the vehicle that already transitioned to the same task. These
duplicate completions were removed from the data set since they did not result in a vehicle
actually completing an additional task. Removal of these tasks prevented skewing of the
task completion and distribution analysis. Removal eliminated approximately 41 percent
of the duplicate tasks from the original set as illustrated in Table 4.3. Overall, this left 84
duplicates out of 12,904 total tasks included in the analysis.

Duplicate tasks that were completed multiple times were retained in the data set for analysis
because of their small proportion relative to the overall number of tasks completed. The
duplicates account for less than one percent of the tasks performed and occurred in only 73

of 378 tests (19 percent), which was considered acceptable for the purposes of this analysis.
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Table 4.3. Number of Tests with Repeated Tasks After Filtering.

Behavior Area Searches | Pounces || Total | Change
CuedSearch Large 13 11 24 42%
Live-flight 6 8 14 36%
SearchTacticDynamic Large 4 16 20 39%
Live-flight 1 9 10 37%
SearchTacticImmediate Large 6 19 25 22%
Live-flight 2 11 13 52%
SearchTacticStatic Large 1 6 57%
Live-flight 0 1 1 80%
total/event 33 80 113 41%

4.3 Results

Data was captured and analyzed to assess three general aspects of swarm performance: com-
pletion times, task distribution, and vehicle utilization. Completion times were examined
with respect to time to complete the overall search, the individual search cells, and pounce
tasks. Time lost for dropping active searches for pounces during Immediate tactic execution
is also measured to determine whether it affected pounce and overall search times. Task
distribution is presented as a pounce ratio that quantifies the number of pounces completed
relative to the total number of tasks for each UAV. Finally, utilization provides a measure

of time a UAV is actively engaged in completing a task compared to the overall test time.

Together these metrics provide mechanisms to compare performance of the newly developed
tactics to the baseline CuedSearch play to verify that the composition of plays provide
comparable task allocation and overall performance. The hypothesized expectation is that
Dynamic will most closely approximate CuedSearch across all measured metrics examined

in this section.

4.3.1 Completion Times
This section reviews various time metrics, including time to complete a test, time to complete
the search area, and timed components related to pouncing. These measurements provide

comparable performance metrics across tactics; however, they do not totally capture the
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effectiveness of the vehicle-specific utilities used for task assignment in the heterogeneous
swarm. Chapter 3 defined utility functions and parameters used to influence vehicles’
preferences for specific task types aligned to their capabilities. With these preferences,
we generally expect that the difference between mean completion times will be within
overlapping confidence intervals across the three tactics if the ratio of assigned task types
to vehicle types is similar. Specific expectations for each behavioral variation are described

in the following sub-sections.

Test Completion Time

Total time to completion measures the time the swarm takes to complete all search and
pounce tasks in a test (i.e., from behavior initiation to completion of the last task). In gen-
eral, the overall times to completion for the three tactics were comparable to the total time
performance of the baseline CuedSearch play. As depicted in Figures 4.3 and 4.4, all be-
haviors displayed a downward trend in total time to completion as swarm size increased. The
live-flight area results indicated diminishing returns as the number of vehicles approached
the total number of search cells available. The large area test did not reach a large enough

swarm size to display this characteristic.

The displayed 83 percent confidence intervals in Figures 4.3 and 4.4 depict the difference
between behavior test means in accordance with [72] with non-overlapping intervals repre-
senting a significant difference between means. Non-overlapping mean intervals appear in a
few instances throughout testing, however there is only one instance of the mean difference
of the baseline CuedSearch play outside the confidence intervals of all three of the other
tactics which occurred in the live-flight search area with a swarm size of five. The most
notable trend is the consistently narrower confidence intervals of Static in large search
area and non-overlapping intervals in swarm sizes 8-9. This provides a visible behavioral
distinction between the behaviors with auction assigned roles and Static which is as-
signed by vehicle type. The remaining paragraphs in this subsection describe expectations

and results from each behavior with respect to completion times.

As mentioned in Section 4.3, the Dynamic behavior was expected to most closely match
the behavioral characteristics of the baseline CuedSearch, including completion times.

However, Dynamic’s average completion time was faster than CuedSearch in all but three
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Figure 4.3. Live-Flight Area Test Mean Completion Time Confidence Inter-
vals (83%).

of the 13 test groups. There were also non-overlapping confidence intervals in three of the
test groups. Sections 4.3.2 and 4.3.3 investigate the possible reasons for test completion

time difference.

The expectation for Immediate was that it would perform similarly to Dynamic but that
it would incur additional time costs due to active assigned searches being interrupted in
lieu of prioritized pounce tasks. A relinquished search task required a complete re-search
of the search cell when it was eventually reassigned. The predicted relative performance
was observed in both search areas as displayed in Figures 4.3 and 4.4. The mean time of
Immediate was higher than Dynamic in all but one instance. Section 4.3.4 discusses the

measured completion time increase in comparison to the pounce delay as a design trade-off.

The Static tactic has two opposing assumptions for prediction of average test times. One

is that because task assignment is segregated by vehicle type, vehicle utilization will be low
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Figure 4.4. Large Area Test Mean Completion time Confidence Intervals

(83%).

which will increase test times due to the fact that not all vehicles participate in search tasks
and remain idle until a pounce task is available. The other is that test times will be faster due
to the longer search tasks always being completed by the faster fixed-wing vehicles. There is
merit for consideration of each assumption. Application of the latter assumption can be used
to reasonably explain Static’s overall faster test completion times than other behaviors in
the large search area for swarm sizes of nine to ten UAVs as depicted in Figure 4.4 due to
all fixed-wing vehicles dedicated to searching the larger number of search cells. Note that
for swarms of 9 to 10 vehicles in the large area, the Static test completion times were an
average of 31 seconds faster than the CuedSearch baseline with only one other test from
remaining behaviors within the range of completion times. This advantage is not apparent in
the live-flight search area or with the smaller swarms sizes in the large search area. Static
maintains a competitive average completion time within the range of live-flight search area

tests, indicating the utilization handicap is negligible within these parameters or partially
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offset by the search speed from all fixed-wing vehicles.

Search Completion Time

The search area completion measures the time to complete all search tasks within the test.
The predictions stated in Section 4.3.1 can be extended to the analysis of search completion
times. However, there is no expectation of a strict positive or negative correlation to search
area completion time and test completion time due to the variation in task distribution and
execution. In other words, an increase in search completion time could have no effect because
there are still pounce tasks being completed, or it could have a negative correlation because
an increased search time allowed a pounce task to finish sooner and decrease the overall test
time. However, there is an expectation that search area completion times for Immediate
will be increased when compared to the Dynamic tactic due to the prioritization of pounce
tasks. Figure 4.5 shows an exaggerated example of this increase with swarm sizes of six
to nine UAVs in the live-flight search area. The large area average search times depicted
in Figure 4.6 also concur with the increased time over the Dynamic tactic similar to the
performance observed during total test completion times. Detailed analysis on time lost is

presented in Section 4.3.1.

To the expand on the point of varying correlation of search area completion times to test
completion times, analysis shows that in only 16 percent of the tests that a search task was
the last task completed during the test. Of those tests 72 percent occurred during the basic
large search area. 36 percent of the search tasks that were completed last were from the
Immediate tactic while Dynamic and Static split 51 percent and CuedSearch accounted
for the remaining 13 percent. Figures 4.7 and 4.8 depict the difference between the test
completion time and search area completion time. The 0-second difference indicates tests
for which completion of the last search task concluded the overall test. All positive values
indicate tests for which a contact investigation task was the final task completed. There is
a wide time distribution between search area completions and test completions represented
in these two figures. However, within the large area there are more search completion times
equivalent to test completion times suggesting more opportunity for positive correlation.
This suggests that the number of available tasks vs the swarm size is more significant

variable towards test completion than the completion of any subset of tasks.

59

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



Live-Flight Area Mean Search Completion Confidence Intervals

275 behawior
@ CuedSearch
SearchTacticDynamic
® SearchTacticimmediate

250 ® SearchTacticStatic

I
K
u
]
—0—t
[ 2]
——t
-

Time (seconds)
L)
o
o

:
}', It = {
e or o,

100 - !

Mean Search Completion Ti

Swarm Size

Figure 4.5. Live-Flight Area Mean Search Completion Confidence Intervals.

SearchTacticImmediate Time Lost due to Dropping Searches

Figure 4.9 displays the average time spent on Immediate search tasks that were discontinued
in order to transition to pounce tasks. This immediate transition is the key difference between
the Dynamic and Immediate tactics. The behavior is intended to achieve faster contact
response times but incurs the obvious cost of time wasted in discontinued search tasks. As
the figure indicates, this loss is overwhelmingly borne by quadcopters. Sections 4.3.3 and
4.3.2 complement this observation with characterization of low utilization and high pounce
rates in the Immediate behavior. The live-flight area losses can be correlated to the number
of dropped tasks described in Section 4.3.4 where the increases time lost between swarm
sizes five and six, and seven and eight are due to a single additional dropped task. Similarly,

the large search area reflects this increase in average searches dropped at swarm size ten.
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Figure 4.6. Large Area Mean Search Completion Confidence Intervals.

4.3.2 Task Distribution

Task allocation within the heterogeneous swarm is a key performance metric for the Dynamic
and Immediate role assignment auctions. Distributing tasks efficiently according to vehicle
capability is a key feature of the baseline play CuedSearch as presented in [S5]. Thus,
comparison of the developed tactics’ performances to that of the baseline CuedSearch
play demonstrates whether assignment of search and pounce tasks to specific vehicles

approximates the desired task allocation and utilization metrics.

Task allocation is assessed using a pounce ratio that measures the percentage of pounce
tasks completed relative to the total number tasks completed for a specific vehicle type. The
expectation is that the vehicle subsets assigned to search and pounce tasks by the Dynamic
tactic will have a similar makeup to those of the CuedSearch play. The expectation for
both of the tactics is that quadcopters will complete the majority of pounce tasks due to the

airframe specific utility used when computing task values for bidding.
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Figure 4.7. Live-Flight Difference Between Search and Test Completion
Times

All vehicles start in a searcher role since there are no pounce tasks available at the beginning
of a test. After the initial auction the CuedSearch and Dynami c tactics both require a vehicle
to complete a task before changing roles, so each quadcopter will complete at least one search
task. In most cases, few additional search tasks will be completed by quadcopters due to the
auction utility function’s prioritization of pounce tasks. Immediate, on the other hand, is
not required to complete an in-progress task before changing roles. As a result, the pounce
ratio for quadcopters is expected to be higher because of search tasks that are dropped in

favor of pounce tasks.

Finally, the expectation for Static is for quadcopters to complete almost all pounces and
fixed wing UAVs to complete all searches. The Static logic does allow fixed wing vehicles

to compete for pounce tasks if all search tasks are completed before all pounce tasks have
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Figure 4.8. Large Area Difference Between Search and Test Completion
Times

been accounted for. This only occurred in the live-flight area with a swarm size of three
where a total of nine pounce tasks were completed by fixed wing vehicles over 10 tests.

Given this, further task allocation analysis of this tactic will not be presented.

Large Area Task Distribution
Raw task completion statistics for the assessed behaviors in the large area are presented in
Figure 4.10. This figure contains a chart for each behavior with the total count of each type

of task completed binned by swarm size then airframe.

Quadcopter pounce ratios for the large search area are provided in Table 4.4. The pounce
ratio for the Dynamic tactic was six percent higher than for the baseline CuedSearch. This

result supports the experiment expectation that the Dynami c tactic results would align with
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those of the CuedSearch play.

Table 4.4. Quadcopter Pounce Ratio for the Large Area.

Swarm Size | CuedSearch | SearchTacticDynamic | SearchTacticimmediate
6 57% 67% 72%
7 60% 69% 87%
8 62% 65% 76%
9 61% 67% 84%
10 58% 61% 72%
Total 60% 66%0 78%

The Immediate tactic performed as predicted as well, allowing quadcopters to drop search
tasks and transition to pounce tasks as required. This resulted in the number of search tasks
completed by quadcopters being significantly lower than with the other behaviors. Fixed
wing vehicles, on the other hand, were rarely called upon to execute pounce tasks (see
Figure 4.10). Overall this behavior’s quadcopters exhibited a pounce rate of 78 percent, well

below the 100 percent of Static but well above that of the other two behaviors.
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Figure 4.10. Large Search Area Raw Task Distribution.
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Live-Flight Area Task Distribution

While results from the large search area yielded expected metrics for task distribution, results
from behaviors executed in the live-flight search area exhibited some counterintuitive results.
As indicated in Figure 4.11, for swarm sizes 8 - 10 the Dynamic tactic saw the number of
pounce tasks completed by quadcopters decrease and the number of searches increase. This
can be reasoned, however, as there are only 12 search cells available in this search area.
This leads to 75 percent or more of the search cells being completed as a result of the first
auction with such a high number of starting vehicles. This increases competition for any
generated pounce tasks, resulting in available fixed-wing overcoming the airframe utility
modifier due to proximity and availability across vehicles. Any fixed-wing reassigned to a

pouncer role would then remain a pouncer skewing the task assignment as described.

Quadcopter pounce ratios for the live-flight area tests are provided in Table 4.5. For the
baseline CuedSearch play, the pounce ratio was 53 percent or lower for swarms of at least
eight UAVs and 61 percent or higher for smaller swarms. Despite this discontinuity, the
overall pounce ratio for the behavior only differed by one percent compared to the larger
area results. As the table indicates, the small-swarm CuedSearch results in the live-flight
area aligned well with the results from the larger area, while vehicle saturation (i.e., vehicles

to tasks) skewed the results for larger swarms.

Table 4.5. Quadcopter Pounce Ratio for the Live-Flight Area.

Swarm Size | CuedSearch | SearchTacticDynamic | SearchTacticlmmediate
3 60% 0% 96%
4 61% 59% 97%
5 70% 44 100%
6 59% 66% 91%
7 61% 59% 84%
8 53% 39% 89%
9 53% 34% 88%
10 51% 30% 82%
Total 59% 41% 91%

Quadcopter pounce ratios from the Dynamic tests differed significantly between search

areas. Overall, the Dynamic pounce ratio in the live-flight area was 22 percent lower than
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in the large area. This was largely due to the average quadcopter pounce rate of 35 percent
for swarm sizes of between eight and 10 UAVs as explained in the first paragraph of this
section. Pounce ratios for swarms of four to seven UAVs were only slightly lower in the
live-flight area. Interestingly, no pounce tasks were completed by quadcopters for tests with
swarm sizes of three. This can be attributed to the swarm composition and tactic algorithm
since there was only one quadcopter in that size swarm. Depending on when the contact
was reported during the quadcopter’s ongoing search task a fixed wing may have been better
positioned in time and space to win the pounce task, and then remain the sole pouncer if

more pounce tasks were made available.

Quadcopter pounce ratios for the Immediate behavior were minimally affected by the
saturation of vehicles. The overall pounce ratio of 91 percent was 13 percent higher than the
large area pounce ratio. This can be attributed to the rate at which contacts were generated
by fast-moving fixed-wing UAVs relative to the speed with which they were investigated by
the slower quadcopters (i.e., quadcopters were likely to relinquish a search area and move
from contact to contact rather than resume a searcher role). In general, the high pounce
ratios indicate that quadcopters relinquished searches as intended in order to immediately

take on higher priority pounce tasks.

4.3.3 Vehicle Utilization

Analysis of vehicle utilization further illustrates the similarities between the CuedSearch
play and Dynami c tactic and highlights the performance differences between these behaviors
and the Immediate and Static tactics. This section discusses two metrics: fotal utilization
and rask utilization. Total utilization measures the time a vehicle is completing a task or
transiting to complete a task relative to the total test time. Task utilization is similar but does
not include transit time in the measurement. Together, the two measurements are used to

differentiate idle time, time spent transiting, and time actively spent searching or pouncing.

Baseline CuedSearch Play and SearchTacticDynamic Tactic Total Utilization

Figures 4.12 and 4.13 depict total utilization with individual charts representing specific
behaviors (columns) for each search area (rows). Each chart plots the calculated utilization
of each vehicle across test for each swarm size. The colors for each airframe illustrate

distinct patterns of the utilization metric across the behaviors.
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The baseline CuedSearch total utilization shows distinct groupings of the fixed-wing
and quadcopter vehicles for both search areas with quadcopters maintaining a higher total
utilization ratio than fixed wing vehicles. The live-flight search area results display a gradual
decrease in total utilization accompanied by an increase in the range of utilization values
as the swarm size increases. This aligns with the previous observation regarding vehicle
saturation. For CuedSearch the fixed wing vehicles have a low total utilization in the large

swarms as they will idle after completing all the search cells.
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Figure 4.12. Vehicle Total Utilization.

A key distinction visible between the CuedSearch and Dynamic tactics in the figure 4.12
live-flight row is the disappearance of distinct vehicle groupings with the range of fixed
wings total utilization measurements increased and interspersed among the higher utilization

quadcopter vehicles. The difference appears to be facilitated entirely by fixed wing variation
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in utilization, with the quadcopter’s maintaining a similar total utilization range between
the two tactics. When coupled with the known decrease in pounce rate for the quadcopters
in the Dynamic this observation suggests that the increase in utilization for the fixed wing

vehicles comes at the cost of completing more pounces.

SearchTacticImmediate and SearchTacticStatic Tactic Total Utilization

Closer examination of Immediate in both search areas reveals distinct differences
between the Dynamic behavior that accounts for the difference in pounce rate ob-
served in section 4.3.2. Figure 4.13 shows that in the large search the fixed-wing and
quadcopter utilization distributions are inverted when compared to CuedSearch and
SearchTacticDynamic. There is still a distinct separation of vehicle groups but the quad-
copters maintain the lower total utilization rate in this case. This reversal is also evident
in the live-flight area where there is downward shift of 0.17 in average quadcopter total
utilization. The lowest quadcopter total utilization rate dips to approximately 0.1 in the
worst case occurring in swarm sizes seven and above for this search area. In contrast The
lowest rate observed for Dynamic quadcopters in this search was 0.46. This drop in total
utilization can be attributed to quadcopters dropping searches to pursue pounces. This data
suggests that the high pounce rate in Immediate comes at a real cost of lower utilization

rate for quadcopters.

This utilization cost for increased pounce rates is supported by analysis of the task utiliza-
tion metric among quadcopters. Figures 4.14 and 4.14 depict the time spent engaged in
completing tasks for quadcopters across all behaviors. It is notable that in the live-flight
search area that quadcopters executing the Immediate behavior have a similar utilization
profile to the Static behavior which was expected to have low utilization rates due to in-
active quadcopters at the start of tests. This similarity is not pronounced in the large search
area but the Immediate behavior’s task utilization rate is 0.13 lower than Dynamic. For
the live-flight area this difference is a very significant 0.4 and is not confined to the larger

swarm sizes, indicating that this cost is unavoidable.

4.3.4 Pounce Delay and Relinquished Search Cost
Measuring pounce delay and time spent on search tasks that were not completed provides

a basis for comparison of the developed tactics with regards to contact investigation re-
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Figure 4.13. Vehicle Total Utilization.

sponsiveness and the costs associated with discontinuing partially completed search tasks.
When combined with utilization, this facilitates the assessment of various design choices
such as whether or not to relinquish active searches in order to complete pounce tasks
more efficiently. Section 4.3.1 detailed the time lost as a result of relinquished searches
and assessed its effect on search completion times. This section provides an analysis of the

number relinquished tasks to add to the behavioral assessment.

Examination of the number of dropped search tasks in the Immediate live-flight search
area tests did not reveal any unexpected trends with respect to swarm size or search area.
Table 4.6 show the average number of relinquished searches per swarm size. The tests had

a small number of dropped searches per test along with slight increases as the swarm size
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Figure 4.14. CuedSearch play and SearchTacticDynamic tactic Quad-
copter Task Utilization.

increased. This indicates that once a vehicle was assigned to the pouncer role, it rarely
transitioned back to a searcher role. This was often because all search tasks were in progress
or completed prior to the first assigned pounce tasks being completed. In other cases,
additional contacts were generated prior to the completion of the first pounce tasks, so

pouncer vehicles stayed in that role.

Notably among live-flight area tests with swarms of three to five UAVs only two searches
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Figure 4.15. SearchTacticilmmediate and SearchTacticStatic Quadcopter
Task Utilization.

were dropped by fixed-wing UAVs over the course of 30 tests, whereas in swarms larger
than six 50 percent of the tests had at least one fixed-wing UAV drop a search task. This
result empirically indicates that the task utility function was appropriately prioritizing the

quadcopters for pounce tasks.

Tests in the large search area generated contacts at a slower pace resulting in a smaller

number of investigation tasks available at any one time. This increased the likelihood that
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pounce vehicles would transition back to a searcher role upon completion of a pounce task.
This would often result in another search task being aborted later when a new contact was
eventually generated. The distribution of dropped searches is more varied than the live-flight
area with no discernible pattern. It best viewed in Table 4.6 below. The key takeaway is that
the quadcopters were much more likely to abandon in-progress searches than fixed-wing

UAVs, which is exactly the behavior that the utility function was designed to induce.

Table 4.6. SearchTacticImmediate Mean Number of Searches Dropped

per Event.
Live-Flight Search Area
Swarm Size | Fixed-Wing | Quadcopter | Total | Standard Deviation
3 0.1 1.9 2.0 0.0
4 0.0 29 2.9 0.7
5 0.1 2.0 2.1 0.3
6 0.4 3.0 3.4 0.7
7 0.7 2.5 32 0.4
8 0.5 34 4.0 0.4
9 0.6 32 3.8 0.8
10 0.6 3.6 4.2 0.8
Large Search Area
6 1.8 9.6 114 |29
7 1.4 5.8 7.2 3.1
8 2.6 8.6 11.2 |29
9 2.6 7.8 104 | 3.2
10 4.4 11.0 154 109

4.3.5 Contact Response Time

This section investigates the elapsed time from initial contact reporting until completion of
the investigation. Expedient contact investigation is a desired outcome for all behaviors and
is a key comparison of the baseline CuedSearch play to the Dynamic tactic. Additionally,
the Immediate tactic was specifically designed to achieve a faster pounce completion time
than Dynamic tactic. This improved contact-response time comes with a known cost of lost

time from dropping in-progress searches (the average lost time and the negative effect on
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overall performance was examined in Section 4.3.1).

The average time from the initial contact report to the completion of the pounce for all four
behaviors in both test areas is depicted in Figure 4.16. The response time accounts for the
time from the contact report until the commencement of the pounce task by the assigned
investigator, the transit time to the contact, and a 20 second loiter on top of the target (i.e.,
the investigation time). As predicted the Immediate tactic had lower response times than
the baseline CuedSearch play and Dynamic tactic; however, the fastest response times
were observed in the Static behavior tests. This was somewhat unexpected since it was
hypothesized that the dispersion of the Immediate vehicles executing search tasks would
result in shorter transits than for the loitering Static quadcopters. The results, however,
did not bear this out.
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Figure 4.16. Average Pounce Response Time.

4.4 Summary

The experimentation conducted affirms that composed behaviors with auction-based role
assignment is a reasonable approach to behavior development that achieves performance
characteristics similar to monolithic behaviors with the same functionality. Utilizing the
MASC framework to compose behaviors in this fashion provided flexibility in role assign-

ment, composition of plays, and task allocation methods.

Results characterized the performance of the SearchTacticStatic, SearchTactic
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Dynamic, and SearchTacticImmediate tactics and compared them to the baseline
CuedSearch play. In general the two auction based tactics, SearchTacticDynamic
and SearchTacticImmediate were shown to be comparable to the baseline behavior
but enabled the consideration of trade-offs associated with specific design objectives.
The SearchTacticDynamic tactic performed similarly to the CuedSearch play and the
SearchTacticImmediate tactic achieved the desired decrease in pounce response time at
the cost of less efficient search. The SearchTacticStatic tactic exceeded expectations
with search times competitive with the baseline behavior and pounce response on par with
or better than those of the SearchTacticImmediate tactic despite lower overall total UAV

utilization.

As expected, the SearchTacticDynamic tactic behaved most similarly to the CuedSearch
play with regards to total test time, search time, total utilization, and pounce rates. Tactic
pounce response times were somewhat lower than those of the play but were closer than for
either of the other tactics. This is overall performance was expected since the behavioral

semantics of the SearchTacticDynamic tactic were modeled on those of the CuedSearch

play.

The SearchTacticImmediate tactic prioritized pounces by relinquishing searches to
immediately commence pounces. This resulted in an increase in the time required to com-
plete the search area when compared to the other tactics; however, this did not always
equate to a higher total test times. The desired improvement in pounce response time
was achieved when compared to the SearchTacticDynamic tactic and CuedSearch;
however, it did not have faster pounce times than SearchTacticStatic tactic. With re-
spect to pounce rates, the SearchTacticImmediate tactic was more comparable to the
SearchTacticStatic tactic than the other two to behaviors and also displayed traits re-
sembling those of the SearchTacticStatic tactic with regards to utilization by vehicle
type. Overall the SearchTacticImmediate tactic achieved its primary goal of improving

pounce times over the SearchTacticDynamic tactic and the CuedSearch play.

Notable observations outside the primary predictions included probable sensitivity to search
area size relative to the ratio of swarm size and available tasks as observed in Sections 4.3.2
and 4.3.4. It was also observed that the SearchTacticStatic tactic test completion times

were substantially faster than any other behavior for nine- and 10-UAV swarms and also
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displayed significantly less variance than other tests.

Given these observations the behavior of choice for prioritizing pounce times in this test
environment turned out to be the SearchTacticStatic behavior, which was also the
simplest implementation within the MASC framework. However, the results presented in
this chapter confirm the utility and flexibility of the MASC framework in developing robust
swarm behaviors that can meet desired characteristics such as favoring utilization over speed
and prioritizing UAV types for specific tasks through selection of role assignment, and task

allocation methods to achieve specific goals.

Overall conclusions and suggestions for follow-on research are provided in Chapter 5.
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CHAPTER 5:

Conclusion

This research demonstrated the viability of auction-based task allocation and behavior
composition within the hierarchical ARSENL framework to successfully direct a large
UAV swarm in the completion of a complex mission. Our work expanded on recent efforts
documented in [37] and [5] that demonstrated the use of single-item auctions to conduct
MRTA within a heterogeneous swarm. We surmise that this approach to composability will
lead to flexibility in swarm behavior design and allow for creation of complex behaviors

that meet the unique requirements of military mission planning, C2, and execution.

Three tactics were developed with different role allocation methods. Experimentation com-
pared these behaviors to one another and to a more monolithic behavior. Two of the tactics
utilized an additional single-item auction to effect role assignment, while the third used
static assignments determined upon initiation of the tactic. All three tactics were tested in
live-flight and virtual environments with various swarm sizes and compositions within two
geographic search areas to observe key performance characteristics. The remainder of this

chapter summarizes the research findings and recommends future work.

5.1 Summary of Findings

The composition of plays into tactics with integrated task allocation techniques was shown
to be a viable alternative to monolithic implementation. Development of behaviors in
this compositional style shows excellent potential for reuse and rapid integration with the

addition of standardized supporting classes and methods.

5.1.1 Performance Measures

This research used four key measurements for assessment of behavioral performance: com-
pletion time, response time, utilization, and pounce ratio. Of those, the utilization and
pounce ratio were the most useful in identifying performance differences among tactics.
Completion times provided confirmation that there were no adverse performance differences

but did not provide enough differentiation to identify superior or inferior performance.
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In the case of utilization, examination by airframe provided a distinct differentiation in how
efficiently the tactics employed each type of vehicle. In particular, this metric provided
the first metric confirming that the SearchTacticDynamic tactic was comparable to the

CuedSearch play.

Pounce ratio was the most important metric in distinguishing the performance of the tactics’
role allocation methods. As discussed in Section 3.3.2, this is arguably the most important
portion of a tactic’s control implementation. Effective comparison of various approaches,
then, will be an important aspect of any future work in this area. One specific finding of
note was that quadcopter pounce ratios turned out to vary significantly between geographic
areas. This was seen as an indication that role allocation can be sensitive to the ratio of

swarm size to task size.

Pounce response times exhibited a surprising distinction between the SearchTactic
Dynamic tactic and the CuedSearch play it was designed to mirror. Specifically, the
tactic exhibited lower response times in the large geographic area. This demonstrates an
inverse correlation with the pounce ratio observations: the higher SearchTacticDynamic
pounce ratios equate to lower response times. This is a desired characteristic but did diverge

somewhat from the CuedSearch play results.

5.1.2 Behavior Composition

We showed that a composition of multiple auction-based plays in a single tactic can be
designed to have comparable performance to a single auction-based play conducting the
same tasks. The solution treated the assignment of swarm UAVs to the composed behaviors

as an additional task allocation problem.

Three tactics, SearchTacticStatic, SearchTacticDynamic, and SearchTactic
Immediate, were developed, and each demonstrated comparable performance to the base-
line CuedSearch play. The SearchTacticDynamic tactic was the most similar across
all observed metrics. This was the desired outcome as the SearchTacticDynamic tactic

semantics were designed to most closely resemble those of the CuedSearch play.

Other measures, including completion, response times, and utilization showed acceptable

performance in accordance with the intended design. One surprising result was the overall
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performance of the SearchTacticStatic tactic. In several cases it performed on par with
or better than the auction-based tactics. This is likely not a result of the composition or
tactic design, but more likely that the perceived relation between utilization and completion

time is not strongly correlated for this behavior as initially hypothesized.

Overall, the performance of the developed tactics met the goal of the research to confirm
that composition of behaviors and MRTA techniques is a viable alternative to monolithic

behavior implementations.

5.1.3 Composition Benefits

The expectation for composed behaviors is that the benefits of reusability lead to faster
integration and an ability to develop increasingly complex behaviors. This research supports
that assumption with the caveat that key support mechanisms must be implemented and
available to enable interaction between the composed plays and the tactic. In particular,
well-defined mechanisms for passing play-specific information between hierarchical levels

are required.

The current ARSENL code design using the PlugInBehavior class supported the exogenic
style composition without issue. Chapter 3 noted that the SearchTacticStatic tactic
implementation was surprisingly straightforward after the supporting classes and methods
were developed. The remaining two tactics required adjustment to the role assignment
methods that was not burdensome, even with the addition of the role-assignment auction
mechanism. Given this and the acceptable level of performance noted in Section 5.1.2, the
composition does support usability with the benefit of rapid reuse and integration. With
careful design of supporting framework methods, the benefit of creating even more complex

behaviors is likely achievable as well.

5.2 Future Work

The classes and methods developed to support the composition for the created tactics were
specific to the plays and auction components used. However, the key issues that they solve
can be abstracted and addressed more comprehensively to enable a wider set of interactions

that promote the goals of component reuse and ease of integration. The MASC framework
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provides a viable hierarchy, and the ARSENL codebase provides the tools for implementing
swarm behaviors. An updated solution stemming from this research will provide the tools

necessary for repeatable, consistent composition.

5.2.1 Supporting Framework

There are four themes that the implemented classes and methods supported for the compo-
sition: standard tactic and play communication mechanisms, decoupling and encapsulation
of state data, data-driven event generation, and event and data notification requirements.
Ultimately, this is purely an implementation detail to support the goals of usability and rapid

integration.

Principle among the identified needs is the synchronization of tactic and play knowledge
onboard the individual UAV. Chapter 2 discussed several examples of supporting shared
knowledge within compositional models. Ultimately this implementation used container
classes and event-based methods to enable the required synchronization. The container
classes added required members and methods to enable state manipulation and provide

observer members to enable callbacks to the tactic.

The event-observer mechanism was chosen because of the need for a tactic to intercept task
state changes within the play in order to initiate immediate role transfers (i.e., before the
play actually transitions to a new state). However, immediacy is not a general requirement,
and changes to the codebase could eliminate most situations that currently require event
call backs to effect tactic-play interaction. For general synchronization between tactic and
play, standard programming patterns relying on method arguments and return values might

provide a less complex and decoupled option.

Within the ARSENL architecture, utilizing the maneuver_command control loop is arguably
the most direct way to implement composition. Extending this method to provide arguments
to the play and return play-specific information can be accomplished in multiple ways.
Standardizing the data-passing mechanism among plays with disparate functionality will

be the greater challenge.

The most important information that was coordinated in this research was was a byproduct

of states and events associated with tasks, auctions, and maneuver. Chapter 3 described
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the components utilizing the state information. The Role and Auctioneer classes were
developed to provide access to and manipulation of state data. They were, however, im-
plementation specific with the Role class in particular having only moderate potential for
reusability. Abstracting the requirements that the Role and Auctioneer classes satisfied
into virtual classes defining state, tasks, and task allocation would provide the foundation
for more generalizable reusability. Designing these classes with cooperation specifically in
mind might also align required members and methods to implement the chosen information

synchronization mechanism.

5.2.2 Role Assignment Methods

Further research into enhanced or alternate role assignment methods within a tactic presents
the greatest opportunity for reuse of the technique. The implementation in this research
replicates the functionality of a single auction. This basic implementation can be modified
relatively easily to support a wider range of auction scenarios. Specifically, this would
involve refining the transition task definition to account for all roles and implementing a
more robust function to calculate the optimal number of each role assignment. This model
would support the ability to initiate an auction for any role at any time it determines that
additional support is needed. Defining a standard for this role assignment class would also

support integrating other MRTA methods.

5.2.3 Decoupling Auctions and Plays

The composition of plays containing their own MRTA functions, such as an auction, is
advantageous in that plays can be built with the ideal MRTA solution for the play-specific
objectives. One drawback that was encountered during this research was the need to syn-
chronize tasks at multiple hierarchical levels. This synchronization might be alleviated by
defining only the requirement for an auction within the play but having the tactic actually

conduct the auction to service the requirement.

Conducting auctions at the tactic level would potentially enable more granular design
of the tactic. Implementing this design choice, for instance, might allow for an exact
duplication of the CuedSearch play semantics by a tactic rather than the approximation
of the SearchTacticDynamic tactic. The ContactInvestigation play provides a good
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option for implementing this design since tasks are received from another play or another
UAV; that is, the auctions are already dependent on external events. The SwarmSearch play
would require exposing its geographic decomposition methods (i.e., its means of dividing
the search area into search cells). Standardizing the task generation would be essential to
implementing this approach. Nevertheless, it might provide a generalizable approach to

composition that has broad benefits.

5.2.4 Comprehensive Tactic Control

Developing a tactic control framework to manage compositions incorporating multiple role
assignment strategies and task allocation methods that support the military mission require-
ments is a recommended long-term step to allow tactics to achieve robust C2 and usability.
Developing a tactic control framework is distinct from role assignment and MRTA meth-
ods in that it aggregates distinct requirements for mission completion based on parameters
relevant to specific mission time and space. A tactic may need to allocate an exact number
of vehicles for an enduring task, form a coalition for a ST-MR-IA task, and then apportion
the remainder of vehicles between roles via a particular MRTA mechanism. Thus, this
functionality forms an additional layer of aggregation where the control framework assigns
plays to a list of role assignment methods for which it specifies the priority, vehicle types,
and allocation constraints for each role assignment method. This description could arguably
be the thought of as the mission level in the MASC framework, but it does not correlate
directly to an object in the ARSENL codebase.

5.3 Summary

This work demonstrated that the creation of tactics as a composition of plays and the in-
tegration of task allocation techniques is a viable alternative to monolithic UAV swarm
behavior implementation. While the recreation of performance metrics was not perfect,
there is ample opportunity to refine role allocation method to improve desired performance
characteristics and implement more complex behaviors. Development of behaviors in this
compositional style shows excellent potential for reuse and rapid integration with the addi-

tion of standardized supporting classes and methods.
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