5,453 research outputs found

    Bayesian Networks with Expert Elicitation as Applicable to Student Retention in Institutional Research

    Get PDF
    The application of Bayesian networks within the field of institutional research is explored through the development of a Bayesian network used to predict first- to second-year retention of undergraduates. A hybrid approach to model development is employed, in which formal elicitation of subject-matter expertise is combined with machine learning in designing model structure and specification of model parameters. Subject-matter experts include two academic advisors at a small, private liberal arts college in the southeast, and the data used in machine learning include six years of historical student-related information (i.e., demographic, admissions, academic, and financial) on 1,438 first-year students. Netica 5.12, a software package designed for constructing Bayesian networks, is used for building and validating the model. Evaluation of the resulting model’s predictive capabilities is examined, as well as analyses of sensitivity, internal validity, and model complexity. Additionally, the utility of using Bayesian networks within institutional research and higher education is discussed. The importance of comprehensive evaluation is highlighted, due to the study’s inclusion of an unbalanced data set. Best practices and experiences with expert elicitation are also noted, including recommendations for use of formal elicitation frameworks and careful consideration of operating definitions. Academic preparation and financial need risk profile are identified as key variables related to retention, and the need for enhanced data collection surrounding such variables is also revealed. For example, the experts emphasize study skills as an important predictor of retention while noting the absence of collection of quantitative data related to measuring students’ study skills. Finally, the importance and value of the model development process is stressed, as stakeholders are required to articulate, define, discuss, and evaluate model components, assumptions, and results

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context,

    Get PDF
    A problem faced by some Logistic Support Organisations (LSOs) is that of forecasting the demand for spare parts, corresponding to equipment failures within the system. Here we are particularly concerned with a final phase of operations and the opportunity to place only a single order to cover demand during this phase. The problem is further complicated when the service logistics context can change during this final phase, e.g. as the number of systems supported or the LSO's resources change. Such a problem is typical of the final phase of many military operations. The LSO operates the recovery and repair loop for the equipment in question. By developing a simulation of the LSO, we can generate synthetic operational data regarding equipment breakdowns, etc. We then split that data into a training set and a test set in order to compare several approaches to forecasting demand in the final operational phase. We are particularly interested in the application of Bayesian network models for this type of forecasting since these offer a way of combining hard observational data with subjective expert opinion. Different LSO configurations were simulated to create a test dataset and the simulation results were compared with the various forecasts. The BN that learned from training data performed best, followed by a hybrid BN design combining expert elicitation and machine learning, and then a logistic regression model. An expert-adjusted exponential smoothing model was the poorest performer and these differences were statistically significant. The paper concludes with a discussion of the results, some implications for practice and suggestions for future work

    Do News and Sentiment play a role in Stock Price Prediction?

    Get PDF

    A Bayesian network approach for multi-sectoral flood damage assessment and multi-scenario analysis

    Get PDF
    Extreme weather and climate related events, from river flooding to droughts and tropical cyclones, are likely to become both more severe and more frequent in the coming decades, and the damages caused by these events will be felt across all sectors of society. In the face of this threat, policy-and decision-makers are increasingly calling for new approaches and tools to support risk management and climate adaptation pathways that can capture the full extent of the impacts. In this frame, a GIS-based Bayesian Network (BN) approach is presented for the capturing and modelling of multi-sectoral flooding damages against future 'what-if' scenarios. Building on a risk-based conceptual framework, the BN model was trained and validated by exploiting data collected from the 2014 Secchia River flooding event, as well as other contextual variables. Moreover, a novel approach to defining the structure of the BN was performed, reconfiguring the model according to expert judgment and data-based validation. The model showed a good predictive capacity for damages in the agricultural, industrial and residential sectors, predicting the severity of damages with a classification accuracy of about 60% for each of these assessment endpoints. 'What-if' scenario analysis was performed to understand the potential impacts of future changes in i) land use patterns and ii) increasing flood depths resulting from more severe flood events. The output of the model showed a rising probability of experiencing high monetary damages under both scenarios. In spite of constraints within the case study dataset, the results of the appraisal show good promise, and together with the designed BN model itself represent a valuable support for disaster risk management and reduction actions against extreme river flooding events, enabling better informed decision making

    A guided analytics tool for feature selection in steel manufacturing with an application to blast furnace top gas efficiency

    Get PDF
    In knowledge intensive industries such as steel manufacturing, application of data analytics to optimise process performance, requires effective knowledge transfer between domain experts and data scientists. This is often an inefficient path to follow, requiring much iteration whilst being suboptimal with regard to organisational knowledge capture for the long term. With the ‘initial Guided Analytics for parameter Testing and controlband Extraction (iGATE)’ tool we created a feature selection framework that finds influential process parameters and their optimal control bands and which can easily be made available to process operators in the form of guided analytics tool, while allowing them to modify the analysis according to their expertise. The method is embedded in a work flow whereby the extracted parameters and control bands are verified by the domain expert and a report of the analysis is automatically generated. The approach allows us to combine the power of suitable statistical analysis with process-expertise, whilst dramatically reducing the time needed for conducting the feature selection. We regard this application as a stepping stone to gain user confidence in advance of introduction of more autonomous analytics approaches. We present the statistical foundations of iGATE and illustrate its effectiveness in the form of a case study of Tata Steel blast furnace data. We have made the iGATE core functionality freely available in the igate package for the R programming language
    corecore